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Abstract

Suffix arrays are a simple and powerful data structure
for text processing that can be used for full text indexes,
data compression, and many other applications in par-
ticular in bioinformatics. However, so far it has looked
prohibitive to build suffix arrays for huge inputs that do
not fit into main memory. This paper presents design,
analysis, implementation, and experimental evaluation
of several new and improved algorithms for suffix array
construction. The algorithms are asymptotically opti-
mal in the worst case or on the average. Our imple-
mentation can construct suffix arrays for inputs of up
to 4GBytes in hours on a low cost machine.

As a tool of possible independent interest we present
a systematic way to design, analyze, and implement
pipelined algorithms.

1 Introduction

The suffix array [21, 13], a lexicographically sorted array
of the suffixes of a string, has numerous applications,
e.g., in string matching [21, 13], genome analysis [1] and
text compression [6]. For example, one can use it as full
text index: To find all occurrences of a pattern P in a
text T do binary search in the suffix array of T , i.e., look
for the interval of suffixes that have P as a prefix. A
lot of effort has been devoted to efficient construction of
suffix arrays, culminating recently in three direct linear
time algorithms [17, 18, 19]. One of the linear time
algorithms [17] is very simple and can also be adapted
to obtain an optimal algorithm for external memory:
The DC3-algorithm [17] constructs a suffix array of a
text T of length n using O(sort(n)) I/Os where sort(n)
is the number of I/Os needed for sorting the characters
of T .

However, suffix arrays are still rarely used for
processing huge inputs. Less powerful techniques like
an index of all words appearing in a text are very
simple, have favorable constant factors and can be
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implemented to work well with external memory for
practical inputs. In contrast, the only previous external
memory implementations of suffix array construction [8]
are not only asymptotically suboptimal but also so slow
that measurements could only be done for small inputs
and artificially reduced internal memory size.

The main objective of the present paper is to nar-
row the gap between theory and practice by engineering
algorithms for constructing suffix arrays that are at the
same time asymptotically optimal and the best practi-
cal algorithms, and that can process really large inputs
in realistic time. In the context of this paper, “engi-
neering” includes algorithm design, theoretical analysis,
careful implementation, and experiments with large, re-
alistic inputs all working together to improve relevant
constant factors, to understand realistic inputs, and to
obtain fair comparisons between different algorithms.

1.1 Basic Concepts. We use the shorthands [i, j] =
{i, . . . , j} and [i, j) = [i, j−1] for ranges of integers and
extend to substrings as seen below. The input of our
algorithms is an n character string T = T [0] · · ·T [n −
1] = T [0, n) of characters in the alphabet Σ = [1, n].
The restriction to the alphabet [1, n] is not a serious
one. For a string T over any alphabet, we can first
sort the characters of T , remove duplicates, assign a
rank to each character, and construct a new string
T ′ over the alphabet [1, n] by renaming the characters
of T with their ranks. Since the renaming is order
preserving, the order of the suffixes does not change. A
similar technique called lexicographic naming will play
an important role in all of our algorithms where a string
(e.g., a substring of T ) is replaced by its rank in some
set of strings.

Let $ be a special character that is smaller than any
character in the alphabet. We use the convention that
T [i] = $ if i ≥ n. Ti = T [i, n) denotes the i-th suffix of
T . The suffix array SA of T is a permutation of [0, n)
such that TSA[i] < TSA[j] whenever 0 ≤ i < j < n.
Let lcp(i, j) denote the longest common prefix length
of SA[i] and SA[j] (lcp(i, j) = 0 if i < 0 or j ≥ n).
Then dps(i) := 1+max{lcp(i − 1, i), lcp(i, i + 1)} is the
distinguishing prefix size of Ti. We get the following
derived quantities that can be used to characterize the
“difficulty” of an input or that will turn out to play such



a role in our analysis.

maxlcp := max
0≤i<n

lcp(i, i + 1)(1.1)

lcp :=
1

n

∑

0≤i<n

lcp(i, i + 1)(1.2)

log dps :=
1

n

∑

0≤i<n

log(dps(i))(1.3)

The I/O model [25] assumes a machine with fast
memory of size M words and a secondary memory that
can be accessed by I/Os to blocks of B consecutive
words on each of D disks [25]. Our algorithms use words
of size dlog ne bits for inputs of size n. Sometimes it is
assumed that an additional bit can be squeezed in some-
where. We express all our I/O complexities in terms of
the shorthands scan(x) = dx/DBe for sequentially read-

ing or writing x words and sort(x) ≈ 2x
DB

⌈

logM/B
x
M

⌉

for sorting x words of data (not counting the 2scan(x)
I/Os for reading the input and writing the output).

Our algorithms are described using high level Pas-
cal like pseudocode mixed with mathematical nota-
tion. The scope of control structures is determined
by indentation. We extend set notation to sequences
in the obvious way. For example [i : i is prime] =
〈2, 3, 5, 7, 11, 13, . . .〉 in that order.

1.2 Overview. In Section 2 we present the doubling
algorithm [3, 8] for suffix array construction that has
I/O complexity O(sort(n log maxlcp)). This algorithm
sorts strings of size 2k in the k-th iteration. Our variant
already yields some small optimization opportunities.

Using this simple algorithm as an introductory
example, Section 3 then systematically introduces the
technique of pipelined processing of sequences which
saves a factor of at least two in I/Os for many external
algorithms and is supported by our external memory
library Stxxl. The main technical result of this section
is a theorem that allows easy analysis of the I/O
complexity of pipelined algorithms. This theorem is also
applied to more sophisticated construction algorithms
presented in the subsequent sections.

Section 4 gives a simple and efficient way to
discard suffixes from further iterations of the dou-
bling algorithm when their position in the suffix ar-
ray is already known. This leads to an algorithm
with I/O complexity O(sort(n log dps)) improving on
a previous discarding algorithm with I/O complexity
O(sort(n log dps) + scan(n log maxlcp)) [8]. A further
constant factor is gained in Section 5 by considering
a generalization of the doubling technique that sorts
strings of size ak in iteration k. The best multiplication
factor is four (quadrupling) or five. A pipelined optimal

algorithm with I/O complexity O(sort(n)) in Section 6
concludes our sequence of suffix array construction al-
gorithms.

In Section 7 we report on extensive experiments
using synthetic difficult inputs, the human genome,
English books, web-pages, and program source code
using inputs of up to 4 GByte on a low cost machine.
The theoretically optimal algorithm turns out to be the
winner closely followed by quadrupling with discarding.

Section 9 summarizes the overall results and dis-
cusses how even larger suffix arrays could be build. The
appendices contains further details including A useful
tool for testing our implementations was a fast and sim-
ple external memory checker for suffix arrays

1.3 More Related Work. The first I/O optimal
algorithm for suffix array construction [12] is based
on suffix tree construction and introduced the basic
divide-and-conquer approach that is also used by DC3.
However, the algorithm from [12] is so complicated that
an implementation looks not promising.

There is an extensive implementation study for ex-
ternal suffix array construction by Crauser and Ferrag-
ina [8]. They implement several nonpipelined variants
of the doubling algorithm [3] including one that dis-
cards unique suffixes. However, this variant of discard-
ing still needs to scan all unique tuples in each itera-
tion. Our discarding algorithm eliminates these scan-
ning costs which dominate the I/O volume for many
inputs. Interestingly, an algorithm that fares very well
in the study of [8] is the GBS-algorithm [13] that takes
O

(

n
M scan(n)

)

I/Os. We have not implemented this al-
gorithm not only because more scalable algorithms are
more interesting but also because all our algorithmic
improvements (pipelining, discarding, quadrupling, the
DC3-algorithm) add to a dramatic reduction in I/O
volume and are not applicable to the GBS-algorithm.
Moreover, the GBS-algorithm is quite expensive with
respect to internal work, which contributes significantly
to the running time on our system as shown by the ex-
periments. Nevertheless it should be kept in mind that
the GBS-algorithm might be interesting for small inputs
and fast machines with slow I/O.

There is a very recent study of external suffix tree
construction for the case that the text itself fits in inter-
nal memory [7]. The proposed algorithm has quadratic
worst case complexity. Experiments are reported for up
to 224 · 106 characters (human chromosome 1) and only
optimistic estimates of I/O performance rather than ac-
tual execution times are given.

There has been considerable interest in space effi-
cient internal memory algorithms for constructing suf-
fix arrays [22, 5] and even more compact full-text in-



dexes [20, 14, 15]. We view this as an indication that
internal memory is too expensive for the big suffix ar-
rays one would like to build. Going to external memory
can be viewed as an alternative and more scalable so-
lution to this problem. Once this step is made, space
consumption is less of an issue because disk space is two
orders of magnitude cheaper than RAM.

The biggest suffix array computations we are aware
of are for the human genome [23, 20]. One [20] computes
the compressed suffix array on a PC with 3 GBytes of
memory in 21 hours. Compressed suffix arrays work well
in this case (they need only 2 GByte of space) because
the small alphabet size present in genomic information
enables efficient compression. The other implementa-
tion [23] uses a supercomputer with 64 GBytes of mem-
ory and needs 7 hours. Our algorithms have comparable
speed using external memory.

Pipelining to reduce I/Os is well known technique
in executing database queries [24]. However, previous
algorithm libraries for external memory [4, 9] do not
support it. We decided quite early in the design of
our library Stxxl [10] that we wanted to remove this
deficit. Since suffix array construction can profit im-
mensely from pipelining and since the different algo-
rithms give a rich set of examples, we decided to use
this application as a test bed for a prototype implemen-
tation of pipelining.

2 Doubling Algorithm

Figure 1 gives pseudocode for the doubling algorithm.
The basic idea is to replace characters T [i] of the input
by lexicographic names that respect the lexicographic
order of the length 2k substring T [i, i + 2k) in the k-
th iteration. In contrast to previous variants of this
algorithm, our formulation never actually builds the
resulting string of names. Rather, it manipulates a
sequence P of pairs (c, i) where each name c is tagged
with its position i in the input. To obtain names for
the next iteration k + 1, the names for T [i, i + 2k)
and T [i + 2k, i + 2k+1) together with the position i are
stored in a sequence S and sorted. The new names
can now be obtained by scanning this sequence and
comparing adjacent tuples. Sequence S can be build
using consecutive elements of P if we sort P using
the pair (i mod 2k, i div 2k). Previous formulations of
the algorithm use i as a sorting criterion and therefore
have to access elements that are 2k characters apart.
Our approach saves I/Os and simplifies the pipelining
optimization described in Section 3.

The algorithm performs a constant number of sort-
ing and scanning operations for sequences of size n in
each iteration. The number of iterations is determined
by the logarithm of the longest common prefix.

Function doubling(T )
S:= [((T [i], T [i + 1]), i) : i ∈ [0, n)] (0)
for k := 1 to dlog ne do

sort S (1)
P := name(S) (2)
invariant ∀(c, i) ∈ P :

c is a lexicographic name for T [i, i + 2k)
if the names in P are unique then

return [i : (c, i) ∈ P ] (3)
sort P by (i mod 2k, i div 2k)) (4)
S:= 〈((c, c′), i) : j ∈ [0, n), (5)

(c, i) = P [j], (c′, i + 2k) = P [j + 1]〉

Function name(S : Sequence of Pair )
q:= r:= 0; (`, `′):= ($, $)
result := 〈〉
foreach ((c, c′), i) ∈ S do

q++
if (c, c′) 6= (`, `′) then r:= q; (`, `′):= (c, c′)
append (r, i) to result

return result

Figure 1: The doubling algorithm.

Theorem 2.1. The doubling algorithm computes a suf-
fix array using O(sort(n) dlog maxlcpe) I/Os.

3 Pipelining

The I/O volume of the doubling algorithm from Figure 1
can be reduced significantly by observing that rather
than writing the sequence S to external memory, we
can directly feed it to the sorter in Line (1). Similarly,
the sorted tuples need not be written but can be directly
fed into the naming procedure in Line (2) which can in
turn forward it to the sorter in Line (4). The result
of this sorting operation need not be written but can
directly yield tuples of S that can be fed into the next
iteration of the doubling algorithm. Appendix A gives
a simplified analysis of this example for pipelining.

Let us discuss a more systematic model: The
computations in many external memory algorithms can
be viewed as a data flow through a directed acyclic
graph G = (V = F ∪ S ∪ R, E). The file nodes F
represent data that has to be stored physically on disk.
When a file node f ∈ F is accessed we need a buffer
of size b(f) = Ω (BD). The streaming nodes s ∈ S
read zero, one or several sequences and output zero,
one or several new sequences using internal buffers of
size b(s).1 The Sorting nodes r ∈ R read a sequence

1Streaming nodes may cause additional I/Os for internal
processing, e.g., for large FIFO queues or priority queues. These



and output it in sorted order. Sorting nodes have
a buffer requirement of b(r) = Θ(M) and outdegree
one2. Edges are labeled with the number of machine
words w(e) flowing between two nodes. In the proof of
Theorem 3.2 you find the flow graph for the pipelined
doubling algorithm. We will see a somewhat more
complicated graph in Sections 4 and 6. The following
theorem gives necessary and sufficient conditions for
an I/O efficient execution of such a data flow graph.
Moreover, it shows that streaming computations can be
scheduled completely systematically in an I/O efficient
way.

Theorem 3.1. The computations of a data flow graph
G = (V = F ∪ S ∪ R, E) with edge flows w : E → R+

and buffer requirements b : V → R+ can be executed
using

(3.4)
∑

e∈E∩(F×V ∪V ×F )

scan(w(e)) +
∑

e∈E∩(V ×R)

sort(w(e))

I/Os iff the following conditions are fulfilled. Consider
the graph G′ which is a copy of G except that edges
between streaming nodes are replaced by bidirected edges.
The strongly connected components (SCCs) of G′ are
required to be either single file nodes, single sorting
nodes, or sets of streaming nodes. The total buffer
requirement of each SCC C of streaming nodes plus the
buffer requirements of the nodes directly connected to C
has to be bounded by the internal memory size M .

Proof. The basic observation is that all streaming nodes
within an SCC C of G′ must be executed together
exchanging data through their internal buffers — if any
node from C is excluded it will eventually stall the
computation because input or output buffer fill up.

Now assume that G fulfills the requirements. We
schedule the computations for each SCC of G′ in topo-
logically sorted order. First consider an SCC C of
streaming nodes. We perform in a single pass all the
computations of the streaming nodes in C, reading from
the file nodes with edges entering C, writing to the
file nodes with edges coming from C, performing the
first phase of sorting (e.g., run formation) of the sorting
nodes with edges coming from C, and performing the
last phase of sorting (e.g. multiway merging) for the
sorting nodes with edges entering C. The requirement
on the buffer sizes ensures that there is sufficient inter-
nal memory. The topological sorting ensures that all the
data from incoming edges is available. Since there are

I/Os are not counted in our analysis.
2We could allow additional outgoing edges at an I/O cost

n/DB. However, this would mean to perform the last phase of
the sorting algorithm several times.

only streaming nodes in C, data can freely flow through
them respecting the topological sorting of G.3

When a sorting node is encountered as an SCC we
may have to perform I/Os to make sure that the final
phase can incrementally produce the sorted elements.
However for a sorting volume of O

(

M2/B
)

, multiway
merging only needs the run formation phase that will
already be done and the final merging phase that will
be done later. For SCCs consisting of file nodes we do
nothing.

Now assume the G violates the requirements. If
there is an SCC that exceeds its buffer requirements,
there is no systematic way to execute all its nodes
together.

If an SCC C of G′ contains a sorting node v, there
must be a streaming node w that directly or indirectly
needs input from v, i.e., it cannot start executing before
v starts to produce output. Node v cannot produce
any output before it did not see its complete input.
This input directly or indirectly depends on some other
streaming node u in C. Since u and w are in the
same SCC, they have to be executed together. But
the data dependencies above make this impossible. The
argument for a file node within an SCC is analogous.

Theorem 3.1 can be used to design and analyze
pipelined external memory algorithms in a systematic
way. All we have to do is to give a data flow graph that
fulfills the requirements and we can then read off the I/O
complexity. Using the relations a·scan(x) = scan(a·x)+
O(1) and a·sort(x) ≤ sort(a·x)+O(1), we can represent
the result in the form scan(x) + sort(y) +O(1), i.e., we
can characterize the complexity in terms of the sorting
volume x and the scanning volume y. One could further
evaluate this function by plugging in the I/O complexity
of a particular sorting algorithm (e.g., ≈ 2x/DB for
x � M2/DB and M � DB) but this may not be
desirable because we lose information. In particular,
scanning implies less internal work and can usually be
implemented using bulk I/Os in the sense of [8] (we then
need larger buffers b(v) for file nodes) whereas sorting
requires many random accesses for information theoretic
reasons [2].

Now we apply Theorem 3.1 to the doubling algo-
rithm:

Theorem 3.2. The doubling algorithm from
Figure 1 can be implemented to run using
sort(5n) dlog(1 + maxlcp)e + O(scan(n)) I/Os.

3In our implementations the detailed scheduling within the
components is done by the user to keep the overhead small.
However, one could also schedule them automatically, possibly
using multithreading.



Proof. The following flow graph shows that each iter-
ation can be implemented using sort(2n) + sort(3n) ≤
sort(5n) I/Os. The numbers refer to the line numbers
in Figure 1

1 2 54
3n 2n streaming node

sorting node

After dlog(1 + maxlcp)e iterations, the algorithm fin-
ishes. The O(sort(n)) term accounts for the I/Os
needed in Line 0 and for computing the final result.
Note that there is a small technicality here: Although
naming can find out “for free” whether all names are
unique, the result is known only when naming finishes.
However, at this time, the first phase of the sorting step
in Line 4 has also finished and has already incurred
some I/Os. Moreover, the convenient arrangement of
the pairs in P is destroyed now. However we can then
abort the sorting process, undo the wrong sorting, and
compute the correct output.

In Stxxl the data flow nodes are implemented
as objects with an interface similar to the STL input
iterators [10]. A node reads data from input nodes
using their * operators. With help of their preincrement
operators a node proceeds to the next elements of the
input sequences. The interface also defines an empty()

function which signals the end of the sequence. After
creating all node objects, the computation starts in a
“lazy” fashion, first trying to evaluate the result of the
topologically latest node. The node reads its input
nodes element by element. Those nodes continue in the
same mode, pulling the inputs needed to produce an
output element. The process terminates when the result
of the topologically latest node is computed. To support
nodes with more than one output, Stxxl exposes an
interface where a node generates output accessible not
only via the * operator but a node can also push an
output element to output nodes.

The library already offers basic generic classes
which implement the functionality of sorting, file, and
streaming nodes.

4 Discarding

Let ck
i be the lexicographic name of T [i, i+2k), i.e., the

value paired with i at iteration k in Figure 1. Since
ck
i is the number of strictly smaller substrings of length

2k, it is a non-decreasing function of k. More precisely,
ck+1
i − ck

i is the number of positions j such that ck
j = ck

i

but ck
j+2k < ck

i+2k . This provides an alternative way of
computing the names given in Figure 3.

Another consequence of the above observation is
that if ck

i is unique, i.e., ck
j 6= ck

i for all j 6= i, then

Function name2 (S : Sequence of Pair )
q:= q′:= 0; (`, `′):= ($, $)
result := 〈〉
foreach ((c, c′), i) ∈ S do

if c 6= ` then q:= q′:= 0; (`, `′):= (c, c′)
else if c′ 6= `′ then q′:= q; `′:= c′

append (c + q′, i) to result
q++

return result

Figure 3: The alternative naming procedure.

ch
i = ck

i for all h > k. The idea of the discarding
algorithm is to take advantage of this, i.e., discard
pair (c, i) from further iterations once c is unique. A
key to this is the new naming procedure in Figure 3,
because it works correctly even if we exclude from S
all tuples ((c, c′), i), where c is unique. Note, however,
that we cannot exclude ((c, c′), i) if c′ is unique but c
is not. Therefore, we will partially discard (c, i) when

Function doubling + discarding (T )
S:= [((T [i], T [i + 1]), i) : i ∈ [0, n)] (1)
sort S (2)
U := name(S) //undiscarded (3)
P := 〈〉 //partially discarded
F := 〈〉 // fully discarded
for k := 1 to dlog ne do

mark unique names in U (4)
sort U by (i mod 2k, i div 2k) (5)
merge P into U ; P := 〈〉 (6)
S:= 〈〉; count := 0
foreach (c, i) ∈ U do (7)

if c is unique then
if count < 2 then

append (c, i) to F
else append (c, i) to P
count := 0

else
let (c′, i′) be the next pair in U
append ((c, c′), i) to S
count++

if S = ∅ then
sort F by first component (8)
return [i : (c, i) ∈ F ] (9)

sort S (10)
U := name2 (S) (11)

Figure 4: The doubling with discarding algorithm.
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Figure 2: Data flow graph for the doubling + discarding . The numbers refer to line numbers in Figure 4. The
edge weights are sums over the whole execution with N = n log dps.

c is unique. We will fully discard (c, i) = (ck
i , i) when

also either ck
i−2k or ck

i−2k+1 is unique, because then in
any iteration h > k, the first component of the tuple
((ch

i−2h , ch
i ), i−2h) must be unique. The final algorithm

is given in Figure 4.

Theorem 4.1. Doubling with discarding can be imple-
mented to run using sort(5n log dps)+O(sort(n)) I/Os.

Proof. We prove the theorem by showing that the total
amount of data in the different steps of the algorithm
over the whole execution is as in the data flow graph
in Figure 2. The nontrivial points are that at most
N = n log dps tuples are processed in each sorting step
over the whole execution and that at most n tuples
are written to P . The former follows from the fact
that a suffix i is involved in the sorting steps as long
as it has a non-unique rank, which happens in exactly
dlog(1+dps(i))e iterations. To show the latter, we note
that a tuple (c, i) is written to P in iteration k only
if the previous tuple (c′, i − 2k) was not unique. That
previous tuple will become unique in the next iteration,
because it is represented by ((c′, c), i − 2k) in S. Since
each tuple turns unique only once, the total number of
tuples written to P is at most n.

A slightly different algorithm with the same asymp-
totic complexity is described in [16]. The algorithm
in [8] does partial but not full discarding, adding the
term O(scan(n log maxlcp)) to its complexity.

5 From Doubling to a-Tupling

It is straightforward to generalize the doubling algo-
rithms from Figures 1 and 4 so that it maintains the
invariant that in iteration k, lexicographic names repre-
sent strings of length ak: just gather a names from the
last iteration that are ak−1 characters apart. Sort and
name as before.

Theorem 5.1. The a-tupling algorithm can be imple-
mented to run using

sort(
a + 3

log a
n) log maxlcp + O(sort(n)) or

sort(
a + 3

log a
n) log dps + O(sort(n))

I/Os without or with discarding respectively.

We get a tradeoff between higher cost for each iteration
and a smaller number of iterations that is determined
by the ratio a+3

log a . Evaluating this expression we get the
optimum for a = 5. But the value for a = 4 is only
1.5 % worse, needs less memory, and calculations are
much easier because four is a power two. Hence, we
choose a = 4 for our implementation of the a-tupling
algorithm. This quadrupling algorithm needs 30 % less
I/Os than doubling.

6 A Pipelined I/O-Optimal Algorithm

The following three step algorithm outlines a linear time
algorithm for suffix array construction [17]:

1. Construct the suffix array of the suffixes starting at
positions i mod 3 6= 0. This is done by reduction
to the suffix array construction of a string of two
thirds the length, which is solved recursively.

2. Construct the suffix array of the remaining suffixes
using the result of the first step.

3. Merge the two suffix arrays into one.

Figure 5 gives pseudocode for an external implementa-
tion of this algorithm and Figure 6 gives a data flow
graph that allows pipelined execution. Step 1 is imple-
mented by Lines (1)–(6) and starts out quite similar to
the tripling (3-tupling) algorithm described in Section 5.
The main difference is that triples are only obtained for
two thirds of the suffixes and that we use recursion to
find lexicographic names that exactly characterize the
relative order of these sample suffixes. As a preparation
for the Steps 2 and 3, in lines (7)–(10) these sample
names are used to annotate each suffix position i with
enough information to determine its global rank. More
precisely, at most two sample names and the first one or
two characters suffice to completely determine the rank
of a suffix. This information can be obtained I/O ef-
ficiently by simultaneously scanning the input and the
names of the sample suffixes sorted by their position
in the input. With this information, Step 2 reduces to
sorting suffixes Ti with i mod 3 = 0 by their first char-
acter and the name for Ti+1 in the sample (Line 11).
Line (12) reconstructs the order of the mod-2 suffixes
and mod-3 suffixes. Line (13) implements Step 3 by
ordinary comparison based merging. The slight com-



plication is the comparison function. There are three
cases:

• A mod-0 suffix Ti can be compared with a mod-1
suffix Tj by looking at at the first characters and the
names for Ti+1 and Tj+1 in the sample respectively.

• For a comparison between a mod-0 suffix Ti and a
mod-2 suffix Tj the above technique does not work
since Tj+1 is not in the sample. However, both Ti+2

and Tj+2 are in the sample so that it suffices to look
at the first two characters and the names of Ti+2

and Tj+2 respectively.

• Mod-1 suffixes and Mod-2 suffixes can be compared
by looking at their names in the sample.

The resulting data flow graph is large but fairly straight-
forward except for the file node which stores a copy of
input stream T . The problem is that the input is needed
twice. First, Line 2 uses it for generating the sample and
later, the node implementing Lines (8)–(10) scans it si-
multaneously with the names of the sample suffixes. It
is not possible to pipeline both scans because we would
violate the requirement of Theorem 3.1 that edges be-
tween streaming nodes must not cross sorting nodes.
This problem can be solved by writing a temporary copy
of the input stream. Note that this is still cheaper than
using a file representation for the input since this would
mean that this file is read twice. We are now ready to
analyze the I/O complexity of the algorithm.

Theorem 6.1. The doubling algorithm from Figure 5
can be implemented to run using sort(30n) + scan(6n)
I/Os.

Proof. Let V (n) denote the number of I/Os for the
external DC3 algorithm. Using Theorem 3.1 and the
data flow diagram from Figure 6 we can conclude that

V (n) ≤ sort(( 8
3 + 4

3 + 4
3 + 5

3 + 3
3 + 5

3 )n)

+ scan(2n) + V (
2

3
n)

= sort(10n) + scan(2n) + V ( 2
3n)

This recurrence has the solution V (n) ≤ 3(sort(10n) +
scan(2n)) ≤ sort(30n) + scan(6n). Note that the data
flow diagram assumes that the input is a data stream
into the procedure call. However, we get the same
complexity if the original input is a file. In that case,
we have to read the input once but we save writing it to
the local file node T .

7 Experiments

We have implemented the algorithms in C++ us-
ing the g++ 3.2.3 compiler (optimization level -O2

Function DC3 (T )
S:= [((T [i, i + 2]), i) : i ∈ [0, n), i mod 3 6= 0] (1)
sort S by the first component (2)
P := name(S) (3)
if the names in P are not unique then

sort the (i, r) ∈ P by (i mod 3, i div 3) (4)
SA12:= DC3 ([c : (c, i) ∈ P ]) (5)

P :=
[

(j + 1, SA12[j]) : j ∈ [0, 2n/3)
]

(6)
sort P by the second component (7)
S0:= 〈(T [i], T [i + 1], c′, c′′, i) : (8)

i mod 3 = 0, (c′, i + 1), (c′′, i + 2) ∈ P 〉
S1:= 〈(c, T [i], c′, i) : (9)

i mod 3 = 1, (c, i), (c′, i + 1) ∈ P 〉
S2:= 〈(c, T [i], T [i + 1], c′′, i) : (10)

i mod 3 = 2, (c, i), (c′′, i + 2) ∈ P 〉
sort S0 by components 1,3 (11)
sort S1 and S2 by component 1 (12)
S:= merge(S0, S1, S2) comparison function: (13)

(t, t′, c′, c′′, i) ∈ S0 ≤ (d, u, d′, j) ∈ S1

⇔ (t, c′) ≤ (u, d′)
(t, t′, c′, c′′, i) ∈ S0 ≤ (d, u, u′, d′′, j) ∈ S2

⇔ (t, t′, c′′) ≤ (u, u′, d′′)
(c, t, c′, i) ∈ S1 ≤ (d, u, u′, d′′, j) ∈ S2

⇔ c ≤ d
return [last component of s : s ∈ S] (14)

Figure 5: The DC3-algorithm.

--omit-framepointer) and the external memory li-
brary Stxxl Version 0.52 [10]. Our experimental plat-
form has two 2.0 GHz Intel Xeon processors, one GByte
of RAM, and we use four 80 GByte IBM 120GXP disks.
Refer to [11] for a performance evaluation of this ma-
chine whose cost was 2500 Euro in July 2002. The fol-
lowing instances have been considered:

Random2: Two concatenated copies of a Random
string of length n/2. This is a difficult instance that
is hard to beat using simple heuristics.

Gutenberg: Freely available English texts from http:

//promo.net/pg/list.html.

Genome: The known pieces of the human genome
from http://genome.ucsc.edu/downloads.html (sta-
tus May, 2004). We have normalized this input to ignore
the distinction between upper case and lower case let-
ters. The result are characters in an alphabet of size
5 (ACGT and sometimes long sequences of “unknown”
characters).

HTML: Pages from a web crawl containing only pages
from .gov domains. These pages are filtered so that
only text and html code is contained but no pictures
and no binary files.
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Figure 6: Data flow graphs for the DC3-algorithm. The numbers refer to line numbers in Figure 5.

Table 1: Statistics of the instances used in the experiments.

T n = |T | |Σ| maxlcp lcp log dps
Random2 232 128 231 ≈ 229 ≈ 29.56
Gutenberg 3 277 099 765 128 4 819 356 45 617 10.34

Genome 3 070 128 194 5 21 999 999 454 111 6.53

HTML 4 214 295 245 128 102 356 1 108 6.99

Source 547 505 710 128 173 317 431 5.80
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Source: Source code (mostly C++) containing core-
utils, gcc, gimp, kde, xfree, emacs, gdb, Linux kernel
and Open Office).

We have collected some of these instances at ftp:

//www.mpi-sb.mpg.de/pub/outgoing/sanders/. For
a nonsynthetic instance T of length n, our experiments
use T itself and its prefixes of the form T [0, 2i). Table 1
shows statistics of the properties of these instances.

The figure on the next page shows execution time
and I/O volume side by side for each of our instance
families and for the algorithms nonpipelined doubling,
pipelined doubling, pipelined doubling with discarding,
pipelined quadrupling, pipelined quadrupling with dis-
carding4, and DC3. All ten plots share the same x-
axis and the same curve labels. Computing all these in-
stances takes about 14 days moving more than 20 TByte
of data. Due to these large execution times it was not
feasible to run all algorithms for all input sizes and all
instances. However, there is enough data to draw some
interesting conclusions.

Complicated behavior is observed for “small” inputs
up to 226 characters. The main reason is that we
made no particular effort to optimize special cases

4The discarding algorithms we have implemented need slightly
more I/Os and perhaps more complex calculations than the newer
algorithms described in Section 4.

where at least some part of some algorithm could
execute internally but Stxxl sometime makes such
optimizations automatically.

The most important observation is that the DC3-
algorithm is always the fastest algorithm and is almost
completely insensitive to the input. For all inputs of size
more than a GByte, DC3 is at least twice as fast as its
closest competitor. With respect to I/O volume, DC3
is sometimes equaled by quadrupling with discarding.
This happens for relatively small inputs. Apparently
quadrupling has more complex internal work. For
example, it compares quadruples during half of its
sorting operations whereas DC3 never compares more
than triples during sorting. For the difficult synthetic
input Random2, quadrupling with discarding is by far
outperformed by DC3.

For real world inputs, discarding algorithms turn
out to be successful compared to their nondiscarding
counterparts. They outperform them both with respect
to I/O volume and running time. For random inputs
without repetitions the discarding algorithms might
actually beat DC3 since one gets inputs with very small
values of log dps.

Quadrupling algorithms consistently outperform
doubling algorithms.

Comparing pipelined doubling with nonpipelined
doubling in the top pair of plots (instance Random2)
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one can see that pipelining brings a huge reduction of
I/O volume whereas the execution time is affected much
less — a clear indication that our algorithms are dom-
inated by internal calculations. We also have reasons
to believe that our nonpipelined sorter is more highly
tuned than the pipelined one so that the advantage of
pipelining may grow in future versions of our imple-
mentation. We do not show the nonpipelined algorithm
for the other inputs since the relative performance com-
pared to pipelined doubling should remain about the
same.

A comparison of the new algorithms with previous
algorithms is more difficult. The implementation of
[8] works only up to 2GByte of total external memory
consumption and would thus have to compete with
space efficient internal algorithms on our machine. At
least we can compare I/O volume per byte of input for
the measurements in [8]. Their most scalable algorithm
for the largest real world input tested (26 MByte of text
from the Reuters news agency) is nonpipelined doubling
with partial discarding. This algorithm needs an I/O
volume of 1303 Bytes per character of input. The DC3-
algorithm needs about 5 times less I/Os. Furthermore,
it is to be expected that the lead gets bigger for larger
inputs. The GBS algorithm [13] needs 486 bytes of
I/O per character for this input in [8], i.e., even for
this small input DC3 already outperforms the GBS
algorithm. We can also attempt a speed comparison
in terms of clock cycles per byte of input. Here [8]
needs 157 000 cycles per byte for doubling with simple
discarding and 147 000 cycles per byte for the GBS
algorithm whereas DC3 needs only about 20 000 cycles.
Again, the advantage should grow for larger inputs in
particular when comparing with the GBS algorithm.

The following small table shows the execution time
of DC3 for 1 to 8 disks on the ‘Source’ instance.

D 1 2 4 6 8
t[µs/byte] 13.96 9.88 8.81 8.65 8.52

We see that adding more disks gives only very small
speedup. (And we would see very similar speedups
for the other algorithms except nonpipelined doubling).
Even with 8 disks, DC3 has an I/O rate of less than
30 MByte/s which is less than the peak performance of
a single disk (45 MByte/s). Hence, by more effective
overlapping of I/O and computation it should be pos-
sible to sustain the performance of eight disks using a
single cheap disk so that even very cheap PCs could be
used for external suffix array construction.

8 A Checker

To ensure the correctness of our algorithms we have
designed and implemented a simple and fast suffix array
checker. It is given in Figure 7 and is based on the
following result.

Lemma 8.1. ([5]) An array SA[0, n) is the suffix array
of a text T iff the following conditions are satisfied:

1. SA contains a permutation of [0, n).

2. ∀i, j : ri ≤ rj ⇔ (T [i], ri+1) ≤ (T [j], rj+1) where
ri denotes the rank of the suffix Si according to the
suffix array.

Proof. The conditions are clearly necessary. To show
sufficiency, assume that the suffix array contains exactly
permutation of [0, n) but in wrong order. Let Si and Sj

be a pair of wrongly ordered suffixes, say Si > Sj but
ri < rj , that maximizes i + j. The second conditions
is violated if T [i] > T [j]. Otherwise, we must have
T [i] = T [j] and Si+1 > Sj+1. But then ri > rj by
maximality of i+j and the second condition is violated.

Theorem 8.1. The suffix array checker from Figure 7
can be implemented to run using sort(5n) + scan(2n)
I/Os.

Function Checker (SA, T )
P := [(SA[i], i + 1) : i ∈ [0, n)] (1)
sort P by the first component (2)
if [i : (i, r) ∈ S] 6= [0, n) then return false
S:= [(r, (T [i], r′)) : i ∈ [0, n), (3)

(i, r) = P [i], (i + 1, r′) = P [i + 1]]
sort S by first component (4)
if [(c, r′) : (r, (c, r′)) ∈ S] is sorted (5)
then return true else return false

Figure 7: The suffix array checker.

9 Conclusion

Our efficient external version of the DC3-algorithm is
theoretically optimal and clearly outperforms all pre-
vious algorithms in practice. Since all practical previ-
ous algorithms are asymptotically suboptimal and de-
pendent on the inputs, this closes a gap between the-
ory and practice. DC3 even outperforms the pipelined
quadrupling-with-discarding algorithm even for real
world instances. This underlines the practical usefulness
of DC3 since a mere comparison with the relatively sim-
ple, nonpipelined previous implementations would have
been unfair.



As a side effect, the various generalizations of dou-
bling yield an interesting case study for the systematic
design of pipelined external algorithms.

The most important practical question is whether
constructing suffix arrays in external memory is now
feasible. We believe that the answer is a careful
‘yes’. We can now process 4 · 109 characters overnight
on a low cost machine. Two orders of magnitude
more than in [8] in a time faster or comparable to
previous internal memory computations [23, 20] on more
expensive machines.

There are also many opportunities to scale to even
larger inputs. For example, one could exploit that about
half of the sorting operations are just permutations
which should be implementable with less internal work
than general sorting. It should also be possible to better
overlap I/O and computation. More interestingly,
there are many ways to parallelize. On a small scale,
pipelining allows us to run several sorters and one
streaming thread in parallel. On a large scale DC3 is
also perfectly parallelizable [17]. Since the algorithm is
largely compute bound, even cheap switched Gigabit-
Ethernet should allow high efficiency (DC3 sorts about
13 MByte/s in our measurements). Considering all
these improvements and the continuing advance in
technology, there is no reason why it should not be
possible to handle inputs that are another two orders
of magnitude larger in a few years.
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A An Introductory Example For Pipelining

To motivate the idea of pipelining let us first analyze
the constant factor in a naive implementation of the
doubling algorithm from Figure 1. For simplicity
assume for now that inputs are not too large so that
sorting m words can be done in 4m/DB I/Os using
two passes over the data. For example, one run
formation phase could build sorted runs of size M and
one multiway merging phase could merge the runs into
a single sorted sequence.

Line (1) sorts n triples and hence needs 12n/DB
I/Os. Naming in Line (2) scans the triples and writes
name-index pairs using 3n/DB + 2n/DB = 5n/DB
I/Os. The naming procedure can also determine
whether all names are unique now, hence the test in
Line (3) needs no I/Os. Sorting the pairs in P in Line (4)
costs 8n/DB I/Os. Scanning the pairs and producing
triples in Line (5) costs another 5n/DB I/Os. Overall,
we get (12 + 5 + 8 + 5)n/DB = 30n/DB I/Os for each
iteration.

This can be radically reduced by interpreting the
sequences S and P not as files but as pipelines similar
to the pipes available in UNIX. In the beginning we
explicitly scan the input T and produce triples for S.
We do not count these I/Os since they are not needed
for the subsequent iterations. The triples are not output
directly but immediately fed into the run formation
phase of the sorting operation in Line (1). The runs are
output to disk (3n/DB I/Os). The multiway merging
phase reads the runs (3n/DB I/Os) and directly feeds
the sorted triples into the naming procedure called in
Line (2) which generates pairs that are immediately

fed into the run formation process of the next sorting
operation in Line (3) (2n/DB I/Os). The multiway
merging phase (2n/DB I/Os) for Line (3) does not write
the sorted pairs but in Line (4) it generates triples for
S that are fed into the pipeline for the next iteration.
We have eliminated all the I/Os for scanning and half
of the I/Os for sorting resulting in only 10n/DB I/Os
per iteration — only one third of the I/Os needed for
the naive implementation.

Note that pipelining would have been more compli-
cated in the more traditional formulation where Line (3)
sorts P directly by the index i. In that case, a pipelining
formulation would require a FIFO of size 2k to produce
a shifted sequences. When 2k > M this FIFO would
have to be maintained externally causing 2n/DB addi-
tional I/Os per iteration, i.e., our modification simplifies
the algorithm and saves up to 20 % I/Os.


