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Abstract:

Although nowadays inflatable tubular beams are often used in the field of civil engineering, by now there
are only few publications dealing with finite deformation inflatable beam elements, see e.g. [1], [2] and
[3]. All formulations of inflatable beams have several assumptions in common, as constant cross sections
throughout the deformation, a constant internal gas pressure and the negligence of circumferential stres-
ses. These assumptions have to be validated either by experiments or numerical analysis. In the current
contribution beam-like structures are investigated using a finite element shell or membrane formulation
and featuring a volume dependent gas loading, see e.g. [5] and [4]. In general the formulation substitutes
the internal gas pressure by an energetically equivalent volume dependent loading and thus enables to
check for potential gas pressure changes during the deformation process of the inflated beam as a conse-
quence of volume changes. Further local deformations as occurring in the vicinity of supports or almost
single loads can be considered. In this paper the focus will be only on the initial assumption of the beam
theory that the biaxial stress state is neglected.

1 Mechanics of Inflatable Beams

The mechanics of the inflatable beam element are only briefly mentioned here. A more detailed
description can be found in the literature, e.g. [3]. A virtual work approach is chosen for the
description of a state of equilibrium using δEel as the virtual elastic potential, δWg as the virtual
work of the internal gas pressure and δWext as the virtual work of the external forces.

δE = δEel
− δWg

− δWext = 0 (1.1)

1.1 Kinematics

The beam element is supposed to feature Timoshenko
kinematics, with rotation ϑ of the cross section. The
position vector of an arbitrary point P̂ can be given
in terms of the displacement u of a point P on the
center line as follows:

x̂ =







X1 + u1 − ∆X̂2 sin ϑ

X2 + u2 − ∆X̂2(1 − cos ϑ)

X3 + X̂3






(1.2)

The Green-Lagrange strain tensor E is set up using
the deformation gradient F .

E =
1

2

(

F
T
F − I

)

, with F =
∂x̂

∂X̂
(1.3)
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Bild 1.1: Kinematics of Timoshenko
beam
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Thus, assuming a hyperelastic material law and neglecting stresses in circumferential direction,
the variation of the elastic potential is written as:

δEel =

∫

B

S : δEdV (1.4)

1.2 Virtual work of gas pressure

The virtual work of the internal gas pressure p can be described using the normal n on the
surrounding wetted surface and a surface integral. It composes of a part δWg

◦ , which is associated
to the curved tubular surface and a part δWg

∃
, associated to the end cap of the beam.

δWg = p

∫

A

δû · ndA = δWg
◦ + δWg

∃
(1.5)

The differential area vector ndA on the tubular surface is given by the vector cross product of
the two tangential vectors x̂,1 and x̂,2 on the curvilinear geometry of the beam (see figure 1.2).
Assuming a cross section A0 with constant radius R0 throughout the deformation, an a priori
integration in circumferential direction ξ2 can be performed, using ∂/∂ξ2 = 1

R0
(·),ϕ. With (·),1

denoting the derivation to the convective coordinate ξ1, the virtual work of gas pressure for the
tubular domain part yields

δWg
◦ = pA0

∫

l

sinϑϑ,1δu1 − cos ϑϑ,1δu2

+ (cos ϑu2,1 − sinϑ(1 + u1,1)) δϑdX1 . (1.6)
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Bild 1.2: Curvilinear coordinates
ξ1, ξ2 on tubular domain part ◦

The normal vector n on the end cap follows from figure 1.3
to

n = [cos ϑ, sin ϑ, 0]T (1.7)

and thus the virtual work of gas pressure for the end cap
part:

δWg
∃

= pA0 (δu1 cos ϑ + δu2 sin ϑ)
∣

∣

∃
(1.8)
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Bild 1.3: Kinematics on end
cap ∃

Subsequent linearization and discretization of the center line deflections u and the cross section
rotations ϑ yield a finite element formulation for a finite inflatable beam element, which sub-
sequently will be compared with a 3D membrane formulation featuring volume dependent gas
loading (see also [4]).

2 Numerical Examples

For the verification of the beam model an inflated cantilever (initial length L0 = 1000mm, initial
radius R0 = 30mm, thickness t = 1mm and Young’s modulus E = 100MPa) has been chosen.
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To investigate the influence of the biaxial stress state in the membrane the computation was
performed with Poisson ratios ν = 0.0 and ν = 0.4. As initial values for the beam radius, the
current radius R of the 3D membrane model in the deformed configuration has been taken.
Comparing the horizontal tip displacement after the inflation process (see table 2), we find that
in case of ν = 0.4 the beam solution with ū = 171.6mm is far from the 3D membrane solution
with ū = 75.6mm. Neglecting the lateral contraction by using ν = 0.0 both tip displacements
are in adequate agreement. Further, it could be observed that the load deflection behavior
for a subsequent transversal tip loading of F = 2N leads in the case for ν = 0.0 to a poor
approximation, which is due to the fact that the finite beam element behaves too stiff. The
surprisingly good agreement between the load deflection curves in the case of ν = 0.4 is only by
accident, because the overestimation of the bending moment due to a too large ū = 171.6mm
is compensated by the higher stiffness of the beam model. Hence it can be stated that the
negligence of the biaxial stress state is the major source of error in the simplified beam model
and must be overcome by e.g. an additional energy term in the virtual work approach. But, as
also shown in the literature, [3] the beam model is at least applicable for small deflections.

gas pressure membrane solution beam solution load deflection curve

ν = 0.4 0.1061 MPa 75.6 mm 171.6 mm good
ν = 0.0 0.1165 MPa 167.1 mm 190.2 mm poor

Tabelle 2.1: Horizontal tip displacements ū after inflation of beam for membrane and beam model
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