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Abstract.

A numerical model for anisotropic contact interfaces including adhesion and
friction is discussed and illustrated by numerical examples. Particular attention
is paid to the validation of the proposed model via experiments, where the

influence of the anisotropic interface on a path of a sliding block is checked. It
is shown that with the classical orthotropic Coulomb type friction model some

particular kinematic effects cannot be included, while the proposed orthotropic
adhesion – orthotropic friction interface model allows to qualitatively describe

the observed phenomena.

1 INTRODUCTION

Smoothness and isotropy of contacting body surfaces can vary considerably
for different contact problems. Classifying the surfaces roughness two types

can be distinguished: a) surfaces with randomly distributed asperities, and b)
asperities with algorithmic structure, e.g. the considered surface shows different
macro properties in different directions.

Mechanical characteristics for the associated contact problems of the first
type a) are obtained via statistically distributed asperities. Statistical analysis

of a real rough surface and experimental aspects of its measurements have been
developed in a series of publications: some first publications as Longuet-Higgins

[1], Greenwood and Williamson [2] etc. and more recently by Greenwood [3].
A comparative analysis of these surface models is presented in McCool [4].

Such experimentally proved models later have been incorporated into finite
element models, see e.g. Wriggers and Zavarise [5], Buczkowski and Kleiber
[6]. More advanced numerical analyses including homogenization methods and

multi-scaled modeling are presented in Bandeira et. al. [7], [8].
Constitutive modeling is applied for problems of the second type b). Such

models are based on the generalization of Coulomb’s friction law into the
anisotropic domain. One of the first models has been proposed by Michalowski
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and Mroz [9] considered the sliding of a rigid block on an inclined surface. A

model of orthotropic friction has been analyzed and consistently developed in
Zmitrowicz [10], see also Curnier [11]. Various cases of anisotropy were pre-

sented in He and Curnier [12] based on the theory of tensor function represen-
tations and in Zmitrowicz [13] based on the consideration of a relative sliding

velocity. In the latter contribution, a classification of anisotropic surfaces based
on the number of eigenvalues of the friction tensor has been proposed.

When looking at practical problems concerning friction there are some situ-

ations in which the tangential elasticity of the contact surfaces should be taken
into account. Such a model including anisotropy for both friction and adhesion

has been developed and analyzed numerically in Konyukhov and Schweizerhof
[14] as a generalization of the computational model for isotropic friction de-

veloped in [15]. In the current contribution we discuss the validation of this
model with a particular experimental test. The contact surfaces are chosen to
posess elastic properties, thus a corrugated rubber mat is taken. The results

of the experiments show the necessity to use a computational model includ-
ing anisotropy for both friction and adhesion. Thus, some originally surprising

experimental phenomena, as e.g. geometrical isotropy despite obvious physical
anisotropies can be explained only within the proposed model, though the latter

shows rather qualitative correlations than quantitative ones.

2 EXPERIMENTAL INVESTIGATION

A series of experimental tests is performed in order to investigate the global
characteristics of the system ”block on a rough surface”. The rough surface has

visually a clear periodical structure and, therefore, the mechanical model of an
observable orthotropic structure. The focus is on the kinematical behavior of
the block driven by a constant force together with the measurement of force

components leading to this motion. Therefore, the main measurable charac-
teristics in these experiments are global forces and trajectories of the block,

which create a main basis for further calibration of computational models for
orthotropic friction. For the judgment of the results Coulomb like models are

assumed a-priori to be valid for the global behavior, i.e. that the tangential
driving global force F is proportional to the normal reaction N : F = f(x, y)N ,

where a function f(x, y) describes the orthotropic properties of a surface.
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2.1 Experimental setup

A massive block positioned on a plane is moved with constant velocity by a

sliding carriage guided by rods on both sides, see Fig. 1. The block made from
steel has dimensions 110 × 110 mm in plane and 20 mm height. The mass is

m = 1.875kg. The contact surface between the sliding carriage and the block is
covered with a Teflon strip to minimize the friction between them due to relative

sliding. In contrast to this, the contact surface of the steel block is covered by
a suede-like material with dimensions 90 × 90 mm to increase the interaction
between the block and the basement. A constant driving velocity is achieved by

a step motor acting on a rack, which allows a straight displacement of 500 mm.
The contact force between the rack and the sliding carriage is measured by a

force sensor. The displacement of the block during sliding is captured by an
optoelectronic device which is installed on a tripod above the surface. The

corresponding LED (light-emitting diode) is fixed on the block.

Figure 1: View on experimental setup.

For the first set of experiments an aged rubber mat (about 10 years old)
is taken. The frictional orthotropy is given by the corrugation of the contact

rubber surface with parallel ripples possessing in the cross section a periodical
structure, see CAD model in Fig. 2. The sequence of ripples is small in com-

parison to the dimension of the contact area of the block. The orientation of
the ripples with respect to the fixed driving direction can be varied from 0o up
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to 90o by repositioning the mat, see Fig. 3.

Figure 2: Geometrical structure of the corrugated rubber mat. CAD model.
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Figure 3: Orientation of the orthotropy with respect to the fixed direction of the velocity: a) α = 0o, b)
α = 0o < α < 90o, c) α = 90o. The trajectory of the block is a straight line declined at angle ϕ.

2.2 Experimental results

At the beginning some experiments are performed to find out the mechanical
properties of the system. All experiments were repeated twice with driving
velocities of the carriage v = 12.2 cm/sec and v = 24.4 cm/sec. First of all,

the sliding carriage was moved without the block in order to define the internal
resistant force Fint. Then experiments have been made with the sliding block

to define the resulting driving force in the case α = 0o and α = 90o respectively.
These measurements together with subtracting the internal force lead to the

definition of friction coefficients µ1 and µ2 corresponding to angles α = 0o and
α = 90o. Assuming Coulomb friction the friction coefficients µi were computed
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as

µ1 =
Fα=0o − Fint

N
=

12.50 − 5.00

1.875 · 9.806
= 0.408 ≈ 0.41

µ2 =
Fα=90o − Fint

N
=

16.50− 5.00

1.875 · 9.806
= 0.625 ≈ 0.63. (1)

The values are confirmed by repeated experiments with different velocities v =

12.2 cm/sec and v = 24.4 cm/sec. The coefficient of friction proved to be
independent on the applied velocity within the applied range.

The next set of experiments is made by setting the angle α varying in steps

from α = 0o up to α = 90o. The focus lies on the definition of the trajectory
of the sliding block. In all cases, the trajectory is defined as a straight line

inclined with angle ϕ = ϕ(α), see sketch in Fig. 3(b). The experiments for each
angle α are repeated ten times showing negligible variance in the measured

value, afterwards, the mean value ϕ was taken for the representation. It was
also detected that the inclination angle is influenced by the sliding velocities.

Combining all results leads to the diagram in Fig. 4 showing the dependency
of the inclination angle ϕ on the orientation of the orthotropy given by the
angle α of the ripples. In both cases v = 12.2 cm/sec and v = 24.4 cm/sec the

maximum of the inclination angle ϕ is located in the range of small angles α,
while the ripples are slightly inclined with respect to the angle α = 0.
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Figure 4: Observed mean value of the inclination angle ϕ vs. orthotropy angle α. Experimental results for
different velocities of the block.
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2.2.1 Controversial experimental results

As a fairly controversial result detected in the experiment a large sensitivity to

the elastic properties of the rubber ripples was obtained. Thus, while repeating
the last set of experiments for a new rubber mat with a notably higher elasticity

in the ripples the inclination angle ϕ was only varying in a very small range
about 0 ≤ 2o. However, the measurement of forces still showed differences

between the global coefficients of friction µ1 and µ2. One explanation may
be that friction orthotropy is still present, but the kinematical effect of the
orthotropic mat disappears, which may be confirmed better by micro- or meso-

scopic models.
As we show later, the orthotropic friction model is not capable to describe

this effect from the macro-model point of view, but the orthotropic adhesion –
orthotropic friction interface model allows to qualitatively describe the observed

phenomena.

3 ANALYSIS OF VARIOUS MODELS FOR ANISOTROPIC FRIC-

TION AND APPLICABILITY TO THE OBSERVED PHENOMENON

In this section, the range of applicability of a classical model of orthotropic

friction, based only on the orthotropic friction tensor and its generalization
including orthotropy for both friction (inelastic region) and adhesion (elastic
region) is discussed. The necessity to assume in addition elastic properties for

the surface will be shown.
As a first simple model which can be investigated analytically a material

point on a plane is considered. According to the experimental tests we assume
a quasi-statical motion of the material point A with weight P loaded by the

force F acting along the X1-axis, see Fig. 5. The orthotropic properties of the
surface are defined in the coordinate system ξ1, ξ2 inclined with an angle α to
the original coordinate system. During quasi-statical loading, point A is moving

along a line with velocity vector v inclined with an angle ϕ. The reaction force
T with Cartesian components T1, T2 is acting on the point. The values of com-

ponents depend on the hypothesis concerning the orthotropic friction law. Here
two variants of the orthotropic law are considered: the well known orthotropic

Coulomb friction law and a contact interface model including orthotropy for
both friction and adhesion, see Konyukhov and Schweizerhof [14].
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Figure 5: Motion of material point A on an orthotropic plane loaded by force F.

The equilibrium equations for the system in Fig. 5 are given as:






X1 : F + T1 = 0;

X2 : T2 = 0;
X3 : −P + N = 0.

, (2)

where N is the reaction force along the X3 axis.

The principle of maximum dissipation is applied to obtain the sliding force T. This
principle requires that the dissipation function Ψ reaches its maximum

Ψ := ∆rsl · T = ∆xi
slTi −→ max, (3)

where ∆rsl is an increment of the sliding vector. The dissipation function Ψ
must also satisfy the sliding condition, formulated via inequalities, reflecting

the assumed friction law, e.g. Coulomb’s law.

3.1 Orthotropic Coulomb friction law

First, we recall the standard case known in literature, see e.g. [9], [11], [13],
where orthotropy is defined only for the sliding forces. The model is formulated

according to the generalization of the sliding criteria. The yield function for
the Coulomb friction law is then written as

Φ :=
√

T · FT− |N | =
√

TiTjf ij − |N |. (4)

The sticking and the sliding conditions are defined by the rule:

Φ < 0 → sticking; Φ ≥ 0 → sliding. (5)

According to equations (4-5) the material point is not moving during sticking
and the motion starts when Φ = 0. The components of the friction tensor f ij
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are defined for the orthotropy on the plane via e.g. the spectral representation
plane as follows:

F = QαΛFQT
α = (6)

=

[
cos α − sin α

sinα cos α

]

·






1

µ2
1

0

0
1

µ2
2




 ·

[
cos α − sin α

sinα cos α

]T

=









1

µ2
1

cos2 α +
1

µ2
2

sin2 α (
1

µ2
1

− 1

µ2
2

) sinα cosα

(
1

µ2
1

− 1

µ2
2

) sinα cosα
1

µ2
1

sin2 α +
1

µ2
2

cos2 α









,

where µi > 0 are friction coefficients along the axis ξi inclined at angle α.
The standard method of the convex analysis is applied to obtain the sliding

forces with regard to the principle of maximum dissipation (3). Thus, the

Lagrange function with the multiplier λ is specified as

L := −Ψ + λΦ = −∆xi
slTi + λ

(√

TiTjf ij − |N |
)

(7)

together with the complementary Kuhn-Tucker conditions:

λ ≥ 0, λΦ = 0. (8)

The optimality conditions
∂L
∂T i

= 0 lead to the following sliding displacement

components:

∆xi
sl = λ

Tjf
ij

√

TkTlf kl
. (9)

Now, taking into account the second equilibrium equation (2) tanϕ can be

determined:

∆x1 = λ
T1f

11

√

TkTlf kl
,

∆x2 = λ
T1f

12

√

TkTlf kl
,







=⇒ tanϕ =
∆x2

∆x1
=

f 12

f 11
, (10)

and, after transformations taking into account the values determined in eqn. (6),
we finally obtain:

tanϕ =
(µ2

2 − µ2
1)

µ2
2 + µ2

1 tan2 α
tanα. (11)
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3.2 Model for orthotropic contact interfaces including both adhesion and friction

An alternative model including orthotropy for both adhesion and friction can be

proposed including the elastic-plastic analogy and the return-mapping scheme.
This model is investigated theoretically and developed into the computational

model by Konyukhov and Schweizerhof [14]. Then the problem is formulated
in continuous form as follows

a) The relative velocity vector of the contact point is decomposed additively
into an elastic part vel and a sliding part vsl

vr = vel + vsl. (12)

b) The elastic part vel is responsible for reversible deformations (adhesion)
and satisfies the evolution equations

dT

dt
= Bvel. (13)

We have to remark that an adhesion tensor B describing orthotropic prop-

erties for the elastic region is introduced.

c) The tangential force T must satisfy the following inequalities defined via
the yield function, which in tensor form can be written as:

Φ :=
√

f ijTiTj − |N | =
√

T · FT− |N | : (14)

• if Φ < 0 then the contact point is inside the elastic domain and T = Tel

is an elastic force,
• if Φ = 0 then the contact point is sliding and T = Tsl is a sliding force.

d) The power of the sliding forces, described by the energy dissipation function
D achieves its maximum:

D := ẋi
slT

sl
i = vsl · Tsl, D −→ max . (15)

The principle of maximum dissipation requires that the plastic dissipation
function D subjected to the inequality conditions (14) achieves a maximum. For

the computational treatment, the model is reformulated in incremental

form and then the return-mapping scheme is applied. The incremental analog

is given as
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i) The full incremental displacement vector ∆xi = ∆xi
(n+1) − ∆xi

(n) is decom-

posed additively into an elastic increment ∆xi
el and into a sliding increment

∆xi
sl:

∆xi = ∆xi
el + ∆xi

sl. (16)

ii) The elastic increment ∆xi
el is computed via the incremental evolution equa-

tions, for which the tensor B is assumed to be constant:

T tr
i (n+1) = bij∆x

i (n+1)
el = bij(x

i (n+1)
el − xi (0)). (17)

iii) In order to decide whether the trial force Ttr is a sliding force Tsl or a
sticking force Tst the yield condition is checked in each load step:

Φtr :=
√

f ijT tr
i (n+1)T

tr
j (n+1) − N(n+1) (18)

• If Φtr < 0 then the trial force is a real sticking force T = Ttr.

• If Φtr ≥ 0 then the sliding force must be obtained via the maximum of
the energy dissipation function given in incremental form.

iv) The incremental analog of the continuous formulation eqn. (15) is then:

D
(n+1)
min := −∆rsl · Tsl

(n+1) = −∆xi
slT

sl
i (n+1), D

(n+1)
min −→ min . (19)

We recall the results obtained in [14]. There the sliding force Tsl can be
defined after the necessary transformations as

Tsl = − BFTtr

√
BFTtr · FBFTtr

|N |. (20)

Now, we must follow the return-mapping scheme in order to define the in-
clination angle ϕ. The problem is considered as a displacement driven one,

therefore the incremental displacement ∆r = {∆x1, ∆x2} is applied. Thus, at
each load step the sliding force in eqn. (20) is computed as:

Tsl = − BFB∆r√
BFTtr · FBFTtr

|N | = A∆r. (21)

Now, if sliding is assumed, the second component of the sliding force T2 in the
formulation depicted in Fig. 5 becomes zero, see equilibrium eqn. (2). Thus,

the displacement vector components ∆x1, ∆x2 are coupled via the equation:

T2 = 0 =⇒ a21∆x1 + a22∆x2 = 0, (22)
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leading to the equation for the angle ϕ:

tanϕ =
∆x2

∆x1
= −a21

a22
. (23)

3.2.1 Analysis of the model by general spectral representation

In order to calibrate later a theoretical curve ϕ(α) from the experimental tests

presented in Fig. 4, we consider a spectral decomposition of the matrix A given
in eqn. (21) as

A = [aij] =





λ2
1 cos2 α + λ2

2 sin2 α (λ2
1 − λ2

2) sinα cos α

(λ2
1 − λ2

2) sinα cosα λ2
1 sin2 α + λ2

2 cos2 α



 , (24)

leading together with the condition (23) to the observed sliding angle ϕ defined
as

tanϕ = −a21

a22
= −(λ2

1 − λ2
2) sinα cos α

λ2
1 sin2 α + λ2

2 cos2 α
= −(λ2

1 − λ2
2) tanα

λ2
1 tan2 α + λ2

2

. (25)

The analysis for extremal values gives us

d tanϕ

d tanα
= 0, =⇒ (λ2

1 − λ2
2)(λ

2
2 − λ2

1 tan2 α) = 0. (26)

The first bracket leads to the isotropic case, whereas from the second one the
following critical value is obtained:

tanαext =
λ2

λ1
, (27)

leading to the extremum of the observed inclination angle ϕext for the motion
of the point

tanϕext =
λ2

2 − λ2
1

2λ1λ2
. (28)

Considering the last equation (28) we can obtain a critical ratio of the eigen-

values

ratioext =
λ1

λ2
= − tanϕext ±

√

tanϕ2
ext + 1. (29)

This value will be used during the validation procedure.

For further considerations we adopt the spectral decomposition also for the
adhesion tensor
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B = QαΛBQT
α = (30)

=

[
cos α − sin α
sinα cos α

]

·
[
−ε1 0
0 −ε2

]

·
[

cos α − sinα
sin α cosα

]T

=

=

[
ε1 cos2 α + ε2 sin2 α (ε1 − ε2) sin α cosα
(ε1 − ε2) sinα cos α ε1 sin2 α + ε2 cos2 α

]

,

where εi > 0 are stiffnesses along the axis ξi inclined at angle α.

3.2.2 Mechanical interpretation of the model

As is known, the mechanical interpretation of the regularized friction model
assuming elastic deformations is a spring-slider system. As generalization of

this according to our model, we consider a material point with two spring-slider
systems, see Fig. 6. The properties of these system are the following: εi –
stiffness of ith spring, µi – coefficient of friction for ith sliding device. Each

system i is constrained to move parallel along the axis Xi respectively. The
constant force F inclined with angle α to the coordinate axis X1 is applied to

the point. Then the trajectory of the point lies either above the force line or
below the force line depending on the ratio of eigenvalues λ1 and λ2 as discussed

later.

4 CALIBRATION OF PARAMETERS FOR DIFFERENT MOD-

ELS

As a representative parameter we take the curve ϕ(α) known from the ex-

periment, see Fig. 4. In addition, we distinguish two orthotropy angles: α –
orthotropy angle for the adhesion tensor B and β – orthotropy angle for the
friction tensor F. The following test computations are performed for calibration

purposes:

1. The orthotropic friction model as discussed in Section 3.1.

2. The interface model including orthotropy for both adhesion and friction as

discussed in Section 3.2 with the specific case of isotropic adhesion B =
−εE.

3. The interface model including orthotropy for both adhesion and friction

with the specific case of isotropic friction F =
1

µ2
E.
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Figure 6: Mechanical interpretation of the orthotropic adhesion – orthotropic friction model. A material point
on a plane with a two spring – two slider systems loaded by force F in plane.

4. The interface model including orthotropy for both adhesion and friction
with the specific case of coinciding orthotropy angle α = β.

5. The interface model including orthotropy for both adhesion and friction
with the specification of the friction orthotropy angle β by 90o degrees as
β = α + π/2.

The validation is started from the simple model including only orthotropic

friction as discussed in Sect. 3.1. Our aim is to find out a case describing qual-
itatively the experimental results. Therefore, we perform a test computation

with the following friction coefficients µ1 = 0.1, µ1 = 0.5. In Fig. 7 the results
are depicted. In addition, at an extremal angle α = arctan µ2

µ1

= (78.69o) the

maximum value ϕmax = arctan
µ2

2 − µ2
1

2µ1µ2
= (67.38o) is computed by analyzing

the shape of a curve. It can be seen, that the point is moving into the direc-

tion with a smaller friction coefficient, which contradicts with the experimental
curve, see Fig. 4.
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Figure 7: Computed inclination angle vs. orthotropy angle. Case 1: Purely orthotropic friction model.

Among all possible cases, the last model 5 is representing the results close

to experiments. We define a new angle β̂ as a main angle of surface asperities
in the experiment, see Fig. 8. The orthotropy angle β for the friction tensor is

shifted by 90o degrees to β = α + π/2 with respect to the orthotropy angle α
for the adhesion tensor. The structure of the tensor A is given as follows:

QT
αQβ = (31)

=

[
cosα − sin α

sin α cos α

]T

·
[

cos β − sin β

sin β cos β

]

=

=

[
cosα − sin α

sin α cos α

]T

·
[
− sin α − cosα

cos α − sin α

]

=

=

[
0 −1

1 0

]

.

Then, the matrix A is derived as

A = BFB = QαΛB QT
αQβ

︸ ︷︷ ︸
ΛF QT

βQα
︸ ︷︷ ︸

ΛBQT
α (32)

= Qα







ε2
1

µ2
2

0

0
ε2
2

µ2
1







QT
α ,

leading to the following eigenvalues λ1 = ε1/µ2 and λ2 = ε2/µ1 in eqn. (24).

The computation with ε1 = 104 and ε2 = 1 · 103 and µ1 = 0.1, µ2 = 0.5 gives
the curve ϕ vs. β̂ depicted in Fig. 9, which quantitively has a shape similar

14



to the experimental one. The extremal values are found as β̂ext = 26.56o and

ϕmax = 36.87o.
Thus, summarizing the numerical investigations and the comparison to the

experiments it becomes obvious that for the surface as given in the experiment
it is necessary to apply the orthotropic adhesion – orthotropic friction interface

model.

X1

X
2

α
ξ1

O

ξ

2µ

2 µ1

β

β^

Figure 8: Definition of the experimentally observed angle β̂, by an orthotropy angle α for the adhesion tensor
and an orthotropy angle β for the friction tensor.
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Figure 9: Orthotropic adhesion – orthotropic friction interface model. Computed inclination angle ϕ vs. rede-
fined orthotropy angle β̂. Case 5: orthotropic adhesion – orthotropic friction with angles β = α + π
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.
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4.1 Calibration of the theoretical curve by extremal values

As found from the proposed model, the inclination angle ϕ depends only on the

ratio of eigenvalues λ1/λ2, see eqn. (25). This ratio contains information also
about the ratio of adhesion parameters ε1/ε2:

ratioext =
λ1

λ2
=

ε1

ε2
· µ1

µ2
. (33)

Since, the friction coefficients µ1, µ2 are defined via the measurement of forces in
the experiment, the inclination angle ϕ depends only on the ratio of eigenvalues

ε1/ε2. Thus, we will use eqn. (25) for calibration of the model. Calibration is
provided according to a least square fit method. The friction coefficients have

been determined previously to µ1 = 0.408, µ2 = 0.625.
The maximum value for the angle ϕext defined in eqn. (29) is used for cali-

bration purposes. Taking e.g. the maximum angle ϕmax = 11.5o measured for
the velocity 12.2 cm/sec the ratio of the eigenvalues given in eqn. (29) becomes

ratioext =
λ1

λ2
= −0.20345± 1.02048 = 0.817, (34)

where only the positive solution is taken. The ratio of the stiffness coefficient

is then obtained as

ε1

ε2
=

µ2

µ1
· ratioext =

0.625

0.408
· 0.817 = 1.251 (35)

A more mathematically precise least square fit method leads to the statement
derived from eqn. (25). The following sum must be minimized:

N∑

k=1

{

tanϕ(k) +
(λ2

1 − λ2
2) tanβ(k)

λ2
1 tan2 β(k) + λ2

2

}2

=

N∑

k=1

{

tanϕ(k) +
(r2

λ − 1) tanβ(k)

r2
λ tan2 β(k) + 1

}2

−→ min,

(36)
where ϕ(k) are measured declination angles vs. applied orthotropy angles α(k)

and β(k) = π/2−α(k). Minimization with regard to the variable r2
λ leads to the

following expression:

r2
λ =

∑N
k=1

{
tanβ(k)(1 + tan2 β(k))(tanβ(k) − tanϕ(k))

}

∑N
k=1

{
tanβ(k)(1 + tan2 β(k))(tanβ(k) + tanϕ(k))

} . (37)

Computation according to this rule for the case with the velocity 12.2 cm/sec

leads to the ratio ratioext = 0.814 (results close to those obtained with the
maximum rule in eqn. (34).

The curves obtained for the various cases including the experimental results
are shown in Fig. 10 and do not exhibit a good quantitively correlation. This
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can be explained by the fact that only a simple linear elastic model for adhesion
was exploited, while the experimental test was performed with rather nonlinear

rubber materials. Nevertheless, it seems to be important to consider fairly com-
plex models including orthotropy for the adhesion and for the friction in order

to describe the observed phenomena correctly. This becomes obvious especially
for the description of the controversial experimental result, see Sect. 2.2.1,
where for clearly geometrically anisotropic surfaces isotropic behavior was found

(in the case with a new (or young) rubber).
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Figure 10: Observed inclination angle ϕ vs. redefined orthotropy angle β̂. Comparison of experimental and
computational results for the orthotropic adhesion – orthotropic friction model. Calibration by the
least square fit method (LSF).

17



5 ACKNOWLEDGMENTS

We thank mechanics master W. Wendler for the careful preparation and per-

forming of the experiments. His actions were very creative and are greatfully
acknowledged. We also thank the DFG for the support given by grant SCHW

307/18-2.

6 CONCLUSIONS–OUTLOOK

A validation process for a particular contact problem with orthotropic contact
surfaces possessing the elastic properties is discussed. It was shown in experi-

ments that the classical model of orthotropic friction does not lead to a good
correlation and cannot describe the particular phenomena when a sliding block

shows isotropic behavior. A good qualitative result however can be achieved
with the model involving both orthotropy for adhesion and for friction. The
key to produce results with a closer correlation from our point of view can only

be a more general law for adhesion as well as for friction. Thus, a more complex
elastic law (e.g. Ogden material law for the 2D case) could be taken for the

adhesion region together with a more complex friction law for the friction region
(e.g. see the proposals of He and Curnier [12] and recently Zmitrowicz [16]).

The calibration process, in due course, can then be supported by experimental
investigations as well as by numerical tests involving homogenization processes

and multi-scale techniques.
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