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Abstract

The uniqueness and existence of the closest point projection procedure widely used in contact mechanics are analyzed in the current
article. First, a projection domain for C2-continuous surfaces is created based on the geometrical properties of surfaces. Then any point
from the projection domain has a unique projection onto the given surface. It is shown that in order to construct a continuous projection
domain for arbitrary globally C1, or C0-continuous surfaces, a projection routine should be generalized and also include a projection
onto a curved edge and onto corner points. Criteria of uniqueness and existence of the corresponding projection routine are given
and discussed from the geometrical point of view. Some examples showing the construction of the projection domain as well as the neces-
sity of a generalized projection routine are given.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The so-called closest point projection procedure is often
introduced as a numerical scheme to compute coordinates
of a point projected onto a surface. In variational formula-
tions for contact problems it appears due to the split of
contact displacements into a normal and a tangential part.
In early publications for finite element models it was
explained as a result of the linearization of non-penetration
conditions [12]. Hallquist et al. [5] considered the split into
normal and tangential direction via the projection opera-
tion for a so-called ‘‘master–slave” approach within the
finite element contact model. Such an approach is based
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on looking at normal contact where a ‘‘slave” node of
one body penetrates into a ‘‘master” segment of another
body. The value of penetration is measured as the closest
distance to the master body. In a next step of the contact
algorithm, the penalty method together with explicit time
integration was used to enforce the contact conditions.
For an implicit solution Wriggers and Simo [28] proposed
a consistent linearization procedure of the penalty func-
tional containing the penetration function and obtained
the corresponding tangent stiffness matrices within the
Newton iteration scheme. However, the penetration func-
tion based on the closest point projection is not only used
for formulations in combination with a penalty functional,
but also in other computational schemes to enforce the
condition of non-penetration in contact. The concept of
the closest distance is also important for contact searching
routines in order to define potentially contacting points.

In order to show the importance of the projection oper-
ation, we briefly focus here on methods in contact mechan-
ics, where the closest point procedure occurs. Contact
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elements for bilinear surface approximations based on the
penalty method for non-frictional problems are discussed
in Parisch [21]. Due to decoupling of normal and tangential
forces the projection procedure necessarily appears for 2D
frictional problems in Giannakopoulos [4] and Wriggers
et al. [29], then also for 3D problems in Peric and Owen
[23] and in Parisch and Lübbing [22]. All mentioned
references combine the penalty method together with the
regularization of the Coulomb friction model and a
radial-return algorithm within the friction algorithm. This
algorithm is predominantly used in computational plastic-
ity, see Simo and Hughes [27], and also exploits the closest
point procedure; however, then the projection is given onto
the yield surface in the force space. Full Lagrange multipli-
ers methods are standard for enforcing constraints in com-
putational mechanics, but cannot be easily transported into
frictional problems using the same penetration, or distance
function as mentioned above, see the review in Zhong [31].
This is due to the nature of friction forces depending on
velocity and, therefore, requiring an incremental update
procedure. For a small sliding problem, a perturbed
Lagrangian method including both penalty and Lagrang-
ian functionals was discussed in Wriggers and Simo [28].
Then augmented Lagrangian methods appeared to be more
robust. Thus, a 2D finite element algorithm based on the
augmented Lagrangian method has been proposed in
Wriggers et al. [29]. A mixed penalty–duality approach
based on the augmented Lagrangian scheme is proposed
in Alart and Curnier [2], where different distance functions
have been discussed. Laursen and Simo [20] formulated
contact conditions via convective coordinates on the con-
tact surface within both, the penalty method and the aug-
mented Lagrangian method. For various geometrical
situations the method has been discussed in Heegaard
and Curnier [6] for large-slip problems, in Heege and Alart
[8] for contact with CAD surfaces and in Pietrzak and Cur-
nier [24] for finite deformations and large sliding. The full
Lagrangian approach for frictional problems has been dis-
cussed in Jones and Papadopoulos [11] utilizing stick-to-
slide conditions in one step, and therefore, covering only
small sliding problems. More recently the so-called mortar
method, originally based on Lagrangian multipliers enforc-
ing the non-penetration conditions is considered in Hüeber
and Wohlmuth [9] for non-frictional problems, where a
special discretization technique has been taken for the
Lagrange multiplier functions. A mortar scheme based on
a special integration technique for constraint equations is
proposed in Puso and Laursen [25] for non-frictional prob-
lems and extended into the frictional case via the aug-
mented Lagrangian method by the same authors [26].

The publications listed above cover the most applied
methods in computational contact mechanics and all con-
tain the closest point procedure as the first necessary step.
Despite the enormous number of publications on contact
mechanics, there are only a few publications covering to
some completeness the problem of uniqueness and exis-
tence of the closest point procedure for arbitrary approxi-
mations of the contact surfaces as well as describing
effective numerical algorithms to overcome problems. The
problem of non-uniqueness and non-existence of the pro-
jection for, e.g. bilinear approximations of a surface by
finite elements is known since the first publications, see
Hallquist et al. [5], and mostly reported in theoretical man-
uals of popular commercial codes, see [10,1]. Heegaard and
Curnier in [7] mentioned that geometrical parameters of a
surface, such as a focal point can be used to determine exis-
tence and uniqueness of the projection for smooth surfaces.
However, for arbitrary surfaces described, e.g. by CAD-
systems and containing combinations of smooth surfaces,
curved edges and corner points, the situation can be far
more complex. Some techniques dealing with non-existence
of the projection in certain cases are well known, e.g. a sit-
uation when the slave point is passing over the edge of a
locally concave part of a body can be overcome by taking
an average vector from the normals of neighboring contact
surface segments. A description of this rather heuristic
approach can be found in the books of Wriggers [30] and
Laursen [19] as well as in theory manuals [10,1]. This tech-
nique is used in a similar manner in multi-surface plasticity
when the C1-continuity of the yield surface is broken, see
Simo and Hughes [27]. Other techniques such as the projec-
tion onto the edge for such cases, see e.g. in Heegaard and
Curnier [6] and in Zhong and Nilsson [32], are also
reported to be implemented in commercial programs [10].

In the current contribution, we provide analytical tools
allowing to create, a priori, proximity domains of contact

surfaces from which a given contact point is always
uniquely projected. This approach is based on the geomet-
rical properties of contact surfaces exploiting the covariant
description for contact problems developed in Konyukhov
and Schweizerhof [13,14]. First, all C2-continuous surfaces
are classified according to their differential properties
allowing a unique projection. Then, proximity domains

are created for C1-continuous surfaces. Finally, proximity

domains are proposed for globally C0-continuous surfaces
covering all practical approximations. The projection
scheme in the latter case is further generalized including
the projection onto geometrical objects of lower order
(curved edges, corner points). In such cases the correspond-
ing proximity domains are created by a geometrical analy-
sis of those objects. Also the reduction into the 2D plane
case is discussed. The examples are chosen to show the
necessity of the proposed generalized projection procedure
in certain mechanical problems as well as the necessity of
the proximity domain for searching techniques when a con-
tact surface is given by arbitrary discretization, e.g.
described by CAD-systems, or found in high order FEM
analysis.

2. Formulation of the closest point projection procedure in

geometrical terms

The most important operation for the data transfer
between contacting bodies in contact mechanics is the clos-
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est point projection procedure, see Fig. 1, where one seeks
the projection of a given contact point from one body r,
usually called a slave point, onto another contact body,
usually called a master body, parameterized as

q ¼ qðn1; n2Þ: ð1Þ
The parameterization (1) by Gaussian coordinates is arbi-
trary and n1; n2 can be provided either by, e.g. a finite ele-
ment approximation, or by a spline approximation or by a
NURBS approximation. The closest point procedure ap-
pears also in many other applications such as fluid-struc-
ture interactions, computational plasticity and others.
The projection problem is formulated as an extremal
problem

kr� qðn1; n2Þk ! min; ! ðr� qÞ � ðr� qÞ ! min; ð2Þ
which is solved then mostly numerically. However, then a
fundamental problem arises: Does the solution of (2) exist?
And, if it exists, then, is it unique for any arbitrary surface
approximation?

The direct and strict answer is fully covered by the appli-
cation of the famous theorem from the convex analysis to
problem (2), see e.g. [3].

If the function

Fðn1; n2Þ ¼ 1

2
ðr� qÞ � ðr� qÞ ð3Þ

is convex in a domain ðn1; n2Þ 2 D, then the solution of
problem (2) exists and is unique in this domain.

This leads to the fact that the solution can be obtained
numerically by, e.g. a Newton iteration procedure, which
will converge from any initial point inside the domain
ðn1
ð0Þ; n

2
ð0ÞÞ 2 D.

Using this criterion we can focus on the geometrical
properties of the surfaces. Then the goal of this contribu-
tion is to create a classification of surfaces from its differen-
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Fig. 1. Closest point procedure and definition of the spatial coordinate
system.
tial geometry point of view onto which a point can be
projected uniquely.

The analysis of the local geometrical structure of sur-
faces allows to create a projection domain X in 3D from
which any point can be uniquely projected onto the given
surface. Starting with the C2-continuous case, we will con-
sider also cases possessing parts with solely C1- and C0-con-
tinuity discussing the solvability of problem (2) and in
addition the possible multiplicity of solutions.

Assuming that the function F is twice differentiable, i.e.
for C2-continuous surfaces, we can construct the Newton
iterative process for the solution of the minimization prob-
lem (2) as follows:

DnðnÞ ¼
Dn1
ðnÞ

Dn2
ðnÞ

" #
¼ �ðF00Þ�1

ðnÞF
0
ðnÞ;

nðnþ1Þ ¼ nðnÞ þ DnðnÞ;

ð4Þ

where the first derivative F0 and the second derivative F00

with respect to the surface coordinates n1; n2 are computed
as

F0 ¼
oF
on1

oF
on2

" #
¼ �

q1 � ðr� qÞ
q2 � ðr� qÞ

� �
; ð5Þ

F00 ¼
q1 � q1 � q11 � ðr� qÞ q1 � q2 � q12 � ðr� qÞ
q2 � q1 � q21 � ðr� qÞ q2 � q2 � q22 � ðr� qÞ

� �
: ð6Þ

Here a short notation for the partial derivatives has been
introduced as

qi ¼
oq

oni ; qij ¼
o2q

onionj : ð7Þ

Now, we introduce a 3D spatial coordinate system related
to the surface coordinate system, see Fig. 1, as follows:

rðn1; n2; n3Þ ¼ qþ nn3: ð8Þ
All necessary parameters are defined in the covariant basis
of the surface tangent vectors q1;q2 and a unit normal vec-
tor n ¼ q1�q2

kq1�q2k
. The solvability of the minimization problem

(2) will be considered in this coordinate system. The intro-
duction of such a coordinate system is the basis of the
covariant description for contact problems, developed in
Konyukhov and Schweizerhof [13,14] for isotropical fric-
tional problems, and then in [16,17] for anisotropic fric-
tional problems. The dominantly geometrical structure of
all contact parameters is among the main advantages of
this description, e.g. a value of penetration is simply the
third convective coordinate n3.

The following surface tensors are used to describe the
metric and the curvature properties of surfaces in differen-
tial geometry [18]:

(a) metric tensor with components:

aij ¼ qi � qj; ð9Þ

(b) curvature tensor with components:
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hij ¼ qij � n; ð10Þ

Inserting now Eq. (8) into Eq. (6) and using the notations
given in Eqs. (9) and (10) we obtain the expression F00 in the
introduced spatial coordinate system as
F00 ¼ a11 � n3h11 a12 � n3h12

a21 � n3h21 a22 � n3h22

" #
: ð11Þ

Let us start with a case assuming a unique projection: In
this case the function F must be convex. As is known for
the convexity of F, the second derivative F00 must then be
a positive definite matrix. Thus, the Sylvester criterion
from basic algebra is exploited to check the positivity of
the matrix given in Eq. (11):

ða11 � n3h11Þ > 0;

det½ðaij � n3hijÞ� > 0:
ð12Þ
2.1. Necessary information about the surface structure

Surprisingly, the second equation in (12) is similar to
that which is used in differential geometry for the analysis
of the surface structure. To emphasize this, we present here
main formulae necessary for the further developments. For
more information including the specific derivations of the
formulae, see e.g. in [18].

The geometrical analysis of the surface structure is given
by the generalized eigenvalue problem:

ðhij � kaijÞej ¼ 0; ð13Þ

which leads to the real roots k1; k2 of the equation

det½ðhij � kaijÞ� ¼ 0: ð14Þ

These roots are called principal curvatures and correspond
to the orthogonal principal directions e1, e2. The principal
curvature k1 (resp. k2) is the curvature of a line arising from
the intersection of the surface with the plane containing
both, normal vector n and principal vector e1 (e2). Their in-
verse values are principal radii Ri ¼ 1=ki, see Fig. 2. The lo-
cal structure of the surface in the vicinity of the computed
R
ξ3 > 0

ξ 3 < 0

R
n

1

2

ρ
2

ρ
1

Fig. 2. Elliptic point. Structure of the surface and projection domain
assuming C2-continuity.
contact point can be then classified by the Gaussian curva-
ture K

K ¼ k1 � k2 ð15Þ

into four cases as follows:

(1) K ¼ k1 � k2 > 0 – an elliptic point, i.e. a surface in
vicinity of the point looks like an elliptic paraboloid,
see Fig. 2.

(2) K ¼ k1 � k2 < 0 – a hyperbolic point, i.e. a surface
looks like a hyperbolic paraboloid, see Fig. 3. For
the case with zero Gaussian curvature K ¼ 0 a more
careful analysis is required.

(3) Either k1 ¼ 0; k2 6¼ 0, or k2 ¼ 0; k1 6¼ 0 – a parabolic
point. A surface looks then like a parabolic cylinder,
see Fig. 4. If these conditions are fulfilled for each
point of the surface, then a flat surface is obtained.
This surface (e.g. a cylinder, or a cone) can be
unwrapped on a plane.

(4) Both k1 ¼ 0 and k2 ¼ 0 – a planar point. The local
structure can not be identified without the analysis
of the higher order derivatives. Nevertheless, the case
with k1 ¼ 0, k2 ¼ 0 for each point leads to a plane in
3D.

Eq. (14) for a definition of the principal curvatures can be
written in the following form:

k2 � 2Hk þ K ¼ 0 ) k1;2 ¼ H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � K

p
ð16Þ
where the Gaussian curvature K is defined as

K ¼ k1 � k2 ¼
det½hij�
det½aij�

¼ h11h22 � h2
12

a11a22 � a2
12

ð17Þ
and the mean curvature H is defined as

H ¼ 1

2
ðk1 þ k2Þ ¼

1

2

a22h11 � 2a12h12 þ a11h22

a11a22 � a2
12

: ð18Þ
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Fig. 3. Hyperbolic point. Structure of the surface and projection domain
assuming C2-continuity.
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Remark. Any other structure of the surface in the vicinity of
a point different from the described cases (1)–(3) (e.g. edge
point, etc.) can arise either from a planar point (case 4), or
from violation of the a priori assumed C2-continuity and a
more advanced analysis would be necessary. Surfaces with
more complicated local structure leading, e.g. to a so-called
‘‘star”-looking domain, self-contacting and self-penetrating
surfaces, etc. are relatively seldom in practical applications
and are out of the scope of the current contribution.

assuming C2-continuity.
3. Proximity criteria for different surfaces

In this section we consider the structure of 3D domains
(proximity domains) surrounding a given surface, from
which a point can be a priori uniquely projected onto the
surface. This structure depends on the classification of sur-
face points given in Section 2.1. Taking into account
Eq. (16) for principal curvatures, the Sylvester criteria in
Eq. (12) can be written in the following form:

ða11 � n3h11Þ > 0;

1

n3

� �2

� 2H
1

n3
þ K > 0:

ð19Þ

This system of inequalities can be reformulated in terms of
principal curvatures k1; k2 as

1

n3
� k1

� �
> 0;

1

n3
� k1

� �
1

n3
� k2

� �
> 0:

ð20Þ

Within the last transformation, it was assumed that the
coordinate n3 is a positive value into the normal vector
direction n, as chosen in Eq. (8). Thus, zones with positive
and negative coordinates n3 should be distinguished.

3.1. Projection domains for an elliptic point

According to the geometry presented in Fig. 2, a normal
n is pointing into a convex part, where n3 > 0 and, both
k1 > 0 and k2 > 0.
3.1.1. Domain for the convex part n3 > 0

Using the geometrical interpretation of the principal
curvatures as principal radii Ri ¼ 1=ki, Eq. (20) can be writ-
ten as

R1 � n3 > 0;

ðR1 � n3ÞðR2 � n3Þ > 0:
ð21Þ

The solution allows to create a projection domain
Xðn1; n2; n3Þ with a parameter n̂3 ¼ minfR1;R2g with an a
priori unique solution of the projection problem, see Fig. 2:

Xðn1; n2; n3Þ :¼ fr ¼ qþ n3n; where 0 < n3 < n̂3g: ð22Þ

This domain is created in the local coordinate system and
contains all points between the original surface and shifted
by nn3 surface.

3.1.2. Domain for the concave part n3 < 0

In this case, criterion (21) is automatically fulfilled lead-
ing to an infinite domain X above the surface:

Xðn1; n2; n3Þ :¼ fr ¼ qþ n3n with �1 < n3 < 0g: ð23Þ
3.2. Projection domain for a hyperbolic point

Considering a situation as presented in Fig. 3, in the case
with n3 > 0, where a projection domain is created as an
overlapping of the semi-infinite domain due to the line with
negative curvature k1 and the finite domain due to the line
with positive curvature k2 similar to the domain as for a
convex part for an elliptic point. The case with n3 < 0 leads
to a projection domain constructed in an identical fashion.
Summarizing both cases, a finite projection domain
Xðn1; n2; n3Þ is created as a domain between two shifted
surfaces:

Xðn1; n2; n3Þ :¼ fr ¼ qþ n3n; where � R1 < n3 < R2g:
ð24Þ
3.3. Projection domain for a parabolic point

A projection domain for a parabolic point, see Fig. 4,
consists of a finite domain for the convex part with
n3 > 0, and a semi-infinite domain for the concave part
with n3 < 0. Thus, the projection domain Xðn1; n2; n3Þ is
described as follows:

Xðn1; n2; n3Þ :¼ fr ¼ qþ n3n; where �1 < n3 < R2g:
ð25Þ
3.4. Discussion about planar points – required approximation

for the plane

As mentioned in Section 2.1 case (4), the structure of a
surface in the vicinity of the planar point requires an anal-
ysis of the higher order derivatives with respect to the sur-



ν

τ

ζ

ζ >0

ζ <0

O
C

C

O
1

1

2

2

Ω(  ,ζ)s

R= 1
k

Fig. 5. 2D case – plane curve. Projection domain.

3050 A. Konyukhov, K. Schweizerhof / Comput. Methods Appl. Mech. Engrg. 197 (2008) 3045–3056
face coordinates. In this case, it is also difficult to discuss
the convergence of the Newton iterative process (4). How-
ever, for the plane with zero curvature tensor hij ¼ 0 crite-
rion (12) becomes

det½aij� > 0: ð26Þ

Since the metric tensor aij is always positive, a trivial result
is recovered: The projection onto a plane always exists and
is unique. Nevertheless, from the numerical point of view it
is necessary to avoid cases with det½aij� � 0. In such cases
the angle between the convective coordinate lines is close
either to 0� or to 180�, which is normally avoided ab initio
as, e.g. in finite element approximations this would be a
sign for inadmissibly distorted elements.

4. Solvability of the projection algorithm – allowable and

non-allowable domains

In the previous section, the projection domains were
constructed under the main assumption of sufficient
smoothness of the corresponding surfaces, specifically C2-
continuity was necessary to derive all curvature parame-
ters. In this section, we will obtain that C1-continuity of
a surface is sufficient for the construction of a continuous
projection domain, while violation of C1-continuity can
cause either multiplicity of solutions, or non-existence of
solutions at all. Starting with a 2D case as a preliminary
case, we then develop ‘‘a remedy” for globally C0-continu-
ous surfaces by constructing a continuous projection
domain allowing unique projections onto the surface. A
generalized projection procedure includes then several pro-
jection procedures onto curved edges and corners.

4.1. Reduction to 2D plane geometry – solvability criteria

and uniqueness

A covariant approach for contact problems allows to
look at a 2D case either as a special reduction from a cylin-
drical geometry in 2D space, or as a case based on a 2D
plane curve geometry, see [15]. In the last case, the length
of a curved line s is used as a convective coordinate. The
closest point projection method (2) is then formulated as
follows:

F ¼ 1

2
kr� qðsÞk2 ! min : ð27Þ

A curvilinear coordinate system in 2D is based on a flat
curve geometry and is introduced as follows:

rðs; fÞ ¼ qðsÞ þ fm: ð28Þ

A second derivative with respect to s in this coordinate sys-
tem is computed as

F 00 ¼ oq

os
� oq

os
� o2q

os2
� ðr� qðsÞÞ

¼ s � s� os

os
� ðr� qðsÞÞ: ð29Þ
For further transformation it is necessary to introduce the
Serret–Frenet formulae

s ¼ oq

os
;

os

os
¼ km; ð30Þ

where s is a unit tangent vector, m is a unit normal vector
and k is a curvature of the curve (the radius of the curva-
ture R ¼ 1

k is also often used). Taking into account the Ser-
ret–Frenet formulae together with Eq. (28) the second
derivative F 00 is transformed as

F 00 ¼ 1� kf: ð31Þ
Since the normal vector m is always pointing to the center of
curvature C1, see Fig. 5, we obtain from the condition
F 00 ¼ 1� kf > 0 a finite projection domain O1O2C2C1 for
the convex part as follows:

Xðs; fÞ :¼ fr ¼ qðsÞ þ fm with 0 < f <
1

k
¼ Rg; ð32Þ

and a semi-infinite projection domain for the concave part
above the curve O1O2:

Xðs; fÞ :¼ fr ¼ qðsÞ þ fm with �1 < f < 0g: ð33Þ
The case with F 00 ¼ 0 can lead to a multiplicity of the solu-
tion. This is visible in Fig. 6, where an infinite number of
projections is possible from a point O1 with the coordinate
f ¼ R onto an arc BC, and from a point O2 with the coor-
dinate f ¼ �R onto another arc CD.

4.1.1. Violation of C2-continuity

The violation of C2-continuity, but keeping C1-continu-
ity leads to a discontinuous projection domain. In this case,
however, it is easily possible to construct a continuous pro-
jection domain, from where uniqueness of the projection
operation is automatically fulfilled. The idea is presented
in Table 1 and is illustrated in Fig. 6. Since discontinuity
is resulting due to the only piecewise continuous parameter
f, a continuous projection domain is constructed by taking
the minimal parameter f ¼ minfR;1g ¼ R along the
curve.
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Fig. 6. Violation of C2-continuity results in changing the discontinuity of
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Table 1
Violation of C2-continuity of a curve leads to piecewise continuous
curvature and consequently to a piecewise continuous parameter f

Part of a curve Curvature k Computed f Minimal f

A B 0 þ1 R

B C R R R

C D -R þ1 R

A continuous projection domain Xðs; fÞ :¼ fr ¼ qðsÞ þ fmg can be con-
structed by setting f to a minimal value. An example is given for f > 0 in
Fig. 6.
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4.1.2. Violation of C1-continuity

We consider here the most practical case which is stan-
dard in the triangulation of surfaces with low order finite
elements: piecewise differentiable functions with finite
jumps for the first derivative. From a geometrical point
of view this situation leads to an angular point for curves
or an edge for surfaces. The violation of C1-continuity
for a surface parameterization leads also to a discontinuity
of the normal vector n causing either difficulty with defini-
tion of the local coordinate system, or multiplicity of pro-
jection. The situation in 2D is presented in Fig. 7. Now, we
O
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S S

S

S

1 2
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non–allowable domain
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domain of multiple solutions

Fig. 7. Violation of C1-continuity leads to non-allowable domains with
regard to the projection onto curve ABCD. A special treatment is
necessary to preserve a continuous mapping.
consider a point following the path S1S2S3S4S5 in the local
coordinate system (28). Since a normal vector m has jumps
(points B and C), there are portions of the trajectory which
can not be described in this local coordinate system. They
are located in the non-allowable domain with regard to the
projection onto the curve: any point S2 laying in the non-
allowable domain can not be described in the local coordi-
nate system given by Eq. (28). The term nonallowable

domain with regard to the projection onto surface resp. curve

resp. point is then used for a domain where any point can
not be described in the local coordinate system correspond-
ing to the projection onto surface resp. curve resp. point.

However, in such a situation it is possible to create a
continuous mapping of the path S1S2S3S4S5 onto the curve
by introducing a new projection operation in the non-
allowable domain with regard to the projection onto the
curve. This is a projection of the point into an angular
point of curves (e.g. S2 into B and S4 into C in Fig. 7), or
a closest point projection onto the edge of surfaces. This
method is mentioned for 2D examples in Heegaard and
Curnier [6] and in Zhong and Nilsson [32]; it is also
reported to be done, e.g. in LS-DYNA [10]. A projection
procedure keeping a continuous mapping of any path on
the curve will be called the generalized closest point proce-

dure. In 2D cases this procedure includes both a projection
onto the curve and onto the corner point.

Another situation arising from the violation of C1-con-
tinuity is overlapping of two or more projection domains
causing consequently the multiplicity of projection, see
e.g. domain of multiple solutions in Fig. 7.

We already could observe the multiplicity of solutions in
the case of the violation of C2-continuity where the second
derivative of the distance function is zero F 00 ¼ 0, see point
O1 in Fig. 6. In this case, a strong inequality in the formu-
lation of the projection domains allows to eliminate the
multiplicity. A case with violation of C1-continuity (e.g.
domain of multiple solutions in Fig. 7) can lead to a more
severe situation, see point M passing over corner point C.
A natural remedy in this case is to define a minimum dis-
tance in the sense of the generalized closest point procedure
onto neighboring segments and onto corner point C. How-
ever, one can find a line with points which are equidistantly
situated from both segments.

In this situation, though relatively seldom in numerical
computations due to round-off errors, a choice either with
a random selection of projection sides, or with an averaged
normal from all projection sides can be applied, implicitly
assuming that the distance is fairly small. Within a contact
algorithm the storage of the ‘‘slave” point path as history
variable would be then necessary.

4.2. Proximity domain for globally C0-continuous surface in

3D

It is necessary to define additional projection procedures
in order to create a proximity domain for the 3D space
allowing a continuous mapping of any path laying inside,
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similar to that discussed for the 2D case in 4.1.2. These pro-
jections include a projection onto an edge and onto a cor-
ner. The combination of proximity domains leads finally to
a continuous domain. The idea is illustrated in Fig. 8 for
the contact surface of a hexaeder focusing on the surfaces
containing the corner point O. The continuous proximity
domain surrounding corner point O consists of

(1) three domains for sides arising from the standard
projection procedure:

S1 ¼ fx; y; z j x > 0; y > 0; z < 0g for side BOCF ;

S2 ¼ fx; y; z j x > 0; y < 0; z > 0g for side AOBE;

S3 ¼ fx; y; z j x < 0; y < 0; z < 0g for side AOC;

(2) three domains for edges arising from the point-to-
edge projection procedure:

E1 ¼ fx; y; z j x < 0; y < 0; z > 0g for edge OA;

E2 ¼ fx; y; z j x > 0; y > 0; z > 0g for edge OB;

E3 ¼ fx; y; z j x < 0; y > 0; z < 0g for edge OC;

(3) one domain arising from the point-to-corner point
projection procedure:

P ¼ fx; y; z j x < 0; y > 0; z > 0g for corner point O:

The last domain is added to fulfill the continuity, because
from this domain a projection onto the cube in general is
possible only into a corner point. This projection is trivial,
always exists and can be defined simply as difference
between ‘‘slave” and corner point: rs � qO.

The point-to-edge projection, in case of a curved edge,
requires a numerical solution and again the problem of
existence and uniqueness arises.
4.3. Point-to-edge closest point projection and corresponding

projection domain

An arbitrary curved edge as a result of the intersection
of two surfaces is represented by a curved line, see e.g.
AOB in Fig. 9. This line can be parameterized by the arc-
length parameter s as well as by an arbitrary parameter
n, e.g. a normalized coordinate in a finite element
approximation:

q ¼ qðsÞ ¼ qðsðnÞÞ: ð34Þ
The transformation of the parameters s n is provided by
the formula:

ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oq

on
� oq

on

s
dn ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

qn � qn
p

dn: ð35Þ

The projection routine, though it is looking similar to Eq.
(27), is now formulated in 3D as follows:

F ðsðnÞÞ ¼ 1

2
krs � qðsðnÞÞk2 ! min : ð36Þ

The necessary optimum condition leads to the projection
operation onto the curve

F 0 ¼ �ðrs � qðsðnÞÞ � oq

os
¼ �ðrs � qðsðnÞÞ � s ¼ 0; ð37Þ

showing the orthogonality of the vector ðrs � qÞ and the
tangent vector s. According to this, a new coordinate sys-
tem s; m; b is introduced as a natural coordinate system of
the curved line, see Fig. 9, where s is a unit tangent vector,
m is a unit main normal vector and b is a unit binormal vec-
tor of the curve, see [18]. This results in orthogonal planes
I, II, III. The given point S (‘‘slave” point) is defined as
follows:

rs ¼ qðsÞ þ re; ð38Þ
where r is the shortest distance between the point S and the
curve AB. e is a vector giving a director of the shortest dis-
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tance in the plane m0b (plane II), defined via m and b as
follows:

e ¼ m cos uþ b sin u: ð39Þ

The second derivative F 00 taking into account Eq. (38) is
transformed in the curvilinear coordinate system as
follows:

F 00 ¼ s � s� ðr� qðsÞÞ � km ¼ 1� krðe � mÞ ð40Þ

and finally using representation (39) for the vector e as

F 00 ¼ 1� kr cos u: ð41Þ

Considering now F 00 > 0, the projection domain is con-
structed from two parts 1 and 2, see Fig. 9:

(1) a semi-infinite domain with negative m, or with
u 2 ½p=2; 3p=2�. Here the projection of the vector re

onto the normal m is negative leading to the automatic
satisfaction of F 00 > 0, and,

(2) a layer with positive m, or with u 2 ð�p=2; p=2Þ. Here
the projection of the vector re on the normal m must
be less than the radius of the curvature R, i.e.

r cos u <
1

k
¼ R: ð42Þ

As one can see, two domains surround a curve densely, e.g.
without any void. A problem can occur if vector qðsÞ looses
C1-continuity, however in this case we obtain a corner
point as discussed above.
Fig. 10. Structure of the upper proximity domain for a given surface
OABC with z ¼ ðx2 � y2Þ=2, 0 6 x; y 6 1.
Remark 1. If the edge is a straight line then the coordinate
system s; m; b should not be derived via the curved
properties of the line according to the Serret–Frenet
formulae, however, it can be defined arbitrarily.

In the case of an arbitrary parameterization of a line, the
projection routine is fulfilled via the Newton iterative pro-
cess in Eq. (4) for the parameter n, where Dn is computed as

Dn ¼ � F 0

F 00
¼ �

ðrs � qÞ � qn

ðqn � qnÞ � ðrs � qÞ � qnn

; nðnþ1Þ ¼ nðnÞ þ Dn:

ð43Þ
Summary: A continuous projection domain for a glob-

ally C0-continuous surface allowing unique continuous
projections of any path laying inside this domain can be
constructed via a generalized projection procedure including
three projection operations: a) onto a surface; b) onto an
edge; c) onto a corner point.

Remark 2. An algorithm for the continuous projection
domain can be used also as a preparation stage for the
global searching routine. Thus, in following computations
within an analysis of a contact problem any possible
‘‘slave” point can be uniquely projected onto the ‘‘master”
surface via the corresponding projection onto a surface, an
edge or a point.
5. Numerical examples

In this section, we give first a reference example for the
construction of the projection domain for a hyperbolical
surface, and then discuss a situation where the generalized
projection procedure including both, projection onto a seg-
ment and onto an edge is needed.
5.1. Reference example: projection domain for a hyperbolical
surface

Consider a quadratic surface of the form: z ¼ ðx2�
y2Þ=2, 0 6 x; y 6 1 see Fig. 10. The upper projection
domain is then a domain between the original surface
OABC and the surface O0A0B0C0 created by shifting in nor-
mal direction as follows:

r ¼ qðx; yÞ þ Rðx; yÞnðx; yÞ; qðx; yÞ ¼ fx; y; ðx2 � y2Þ=2gT
;

ð44Þ

where Rðx; yÞ is a function of the corresponding radius of
curvature. Exemplarily, the position of point C0 is com-
puted as follows. A point on the surface C is defined by
the vector q ¼ f1:000; 0:000; 0:500gT, with the correspond-
ing normal vector n ¼ f�0:707; 0:000; 0:707gT. The main
curvatures at point C are computed via Eqs. (16)–(18):
k1 ¼ 0:354, k2 ¼ �0:700. A positive value here defines a
curvature of a corresponding line which is locally convex
with respect to the chosen direction of the normal n, i.e.
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a normal is pointing into a center of curvature of the line.
According to the rule for a hyperbolic point discussed in
Section 3.2, the value k1 is taken for the shift as
R1 ¼ 1=k1 ¼ 2:825. Thus, the upper boundary of the pro-
jection domain at point C0 is computed as r ¼ qþ
R1n ¼ f�0:997; 0:000; 2:497gT.

Remark. It is obvious, that the complete algorithm for the
projection for an arbitrarily composed CAD surface
requires the application of some Boolean operations with
domains known from CAD applications. Thus, in general,
a fairly large number of cases has to be analyzed within a
contact search routine taking advantage of the derived
proximity domains.
5.2. Sliding block

This example is intentionally chosen as simple as possi-
ble in order to discuss the influence of various contact algo-
rithms on kinematical effects only. A heavy rigid block
ABCD with mass m, see Fig. 11 starts to slide (position
I) without friction on an inclined surface OE till it is
impacting an edge 0 in position II. Assuming frictional
contact at the horizontal surface OF, we seek two parame-
ters: the hight H and the friction coefficient l such that
after the impact the block would turn over the edge O in
position III without jumping on it until the second impact
with a surface OF in position IV. The simplicity of the case
allows us to obtain an analytical solution, which we will try
to represent numerically. The equation of motion immedi-
ately after impacting the edge O (contact only at edge):

ma ¼ Rþ mg ð45Þ
leads to the result that a coefficient of friction l > tan a
would prevent the block from sliding on the surface OF.
An equation for the angular momentum is involved in a
polar coordinate system in order to get the information
about the possibility of jumping. The full set of equations
is then written as
A

B

C

D

O

E

mg 

I

II III

IVR

L

α

Fig. 11. a) Process of sliding cube
J O €u ¼ mga

ffiffiffi
2
p

2
sin u

ma

ffiffiffi
2
p

2
€u ¼ mg sin uþ Rs

ma

ffiffiffi
2
p

2
_u2 ¼ mg cos uþ Rm; ð46Þ
where a is an edge of the cube, J O is the moment of inertia
about the edge O. The solution leads to the reaction force
Rm ¼ 5mg cos u=2� 3mg=2� ma

ffiffiffi
2
p

=2 _u2
0. Defining via the

energy theorem the initial angular velocity _u0 after the im-
pact, we finally obtain Rm ¼ 5mg cos u=2� mgL

ffiffiffi
2
p

=a�
3mg=2. If the reaction is positive Rm > 0, the block will
not jump before the second contact along the side CD oc-
curs (i.e. cos u ¼ 45�). The sliding length L satisfies the fol-
lowing inequality:

L < a 5
ffiffiffi
2
p
� 6

� �
: ð47Þ

Now, we model this problem via the node-to-segment ap-
proach (NTS), see the FE algorithms in [30,19]. The full
problem is modeled with only three finite elements, see
Fig. 11b. A penalty approach to enforce contact conditions
is applied and a Newmark time integration scheme is used.
Inclined and horizontal segments are chosen to be ‘‘mas-
ter” segments, then nodes from the cube are ‘‘slaves”. It
is obvious to see, that during the rotation of the block over
the edge the slave nodes are running through a non-allow-
able domain for the segment projection procedure. This
leads to the impossibility to describe the rotation. This
artefact causes the block to jump on the second segment,
see screen-shots in Fig. 12.

Several possibilities to get a correct solution exist, e.g.
Heege and Alart [8] mentioned that correct forces can be
recovered as a superposition of forces from neighboring
segments within a full Lagrange multiplier method.
Another of the possible remedies (also reported in [10])
F

b) and its finite element model.



Fig. 12. Absence of the projection of the slave node onto the edge in the contact algorithm (only Node-to-Segment approach) leads to the impossibility to
capture the rotational part of the motion. (a) cube impacting the edge, (b) and (c) results of artefact: block jumps on the second segment.
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to recover a correct force as a superposition is to allow an
overlapping of segments and, therefore, double projections
on both segments at the same time. However, this does not
solve the problem completely and also leads to jumping.
Thus, an additional projection onto the edge needs to be
included into the contact algorithm within a penalty
approach. But since, the penalty parameter plays the role
of an additional spring hanging on the edge, this in general
leads to unnecessary vibrations. Then only a careful selec-
tion of the penalty parameters leads to acceptable results
leading to a rotational motion. This shows that correct
kinematics are hard to achieve within a penalty approach.
A full Lagrange multiplier method together with a general-
ized projection procedure would cover the kinematics of
this specific example more exactly, allowing, e.g. sliding
along the edge.

Remark. The finite element model described above
requires also additional contact elements such as a node-
to-edge element. The simple version with a linear edge has
been implemented so-far for the current example, see also
Wriggers [30]. For the fully nonlinear element for curvilin-
ear edges also the application the covariant approach for
kinematics as well as for linearization is needed, which is
out of scope of the current contribution.
6. Conclusion

In this contribution fundamental problems of existence
and uniqueness of the closest point projection procedure
are investigated. The analysis is given in a surface coordi-
nate system, which has also been a basis for a covariant
description of the contact. The consideration of the differ-
ential properties of smooth surfaces allows to create ‘‘pro-
jection domains” from which a projection of, e.g. a slave
node is uniquely defined. For arbitrary C0 continuous sur-
faces a projection routine should be generalized to include
projections not only onto surfaces, but also onto objects of
lower geometrical dimension, such as curved lines and
points. The corresponding criteria of existence and unique-
ness and, therefore, projection domains are also given in
the contribution. The general results are illustrated within
a simple example, where the lack of a fully generalized pro-
jection scheme may result in a completely different kine-
matical behavior.
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