Ionische Flüssigkeiten als Reaktionsmedium zur Darstellung neuartiger Festkörper

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

der Fakultät für Chemie und Biowissenschaften der

Universität Karlsruhe (TH)

angenommene

Dissertation

von

Dipl.-Chem. Alexander Okrut

aus Pößneck

Dekan: Prof. Dr. S. Bräse

Referent: Prof. Dr. C. Feldmann

Korreferent: Prof. Dr. F. Breher

Tag der mündlichen Prüfung: 10.07.2008

Die vorliegende Arbeit wurde in der Zeit von Oktober 2004 bis Juli 2008 am Institut für Anorganische Chemie der Universität Karlsruhe (TH) unter Anleitung von Prof. Dr. C. Feldmann angefertigt.

1	EINLEITUNG UND ZIELSTELLUNG	1
2	EXPERIMENTELLER TEIL	5
2.1	Verwendete Chemikalien	5
2.2	Darstellung und Reinigung der Ausgangsverbindungen	5
2.2.1	Darstellung von [NMeBu ₃][N(Tf) ₂]	5
2.2.2	Darstellung von NbCl ₅	6
2.2.3	Darstellung von TeI ₄	6
2.3	Arbeiten unter Schutzgas	6
2.4	Röntgenbeugung	7
2.4.1	Röntgenbeugung an Einkristallen	7
2.4.2	Röntgenbeugung an pulverförmigen Proben	10
2.5	Spektroskopie	
2.5.1	IR-Spektroskopie	
2.5.2	UV/VIS-Spektroskopie	
2.5.3	Kernresonanzspektroskopie	
2.6	Sonstiges	15
2.6.1	Elementaranalyse	15
2.6.2	Massenspektrometrie	15
2.6.3	Thermische Analysen	
3	ERGEBNISSE UND DISKUSSION	19
3.1	Vorbemerkungen	19
3.2	Reaktionsdurchführung in der Ionischen Flüssigkeit [NMeBu3][N(Tf)2]	
3.2.1	Aktueller Stand	
3.2.2	Untersuchungen zur Stabilität der Ionischen Flüssigkeit [NMeBu ₃][N(Tf) ₂]	22
3.2.3	Die Ionische Flüssigkeit [NMeBu ₃][N(Tf) ₂] als Reaktionsmedium und -partner: Die	
Kristalls	strukturen der Verbindungen [NMeBu ₃][NbCl ₆] und [NMeBu ₃] ₂ [TeI ₆]	
3.2.3	.1 Aktueller Stand	
3.2.3	.2 Synthesen und Kristallstrukturen der Verbindungen [NMeBu ₃][NbCl ₆] und	
[NM	$eBu_3]_2[TeI_6]$ 25	
3.3	Der strukturelle Einfluss Ionischer Flüssigkeiten auf ionische Festkörper am Beispi	el der
Verbindu	ng cis-[NMeBu ₃] ₃ [Bi ₃ I ₁₂]	

3.3.1	Aktueller Stand	
3.3.2	Synthese und Kristallstruktur von cis-[NMeBu ₃] ₃ [Bi ₃ I ₁₂]	
3.4	Synthesen in Ionischen Flüssigkeiten unter reduzierenden Bedingungen: Die Ver	bindungen
[NMeBu	3]2[(WOCl4)2·1,4-Dioxan] und [NMeBu3]2[(WOCl4)·1,4-Dioxan]2(1,4-Dioxan)	
3.4.1	Aktueller Stand	
3.4.2	Synthese und Charakterisierung von [NMeBu ₃] ₂ [(WOCl ₄) ₂ ·1,4-Dioxan]	
3.4.3	Synthese und Kristallstruktur von [NMeBu ₃] ₂ [(WOCl ₄)·1,4-Dioxan] ₂ (1,4-Dioxan)	45
3.5	Synthesen in Ionischen Flüssigkeiten unter oxidierenden Bedingungen: Die Verbi	ndung
{[P(o-toly	$[v]_{3}]Br_{2}[Cu_{2}Br_{6}](Br_{2})$	48
3.5.1	Aktueller Stand	
3.5.2	Synthese und Charakterisierung von {[P(o-tolyl) ₃]Br} ₂ [Cu ₂ Br ₆](Br ₂)	
3.6	Darstellung von Verbindungen mit schwach koordinierenden Anionen: Die Verb	indung
{[P (Ph) ₃]	₃ Ag}[N(Tf) ₂]	57
3.6.1	Aktueller Stand	57
3.6.2	Synthese und Charakterisierung der Verbindung {[P(Ph) ₃] ₃ Ag}[N(Tf) ₂]	58
4	ZUSAMMENFASSUNG	65
5	AUSBLICK	67
6	LITERATUR	69
7	ANHANG	75
7.1	Tabellen zur Strukturbestimmung	75
7.2	Lebenslauf	103
7.3	Publikationsliste	105

Abstract. – The aim of this work was the investigation of ionic liquids (ILs) as reaction media for the synthesis of solid compounds. In contrast to classic solid state reactions, the use of ILs provides adequate diffusion at low temperatures (< 250 °C). Due to its high chemical and thermal stability, the Ionic Liquid [NMeBu₃][N(Tf)₂] has been used for this purpose. [NMeBu₃][N(Tf)₂] contains the weakly coordinating anion [N(Tf)₂]⁻ and the non-coordinating cation [NMeBu₃]⁺.

A simple reaction of BiI₃ and KI in [NMeBu₃][N(Tf)₂] results in the formation of a new $[Bi_3I_{12}]^{3-}$ anion with three $[BiI_6]$ -octahedra linked via joint faces in a *cis* arrangement. The similar compound [NBu₄]₃[Bi₃I₁₂] contains three *trans*-oriented octahedra. Thus, the ionic liquid influences the resulting crystal structure. Further reactions in [NMeBu₃][N(Tf)₂] have been performed under oxidative and reductive conditions. The reduction of WCl₆ with elemental potassium in the presence of 18-crown-6 leads to the formation of a dimeric anion $[(WOCl_4)_2 \cdot 1, 4$ -dioxane]²⁻. This anion represents a first oxygen-bridged dimeric anion containing a [WOCl₄]⁻ unit. Its formation occurs due to the decomposition of 15-crown-5. Attempts to synthesize larger amounts of the compound utilising 1,4-dioxane as a solvent result in a formation of a monomeric species [(WOCl₄)·1,4-dioxane]⁻. Reactions under oxidative conditions were performed by the conversion of CuBr₂ and P(o-tolyl)₃ with Br₂ in $[NMeBu_3][N(Tf)_2]$. The obtained compound $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2)$ contains molecular bromine which can be verified by DTA/TG and mass spectrometry. The $[Cu_2Br_6]^{2-1}$ anions and the Br₂ molecule form infinite $\int_{1}^{\infty} \{ Cu_2 Br_6 \} (Br_2) \}$ chains. Attempts to synthesize or recrystallize this compound in other polar solvents (e.g. acetone, ethanol, dichloromethane) failed. Finally, the compound $\{[P(Ph)_3]_3Ag\}[N(Tf)_2]$ was obtained by the conversion of Ag(OTf) and P(Ph)₃ in [NMeBu₃][N(Tf)₂]. The compound contains an $\{[P(Ph)_3]_3Ag\}^+$ cation with the Ag atom tetrahedrally coordinated by three phosphorus atoms and one oxygen atom of the $[N(Tf)_2]^-$ anion.

The Ionic Liquid $[NMeBu_3][N(Tf)_2]$ has been proven to afford the synthesis of metastable solid compounds. Especially the formation of the novel *cis*- $[Bi_3I_{12}]^{3-}$ anion and the Br₂ containing compound $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2)$ show the high potential of Ionic Liquids in the field of inorganic synthesis.

Abbildungsverzeichnis

Abbildung 1. Schematische Darstellung des [NMeBu ₃] ⁺ -Kations	6
Abbildung 2. Schematische Darstellung der Bragg-Gleichung.	8
Abbildung 3. Schematische Darstellung eines Pulverdiffraktometers	. 11
Abbildung 4. Typische Kationen und Anionen Ionischer Flüssigkeiten.	. 20
Abbildung 5. Thermische Analyse der Ionischen Flüssigkeit [NMeBu ₃][N(Tf) ₂]	. 22
Abbildung 6. Die Ionische Flüssigkeit [NMeBu ₃][N(Tf) ₂] nach der unmittelbaren Zugabe v I _{2.} Die Löslichkeit des I ₂ in der Ionischen Flüssigkeit ist gut zu erkennen.	/on 23
Abbildung 7. Zersetzte Ionische Flüssigkeit nach der Umsetzung mit I2 bei 100 °C für 12 h	ı. 23
Abbildung 8. ¹ H-NMR-Spektrum der Ionischen Flüssigkeit [NMeBu ₃][N(Tf) ₂] nach der Umsetzung mit Natrium (400 MHz, 25 °C, Aceton D6), siehe auch Kapitel 2.2.1	24
Abbildung 9. Elementarzelle der Verbindung [NMeBu ₃][NbCl ₆] in Blickrichtung der kristallographischen <i>b</i> -Achse. Die [NbCl ₆] ⁻ -Anionen sind als Polyeder dargestellt, Wasserstoffatome sind nicht abgebildet	26
Abbildung 10. Antikuboktaeder als Umgebungspolyeder für das [NbCl ₆] ⁻ -Anion in [NMeBu ₃][NbCl ₆].	. 26
Abbildung 11. Zwei Oktaederlücken (grau) und zwei Tetraederlücken (rot) in der hexagona dichten Packung aus [NbCl ₆] ⁻ -Anionen in [NMeBu ₃][NbCl ₆]. Die beiden unteren	al-
Lücken sind jeweils zur Hälfte mit einem [NMeBu ₃] ⁺ -Kation gefüllt	. 27
Abbildung 12. Elementarzelle der Verbindung [NMeBu ₃] ₂ [TeI ₆] in Blickrichtung der kristallographischen <i>b</i> -Achse. Die [TeI ₆] ^{2–} -Anionen sind durch Polyeder dargestellt; Wasserstoffatome sind nicht abgebildet	28
Abbildung 13. Packungsmuster mit rechtwinkligen Schichten aus $[TeI_6]^{2^-}$ -Anionen in $[NMeBu_3]_2[TeI_6]$. Gleiche Farben bezeichnen gleiche Positionen entlang der kristallographischen h. Achse	28
Abbildung 14. Schicktouthen der Ketienen und Anienen in DDA-Der 1 [T-L]	. 20
Abolicung 14. Schichtautoau der Kationen und Antonen in [NMeBu ₃] ₂ [1el ₆]	. 29
Abbildung 15. Koordinationssphäre des $[NdI_6]^2$ -Anions in $[mppyr]_3[NdI_6]$ [44]	. 30
Abbildung 16. Beispiele komplexer Anionen: links [Al ₂ Cl ₇] ⁻ [48], rechts [Bi ₈ I ₂₈] ⁴⁻ [50]	. 31

Abbildung 17. Elementarzelle der Verbindung cis-[NMeBu ₃] ₃ [Bi ₃ I ₁₂] mit Blickrichtung
entlang [010]. Cis- $[Bi_3I_{12}]^{3-}$ -Anionen sind durch Polyeder hervorgehoben,
Wasserstoffatome sind nicht dargestellt
Abbildung 18. Cis - $[Bi_3I_{12}]^{3-}$ -Anion in [NMeBu_3]_3[Bi_3I_{12}]. Die Auslenkungsellipsoide sind mit
einer Aufenthaltswahrscheinlichkeit von 50 % dargestellt
Abbildung 19. Verzerrt tetraedrische Koordination des [NMeBu ₃] ⁺ -Kations
Abbildung 20. Verknüpfungsmöglichkeiten dreier Oktaeder über gemeinsame Flächen 36
Abbildung 21. Kristalle der Verbindung [NMeBu ₃] ₂ [(WOCl ₄) ₂ ·1,4-Dioxan]
 Abbildung 22. Elementarzelle der Verbindung [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan]. Die Anionen sind durch Polyederdarstellung hervorgehoben, Wasserstoffatome sind nicht abgebildet. Die Auslenkungsellipsoide sind mit einer Aufenthaltswahrscheinlichkeit von 50 % dargestellt.
Abbildung 23. $[(WOCl_4)_2 \cdot 1, 4-Dioxan]^{2-}$ -Anion in $[NMeBu_3]_2[(WOCl_4)_2 \cdot 1, 4-Dioxan]$
Abbildung 24. Darstellung der Verbindung [NMeBu ₃] ₂ [(WOCl ₄) ₂ ·1,4-Dioxan] im anti-CdI ₂ - Strukturyp. In den Oktaedern befinden sich die [(WOCl ₄) ₂ ·1,4-Dioxan] ^{2–} -Anionen, die Oktaederspitzen sind die geometrischen Mittelpunkte der [NMeBu ₃] ⁺ -Kationen40
Abbildung 25. Ausschnitt aus dem anti-CdI ₂ -Strukturtyp der Verbindung [NMeBu ₃] ₂ [(WOCl ₄) ₂ ·1,4-Dioxan]. Links im Bild ist die Position der [(WOCl ₄) ₂ ·1,4- Dioxan] ²⁻ -Anionen gezeigt, rechts die Positionen der [NMeBu ₃] ⁺ -Kationen
 Abbildung 26. A: Vergleich der Diffraktogramme von [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan] (schwarz = gemessen, blau = aus Einkristalldaten berechnet). B: Zur Indizierung nach <i>Visser</i> [75] verwendete Reflexlagen des gemessenen Diffraktogrammes. C: Rietveldplot der Verfeinerung der Einkristalldaten gegen das gemessene Diffraktogramm. D: Vergrößerter Ausschnitt aus C
Abbildung 27. Thermogravimetrische Analyse der Verbindung [NMeBu ₃] ₂ [(WOCl ₄) ₂ ·1,4- Dioxan]
Abbildung 28. UV/VIS-Spektrum der Verbindung [NMeBu ₃] ₂ [(WOCl ₄) ₂ ·1,4-Dioxan]44
Abbildung 29. Elementarzelle der Verbindung [NMeBu ₃] ₂ [(WOCl ₄)·1,4-Dioxan] ₂ (1,4- Dioxan) in Blickrichtung der kristallographischen <i>b</i> -Achse. Wasserstoffatome sind nicht
dargestellt

Abbildung 30. [(WOCl ₄)·1,4-Dioxan] ⁻ -Anion in [NMeBu ₃] ₂ [(WOCl ₄)·1,4-Dioxan] ₂ (1,4-Dioxan)
Abbildung 31. Schematische Darstellung des Packungseffektes in [NMeBu ₃] ₂ [(WOCl ₄)·1,4- Dioxan] ₂ (1,4-Dioxan)
Abbildung 32. Eine Tetraederlücke (rechts) und eine Oktaederlücke (links) der von den Dioxan-Molekülen gebildeten verzerrten dichten Packung in [NMeBu ₃] ₂ [(WOCl ₄)·1,4- Dioxan] ₂ (1,4-Dioxan)
Abbildung 33. Pulverdiffraktogramm der Verbindung {[P(o-tolyl) ₃]Br} ₂ [Cu ₂ Br ₆](Br ₂) (oben) im Vergleich mit einem aus der Einkristallstruktur berechnetem Diffraktogramm (unten).
Abbildung 34. Elementarzelle der Verbindung {[P(o-tolyl) ₃]Br} ₂ [Cu ₂ Br ₆](Br ₂) mit Blickrichtung entlang der kristallographischen <i>b</i> -Achse. Die Auslenkungsellipsoide sind mit einer Aufenthaltswahrscheinlichkeit von 50 % dargestellt
Abbildung 35. Ausschnitt aus der unendlichen ${}_{1}^{\infty}{[Cu_{2}Br_{6}](Br_{2})}$ -Kette in ${[P(o-tolyl)_{3}]Br}_{2}[Cu_{2}Br_{6}](Br_{2})}$
Abbildung 36. Hexagonale Anordnung der Kationen und Anionen in {[P(o- tolyl) ₃]Br} ₂ [Cu ₂ Br ₆](Br ₂) senkrecht zur [111]-Richtung
Abbildung 37. Transformation der triklinen primitiven Elementarzelle der Verbindung $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2)$ in eine monokline <i>C</i> -zentrierte Elementarzelle. Zur besseren Übersichtlichkeit sind nur $[Cu_2Br_6]^{2-}$ -Anionen dargestellt. Die Achsenbeschriftungen <i>a</i> , <i>b</i> und <i>c</i> gelten für die trikline Zelle, die Beschriftungen <i>a</i> ', <i>b</i> ' und <i>c</i> ' für die monokline Zelle. 53
Abbildung 38. Monokline <i>C</i> -zentrierte Elementarzelle der Verbindung {[P(o- tolyl) ₃]Br} ₂ [Cu ₂ Br ₆](Br ₂)
Abbildung 39. Pseudo-2 ₁ -Achse in der monoklinen Elementarzelle der Verbindung $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2).$ 54
Abbildung 40. Rietveld-Plot von {[P(o-tolyl) ₃]Br} ₂ [Cu ₂ Br ₆](Br ₂) (rot: gemessene Daten, schwarz: berechnete Daten, blau: Differenz)
Abbildung 41. Thermogravimetrische Analyse der Verbindung $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2).$ 56

Abbildung 42. Massenspektrum der Verbindung {[P(o-tolyl) ₃]Br} ₂ [Cu ₂ Br ₆](Br ₂)	56
Abbildung 43. Elementarzelle der Verbindung {[P(Ph) ₃] ₃ Ag}[N(Tf) ₂] mit Blickrichtung entlang der kristallographischen <i>b</i> -Achse.	58
Abbildung 44. Koordinationssphäre des Ag-Atoms in {[P(Ph) ₃] ₃ Ag}[N(Tf) ₂]	59
Abbildung 45. Rietveldplot der Verbindung {[P(Ph) ₃] ₃ Ag}[N(Tf) ₂] (rot: gemessenes Diffraktogramm, schwarz: berechnetes Diffraktogramm, blau: Differenz). A: Gesamtübersicht, B: Ausschnitt aus A. Gemessene Reflexe, die durch die Berechnung	g
All ill af ID S if a low is the structure of the structur	60
Abbildung 46. IR-Spektrum der Verbindung $\{[P(Ph)_3]_3Ag\}[N(11)_2]$	61
Abbildung 47. Vergleich des IR-Spektrums von {[P(Ph) ₃] ₃ Ag}[N(Tf) ₂] (rot) mit dem Literaturspektrum von P(Ph ₃) (schwarz) [88].	61
Abbildung 48. Thermische Analyse der Verbindung {[P(Ph) ₃] ₃ Ag}[N(Tf) ₂]	62
Abbildung 49. Pulverdiffraktogramm des nach der thermischen Zersetzung von	
${[P(Ph)_3]_3Ag}[N(Tf)_2]$ erhaltenen Produktes. Die Reflexlagen zeigen, dass es sich be	i
dem Produkt um ein Gemisch aus Ag (blau, CCDC 1089-3722) und einer nicht	
identifizierten Phase handelt.	63

Tabellenverzeichnis

Tabelle 1. $K_{\alpha 1}$ -Wellenlängen verschiedener Anodenmaterialien
Tabelle 2. Gütefaktoren für die Einkristallstrukturanalyse. 9
Tabelle 3. Ausgewählte Charakteristiken der häufigsten spektroskopischen Methoden 12
Tabelle 4. Ausgewählte Bindungslängen und -winkel in cis-[NMeBu ₃] ₃ [Bi ₃ I ₁₂]
Tabelle 5. Mittlere Bi-I-Abstände / Å in <i>cis</i> -[NMeBu ₃] ₃ [Bi ₃ I ₁₂], <i>trans</i> -[NMeBu ₄] ₃ [Bi ₃ I ₁₂] und $[Bi_3I(C_4H_8O_3H_2)_2(C_4H_8O_3H)_5]_2[Bi_8I_{30}]$
Tabelle 6. Vergleich der durch Röntgenbeugungsexperimente ermittelten Gitterparameter der Verbindung [NMeBu ₃] ₂ [(WOCl ₄) ₂ ·1,4-Dioxan].
Tabelle 7. Details der Rietveldverfeinerung von $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2)55$
Tabelle 8. Angaben zur Strukturlösung und -verfeinerung von [NMeBu ₃][NbCl ₆]
Tabelle 9. Atomlagen (×10 ⁴) und isotrope Auslenkungsparameter (×10 ³) von [NMeBu ₃][NbCl ₆]
Tabelle 10. Anisotrope Auslenkungsparameter (×10 ³) der Schweratome von [NMeBu ₃][NbCl ₆]. 76
Tabelle 11 Ausgewählte Bindungslängen in [NMeBu ₃][NbCl ₆]. 76
Tabelle 12. Ausgewählte Bindungswinkel in [NMeBu ₃][NbCl ₆]. 77
Tabelle 13. Angaben zur Strukturlösung und -verfeinerung von [NMeBu ₃] ₂ [TeI ₆]78
Tabelle 14. Atomlagen und isotrope Auslenkungsparameter ($\times 10^3$) von [NMeBu ₃] ₂ [TeI ₆] 79
Tabelle 15. Anisotrope Auslenkungsparameter (×10 ³) der Schweratome von [NMeBu ₃] ₂ [TeI ₆].
Tabelle 16. Ausgewählte Bindungslängen in [NMeBu ₃] ₂ [TeI ₆]. 80
Tabelle 17. Ausgewählte Bindungswinkel in [NMeBu ₃] ₂ [TeI ₆]81
Tabelle 18. Angaben zur Strukturlösung und -verfeinerung von [NMeBu ₃] ₃ [Bi ₃ I ₁₂]
Tabelle 19. Atomlagen und isotrope Auslenkungsparameter ($\times 10^3$) von [NMeBu ₃] ₃ [Bi ₃ I ₁₂]. 83
Tabelle 20. Anisotrope Auslenkungsparameter (×10 ³) der Schweratome von [NMeBu ₃] ₃ [Bi ₃ I ₁₂]
Tabelle 21. Ausgewählte Bindungslängen in [NMeBu ₃] ₃ [Bi ₃ I ₁₂]
- XII -

Tabelle 22. Ausgewählte Bindungswinkel in [NMeBu ₃] ₃ [Bi ₃ I ₁₂]	5
Tabelle 23. Angaben zur Strukturlösung und -verfeinerung von [NMeBu ₃] ₂ [(WOCl ₄) ₂ ·1,4- Dioxan]	6
Tabelle 24. Atomlagen und isotrope Auslenkungsparameter (×10 ³) von [NMeBu ₃] ₂ [(WOCl ₄) ₂ ·1,4-Dioxan]	7
Tabelle 25. Anisotrope Auslenkungsparameter (×10 ³) der Schweratome von [NMeBu ₃] ₂ [(WOCl ₄) ₂ ·1,4-Dioxan]	57
Tabelle 26. Ausgewählte Bindungslängen in [NMeBu ₃] ₂ [(WOCl ₄) ₂ ·1,4-Dioxan]	8
Tabelle 27. Ausgewählte Bindungswinkel in [NMeBu ₃] ₂ [(WOCl ₄) ₂ ·1,4-Dioxan]	8
Tabelle 28. Angaben zur Strukturlösung und –verfeinerung von [NMeBu ₃] ₂ [(WOCl ₄)·1,4- Dioxan] ₂ (1,4-Dioxan)	9
Tabelle 29. Atomkoordinaten und isotrope Auslenkungsparameter (×10³) von[NMeBu ₃] ₂ [(WOCl ₄)·1,4-Dioxan] ₂ (1,4-Dioxan).	0
Tabelle 30. Anisotrope Auslenkungsparameter (×10 ³) von [NMeBu ₃] ₂ [(WOCl ₄)·1,4- Dioxan] ₂ (1,4-Dioxan)	0
Tabelle 31. Ausgewählte Bindungslängen in [NMeBu ₃] ₂ [(WOCl ₄)·1,4-Dioxan] ₂ (1,4-Dioxan).	91
Tabelle 32. Ausgewählte Bindungswinkel in [NMeBu ₃] ₂ [(WOCl ₄)·1,4-Dioxan] ₂ (1,4-Dioxan).	91
Tabelle 33. Angaben zur Strukturlösung und -verfeinerung von ${[P(o-tolyl)_3]Br}_2[Cu_2Br_6](Br_2).$ 9	13
Tabelle 34. Atomkoordinaten und isotrope Auslenkungsparameter (×10 ⁴) von ${[P(o-tolyl)_3]Br}_2[Cu_2Br_6](Br_2).$ 9.	94
Tabelle 35. Anisotrope Auslenkungsparameter (×10 ³) von { $[P(o-tolyl)_3]Br$ } ₂ [Cu ₂ Br ₆](Br ₂). 9.	4
Tabelle 36. Ausgewählte Bindungslängen in ${[P(o-tolyl)_3]Br}_2[Cu_2Br_6](Br_2)$	5
Tabelle 37. Ausgewählte Bindungswinkel in ${[P(o-tolyl)_3]Br}_2[Cu_2Br_6](Br_2)$	5
Tabelle 38. Angaben zur Strukturbestimmung und -verfeinerung der Verbindung {Ag[P(Ph) ₃] ₃ }[N(Tf) ₂].	7

Tabelle 39. Atomlagen ($\times 10^4$) und isotrope Auslenkungsparameter ($\times 10^3$) von	
$\{Ag[P(Ph)_3]_3\}[N(Tf)_2].$	
Tabelle 40. Anisotrope Auslenkungsparameter ($\times 10^3$) von {Ag[P(Ph)_3]_3}[N(Tf)_2]	
Tabelle 41. Ausgewählte Bindungslängen in {Ag[P(Ph) ₃] ₃ }[N(Tf) ₂]	100
Tabelle 42. Ausgewählte Bindungswinkel in {Ag[P(Ph) ₃] ₃ }[N(Tf) ₂]	101

Abkürzungsverzeichnis

Abkürzung	Bedeutung
[N(Tf) ₂] ⁻	Trifluorsulfonsäureimid
[NMeBu ₃] ⁺	Tributylmethylammonium
$[BMIM]^+$	B utyl m ethyl im idazolium
$[bmpyr]^+$	B utyl m ethyl py rrolidinium
$\left[C_{10}\text{MIM}\right]^+$	Decylmethylimidazolium
$[C_4MIM]^+$	Butylmethylimidazolium
CCDC	Cambridge Crystallographic Data Centre
d	Tag (d ay)
DSC	Differential scanning calorimetry
DTA	Differenzthermoanalyse
h	Stunde (hour)
ICDD	International Centre for Diffraction Data
ICSD	Inorganic Crystal Structure Database
IF / IL	Ionische Flüssigkeit / ionic liquid
IR	Infrarot
mppyr	M ethyl p ropyl pyr rolidinium
NMR	Kernresonanz (nuclear magnetic resonance)
$[OTf]^-$	Trifluorsulfonat ([CF ₃ SO ₃] ⁻)
o-tolyl	ortho-tolyl (C ₇ H ₇)
Ph	Ph enyl (C_6H_5)
ppm	parts per million
Smp.	S ch m elz p unkt
TG	Thermogravimetrie
THF	Tetrahydrofuran
UV/Vis	Ultraviolett / visible
WCA	weakly coordinating anion

1 Einleitung und Zielstellung

Der Begriff "Festkörperchemie" bezeichnet im Wesentlichen die Umsetzung fester Stoffe, die klassisch bei hohen Temperaturen (> 500 °C) durchgeführt werden muss, um eine ausreichende Diffusion im Festkörper zu gewährleisten [1, 2]. Unter diesen Bedingungen werden typischerweise thermodynamisch stabile Produkte gebildet. Ein klassisches Beispiel für eine Festkörperreaktion ist die Synthese von Spinell (MgAl₂O₄) aus MgO und Al₂O₃. Die Reaktion findet dabei an der Phasengrenze der Reaktanden statt. Im Verlauf der Reaktion müssen die Reaktionspartner somit durch die gebildete MgAl₂O₄-Produktschicht diffundieren. Die dazu notwendige Diffusion, die Strecken von bis zu mehreren Mikrometern umfassen kann, ist die Ursache für die langen Reaktionszeiten von typischen Festkörperreaktionen (z. T. mehrere Tage bis Wochen).

Setzt man sich das Ziel, metastabile Verbindungen zu synthetisieren, d. h. Verbindungen, die im Reaktionstemperaturbereich von Festkörperreaktionen nicht stabil sind und somit zu Gunsten stabiler Konkurrenzprodukte nicht gebildet werden, so sind Reaktionsdurchführungen notwendig, die eine ausreichend hohe Teilchendiffusion bereits bei niedrigen Temperaturen ($\approx 350-400$ °C) gewährleisten. Dadurch können Verbindungen zugänglich gemacht werden, die sich bei erhöhten Temperaturen peritektisch zersetzen und somit bei hohen Temperaturen gar nicht erst gebildet werden. Zu solchen Verbindungen gehören beispielsweise Zintl-Phasen oder subvalente Verbindungen wie MoCl₄ [3] und Bi₇Cl₁₀ [4], aber auch Komplexverbindungen wie zum Beispiel MOFs (<u>metal organic framework</u>).

Eine häufig angewendete Methode zur Synthese von solchen metastabilen Festkörpern ist die Reaktion in Flussmitteln und Schmelzen. Durch die Zugabe von Flussmitteln zum Reaktionsgemisch (der Name leitet sich vom Flussspat CaF_2 ab) wird die Beweglichkeit einer Ionensorte im Festkörper drastisch erhöht. Damit wird einerseits die notwendige Reaktionstemperatur erniedrigt, der wichtigste Effekt ist aber die deutliche Verringerung der Reaktionszeit, die sich von mehreren Tagen auf einige Stunden verkürzen kann. Ein Nachteil der Flussmittelreaktion ist der häufig beobachtete statistische Einbau von Ionen aus dem verwendeten Flussmittel. Typische Flussmittel sind Alkalimetallhalogenide, -hydroxide oder -carbonate.

Im flüssigen Zustand des Reaktionsgemisches ist die Diffusion der Reaktionsteilnehmer hinreichend groß, um bei niedrigen Temperaturen eine verhältnismäßig schnelle Umsetzung zu erreichen. So können dem Reaktionsgemisch zur Herabsetzung der Schmelztemperatur Salzmischungen beigemengt werden, wobei durch geschickte Kombination Schmelzpunkte unterhalb 350 °C erreicht werden können (z. B. LiCl/KCl, Eutektikum = 348 °C). Beispiele für solche Reaktionen sind der Freiberger Aufschluss

$$SnO_2 + 2 Na_2CO_3 + 9 S \rightarrow 2 Na_2SnS_3 + 3 SO_2 + 2 CO_2[1]$$

oder die Synthese von Supraleitern:

 $La_2O_3 + CuO \rightarrow (NaOH, 320 \circ C) La_{2-x}Na_xCuO_4[1].$

Eine weitere Möglichkeit, Festkörper in flüssigen Medien umzusetzen, ist das Solvothermalverfahren. Dabei sind die schwerlöslichen Reaktionspartner in flüssigen Medien wie Wasser oder Ammoniak im überkritischen Bereich löslich und werden unter diesen Bedingungen umgesetzt.

Eine mögliche neue Alternative zu den beschriebenen Methoden ist der Einsatz so genannter Ionischer Flüssigkeiten (im Folgenden auch als IF bezeichnet) als Diffusionshilfsmittel. Als Ionische Flüssigkeiten werden Salze bezeichnet, deren Schmelzpunkt unterhalb 100 °C liegt [5]. Damit können für Festkörperumsetzungen völlig neue Temperaturbereiche erschlossen werden. Von besonderem Interesse sind dabei Reaktionen, bei denen Substanzen eingesetzt werden, die sich bei Temperaturen oberhalb 200 °C zersetzen und somit für herkömmliche Synthesemethoden nicht zur Verfügung stehen.

Als Ionische Flüssigkeiten bezeichnet man salzartige Verbindungen mit großen, sterisch anspruchsvollen Kationen und schwach koordinierenden Anionen. Typische Kationen sind quaternäre Ammonium-, Imidazolium- oder Pyridiniumkationen; als Anionen werden unter anderem [BF₄]⁻, [PF₆]⁻ oder [CF₃SO₃]⁻ eingesetzt [6, 7]. Die unsymmetrische Ladungsverteilung im Kation und die geringe Ladungsdichte im Anion führen zu Salzen mit geringen Gitterenergien und somit niedrigen Schmelzpunkten. Ionische Flüssigkeiten sind allerdings nicht nur wegen ihrer niedrigen Schmelzpunkte interessant. Sie weisen eine Vielzahl besonderer Eigenschaften auf. So reicht der Flüssigkeitsbereich der meisten IFs von 100 °C bis zu 350 °C, ohne dass ein messbarer Dampfdruck vorhanden ist. Die Polarität Ionischer Flüssigkeiten liegt im Bereich der Polarität von Acetonitril und Methanol [8]. IFs sind stabil gegen Oxidation und Reduktion und sind trotz ihrer hohen Polarität nicht protonenacide [9, 10].

In der technischen Anwendung haben Ionische Flüssigkeiten bereits einen festen Platz. Bereits 1951 wurden Ionische Flüssigkeiten mit Chloroaluminat-Anionen als Badflüssigkeit für die Elektroplattinierung von Aluminium verwendet [11]. In der BASF ist die so genannte BASILTM-Technologie (BASILTM = <u>B</u>iphasic <u>A</u>cid <u>S</u>cavenging <u>U</u>tilizing <u>I</u>onic <u>L</u>iquids) entwickelt worden, ein Verfahren zum Abtrennen von Salzsäure aus einem Reaktionsprozess [12]. Dabei wird die überschüssige Säure durch 1-Methylimidazol gebunden und als Ionische Flüssigkeit 1-Methylimidazoliumchlorid (Smp. 75 °C) abgetrennt. Auch in der aktuellen Forschung sind Ionische Flüssigkeiten immer häufiger präsent. Eine Vielzahl organischer Reaktionen unter Verwendung Ionischer Flüssigkeiten als Reaktionsmedium wird in [13] beschrieben. Auch im Bereich der metallorganischen Chemie/Katalyse [14-18] sowie im Bereich der Präparation nanoskaliger Materialien [19-23] sind IFs von besonderem Interesse. Im Bereich der Festkörpersynthesen ist über den Einsatz Ionischer Flüssigkeiten als Diffusionshilfsmittel bisher wenig beschrieben. *Guloy* et al. berichten über eine neue Elementmodifikation des Germaniums durch Oxidation von $[Ge_9]^{4-}$ -Einheiten in Ionischen Flüssigkeiten [24], *Mudring* berichtet über die Synthese verschiedener Lanthanoidiodid-Komplexe in Ionischen Flüssig-keiten [25].

In der vorliegenden Arbeit wird die Eignung Ionischer Flüssigkeiten für den Einsatz als Diffusionshilfsmittel in der Festkörpersynthese untersucht. Aufgrund ihrer Eigenschaften können IFs dabei sogar über den Einsatz als "einfache Salzschmelzen" hinausgehen. So können zum Beispiel Kationen Ionischer Flüssigkeiten koordinative Eigenschaften aufweisen (z. B. Imidazoliumkationen) und damit Einfluss auf gebildete Festkörperstrukturen haben. Auch die Größe der verwendeten Kationen kann maßgeblich zum strukturellen Aufbau der erhaltenen Festkörperprodukte beitragen. Dazu werden neben allgemeinen Untersuchungen zur thermischen und chemischen Stabilität Ionischer Flüssigkeiten exemplarisch Reaktionen unter verschiedenen Bedingungen durchgeführt und die erhaltenen Produkte charakterisiert. Neben der Untersuchung von strukturellen Einflüssen der Ionischen Flüssigkeit sind sanfte Reaktionsabläufe in IFs in Gegenwart von stark reduzierenden oder oxidierenden Spezies wie Alkalimetalle oder Halogene, mit dem Ziel, metastabile Produkte zu erhalten, von Interesse.

2 Experimenteller Teil

Substanz	Formel	Hersteller	Reinheit
1,4-Dioxan	$C_4H_8O_2$	Sigma-Aldrich	>99 %
Bismut(III)iodid	BiI ₃	Sigma-Aldrich	99 %
Brom	Br ₂	Sigma-Aldrich	99,8 %
Dichlormethan	CH_2Cl_2	Fisher-Scientific	z. S.
Iod	I_2	Merck	sublimiert
Kalium	K	Sigma-Aldrich	98 %
Kaliumiodid	KI	Merck	z. A.
Kronenether 18-Krone-6	$C_{12}H_{24}O_{6}$	Merck	z. S.
Kupfer(II)bromid	CuBr ₂	Merck	z. S.
Lithium(trifluormethansulfonimid)	Li[(CF ₃ SO ₂) ₂ N]	Sigma-Aldrich	99,95 %
Silbertrifluorsulfonat	Ag(CF ₃ SO ₃)	Merck	z. S.
Tributylmethylammoniumchlorid	[NMeBu ₃]Cl	Sigma-Aldrich	-
(75 w%-Lösung)			
Tri-o-tolylphosphan	$PC_{21}H_{21}$	Merck	z. S.
Triphenylphosphan	PC ₁₈ H ₁₅	Merck	z. S.
Wolfram(VI)chlorid	WCl ₆	Sigma-Aldrich	99,9 %
Wolfram(VI)oxytetrachlorid	WOCl ₄	Sigma-Aldrich	98 %
Kaliumbromid	KBr	Merck	reinst
Niob	Nb	Sigma-Aldrich	99,8 %
Tellur	Те	Acros Organics	> 99 %

2.2 Darstellung und Reinigung der Ausgangsverbindungen

2.2.1 Darstellung von [NMeBu₃][N(Tf)₂]

10,08 g (0,035 mol) $LiN(Tf)_2$ werden in 30 mL H₂O unter Rühren gelöst. Nach der Zugabe von 11,57 g (0,037 mol) einer 75 %igen wässrigen [NMeBu₃]Cl-Lösung und 30 mL Dichlormethan wird das Gemisch 10 min bis zur Phasenseparation gerührt und in einen Scheidetrichter überführt. Die organische Phase wird abgetrennt und 5 × mit jeweils 30 mL H₂O gewaschen. Fällt ein anschließend durchgeführter Chloridnachweis negativ aus, wird das Gemisch im Vakuum 3 d bei 100 °C getrocknet. Zur Überprüfung wird ein NMR-Spektrum aufgenommen (¹H-NMR (400 MHz, 25 °C, Aceton D6) δ = 0,97 (3H, triplett, **5**); 1,39 (2H, sextett, **4**); 1,7 (2H, quintett, **3**); 3,2 (3H, singulett, **1**); 3,45 (2H, multiplett, **2**).).

Abbildung 1. Schematische Darstellung des [NMeBu₃]⁺-Kations.

2.2.2 Darstellung von NbCl₅

5 g Nb-Metall werden in ein Glasrohr gebracht, das sich in einem Rohrofen befindet. Durch das Glasrohr wird ein Cl₂-Strom geleitet, der zuvor durch das Durchleiten durch reine H_2SO_4 getrocknet wurde. Die Reaktion zu NbCl₅ findet bei einer Temperatur von 250 °C statt, wobei sich gelbe Kristalle von NbCl₅ am überstehenden kalten Ende des Glasrohres abscheiden. Die Substanz ist feuchtigkeitsempfindlich und wird unter Argon aufbewahrt (Ausbeute: 98 %).

2.2.3 Darstellung von Tel₄

Zur Synthese von TeI₄ werden 5 mL stark konzentrierte H₆TeO₆-Lösung (Darstellung siehe [26]) mit etwas mehr als der äquivalenten Menge HI versetzt. Der entstandene Niederschlag an TeI₄ wird abfiltriert und durch Waschen mit CCl₄ von anhaftendem Iod gereinigt. Das Produkt fällt analysenrein an (Ausbeute: 60 %).

2.3 Arbeiten unter Schutzgas

Alle präparativen Arbeiten wurden unter Argonatmosphäre durchgeführt. Das Einwiegen, Vermengen und Befüllen von Substanzen in Reaktionsgefäße wie Schlenkkolben oder Glasampullen wurde in einer Glovebox vom Typ UNILab der Firma BRAUN (H₂O, O₂ < 0,1 ppm) durchgeführt. Zusätzlich dazu stand eine Schutzgasapparatur zur Verfügung mit der sowohl unter Argonatmosphäre als auch unter Vakuum ($p < 10^{-3}$ mbar) gearbeitet werden konnte. Das verwendete Argon (Air Liquide, Argon 4.8) wurde vor der Verwendung durch Überleiten über Blaugel, KOH-Plätzchen, Molsieb (4 Å) und Phosphor(V)oxid getrocknet und durch Überleiten über Titanschwamm bei 700 °C von anhaftendem Sauerstoff befreit. Zu befüllende Reaktionsgefäße wurden vor der Verwendung mit Hilfe dieser Apparatur dreimal unter Erhitzen sekuriert.

2.4 Röntgenbeugung

2.4.1 Röntgenbeugung an Einkristallen

Röntgenbeugungsexperimente an Einkristallen ermöglichen präzise Aussagen zu Kristallstrukturen chemischer Verbindungen auf atomarem Niveau [27]. Die Voraussetzung dafür ist eine einkristalline Probe, d. h. ein Kristall, dessen Bausteine (Atome, Ionen oder Moleküle) über die gesamte räumliche Ausdehnung ein periodisches Gitter bilden.

Die Erzeugung der benötigten Röntgenstrahlung erfolgt im Allgemeinen mit einer Röntgenröhre durch das Beschießen eines Metalltargets (z. B. Kupfer, Molybdän, Silber) mit beschleunigten Elektronen. Diese Elektronen sind in der Lage, kernnahe Elektronen aus den Atomen des Anodenmaterials herauszuschlagen. Die entstehenden "Löcher" werden durch Elektronen höherer Schalen gefüllt, wobei diese Elektronen Energie in Form von Röntgenstrahlen diskreter Wellenlänge emittieren. Zusätzlich wird Röntgenstrahlung durch das Abbremsen der beschleunigten Elektronen durch das Anodenmaterial erzeugt. Durch den Einsatz von Absorptionsfiltern und Monochromatoren wird aus dem erzeugten Spektrum, das aus einer Überlagerung von Bremsstrahlung und einem charakteristischen Linienspektrum besteht, eine definierte Wellenlänge isoliert, die für das eigentliche Experiment verwendet wird. In Tabelle 1 sind einige Anodenmaterialien und die zugehörigen charakteristischen Wellenlängen aufgeführt.

Die auf den zu untersuchenden Kristall treffende Röntgenstrahlung regt die im Kristall befindlichen Elektronen zu Schwingungen an. Diese Elektronen emittieren nun selbst als Elementarwelle Röntgenstrahlung der gleichen Wellenlänge, die sich kugelförmig ausbreitet. Diese neu entstandenen Wellen interferieren miteinander, jedoch wird konstruktive Interferenz nur beobachtet, wenn die so genannte Bragg-Gleichung erfüllt ist. Kristallographisch äquivalente Atome eines Kristalls können mathematisch zu so genannten Netzebenen zusammengefasst werden. Die Bragg-Gleichung ist dann erfüllt, wenn der Einfallswinkel θ der Röntgenstrahlung auf eine Netzebenenschar mit dem Abstand *d* so gewählt wird, dass die Beziehung $n \cdot \lambda = 2 \cdot d \cdot \sin \theta$ ($n = 1, 2, 3...; \lambda$ = Wellenlänge der Röntgenstrahlung) erfüllt ist. Anschaulich wird diese Bedingung, wenn man die konstruktive Interferenz als Reflektion des Röntgenstrahles an einer Netzebene betrachtet, wobei der Gangunterschied der Röntgenstrahlung zwischen zwei identischen Netzebenen ein ganzzahliges Vielfaches der Wellenlänge λ beträgt (Abbildung 2). Zur Bezeichnung von Netzebenenscharen werden so genannte Millersche Indizes verwendet. Millersche Indizes sind Zahlentripletts der Form (*hkl*). Sie bezeichnen die Lage der Netzebenenschar im Realraum. Jedem Reflex, der durch konstruktive Interferenz entsteht, kann ein solches Zahlentripel zugeordnet werden.

Die zur Strukturlösung benötigte Information wird durch das Beugungsexperiment nicht vollständig erhalten. Die Phasenbeziehungen der interferierten Röntgenwellen untereinander, die aus der gleichzeitigen Beugung an mehreren Gittern (Alle symmetrieäquivalenten Atome in der Elementarzelle erzeugen ein eigenes Gitter) resultieren, können aus der Messung nicht ermittelt werden. Da aber genau diese Phasenbeziehungen die Information über die Lage der Atome in der Elementarzelle enthalten, wird dies auch als *Phasenproblem* bezeichnet. Moderne Computer erlauben statistische Methoden, bei denen diese Phasenbeziehungen aus den Reflexen mit einer gewissen Wahrscheinlichkeit abgeschätzt werden.

Die Strukturverfeinerung erfolgt durch Anpassung berechneter Strukturfaktoren aus einem Strukturmodell an die Intensität der beobachteten Strukturfaktoren, indem freigegebene Parameter wie Atompositionen oder Temperaturfaktoren verändert werden, bis die Differenz der beobachteten und berechneten Strukturfaktoren ein Minimum ergibt (Methode der kleinsten Fehlerquadrate). Die Qualität des erhaltenen Modells wird durch Betrachtung der in Tabelle 2 aufgeführten Gütefaktoren beurteilt.

Abbildung 2. Schematische Darstellung der Bragg-Gleichung.

Tabelle 1. K _{a1} -Wellenlängen verschiedener Anodenmater	ialien.
---	---------

Anodenmaterial	Wellenlänge $K_{\alpha 1}$ / Å
Chrom (Cr)	2,290
Eisen (Fe)	1,936
Cobalt (Co)	1,789
Kupfer (Cu)	1,541
Molybdän (Mo)	0,711

Tabelle 2. Gütefaktoren für die Einkristallstrukturanalyse.

$$R1 = \frac{\sum \|F_o| - |F_c\|}{\sum |F_o|}$$

$$wR2 = \sqrt{\frac{\sum [w(F_o^2 - F_c^2)^2]}{\sum [w(F_o^2)^2]}}$$

$$w = \frac{1}{[\sigma^2(F_o^2) + (aP)^2 + bP]}$$

$$a, b = \text{Wichtungsfaktoren}, P = \frac{[2F_c^2 + \text{Max}(F_o^2, 0)]}{3}$$

$$GooF = S = \sqrt{\frac{\sum [w(F_o^2 - F_c^2)^2]}{(n - p)}}$$

$$n = \text{Anzahl der Reflexe}; p = \text{Anzahl der verfeinerten}$$

Zur Einkristallstrukturbestimmung geeignete Kristalle wurden in einer mit Mikroskop ausgestatteten Glovebox (UNILab, Firma BRAUN) separiert und in Inertöl (KEL-F) gebracht. Anschließend wurden die Kristalle in Kapillarröhrchen ($\emptyset = 0,2$ mm) gebracht und diese zugeschmolzen.

Parameter

Zur Datensammlung wurde ein Bildplattendiffraktometer vom Typ IPDS I der Firma STOE verwendet. Zunächst wurden anhand einiger Orientierungsaufnahmen (ca. 8 - 12 im Bereich $0 < \varphi < 360^{\circ}$) die Gitterparameter bestimmt und die Messparameter (Belichtungszeit, Schrittweite) festgelegt. Anschließend erfolgte die Datensammlung. Der Integrationsbereich wurde mit Hilfe einer dynamischen Profilfunktion festgelegt. Die Datenreduktion wurde von der Gerätesoftware INTEGRATE (STOE) durchgeführt. Die erhaltenen Daten wurden mit der Software XPREP [28] bearbeitet. Dabei wurden das Kristallsystem und mögliche Zentrierungen ermittelt (Bravaisgitter) sowie anhand von Auslöschungsbedingungen die Raumgruppe bestimmt.

Die Strukturlösung und -verfeinerung erfolgte mit dem Programmpaket SHELX [29]. Zur Strukturbestimmung wurden direkte Methoden eingesetzt; die Parameter wurden nach der Methode der kleinsten Fehlerquadrate verfeinert. Die Beurteilung der Qualität der erhaltenen Strukturen erfolgte durch Bewertung der in Tabelle 2 aufgeführten Gütefaktoren. Die Darstellung der Kristallstrukturen erfolgte mit dem Programm DIAMOND [30].

Zum Vergleich der erhaltenen Daten mit bereits bekannten Kristallstrukturen wurden die Datenbanken ICSD (Inorganic Crystal Structure Database) und CCDC (Cambridge Crystallographic Data Centre) verwendet.

2.4.2 Röntgenbeugung an pulverförmigen Proben

Die Röntgenbeugung an pulverförmigen Proben unterscheidet sich von der Röntgenbeugung am Einkristall (Kapitel 2.4) in der Beschaffenheit der Probe. Das polykristallin vorliegende Pulver ist im Idealfall statistisch so angeordnet, dass die Bragg-Bedingung für eine Netzebenenschar bei unterschiedlichen Kristalliten in unterschiedlichen Orientierungen erfüllt ist. Das daraus resultierende Beugungsbild zeigt dadurch keine diskreten Reflexe, sondern so genannte Beugungskegel mit dem Öffnungswinkel 2 θ . Trägt man einen Schnitt durch diese Kegel so auf, dass auf der *x*-Achse der Beugungswinkel und auf der *y*-Achse die Intensität der gebeugten Strahlung abgebildet wird, so erhält man ein Pulverdiffraktogramm. Mit Hilfe des Pulverdiffraktogramms können qualitative und quantitative Aussagen zu der Probe getroffen werden. Durch den Vergleich mit Literaturdaten kann beispielsweise auf die chemische Zusammensetzung geschlossen werden, die Reflexbreite liefert Aussagen zur Kristallitgröße, bei besonders qualitativ hochwertigen Daten kann sogar eine Strukturlösung und -verfeinerung erfolgen (Rietveldmethode). In Abbildung 3 ist der schematische Aufbau eines Pulverdiffraktometers gezeigt.

Abbildung 3. Schematische Darstellung eines Pulverdiffraktometers.

Die zu untersuchenden Proben wurden unter Schutzgas in Kapillarröhrchen ($\emptyset = 0,2-0,5$ mm, abhängig von der Ordnungszahl des schwersten enthaltenen Elements) gefüllt und diese anschließend zugeschmolzen. Die Messung erfolgte an einem Pulverdiffraktometer vom Typ STADI-P der Firma STOE (λ (Cu $K_{\alpha 1}$) = 1,541 Å, Germanium-Monochromator, IP-Detektor). Die Auswertung der erhaltenen Daten erfolgte mit dem Softwarepaket WINXPOW [31]. Zum Vergleich der erhaltenen Daten mit bereits bekannten Diffraktogrammen wurde die Datenbank ICDD (International Centre for Diffraction Data) verwendet.

2.5 Spektroskopie

Als Spektroskopie bezeichnet man im Allgemeinen Untersuchungsmethoden, bei denen eine Wechselwirkung zwischen elektromagnetischer Strahlung und Materie so stattfindet, dass es zu Absorptionsprozessen durch die Materie kommt (Absorptionsspektroskopie) [32]. Man unterscheidet anhand der eingesetzten Strahlung u. a. zwischen IR-Spektroskopie, UV/VIS-Spektroskopie, Röntgenspektroskopie und Mößbauerspektroskopie. Grundsätzlich wird bei jeder spektroskopischen Methode die zu untersuchende Substanz durch die eingesetzte Strahlung in energetisch höher liegende Zustände gebracht. Gemessen werden kann sowohl die durch Absorption geschwächte Intensität der Strahlung als auch die durch Rückkehr der angeregten Materie in einen energetisch niedrigeren Zustand emittierte Strahlung. In Tabelle 3 sind typische Vertreter spektroskopischer Methoden mit zugehörigen Wellenlängenbereichen und Wechselwirkungen aufgeführt.

Tabelle 3. Ausgewählte Charakteristiken der häufigsten spe	ektroskopischen Methoden.
--	---------------------------

Methode	Wellenlängenbereich (nm)	Art der Anregung
NMR-Spektroskopie	$\approx 10^{11}$	Dipolausrichtung des Atom-
		kerns im Magnetfeld
IR-Spektroskopie	500-50000	Molekülschwingungen, Ro-
		tationen
UV/VIS-Spektroskopie	200-800	Valenzelektronenübergänge
Röntgenspektroskopie	≈ 1	Kernelektronenübergänge
Mößbauerspektroskopie	< 0,01	Kernzustandsanregung

2.5.1 IR-Spektroskopie

Die IR-Spektroskopie (IR = Infrarot) ist eine Methode, bei der die Absorption elektromagnetischer Strahlung durch eine Probesubstanz typischerweise im Bereich von 400 bis 4000 cm^{-1} bestimmt wird. Dabei handelt es sich im Allgemeinen um charakteristische Schwingungen oder Rotationen funktioneller Gruppen in Molekülen oder Ionen, deren Anregungsenergie im Bereich der IR-Strahlung liegt. Voraussetzung für die Wechselwirkung von Molekülen oder Ionen mit IR-Strahlung ist das Vorhandensein eines Dipolmomentes. Dieses kann einerseits ein permanentes Dipolmoment sein wie es beispielsweise im H₂O-Molekül vorliegt, es kann aber andererseits auch während der Schwingung eines Moleküls erzeugt werden, beispielsweise bei der asymmetrischen Streckschwingung im CO₂-Molekül.

Mit Hilfe der IR-Spektroskopie lassen sich Schwingungen von Atomgruppen in Molekülen oder Festkörpern anhand ihrer Lagen im Spektrum identifizieren. Die IR-Spektroskopie trägt damit zur Strukturaufklärung unbekannter Substanzen und zur quantitativen Analyse bekannter Stoffe bei. Wichtige Molekülgruppen sind beispielsweise C–H, O–H, C=O, N–O, C-X(X = Halogen).

Zur Aufnahme von IR-Spektren wurde in der vorliegenden Arbeit ein Gerät vom Typ VERTEX 70 der Firma Bruker (Ettlingen) verwendet. Die zu untersuchenden Substanzen wurden unter Argonatmosphäre mit der 250-fachen Menge KBr (ca. 1 mg Substanz auf 250 mg KBr) innig verrieben und bei einem Druck von 50 kN für etwa 15 min gepresst. Der erhaltene Pressling wurde im N₂-Gegenstrom vermessen. Zur Basislinienkorrektur wurde das Spektrum eines analog angefertigten reinen KBr-Presslings vom erhaltenen Probenspektrum subtrahiert. Das eingesetzte KBr wird vor der Verwendung mehrere Tage im Hochvakuum bei 350 °C getrocknet.

2.5.2 UV/VIS-Spektroskopie

Mit Hilfe der UV/VIS-Spektroskopie sind Untersuchungen von Elektronenübergängen der äußeren Schalen von Molekülen oder Atomen möglich. Das Wellenlängenspektrum der UV/VIS-Spektroskopie (UV = Ultraviolett, VIS = visible (engl. sichtbar)) reicht dabei von etwa 200-800 nm. Diese energiereiche Strahlung ist in der Lage, Elektronen in angeregte Zustände zu überführen, was zur Besetzung höherer Orbitale oder zur Anregung in energiereichere Zustände führen kann, beispielsweise vom Grundzustand in einen angeregten Singulettzustand.

Die UV/VIS-Spektroskopie wird in der organischen Chemie häufig zur Untersuchung konjugierter Elektronensysteme verwendet. Höhere Konjugationsgrade führen dabei zur Absorption von Licht im sichtbaren Bereich, die Verbindungen sind oftmals farbig. In der anorganischen Chemie dient die UV/VIS-Spektroskopie häufig zur Untersuchung von Wechselwirkungen zwischen Übergangsmetallen und Liganden. Die d-Elektronen der Metallkationen können durch Anregung mit UV- oder sichtbarem Licht höhere energetische Zustände einnehmen. Die Energiedifferenz dieser Zustände ist von der Natur der umgebenden Liganden oder Ionen abhängig und führt zur Verschiebung der beobachteten Absorptionsmaxima im UV/VIS-Spektrum. Eine weitere Anwendung ist die Bestimmung von Bandlücken im Fest-körper, wenn der Bandabstand energetisch im UV/VIS-Bereich liegt.

In der vorliegenden Arbeit wurden alle UV/VIS-Spektren an einem Gerät vom Typ Cary Scan 100 der Firma Varian (Darmstadt) aufgenommenen. Es wurde die Reflektion von pulverförmigen Proben ermittelt, die durch das Verreiben von etwa 5 mg Substanz mit 250 mg BaSO₄ hergestellt wurden.

2.5.3 Kernresonanzspektroskopie

Eine wichtige Methode zur Strukturaufklärung von Molekülen ist die Kernresonanzspektroskopie, häufig auch als NMR-Spektroskopie (NMR = Nuclear Magnetic Resonance) bezeichnet [32]. Voraussetzung für die Anwendung dieser Methode ist das Vorhandensein eines Atomkerns, dessen Summe der Neutronen und Protonenanzahl ungeradzahlig ist. Solche Atomkerne besitzen einen Kernspin mit dem Betrag $\frac{h}{2\pi}\sqrt{I(I+1)}$ (h = Planckkonstante, I = Kernspinquantenzahl), wobei I > 0 ist. I kann die Werte 1/2, 1, 3/2, ... 9/2 annehmen. Atomkerne mit einem Kernspin besitzen ein magnetisches Moment. Beim Anlegen eines äußeren Magnetfeldes richten sich die magnetischen Momente des Kerns in bestimmte Richtungen aus. Die Zahl der Ausrichtungsmöglichkeiten beträgt 2I+1. Für I = 1/2 gibt es zwei Ausrichtungen, parallel zum Magnetfeld und antiparallel dazu. Die parallele Ausrichtung ist energetisch günstiger als die antiparallele, die Energiedifferenz zwischen beiden Ausrichtungen steigt linear mit der Stärke des äußeren Magnetfelds. Liegt ein äußeres Magnetfeld an, so kann durch Einwirkung elektromagnetischer Strahlung mit geeigneter Wellenlänge eine energetische Anregung erfolgen: die Ausrichtung des magnetischen Moments erfolgt unter Energieaufnahme von parallel zu antiparallel. Gleichzeitig erfolgt die Absorption der entsprechenden Wellenlänge aus dem elektromagnetischen Spektrum. Die zur absorbierten Wellenlänge zugehörige Frequenz wird als Resonanzfrequenz bezeichnet.

Die Feldstärke des äußeren Feldes ist am Ort eines Atomkernes geringer als außerhalb des Kerns. Die Ursache dafür ist eine Abschirmung des Feldes durch die den Kern umgebenden Elektronen. Um die Resonanzfrequenz des Kerns zu erreichen, muss somit die Feldstärke des äußeren Feldes erhöht werden (Chemische Verschiebung). Chemisch nicht äquivalente Atomkerne erfordern unterschiedliche Verschiebungen. Die chemische Verschiebung wird mit δ bezeichnet. Der Parameter δ ist eine dimensionslose Größe: $\delta = \frac{v_{\text{Probe}} - v_{\text{Standard}}}{v_{\text{Standard}}} 10^6$. v_{Probe} ist die Resonanzfrequenz des Atomkerns der Probe, v_{Standard} ist die Resonanzfrequenz einer Vergleichsverbindung. Typischerweise wird die chemische Verschiebung δ gegen die

Stärke des Resonanzsignals aufgetragen.

Einen weiteren Einfluss auf die Magnetfeldstärke am Ort des Atomkerns hat neben der Abschirmung durch Elektronen die Ausrichtung der magnetischen Momente benachbarter nicht äquivalenter Atome. Unterschiedliche Ausrichtungen dieser Momente führen zu verschiedenen Magnetfeldstärken am Kern und damit zur Aufspaltung des Resonanzsignals in mehrere Signale. Dieser Effekt wird als Spin-Spin-Kopplung bezeichnet. Die Aufspaltung des Resonanzsignals ist von der Zahl der benachbarten Atome und deren Kernspin abhängig. Allgemein gilt für die Anzahl resultierender Signale eines Atoms $2 \cdot I \cdot n+1$ (I = Kernspinquantenzahl, n = Anzahl der Nachbaratome). Mit den Informationen, die man aus einem NMR-Spektrum erhält (Lage und Aufspaltung der Signale) kann auf die Struktur der untersuchten Verbindung geschlossen werden. Besonders in Kombination mit Methoden wie IR-Spektroskopie und Massenspektrometrie ist die NMR-Spektroskopie eine wichtige Methode zur Strukturbestimmung organischer Moleküle.

In der vorliegenden Arbeit wurden NMR-Spektren an einem Gerät vom Typ Avance 400 der Firma Bruker (Ettlingen) aufgenommen. Als deuteriertes Lösungsmittel wurde Aceton D6 verwendet.

2.6 Sonstiges

2.6.1 Elementaranalyse

Die Bestimmung der chemischen Zusammensetzung organischer bzw. kohlenwasserstoffreicher Verbindungen erfolgt häufig durch die so genannte CHN-Elementaranalyse. Die Genauigkeit moderner Analysatoren liegt selbst bei geringem Probeneinsatz ($\approx 1 \text{ mg}$) noch im einstelligen Prozentbereich.

Die Probenanalyse erfolgt durch chromatographische Trennung der Gase CO₂, H₂O und N₂, die durch Mineralisation der Probe bei ca. 900 °C und anschließender Reduktion über Cu erhalten werden. Die Detektion selbst erfolgt durch Wärmeleitfähigkeitsbestimmung.

Die Elementaranalysen in der vorliegenden Arbeit wurden an einem Gerät vom Typ VARIO EL der Firma Elementar (Hanau) durchgeführt.

2.6.2 Massenspektrometrie

Die Massenspektrometrie ist eine Methode zur Analyse gasförmiger geladener Substanzen [32]. Die zu untersuchende Probe wird, liegt sie nicht gasförmig vor, zunächst verdampft. Die Erzeugung von Ionen kann durch verschiedene Methoden erreicht werden, häufig wird die so genannte Elektronen-Stoß-Ionisation verwendet, bei der die Probe durch einen Elektronenstrahl (ca. 70 eV) ionisiert wird. Durch das Anlegen eines äußeren elektrischen Feldes werden die entstandenen Ionen beschleunigt und anschließend im Feld eines Elektromagneten abgelenkt. Die leichteren Teilchen werden stärker abgelenkt als die schwereren wodurch eine direkte Beziehung zwischen Masse und Ablenkradius resultiert: $\frac{m}{z} = \frac{r_m^2 \cdot B^2}{2 \cdot U}$

 $\frac{m}{z} = Masseladungsverhältnis$ $r_m = Ablenkradius$ B = Magnetfeldstärke U = Beschleunigungsspannung

Bei konstanter Spannung und konstantem Magnetfeld kann das Verhältnis $\frac{m}{z}$ direkt aus dem Ablenkradius r_m ermittelt werden.

Typischerweise wird die Massenspektrometrie zur Strukturaufklärung organischer Verbindungen eingesetzt. Aus den ionisierten Molekülen können sich durch Umlagerungen und/oder Fragmentierungen Ionen bilden, die oftmals charakteristisch für bestimmte funktionelle Gruppen oder Substituenten sind und damit Rückschlüsse auf die Struktur der zu untersuchenden Verbindung zulassen. Eine weitere Anwendungsmöglichkeit ist die Kopplung der Massenspektrometrie mit weiteren Methoden wie der Thermischen Analyse oder der Gaschromatographie.

Die in der vorliegenden Arbeit aufgeführten Massenspektren wurden an einem Gerät vom Typ MAT8200 der Firma Thermo Finnigan (Bremen) gemessen. Die Quelltemperatur betrug 180 °C, die Beschleunigungsspannung 70 eV.

2.6.3 Thermische Analysen

Der Begriff "Thermische Analysen" umfasst verschiedene Methoden, die physikalische und chemische Eigenschaften einer Substanz als Funktion der Temperatur messen, während die Substanz einem kontrollierten Temperaturprogramm unterworfen wird. [33] Man unterscheidet zwischen zwei grundlegenden Messmethoden: DTA (Differential-Thermoanalyse) und DSC (Dynamische Differenzkalorimetrie, engl.: <u>D</u>ifferential <u>S</u>canning <u>C</u>alorimetry). Zusätzlich ist eine Kopplung der thermischen Analyse mit einer Mikrowaage möglich, die als Thermogravimetrische Analyse bezeichnet wird.

Bei der Differential-Thermoanalyse werden eine Probe und eine Referenz, die sich in dem gewählten Temperaturbereich absolut inert verhalten muss, einem definierten Temperaturprogramm unterworfen. Gleichzeitig werden die Temperaturen der Probe und der Referenz ermittelt und die Differenz der beiden Temperaturen gegen die Temperatur des gewählten Programms aufgetragen. Solange sich die Probe inert verhält, ist diese Differenz gleich null, treten aber Effekte wie Zersetzung, Schmelzen oder Verdampfen auf, die mit einer Wärmeaufnahme oder -abgabe verbunden sind, so erwärmt sich die Probe schneller bzw. langsamer als die Referenz. Diese Effekte sind in der Auftragung der Messdaten als so genannte thermische Signale sichtbar. Der prinzipielle Messaufbau bei der Dynamischen Differenzkalorimetrie ähnelt dem der Differential-Thermoanalyse, der wesentliche Unterschied ist, dass nicht die Temperaturen von Probe und Referenz, sondern die Wärmeströme bestimmt werden. Aus diesen Daten können von der Probe aufgenommene und abgegebene Wärmemengen quantitativ ermittelt werden. Damit sind Aussagen zu spezifischen Wärmekapazitäten oder Reaktionsenthalpien möglich.

Thermogravimetrische Analysen wurden an einem Ofen vom Typ STA409C der Firma NETZSCH durchgeführt. Die zu untersuchende Probe wurde unter Schutzgas in Korundtiegel befüllt und unter einer dynamischen Stickstoffatmosphäre mit einer Rate von 3 K·h⁻¹ erhitzt. Eine weitere Messung ohne Probe wurde von der eigentlichen Messung subtrahiert um auftretende Auftriebseffekte zu korrigieren. Die Auswertung erfolgte mit dem Programm "NETZSCH Proteus - Thermal Analysis" [34].

3 Ergebnisse und Diskussion

3.1 Vorbemerkungen

In den folgenden Kapiteln werden Verbindungen beschrieben, die durch Umsetzungen in der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂] erhalten wurden. Dabei wird häufig der Einbau von Kationen bzw. Anionen der Ionischen Flüssigkeiten in die gebildeten Festkörper beobachtet. Diese Tendenz ist keineswegs ungewöhnlich, da die beschriebenen Anionen $[Bi_3I_{12}]^{3-}$, $[(WOCl_4)_2 \cdot 1, 4-Dioxan]^{2-}$ und $[(WOCl_4) \cdot 1, 4-Dioxan]^{-}$ bzw. das Kation $\{[P(Ph)_3]_3Ag\}^+$ Eigenschaften aufweisen, die für die Bestandteile Ionischer Flüssigkeiten typisch sind. Es handelt sich um große und komplexe Ionen, die eine geringe Ladungsdichte aufweisen und somit bevorzugt mit großen Gegenionen kristallisieren. Im Falle der Verbindung $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2)$ wird als Gegenion das $\{[P(o-tolyl)_3]Br\}^+$ -Kation eingebaut, das ebenfalls diese Eigenschaften aufweist.

Durch die Ähnlichkeit der erhaltenen Verbindungen zu Ionischen Flüssigkeiten ergeben sich jedoch für die Kristallisation sowie Aufarbeitung einige Schwierigkeiten. Die Kristallisation der Zielverbindungen fällt häufig mit der Kristallisation der Ionischen Flüssigkeit zusammen. Aufgrund des Schmelzpunktes der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂] von etwa 25 °C ist eine Kristallisation durch Abkühlen praktisch unmöglich. Lediglich bei Synthesen, bei denen Temperaturen von etwa 100 °C unproblematisch sind, kann eine Kristallisation durch Übersättigung durchgeführt werden. Die Reaktionsdurchführung bei Umgebungstemperatur und daran anschließende Kristallisationsversuche werden dagegen erschwert.

Als ebenfalls problematisch erweist sich die Abtrennung der Ionischen Flüssigkeit von erhaltenen Produkten. Das Filtrieren der Produktmischung ist für den Erhalt einer reinen Verbindung nicht ausreichend, da die Ionische Flüssigkeit aufgrund ihrer hohen Viskosität an der Probe haften bleibt. Prinzipiell lässt sich dieses Problem durch das Waschen des Produktes mit polaren, leicht flüchtigen Lösungsmitteln lösen, jedoch weist das Produkt nach dem Grundsatz "Ähnliches löst sich in Ähnlichem" häufig die gleichen Lösungseigenschaften auf wie die eingesetzte Ionische Flüssigkeit. Abhilfe schaffen hier Lösungsmittel, deren Mischbarkeit mit Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂] kaum mischbar, jedoch reicht diese geringe Mischbarkeit aus, um die Viskosität der Ionischen Flüssigkeit so weit herabzusetzen, das ein Filtrie-

ren möglich wird. Um jedoch ein praktisch reines Produkt zu erhalten, muss dieser Waschvorgang durchaus zehn- bis zwanzigmal wiederholt werden.

3.2 Reaktionsdurchführung in der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂]

3.2.1 Aktueller Stand

Der Einsatz als Diffusionshilfsmittel in der Festkörpersynthese stellt eine Reihe von Anforderungen an die zu verwendende Ionische Flüssigkeit. Die Reaktionstemperaturen im "mittleren" Temperaturbereich von etwa 100–300 °C erfordern thermisch stabile Ionische Flüssigkeiten auch über Zeiträume von mehreren Tagen bis Wochen. Zusätzlich müssen sich diese gegenüber chemisch reaktiven Substanzen wie elementaren Halogenen oder Alkalimetallen inert verhalten. Im diesem Kapitel werden verschiedene Ionische Flüssigkeiten mit unterschiedlichen Kation-Anion-Kombinationen im Hinblick auf ihre chemische und thermische Stabilität vorgestellt und bewertet.

Die Kombinationsmöglichkeiten zur Synthese Ionischer Flüssigkeiten aus komplexen Kationen und Anionen scheinen auf den ersten Blick schier unendlich. Eine Vielzahl möglicher Bausteine (siehe auch Abbildung 4) erlaubt prinzipiell eine maßgeschneiderte Synthese Ionischer Flüssigkeiten im Hinblick auf gewünschte Eigenschaften. Eine genauere Betrachtung zeigt jedoch, dass die Kombinationsmöglichkeiten begrenzt sind, wünscht man eine sowohl thermische als auch chemische Langzeitstabilität [35-37].

Abbildung 4. Typische Kationen und Anionen Ionischer Flüssigkeiten.

Systematische Vergleiche der chemischen und physikalischen Eigenschaften ergeben, dass Ionische Flüssigkeiten kurzzeitig durchaus bis zu 500 °C stabil sein können, oberhalb dieser Temperatur findet neben der Verdampfung meistens eine Zersetzung statt [35]. Im Langzeitversuch (d. h. > 2 h) werden solche Stabilitäten im Allgemeinen jedoch nicht erreicht. Die thermische Stabilität hängt von der Art der verwendeten Ionen ab. Während eine - 20-
Ionische Flüssigkeit der Zusammensetzung $[C_4MIM][N(Tf)_2]$ bei 200 °C über 10 h stabil ist, zersetzt sich $[C_{10}MIM][PF_6]$ bei derselben Temperatur sofort [38]. Verschiedene Untersuchungen zeigen außerdem, dass Ionische Flüssigkeiten, die ein $[OTf]^-$ oder $[N(Tf)_2]^-$ Anion enthalten, eine deutlich höhere Stabilität aufweisen [39]. *Anderson* et al. beschreiben den Einsatz von Benzyl- bzw. Methoxyphenyl-substituierten Methylimidazoliumsalzen, die das $[OTf]^-$ Anion enthielten als besonders geeignet für den Langzeiteinsatz als stationäre Phase in der Gaschromatographie [40]. Über den Einfluss der eingesetzten Kationen auf die thermische Stabilität Ionischer Flüssigkeiten ist bisher in der Literatur nichts beschrieben worden.

Die Charakterisierung der chemischen Stabilität Ionischer Flüssigkeiten ist eng verbunden mit Untersuchungen zur elektrochemischen Stabilität. Die erhaltenen Ergebnisse lassen Aussagen zur Redoxstabilität der untersuchten Ionischen Flüssigkeiten zu. Wie bei den Untersuchungen zur thermischen Stabilität werden auch hier die Anionen $[OTf]^-$ und $[N(Tf)_2]^-$ als stabilste Vertreter beschrieben [35]. Halogenid-Anionen und Anionen, die aus Lewissäureaddukten gebildet werden (z. B. $[PF_6]^-$) sind häufig hygroskopisch und zersetzen sich, wobei die entsprechenden Halogenwasserstoffsäuren gebildet werden [41]. Untersuchungen zu den verwendeten Kationen zeigen, dass quaternäre substituierte Ammoniumkationen die höchsten Stabilitäten liefern. Andere häufig verwendete Kationen wie Imidazoliumkationen sind in α -Position oft CH-acide und damit empfindlicher gegen Zersetzung [36].

Die Polarität Ionischer Flüssigkeiten wurde von *Reichardt* et al. untersucht [42]. Dabei wurde die solvatochrome Verschiebung der Niederfrequenzbande eines Farbstoffes (Betain-30) für verschiedene Ionische Flüssigkeiten bestimmt. Es zeigt sich, dass diese Verschiebung fast ausschließlich von der Art des Kations abhängig ist. Für [C₄MIM][BF₄] wurde beispielsweise ein Wert von $E_T^N = 0,670$ ermittelt; die maximale Abweichung durch Anionenaustausch beträgt 0,026 (für [C₄MIM][N(Tf)₂]). Die Polarität Ionischer Flüssigkeiten, die ein [bmim]-Kation enthalten, liegt somit im Bereich der Polarität von Methanol ($E_T^N = 0,762$). Für quaternäre Ammoniumkationen (z. B. [bmpyr]⁺) liegen die ermittelten E_T^N -Werte unterhalb der der bmim-Kationen im Bereich $E_T^N \approx 0,54$ und liegen in ihrer Polarität im Bereich zwischen Acetonitril ($E_T^N = 0,46$) und Methanol.

Unter Berücksichtigung der genannten Aspekte wurde in der vorliegenden Arbeit mit der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂] gearbeitet. Die thermische und chemische Stabilität wird durch das $[N(Tf)_2]^-$ -Anion gewährleistet; durch die Verwendung des $[NMeBu_3]^+$ - Kations sollte eine zu rasche elektrochemische Zersetzung verhindert werden. Die solvatochrome Verschiebung der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂] ist im Bereich $E_T^N = 0,54$ zu erwarten, womit diese Ionische Flüssigkeit eine Polarität aufweist, die mit den Polaritäten von Acetonitril und Methanol vergleichbar ist [42].

3.2.2 Untersuchungen zur Stabilität der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂]

Zur Untersuchung der thermischen Stabilität der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂] wurde eine thermische Analyse durchgeführt (Abbildung 5). Während der Messung werden drei thermische Effekte beobachtet (blaue Kurve). Bei einer Onsettemperatur von 27(1) °C tritt ohne gleichzeitigen Gewichtsverlust der untersuchten Probe (grüne Kurve) ein endothermer Effekt auf. Es handelt sich hierbei um den Schmelzpunkt der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂]. Bei einer Temperatur von 337(1) °C findet ein endothermer Effekt statt, an den ein Gewichtsverlust der Probe gekoppelt ist. Dieser endotherme Effekt geht bei einer Temperatur von 410(1) °C in einen exothermen Effekt über. Diese Effekte resultieren aus dem Verdampfen von [NMeBu₃][N(Tf)₂], das unmittelbar in die Zersetzung der Ionischen Flüssigkeit übergeht. Das abrupte Stoppen des Gewichtsverlusts bei einer Temperatur von etwa 375 °C ist auf den begrenzten Messbereich der eingesetzten Thermowaage zurückzuführen. Tatsächlich ist der Gewichtsverlust an diesem Punkt nicht vollständig beendet. Um diesen Effekt zu vermeiden, wurden thermische Analysen mit deutlich weniger Substanz durchgeführt, jedoch sind die resultierenden thermischen Effekte nur schwach zu erkennen.

Abbildung 5. Thermische Analyse der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂].

Der Einsatz der vorliegenden Ionischen Flüssigkeit als Reaktionsmedium ist in offenen Systemen unter Inertbedingungen bis zu einer Temperatur von 330 °C problemlos möglich. Beim Einsatz der Ionischen Flüssigkeit in geschlossenen Systemen, in denen ein Verdampfen ausgeschlossen werden kann, sind Temperaturen bis 390 °C möglich, da erst oberhalb dieser Temperatur das Maximum des endothermen Signals überschritten wird und die Zersetzung beginnt (Abbildung 5).

Die qualitative Untersuchung der Redoxstabilität der Ionischen Flüssigkeit wurde durch Umsetzung mit Natrium und Kalium sowie Iod und Brom durchgeführt. Dazu wurden jeweils 20 mg Substanz in 2 mL [NMeBu₃][N(Tf)₂] gegeben. Die resultierenden Gemische wurden unter Rühren auf 100 °C erwärmt und 12 h bei dieser Temperatur gehalten. Für Iod und Brom wurde eine vollständige Auflösung in der Ionischen Flüssigkeit beobachtet. Die Metalle Natrium und Kalium lagen in geschmolzenem Zustand vor und bildeten unter Rühren mit [NMeBu₃][N(Tf)₂] Emulsionen. Nach dem Abkühlen der Emulsionen Na/IF bzw. K/IF lagen die eingesetzten Substanzen optisch unverändert vor. NMR-Untersuchungen der Ionischen Flüssigkeit nach der Behandlung mit Natrium bzw. Kalium zeigen, dass diese nicht zersetzt wurde (Abbildung 8). Innerhalb der 12 h zersetzten sich die Gemische aus Iod bzw. Brom und [NMeBu₃][N(Tf)₂] jedoch vollständig. Es wurde ein schwarzer übel riechender Feststoff erhalten, der nicht weiter charakterisiert wurde (Abbildung 7).

Abbildung 6. Die Ionische Flüssigkeit [NMeBu₃][N(Tf)₂] nach der unmittelbaren Zugabe von I_2 . Die Löslichkeit des I_2 in der Ionischen Flüssigkeit ist gut zu erkennen.

Abbildung 7. Zersetzte Ionische Flüssigkeit nach der Umsetzung mit I₂ bei 100 °C für 12 h.

Mit den beschriebenen Untersuchungen kann gezeigt werden, dass die Ionische Flüssigkeit unter reduzierenden Bedingungen auch bei höheren Temperaturen stabil ist. Im Gegensatz dazu führen Umsetzungen mit Oxidationsmitteln wie Brom und Iod zur Zersetzung der Ionischen Flüssigkeit, wenn kein geeigneter Reaktionspartner zur Verfügung steht (siehe auch Kapitel 1.1).

Abbildung 8. ¹H-NMR-Spektrum der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂] nach der Umsetzung mit Natrium (400 MHz, 25 °C, Aceton D6), siehe auch Kapitel 2.2.1.

3.2.3 Die Ionische Flüssigkeit [NMeBu₃][N(Tf)₂] als Reaktionsmedium und -partner: Die Kristallstrukturen der Verbindungen [NMeBu₃][NbCl₆] und [NMeBu₃]₂[Tel₆]

3.2.3.1 Aktueller Stand

Über den Einsatz Ionischer Flüssigkeiten als Reaktionsmedium für die Umsetzung von einfachen Metallsalzen ist in der Literatur bisher nur wenig beschrieben worden. *Gaillard* et al. untersuchten die Wechselwirkung von "nackten" Europium(III)-kationen in Ionischen Flüssigkeiten hinsichtlich der Eignung Ionischer Flüssigkeiten für die Seltenerd-Actinoiden-Trennung. Dabei konnte die unmittelbare Koordinationssphäre von Eu³⁺ durch Anionen der verwendeten Ionischen Flüssigkeit nachgewiesen werden [43]. Weitere wichtige Arbeiten wurden von *Babai* et al. durchgeführt und beschäftigen sich mit der Wechselwirkung von Ionischen Flüssigkeiten mit Seltenerdkationen. Hierbei wurden Seltenerdiodide mit Ionischen Flüssigkeiten umgesetzt, als Kationen wurden Pyrrolidinium- oder Imidazoliumheterocyclen und als Anion [N(Tf)₂]⁻ und [OTf]⁻ verwendet. Die dabei erhaltenen Produkte können als salzartige Verbindungen aufgefasst werden, wobei als Anion stets [LnI_6]³⁻ (Ln = La, Pr, Nd, Sm, Dy, Er) vorlag. Alle erhaltenen Verbindungen enthalten das Kation der jeweils eingesetzten Ionischen Flüssigkeit und partiell sogar die schwach koordinierenden Anionen $[N(Tf)_2]^-$ und $[OTf]^-$ [44].

In diesem Kapitel werden die Verbindungen [NMeBu₃][NbCl₆] und [NMeBu₃]₂[TeI₆] vorgestellt. Beide Verbindungen enthalten ein Anion vom Typ $[MX_6]^{y^-}$ (M = Metallkation; X = Halogenidanion, y = 1, 2) und ein [NMeBu₃]⁺-Kation aus der eingesetzten Ionischen Flüssigkeit. Beide Verbindungen werden hinsichtlich ihrer Kristallstruktur diskutiert und mit der Verbindung [mppyr]₃[NdI₆] (mppyr = 1-Methyl-1-propylpyrrolidinium) von *Babai* et. al. [44] verglichen.

3.2.3.2 Synthesen und Kristallstrukturen der Verbindungen [NMeBu₃][NbCl₆] und [NMeBu₃]₂[TeI₆]

Die Synthese von [NMeBu₃][NbCl₆] erfolgt durch Umsetzung von 100 mg (0,37 mmol) NbCl₅ mit 87 mg (0,37 mmol) NMeBu₃Cl in 1 mL [NMeBu₃][N(Tf)₂]. Das Reaktionsgemisch wird für 2 d auf 80 °C erhitzt und anschließend mit einer Rate von 5 K/h abgekühlt. Nach wenigen Stunden fallen gelbe, quaderförmige Kristalle der Verbindung [NMeBu₃][NbCl₆] aus.

Für die Synthese von $[NMeBu_3]_2[TeI_6]$ werden 100 mg (0,15 mmol) TeI₄ und 50 mg (0,3 mmol) KI in 1 mL $[NMeBu_3][N(Tf)_2]$ für 96 h auf 150 °C erhitzt und anschließend mit einer Rate von 5 K/h abgekühlt. Nach dem Abkühlen befinden sich dunkle, nadelförmige Kristalle der Zusammensetzung $[NMeBu_3]_2[TeI_6]$ im Reaktionsgemisch.

Die Verbindung [NMeBu₃][NbCl₆] kann als salzartige Verbindung aufgefasst werden, wobei der Festkörper aus [NbCl₆]⁻-Anionen und [NMeBu₃]⁺-Kationen aufgebaut ist (Abbildung 9). Im [NbCl₆]⁻-Anion ist das zentrale Nb-Atom von sechs Cl-Atomen oktaedrisch umgeben. Der mittlere Nb–Cl-Abstand beträgt dabei 2,336(1) Å und liegt im erwarteten Bereich (NbCl₅: d(Nb-Cl) = 2,376(1) Å [45]). Der gebildete Oktaeder ist geringfügig verzerrt (mittlerer Winkel: 176,4(1) °). Im [NMeBu₃]⁺-Kationen entsprechen alle Bindungslängen und -winkel den erwarteten Werten (d(C-C) = 1,47(1) Å; d(C-N) = 1,55 Å; Ø(C-N-C) =110,6(1) °. Die [NbCl₆]⁻-Anionen bilden eine verzerrte hexagonal dichte Packung, in der die [NMeBu₃]⁺-Kationen die Hälfte aller Oktaeder- und ein Viertel aller Tetraederlücken besetzen (Abbildung 10 und Abbildung 11). Die Daten zur Kristallstrukturbestimmung befinden sich in Tabelle 8-12.

Abbildung 9. Elementarzelle der Verbindung [NMeBu₃][NbCl₆] in Blickrichtung der kristallographischen *b*-Achse. Die [NbCl₆]⁻-Anionen sind als Polyeder dargestellt, Wasserstoffatome sind nicht abgebildet.

Abbildung 10. Antikuboktaeder als Umgebungspolyeder für das [NbCl₆]⁻Anion in [NMeBu₃][NbCl₆].

Abbildung 11. Zwei Oktaederlücken (grau) und zwei Tetraederlücken (rot) in der hexagonal-dichten Packung aus [NbCl₆]⁻-Anionen in [NMeBu₃][NbCl₆]. Die beiden unteren Lücken sind jeweils zur Hälfte mit einem [NMeBu₃]⁺-Kation gefüllt.

In der Verbindung [NMeBu₃]₂[TeI₆] finden sich $[TeI_6]^{2^-}$ -Anionen und $[NMeBu_3]^+$ -Kationen (Abbildung 12). Die Bindungslängen im oktaedrischen $[TeI_6]^{2^-}$ -Anion betragen durchschnittlich 2,936(1) Å und liegen damit im erwarteten Bereich (TeI₄: d(Te–I): 2,833(1) Å [46]); die vorliegenden $[TeI_6]$ -Oktaeder liegen unverzerrt vor. Die Bindungslängen und -winkel im $[NMeBu_3]^+$ -Kation liegen ebenfalls im erwarteten Bereich (d(C–C) = 1,514 Å; d(C–N) = 152,1 Å; \emptyset (C–N–C) 109,4 °). In der Verbindung $[NMeBu_3]_2[TeI_6]$ spannen die $[TeI_6]$ -Oktaeder entlang der kristallographischen *ac*-Ebene rechteckige Netze auf, die entlang der kristallographischen *b*-Achse versetzt sind (Abbildung 13). Diese Anordnung kann als verzerrte kubisch-innenzentrierte Packung aufgefasst werden. Die $[NMeBu_3]^+$ -Kationen befinden sich zwischen den Schichten (Abbildung 14). Die Daten zur Kristallstrukturbestimmung befinden sich in Tabelle 13.

Abbildung 12. Elementarzelle der Verbindung [NMeBu₃]₂[TeI₆] in Blickrichtung der kristallographischen *b*-Achse. Die $[TeI_6]^{2^-}$ -Anionen sind durch Polyeder dargestellt; Wasserstoffatome sind nicht abgebildet.

Abbildung 13. Packungsmuster mit rechtwinkligen Schichten aus $[TeI_6]^{2-}$ -Anionen in $[NMeBu_3]_2[TeI_6]$. Gleiche Farben bezeichnen gleiche Positionen entlang der kristallographischen *b*-Achse.

Abbildung 14. Schichtaufbau der Kationen und Anionen in [NMeBu₃]₂[TeI₆].

Die dargestellten Verbindungen [NMeBu₃][NbCl₆] und [NMeBu₃]₂[TeI₆] sowie die von *Babai* et al. beschriebene Verbindung [mppyr]₃[NdI₆] entstehen durch die Umsetzung der entsprechenden Halogenide in Ionischen Flüssigkeiten. Es resultieren Halogenometallat-Anionen der Zusammensetzung $[MX_6]^{y-}$ (M = Nb, Te, Nd; X = Cl, I; y = 1, 2, 3), die mit den entsprechenden Kationen der eingesetzten Ionischen Flüssigkeit den Festkörper aufbauen. Der Vergleich der Kristallstrukturen der drei Verbindungen zeigt, dass [NMeBu₃][NbCl₆] und [NMeBu₃]₂[TeI₆] nach dem Prinzip dichter Packungen aufgebaut sind, während in der Verbindung [mppyr]₃[NdI₆] die [NdI₆]-Oktaeder nicht nach einem bestimmten Packungsmuster angeordnet sind. Die [mppyr]⁺-Kationen koordinieren die Anionen so, dass jedes Anion von zwölf [mppyr]⁺-Kationen umgeben ist (Abbildung 15). Dieser deutlich unterschiedliche Aufbau dieses Festkörpers lässt sich auf die koordinierenden Eigenschaften des [mppyr]⁺-Kations zurückführen. Dabei ist der mittlere Abstand dieses Kations zu den Iodatomen des Anions mit 4,498(1) Å deutlich kürzer als die mittleren Abstände der [NMeBu₃]⁺-Kationen zu den äußeren Halogenatomen der Anionen $[NbCl_6]^-$ (d(*Kation*-Cl) = 4,801(1) Å) und $[Tel_6]^{2-}$ (d(Kation-I) = 4,895(1) Å). Bei den Verbindungen [NMeBu₃][NbCl₆] und [NMeBu₃]₂[TeI₆] können die ermittelten Kristallstrukturen somit auf Packungseffekte der großen Kationen und Anionen zurückgeführt werden. Im Gegensatz dazu weist das [mppyr]⁺-Kation in [mppyr]₃[NdI₆] koordinative Eigenschaften auf, woraus eine Koordinationssphäre des [NdI₆]³⁻-Anions resultiert, die einen Aufbau des Festkörpers nach dem Prinzip dichter Packungen unmöglich macht [47]. Unberücksichtigt bleibt bei dieser Diskussion die jeweilige Anzahl von Kationen und Anionen. Jedoch ist ein struktureller Aufbau nach dem Prinzip dichter Packungen auch dann möglich, wenn – wie im Falle der Verbindung [mppyr]₃[NdI₆] – das Verhältnis von Kation zu Anion drei zu eins beträgt, beispielsweise im Li₃Bi-Typ.

Abbildung 15. Koordinationssphäre des [NdI₆]³⁻-Anions in [mppyr]₃[NdI₆] [44].

3.3 Der strukturelle Einfluss Ionischer Flüssigkeiten auf ionische Festkörper am Beispiel der Verbindung cis-[NMeBu₃]₃[Bi₃I₁₂]

3.3.1 Aktueller Stand

In Kapitel 3.2.3 wurde gezeigt, dass der Einsatz von [NMeBu₃][N(Tf)₂] als Diffusionshilfsmittel häufig zum Einbau von [NMeBu₃]⁺-Kationen in die erhaltenen Produkte führt. Da es sich bei [NMeBu₃]⁺ um ein Kation handelt, das sowohl eine geringe Ladungsdichte als auch einen hohen Platzbedarf aufweist, sollte der Einbau solcher Kationen in Festkörper strukturdirigierend wirken. Einerseits sollten mit [NMeBu₃]⁺-Kationen bevorzugt große Anionen kristallisieren, zum anderen hat die geringe Ladungsdichte des großen Kations Einfluss auf die Zusammensetzung und Anordnung komplexer Anionen (siehe Kapitel 3.2.3.2). Für derartige Untersuchungen sollten Anionen, deren Bildung formal durch die Zusammenlagerung neutraler und geladener Komplexe resultiert, gut geeignet sein. Beispiele hierfür sind komplexe Anionen in den Systemen Al–Cl ($[Al_2Cl_7]$ [48] = AlCl₃ · $[AlCl_4]$; $[Al_3Cl_{10}]$ [49] = 2 AlCl₃ · [AlCl₄]⁻) oder Bi–I ([Bi₂I₇]⁻ [50] = BiI₃ · [BiI₄]⁻; [Bi₈I₂₈]⁴⁻ [50] = 4 BiI₃ · 4 [BiI₄]⁻, siehe auch Abbildung 16). Der Einfluss der Konstitution des Kations Ionischer Flüssigkeiten auf die Struktur der erhaltenen Festkörper wurde bereits von Babai et al. beschrieben: so führen bereits geringe strukturelle Änderungen der als Lösungsmittel eingesetzten Ionischen Flüssigkeiten zu Iodoneodymaten verschiedener Zusammensetzungen. Hierbei wurde bei der Umsetzung von NdI₃ in der Ionischen Flüssigkeit 1-Butyl-1-Methylpyrrolidinium-[N(Tf)₂] ([bmpyr][N(Tf)₂]) ein Addukt der Zusammensetzung [bmpyr]₄[NdI₆][N(Tf)₂] erhalten; der Austausch der Butyl-Gruppe des Kations gegen eine Propyl-Seitenkette führt hingegen zur Bildung der [N(Tf)₂]⁻freien Verbindung [mppyr]₃[NdI₆] [51].

Abbildung 16. Beispiele komplexer Anionen: links $[Al_2Cl_7]^-$ [48], rechts $[Bi_8I_{28}]^{4-}$ [50].

Das System *M*I/BiI₃ (*M* = einwertiges Kation) eignet sich aufgrund der vielfältigen Möglichkeiten, komplexe Anionen der allgemeinen Zusammensetzung $[Bi_xI_y]^{(y-3x)^-}$ zu bilden, besonders für strukturchemische Untersuchungen. Die Strukturchemie dieser Iodobismutat-Anionen mit der allgemeinen Zusammensetzung $[Bi_xI_y]^{(y-3x)^-}$ ist geprägt durch die Verknüpfung von $[BiI_6]$ -Oktaedern über gemeinsame Kanten und Flächen. Die aus der Verknüpfung über gemeinsame Kanten resultierenden Strukturmotive reichen dabei von isolierten Baugruppen wie $[Bi_4I_{16}]^{4-}$ [50], $[Bi_5I_{19}]^{4-}$ [52], $[Bi_6I_{22}]^{4-}$ [52] oder $[Bi_8I_{30}]^{6-}$ [53] über eindimensionale Oktaederketten wie $\frac{1}{\infty}[Bi_2I_7]^-$ [52] oder $\frac{1}{\infty}[Bi_3I_{11}]^{2-}$ [52] bis hin zu dreidimensionalen Verknüpfungsmustern wie z. B. in *M*BiI₄ (*M* = Cu, Ag) [54, 55]. Eine weitere Verknüpfungsmöglichkeit von $[BiI_6]$ -Oktaedern ist die über gemeinsame Flächen. Ein Beispiel hierfür ist die Verbindung Cs₃Bi₂I₉ mit zwei flächenverknüpften Oktaedern [56]. Eine Flächenverknüpfung dreier Oktaeder ist für das *trans*- $[Bi_3I_{12}]^{3-}$ -Anion in $[NBu_4]_3[Bi_3I_{12}]$ beschrieben worden [57].

Im Folgenden wird die Verbindung *cis*-[NMeBu₃]₃[Bi₃I₁₂] vorgestellt, die bei der Umsetzung von Bismut(III)-iodid mit Kaliumiodid und Iod in der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂] erhalten wurde. Die Verbindung *cis*-[NMeBu₃]₃[Bi₃I₁₂] zeichnet sich durch das enthaltene *cis*-[Bi₃I₁₂]³⁻-Anion aus, das aus drei flächenverknüpften [BiI₆]-Oktaedern besteht, die eine gemeinsame Oktaederspitze aufweisen. Diese ungewöhnliche Verknüpfung wird im pseudobinären System *M*I/BiI₃ (*M* = einwertiges Kation) hier erstmals beschrieben.

3.3.2 Synthese und Kristallstruktur von *cis*-[NMeBu₃]₃[Bi₃l₁₂]

Die Synthese von *cis*-[NMeBu₃]₃[Bi₃I₁₂] erfolgt durch Umsetzung von BiI₃ mit äquimolaren Mengen KI und I₂ in der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂]. Dazu werden 100 mg (0,17 mmol) BiI₃ und 28 mg (0,17 mmol) KI innig vermengt und in ein zuvor evakuiertes und mit Argon gespültes Schlenkgefäß gegeben. Nach der Zugabe von 11 mg (0,09 mmol) I₂ und 1,0 mL [NMeBu₃][N(Tf)₂] wird das Reaktionsgemisch auf 250 °C erhitzt bis eine tiefrote klare Lösung vorliegt. Das anschließende Abkühlen auf Umgebungstemperatur erfolgt mit einer Rate von 5 K/h. Nach wenigen Tagen bilden sich rötlich schimmernde, durchsichtige plättchenförmige Kristalle. Die Zugabe von elementarem Iod dient zur Stabilisierung der Oxidationsstufe des Bismuts. Erste Versuche zur Löslichkeit von BiI₃ in [NMeBu₃][N(Tf)₂] in Abwesenheit von elementarem Iod führten zur Bildung von metallischem Bismut. Die Reduktion von Bi^{3+} kann vermutlich auf das $[N(Tf)_2]^-$ -Anion zurückgeführt werden, der genaue Mechanismus ist bislang ungeklärt.

Abbildung 17. Elementarzelle der Verbindung *cis*-[NMeBu₃]₃[Bi₃I₁₂] mit Blickrichtung entlang [010]. *Cis*- $[Bi_3I_{12}]^{3-}$ -Anionen sind durch Polyeder hervorgehoben, Wasserstoffatome sind nicht dargestellt.

Cis-[NMeBu₃]₃[Bi₃I₁₂] ist ein salzartiger Feststoff der aus [NMeBu₃]⁺-Kationen und cis-[Bi₃I₁₂]³⁻-Anionen aufgebaut ist (Abbildung 17). Die Anionen der Zusammensetzung $[Bi_3I_{12}]^{3-}$ können als aus drei $[BiI_6]$ -Oktaedern aufgebaut aufgefasst werden, die über zwei cis-ständige Flächen des mittleren Oktaeders verknüpft sind (Abbildung 18). Die Bi-I-Abstände im Anion entsprechen erwarteten Werten. Die kürzesten Bi-I-Bindungslängen befinden sich mit einem mittleren Wert von 2.91 Å zwischen μ_1 -I und Bi gefolgt von (μ_2 -I–Bi)-Bindungen mit 3,23 Å und (µ₃-I–Bi)-Bindungen mit 3,38 Å. Die [BiI₆]-Oktaeder sind verzerrt, wobei der mittlere Oktaeder die geringste Verzerrung aufweist (µ₃I–Bi–µ₁I: 178,6(1) °; $\emptyset(\mu_3 I-Bi-\mu_2 I: 85,3(1)^\circ)$. In den beiden äußeren Oktaedern betragen die Verzerrungen $164,5(1)^{\circ}$ (Ø µ₁I–Bi–µ₃I) bzw. 77,5(1) $^{\circ}$ (Ø µ₂I–Bi–µ₃I) sowie 94,6(1) $^{\circ}$ (µ₁I–Bi–µ₃I). Die Bindungslängen und -winkel im Kation entsprechen üblichen Werten. Die mittlere C-C-Bindungslänge beträgt 1,52(1) Å, der mittlere C-N-Abstand beträgt 1,53(1) Å. Die Bindungswinkel im tetraedrisch umgebenen N-Atom liegen zwischen 107,1(1) ° und 109,3(1) °. Ausgewählte Bindungslängen und -winkel für Kationen und Anionen sind in Tabelle 4 aufgeführt. Der dreidimensionale Aufbau der Verbindung *cis*-[NMeBu₃]₃[Bi₃I₁₂] kann als verzerrte flächenzentrierte Packung der *cis*-[Bi₃I₁₂]³⁻-Anionen aufgefasst werden. Die [NMeBu₃]⁺-Kationen sind dabei verzerrt tetraedrisch von jeweils vier Anionen umgeben (Abbildung 19). Die Daten zur Strukturbestimmung sind in Tabelle 18 (S. 79) zusammengefasst.

Abbildung 18. Cis- $[Bi_3I_{12}]^{3-}$ -Anion in [NMeBu_3]_3[Bi_3I_{12}]. Die Auslenkungsellipsoide sind mit einer Aufenthaltswahrscheinlichkeit von 50 % dargestellt.

Tabelle 4. Ausgewählte Bindungslängen und -winkel in *cis*-[NMeBu₃]₃[Bi₃I₁₂]

Ø(µ1I–Bi)	2,911(1) Å	Ø(C–C)	1,515(1) Å
Ø(µ2I–Bi)	3,227(1) Å	Ø(C–N)	1,531(1) Å
Ø(µ ₃ I–Bi)	3,380(1) Å		
$Ø(\mu_1 I - Bi - \mu_3 I)$	164,46(1) °		
Ø(µ2I–Bi–µ3I)	85,88(1) °		

Die unterschiedlichen Bindungslängen sowie die daraus resultierende Verzerrung der Oktaeder lassen sich auf unterschiedliche (Bi-I)-Bindungsstärken zurückführen. Dabei nehmen erwartungsgemäß in der Reihenfolge (μ_1 -I–Bi) > (μ_2 -I–Bi) > (μ_3 -I–Bi) die Bindungsstärke ab bzw. die Bindungslänge zu. In Tabelle 5 ist ein Vergleich der wichtigsten Bindungslängen von *cis*-[NMeBu₃]₃[Bi₃I₁₂], *trans*-[Bi₃I₁₂]^{3–} und [Bi₈I₃₀]^{6–} aufgeführt.

Die Verknüpfung dreier Oktaeder über gemeinsame Flächen führt prinzipiell zu drei Verknüpfungsmöglichkeiten (Abbildung 20). Variante I stellt die Verknüpfung dreier Oktaeder über gegenüberliegende Flächen des mittleren Oktaeders dar und kann als *trans*-Verknüpfung beschrieben werden. Verbindungen, die eine solche *trans*-Verknüpfung aufweisen sind beispielsweise [NBu₄]₃[Bi₃I₁₂] [57], [K(15-Krone-5)₂]₃[Sb₃I₁₂] [58] und

 $[P(Ph)_4]_3[Mo_3I_{12}]\cdot 2/3 CH_2Cl_2\cdot 1/2 Et_2O$ [59]. Eine weitere Möglichkeit ist die Verknüpfung über zwei Flächen des mittleren Oktaeders, die eine gemeinsame Kante aufweisen. Eine solche Verknüpfung führt allerdings zu einem äußerst geringen Abstand zweier Oktaederspitzen (ca. 2/3 des Abstandes von Oktaederzentrum zu Oktaederspitze), so dass eine Realisierung einer solchen Verknüpfung nur durch Kondensation der beiden sich nahe kommenden Oktaederspitzen möglich wird. Daraus resultiert eine Verzerrung aller am Aufbau beteiligten Oktaeder. Eine solche Verknüpfung liegt als anti-Typ in Alkalimetallsuboxiden wie zum Beispiel Cs₁₁O₃ [60] vor. Die dritte Möglichkeit ist die Verknüpfung der Oktaeder über benachbarte Flächen des mittleren Oktaeders, die eine gemeinsame Spitze aufweisen. Diese als *cis*-Verknüpfung bezeichnete Variante wurde bisher in der Literatur lediglich für das *cis*-[As₃Br₁₂]³⁻-Anion beschrieben [61] und ist in der vorliegenden Arbeit mit *cis*-[Bi₃I₁₂]³⁻ erstmals für ein Iodobismutat-Anion belegt.

Abbildung 19. Verzerrt tetraedrische Koordination des [NMeBu₃]⁺-Kations.

Die Bildung der vorliegenden *cis*-Verknüpfung in einem Ionenkristall ist zunächst nicht zu erwarten. Mit der Annahme, dass im Kristall der Abstand zwischen den Bi-Atomen der beiden endständigen Oktaeder einen möglichst großen Wert anstrebt, sollte die *trans*-Verknüpfung, wie sie von *Geiser* et al. in *trans*-[NBu₄]₃[Bi₃I₁₂] beschrieben wird [57] bevorzugt sein. Im hier vorliegenden System, in dem der ionische Charakter vergleichsweise gering ausgeprägt ist, kann die *cis*-Verknüpfung auf sterische Einflüsse des Kations aus der Ionischen Flüssigkeit zurückgeführt werden. Insbesondere der Vergleich mit *trans*-[Bi₃I₁₂]³⁻, dessen Kation [NBu₄]⁺ sich von dem [NMeBu₃]⁺-Kation kaum in der Größe und Ladungsdichte, jedoch wesentlich in der Symmetrie unterscheidet, bestätigt dies.

Abbildung 20. Verknüpfungsmöglichkeiten dreier Oktaeder über gemeinsame Flächen.

Tabelle 5. Mittlere Bi-I-Abstände / Å in *cis*-[NMeBu₃]₃[Bi₃I₁₂], *trans*-[NMeBu₄]₃[Bi₃I₁₂] und $[Bi_3I(C_4H_8O_3H_2)_2(C_4H_8O_3H)_5]_2[Bi_8I_{30}]$

	$\operatorname{cis-Bi_3I_{12}}^{3-}$	trans-Bi ₃ I ₁₂ ^{3–} [57]	$Bi_8 I_{30}^{6-} [53]$
$Bi - \mu_1 - I$	2,91	2,91	2,90
$Bi - \mu_2 - I$	3,32	3,20	3,20
$Bi - \mu_3 - I$	3,38	-	3,32

3.4 Synthesen in Ionischen Flüssigkeiten unter reduzierenden Bedingungen: Die Verbindungen [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan] und [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan)

3.4.1 Aktueller Stand

In Kapitel 3.2.2 wurde beschrieben, dass sich die Ionische Flüssigkeit [NMeBu₃][N(Tf)₂] gegenüber geschmolzenen Alkalimetallen wie Natrium oder Kalium inert verhält. Damit wird der Einsatz von Alkalimetallen als Reduktionsmittel für Reaktionen in Ionischen Flüssigkeiten denkbar. Im folgenden Kapitel werden deshalb zwei Umsetzungen vorgestellt, bei denen elementares Kalium als Reduktionsmittel in der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂] zum Einsatz kommt. Als Reaktionspartner wurde dabei WCl₆ eingesetzt, da Wolfram eine Reihe stabiler Oxidationszustände besitzt und somit breite Variationsmöglichkeiten für die Bildung von Produkten bestehen. Es wurden dabei die Verbindungen $[NMeBu_3]_2[(WOCl_4)_2 \cdot 1, 4-Dioxan]$ und $[NMeBu_3]_2[(WOCl_4) \cdot 1, 4-Dioxan]_2(1, 4-Dioxan)$ erhalten, in denen Wolfram mit der Oxidationsstufe +V vorliegt. [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan] entsteht in geringen Mengen bei der Umsetzung von WCl₆ mit Kalium in Gegenwart des Kronenethers 18-Krone-6 in der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂] unter Zersetzung des Kronenethers. [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan) wird beim Versuch, [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan] durch direkte Umsetzung von WOCl₄ mit NMeBu₃Cl in 1,4-Dioxan als Lösungsmittel darzustellen, erhalten. Beide Verbindungen enthalten ein [WOCl₄]⁻Anion, das zusätzlich von 1,4-Dioxan koordiniert wird.

Die Existenz des isolierten Anions $[WOCl_4]^-$ mit C_{4v} -Symmetrie wurde bereits 1984 von *Fenske* et al. in (PPh)₄[WOCl_4] röntgenographisch nachgewiesen [62]. Bevorzugt ist jedoch – sofern geeignete Reaktionspartner zur Verfügung stehen – eine Koordinationsaufweitung des Lewis-sauren Wolframatoms unter Bildung von Addukten der allgemeinen Zusammensetzung $[(WOCl_4) \cdot R]^-$ (R = THF [69], H₂O [71], OP(Ph)₃ [67]). Röntgenographisch abgesichert ist die Existenz von mindestens 10 derartigen Verbindungen, in denen das Wolframatom stets von vier Chlor- und zwei Sauerstoffatomen verzerrt oktaedrisch koordiniert vorliegt [62-71]. Beide Sauerstoffatome sind axial angeordnet, wobei eines endständig über eine Doppelbindung an das Wolframatom gebunden ist, das zweite Sauerstoffatom dem jeweiligen Donormolekül zugeordnet werden kann. Letzteres bindet koordinativ an das Wolframatom. Die hier beschriebene Verbindung [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan] stellt das erste Beispiel für ein Dimer dar, bei dem zwei [WOCl₄]⁻-Anionen koordinativ über ein gemeinsames Donormolekül verbrückt sind. Ein ähnliches Dimer der Zusammensetzung [(WOCl₄)₂·1,4-Dioxan] wurde basierend auf Elementaranalysen von *Fowles* und *Frost* postuliert [72]. Jedoch handelt es sich hierbei um einen Neutralkomplex mit sechswertigem Wolfram. Zudem konnten Zusammensetzung und räumlicher Bau bislang nicht eindeutig abgesichert werden.

3.4.2 Synthese und Charakterisierung von [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan]

Die Bildung von $[NMeBu_3]_2[(WOCl_4)_2\cdot 1,4$ -Dioxan] wird bei der Umsetzung von 99 mg (0,1 mmol) WCl₆, 12 mg (0,3 mmol) K und 143 mg (0,5 mmol) Kronenether 18-Krone-6 in einem Schlenkgefäß und nachfolgender Zugabe von 0,5 mL $[NMeBu_3][N(Tf)_2]$ beobachtet. Das Reaktionsgemisch wurde 72 h bei 423 K getempert und anschließend mit einer Rate von 5 K·h⁻¹ abgekühlt. Nach wenigen Tagen kristallisierte die Zielverbindung mit Ausbeuten von etwa 20 % in Form von hellblau schimmernden Kristallen aus (Abbildung 21). Die Kristalle sind äußerst feuchtigkeitsempfindlich und zersetzen sich an Luft sofort.

Abbildung 21. Kristalle der Verbindung [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan].

Für analytische Zwecke notwendige Substanzmengen von $[NMeBu_3]_2[(WOCl_4)_2\cdot 1, 4-Dioxan]$ wurden durch Umsetzung von 493 mg (1,44 mmol) WOCl₄, 57 mg (1,46 mmol) K, 343 mg (1,71 mmol) NMeBu_3Cl und 0,1 mL (1,12 mmol) 1,4-Dioxan in 5 mL

[NMeBu₃][N(Tf)₂] bei 150 °C erhalten. Dabei kristallisiert die Verbindung durch langsames Abkühlen (ca. 5 K/h) aus. Zur Trennung der Substanz von der Ionischen Flüssigkeit wurde fünfmal mit jeweils 5 mL Diethylether gewaschen und unter Vakuum getrocknet. Die Reinheit des Produktes wurde durch Elementaranalysen bestätigt (C: gef. 31,1 % (ber. 30,7 %); H: gef. 5,5 % (ber. 5,8 %); N: gef. 2,7 % (ber. 2,4 %)).

Abbildung 22. Elementarzelle der Verbindung [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan]. Die Anionen sind durch Polyederdarstellung hervorgehoben, Wasserstoffatome sind nicht abgebildet. Die Auslenkungsellipsoide sind mit einer Aufenthaltswahrscheinlichkeit von 50 % dargestellt.

 $[NMeBu_3]_2[(WOCl_4)_2\cdot 1,4-Dioxan]$ kann als salzartige Verbindung aufgefasst werden. Dabei finden sich $[NMeBu_3]^+$ -Kationen aus der eingesetzten Ionischen Flüssigkeit, welche in den Festkörper eingebaut sind. Diese Kationen sind gemäß einer verzerrt hexagonal dichten Packung angeordnet. In dieser Packung besetzen $[(WOCl_4)_2\cdot 1,4-Dioxan]^{2-}$ -Anionen entsprechend dem anti-CdI₂-Typ die Hälfte der Oktaederlücken (Abbildung 24 und 25). Die Elementarzelle der Verbindung ist in Abbildung 22 dargestellt.

Abbildung 23. $[(WOCl_4)_2 \cdot 1, 4\text{-Dioxan}]^{2^-}$ -Anion in $[NMeBu_3]_2[(WOCl_4)_2 \cdot 1, 4\text{-Dioxan}]$.

Im $[(WOCl_4)_2 \cdot 1,4$ -Dioxan]²⁻-Anion besitzt Wolfram formal die Oxidationsstufe +V und ist von zwei Sauerstoff- und vier Chloratomen verzerrt oktaedrisch umgeben (Abbildung 23). Die Wolfram-Chlor-Abstände liegen mit 2,368(1) Å im erwarteten Bereich [73]. Die Bindungslänge zwischen Wolfram und dem endständigen Sauerstoffatom liegt mit 1,681(1) Å im Bereich einer Wolfram-Sauerstoff-Mehrfachbindung, während der Abstand des Wolframatoms zum Sauerstoffatom des Dioxanmoleküls mit 2,421(1) Å auf eine koordinative Bindung hindeutet [74]. Die Winkel im WO(O)Cl₄-Oktaeder liegen zwischen 80(1) ° und 100(1) °. Dabei sind die Chloratome durch die elektrostatische Abstoßung mit dem doppelt gebundenen Sauerstoffatom aus der quadratisch-planaren Anordnung heraus in Richtung des Dioxanmoleküls ausgelenkt (Abbildung 23). Der O–W–O-Winkel ist mit 179(1) ° geringfügig verzerrt. Die Daten zur Strukturbestimmung sind in Tabelle 23 aufgeführt.

Abbildung 24. Darstellung der Verbindung [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan] im anti-CdI₂-Strukturyp. In den Oktaedern befinden sich die [(WOCl₄)₂·1,4-Dioxan]^{2–}-Anionen, die Oktaederspitzen sind die geometrischen Mittelpunkte der [NMeBu₃]⁺-Kationen.

Abbildung 25. Ausschnitt aus dem anti-CdI₂-Strukturtyp der Verbindung [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan]. Links im Bild ist die Position der [(WOCl₄)₂·1,4-Dioxan]^{2–}-Anionen gezeigt, rechts die Positionen der [NMeBu₃]⁺-Kationen.

Vergleichbare Bindungssituationen liegen in den bereits erwähnten Verbindungen vom Typ $[(WOCl_4)\cdot R]^-$ vor. So betragen beispielsweise die W–O-Bindungslängen in $[WOCl_4(THF)]^-$ 1,681(1) Å (W–O_{endständig}) bzw. 2,323(1) Å (W–O_{THF}) [69]. Die Chloratome weichen ebenfalls von einer quadratisch-planaren Anordnung ab ($\emptyset(O_{THF}-W-Cl) =$ 82,71(1) °). Die Bindungslängen und -winkel im $[NMeBu_3]^+$ -Kation entsprechen den erwarteten Werten (mittlere Bindungslängen (C–C): 1,513(1) Å, (C–N): 1,514(1) Å; Bindungswinkel (C–N–C): 107,5(1) ° – 112,4(1) °).

Die aus Röntgenbeugungsexperimenten an Pulverproben der Verbindung [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan] erhaltenen Reflexlagen zeigen eine signifikante Abweichung von einem aus Einkristallstrukturdaten berechneten Diffraktogramm (Abbildung 26 A). Eine Indizierung der gemessenen Daten nach *Visser* [75] zeigt jedoch eine gute Übereinstimmung der Zellparameter (Abbildung 26 B und Tabelle 6). Eine Rietveldverfeinerung der berechneten Daten an das gemessene Diffraktogramm belegt schließlich die Identität der Verbindung (Abbildung 26 B und C). Die beobachtete Abweichung resultiert aus den unterschiedlichen Messtemperaturen (Einkristall: -70 °C, Pulver: 25 °C). Die geringen Abweichungen der Zellparameter führen aufgrund der komplexen Netzebenenabstandsgleichung für das trikline Kristallsystem zu relativ großen Abweichungen der Beugungswinkel.

Abbildung 26. A: Vergleich der Diffraktogramme von $[NMeBu_3]_2[(WOCl_4)_2 \cdot 1, 4-Dioxan]$ (schwarz = gemessen, blau = aus Einkristalldaten berechnet). B: Zur Indizierung nach *Visser* [75] verwendete Reflexlagen des gemessenen Diffraktogrammes. C: Rietveldplot der Verfeinerung der Einkristalldaten gegen das gemessene Diffraktogramm. D: Vergrößerter Ausschnitt aus C.

Tabelle 6. Vergleich der durch Röntgenbeugungsexperimente ermittelten Gitterparameter der Verbindung [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan].

	Einkristalldaten (-70 °C)	Indiziertes Pulverdif- fraktogramm (25 °C)	Rietveld-Verfeine- rung
<i>a /</i> Á	9,98(1)	10,09(1)	10,08(1)
b / Á	11,45(1)	11,42(1)	11,44(1)
<i>c</i> / Á	11,53(1)	11,54(1)	11,54(1)
α/°	82,5(1)	83,8(1)	83,8(1)
β / °	65,3(1)	66,0(1)	66,0(1)
γ / °	70,8(1)	71,6(1)	71,5(1)
$V/{ m \AA}^3$	1130,5(1)	1153,2(1)	1152,2(1)

Abbildung 27. Thermogravimetrische Analyse der Verbindung [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan].

Zur Untersuchung des thermischen Verhaltens, insbesondere der Freisetzung von Dioxan, wurde mit der Verbindung [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan] eine thermische Analyse durchgeführt. Der thermische Abbau der Substanz erfolgt dabei in zwei Stufen (Abbildung 27). Zunächst erfolgt ein Gewichtsverlust von 1,1(1) mg bei einer Temperatur von 125 °C. Der Gewichtsverlust der zweiten Stufe beträgt 9,2 mg bei einer Temperatur von 310 °C. Beide Abbaustufen erfolgen unter Wärmeaufnahme. Die erste Stufe kann der Verdampfung von Dioxan zugeordnet werden. Da der zugehörige thermische Effekt endotherm ist, kann davon ausgegangen werden, dass die Dioxanmoleküle unzersetzt in die Gasphase gelangen. Bei einer eingesetzten Probenmenge von 19,2 mg beträgt der prozentuale Gewichtsverlust der ersten Stufe 5,7 %. Für die komplette Verdampfung des in der Substanz enthaltenen Dioxans erwartet man allerdings einen Gewichtsverlust von 7,5 %. Die Abweichung des beobachteten Wertes kann durch die durchgeführte Auftriebskorrektur verursacht werden, die Differenz von 1,8 % beträgt für die eingesetzte Probenmenge 0,35 mg und liegt damit im Rahmen der Messungenauigkeit. Die zweite Abbaustufe von 9,2 mg (47,9 %) kann dem unzersetzten Sublimieren von neutralen Spezies, die fast ausschließlich das Kation oder das Anion enthalten, nicht sicher zugeordnet werden. Für einen vollständigen Übergang in die Gasphase erwartet man für eine kationenreiche Komponente 34,2 % Gewichtsverlust und für die entsprechende anionenhaltige Verbindung 58,3 %. Unter der Annahme, dass das Wolfram(V)-haltige Anion zu einer W(VI)-haltigen Komponente oxidiert wird, würde eine vollständige Sublimation von WO₂Cl₂ mit einem erwarteten Gewichtsverlust von 48,9 % gut mit den beobachteten Werten (47,9 %) übereinstimmen. Die röntgenographische Untersuchung des resultierenden Feststoffes ergab keine Ergebnisse, da dieser amorph vorlag.

Die blaue Farbe, die die Verbindung [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan] aufweist, wird bei Verbindungen, die das Anionen vom Typ [WOCl₄]⁻ enthalten, häufig beschrieben. Das in Abbildung 28 gezeigte UV/VIS-Spektrum der Verbindung [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan] bestätigt die beobachtete Farbe. Deutlich zu erkennen sind zwei Absorptionsmaxima bei $\lambda = 270$ nm und $\lambda = 770$ nm. Die geringe Absorption im Bereich von 350-550 nm entspricht dem blauen Farbeindruck der Verbindung. Der Vergleich des erhaltenen Spektrums mit Daten der Verbindung [As(Ph)₄][(WOCl₄)H₂O] [76] zeigt eine gute Übereinstimmung der Absorptionsbanden. Das lokale Maximum bei ca. 400 nm wird dabei einem (5*dxy*, W-Cl π *)-(5*dx*²-*y*², W-Cl σ *)-Übergang zugeordnet, die breite Bande zwischen 600 und 800 nm wird durch die Anregungen (5*dxy*, W-Cl π *)-(5*dxz*, *yz*, W-O π *) verursacht.

Abbildung 28. UV/VIS-Spektrum der Verbindung [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan].

Die zunächst unerwartete Bildung einer W=O-Bindung bzw. von 1,4-Dioxan als verbrückendem Donormolekül in [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan] bei der zu erst beschriebenen Umsetzung lässt sich auf die Zersetzung des Kronenethers 18-Krone-6 zurückführen. Diese wurde bereits an anderer Stelle beschrieben [77]. Dabei begünstigt die sehr langsame Zersetzung des Kronenethers hier offensichtlich die Bildung der Verbindung. Ersetzt man bei der Umsetzung von K, WOCl₄ und [NMeBu₃]Cl die Ionische Flüssigkeit durch 1,4-Dioxan als Lösungsmittel, so erhält man die Dioxan-reichere Verbindung [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan) mit nicht verbrückten [(WOCl₄)·1,4-Dioxan]⁻-Einheiten (siehe Kapitel 3.4.3). Erst die Umsetzung mit stöchiometrischen Mengen 1,4-Dioxan in der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂] ermöglicht die Bildung größerer Mengen der Zielverbindung [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan].

3.4.3 Synthese und Kristallstruktur von [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan)

Die Synthese von [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan) gelingt durch Umsetzung von 100 mg (0,25 mmol) WOCl₄ mit 11 mg (0,28 mmol) Kalium und 69 mg (11,38 mmol) [NMeBu₃]Cl in 1 mL (11,7 mmol) 1,4-Dioxan. Das Reaktionsgemisch wird unter Rühren auf 100 °C erhitzt und anschließend langsam abgekühlt. Nach wenigen Stunden fallen transparente, blau schimmernde, nadelförmige Kristalle aus. Die Bildung der vorliegenden Dioxan-reichen Phase lässt sich auf die Verwendung von Dioxan als Lösungsmittel für die Synthese zurückführen. Das ursprüngliche Ziel der hier beschriebenen Umsetzung war eine Reindarstellung von [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan] für analytische Zwecke.

Abbildung 29. Elementarzelle der Verbindung [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan) in Blickrichtung der kristallographischen *b*-Achse. Wasserstoffatome sind nicht dargestellt.

[NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan) ist ein salzartiger Feststoff, der aus [NMeBu₃]⁺-Kationen, [(WOCl₄)·1,4-Dioxan]⁻-Anionen und 1,4-Dioxan-Molekülen besteht.

Dabei sind die Dioxan-Moleküle in Form einer verzerrten kubisch-dichten Packung angeordnet wobei sich jeweils zwei Kationen und Anionen in einer Oktaederlücke befinden (Abbildung 31 und Abbildung 32). Die Betrachtung des Dioxanmoleküls als kleinster "Baustein" der Kristallstruktur als Packungsbildner ist ungewöhnlich, jedoch wird sowohl für das Kation als auch für das Anion keine entsprechende Packung gefunden. Die vorliegende Packung ist somit ein reines Modell zur Beschreibung der Struktur und nicht auf die Größenverhältnisse der Komponenten zurückzuführen.

In [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan) weist Wolfram die Oxidationsstufe +V auf und ist oktaedrisch von vier Chloratomen und zwei Sauerstoffatomen koordiniert. Der Aufbau und die Bindungssituation des [(WOCl₄)·1,4-Dioxan]⁻-Anions sind vergleichbar mit denen im [(WOCl₄)₂·1,4-Dioxan]²⁻- Anion (siehe Kapitel 3.4.2). Der mittlere W–Cl-Abstand liegt mit 2,306(1) Å im erwarteten Bereich [73]. Der Abstand zwischen dem Wolframatom und dem endständigen Sauerstoffatom deutet mit 1,680(1) Å auf eine Doppelbindung hin [74]; der Abstand zwischen dem Wolframatom und dem Sauerstoffatom des Dioxan-Moleküls lässt mit 2,406(1) Å wiederum auf eine koordinative Bindung schließen [74]. Die Bindungslängen für C–O, C–C und C–N liegen im erwarteten Bereich (Tabelle 31). Damit besteht eine enge Verwandtschaft des [(WOCl₄)·1,4-Dioxan]⁻-Anions mit dem in Kapitel 3.4.2 beschriebenen Dimer [(WOCl₄)₂·1,4-Dioxan]²⁻.

Abbildung 30. [(WOCl₄)·1,4-Dioxan]⁻-Anion in [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan).

Abbildung 31. Schematische Darstellung des Packungseffektes in [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan).

Abbildung 32. Eine Tetraederlücke (rechts) und eine Oktaederlücke (links) der von den Dioxan-Molekülen gebildeten verzerrten dichten Packung in [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan).

3.5 Synthesen in Ionischen Flüssigkeiten unter oxidierenden Bedingungen: Die Verbindung {[P(o-tolyl)₃]Br}₂[Cu₂Br₆](Br₂)

3.5.1 Aktueller Stand

In Kapitel 3.2.2 wurde beschrieben, dass sich die Ionische Flüssigkeit $[NMeBu_3][N(Tf)_2]$ bei der Umsetzung mit Oxidationsmitteln wie Iod oder Brom bei Temperaturen von etwa 100 °C zersetzt, wenn keine geeigneten Reaktionspartner vorliegen. Mit $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2)$ wird in diesem Kapitel eine Verbindung vorgestellt, die durch die direkte Bromierung von P(o-tolyl)_3 und CuBr_2 in $[NMeBu_3][N(Tf)_2]$ erhalten werden kann. Dabei wird das eingesetzte Brom nicht vollständig reduziert, sondern als Br_2-Molekül in den Festkörper eingebaut. Die Reaktivität des Broms wird dabei herabgesetzt, so dass die Ionische Flüssigkeit trotz einer Reaktionstemperatur von 100 °C unzersetzt bleibt.

Der Einbau von molekularen Halogenen in Festkörpern ist strukturell für Cl₂, Br₂ und I₂ nachgewiesen worden. Erwartungsgemäß findet man in der Literatur für den Einbau von molekularem Iod als Halogen mit der geringsten Reaktivität und Flüchtigkeit die größte Anzahl an Verbindungen. Dabei reicht die Variationsbreite von molekularem Iod in Festkörpern vom Einbau einfacher I₂-Moleküle [78] über [I₃]⁻-Einheiten [79] bis hin zu komplexen I₂₁³⁻-Einheiten [80]. In Übereinstimmung mit seiner Reaktivität und Flüchtigkeit wurde molekulares Chlor bisher lediglich in der Verbindung [Me₄N][PdCl₆](Cl₂)_{0,9} nachgewiesen [81].

Für den Einbau von molekularem Brom in Festkörper wurden bisher drei Möglichkeiten beschrieben. In den Verbindungen [Bu₃P]₂Au(Br₃)(Br₂) [82] und Cs₃(AuBr₄)₂Br₃ [83] finden sich isolierte [Br₃]⁻-Einheiten; *Drews* et al. gelang es weiterhin, molekulares Br₂ in CsF zu kristallisieren, wobei das Brommolekül keine direkte Wechselwirkung mit Cs⁺-Kationen oder F⁻-Anionen aufweist [84]. Die dritte beschriebene Variante für den Einbau von Br₂-Molekülen in Festkörpern findet durch Koordination von Br₂ an endständige Br⁻-Anionen in Bromometallat-Anionen statt, beispielsweise in der Verbindung [Me₄N]₃[Sb₂Br₉](Br₂) [85].

3.5.2 Synthese und Charakterisierung von {[P(o-tolyl)₃]Br}₂[Cu₂Br₆](Br₂)

Zur Darstellung von $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2)$ wurden 147 mg (0,66 mmol) CuBr₂ und 200 mg (0,66 mmol) P(o-tolyl)₃ in 2 mL [NMeBu₃][N(Tf)₂] suspendiert und unter Rühren bei 100 °C tropfenweise mit Br₂ versetzt. Die entstehende grüne Lösung wurde solange weiter mit Brom versetzt bis eine Entfärbung der Gasphase über der Lösung ausblieb. Anschließend wurde die Lösung filtriert. Nach einigen Tagen bildeten sich gut ausgebildete dunkelgrün bis schwarz schimmernde Kristalle der Zielverbindung. Zur Trennung der Kristalle von der Ionischen Flüssigkeit wurde das Reaktionsprodukt fünfmal mit Diethylether gewaschen und durch einen Glasfilter filtriert. Die Ausbeute betrugt 120 mg (24 %). Die Reinheit des Produktes wurde durch Pulverdiffraktometrie (Abbildung 33) und CHN-Analyse bestätigt (Ber. (gef.): C 36,7 % (35,6 %); H 3,1 % (3,0 %)).

Abbildung 33. Pulverdiffraktogramm der Verbindung $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2)$ (oben) im Vergleich mit einem aus der Einkristallstruktur berechnetem Diffraktogramm (unten).

Abbildung 34. Elementarzelle der Verbindung $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2)$ mit Blickrichtung entlang der kristallographischen *b*-Achse. Die Auslenkungsellipsoide sind mit einer Aufenthaltswahrscheinlichkeit von 50 % dargestellt.

Die Kristallstruktur der Verbindung { $[P(o-tolyl)_3]Br$ } $_2[Cu_2Br_6](Br_2)$ ist aus { $[P(o-to-lyl)_3]Br$ }⁺-Kationen, $[Cu_2Br_6]^{2^-}$ -Anionen und Br₂-Molekülen aufgebaut. Die Elementarzelle der Verbindung ist in Abbildung 34 dargestellt. Die Kationen befinden sich im Inneren der Elementarzelle, die Anionen besetzen alle Ecken der Zelle und die Br₂-Moleküle besetzen die vier Kanten, die parallel zur kristallographischen *a*-Achse verlaufen. Die asymmetrische Einheit enthält ein { $[P(o-tolyl)_3]Br$ }⁺-Kation, die Hälfte eines $[Cu_2Br_6]^{2^-}$ -Anions sowie ein Br-Atom eines Br₂-Moleküls. Die $[Cu_2Br_6]^{2^-}$ -Anionen werden aus zwei verzerrten $[CuBr_4]$ -Te-traedern gebildet, die über eine gemeinsame Kante verknüpft sind. Jeweils zwei dieser Anionen sind über ein gemeinsames Br₂-Molekül verbrückt, so dass unendliche ${}^{\infty}_{1}$ { $[Cu_2Br_6](Br_2)$ }-Ketten resultieren (Abbildung 35). Die Kationen und Anionen bilden parallel zur [111]-Richtung eine leicht verzerrte hexagonale Packung (Abbildung 36). Diese Packungen sind senkrecht zur [111]-Richtung deckungsgleich gestapelt. Die Br₂-Moleküle befinden sich zwischen diesen hexagonalen Schichten.

Abbildung 35. Ausschnitt aus der unendlichen ${}_{1}^{\infty}\{[Cu_{2}Br_{6}](Br_{2})\}$ -Kette in $\{[P(o-tolyl)_{3}]Br\}_{2}[Cu_{2}Br_{6}](Br_{2})$.

Abbildung 36. Hexagonale Anordnung der Kationen und Anionen in $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2)$ senkrecht zur [111]-Richtung.

Die Elementarzelle der Verbindung {[P(o-tolyl)₃]Br}₂[Cu₂Br₆](Br₂) weist zwei annähernd identische Paare von Gitterparametern auf (a = 10,667(2) Å; b = 10,695(2) Å; a = 74,42(3)°; $\beta = 75,64(3)$ °) und kann somit als reduzierte Form einer monoklinen *C*-zentrierten Zelle aufgefasst werden. Durch die Transformation der ursprünglichen triklinen Zelle mit der Transformationsmatrix

wird eine Zelle mit der monoklinen Gittermetrik a' = 15,758(2) Å; b' = 14,553 Å; c' = c; $\beta' = 110,40(1)$ ° erhalten (Abbildung 37 und 38). Die Wahl des triklinen Kristallsystems ist durch das Fehlen von notwendigen Symmetrieelementen begründet. Das monokline Kristallsystem verlangt entweder eine zweizählige Drehachse, eine zweizählige Schraubenachse oder eine *c*-Gleitspiegelebene. In der vorliegenden Struktur finden sich jedoch weder eine *c*-Gleitspiegelebene, noch eine zweizählige Drehachse. Die $[Cu_2Br_6]^{2-}$ -Anionen sind entlang der kristallographischen *b*'-Achse allerdings so gestapelt, dass sie die Bedingungen für eine 2₁-Schraubenachse erfüllen würden, wenn die Anionen nicht aus der *a'c'*-Ebene ausgelenkt wären (Abbildung 39). Diese Auslenkung resultiert aus der Koordination der $[Cu_2Br_6]^{2-}$ -Anionen durch Brommoleküle. Die Brom-Moleküle sowie die {[P(o-tolyl)₃]Br}⁺-Kationen erfüllen die Bedingungen für die 2₁-Schraubenachse nicht. Die somit vorhandene Pseudosymmetrie ist auf die Symmetriereduktion des $[Cu_2Br_6]^{2-}$ -Anions von D_{2h} (isoliert) zu einem Inversionszentrum (im Festkörper) zurückzuführen. Dabei ist offensichtlich die Br–[Br]⁻-Bindung die Ursache für die Auslenkung der $[Cu_2Br_6]^{2-}$ -Anionen.

Abbildung 37. Transformation der triklinen primitiven Elementarzelle der Verbindung $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2)$ in eine monokline *C*-zentrierte Elementarzelle. Zur besseren Übersichtlichkeit sind nur $[Cu_2Br_6]^{2^-}$ -Anionen dargestellt. Die Achsenbeschriftungen *a*, *b* und *c* gelten für die trikline Zelle, die Beschriftungen *a*', *b*' und *c*' für die monokline Zelle.

Abbildung 38. Monokline C-zentrierte Elementarzelle der Verbindung {[P(o-tolyl)₃]Br}₂[Cu₂Br₆](Br₂).

Abbildung 39. Pseudo-2₁-Achse in der monoklinen Elementarzelle der Verbindung $\{[P(o-to-lyl)_3]Br\}_2[Cu_2Br_6](Br_2).$

Der intramolekulare Abstand im Br₂-Molekül (Im Folgenden werden die Br-Atome im molekularen Br₂ als Br_{mol} und die endständigen Br-Atome im Cu₂Br₆-Anion als Br_{term} bezeichnet) beträgt 2,341(1) Å und ist damit etwas länger als in elementarem festen Brom (2,267(1) Å [86]). Dies deutet auf eine geschwächte Br_{mol}–Br_{mol}-Bindung als Folge attraktiver Wechselwirkungen zwischen Br_{mol} und Br_{term} hin. Diese Wechselwirkungen werden auch durch den Vergleich der beiden Cu–Br_{term}-Bindungen belegt; die Cu–Br_{term}-Bindung, bei der das Br_{term} von Br_{mol} koordiniert ist, ist länger (2,340(1) Å) als die Cu–Br_{term}-Bindung, bei der das Br_{term} keine Wechselwirkung mit Br_{mol} zeigt (2,328(1) Å). Diese Bindungssituation entspricht einer Donor-Akzeptor-Wechselwirkung [87] bei der das terminale Br⁻-Ion als schwacher Elektronendonor und Br_{mol} als Elektronenakzeptor wirken. Die Bindungslängen und - winkel im {[P(o-tolyl)₃]Br}⁺-Kation entsprechen erwarteten Werten (Tabelle 36 und 37).

Um die Reinheit des erhaltenen Produktes zu überprüfen, wurde ein aus der Einkristallstruktur berechnetes Pulverdiffraktogramm an qualitativ gute Daten eines aufgenommenen Pulverdiffraktogrammes von {[P(o-tolyl)₃]Br}₂[Cu₂Br₆](Br₂) gefittet. Dabei wurden die Atompositionen und anisotropen Auslenkungsparameter der Cu- und Br-Atome sowie Zellparameter, Nullpunktsverschiebung, Reflexform und Skalierungsfaktor verfeinert. Der resultierende Rietveldplot ist in Abbildung 40 gezeigt. Eine schwache Differenz bei $2\theta = 14,4$ ° lässt sich der Verbindung {[P(o-tolyl)₃]Br}₂[Cu₂Br₆](Br₂) nicht zuordnen und deutet auf eine geringe Verunreinigung der Substanz hin. Die Daten zur Verfeinerung sind in Tabelle 7 angegeben.

Abbildung 40. Rietveld-Plot von $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2)$ (rot: gemessene Daten, schwarz: berechnete Daten, blau: Differenz).

Tabelle 7. Details der Kleiverdverreinerung von $\{ P(0-i0iy) _3 Di \}_2 Cu_2Di_6 (Di)$	Tabelle 7	. Details der	Rietveldverfeinerung vo	$n \{ [P(o-tolyl)_3] \}$	$ Br _{2}[Cu_{2}Br_{6}](Br_{2})$
---	-----------	---------------	-------------------------	--------------------------	----------------------------------

Formelgewicht / $gmol^{-1}$	1534,1
Kristallsystem	triklin
Raumgruppe	$P\overline{1}$
Gitterparameter / Å, °	a = 10,706(2); b = 10,717(2); c = 11,598(2);
	$\alpha = 74,59(3); \beta = 75,64(3); \gamma = 85,62(3)$
Zellvolumen / Å ³	1232.9(6)
Anzahl Z der Formeleinheiten	1
Beugungswinkelbereich (CuK α_1 -Strahlung,	$7 \leq 2\theta \leq 68,88$
$\lambda = 1,54056 \text{ Å})$	
Anzahl Datenpunkte	2064
Anzahl beobachteter Reflexe	1127
Parameter	72
Gütefaktoren	Rp = 5,14 %
	wRp = 7,21 %

Das in der Röntgenstruktur gefundene Br₂-Molekül in der Verbindung {[P(o-to-lyl)₃]Br}₂[Cu₂Br₆](Br₂) kann durch weitere Analysen bestätigt werden. Eine thermogravimetrische Analyse (Abbildung 41) zeigt einen deutlichen Gewichtsverlust bei einer Temperatur von 162(1) °C. Bis zu einer Temperatur von 185(1) °C werden etwa 9,6 % des Gewichts der Verbindung in die Gasphase abgegeben. Der berechnete Gehalt an molekularem Brom in der Verbindung {[P(o-tolyl)₃]Br}₂[Cu₂Br₆](Br₂) entspricht 10,4 %. Erwartungsgemäß wird somit beim Erhitzen der Verbindung zunächst elementares Brom freigesetzt. Dabei treten zwei endotherme Effekte auf, die jedoch in der gravimetrischen Kurve nicht getrennt beobachtet werden. Die Differenz zwischen dem berechneten und beobachteten Gewichtsverlust für Br₂ von etwa 1 % ist auf Auftriebseffekte während der Messung zurückzuführen. Zusätzlich schließt sich die Zersetzung des weiteren Feststoffes unmittelbar an die Br₂-Abgabe an, so dass die verschiedenen Gewichtsverluste nicht exakt getrennt werden können.

Abbildung 41. Thermogravimetrische Analyse der Verbindung {[P(o-tolyl)₃]Br}₂[Cu₂Br₆](Br₂).

Eine eindeutige Bestimmung des in der Verbindung enthaltenen molekularen Broms ist durch massenspektrometrische Untersuchungen der Verbindung $\{[P(o-tolyl)_3]Br\}_2$ $[Cu_2Br_6](Br_2)$ möglich (Abbildung 42). Dabei tritt der stärkste Peak bei M = 159,8 auf und kann eindeutig molekularem Brom zugeordnet werden. Die weiteren Peaks resultieren aus der Zersetzung des Kations [88].

Abbildung 42. Massenspektrum der Verbindung {[P(o-tolyl)₃]Br}₂[Cu₂Br₆](Br₂).
3.6 Darstellung von Verbindungen mit schwach koordinierenden Anionen: Die Verbindung {[P(Ph)₃]₃Ag}[N(Tf)₂]

3.6.1 Aktueller Stand

Ein Begriff der in der Wissenschaftsliteratur häufig im Zusammenhang mit Ionischen Flüssigkeiten genannt wird ist der der "schwach koordinierenden Anionen". Als schwach koordinierende Anionen (WCA's, engl. weakly coordinating anion) werden komplexe Anionen bezeichnet, deren Koordinationsvermögen durch die Delokalisierung der negativen Ladung und die Abschirmung nukleophiler Zentren im Anion herabgesetzt wird. Beispiele für WCA's sind Tetrafluoroborat ([BF₄]⁻ [89]), Triflat ([CF₃SO₃]⁻ [90]), das in der vorliegenden Arbeit verwendete Trifluormethansulfonsäureimid $[N(CF_3SO_2)_2]^{-1}$ [91] oder mehrkernige Fluorometallate (z. B. [As₂F₁₁]⁻ [92]). Besonders schwach koordinierende Anionen sind Carborane, wie zum Beispiel [CB₁₁H₆Cl₆]⁻ [93]. Anwendungsgebiete finden WCAs in der Katalyse [94] oder in der Elektrochemie [95], sie spielen aber auch als Anionen von Ionischen Flüssigkeiten eine wichtige Rolle. Zur Darstellung von Verbindungen mit schwach koordinierenden Anionen sind verschiedene Reaktionsdurchführungen vorgeschlagen worden [96]. So können beispielsweise durch Reaktionen von Lewissäuren mit anionischen Fragmenten WCAs wie $[Sb_4F_{21}]^-$ oder $[Sb_3F_{16}]^-$ hergestellt werden [96]. Die einfachste Methode, WCAs darzustellen, ist ein Anionenaustausch zweier Salze. Eine gute Möglichkeit, solche Austauschreaktionen durchzuführen, bietet die Ionische Flüssigkeit [NMeBu₃][N(Tf)₂], dies wird in diesem Kapitel am Beispiel der Verbindung $\{[P(Ph)_3]_3Ag\}[N(Tf)_2]$ gezeigt.

Strukturell wurde das { $[P(Ph)_3]_3Ag$ }⁺-Kation erstmals von *Cassel* in der Verbindung {Ag[P(Ph)_3]}Cl beschrieben [97]. Das zentrale Silberatom im { $[P(Ph)_3]_3Ag$ }⁺-Kation ist im Allgemeinen von den drei [P(Ph)_3]-Gruppen und einem weiteren Substituenten verzerrt tetraedrisch umgeben. Durch die freie Koordinationsstelle am Ag-Atom binden die meisten Anionen kovalent an das Silberatom. Beispiele hierfür sind einfache Salze wie { $[P(Ph)_3]_3Ag$ }X ($X = CI^-$ [97], Br⁻ [98], I⁻ [99] oder [HCO₂]⁻ [100]). Lediglich sterisch anspruchsvolle Anionen oder WCA's sind schwach an das zentrale Silberatom gebunden. Als Beispiele seien hier { $[P(Ph)_3]_3Ag$ }[BF₄] [99] und (Bis(1,2,3-Benzotriazolyl)Borat-N)-Tris(Triphenylphosphan)-Silber(I)-Hemihydrat [101] aufgeführt. Die einzige bekannte Verbindung, die das { $[P(Ph)_3]_3Ag$ }⁺-Kation nahezu unkoordiniert enthält, ist Tris(Triphenylphosphan)Silber(I)-1,1,1-Tricarbonyl-1-Ferra-5-Carba-closo-Nonaboran [102], eine Verbindung mit einem sehr schwach koordinierenden Anion. Mit {Ag[P(Ph)_3]_3}[N(Tf)_2]

wurde in der vorliegenden Arbeit eine Verbindung dargestellt, die neben $\{Ag[P(Ph)_3]_3\}[NO_3]$ [103] und $\{Ag[P(Ph)_3]_3\}[OTf](CH_2Cl_2)$ [104] die dritte Verbindung ist, deren Anion ein lediglich schwach an das Silberkation bindendes Sauerstoffatom enthält (d(Ag-O) > 2, 6 Å).

3.6.2 Synthese und Charakterisierung der Verbindung {[P(Ph)₃]₃Ag}[N(Tf)₂]

Die Synthese von { $[P(Ph)_3]_3Ag$ } $[N(Tf)_2]$ gelingt durch Umsetzung von 212 mg (0,83 mmol) Ag(OTf) mit 653 mg (2,49 mmol) P(Ph)_3 in 3 mL [NMeBu_3] $[N(Tf)_2]$. Das Reaktionsgemisch wird für 4 d auf 150 °C erhitzt bis eine homogene Lösung vorliegt. Anschließend wird das Gemisch auf Raumtemperatur abgekühlt. Nach einigen Stunden fallen farblose säulenförmige Kristalle der Zusammensetzung { $[P(Ph)_3]_3Ag$ } $[N(Tf)_2]$ aus (Elementanalyse: ber. (gef.): C 57,3 % (55,9 %); H 3,9 % (4,1 %); N 1,2 % (1,7 %)).

Abbildung 43. Elementarzelle der Verbindung $\{[P(Ph)_3]_3Ag\}[N(Tf)_2]$ mit Blickrichtung entlang der kristallographischen *b*-Achse.

 ${[P(Ph)_3]_3Ag}[N(Tf)_2]$ ist ein Feststoff der aus ${[P(Ph)_3]_3Ag}^+$ -Kationen und $[N(Tf)_2]^-$ -Anionen aufgebaut ist (Abbildung 43). Das Ag-Atom ist dabei verzerrt tetraedrisch von drei P-Atomen und einem O-Atom des $[N(Tf)_2]^-$ -Anions umgeben (siehe Abbildung 44). Die mittlere Ag–P-Bindungslänge ist mit durchschnittlich 2,486(1) Å etwas kürzer als im binären Ag_3P: (d = 2,58(1) Å) [105]. Der Ag-O-Abstand beträgt 2,689(5) Å und ist damit deutlich länger als typische Ag-O-Bindungslängen (Ag_2O: 2,061(1) Å [106], AgNO_3: 2,53(1) Å

[107], {[P(Ph)₃]₃Ag}[HCO₂]: 2,15(1) Å [108]). Die Daten zur Einkristallstrukturbestimmung befinden sich in den Tabelle 38 bis 42.

Abbildung 44. Koordinationssphäre des Ag-Atoms in {[P(Ph)₃]₃Ag}[N(Tf)₂].

Der verhältnismäßig große Abstand zwischen dem Ag-Atom und dem O-Atom des [N(Tf)₂]⁻Anions lässt sich auf die schwach koordinierenden Eigenschaften des Anions zurückführen. Die nukleophilen Zentren des [N(Tf)₂]-Anions sind das zentrale Stickstoffatom und die am Schwefelatom gebundenen Sauerstoffatome. Eine Koordination des zentralen Silberatoms durch das Stickstoffatom des Anions wird aus sterischen Gründen verhindert. Eine Koordination des Silberatoms durch das Sauerstoffatom ist sterisch weniger Bindungssituation eingeschränkt. Eine vergleichbare liegt in der Verbindung {Ag[P(Ph)₃]₃}[OTf](CH₂Cl₂) vor [104]. Hier wird das zentrale Silberatom durch ein Sauerstoffatom des [OTf]-Anions koordiniert, wobei der Ag-O-Abstand 2,672(1) Å beträgt und somit ebenfalls von üblichen Ag-O-Bindungslängen abweicht. Auch in dieser Verbindung ist die sterische Abschirmung der Grund für die schwache Koordination des zentralen Silberatoms.

Zur Bestimmung der Reinheit der erhaltenen Verbindung wurden Röntgenbeugungsexperimente an Pulverproben durchgeführt. Die gute Übereinstimmung der gemessenen Daten mit den Daten der Einkristallstrukturbestimmung wird durch eine Rietveldverfeinerung belegt (Abbildung 45). Dabei finden sich Reflexe, die im berechneten Diffraktogramm nicht enthalten sind. Diese Reflexe deuten auf eine geringfügige Verunreinigung der Probe hin. Der Vergleich dieser Reflexlagen mit denen der Edukte Ag(OTf) und PPh₃ sowie der Konkurrenzverbindung { $[P(Ph)_3]_4Ag$ } $[N(Tf)_2]$ [109] ergibt keine Übereinstimmung. Strukturelle Daten weiterer möglicher Konkurrenzverbindungen wie Ag $[N(Tf)_2]$ sind in der Literatur nicht bekannt, somit kann kein Vergleich mit weiteren Pulverdiffraktogrammen durchgeführt werden. Die Fremdreflexe treten in einem Bereich von 7-12 ° 2*theta* auf, was auf eine große Elementarzelle und somit auf eine komplexe Verbindung hindeutet.

Abbildung 45. Rietveldplot der Verbindung $\{[P(Ph)_3]_3Ag\}[N(Tf)_2]$ (rot: gemessenes Diffraktogramm, schwarz: berechnetes Diffraktogramm, blau: Differenz). A: Gesamtübersicht, B: Ausschnitt aus A. Gemessene Reflexe, die durch die Berechnung nicht erhalten werden, sind grün umrandet.

Abbildung 46. IR-Spektrum der Verbindung {[P(Ph)₃]₃Ag}[N(Tf)₂].

Die durch die Einkristallstrukturbestimmung erhaltene Verbindung kann in ihrer Zusammensetzung durch IR-spektroskopische Untersuchungen bestätigt werden. In Abbildung 46 ist das IR-Spektrum der Verbindung {[P(Ph)₃]₃Ag}[N(Tf)₂] abgebildet. Alle beobachteten Banden lassen sich entweder den Triphenylphosphan-Liganden oder dem Trifluormethansulfonsäureimid zuordnen. In Abbildung 47 ist der direkte Vergleich des gemessenen Spektrums mit dem Literaturspektrum von P(Ph)₃ gezeigt [88]. Gut zu erkennen sind die C–H-Valenzschwingungen bei etwa 3000 cm⁻¹, die Oberschwingungen bei 2000 - 1800 cm⁻¹, C–C-Streckschwingungen bei 1500 - 1400 cm⁻¹ sowie CH-Deformationsschwingungen bei 1200 -500 cm⁻¹. Die starken Banden im Bereich 1400 - 1300 cm⁻¹ lassen sich den O–S–O-Valenzschwingungen des [N(Tf)₂]⁻-Anions zuordnen, die Banden zwischen 1220 cm⁻¹ und 1190 cm⁻¹ resultieren aus den C–F-Valenzschwingungen. Bei 1060 cm⁻¹ tritt die S–N–S-Streckschwingungsbande auf, bei 604 cm⁻¹ wird die SO₂-Deformationsschwingung und bei 571 cm⁻¹ die CF₃-Deformationsschwingung beobachtet [110].

Abbildung 47. Vergleich des IR-Spektrums von $\{[P(Ph)_3]_3Ag\}[N(Tf)_2]$ (rot) mit dem Literaturspektrum von $P(Ph_3)$ (schwarz) [88].

Abbildung 48. Thermische Analyse der Verbindung {[P(Ph)₃]₃Ag}[N(Tf)₂].

komplexen Als Verbindung mit großen, Ionen sollte die Verbindung {[P(Ph)₃]₃Ag}[N(Tf)₂] analog zu Ionischen Flüssigkeiten einen niedrigen Schmelzpunkt aufweisen. Untersuchungen zum thermischen Verhalten dieser Verbindung zeigen tatsächlich ein scharfes endothermes Signal bei 208 °C, ohne dass gleichzeitig ein Gewichtsverlust auftritt (Abbildung 48). Dies deutet auf den Schmelzpunkt der Verbindung hin. Ein zweites endothermes Signal tritt bei 225 °C auf. Dieses Signal ist deutlich schwächer und breiter als das erste und lässt sich keinem bestimmten Effekt zuordnen. Möglicherweise handelt es sich hierbei um den Schmelzpunkt der durch Pulverdiffraktometrie detektierten Verunreinigung. Der exotherm verlaufende Gewichtsverlust beginnt bei einer Temperatur von etwa 240 °C wobei das zugehörige thermische Signal erst bei einer Temperatur von 341 °C auftritt. Die Zersetzung ist bei einer Temperatur von etwa 500 °C abgeschlossen. Im Anschluss an die thermische Behandlung wurde ein Pulverdiffraktogramm angefertigt (Abbildung 49). Dabei treten neben Reflexen von reinem Silber weitere Reflexe auf, die nicht zugeordnet werden können. Die quantitative Zusammensetzung dieses Gemisches kann röntgenographisch nicht bestimmt werden. Eine Berechnung der ursprünglichen Zusammensetzung der Probe unter der Annahme, dass keine silberhaltige Spezies während der Messung in die Gasphase gelangt, kann somit nicht erfolgen.

Abbildung 49. Pulverdiffraktogramm des nach der thermischen Zersetzung von $\{[P(Ph)_3]_3Ag\}[N(Tf)_2]$ erhaltenen Produktes. Die Reflexlagen zeigen, dass es sich bei dem Produkt um ein Gemisch aus Ag (blau, CCDC 1089-3722) und einer nicht identifizierten Phase handelt.

4 Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurde die Eignung Ionischer Flüssigkeiten als Diffusionshilfsmittel in der Festkörpersynthese untersucht. Dabei wurde die Ionische Flüssigkeit [NMeBu₃][N(Tf)₂] aufgrund ihrer hohen thermischen und chemischen Stabilität aus einer Vielzahl möglicher Kombinationen aus Anionen und Kationen ausgewählt. Diese Ionische Flüssigkeit weist eine Polarität auf, die im Bereich der Polarität von Acetonitril und Methanol liegt und ist in der Lage, eine Vielzahl von ionisch aber auch kovalent aufgebauten Festkörpern zu lösen. Aufgrund der hohen chemischen und thermischen Stabilität gelingt die Synthese von Festkörpern in Ionischen Flüssigkeiten häufig durch Umsetzung bei erhöhten Temperaturen (100-200 °C). Die in dieser Arbeit vorgestellten Verbindungen wurden durch das Auflösen der Edukte in der Ionischen Flüssigkeit und anschließendes langsames Abkühlen kristallin erhalten. Durch mehrmaliges Waschen der Reaktionsprodukte mit Diethylether konnten die Verbindungen in reiner Form erhalten werden.

In der vorliegenden Arbeit konnten eine Reihe neuartiger Verbindungen durch die Umsetzung in der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂] zugänglich gemacht werden. Durch eine einfache Komplexierung von BiI₃ durch I⁻ wurde das neuartige cis-[Bi₃I₁₂]³⁻-Anion erhalten. Diese unerwartete Anordnung dreier Oktaeder lässt sich auf den strukturdirigierenden Einfluss des [NMeBu₃]⁺-Kations der eingesetzten Ionischen Flüssigkeit zurückführen. Dass die geringe Ladungsdichte keinen Einfluss auf die Struktur des [Bi₃I₁₂]³⁻-Anions hat, zeigt die in der Literatur beschriebene Verbindung *trans*-[NBu₄]₃[Bi₃I₁₂], die das Kation [NBu₄]⁺ enthält. Beide Kationen unterscheiden sich in der Struktur, jedoch kaum in der Ladungsdichte. Eine Reaktionsdurchführung in [NMeBu₃][N(Tf)₂] unter reduzierenden Bedingungen in Gegenwart von WCl₆ und 18-Krone-6 führte zur Bildung der Verbindung [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan]. In dieser Verbindung liegt Wolfram in der Oxidationsstufe +V vor und ist oktaedrisch von vier Cl-Atomen und zwei O-Atomen umgeben. Ein Dioxan-Molekül verbrückt dabei zwei [WOCl4]-Anionen zu einem neuartigem Dimer der Zusammensetzung [(WOCl₄)₂·1,4-Dioxan]²⁻. Versuche zur Reindarstellung dieser Verbindung unter Verwendung von 1,4-Dioxan als Lösungsmittel führten zur Bildung der Verbindung [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan). Diese Verbindung enthält ebenfalls das von 1,4-Dioxan koordinierte [WOCl₄]-Anion, es handelt sich allerdings hierbei um das entsprechende Monomer. Die Reaktionsdurchführung in [NMeBu₃][N(Tf)₂] unter oxidierenden Bedingungen durch Umsetzung von CuBr2 und P(o-tolyl)3 mit Br2 führt zur Bildung der Verbindung $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2)$. Diese Verbindung enthält molekulares Brom, das über

- 65 -

eine Elektronendonor-Akzeptor-Wechselwirkung an terminale Br-Atome des $[Cu_2Br_6]^{2-}$ gebunden ist. Das molekulare Brom kann durch thermogravimetrische sowie massenspektrometrische Analysen nachgewiesen werden. In der Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂] gelingt weiterhin die Synthese von {[P(Ph)₃]₃Ag}[N(Tf)₂], einer Verbindung, in der eine schwache Ag-O-Wechselwirkung beobachtet wird. Das schwach koordinierende Anion [N(Tf)₂]⁻ koordiniert dabei über ein Sauerstoffatom der S–O-Doppelbindung an das zentrale Silberatom. In der Literatur sind bisher nur zwei Verbindungen beschrieben bei denen das {[P(Ph)₃]₃Ag}⁺-Kation nur schwach von Sauerstoffatomen koordiniert ist.

dieser Arbeit konnte gezeigt werden, dass die Ionische Flüssigkeit In [NMeBu₃][N(Tf)₂] als Diffusionshilfsmittel für die Synthese neuartiger Festkörper geeignet und für die Bildung der vorgestellten Verbindungen sogar notwendig ist. Am Beispiel der Verbindung *cis*-[NMeBu₃]₃[Bi₃I₁₂] wurde gezeigt, dass die Bausteine Ionischer Flüssigkeiten strukturdirigierend wirken können und somit die Ursache für die im System Bi-I bisher nicht beschriebene cis-Verknüpfung dreier Oktaeder sind. Im Falle der Verbindung $[NMeBu_3]_2[(WOCl_4)_2 \cdot 1, 4-Dioxan]$ wird die Bildung des Dimers $[(WOCl_4)_2 \cdot 1, 4-Dioxan]^{2-}$ nur beobachtet, wenn die Ionische Flüssigkeit [NMeBu₃][N(Tf)₂] als Reaktionsmedium eingesetzt wurde. Ein Ersatz durch reines 1,4-Dioxan führte stets zur Bildung des Monomers [(WOCl₄)·1,4-Dioxan] Ebenso ermöglicht erst der Einsatz der Ionischen Flüssigkeit die Bildung der Br₂-haltigen Verbindung $\{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2)\}$. Versuche, diese Verbindung in Dichlormethan, Aceton oder Ethanol zu synthetisieren bzw. umzukristallisieren, misslangen. Die Ionische Flüssigkeit [NMeBu₃][N(Tf)₂] macht somit Verbindungen zugänglich, die unter herkömmlichen Bedingungen nicht gebildet werden oder nicht stabil sind.

5 Ausblick

In der vorliegenden Arbeit konnte gezeigt werden, dass Ionische Flüssigkeiten geeignete Reaktionsmedien für die Synthese neuartiger Festkörper sind und darüber hinaus über den Einsatz als bloße "Salzschmelze" hinausgehen. Systematische Untersuchungen zur chemischen Stabilität Ionischer Flüssigkeiten sind in der Literatur jedoch bisher nicht beschrieben worden. Eine Analyse der Stabilität der in der vorliegenden Arbeit verwendeten Ionischen Flüssigkeit [NMeBu₃][N(Tf)₂] sollte im Hinblick auf oxidierende und reduzierende Bedingungen durchgeführt werden. Von Interesse ist dabei auch die Temperaturabhängigkeit der Stabilität.

Die Darstellung der Verbindung *cis*-[NMeBu₃]₃[Bi₃I₁₂] als Vertreter der zahlreichen Iodobismutat-Polyanionen mit neuartigem Verknüpfungsmuster von [BiI₆]-Oktaedern zeigt das Potential Ionischer Flüssigkeiten, strukturell dirigierend zu wirken. Ein weiterer Schritt ist die Realisierung ein- oder zweidimensionaler Verknüpfungen von Metall-Halogen-Baueinheiten durch geschickte Wahl von Kationen und Anionen Ionischer Flüssigkeiten. Die resultierenden Ketten bzw. Schichten können potentielle niederdimensionale Halbleiter sein, wie sie beispielsweise im System Sn-I bereits realisiert worden sind.

Die Reduktion des Wolfram(VI) in WCl₆ zu Wolfram(V) durch Kalium in [NMeBu₃][N(Tf)₂] bei 150 °C zeigt, dass diese Ionische Flüssigkeit ein gegen Reduktion stabiles Reaktionsmedium ist. Es stehen Untersuchungen aus, ob [NMeBu₃][N(Tf)₂] eine Stabilität gegenüber sehr starken Reduktionsmitteln wie Rubidium oder Caesium aufweist. Ist eine derartige Stabilität gewährleistet, so kann diese Ionische Flüssigkeit als Reaktionsmedium für die Synthese von Metallsubverbindungen oder Polyanionen durch Reduktion von Metallsalzen oder Metallen eingesetzt werden. Insbesondere die Synthese von niederdimensionalen Metallen und Halbleitern ist hier von Interesse.

Die Verbindung {[P(o-tolyl)₃]Br}₂[Cu₂Br₆](Br₂) ist ein Beispiel für Festkörper, in denen molekulares Brom eingebaut vorliegt. Durch die Variation der eingesetzten Phosphan-Liganden können weitere Brom-Bromometallat-Bindungen ausgebildet werden. Dadurch sollte es möglich sein, höherdimensionale Netzwerke aus Br₂-Molekülen und Bromometallat-Anionen zu realisieren. Diese Verbindungen können außerdem zum Verständnis der Elektronendonor-Akzeptor-Bindungen in solchen Br₂-haltigen Verbindungen beitragen. Die Stabilität von [NMeBu₃][N(Tf)₂] gegenüber oxidierenden Bedingungen in Gegenwart von Reduktionsmitteln könnte sogar ausreichen, um direkte Chlorierungen in dieser ionischen Flüssigkeit durchzuführen. Analog Br_2 und I_2 wird eine gute Löslichkeit von Cl_2 in [NMeBu₃][N(Tf)₂] erwartet. Durch die dadurch herabgesetzte Reaktivität des Cl_2 können ebenfalls metastabile subvalente Verbindung verschiedener Metalle zugänglich gemacht werden.

Das $\{[P(Ph)_3]_3Ag\}^+$ -Kation ist - gekoppelt mit einem schwach koordinierendem Anion - aufgrund seiner leicht zugänglichen freien Koordinationsstelle interessant für katalytische Anwendungen. So beschreiben *Patmore* et al. den Einsatz von $\{Ag[P(Ph_3)]_2\}^+$ -Kationen in Verbindung mit schwach koordinierenden Carboran-Anionen als Katalysatoren für Hetero-Diels-Alder-Reaktionen. Untersuchungen zum katalytischen Verhalten der Verbindung $\{[P(Ph)_3]_3Ag\}[N(Tf)_2]$ stehen noch aus.

Insgesamt weisen Ionische Flüssigkeiten somit ein hohes Potential auf, in der anorganischen Festkörpersynthese als Reaktionsmedium etabliert zu werden.

6 Literatur

- [1] E. Riedel, *Moderne Anorganische Chemie*, 3. Auflage, de Gruyter, Berlin 2007, S. 169.
- [2] J. Maier, Angew. Chem. 1993, 105, 333.
- [3] M. L. Larson, F. W. Moore, *Inorg. Chem.* **1964**, *3*, 285.
- [4] S. Hampel, P. Schmidt, M. Ruck, Z. Anorg. Allg. Chem. 2005, 631, 272.
- [5] T. Welton, *Chem. Rev.* **1999**, *99*, 2071.
- [6] P. Wasserscheid, T. Welton (Hrsg.), *"Ionic Liquids in Synthesis*", Wiley-VCH, Weinheim 2002.
- [7] P. Wasserscheid, Nachr. Chem. 2001, 49, 12.
- [8] L. Crowhurst, P. R. Mawdsley, J. M. Perez-Arlandis, P. A. Salter, T. Welton, *Phys. Chem. Chem. Phys.* 2003, 5, 2790.
- [9] F. F. C. Bazito, Y. Kawano, R. M. Torresi, *Electrochim. Acta* 2007, 52, 6427.
- [10] P.-Y. Chen, Journal of the Chinese Chemical Society **2006**, 53(5), 1017.
- [11] F. H. Hurley, T. P. Wier Jr., J. Electrochem. Soc. 1951, 98, 207.
- [12] http://www.corporate.basf.com/de/innovationen/preis/2004/basil.htm (Stand 14.03.2008)
- [13] S. F. Firsan, *Aldrichimica Acta* 2002, *35*, 71.
- [14] S. Steines, P. Wasserscheid, B. Drießen-Hölscher, J. Prakt. Chem. 2000, 342, 348.
- [15] A. Riisager, B. Jørgensen, P. Wasserscheid, R. Fehrmann, Chem. Commun. 2006, 994.
- [16] T. J. Geldbach, Organometallic Chemistry 2008, 34, 58.
- [17] V. I. Parvulescu, C. Hardacre, Chem. Rev. 2007, 107, 2615.
- [18] P. Wasserscheid, W. Keim, Angew. Chem. 2000, 112, 3926.
- [19] C. W. Scheeren, G. Machado, J. Dupont, P. F. P. Fichtner, S. R. Texeira, *Inorg. Chem.* 2003, 42, 4738.
- [20] H. Itoh, K. Naka, Y. Chujo, J. Am. Chem. Soc. 2004, 126, 3026.
- [21] G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, S. R. Teixeira, J. Dupont, *Chem. Eur. J.* 2003, 9, 3263.
- [22] X.-D. Mu, D. G. Evans, Y. Kou, *Catalysis Letters* 2004, 97, 3.
- [23] G. Bühler, C. Feldmann, Angew. Chem. 2006, 118, 4982.
- [24] A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, Y. Grin, *Nature* 2006, 443, 320.
- [25] A.-V. Mudring, ACS Symposium Series 2006.

[26]	G. Brauer, Handbuch der Präparativen Anorganischen Chemie, 3th. Ed. Vol. 1, F.
	Enke, Stuttgart 1975, p. 435.
[27]	W. Massa, Kristallstrukturbestimmung, 5. Ed., Teubner 2007.
[28]	SHELXTL Version 5.1, Bruker AXS 1998.
[29]	G. M. Sheldrick, SHELX-97, Programs for Crystal structure determination, Univ.
	Göttingen 1997.
[30]	K. Brandenburg, DIAMOND 3.0d, visuelles Informationssystem für
	Kristallstrukturen, Crystal Impact GbR, Bonn 2005.
[31]	STOE Win XPOW V2.12, STOE & Cie GmbH, Darmstadt 2005.
[32]	M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie,
	7. Ed., Thieme, Stuttgart 2005.
[33]	W. Hemminger, Methoden der Thermischen Analyse, Springer, Berlin 2001.
[34]	NETZSCH Proteus - Thermal Analsysis V4.8.0, Netzsch Gerätebau GmbH 2005.
[35]	a) H. Weingaertner, Angew. Chem. Int. Ed. Engl. 2008, 47, 654.; b) F. Endres,
	ChemPhysChem. 2002, 3, 144.
[36]	F. F. C. Bazito, Y. Kawana, R. M. Torresi, Elektrochim. Acta 2007, 52, 6427.
[37]	HC. Kan, M-C. Tseng, YH. Chu, Tetrahedron 2007, 63, 1644.
[38]	M. Kosmulski, J. Gustafson, J. B. Rosenholm, Thermochim. Acta 2004, 412, 47.
[39]	P. Bonhôte, AP. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Graetzel, Inorg.
	<i>Chem.</i> 1996 , <i>35</i> , 1168.
[40]	J. L. Anderson, D. W. Armstrong, Anal. Chem. 2003, 75, 4851.
[41]	G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, S. R. Teixeira, J. Dupont, Chem. Eur.
	<i>J.</i> 2003 , <i>9</i> , 3263.
[42]	C. Reichardt, Green Chem. 2005, 7, 339.
[43]	C. Gaillard, I. Billard, A. Chaumont, S. Mekki, A. Ouadi, M. A. Denecke, G.
	Moutiers, G. Wipff, Inorg. Chem. 2005, 44, 8355.
[44]	A. Babai, Dissertation, Univ. Koeln 2006.
[45]	A. Zalkin, D. E. Sands, Acta Cryst. 1958, 11, 615.
[46]	W. R. Blackmore, S. C. Abrahams, J. Kalnajs, Acta Cryst. 1956, 9, 295.
[47]	U. Müller, Anorganische Strukturchemie, 4. ed., B. G. Teubner Stuttgart-Leipzig-
	Wiesbaden 2004.
[48]	F. Stollmaier, U. Thewalt, J. Organomet. Chem. 1981, 208, 327.
[49]	A. a. K. Abdul-Sada, A. M. Greenway, K. R. Seddon, T. Welton, Org. Mass Spectrom.

1989, *24*, 917.

- [50] H. Krautscheid, Z. Anorg. Allg. Chem. 1995, 621, 2049.
- [51] A. Babai, A.-V. Mudring, *Inorg. Chem.* **2006**, *45*, 4874.
- [52] H. Krautscheid, Z. Anorg. Allg. Chem. 1994, 620, 1559.
- [53] C. Feldmann, J. Solid State Chem. 2003, 172, 53.
- [54] P. H. Fourcroy, D. Carre, F. Thevet, J. Rivet, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1991**, *C47*, 2023.
- [55] T. Oldag, T. Aussieker, H.-L. Keller, C. Preitschaft, A. Pfitzner, Z. Anorg. Allg. Chem.
 2005, 631, 677.
- [56] B. Chabot, E. Parthe, Acta Crystallogr., Sect. B 1978, B34, 645.
- [57] U. Geiser, E. Wade, H. H. Wang, J. M. Williams, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1990, C46, 1547.
- [58] B. Borgsen, F. Weller, K. Dehnicke, Z. Anorg. Allg. Chem. 1991, 596, 55.
- [59] J. C. Fettinger, S. P. Mattamana, C. J. O'Connor, R. Poli, G. Salem, J. Chem. Soc., Chem. Commun. 1995, 1265.
- [60] A. Simon, E. Westerbeck, Angew. Chem., Int. Ed. Engl. 1972, 11, 1105.
- [61] W. S. Sheldrick, H. J. Haeusler, Angew. Chem. 1987, 99, 1184.
- [62] D. Fenske, K. Stahl, E. Hey, K. Dehnicke, Z. Naturforsch. 1984, 39 b, 850.
- [63] J. L. Atwood, P. C. Junk, M. T. May, K. D. Robinson, J. Coord. Chem. 1996, 40, 247.
- [64] P. C. Junk, J. Atwood, J. Organomet. Chem. 1998, 565, 179.
- [65] M. Karl, G. Seybert, W. Massa, K. Dehnicke, Z. Naturforsch. 1999, 54b, 1609.
- [66] V. S. Sergienko, V. L. Abramenko, A. B. Ilyukhin, Zh. Neorg. Khim. 1997, 42, 945.
- [67] M. Kersting, C. Friebel, K. Dehnicke, Z. Anorg. Allg. Chem. 1988, 563, 70.
- [68] B. Siewert, U. Mueller, Z. Anorg. Allg. Chem. 1992, 609, 77.
- [69] S. Buth, B. Neumüller, K. Dehnicke, Z. Kristallogr. 1993, 208, 326.
- [70] E. A. Allen, B. J. Brisdon, D. A. Edwards, G. W. A. Fowles, R. G. Williams, J. Chem. Soc. 1963, 4649.
- [71] P. Junk, J. Atwood, J. Chem. Soc., Dalton Trans. 1997, 4393.
- [72] G. W. A. Fowles, J. L. Frost, J. Chem. Soc. A. 1967, 4, 671.
- [73] H. Hess, H. Hartung, Z. Anorg. Allg. Chem. 1966, 344, 157.
- [74] F. Edelmann, H. Plenio, K. Keller, H. W. Roesky, Z. Anorg. Allg. Chem. 1988, 565, 111.
- [75] J. W. Visser, J. Appl. Cryst. 1969, 2, 89.
- [76] L. H. Hill, B. C. Howlader, F. E. Mabbs M. B. Hursthouse, K. M. A. Malik, J. Chem. Soc., Dalton Trans. 1980, 8, 1475.

- [77] Z. Jedliński, A. Stolarzewicz, Z. Grobelny, Makromol. Chem. 1986, 185, 795
- [78] R. Nunez, P. Farras, F. Teixidor, C. Vinas, R. Sillanpaa, R. Kivekas, Angew. Chem., Int. Ed. Engl. 2006, 45(8), 1270.
- [79] R. C. L. M. Slater, Acta Cryst. 1959, 12, 187.
- [80] I. Pantenburg, I. Mueller, Z. Anorg. Allg. Chem. 2004, 630, 1637.
- [81] P. Storck, A. Weiss, Z. Naturforsch. B. 1991, 46(9), 1214.
- [82] D. Schneider, O. Schuster, H. Schmidbaur, *Dalton Trans.* 2005, 1940.
- [83] B. Lehnis, J. Straehle, Z. Naturforsch. B. 1981, 36B(12), 1504.
- [84] T. Drews, R. Marx, K. Seppelt, *Chem. Eur. J.* **1996**, *10*, 1303.
- [85] C. R. Hubbard, R. A. Jacobson, Inorg. Chem. 1972, 11, 2247.
- [86] B. Vonnegut, B. E. Warren, J. Am. Chem. Soc. 1936, 58, 2459.
- [87] H. A. Bent, Chem. Rev. 1968, 68(5), 587.
- [88] SDBSWeb: http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 10.04.2007)
- [89] A. P. Gaughan Jr., Z. Dori, J. A. Ibers, Inorg. Chem. 1974, 13, 1657.
- [90] Y. Matano, N. Azuma, H. Suzuki, J. Chem. Soc. Perkin Trans. 1. 1995, 20, 2543.
- [91] N. L. Lancaster, P. A. Salter, T. Welton, G. B. Young, J. Org. Chem. 2002, 67, 8855.
- [92] B. Frlec, D. Gantar, J. H. Holloway, Vestn. Slov. Kem. Drus. 1979,26, 415.
- [93] C. A. Reed, N. L. P. Fackler, K.-C. Kim, D. Stasko, D. R. Evans, J. Am. Chem. Soc. 1999, 121, 6314.
- [94] S. T. Handy, Diss. Abstr. Int., B. 1997, 57, 7530.
- [95] X. Wu, A. C. Austen, *Elektrochem. Solid-State Lett.* 2000, *3*, 366.
- [96] I. Krossing, I. Raabe, Angew. Chem. 2004, 116, 2116.
- [97] A. Cassel, Acta Cryst. 1981, B37, 229.
- [98] L. M. Engelhardt, P. C. Healy, V. A. Patrick, A. H. White, Aust. J. Chem. 1987, 40, 1873.
- [99] M. Camalli, F. Caruso, *Inorg. Chim. Acta* **1987**, *127*, 209.
- [100] G. A. Bowmaker, H. Effendy, V. John, P. C. Healy, J. C. Reid, C. E. F. Rickard, A. H. White, J. Chem. Soc., Dalton Trans. 2000, 5, 753.
- [101] G. G. Lobbia, M. Pellei, C. Pettinari, C. Santini, B. W. Skelton, A. H. White, *Inorg. Chim. Acta* 2005, 358, 3633.
- [102] A. Franken, T. D. McGrath, F. G. A. Stone, Organometallics 2005, 24, 5157.
- [103] P. F. Barron, J. C. Dyason, P. C. Healy, L. M. Engelhardt, B. W. Skelton, A. H. White, J. Chem., Dalton Trans. 1986, 9, 1965.

- [104] M. Nieger, H. Hupfer, E. Niecke, J. Radseck, Private Communication 1998.
- [105] M. H. Moeller, W. Jeitschko, Inorg. Chem. 1981, 20, 833.
- [106] R. W. G. Wyckoff, Am. J. Sci. 1922, 3, 184.
- [107] A. Niggli, Z. Kristallogr., Kristallgeo., Kristallph., Kristallchem. 1959, 111, 269.
- [108] G. A. Bowmaker, Effendy, J. V. Hanna, P. C. Healy, J. C. Reid, C. E. F. Rickard, A. H. White, *J. Chem. Soc., Dalton Trans.* 2000, 753.
- [109] K. Roth, C. Feldmann, persönliche Mitteilung.
- [110] I. Rey, P. Johansson, J. Lindgren, J. C. Lassègues, J. Grondin, L. Servant, J. Phys. Chem. A. 1998 102, 3249.

7 Anhang

7.1 Tabellen zur Strukturbestimmung

Tabelle 8. Angaben zur Strukturlösung und -verfeinerung von [NMeBu₃][NbCl₆].

Summenformel:	$C_{52}H_{156}N_4Cl_{24}Nb_4$
Kristallsystem:	orthorhombisch
Raumgruppe: Gitterparameter:	$P2_{1}2_{1}2_{1}$ a = 10,629(2) Å b = 12,023(2) Å c = 17,622(4) Å V = 2252(1) Å
Zahl der Formeleinheiten:	Z = 4
Berechnete Dichte:	$\rho = 1,492 \text{ g} \cdot \text{cm}^{-1}$
Kristallabmessungen:	$0,1 \times 0,1 \times 0,3 \text{ mm}$
Messanordnung:	Bildplattendiffraktometer vom Typ IPDS I der Firma STOE; Graphitmonochromator; $\lambda(MoK\alpha) = 0,71073$ Å; T = 203 K
Messbereich:	$2\theta_{\min} = 4,1$ °; $2\theta_{\max} = 52,04$ °
	$-13 \le h \le 13; -14 \le k \le 14; -19 \le l \le 21$
Messmodus:	0 ° ≤ φ ≤ 180 °; $\Delta \varphi$ = 1,2 °
Linearer Absorptionskoeffizient:	$\mu = 1,241 \text{ cm}^{-1}$
Reflexanzahl:	15374 gemessen (davon 4330 unabhängig)
Mittelung:	$R_{\rm int} = 0,186$ (Laueklasse <i>mmm</i>)
Strukturverfeinerung:	Methode der kleinsten Fehlerquadrate, voll- ständige Matrix; Basis: F _o ² -Werte, anisotrope Temperaturfaktoren
Anzahl der freien Parameter:	194
Restelektronendichte:	+0,849 bis -1,125 e/Å ³
Gütewerte der Verfeinerung:	R1 = 0,101
	$R1 (2887 \text{ F}_{0}^{2} > 2\sigma(\text{F}_{0}^{2}) = 0.051$
	wR2 = 0,134

Atom	x	У	Z	$U_{ m eq}$
Nb1	558(1)	-8(1)	252(1)	27(1)
Cl1	1891(2)	-1500(2)	-40(2)	59(1)
C12	-1104(2)	-1265(2)	434(2)	55(1)
Cl3	38(3)	174(3)	-1025(1)	69(1)
Cl4	2225(2)	1257(2)	92(2)	50(1)
C15	1082(3)	-213(3)	1537(1)	68(1)
C16	-774(3)	1483(2)	560(2)	78(1)
N1	-681(5)	-12(6)	3830(3)	30(1)
C1	4402(8)	-503(7)	-1263(5)	41(2)
C2	-3314(8)	-891(6)	-1281(4)	31(2)
C3	1733(9)	-3576(8)	2048(5)	41(2)
C4	2836(9)	-2788(8)	2108(6)	47(2)
C5	2106(9)	2130(8)	-2157(6)	54(3)
C6	5803(8)	493(6)	-383(4)	34(2)
C7	5458(7)	-276(6)	265(5)	36(2)
C8	-4295(9)	321(7)	1017(5)	49(3)
С9	-334(9)	405(9)	-3317(6)	74(4)
C10	-807(7)	-950(6)	3258(5)	32(2)
C11	-2953(8)	1565(7)	-1773(5)	39(2)
C12	2043(9)	2557(8)	2382(6)	52(3)
C13	3216(9)	1863(9)	2417(7)	65(3)

Tabelle 9. Atomlagen (×10⁴) und isotrope Auslenkungsparameter (×10³) von $[NMeBu_3][NbCl_6]$.

Tabelle 10. Anisotrope Auslenkungsparameter ($\times 10^3$) der Schweratome von [NMeBu₃][NbCl₆].

Atom	I I	Υĭ	X X	I I	I I	I I
Atom	011	022	U ₃₃	023	013	012
Nb1	22(1)	24(1)	35(1)	2(1)	3(1)	-2(1)
Cl1	54(2)	33(1)	90(2)	4(1)	29(2)	11(1)
Cl2	41(1)	51(1)	74(2)	9(1)	6(1)	-24(1)
C13	61(1)	10(2)	44(1)	28(2)	-13(1)	-27(2)
Cl4	37(1)	41(1)	72(2)	-6(1)	13(1)	-17(1)
C15	74(2)	100(2)	31(1)	6(1)	-2(1)	-11(2)
C16	49(2)	39(1)	144(3)	-5(2)	31(2)	14(1)
N1	26(3)	33(3)	29(3)	3(4)	2(2)	-2(5)
C1	26(4)	46(4)	50(6)	-5(4)	-1(4)	-4(4)
C2	36(4)	26(4)	30(5)	-4(3)	-2(4)	6(3)
C3	34(5)	48(5)	39(6)	-3(4)	2(5)	-7(4)
C4	44(5)	40(5)	58(6)	-9(4)	-12(5)	-6(4)
C5	64(7)	56(6)	41(6)	13(5)	8(5)	-10(5)
C6	38(5)	35(4)	30(5)	-5(3)	-2(4)	2(3)
C7	32(4)	43(5)	32(4)	0(3)	-3(4)	7(3)
C8	49(6)	59(6)	39(5)	-8(4)	-1(4)	-4(5)
C9	96(9)	88(8)	36(6)	-10(5)	9(6)	5(7)
C10	34(5)	29(4)	33(5)	-1(3)	4(4)	2(4)
C11	33(5)	40(5)	45(6)	-4(4)	-5(4)	-1(4)
C12	56(6)	51(6)	49(6)	15(5)	-1(5)	1(5)
C13	52(7)	65(7)	77(9)	15(6)	-13(6)	-2(6)

Tabelle 11 Ausgewählte Bindungslängen in [NMeBu₃][NbCl₆].

Atom 1	Atom 2	<i>d</i> / Å	Atom 1	Atom 2	<i>d</i> / Å
Nb1	Cl3	2,33(1)	C3	C4	1,51(1)
Nb1	Cl1	2,34(1)	C4	C5	1,52(1)
Nb1	C15	2,35(1)	C5	C4	1,52(1)
Nb1	Cl2	2,35(1)	C6	N1	1,51(1)
Nb1	Cl6	2,35(1)	C6	C7	1,52(1)
Nb1	Cl4	2,35(1)	C7	C8	1,53(1)

Atom 1	Atom 2	d / Å	Atom 1	Atom 2	d / Å
N1	Cl	1,50(1)	C8	C9	1,51(1)
N1	C6	1,51(1)	C8	C7	1,53(1)
N1	C10	1,52(1)	С9	C8	1,51(1)
N1	C2	1,54(1)	C10	C11	1,51(1)
C1	N1	1,50(1)	C11	C12	1,51(1)
C2	C3	1,50(1)	C11	C10	1,51(1)
C2	N1	1,54(1)	C12	C13	1,50(1)
C3	C2	1,50(1)	C12	C11	1,50(1)

Tabelle 12. Ausgewählte Bindungswinkel in [NMeBu₃][NbCl₆].

Atom 1	Atom 2	Atom 2	Winkal / 9	Atom 1	Atom 2	Atom 2	Winkel / 9
Atom 1	Atom 2	Atom 5	willkei /	Atom 1	Atom 2	Atom 5	winkei /
C13	Nb1	Cl1	90.2(1)	C1	N1	C6	109.6(6)
C13	Nb1	C15	179.3(1)	C1	N1	C10	108.3(6)
Cl1	Nb1	C15	89.3(1)	C6	N1	C10	108.5(6)
C13	Nb1	Cl2	90.8(1)	C1	N1	C2	108.9(6)
Cl1	Nb1	Cl2	89.5(1)	C6	N1	C2	109.2(5)
C15	Nb1	Cl2	88.8(1)	C10	N1	C2	112.3(5)
C13	Nb1	C16	90.5(2)	C3	C2	N1	116.2(6)
Cl1	Nb1	Cl6	179.3(1)	C2	C3	C4	111.0(8)
C15	Nb1	C16	90.0(1)	C3	C4	C5	114.7(9)
Cl2	Nb1	Cl6	90.4(1)	N1	C6	C7	116.0(6)
C13	Nb1	Cl4	90.1(1)	C6	C7	C8	109.0(6)
Cl1	Nb1	Cl4	90.8(1)	C9	C8	C7	110.8(7)
C15	Nb1	Cl4	90.3(1)	C11	C10	N1	117.6(6)
Cl2	Nb1	Cl4	179.0(1)	C12	C11	C10	111.5(7)
C16	Nb1	Cl4	89.4(1)	C13	C12	C11	114.7(9)

Summenformel:	TeI ₆ N ₂ C ₂₆ H ₆₀
Kristallsystem:	monoklin
Raumgruppe:	$P2_{1}/c$ (Nr. 14)
Gitterparameter:	a = 17,050(3) Å
-	b = 15,160(3) Å
	c = 17,910(4) Å
	$\beta = 114,62(3)^{\circ}$
	$V = 4210(2) \text{ Å}^3$
Zahl der Formeleinheiten pro EZ:	Z = 4
Berechnete Dichte:	$\rho = 1,988 \text{ g} \cdot \text{cm}^{-1}$
Kristallabmessungen:	$0,1 \times 0,1 \times 0,3 \text{ mm}$
Messanordnung:	Bildplattendiffraktometer vom Typ IPDS I der Firma STOE; Graphitmonochromator; $\lambda(MoK\alpha) = 0,71073$ Å; T = 203 K
Messbereich:	$2\theta_{\min} = 4,58$ °; $2\theta_{\max} = 51,98$ °
	$-20 \le h \le 20; -18 \le k \le 18; -21 \le l \le 22$
Messmodus:	$0~^\circ \leq \varphi \leq 200~^\circ; \Delta \varphi = 1,0~^\circ$
Linearer Absorptionskoeffizient:	$5,123 \text{ cm}^{-1}$
Reflexanzahl:	32527 gemessen (davon 8152 unabhängig)
Mittelung:	Laueklasse $2/m$; $R_{int} = 0,0672$
Strukturverfeinerung:	Methode der kleinsten Fehlerquadrate, voll- ständige Matrix; Basis: F _o ² -Werte, anisotrope Temperaturfaktoren für die Schweratome
Anzahl der freien Parameter:	329
Restelektronendichte:	+1,37 bis -0,84 e/Å ³
Gütewerte der Verfeinerung:	R1 = 0,0530
	$R1 \ (6249 \ F_{\rm o}^2 > 2\sigma(F_{\rm o}^2) = 0.0348$
	wR2 = 0,0837
	<i>GooF</i> = 0,994

Tabelle 13. Angaben zur Strukturlösung und -verfeinerung von [NMeBu₃]₂[TeI₆].

Atom	x	у	Ζ	$U_{ m eq}$
Tel	0(0)	0(0)	500(0)	24(1)
Te2	-500(0)	0(0)	0(0)	26(1)
I1	-323(1)	-19(1)	124(1)	41(1)
I2	143(1)	-10(1)	449(1)	37(1)
13	-27(1)	182(1)	441(1)	37(1)
I4	-485(1)	193(1)	12(1)	40(1)
15	-120(1)	-61(1)	337(1)	38(1)
I6	-562(1)	-5(1)	131(1)	38(1)
N1	-112(1)	199(1)	158(1)	31(1)
N2	-376(1)	-219(1)	304(1)	39(1)
C1	39(1)	-238(1)	300(1)	40(2)
C2	-750(1)	-183(1)	77(1)	39(2)
C3	-220(1)	157(1)	13(1)	36(2)
C4	-80(1)	104(1)	181(1)	38(2)
C5	-183(1)	214(1)	189(1)	34(2)
C6	-146(1)	285(1)	566(1)	32(2)
C7	-368(1)	-120(1)	321(1)	40(2)
C8	230(1)	-199(1)	336(1)	41(2)
C9	-669(1)	229(1)	116(1)	37(2)
C10	-16(1)	71(1)	147(1)	44(2)
C11	-532(1)	256(1)	234(1)	52(2)
C12	-336(1)	-235(1)	242(1)	47(2)
C13	-289(1)	312(1)	210(1)	43(2)
C14	400(1)	-12(1)	616(1)	51(2)
C15	237(1)	250(1)	565(1)	50(2)
C16	-400(1)	-88(1)	383(1)	53(2)
C17	299(1)	-230(1)	597(1)	60(2)
C18	13(1)	-22(1)	178(1)	54(2)
C19	196(1)	318(1)	498(1)	61(2)
C20	73(1)	-60(1)	142(1)	70(3)
C21	-336(1)	399(1)	192(1)	75(3)
C22	-335(1)	-330(1)	215(1)	77(3)
C23	-292(1)	-336(1)	156(1)	72(3)
C24	430(1)	-50(1)	554(1)	81(3)
C25	-200(1)	-319(1)	192(1)	116(5)
C26	175(1)	401(1)	529(1)	111(5)

Tabelle 14 Atomlagen und isotrop	pe Auslenkungsparameter	$(\times 10^{3})$) von	[NMeBu ₃] ₂	TeL ₆]
rabelle 14. Rollingen und 150tro	pe musienkungspurumeter	(~10	, von		1010

Tabelle 15. Anisotrope Auslenkungsparameter ($\times 10^3$) der Schweratome von [NMeBu₃]₂[TeI₆].

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Te1	23(3)	22(3)	24(3)	1(2)	8(2)	0(2)
Te2	23(3)	21(3)	29(3)	3(2)	7(2)	-1(2)
I1	28(3)	41(2)	42(3)	12(2)	3(2)	-6(2)
I2	35(3)	36(2)	47(3)	-4(2)	23(2)	0(2)
13	47(3)	26(2)	41(2)	7(2)	20(2)	7(2)
I4	44(3)	23(2)	50(3)	0(2)	18(2)	-3(2)
15	35(3)	44(3)	29(2)	-2(2)	7(2)	-10(2)
I6	42(3)	35(2)	40(2)	5(2)	20(2)	6(2)
N1	40(4)	25(3)	27(3)	1(2)	13(2)	-5(2)
N2	34(4)	24(3)	49(4)	8(2)	7(3)	-6(3)
C1	40(5)	34(4)	40(4)	6(3)	11(3)	10(3)
C2	46(5)	42(4)	29(3)	-4(3)	15(3)	-10(3)

Anhang

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C3	44(4)	38(4)	25(3)	-1(3)	13(3)	-12(3)
C4	51(5)	28(3)	36(4)	10(3)	18(3)	-3(3)
C5	39(4)	35(3)	28(3)	-1(3)	15(3)	-6(3)
C6	43(4)	31(3)	27(3)	-3(3)	20(3)	8(3)
C7	34(4)	29(3)	49(4)	6(3)	12(3)	-10(3)
C8	40(5)	44(4)	36(4)	1(3)	15(3)	0(3)
С9	29(4)	25(3)	52(4)	-15(3)	12(3)	-3(3)
C10	52(5)	25(3)	49(4)	1(3)	16(4)	-4(3)
C11	30(5)	40(4)	69(5)	-6(4)	4(4)	11(3)
C12	60(6)	37(4)	44(4)	2(3)	22(4)	-3(4)
C13	39(4)	64(5)	29(4)	-5(3)	15(3)	-4(4)
C14	50(5)	44(4)	55(5)	-8(4)	17(4)	-6(4)
C15	45(5)	33(4)	57(5)	5(3)	5(4)	-10(4)
C16	50(6)	39(4)	74(6)	0(4)	30(5)	3(4)
C17	64(6)	66(6)	42(4)	-5(4)	15(4)	-17(5)
C18	75(7)	39(4)	43(4)	8(3)	21(4)	13(4)
C19	45(6)	60(6)	64(6)	25(4)	9(4)	-8(4)
C20	71(7)	51(5)	76(7)	2(5)	17(5)	21(5)
C21	69(7)	99(8)	69(6)	6(6)	40(6)	28(6)
C22	100(9)	44(5)	95(8)	-10(5)	47(7)	-13(6)
C23	79(8)	58(6)	71(6)	-3(5)	24(6)	8(5)
C24	97(2)	56(6)	115(9)	-15(6)	69(8)	-5(6)
C25	82(2)	141(2)	108(2)	-49(2)	21(8)	23(9)
C26	69(9)	55(7)	160(2)	38(7)	0(8)	19(6)

Tabelle 16. Ausgewählte Bindungslängen in [NMeBu₃]₂[TeI₆].

Atom 1	Atom 2	d / Å	Atom 1	Atom 2	d / Å
Te1	15	2.93(1)	C8	N1	1.53(1)
Tel	I7	2.93(1)	С9	C18	1.51(1)
Tel	I3	2.95(1)	C10	C7	1.52(1)
Te4	I2	2.92(1)	C10	C15	1.54(1)
Te4	I6	2.94(1)	C11	C17	1.52(1)
Te4	18	2.95(1)	C11	N2	1.52(1)
N1	C3	1.50(1)	C12	C20	1.53(1)
N1	C8	1.53(1)	C13	N2	1.49(1)
N1	C6	1.53(1)	C14	C24	1.52(1)
N1	C7	1.54(1)	C15	C23	1.50(1)
N2	C13	1.49(1)	C15	C10	1.54(1)
N2	C11	1.52(1)	C16	C26	1.52(1)
N2	С9	1.53(1)	C16	C18	1.52(1)
N2	C14	1.53(1)	C17	C21	1.52(1)
C3	N1	1.50(1)	C17	C11	1.52(1)
C4	C19	1.52(1)	C18	C16	1.52(1)
C4	C5	1.52(1)	C19	C4	1.52(1)
C5	C8	1.52(1)	C20	C22	1.52(1)
C5	C4	1.52(1)	C21	C28	1.48(1)
C6	C12	1.53(1)	C24	C25	1.53(1)
C7	C10	1.52(1)	C25	C27	1.44(1)
C8	C5	1.52(1)			

Atom 1	Atom 2	Atom 3	Winkel / °	Atom 1	Atom 2	Atom 3	Winkel / °
15	Tel	15	180.0(0)	C3	N1	C8	107.4(5)
15	Te1	I7	90.3(1)	C3	N1	C6	110.0(6)
15	Te1	I7	89.7(1)	C8	N1	C6	111.5(5)
15	Tel	I7	89.7(1)	C3	N1	C7	109.9(5)
15	Te1	I7	90.3(1)	C8	N1	C7	111.2(5)
I7	Te1	I7	180.0(0)	C6	N1	C7	106.9(5)
15	Tel	13	92.3(1)	C13	N2	C11	107.9(6)
15	Tel	13	87.7(1)	C13	N2	C9	109.4(6)
I7	Tel	13	89.7(1)	C11	N2	C9	110.8(6)
I7	Tel	13	90.4(1)	C13	N2	C14	109.4(6)
15	Te1	13	87.7(1)	C11	N2	C14	113.5(6)
15	Te1	13	92.3(1)	C9	N2	C14	105.9(5)
I7	Te1	13	90.4(1)	C19	C4	C5	112.7(6)
I7	Te1	13	89.7(1)	C8	C5	C4	109.6(5)
13	Tel	13	180.0(0)	C12	C6	N1	115.8(5)
I2	Te4	I2	180.0(1)	C10	C7	N1	115.0(5)
I2	Te4	I6	90.6(1)	C5	C8	N1	115.4(5)
I2	Te4	I6	89.4(1)	C18	С9	N2	115.9(6)
I2	Te4	I6	89.4(1)	C7	C10	C15	108.4(6)
12	Te4	I6	90.6(1)	C17	C11	N2	115.7(6)
16	Te4	I6	180.0(1)	C6	C12	C20	109.8(6)
12	Te4	18	90.5(1)	C24	C14	N2	117.0(7)
12	Te4	18	89.6(1)	C23	C15	C10	112.7(7)
I6	Te4	18	89.2(1)	C26	C16	C18	112.9(8)
I6	Te4	18	90.9(1)	C21	C17	C11	110.4(7)
I2	Te4	18	89.6(1)	C9	C18	C16	109.6(7)
I2	Te4	18	90.5(1)	C22	C20	C12	111.9(7)
I6	Te4	18	90.9(1)	C28	C21	C17	112.2(9)
I6	Te4	18	89.2(1)	C14	C24	C25	110.9(8)
18	Te4	18	180.0(1)	C27	C25	C24	114.3(9)

Tabelle 17. Ausgewählte Bindungswinkel in [NMeBu₃]₂[TeI₆].

Tabelle 18. Angaben	zur Strukturlösung und	-verfeinerung von	$[NMeBu_3]_3[Bi_3I_{12}].$
---------------------	------------------------	-------------------	----------------------------

Summonformal	
Kristellaustem:	monoklin
Ristansystem.	$\frac{P2}{r} \left(\frac{1}{r} \right)$
Raumgruppe:	$P2_1/c$ (Nr. 14)
Gitterparameter:	a = 23,830(5) A
	b = 12,410(3) A
	c = 24,930(5) Å
	$\beta = 97,50(3)^{\circ}$
	$V = 7309,48 \text{ Å}^3$
Zahl der Formeleinheiten pro Elementarzelle:	Z = 4
Berechnete Dichte:	$\rho = 2.5 \text{ g} \cdot \text{cm}^{-1}$
Kristallabmessungen:	$0,30 \times 0,88 \times 0,31 \text{ mm}$
Messanordnung:	Bildplattendiffraktometer vom Typ IPDS I der Firma STOE; Graphitmonochromator; $\lambda(MoK_{\alpha}) = 0,71073$ Å; $T = 203$ K
Messbereich:	$2\theta_{\min} = 2.9$ °; $2\theta_{\max} = 48.4$ °
	$-27 \le h \le 27; -14 \le k \le 13; -28 \le l \le 28$
Messmodus:	0 ° ≤ φ ≤ 199,8 °; $\Delta \varphi$ = 0,9 °
LinearerAbsorptionskoeffizient:	$\mu = 12,27 \text{ cm}^{-1}$
Reflexanzahl:	33739 gemessen (davon 11384 unabhängig)
Mittelung:	Laueklasse $2/m$, $R_{int} = 0.0534$
Strukturverfeinerung:	Methode der kleinsten Fehlerquadrate, voll- ständige Matrix; Basis: F_0^2 -Werte, anisotrope Temperaturfaktoren für die Schweratome
Anzahl der freien Parameter:	318
Restelektronendichte:	+1,26 bis -1,23 $e/Å^3$
Gütewerte der Verfeinerung:	R1 = 0,038
	$R1(8865 F_{o}^{2} > 4\sigma(F_{o}^{2})) = 0.055$
	wR2 = 0,093
	<i>GooF</i> = 1,003

Atom	x	у	Z	$U_{ m eq}$
Bil	151(1)	293(1)	272(1)	37(1)
Bi2	314(1)	392(1)	243(1)	34(1)
Bi3	291(1)	574(1)	96(1)	40(1)
I1	151(1)	169(1)	369(1)	61(1)
I2	77(1)	144(1)	204(1)	51(1)
13	61(1)	443(1)	288(1)	63(1)
I4	252(1)	445(1)	339(1)	51(1)
15	270(1)	161(1)	251(1)	47(1)
16	425(1)	344(1)	308(1)	56(1)
Ι7	196(1)	443(1)	169(1)	42(1)
18	343(1)	632(1)	226(1)	47(1)
19	354(1)	339(1)	132(1)	44(1)
I10	221(1)	767(1)	89(1)	86(1)
I11	243(1)	488(1)	-8(1)	58(1)
I12	388(1)	665(1)	54(1)	78(1)
N1	165(1)	-188(1)	270(1)	50(1)
N2	188(1)	142(1)	40(1)	50(1)
N3	541(1)	467(1)	188(1)	50(1)
Cl	159(1)	40(1)	17(1)	50(1)
C2	138(1)	-273(1)	232(1)	60(1)
C3	122(1)	-130(1)	299(1)	60(1)
C4	151(1)	241(1)	30(1)	60(1)
C5	211(1)	-244(1)	310(1)	60(1)
C6	140(1)	38(1)	-43(1)	60(1)
C7	241(1)	165(1)	13(1)	60(1)
C8	492(1)	538(1)	194(1)	60(1)
C9	582(1)	524(1)	154(1)	60(1) 70(1)
C10	83(1)	-200(1)	326(1)	/0(1)
	110(1)	-65(1)	-61(1)	80(1)
C12 C12	93(1)	-231(1)	189(1)	70(1)
	93(1)	238(1)	43(1) 100(1)	70(1)
C14 C15	203(1) 105(1)	107(1)	100(1) 240(1)	70(1)
C15	193(1)	-10/(1)	240(1)	70(1) 80(1)
C10 C17	J18(1) 49(1)	-137(1)	100(1) 363(1)	80(1) 80(1)
C18	49(1) 57(1)	137(1) 333(1)	25(1)	30(1) 70(1)
C18	$\frac{37(1)}{286(1)}$	-236(1)	23(1) 300(1)	70(1) 90(1)
C20	200(1) 65(1)	-322(1)	156(1)	100(1)
C20	556(1)	559(1)	99(1)	80(1)
C21	255(1)	-291(1)	430(1)	100(1)
C22	283(1)	277(1)	12(1)	80(1)
C24	248(1)	-174(1)	348(1)	80(1)
C25	572(1)	439(1)	244(1)	80(1)
C26	74(1)	438(1)	49(1)	90(1)
C27	83(1)	-104(1)	415(1)	90(1)
C28	336(1)	118(1)	-7(1)	90(1)
C29	562(1)	288(1)	146(1)	100(1)
C30	585(1)	529(1)	283(1)	90(1)
C31	601(1)	602(1)	66(1)	100(1)
C32	573(1)	639(1)	12(1)	130(1)
C33	51(1)	-73(1)	-49(1)	110(1)
C34	23(1)	-290(1)	110(1)	150(1)
C35	379(1)	34(1)	-16(1)	130(1)
C36	621(1)	492(1)	334(1)	150(1)
C37	518(1)	142(1)	75(1)	280(1)
C38	608(1)	406(1)	370(1)	270(1)
C39	533(1)	185(1)	129(1)	180(1)

Tabelle 19	Atomlagen un	d isotrope Aus	lenkungsnaramet	$ter(\times 10^3)$ vo	n [NMeBua]a[BiaLua]
	monnagen un	a isonope rus	sparamet		

Anhang

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Bil	39(1)	34(1)	40(1)	5(1)	10(1)	0(1)
Bi2	35(1)	31(1)	37(1)	2(1)	5(1)	-2(1)
Bi3	44(1)	37(1)	40(1)	6(1)	6(1)	0(1)
I1	99(1)	43(1)	40(1)	6(1)	15(1)	-7(1)
I2	49(1)	50(1)	54(1)	2(1)	1(1)	-7(1)
13	57(1)	50(1)	87(1)	3(1)	26(1)	13(1)
I4	65(1)	47(1)	43(1)	-10(1)	17(1)	-9(1)
15	42(1)	29(1)	69(1)	2(1)	11(1)	-2(1)
16	43(1)	58(1)	64(1)	16(1)	-8(1)	-5(1)
I7	37(1)	47(1)	43(1)	08(1)	4(1)	3(1)
18	60(1)	32(1)	50(1)	-1(1)	6(1)	-8(1)
19	46(1)	43(1)	45(1)	-4(1)	11(1)	3(1)
I10	123(1)	67(1)	75(1)	26(1)	40(1)	49(1)
I11	73(1)	52(1)	47(1)	06(1)	-4(1)	-14(1)
I12	55(1)	96(1)	84(1)	29(1)	11(1)	-21(1)

Tabelle 20. Anisotrope Auslenkungsparameter ($\times 10^3$) der Schweratome von [NMeBu₃]₃[Bi₃I₁₂].

Tabelle 21. Ausgewählte Bindungslängen in [NMeBu₃]₃[Bi₃I₁₂].

Atom 1	Atom 2	<i>d</i> / Å	Atom 1	Atom 2	<i>d</i> / Å
Bil	I1	2,88(1)	C1	C6	1,51(1)
Bi1	I3	2,90(1)	C2	C12	1,50(1)
Bi1	I2	2,94(1)	C3	C10	1,50(1)
Bi1	I4	3,33(1)	C4	C13	1,49(1)
Bi1	15	3,38(1)	C5	C24	1,49(1)
Bi2	I6	2,97(1)	C6	C11	1,50(1)
Bi2	I4	3,06(1)	C7	C23	1,47(1)
Bi2	15	3,07(1)	С9	C21	1,49(1)
Bi2	18	3,10(1)	C10	C17	1,51(1)
Bi2	19	3,11(1)	C11	C33	1,48(1)
Bi2	I7	3,21(1)	C12	C20	1,49(1)
Bi3	I12	2,88(1)	C13	C18	1,49(1)
Bi3	I11	2,89(1)	C16	C29	1,49(1)
Bi3	I10	2,92(1)	C17	C27	1,50(1)
Bi3	19	3,35(1)	C18	C26	1,47(1)
Bi3	18	3,41(1)	C19	C22	1,48(1)
N1	C15	1,50(1)	C19	C24	1,50(1)
N1	C2	1,50(1)	C20	C34	1,49(1)
N1	C3	1,51(1)	C21	C31	1,51(1)
N1	C5	1,54(1)	C23	C28	1,51(1)
N2	C14	1,50(1)	C25	C30	1,49(1)
N2	C1	1,51(1)	C28	C35	1,48(1)
N2	C4	1,52(1)	C29	C39	1,49(1)
N2	C7	1,54(1)	C30	C36	1,50(1)
N3	C8	1,49(1)	C31	C32	1,49(1)
N3	C16	1,51(1)	C36	C38	1,45(1)
N3	С9	1,54(1)	C37	C39	1,44(1)
N3	C25	1,55(1)			

Atom 1	Atom 2	Atom 3	Winkel / °	Atom 1	Atom 2	Atom 3	Winkel / °
I1	Bi1	I3	98,0(1)	C15	N1	C5	106(1)
I1	Bi1	I2	94,6(1)	C2	N1	C5	108(1)
I3	Bi1	I2	94,7(1)	C3	N1	C5	112(1)
I1	Bi1	I4	87,6(1)	C14	N2	C1	110(1)
I3	Bi1	I4	93,6(1)	C14	N2	C4	109(1)
I2	Bi1	I4	171,0(1)	C1	N2	C4	113(1)
I1	Bi1	15	88,0(1)	C14	N2	C7	108(1)
I3	Bi1	15	169,3(1)	C1	N2	C7	111(1)
I2	Bi1	15	93,6(1)	C4	N2	C7	106(1)
I4	Bi1	15	77,8(1)	C8	N3	C16	107(1)
I6	Bi2	I4	95,8(1)	C8	N3	C9	110(1)
I6	Bi2	15	93,6(1)	C16	N3	C9	111(1)
I4	Bi2	15	86,8(1)	C8	N3	C25	109(1)
I6	Bi2	18	93,9(1)	C16	N3	C25	109(1)
I4	Bi2	18	92,1(1)	C9	N3	C25	110(1)
15	Bi2	18	172,5(1)	C6	C1	N2	117(1)
I6	Bi2	19	95,4(1)	C12	C2	N1	114(1)
I4	Bi2	19	168,5(1)	C10	C3	N1	116(1)
15	Bi2	19	90,3(1)	C13	C4	N2	118(1)
18	Bi2	19	89,3(1)	C24	C5	N1	118(1)
I6	Bi2	I7	178,6(1)	C11	C6	C1	112(1)
I4	Bi2	I7	85,6(1)	C23	C7	N2	118(1)
15	Bi2	I7	86,5(1)	C21	С9	N3	115(1)
18	Bi2	I7	86,0(1)	C3	C10	C17	113(1)
19	Bi2	I7	83,2(1)	C33	C11	C6	115(1)
I12	Bi3	I11	93,6(1)	C20	C12	C2	111(1)
I12	Bi3	I10	97,9(1)	C4	C13	C18	113(1)
I11	Bi3	I10	95,8(1)	C29	C16	N3	114(1)
I12	Bi3	19	94,8(1)	C27	C17	C10	114(1)
I11	Bi3	19	91,6(1)	C26	C18	C13	118(1)
I10	Bi3	19	164,9(1)	C22	C19	C24	113(1)
I12	Bi3	18	92,7(1)	C34	C20	C12	116(1)
I11	Bi3	18	170,2(1)	С9	C21	C31	112(1)
I10	Bi3	18	90,8(1)	C7	C23	C28	111(1)
19	Bi3	18	80,4(1)	C5	C24	C19	114(1)
Bi2	I4	Bi1	82,8(1)	C30	C25	N3	117(1)
Bi2	15	Bi1	81,8(1)	C35	C28	C23	116(1)
Bi2	18	Bi3	82,0(1)	C39	C29	C16	107(1)
Bi2	19	Bi3	82,8(1)	C25	C30	C36	111(1)
C15	N1	C2	110(1)	C32	C31	C21	110(1)
C15	N1	C3	109(1)	C38	C36	C30	128(1)
C2	N1	C3	112(1)	C37	C39	C29	129(1)

Tabelle 22. Ausgewählte Bindungswinkel in $[NMeBu_3]_3[Bi_3I_{12}]$.

Summenformel:	$C_{30}H_{68}N_2W_2Cl_8O_4\\$
Kristallsystem / Raumgruppe:	triklin / $P\overline{1}$ (Nr. 2)
Gitterparameter:	a = 9,980(2) Å
	b = 11,450(3) Å
	c = 11,530(3) Å
	$\alpha = 82,51(3)^{\circ}$
	$\beta = 65,31(3)^{\circ}$
	$\gamma = 70,80(3)$ °
	$V = 1130,5(1) \text{ Å}^3$
Zahl der Formeleinheiten pro EZ:	1
Berechnete Dichte:	$\rho = 1,72 \text{ g} \cdot \text{cm}^{-1}$
Linearer Absorptionskoeffizient:	$\mu = 5,59 \text{ mm}^{-1}$
Kristallabmessungen:	$0,09 \times 0,08 \times 0,13 \text{ mm}$
Messbedingungen:	Bildplattendiffraktometer IPDS I (STOE)
	λ (Mo <i>K</i> α) = 0,71073 Å; <i>T</i> = 203 K
	$0^{\circ} \le \varphi \le 180^{\circ}, \Delta \varphi = 1^{\circ}$
Messbereich:	$2\theta_{\min} = 3,76$ °; $2\theta_{\max} = 51,68$ °
	-12 < h < 12; -14 < k < 14; -14 < l < 14
Reflexanzahl:	10676 (davon 4051 unabhängig)
Mittelung:	Laueklasse $P\overline{1}$; $R_{\text{int}} = 0,056$
Anzahl der freien Parameter:	336
Restelektronendichte:	+0,981 bis -1,680 e/Å ³
Gütewerte der Verfeinerung:	$R1 = 0,035 (3333 F_o > 4\sigma(F_o))$
	R1 = 0,051 (alle Daten)
	wR2 = 0,077
	<i>GooF</i> = 1,058

Tabelle 23. Angaben zur Strukturlösung und -verfeinerung von [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan]

Tabelle 24. Atomlagen und isotrope Auslenkungsparameter (×10³) von $[NMeBu_3]_2[(WOCl_4)_2 \cdot 1,4-Dioxan]$

Atom	x	у	Z	$U_{ m eq}$
W1	390(1)	-209(1)	-188(1)	29(1)
Cl1	274(1)	-315(1)	-265(1)	37(1)
Cl2	426(1)	-61(1)	-88(1)	38(1)
C13	400(1)	-72(1)	-361(1)	42(1)
Cl4	301(1)	-304(1)	13(1)	44(1)
01	571(1)	-305(1)	-246(1)	51(1)
O2	125(1)	-74(1)	-104(1)	30(1)
N1	471(1)	-282(1)	299(1)	27(1)
C1	77(1)	61(1)	-108(1)	34(2)
C2	-9(1)	-112(1)	-25(1)	33(2)
C3	368(1)	-359(1)	314(1)	39(2)
C4	374(1)	-157(1)	-637(1)	32(2)
C5	747(1)	77(1)	-315(1)	34(2)
C6	823(1)	-48(1)	-381(1)	36(2)
C7	-57(1)	-136(1)	-338(1)	46(2)
C8	424(1)	-650(1)	-369(1)	33(1)
С9	705(1)	-299(1)	-649(1)	38(2)
C10	796(1)	-373(1)	-571(1)	54(1)
C11	-67(1)	-329(1)	407(1)	82(1)
C12	439(1)	264(1)	-160(1)	28(1)
C13	325(1)	-621(1)	-83(1)	38(2)
C14	778(1)	-342(1)	-47(1)	42(2)
C15	114(1)	-554(1)	135(1)	71(1)

Tabelle 25. Anisotrope Auslenkungsparameter ($\times 10^3$) der Schweratome von [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan]

Atom	U_{11}	U_{22}	U ₃₃	U_{23}	U_{13}	U_{12}
W1	32(1)	30(1)	26(1)	-7(1)	-10(1)	-9(1)
Cl1	49(1)	27(1)	42(1)	-9(1)	-23(1)	-9(1)
Cl2	47(1)	41(1)	35(1)	-2(1)	-20(1)	-23(1)
C13	57(1)	48(1)	23(1)	2(1)	-10(1)	-26(1)
Cl4	63(1)	38(1)	38(1)	7(1)	-24(1)	-21(1)
01	39(3)	54(3)	52(4)	-19(2)	-14(3)	-2(2)
C1	34(4)	27(3)	35(5)	0(3)	-8(3)	-11(3)
C2	36(4)	25(3)	37(4)	-8(3)	-6(3)	-16(3)
02	30(2)	24(2)	31(3)	-6(16)	-3(2)	-9(2)
N1	32(3)	26(2)	26(3)	-3(2)	-9(2)	-14(2)
C3	40(4)	43(4)	37(6)	-2(3)	-9(4)	-22(4)
C4	30(4)	36(4)	23(5)	-11(3)	-2(3)	-8(3)
C5	30(4)	38(4)	30(5)	-2(3)	-10(3)	-9(3)
C6	32(4)	34(4)	31(5)	-4(3)	-7(3)	-1(3)
C7	47(5)	38(4)	44(6)	-1(3)	-18(4)	-3(4)
C8	39(4)	29(3)	22(4)	1(3)	-11(3)	-2(3)
С9	36(4)	35(4)	41(6)	-8(3)	-17(4)	-5(3)
C10	48(5)	65(5)	44(6)	-12(4)	-25(4)	3(4)
C11	78(7)	75(7)	118(10)	-33(6)	-69(7)	-4(6)
C12	31(3)	26(3)	20(4)	-1(2)	-2(3)	-10(3)
C13	35(4)	34(4)	36(5)	-9(3)	0(3)	-14(3)
C14	38(4)	41(4)	32(5)	0(3)	0(4)	-12(3)
C15	58(6)	52(6)	53(7)	-13(5)	22(5)	-9(5)

Atom 1	Atom 2	<i>d</i> / Å	Atom 1	Atom 2	<i>d</i> / Å
W1	01	1,676(1)	C5	C4	1,521(1)
W1	Cl4	2,362(1)	C6	C7	1,508(1)
W1	C13	2,365(1)	C7	C6	1,508(1)
W1	Cl2	2,365(1)	C8	С9	1,507(1)
W1	Cl1	2,387(1)	C8	N1	1,535(1)
W1	O2	2,423(1)	C9	C8	1,507(1)
C1	O2	1,459(1)	С9	C10	1,529(1)
C1	C2	1,503(1)	C10	C11	1,520(1)
C2	O2	1,441(1)	C11	C10	1,520(1)
C2	C1	1,503(1)	C12	N1	1,510(1)
N1	C3	1,505(1)	C12	C13	1,510(1)
N1	C12	1,510(1)	C13	C12	1,510(1)
N1	C4	1,518(1)	C13	C14	1,528(1)
N1	C8	1,535(1)	C14	C15	1,475(1)
C4	N1	1,518(1)	C14	C13	1,528(1)
C4	C5	1,521(1)	C15	C14	1,475(1)
C5	C6	1,511(1)			

Tabelle 26. Ausgewählt	e Bindungslängen i	n [NMeBu3]2[(W	OC_{4}) ₂ ·1.4-Dioxan].

Tabelle 27. Ausgewählte Bindungswinkel in [NMeBu₃]₂[(WOCl₄)₂·1,4-Dioxan].

Atom 1	Atom 2	Atom 3	Winkel / °	Atom 1	Atom 2	Atom 3	Winkel / °
01	W1	Cl4	97,6(2)	C2	O2	W1	125,3(4)
01	W1	C13	100,2(2)	C1	O2	W1	125,5(4)
Cl4	W1	C13	162,3(1)	C3	N1	C12	110(1)
01	W1	Cl2	99,5(2)	C3	N1	C4	110(1)
Cl4	W1	Cl2	88,4(1)	C12	N1	C4	110(1)
C13	W1	Cl2	88,3(1)	C3	N1	C8	107(1)
01	W1	Cl1	98,1(2)	C12	N1	C8	112(1)
Cl4	W1	Cl1	89,7(1)	C4	N1	C8	108(1)
C13	W1	Cl1	88,2(1)	N1	C4	C5	117(1)
Cl2	W1	Cl1	162,4(1)	C6	C5	C4	110(1)
01	W1	O2	178,3(2)	C7	C6	C5	114(1)
Cl4	W1	O2	81,9(2)	C9	C8	N1	116(1)
Cl3	W1	02	80,4(2)	C8	C9	C10	110(1)
Cl2	W1	O2	82,1(1)	C11	C10	C9	112(1)
Cl1	W1	O2	80,3(1)	N1	C12	C13	116(1)
02	C1	C2	109,5(6)	C12	C13	C14	109(1)
02	C2	C1	110,7(5)	C15	C14	C13	115(1)
C2	O2	C1	108,5(5)				

Summenformel:	$C_{19}H_{42}C_{14}N_1O_4W_1$				
Kristallsystem / Raumgruppe:	monoklin, <i>C</i> 2/ <i>c</i> (Nr. 15)				
Gitterparameter:	a = 26,760(5) Å				
	b = 11,078(2) Å				
	c = 22,663(5) Å				
	$\beta = 125,30(3)^{\circ}$				
	$V = 5483(2) \text{ Å}^3$				
Zahl der Formeleinheiten pro EZ:	Z = 8				
Berechnete Dichte:	$\rho = 1,633 \text{ g}\cdot\text{cm}^{-1}$				
Linearer Absorptionskoeffizient:	$4,626 \text{ cm}^{-1}$				
Kristallabmessungen:	$0,15 \times 0,07 \times 0,22 \text{ mm}$				
Messbedingungen:	Bildplattendiffraktometer IPDS I (STOE)				
	λ (Mo <i>K</i> α) = 0,71073 Å; <i>T</i> = 203 K				
	$0^{\circ} \leq \varphi \leq 240^{\circ}, \Delta \varphi = 1^{\circ}$				
Messbereich:	$-32 \le h \le 32; -13 \le k \le 12; -17 \le l \le 27$				
Reflexanzahl:	9574 gemessen (davon 5269 unabhängig)				
Mittelung:	Laueklasse $2/m$, $R_{int} = 0.0577$				
Anzahl der freien Parameter:	430				
Restelektronendichte:	1,257 bis −1,616 e·Å ⁻³				
Gütewerte der Verfeinerung:	$R_1 (2631 \text{ F}_0^2 > 2\sigma(\text{F}_0^2)) = 0.0355$				
	R_1 (alle Daten) = 0,1020				
	$wR_2 = 0,0746$				
	<i>GooF</i> = 0,819				

Tabelle 28. Angaben zur Strukturlösung und –verfeinerung von [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan).

Atom	<i>x</i>	<i>y</i>	Z	
WI	140(1)	752(1)	81(1)	31(1)
Cll	214(1)	596(1)	118(1)	38(5)
Cl2	65(1)	609(1)	51(1)	53(6)
Cl3	208(1)	884(1)	76(1)	54(6)
Cl4	61(1)	891(1)	10(1)	45(5)
N1	152(1)	237(1)	149(1)	22(1)
O1	160(1)	793(1)	163(1)	56(2)
02	117(1)	690(1)	-34(1)	30(1)
O3	88(1)	757(1)	-172(1)	57(2)
O4	249(1)	773(1)	438(1)	47(2)
C1	110(1)	143(1)	146(1)	26(2)
C2	133(1)	78(1)	216(1)	35(3)
C3	87(1)	-13(1)	206(1)	40(2)
C4	107(1)	-80(2)	273(1)	80(6)
C5	168(1)	336(1)	206(1)	30(2)
C6	117(1)	390(1)	203(1)	30(2)
C7	136(1)	450(1)	252(1)	49(3)
C8	86(1)	555(1)	251(1)	69(4)
С9	121(1)	302(1)	77(1)	31(2)
C10	100(1)	222(1)	12(1)	34(2)
C11	75(1)	300(1)	-54(1)	44(3)
C12	448(1)	725(2)	621(1)	56(4)
C13	211(1)	181(1)	169(1)	39(2)
C14	160(1)	675(1)	-53(1)	41(2)
C15	149(1)	767(2)	-109(1)	49(3)
C16	45(1)	770(2)	-153(1)	56(4)
C17	55(1)	679(1)	-99(1)	47(2)
C18	242(1)	866(1)	476(1)	47(3)
C19	225(1)	664(1)	445(1)	46(3)

Tabelle 29. Atomkoordinaten und isotrope Auslenkungsparameter ($\times 10^3$) von [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan).

Tabelle 30. Anisotrope Auslenkungsparameter (×10³) von [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan).

Atom	IL	IL	I I.	<i>I</i> .	IL	I L.
Atom	011	U_{22}	033	023	013	012
W1	29(1)	36(1)	21(1)	-4(1)	10(1)	6(1)
Cl1	36(1)	37(1)	33(1)	7(1)	16(1)	11(1)
Cl2	52(1)	47(2)	69(2)	13(1)	40(1)	1(1)
C13	39(1)	36(2)	66(2)	-10(1)	19(1)	-13(1)
Cl4	39(1)	36(1)	44(1)	-2(1)	15(1)	14(1)
O1	51(3)	82(6)	16(2)	-12(3)	7(2)	17(3)
O2	23(2)	46(3)	16(2)	-6(2)	8(9)	-3(2)
O3	46(3)	92(5)	26(2)	15(5)	18(2)	19(6)
O4	70(4)	41(6)	53(3)	-6(3)	49(3)	-6(3)
N1	29(2)	15(4)	28(2)	-4(3)	19(2)	0(4)
C1	34(4)	18(5)	19(4)	-3(3)	11(3)	-8(3)
C2	49(6)	29(6)	16(4)	6(4)	12(4)	5(5)
C3	61(7)	34(6)	35(5)	4(4)	34(5)	-6(5)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	U ₁₂
C4	139(18)	54(10)	50(8)	-1(8)	56(10)	-34(9)
C5	35(4)	26(5)	23(4)	-7(4)	14(4)	-9(4)
C6	36(5)	28(6)	27(5)	-5(5)	19(4)	-3(5)
C7	43(6)	48(7)	35(5)	-15(5)	11(5)	0(5)
C8	67(9)	59(10)	69(9)	-20(8)	32(8)	21(8)
С9	35(4)	36(5)	18(3)	3(3)	14(3)	-4(4)
C10	44(4)	26(7)	31(4)	2(3)	22(3)	0(4)
C11	39(5)	61(7)	31(5)	10(4)	20(4)	8(5)
C12	43(6)	88(9)	28(5)	0(6)	16(4)	5(7)
C13	31(4)	62(7)	32(5)	-4(5)	23(4)	4(4)
C14	31(5)	62(7)	27(5)	3(5)	15(4)	11(5)
C15	46(5)	63(9)	43(4)	1(8)	29(4)	1(7)
C16	40(4)	83(9)	32(4)	0(7)	13(3)	22(7)
C17	27(4)	80(8)	22(4)	-19(5)	8(3)	-8(4)
C18	69(8)	26(6)	53(8)	7(5)	38(7)	8(6)
C19	56(7)	52(8)	32(5)	-18(5)	26(5)	-3(5)

Tabelle 31. Ausgewählte Bindungslängen in [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan).

Atom 1	Atom 2	<i>d</i> / Å	Atom 1	Atom 2	<i>d</i> / Å
W1	Cl2	2,33(1)	С9	C10	1,53(1)
W1	Cl4	2,36(1)	C10	C11	1,51(1)
W1	Cl1	2,38(1)	C11	C12	1,51(1)
W1	C13	2,38(1)	C12	C11	1,51(1)
W1	01	1,68(1)	C13	N1	1,51(1)
W1	O2	2,41(1)	C14	02	1,43(1)
C1	N1	1,50(1)	C14	C15	1,51(2)
C1	C2	1,51(1)	C15	03	1,42(1)
C2	C3	1,50(1)	C16	03	1,44(1)
C3	C4	1,49(2)	C16	C17	1,49(2)
C5	C6	1,47(1)	C17	02	1,45(1)
C5	N1	1,56(1)	C18	04	1,41(1)
C6	C7	1,52(1)	C18	C19	1,51(2)
C7	C8	1,47(2)	C19	04	1,42(1)
С9	N1	1,53(1)	C19	C18	1,51(2)

Tabelle 32. Ausgewählte Bindungswinkel in [NMeBu₃]₂[(WOCl₄)·1,4-Dioxan]₂(1,4-Dioxan).

 Atom 1	Atom 2	Atom 3	Winkel / °	Atom 1	Atom 2	Atom 3	Winkel / °
01	W1	Cl2	100,1(2)	N1	C9	C10	115,4(7)
O1	W1	Cl4	99,4(2)	C11	C10	C9	109,1(7)
Cl2	W1	Cl4	87,6(1)	C10	C11	C12	111,6(9)
01	W1	Cl1	97,7(2)	O2	C14	C15	111,4(8)
Cl2	W1	Cl1	90,3(1)	O3	C15	C14	110,3(9)
Cl4	W1	Cl1	162,9(1)	O3	C16	C17	112,0(9)
O1	W1	Cl3	97,3(2)	O2	C17	C16	109,2(8)
Cl2	W1	Cl3	162,5(1)	O4	C18	C19	111,6(9)
Cl4	W1	C13	88,7(1)	O4	C19	C18	108,5(9)
Cl1	W1	C13	88,2(1)	C1	N1	C13	111,0(8)
O1	W1	02	177,1(2)	C1	N1	C9	110,1(5)
Cl2	W1	02	81,5(1)	C13	N1	C9	110,0(6)
Cl4	W1	02	83,1(1)	C1	N1	C5	112,3(5)
Cl1	W1	02	79,8(1)	C13	N1	C5	107,4(6)
Cl3	W1	02	81,1(1)	С9	N1	C5	106,0(7)
N1	C1	C2	116,0(6)	C14	O2	C17	109,3(6)

Anhang

Atom 1	Atom 2	Atom 3	Winkel / °	Atom 1	Atom 2	Atom 3	Winkel / °
C3	C2	C1	111,2(7)	C14	O2	W1	127,1(5)
C4	C3	C2	113,5(9)	C17	O2	W1	123,0(5)
C6	C5	N1	115,9(6)	C15	O3	C16	109,8(6)
C5	C6	C7	112,1(8)	C18	O4	C19	108,7(7)
C8	C7	C6	114,2(9)				
Tabelle 33. Angaben zur Strukturlösung und -verfeinerung von ${[P(o-tolyl)_3]Br}_2[Cu_2Br_6](Br_2).$

Summenformel:	$C_{42}H_{42}Br_{10}Cu_2P_2$		
Kristallsystem / Raumgruppe:	triklin / $P\overline{1}$ (Nr. 2)		
Gitterparameter:	a = 10,667(2) Å		
	b = 10,695(2) Å		
	c = 11,582(2) Å		
	$\alpha = 74,42(3)^{\circ}$		
	$\beta = 75,64(3)^{\circ}$		
	$\gamma = 85,68(3)^{\circ}$		
Zahl der Formeleinheiten pro EZ:	1		
Berechnete Dichte:	$\rho = 2,07 \text{ g} \cdot \text{cm}^{-1}$		
Linearer Absorptionskoeffizient:	$\mu = 9,06 \text{ mm}^{-1}$		
Kristallabmessungen:	$0,08 \times 0,09 \times 0,32 \text{ mm}$		
Messbedingungen:	Bildplattendiffraktometer IPDS I (STOE)		
	λ (Mo <i>K</i> α) = 0,71073 Å; <i>T</i> = 203 K		
	$0^{\circ} \le \varphi \le 180^{\circ}, \Delta \varphi = 2^{\circ}$		
Messbereich:	$2\theta_{\min} = 3,76$ °; $2\theta_{\max} = 51,98$ °		
	-12 < h < 12; -13 < k < 13; -14 < l < 14		
Reflexanzahl:	11260 (davon 4381 unabhängig)		
Mittelung:	Laueklasse $P\overline{1}$; $R_{int} = 0,066$		
Anzahl der freien Parameter:	258		
Restelektronendichte:	+1,05 bis -0,98 e/Å ³		
Gütewerte der Verfeinerung:	$R1 = 0.050 (3091 F_{o} > 4\sigma(F_{o}))$		
	R1 = 0,085 (alle Daten)		
	wR2 = 0,115		
	<i>GooF</i> = 1,037		

Tabelle 34. Atomkoordinaten und isotrope Auslenkungsparameter ($\times 10^4$) von
${[P(o-tolyl)_3]Br}_2[Cu_2Br_6](Br_2).$

Atom	x	У	Ζ	$U_{ m eq}$
Br1	2662(1)	7895(1)	2477(1)	346(1)
Br2	9277(1)	3709(1)	1169(1)	473(1)
Br4	1338(1)	4920(1)	2649(1)	496(1)
Br5	9667(1)	7785(1)	1363(1)	612(1)
Br6	6032(1)	5043(1)	-660(1)	601(1)
Cu1	235(1)	5731(1)	1079(1)	304(1)
P1	3667(1)	8755(1)	3470(1)	201(1)
C1	4271(1)	7479(1)	4560(1)	225(1)
C2	5589(1)	7558(1)	4568(1)	293(1)
C3	3884(1)	3338(1)	4576(1)	430(1)
C4	5364(1)	5702(1)	-3728(1)	361(1)
C5	4082(1)	5612(1)	6276(1)	355(1)
C6	3500(1)	6485(1)	5426(1)	267(1)
C7	2117(1)	6307(1)	5455(1)	378(1)
C8	4964(1)	9723(1)	2421(1)	230(1)
С9	5058(1)	991(1)	2532(1)	279(1)
C10	6043(1)	1783(1)	1799(1)	379(1)
C11	6976(1)	1341(1)	935(1)	363(1)
C12	6910(1)	93(1)	804(1)	347(1)
C13	5930(1)	9256(1)	1530(1)	275(1)
C14	5914(1)	7915(1)	1341(1)	420(1)
C15	2535(1)	9742(1)	4269(1)	219(1)
C16	2394(1)	9506(1)	5537(1)	288(1)
C17	8438(1)	9727(1)	3790(1)	356(1)
C18	9126(1)	8754(1)	4393(1)	420(1)
C19	997(1)	1491(1)	4344(1)	352(1)
C20	1824(1)	762(1)	3638(1)	281(1)
C21	1904(1)	1108(1)	2282(1)	430(1)

 $Tabelle \ 35. \ Anisotrope \ Auslenkungsparameter \ (\times 10^3) \ von \ \{[P(o-tolyl)_3]Br\}_2[Cu_2Br_6](Br_2).$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Br1	39(1)	39(1)	33(1)	-15(1)	-12(1)	-9(1)
Br2	71(1)	44(1)	31(1)	-6(1)	-16(1)	-26(1)
Br4	63(1)	44(1)	50(1)	-2(1)	-33(1)	-16(1)
Br5	62(1)	58(1)	85(1)	-49(1)	-31(1)	24(1)
Br6	81(1)	57(1)	47(1)	-10(1)	-31(1)	6(1)
Cu1	33(1)	34(1)	30(1)	-14(1)	-10(1)	-3(1)
P1	23(1)	18(1)	21(1)	-7(1)	-7(1)	0(1)
C1	28(1)	22(1)	20(1)	-12(1)	-3(1)	1(1)
C2	36(1)	23(1)	32(1)	-10(1)	-12(1)	4(1)
C3	38(1)	48(1)	59(1)	-33(1)	-26(1)	13(1)
C4	54(1)	34(1)	26(1)	-12(1)	-17(1)	6(1)
C5	56(1)	24(1)	28(1)	-9(1)	-13(1)	9(1)
C6	34(1)	24(1)	24(1)	-13(1)	-4(1)	2(1)
C7	29(1)	42(1)	36(1)	-5(1)	1(1)	-4(1)
C8	23(1)	25(1)	21(1)	-5(1)	-8(1)	2(1)
С9	30(1)	24(1)	33(1)	-7(1)	-13(1)	-2(1)
C10	51(1)	23(1)	43(1)	-9(1)	-15(1)	-4(1)
C11	43(1)	40(1)	21(1)	0(1)	-4(1)	-15(1)
C12	38(1)	49(1)	14(1)	-5(1)	-3(1)	-5(1)
C13	28(1)	31(1)	22(1)	-6(1)	-3(1)	-1(1)

 Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
 C14	47(1)	36(1)	41(1)	-23(1)	6(1)	-3(1)
C15	21(1)	21(1)	27(1)	-13(1)	-4(1)	-2(1)
C16	31(1)	26(1)	37(1)	-18(1)	-13(1)	3(1)
C17	36(1)	39(1)	39(1)	-23(1)	-9(1)	0(1)
C18	25(1)	35(1)	71(1)	-33(1)	2(1)	-2(1)
C19	25(1)	23(1)	56(1)	-15(1)	-4(1)	9(1)
C20	26(1)	24(1)	34(1)	-2(1)	-10(1)	-6(1)
 C21	44(1)	42(1)	38(1)	1(1)	-15(1)	10(1)

Tabelle 36. Ausgewählte Bindungslängen in ${[P(o-tolyl)_3]Br}_2[Cu_2Br_6](Br_2)$.

Atom 1	Atom 2	<i>d</i> / Å	Atom 1	Atom 2	<i>d /</i> Å
Brl	P7	2,156(2)	C8	С9	1,409(1)
Br2	Cu3	2,427(1)	C8	C13	1,431(1)
Br2	Cu3	2,438(1)	С9	C10	1,360(1)
Cu3	Br5	2,321(1)	C10	C11	1,380(1)
Cu3	Br4	2,346(1)	C11	C10	1,380(1)
Cu3	Br2	2,438(1)	C11	C12	1,391(1)
Br6	Br6	2,341(1)	C12	C13	1,379(1)
P7	C8	1,780(1)	C13	C12	1,379(1)
P7	C15	1,791(1)	C13	C14	1,509(1)
P7	C1	1,793(1)	C15	C16	1,394(1)
C1	C6	1,401(1)	C15	C20	1,422(1)
C1	C2	1,418(1)	C16	C17	1,399(1)
C2	C3	1,378(1)	C17	C18	1,363(1)
C3	C4	1,362(1)	C17	C16	1,399(1)
C3	C2	1,378(1)	C18	C19	1,389(1)
C4	C3	1,362(1)	C19	C18	1,389(1)
C4	C5	1,376(1)	C19	C20	1,391(1)
C5	C4	1,376(1)	C20	C19	1,391(1)
C5	C6	1,396(1)	C20	C21	1,496(1)
C6	C7	1,493(1)			

Tabelle 37. Ausgewählte Bindungswinkel in ${[P(o-tolyl)_3]Br}_2[Cu_2Br_6](Br_2)$.

Atom 1	Atom 2	Atom 3	Winkel	Atom 1	Atom 2	Atom 3	Winkel
Cu3	Br2	Cu3	89,7(5)	C1	C6	C7	123,2(6)
Br5	Cu3	Br4	100,2(5)	С9	C8	C13	119,5(7)
Br5	Cu3	Br2	141,3(5)	С9	C8	P7	117,1(5)
Br4	Cu3	Br2	97,8(5)	C13	C8	P7	123,4(5)
Br5	Cu3	Br2	98,6(6)	C10	C9	C8	121,2(6)
Br4	Cu3	Br2	138,0(5)	C9	C10	C11	119,7(7)
Br2	Cu3	Br2	90,3(5)	C10	C11	C12	120,5(8)
C8	P7	C15	110,0(3)	C13	C12	C11	121,8(7)
C8	P7	C1	110,4(3)	C12	C13	C8	117,4(6)
C15	P7	C1	109,8(3)	C12	C13	C14	119,2(6)
C8	P7	Br1	109,9(2)	C8	C13	C14	123,4(7)
C15	P7	Br1	108,1(2)	C16	C15	C20	120,3(6)
C1	P7	Br1	108,6(2)	C16	C15	P7	117,8(5)
C6	C1	C2	119,8(6)	C20	C15	P7	121,8(5)
C6	C1	P7	123,8(5)	C15	C16	C17	120,8(6)
C2	C1	P7	116,4(5)	C18	C17	C16	118,9(8)
C3	C2	C1	120,4(7)	C17	C18	C19	121,2(6)
C4	C3	C2	119,9(7)	C18	C19	C20	121,8(7)
C3	C4	C5	120,5(7)	C19	C20	C15	117,0(7)

Anhang

Atom 1	Atom 2	Atom 3	Winkel	Atom 1	Atom 2	Atom 3	Winkel
C4	C5	C6	122,2(7)	C19	C20	C21	118,0(6)
C5	C6	C1	117,4(7)	C15	C20	C21	125,0(6)
C5	C6	C7	119,4(7)				

Summenformel:	$C_{56}H_{45}AgF_6NO_4P_3S_2$
Kristallsystem / Raumgruppe:	monoklin / $P2_1/c$
Gitterparameter:	a = 20,610(4) Å
	b = 12,100(2) Å
	c = 23,510(5) Å
	$\beta = 114,58(3)^{\circ}$
Zahl der Formeleinheiten pro EZ:	4
Berechnete Dichte:	$\rho = 1,464 \text{ g}\cdot\text{cm}^{-1}$
Linearer Absorptionskoeffizient:	$\mu = 0.614 \text{ mm}^{-1}$
Kristallabmessungen:	$0,15 \times 0,15 \times 0,4 \text{ mm}$
Messbedingungen:	Bildplattendiffraktometer IPDS I (STOE)
	λ (Mo <i>K</i> α) = 0,71073 Å; <i>T</i> = 203 K
	$0 \circ \leq \varphi \leq 240 \circ, \Delta \varphi = 1 \circ$
Messbereich:	$2\theta_{\min} = 2,82$ °; $2\theta_{\max} = 51,86$ °
	-25 < h < 25; -13 < k < 13; -28 < l < 28
Reflexanzahl:	39208 (davon 9694 unabhängig)
Mittelung:	Laueklasse $2/m$; $R_{int} = 0,118$
Anzahl der freien Parameter:	658
Restelektronendichte:	+ 0,438 bis -0,416 e/Å ³
Gütewerte der Verfeinerung:	$R1 = 0.048 (5851 F_{o} > 2\sigma(F_{o}))$
	R1 = 0,106 (alle Daten)
	wR2 = 0,093
	GooF = 0,974

Tabelle 38. Angaben zur Strukturbestimmung und -verfeinerung der Verbindung $Ag[P(Ph)_3]_3$ [N(Tf)₂].

Tabelle 39. Atomlagen ($\times 10^4$) und isotrope Auslenkungsparameter ($\times 10^3$) vor	n
${Ag[P(Ph)_3]_3}[N(Tf)_2].$	

Atom	x	у	Z	$U_{ m eq}$
Ag1	2560(1)	3300(1)	7898(1)	26(1)
S1	2479(1)	4498(1)	6227(1)	45(1)
S2	2398(1)	6732(1)	5920(1)	45(1)
P1	2647(1)	1442(1)	7611(1)	25(1)
P2	3591(1)	4310(1)	8750(1)	27(1)
Р3	1373(1)	4107(1)	7754(1)	27(1)
F1	3855(2)	4311(4)	6781(2)	101(2)
F2	3357(3)	3077(4)	6118(3)	130(2)
F3	3468(2)	4669(4)	5810(2)	108(2)
F4	1328(3)	8057(4)	5473(2)	120(2)
F5	1691(3)	7775(4)	6453(2)	127(2)
F6	1092(2)	6549(5)	5806(2)	105(2)
01	2480(2)	3926(4)	6760(2)	70(1)
02	1974(2)	4193(4)	5623(2)	75(1)
03	2204(2)	6447(4)	5277(2)	63(1)
04	2904(3)	7591(4)	6178(2)	93(2)
N1	2564(2)	5763(4)	6399(2)	47(1)
C1	1852(2)	927(4)	6960(2)	29(1)
C2	1312(3)	402(4)	7057(2)	41(1)
C3	-685(3)	5121(5)	8444(3)	52(2)
C4	-595(3)	5333(5)	9046(3)	59(2)
C5	-1128(3)	5855(5)	9149(2)	55(2)
C6	1754(3)	1149(4)	6347(2)	43(1)
C7	2739(2)	565(4)	8281(2)	27(1)
C8	3142(2)	-393(4)	8435(2)	35(1)
C9	3217(3)	-980(5)	8968(2)	42(1)
C10	2896(3)	-627(5)	9347(2)	47(1)
C11	2497(2)	326(5)	9198(2)	38(1)
C12	2416(2)	922(4)	8667(2)	33(1)
C13	3385(2)	1020(4)	7422(2)	28(1)
C14	3380(2)	45(4)	7099(2)	32(1)
C15	3972(3)	-255(5)	6998(2)	40(1)
C16	4568(3)	398(5)	7214(2)	52(2)
C17	4574(3)	1360(5)	7531(2)	55(2)
C18	3989(2)	1685(5)	7632(2)	38(1)
C19	4348(2)	3356(4)	9064(2)	30(1)
C20	4206(2)	2283(4)	9205(2)	38(1)
C21	4730(3)	1481(5)	9379(2)	52(1)
C22	5398(3)	1738(6)	9409(2)	59(2)
C23	5543(3)	2778(6)	9269(3)	54(2)
C24	5024(2)	3600(5)	9099(2)	38(1)
C25	3937(2)	5602(4)	8588(2)	27(1)
C26	3665(2)	5981(4)	7973(2)	32(1)
C27	3896(2)	6963(4)	7829(2)	40(1)
C28	4402(2)	7584(4)	8293(2)	41(1)
C29	4678(3)	7221(5)	8912(2)	43(1)
C30	4443(2)	6237(4)	9061(2)	36(1)
C31	3380(2)	4686(4)	9412(2)	27(1)
C32	2959(2)	5613(4)	9347(2)	33(1)
C33	2722(2)	5880(5)	9805(2)	40(1)
C34	2894(3)	5225(5)	0325(2)	46(1)
C35	3312(3)	4310(5)	0392(2)	48(1)
C36	3550(3)	4031(4)	9941(2)	40(1)
C37	1056(2)	3430(4)	8287(2)	28(1)
C38	1525(2)	3390(5)	8922(2)	39(1)
C39	1327(3)	2896(5)	9351(2)	46(1)

Anhang

Atom	r	12	7	II
C40	659(3)	2419(5)	9161(3)	53(2)
C40	205(3)	2419(5)	9101(3)	53(2)
C41	205(3)	2438(3)	8545(3)	55(2)
C42	397(2)	2934(4)	8102(2)	39(1)
C43	1404(2)	5567(4)	7955(2)	29(1)
C44	1730(2)	6275(4)	7684(2)	37(1)
C45	1771(3)	7392(5)	7817(3)	49(2)
C46	1502(3)	7823(5)	8214(3)	48(1)
C47	1182(3)	7126(5)	8483(3)	46(1)
C48	1130(2)	6004(5)	8358(2)	40(1)
C49	644(2)	4084(4)	6980(2)	35(1)
C50	726(3)	3546(5)	6497(2)	53(2)
C51	190(3)	3600(6)	5895(3)	73(2)
C52	-420(3)	4195(6)	5776(3)	71(2)
C53	-511(3)	4711(5)	6249(3)	58(2)
C54	13(2)	4665(4)	6852(3)	44(1)
C55	3344(4)	4131(6)	6234(3)	63(2)
C56	1575(4)	7309(7)	5911(3)	77(2)

Tabelle 40. Anisotrope Auslenkungsparameter ($\times 10^3$) von {Ag[P(Ph)_3]_3}[N(Tf)_2].

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Ag1	23(1)	28(1)	26(1)	-3(1)	8(1)	2(1)
S1	60(1)	43(1)	33(1)	-2(1)	21(1)	-18(1)
S2	51(1)	45(1)	38(1)	6(1)	19(1)	-3(1)
P1	28(1)	25(1)	26(1)	-2(1)	14(1)	-1(1)
P2	22(1)	33(1)	23(1)	-4(1)	6(1)	-0(1)
P3	20(1)	30(1)	30(1)	-2(1)	9(1)	2(1)
F1	67(3)	130(4)	87(3)	-6(3)	12(2)	18(3)
F2	184(5)	71(4)	158(5)	-15(3)	95(4)	34(3)
F3	101(3)	151(5)	108(3)	53(3)	79(3)	33(3)
F4	151(4)	122(5)	102(3)	48(3)	66(3)	86(4)
F5	217(6)	112(4)	82(3)	-19(3)	91(4)	41(4)
F6	64(2)	141(5)	129(4)	6(4)	58(3)	14(3)
01	109(3)	63(3)	50(2)	3(2)	44(2)	-27(2)
O2	83(3)	84(4)	46(2)	-17(2)	15(2)	-32(3)
O3	85(3)	72(3)	44(2)	15(2)	40(2)	22(2)
O4	90(3)	60(4)	98(4)	23(3)	8(3)	-31(3)
N1	60(3)	44(3)	32(2)	-2(2)	15(2)	-6(2)
C1	32(2)	22(3)	31(3)	-2(2)	11(2)	-2(2)
C2	39(3)	47(4)	35(3)	3(2)	15(2)	-4(2)
C3	36(3)	65(5)	55(4)	5(3)	18(3)	14(3)
C4	46(3)	70(5)	46(4)	12(3)	3(3)	13(3)
C5	61(4)	70(5)	23(3)	1(3)	7(3)	15(3)
C6	43(3)	57(4)	29(3)	-1(2)	15(2)	-15(2)
C7	28(2)	31(3)	21(2)	1(1)	9(2)	-3(2)
C8	45(3)	31(3)	38(3)	0(2)	25(2)	2(2)
C9	41(3)	47(4)	39(3)	13(2)	18(2)	11(2)
C10	37(3)	68(4)	34(3)	20(3)	13(2)	1(3)
C11	33(3)	59(4)	26(3)	-2(2)	15(2)	-5(2)
C12	34(3)	37(3)	33(3)	-2(2)	17(2)	-4(2)
C13	33(2)	32(3)	22(2)	3(2)	15(2)	1(2)
C14	37(3)	33(3)	28(3)	-1(2)	16(2)	-1(2)
C15	45(3)	46(4)	34(3)	0(2)	23(2)	7(2)
C16	38(3)	78(5)	48(3)	-6(3)	26(3)	6(3)
C17	35(3)	88(5)	48(3)	-20(3)	23(3)	-19(3)
C18	40(3)	45(3)	36(3)	-11(3)	23(2)	-10(3)
C19	24(2)	34(3)	25(2)	-5(2)	3(2)	2(2)
C20	25(2)	43(4)	36(3)	-3(2)	3(2)	3(2)

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C21	51(3)	39(4)	49(3)	-2(3)	3(3)	14(3)
C22	38(3)	70(5)	49(3)	-14(3)	-1(2)	23(3)
C23	22(3)	71(5)	54(4)	-15(3)	2(2)	10(3)
C24	31(3)	48(4)	33(3)	-9(2)	11(2)	1(2)
C25	22(2)	32(3)	25(2)	-1(1)	7(2)	4(2)
C26	30(2)	37(3)	30(3)	-3(2)	15(2)	1(2)
C27	36(3)	49(4)	35(3)	9(2)	15(2)	5(2)
C28	36(3)	32(3)	57(4)	6(2)	23(3)	4(2)
C29	42(3)	38(4)	50(3)	-9(3)	19(3)	-8(2)
C30	32(3)	43(4)	28(3)	-2(2)	7(2)	-5(2)
C31	22(2)	32(3)	22(2)	-6(2)	5(2)	-4(2)
C32	35(3)	34(3)	28(2)	-2(2)	10(2)	3(2)
C33	34(3)	44(4)	39(3)	-11(2)	10(2)	5(2)
C34	59(3)	51(4)	36(3)	-8(3)	28(3)	-2(3)
C35	63(4)	48(4)	31(3)	0(2)	17(3)	-2(3)
C36	50(3)	33(3)	36(3)	2(2)	15(2)	7(2)
C37	27(2)	23(3)	35(2)	-2(2)	16(2)	3(2)
C38	36(2)	40(3)	42(3)	-3(3)	17(2)	0(3)
C39	62(4)	46(4)	34(3)	-3(2)	23(3)	3(3)
C40	78(4)	42(4)	57(4)	2(3)	45(3)	-7(3)
C41	52(3)	43(4)	75(4)	-1(3)	37(3)	-12(3)
C42	32(3)	40(3)	44(3)	2(2)	13(2)	-2(2)
C43	18(2)	29(3)	33(2)	-1(2)	4(2)	-1(1)
C44	34(3)	35(4)	38(3)	-1(2)	13(2)	0(2)
C45	54(3)	35(4)	51(4)	2(3)	16(3)	-11(3)
C46	50(3)	26(3)	54(4)	-5(3)	10(3)	4(2)
C47	49(3)	36(4)	57(4)	-6(3)	25(3)	12(3)
C48	26(3)	38(4)	58(3)	0(3)	18(2)	5(2)
C49	25(2)	34(3)	38(3)	7(2)	6(2)	-2(2)
C50	49(3)	63(5)	37(3)	-2(3)	8(2)	4(3)
C51	78(5)	88(6)	33(3)	-7(3)	4(3)	-9(4)
C52	49(4)	68(5)	54(4)	21(4)	-19(3)	-17(3)
C53	35(3)	45(4)	69(4)	16(3)	-2(3)	-4(3)
C54	29(3)	36(4)	56(3)	2(2)	8(2)	-3(2)
C55	80(5)	61(5)	52(4)	4(3)	31(4)	10(4)
C56	97(6)	82(6)	65(5)	2(4)	45(4)	24(5)

Anhang

Tabelle 41. Ausgewählte Bindungslängen in $\{Ag[P(Ph)_3]_3\}[N(Tf)_2]$.

Atom 1	Atom 2	<i>d</i> / Å	Atom 1	Atom 2	<i>d</i> / Å
Agl	Р3	2.479(1)	C13	C14	1.400(6)
Agl	P1	2.490(1)	C14	C15	1.386(6)
Ag1	P2	2.490(2)	C15	C16	1.367(7)
S1	02	1.417(4)	C16	C17	1.379(8)
S1	01	1.429(4)	C17	C18	1.379(6)
S1	N1	1.574(5)	C19	C24	1.393(6)
S1	C55	1.832(7)	C19	C20	1.401(7)
S2	04	1.417(5)	C20	C21	1.381(7)
S2	03	1.433(4)	C21	C22	1.385(8)
S2	N1	1.563(5)	C22	C23	1.365(9)
S2	C56	1.827(7)	C23	C24	1.391(7)
P1	C1	1.824(4)	C25	C26	1.393(6)
P1	C13	1.827(4)	C25	C30	1.396(6)
P1	C7	1.841(4)	C26	C27	1.374(7)
P2	C25	1.823(5)	C27	C28	1.377(7)
P2	C19	1.831(5)	C28	C29	1.395(7)

A	n	ha	ın	g

Atom 1	Atom 2	<i>d</i> / Å	Atom 1	Atom 2	<i>d</i> / Å
P2	C31	1.839(4)	C29	C30	1.383(7)
Р3	C49	1.815(5)	C31	C32	1.387(6)
P3	C43	1.823(5)	C31	C36	1.391(6)
P3	C37	1.829(4)	C32	C33	1.392(6)
F1	C55	1.297(7)	C33	C34	1.373(7)
F2	C55	1.307(8)	C34	C35	1.371(7)
F3	C55	1.301(7)	C35	C36	1.382(7)
F4	C56	1.305(8)	C37	C42	1.379(6)
F5	C56	1.319(8)	C37	C38	1.402(6)
F6	C56	1.301(9)	C38	C39	1.372(7)
C1	C2	1.382(6)	C39	C40	1.385(8)
C1	C6	1.395(6)	C40	C41	1.364(8)
C2	C3	1.381(7)	C41	C42	1.390(7)
C3	C4	1.372(7)	C43	C48	1.393(6)
C3	C2	1.381(7)	C43	C44	1.395(6)
C4	C5	1.373(8)	C44	C45	1.381(7)
C5	C6	1.378(7)	C45	C46	1.372(7)
C6	C5	1.378(7)	C46	C47	1.375(8)
C7	C8	1.384(6)	C47	C48	1.384(7)
C7	C12	1.397(6)	C49	C50	1.380(7)
C8	С9	1.392(6)	C49	C54	1.396(7)
C9	C10	1.380(7)	C50	C51	1.388(7)
C10	C11	1.375(7)	C51	C52	1.373(9)
C11	C12	1.390(6)	C52	C53	1.356(9)
C13	C18	1.390(6)	C53	C54	1.381(7)

Tabelle 42. Ausgewählte Bindungswinkel in $\{Ag[P(Ph)_3]_3\}[N(Tf)_2]$.

Atom 1	Atom 2	Atom 3	Winkel	Atom 1	Atom 2	Atom 3	Winkel
P3	Agl	P1	118.0(1)	C24	C19	P2	123.7(4)
Р3	Agl	P2	114.9(1)	C20	C19	P2	116.9(3)
P1	Ag1	P2	120.4(1)	C21	C20	C19	120.5(5)
02	S1	O1	119.0(3)	C20	C21	C22	119.7(6)
O2	S1	N1	117.8(3)	C23	C22	C21	120.5(5)
01	S1	N1	106.7(2)	C22	C23	C24	120.6(5)
02	S1	C55	104.6(3)	C23	C24	C19	119.7(5)
01	S1	C55	103.2(3)	C26	C25	C30	119.3(5)
N1	S1	C55	103.3(3)	C26	C25	P2	118.4(3)
O4	S2	03	117.5(3)	C30	C25	P2	122.3(3)
O4	S2	N1	109.9(3)	C27	C26	C25	120.6(5)
O3	S2	N1	117.4(3)	C26	C27	C28	120.2(5)
O4	S2	C56	103.8(4)	C27	C28	C29	119.9(5)
O3	S2	C56	103.3(3)	C30	C29	C28	120.1(5)
N1	S2	C56	102.6(3)	C29	C30	C25	119.8(5)
C1	P1	C13	104.3(2)	C32	C31	C36	118.2(4)
C1	P1	C7	105.0(2)	C32	C31	P2	117.7(3)
C13	P1	C7	104.3(2)	C36	C31	P2	123.7(4)
C1	P1	Ag1	114.3(2)	C31	C32	C33	120.4(4)
C13	P1	Ag1	119.5(2)	C34	C33	C32	120.7(5)
C7	P1	Ag1	108.1(2)	C35	C34	C33	119.0(5)
C25	P2	C19	106.4(2)	C34	C35	C36	121.1(5)
C25	P2	C31	102.4(2)	C35	C36	C31	120.5(5)
C19	P2	C31	106.1(2)	C42	C37	C38	118.1(4)
C25	P2	Ag1	119.2(1)	C42	C37	P3	124.4(3)
C19	P2	Ag1	110.1(2)	C38	C37	P3	117.5(3)

Atom 1	Atom 2	Atom 3	Winkel	Atom 1	Atom 2	Atom 3	Winkel
C31	P2	Ag1	111.6(2)	C39	C38	C37	121.0(4)
C49	P3	C43	101.6(2)	C38	C39	C40	120.3(5)
C49	P3	C37	107.3(2)	C41	C40	C39	119.1(5)
C43	P3	C37	103.9(2)	C40	C41	C42	121.3(5)
C49	P3	Ag1	119.4(2)	C37	C42	C41	120.2(5)
C43	P3	Ag1	111.9(1)	C48	C43	C44	119.1(5)
C37	P3	Ag1	111.4(1)	C48	C43	P3	124.3(4)
S2	N1	S1	125.3(3)	C44	C43	P3	116.6(4)
C2	C1	C6	118.6(4)	C45	C44	C43	119.5(5)
C2	C1	P1	121.4(4)	C46	C45	C44	121.5(5)
C6	C1	P1	119.7(3)	C45	C46	C47	119.1(6)
C3	C2	C1	120.3(5)	C46	C47	C48	120.9(5)
C4	C3	C2	120.7(5)	C47	C48	C43	119.9(5)
C3	C4	C5	119.5(5)	C50	C49	C54	118.9(5)
C4	C5	C6	120.4(5)	C50	C49	P3	119.9(4)
C5	C6	C1	120.5(5)	C54	C49	P3	121.1(4)
C8	C7	C12	119.0(4)	C49	C50	C51	119.9(5)
C8	C7	P1	122.9(3)	C52	C51	C50	120.4(6)
C12	C7	P1	118.0(4)	C53	C52	C51	120.1(5)
C7	C8	C9	119.5(4)	C52	C53	C54	120.5(6)
C10	C9	C8	121.4(5)	C53	C54	C49	120.1(5)
C11	C10	C9	119.3(5)	F1	C55	F3	109.8(6)
C10	C11	C12	120.1(4)	F1	C55	F2	107.0(6)
C11	C12	C7	120.7(5)	F3	C55	F2	107.6(6)
C18	C13	C14	118.9(4)	F1	C55	S1	110.7(5)
C18	C13	P1	117.8(4)	F3	C55	S1	111.8(5)
C14	C13	P1	123.2(3)	F2	C55	S1	109.8(5)
C15	C14	C13	120.3(4)	F6	C56	F4	108.9(7)
C16	C15	C14	120.3(5)	F6	C56	F5	107.7(7)
C15	C16	C17	119.6(5)	F4	C56	F5	108.6(7)
C16	C17	C18	121.4(5)	F6	C56	S2	111.4(6)
C17	C18	C13	119.5(5)	F4	C56	S2	109.2(5)
C24	C19	C20	119.0(4)	F5	C56	S2	111.0(6)

Anhang

7.2 Lebenslauf

Persönliche Daten

Name:	Alexander Okrut
Geburtsdatum:	03. Mai 1980
Geburtsort:	Pößneck
Staatsangehörigkeit:	deutsch
Familienstand:	ledig, keine Kinder

Ausbildung und beruflicher Werdegang

seit 10/2004	Promotion (Universität Karlsruhe)
	Thema "Ionische Flüssigkeiten als Reaktionsmedium zur
	Darstellung neuartiger Festkörper", Arbeitskreis Prof. C.
	Feldmann,
	Institut für Anorganische Chemie der Universität
	Karlsruhe
10/1999 - 08/2004	Chemiestudium (TU Dresden)
	Schwerpunkt Anorganische Chemie und
	Festkörperchemie
	Diplomarbeitsthema: "Untersuchungen zur Kristallzucht
	im System NaCl/SmOCl/SeO2"
	Abschluss: Diplom
08/1998 - 08/1999	Zivildienst
	Senioren- und Pflegeheim Pößneck
09/1986 - 07/1998	Schulausbildung
	Grundschule "Am Centbaumweg" Neustadt an der Orla
	Orlatalgymnasium Neustadt an der Orla
	Abschluss: Abitur

7.3 Publikationsliste

- [1] A. Okrut, P. Schmidt, M. Ruck, Z. Anorg. Allg. Chem. 2004, 630, 1750.
- [2] A. Okrut, C. Feldmann, Z. Anorg. Allg. Chem. 2006, 632, 409.
- [3] A. Okrut, C. Feldmann, Z. Anorg. Allg. Chem. 2006, 632, 2096.
- [4] A. Okrut, C. Feldmann, Z. Anorg. Allg. Chem. 2007, 633, 2144.
- [5] A. Okrut, C. Feldmann, Z. Kristallogr. NCS. 2008, 223, 21.
- [6] A. Okrut, C. Feldmann, Inorg. Chem. 2008, 47, 3084.

Danksagung

Ich möchte an dieser Stelle all den Leuten danken, die zum Gelingen dieser Arbeit beigetragen haben.

Meinem Doktorvater, Prof. Dr. Claus Feldmann möchte ich für die Bereitstellung des hochinteressanten Themas, die sehr guten Arbeitsbedingungen sowie für die Diskussionsbereitschaft und Unterstützung in jeglicher Hinsicht danken.

Mein Dank gilt weiterhin Andreas Luz und vor allem Katharina Roth für das Korrekturlesen dieser Arbeit.

Ich möchte allen danken, die mich mit ihrem Fachwissen und Methodenkenntnissen unterstützt haben: Helmut Goesmann für die Einführung in die Bedienung der IPDS I sowie für die Möglichkeit, dieses Gerät selbständig nutzen zu können, Herrn Dieter Müller für die Aufnahmen der Massenspektren, Marit Mai für die Unterstützung bei UV/VIS-Messungen, Herrn Dr. Eberhard Matern und Helga Berberich für die Aufnahme der NMR-Spektren, Marcus Roming und Susanne Matschulo für die Unterstützung bei der IR-Spektroskopie, Silvia Diewald für die EDX-Aufnahmen, Manola Stay und Sabine Lude für die Elementaranalysen.

Den Teams der Werkstatt, der Elektrowerkstatt, der Glasbläserei und der Chemikalienausgabe möchte ich für Ihre kompetente Unterstützung und die Versorgung mit "Material" danken.

Mein besonderer Dank geht an Manola Stay und Susanne Matschulo, die mir während der Anfertigung dieser Arbeit im Labor exzellent unter die Arme gegriffen haben.

Angela Pendl und Anette Baust danke ich für die äußerst angenehm unbürokratische Art ihrer Unterstützung.

Meinen Vertiefungspraktikanten Katharina Roth, Peter Kopecky, Michael Wolff und Sara Tavernar möchte ich für ihren Beitrag zu dieser Arbeit danken und natürlich für die fröhliche Zeit, die auch für mich bereichernd war.

Allen Betreuern des F-Praktikums danke ich für die schöne Zeit, besonders Jens Hartig für gemeinsames Windsurfen, Fußballschauen in Wiesloch und vieles mehr, sowie Thomas Schaub für Munchkin, Vogelbräu und bequeme Feierabendstühle im 3. Stock.

Meinen aktuellen und ehemaligen Kollegen möchte ich an dieser Stelle danken: Daniel Buchold für Hochzeiten, Gartenparties und Arthur Browns "Fire" drei Uhr nachts auf Maximallautstärke, Akbar Tellenbach für die kompetente Unterstützung und für das Erlebnis der Synthese von 50 g reinem Cäsium, Gunnar Bühler für "den Spind", Angie Pendl für Pilzberatung und Eierlikör, Judith Bräuer, Helmut Goesmann, Silvia Diewald, Manola Stay (Bud Spencer, Marienstrasse und so vieles mehr...), Elin "Hammi" Hammarberg für Frieschlienge, ihre Liebe zu Knut und die Bereicherung des badischen Wortschatzes, Nure "Big N." Alam, Christian "Heinrich" Zurmühl, Henriette "Henni" Gröger, Sabine Lude, Christian Zimmermann, Sabine Stolz, Peter Schmitt, Marit "Mette" Mai, Aksana Zharkouskaya, Monika "Antimony" Zellner, Anette Baust, Peter "Leidi" Leidinger, Fabian "Fabi" Gyger, Andreas Luz, Sarah van den Hazel, Walter Bensmann, David Heß, Silke Wolf, Susanne Matschulo, Katharina Roth, Jens Treptow, Michael Wolff für Daleks und Cybermen, Marcus Roming für "Es gibt für jede Situation mindestens ein passendes Simpsons-Zitat", unsere Kunstwerke und viel gemeinsame Sinnlosigkeit, nicht nur im Weltraum.

Den Arbeitskreisen Breher, Schnöckel, Radius, Fenske, Roesky, Schnepf und Powell für das tolle Arbeitsklima im Institut.

Und natürlich meiner Familie und Julia für ihre Unterstützung.