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In most contact algorithms especially in case of large deformations the closest point projection (CPP) procedure is necessarily
involved in order to check the contact conditions. Despite the number of publications on numerical contact algorithms there
are no complete results about existence and uniqueness of the CPP procedure for arbitrary surfaces. The current contribution
is aimed to fill this void.

1 Introduction

The CPP procedure is introduced as a numerical scheme to compute coordinates of a point projected onto a surface. In
variational formulations for contact problems it appears due to the split of contact displacements into a normal and a tangential
part. Hallquist et.al. [1] considered the split into normal and tangential direction via the projection operation as a so-called
”master-slave” approach for a dynamic contact analysis. Nowadays, the CPP procedure is an essential part for almost all
contact enforcement methods: penalty method, Lagrange multiplier method, augmented Lagrangian method. Despite the
enormous number of publications on contact mechanics, there are only a few publications covering to some completeness
the problem of uniqueness and existence of the CPP procedure for the surfaces of arbitrary geometry as well as describing
effective numerical algorithms to overcome problems. The problem of non-uniqueness and non-existence of the projection for
e.g. bi-linear approximations of a surface by finite elements is known since the first publications, see Hallquist et.al. [1], and
mostly reported in theoretical manuals of popular commercial codes. Heegaard and Curnier in [2] mentioned that geometrical
parameters of a surface can be used to determine existence and uniqueness of the projection for smooth surfaces. Some
techniques dealing with the non-existence of the projection in certain cases are well known in contact mechanics: descriptions
of various rather heuristic approaches can be found in the books of Wriggers [3] and Laursen [4].

The current contribution deals with analytical tools allowing to create, a-priori, proximity domains of contact surfaces
from which a given contact point is always uniquely projected. This approach is based on the geometrical properties of
contact surfaces exploiting the covariant description for contact problems as developed in Konyukhov and Schweizerhof [5],
[6]. First, all C2-continuous surfaces are classified according to their differential properties allowing a unique projection.
Then, proximity domains are created for C1-continuous surfaces. Finally, proximity domains are proposed for globally C0-
continuous surfaces covering all practical approximations. The projection scheme in the latter case is further generalized
including the projection onto geometrical objects of lower order (curved edges, corner points). In such cases the corresponding
proximity domains are created by a geometrical analysis of those objects.

2 Analysis of CPP and projection domains for surfaces
Let us assume that the general parameterization (e.g. by a finite element approximation, or a spline approximation or by a
NURBS approximation) is given for the ”master” surface via Gaussian coordinates as ρ(ξ1, ξ2) and rS is a “slave” point. The
CPP procedure is then formulated as an extremal problem

F(ξ1, ξ2) =
1

2
||r− ρ(ξ1, ξ2)|| → min, −→ (r− ρ) · (r− ρ)→ min, (1)

which is solved then mostly numerically. As is known, the convexity of the function F leads to existence and uniqueness
of the extremal problem (1). This analysis is performed in a 3D spatial coordinate system related to the surface coordinate
system, which is introduced as follows:

r(ξ1, ξ2, ξ3) = ρ + nξ3. (2)

The second derivative of the function F is computed and transformed in this local coordinate system as

F
′′ =

[
a11 − ξ3h11 a12 − ξ3h12

a21 − ξ3h21 a22 − ξ3h22

]
, (3)

∗ Corresponding author E-mail: Alexander.Konyukhov@ifm.uni-karlsruhe.de, Phone: +49 (0)721 608 3252, Fax: +49 (0)721 608 7990
∗∗ E-mail: Karl.Schweizerhof@ifm.uni-karlsruhe.de, Phone: +49 (0)721 608 2070, Fax: +49 (0)721 608 7990

PAMM · Proc. Appl. Math. Mech. 7, 4040053–4040054 (2007) / DOI 10.1002/pamm.200701133
 

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

First published in:

EVA-STAR (Elektronisches Volltextarchiv – Scientific Articles Repository) 
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000009351 



where aij are components of the metric tensor, hij are components of the curvature tensor for the master surface. The
convexity requirement for the function F in eqn. (1) is becoming then the positivity requirement for the matrix F

′′ in eqn. (3).
The latter is analyzed with the Sylvester criterion, namely

(a11 − ξ3h11) > 0
det[(aij − ξ3hij)] > 0.

(4)

Remarkably, the second equation in (4) is similar to that which is used in differential geometry for the analysis of the surface
structure.

Projection domains surrounding a given surface, from which a point can be a-priori uniquely projected onto the surface
can be constructed for C2-continuous surfaces in the local coordinate system in eqn. (2). The structure is different for an
elliptic, a hyperbolic and a parabolic point and is defined as follows:

Ω(ξ1, ξ2, ξ3) := {r = ρ + ξ3
n, where ξ3 ∈ Q}. (5)

Thus e.g. for an elliptic point Q ≡ (0, min( 1

R1

, 1

R2

)) (with Ri as radii of curvature) for the locally convex part with ξ3 > 0

and Q ≡ [−∞, 0) for the locally concave part with ξ3 < 0. Other cases are constructed in a similar fashion, see Fig. 1.
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Fig. 1 Structure of projection domains for various cases: a) elliptic point. b) hyperbolic point. c) parabolic point.

In order to describe the points which can not be described in the local surface coordinate system (2) the surface CPP should
be generalized and include then a point-to-edge CPP and a angular point CPP. The solvability of the point-to-edge CPP is
analyzed then in the Serret-Frenet frame exploiting the differential properties of the corresponding curve.

3 Conclusion

In this contribution fundamental problems of existence and uniqueness of the closest point projection procedure are investi-
gated. The analysis is given in a surface coordinate system, which has also been a basis for a covariant description of the
contact formulation. The consideration of the differential properties of smooth surfaces allows to create ”projection domains”
from which a projection of e.g. a slave node is uniquely defined. For arbitrary C0 continuous surfaces, however, the projec-
tion procedure should be generalized to include projections not only onto surfaces, but also onto objects of lower geometrical
dimension, such as curved lines and points. The corresponding criteria of existence and uniqueness and, therefore, projection
domains are then constructed in the Serret-Frenet frame and in the local frame connected to the angular point.
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