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Abstract. The uniqueness and existence of the closest point projection procedure (CPP)
widely used in contact mechanics as well as in other fields of computational mechanics, e.g.
in plasticity, are analyzed in for various contact situations. Starting from C2-continuous
surfaces ”a proximity domain” allowing a unique projection onto a surface is created based
on the geometrical properties of a given surface. It is shown that in order to construct
a continuous projection domain for arbitrary globally C1, or C0–continuous surfaces, the
projection algorithm should be generalized and also include a projection onto a curved edge
and onto corner points.
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1 INTRODUCTION

The closest point projection procedure is often introduced as a numerical scheme
to compute convective coordinates of a point projected onto a surface. It appeared in
early publications for finite element models either as a result of the linearization of non-
penetration conditions, see Kikuchi and Oden [1], or as a result of the split of a dis-
placement vector into normal and tangential direction, see Hallquist et.al. [2], the closest
point has become the first necessary step in almost all applied methods in computational
contact mechanics, e.g. such as Penalty, Mortar and Augmented Lagrangian Methods.
Despite the enormous number of publications on contact mechanics, there are only a few
publications covering to some completeness the problem of uniqueness and existence of
the closest point procedure for arbitrary approximations of the contact surfaces as well
as describing effective numerical algorithms to overcome non-trivial problems.

In the current contribution, we provide analytical tools allowing to create, a-priori,
proximity domains of contact surfaces from which a given contact point is always uniquely

projected. This approach is based on the geometrical properties of contact surfaces
exploiting the covariant description for contact problems developed in Konyukhov and
Schweizerhof [3], [4].

2 Formulation of the closest point projection procedure in geometrical terms

The closest point projection problem is usually formulated as an extremal problem

||r − ρ(ξ1, ξ2)|| → min, −→ (r − ρ) · (r − ρ) → min, (1)

where ρ = ρ(ξ1, ξ2) is an arbitrary parameterization of a surface which can be given
either by e.g. a finite element, or by a spline, or by a NURBS approximation. Problem
(1) is then solved mostly numerically. However, then a fundamental problem arises: Does
the solution of (1) exist? And, if it exists, then, is it unique for any arbitrary surface
approximation?The direct and strict answer is fully covered by the application of the famous theorem
from the convex analysis to problem (1).

If the function

F(ξ1, ξ2) =
1

2
(r − ρ) · (r− ρ) (2)

is convex in a domain (ξ1, ξ2) ∈ D, then the solution of problem (1) exists and is unique
in this domain.

Using this criterion we can focus on the geometrical properties of the surfaces. As-
suming first C2-continuous surfaces, we can analyze the second derivative of the function
F
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, (3)
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Figure 1: Closest point procedure and definition of the spatial coordinate system.

where a short notation for the partial derivatives has been introduced as

ρi =
∂ρ

∂ξi
, ρij =

∂2
ρ

∂ξi∂ξj
. (4)

Having introduced a 3D spatial coordinate system related to the surface coordinate sys-
tem, see Fig. 1, as follows:

r(ξ1, ξ2, ξ3) = ρ + nξ3, (5)

eqn. (3) is transformed as

F′′ =

[

a11 − ξ3h11 a12 − ξ3h12

a21 − ξ3h21 a22 − ξ3h22

]

, (6)

where aij and hij are covariant components of the metric resp. curvature tensors.

3 Proximity criteria for different surfaces

”A proximity domain” is created as a domain where the second derivative is positive
F′′ > 0. Surprisingly, the analysis of positivity in eqn. (6) has a geometrical interpretation
leading to the Sylvester criteria enforcing the positivity in eqn (6) which in due course
can be written in terms of principal curvatures k1, k2 as:

(

1

ξ3
− k1

)

> 0

(

1

ξ3
− k1

)(

1

ξ3
− k2

)

> 0.

(7)
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Within the last transformation, it is assumed that the coordinate ξ3 is a positive value
within the normal vector direction n, as chosen in eqn. (5). Thus, zones with positive
and negative coordinates ξ3 should be distinguished for various geometrical structures
of surface points. The domains are different for an elliptic point with k1 · k2 > 0, for a

R
ξ 3 > 0

ξ 3 < 0

R
n

1

2

ρ
2

ρ
1

Figure 2: Elliptic point. Structure of the surface and projection domain assuming C
2-continuity.

hyperbolic point with k1 ·k2 < 0, a parabolic k1 = 0, k2 6= 0, or for a flat point k1 = k2 = 0.
Exemplarily we show the structure for an elliptic point for the convex part, keeping in
mind eqn. (7),

Ω(ξ1, ξ2, ξ3) := {r = ρ + ξ3n, where 0 < ξ3 < min{
1

ξ3

1

,
1

ξ3

2

}, (8)

see Fig.2. For the concave part with ξ3 < 0 the criteria leads to an infinite domain:

Ω(ξ1, ξ2, ξ3) := {r = ρ + ξ3n, with −∞ < ξ3 < 0}. (9)

Domains for hyperbolic with k1 · k2 < 0, and parabolic points k1 = 0, k2 6= 0, with are
constructed in the similar fashion. A flat point (besides the case k1 = k2 = 0 globally on
the surface) requires the analysis of higher derivatives.

It is necessary to define additional projection procedures in order to create a proximity
domain for the 3D space allowing a continuous mapping of any path laying inside. These
projections include a projection onto an edge and onto a corner. The idea is illustrated in
Fig. 3 for the contact surface of a hexaeder focusing on the surfaces containing the corner
point O.4 CONCLUSIONS

1. The fundamental problems of existence and uniqueness of the closest point projec-
tion procedure are investigated.

2. The consideration of the differential properties allows to create ”projection domains”
from which a projection of any point is uniquely defined.
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Figure 3: Hexaedral contact surface in the vicinity of O. A continuous proximity domain consists of
domains for sides, edges OA, OB, OC and, finally, of a domain for the corner point O.

3. For arbitrary C0 continuous surfaces a projection routine should be generalized to
include projections onto objects of lower geometrical dimensions, such as curved
lines and points.
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