
Goal-Directed Shortest-Path Queries Using
Precomputed Cluster Distances

JENS MAUE

Institute of Theoretical Computer Science, ETH Zürich, Switzerland

PETER SANDERS

Fakultät für Informatik, Universität Karlsruhe (TH), Germany

and

DOMAGOJ MATIJEVIC

Department of Mathematics, J.J. Strossmayer University, Osijek, Croatia

We demonstrate how Dijkstra’s algorithm for shortest path queries can be accelerated by using
precomputed shortest path distances. Our approach allows a completely flexible tradeoff between
query time and space consumption for precomputed distances. In particular, sublinear space is
sufficient to give the search a strong “sense of direction”. We evaluate our approach experimentally
using large, real-world road networks.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory—Path and cir-
cuit problems; Network problems; Graph algorithms; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems—Computations on discrete structures

General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: graph decomposition, preprocessing heuristics, road networks,
shortest paths

Partially supported by DFG grants SA 933/1-2,1-3. Part of this work was done at Max-Planck-
Institut für Informatik, Saarbrücken, Germany.
Authors’ addresses: Jens Maue, ETH Zürich, Institute of Theoretical Computer Science, CAB
H 37.2, Universitätsstrasse 6, 8092 Zürich, Switzerland; email: jens.maue@inf.ethz.ch; Peter
Sanders, Fakultät für Informatik, Universität Karlsruhe (TH), Postfach 6980, 76128 Karlsruhe,
Germany; email: sanders@ira.uka.de; Domagoj Matijevic, Department of Mathematics, J.J. Stross-
mayer University, Trg Lj. Gaja 6, 31000 Osijek, Croatia; email: domagoj@mathos.hr.

1. INTRODUCTION

Computing the shortest path between two points in a network is one of the most
fundamental algorithmic problems. There are many real-world applications
that translate to this problem, one of which is answering optimal-path queries
in route planning systems such as timetable information services for public
transport or car navigation systems.

A well-studied and widely used algorithm for shortest paths problems is
Dijkstra’s algorithm [Dijkstra 1959]. The asymptotic running time of Dijkstra’s
algorithm is O(m + n log n), where n is the number of nodes, and m is the num-
ber of edges. This reduces to O(n log n) for sparse graphs. The road networks
considered in this article are almost planar and thus highly sparse. Though
Dijkstra’s algorithm is in fact optimal in a strong theoretical sense, it is of-
ten too slow for answering single-source single-target queries, particularly for
applications to large graphs with frequent queries.

In the typical application scenarios, the queries are to be answered exactly
and quickly, and there are usually many queries while the network does not
change. This is a motivation for performing some amount of preprocessing in
order to improve the query times. Naturally, precomputing and storing the
shortest path distance for all possible queries would result in constant time
queries—if only the distance is required as the answer. But, this approach
is prohibited by its huge time requirement, and the quadratic space is not
affordable either, which holds for large graphs in particular. Therefore, the
preprocessing has to work reasonably fast, and the amount of preprocessed data
should not exceed that of the input. On the other hand, the queries ought to be
effectively accelerated independently of the graph size. These aspects present
conflicting objectives, and to allow adjusting the trade-off between them is a
desirable feature of a possible algorithm.

To sum up, this article focuses on exact single-source single-target shortest-
path queries on large street networks. The main goals are fast queries on a
temporarily static graph without a layout or an embedding (e.g., without any
knowledge of node coordinates), using a fast preprocessing that stores a small
and adjustable amount of auxiliary data.

Precomputed Cluster Distances (PCD)

The PCD algorithm presents a goal-directed speed-up heuristic with prepro-
cessing based on Dijkstra’s algorithm. (Cf. the classification of shortest path
heuristics in Figure 2.) As outlined in Figure 1, PCD comprises two parts, a
preprocessing and a query algorithm.

As its input, the preprocessing algorithm expects a weighted graph that
has been partitioned into k clusters. (There are no further assumptions about
this clustering, and PCD actually works correctly with any partitioning. As we
will see later, the performance of PCD, however, depends on the chosen par-
titioning method.) For every pair of clusters, the preprocessing now computes
the minimum distance between any pair of nodes with one node from either
cluster. This distance is stored for all k2 pairs of clusters, which finishes the
preprocessing.

Fig. 1. Components of PCD featuring the preprocessing and the query part. The preceding parti-
tioning algorithm can be chosen independently of PCD.

Second, during a query, these precomputed cluster distances are applied in
the following way: basically, Dijkstra’s algorithm is executed (see Section 2.1)
combined with bidirectionsl search (see Section 2.2). During the execution, we
maintain an upper bound on the length of the shortest path we are searching,
which is calculated repeatedly using the precomputed distances as outlined in
the next paragraph. Additionally, when the query algorithm considers a node,
the precomputed cluster distances provide a lower bound for the remaining
distance from a node to the query target, from which a lower bound is calculated
on the length of the shortest path we are looking for. If this lower estimate
exceeds the current upper bound, this node cannot be a member of the shortest
path and is therefore pruned.

The upper bound always represents the length of an actual path—not neces-
sarily the shortest—from the query source to the query target. Whenever the
algorithm reaches the start node of a precomputed shortest path to the cluster
containing the target, it tries to tighten the upper bound. A lower bound is esti-
mated in every step of the algorithm, and their quality depends on the number
of clusters k.

Outline

The remainder of this article is structured as follows. Section 2 gives an
overview over shortest paths research and concepts related to PCD. Section
3 introduces the definitions and notation used in the rest of the article. The
next two sections contain the core idea of the article, with Section 4 explain-
ing the preprocessing algorithm, which constitutes the first part of PCD, and
Section 5 containing a detailed description of the PCD query algorithm with
its two consecutive phases. We then present several graph partitioning algo-
rithms in Section 6 used to provide the preprocessing with some clustering.
Experimental evaluation of PCD using large real-world graph instances is pre-
sented in Section 7. Query performance, space requirement, and preprocessing
time are examined, and how these results are affected by varying the graph
partitioning method, by different edge weight functions, and by the amount of

Fig. 2. Overview of the shortest-path algorithms and speed-up heuristics introduced in this
section.

preprocessing in particular. Section 8 summarizes the main results and outlines
possible future work related to PCD. This includes different graph partitioning
algorithms, improvements of the query algorithm itself, and combining it with
other speed-up heuristics.

2. RELATED WORK

A huge amount of research concerning shortest paths and related problems has
been done in the recent past, and the main results related to PCD are presented
in the following. For a recent overview refer to Delling et al. [2008]. This par-
ticularly includes speed-up heuristics based on Dijkstra’s algorithm; Figure 2
gives an overview of the presented techniques, most of which perform some
precomputation on the input data to speed up the search as motivated above.
All preprocessing methods present different solutions to the problem of balanc-
ing between preprocessing time, additional space, and query performance. The
latter can be rated by a method’s speed-up, which denotes the factor by which
an average query outperforms a search with Dijkstra’s algorithm in terms of
query time or size of the search space.

2.1 Dijkstra’s Algorithm

The best-known and most commonly used shortest-path algorithm is that of
Dijkstra [Dijkstra 1959], which solves the single-source shortest paths prob-
lem for directed graphs with nonnegative edge weights. Dijkstra’s algorithm is
efficiently implemented by using a priority queue, on which at most n inser-
tions, n deletions, and up to m decrease-key operations are performed. Every
node is inserted at most once, and its key is decreased at most once for every
incoming edge until it is removed from the queue. A node that has been re-
moved is also called a settled node, as it will not be inserted again. The actual

Fig. 3. Idealized shape of the search space for a query from s to t explored by Dijkstra’s algorithm,
its bidirectional version, A∗, and PCD.

running time clearly depends on how this priority queue is implemented. The
Fibonacci heap data structure allows insert and decrease-key operations in con-
stant and deleting in O(log n) amortised time, which yields a running time of
O(m + n log n) [Fredman and Tarjan 1987].

Though optimal for general ordered sets supporting only comparisons, the
running time of O(m + n log n) can be improved on for standard word RAM
modelling [Hagerup 1998]. A worst case time of O(m+n log log n) [Thorup 2004]
is the best currently known bound. Moreover, the single-source shortest paths
problem can be solved in linear time for restricted families of graphs, such as
undirected graphs [Thorup 1999], planar graphs [Henzinger et al. 1997], or
uniformly distributed edge weights [Meyer 2003; Goldberg 2001].

Dijkstra’s algorithm also solves single-source single-target shortest path
queries, in which the search can be stopped when the distance to the target
has been obtained. Though not improving the worst-case running time, there
are many techniques that heuristically speed up such queries preserving cor-
rect solutions.

2.2 Search Heuristics

A quite simple acceleration technique not requiring any additional information
such as a graph layout or preprocessed data is bidirectional search [Pohl 1971].
This simultaneously explores the reverse graph from the target and finishes
when the search frontiers meet as sketched in Figure 3. As a rule of thumb, the
search space of Dijkstra’s algorithm is usually considered to grow by the square
of the path distance for road networks, so bidirectional search can be expected
to yield a speed-up of two: if Dijkstra’s algorithm explores p2 nodes for a path
of length p, its bidirectional version searches 2 · (p

2)2 = p2

2 nodes (i.e., half the
number). The PCD query algorithm also applies bidirectional search.

The goal-directed A∗ algorithm [Hart et al. 1968] reduces the search space
by preferring nodes that are on a path with a low length estimate: given a po-
tential function π : V → IR, A∗ repeatedly selects the node u whose estimate
d (s, u) + π (u) is the smallest; the resulting search space is shown in Figure 3.
A∗ corresponds to Dijkstra’s algorithm in the following way: the reduced weight
wπ (e) of an edge e = (u, v) is defined by wπ (e) = w(e) − π (u) + π (v), and a poten-
tial function is called consistent if the reduced weight function is nonnegative.
For a consistent potential function, running the A∗ algorithm is equivalent to
running Dijkstra’s algorithm on the graph with reduced edge weights, whereas

Dijkstra’s algorithm can be regarded as A∗ with the zero-potential function. Eu-
clidean distances provide a consistent potential function but require an input
graph provided with node coordinates and perform not very well for quickest
path queries (e.g., weight of an edge is Euclidean distance it covers divided by its
travel time). Unfortunately, the cluster distances precomputed by PCD do not
provide a consistent potential function for A∗ as they may yield a potential that
is not consistent: for an edge e = (u, v), the distance from the cluster containing
v to the cluster containing the target may be much smaller than the distance
from the cluster of v to that of the target. In other words, the potential function
π : V → IR induced by the cluster distances may satisfy π (u) > w(e) + π (v),
which results in a negative reduced weight wπ (e) = w(e) −π (u) +π (v) < 0 for e.

2.3 Goal-Directed Preprocessing Heuristics

The following methods are goal-directed but perform some preprocessing unlike
A∗. They are summarized in Figure 1; PCD is an algorithm of this category.

The concept of landmarks provides a lower bounding technique for A∗, which
is independent of node coordinates [Goldberg and Harrelson 2005]. In a pre-
processing step, a small number of landmark nodes is selected, and the dis-
tances d (u, L) and d (L, u) to and from each landmark L is computed for every
node u. Then, for two nodes u and t, lower bounds for d (u, t) are given by
d (L, t) − d (L, u) and d (u, L) − d (t, L) for every landmark L by the triangle
inequality. This is used in the query which follows the A∗ algorithm. Using only
16 landmark nodes, a bidirectional implementation achieves a good speed-up
of 50 in terms of average number of settled nodes on a road network of about
6.7 million nodes. The preprocessing is fast, since it performs only one shortest-
path search from each landmark (two for directed graphs). Still, sophisticated
landmark selection strategies [Goldberg and Werneck 2005] can increase the
preprocessing time significantly. Furthermore, though linear in the number of
nodes for a constant number of landmarks, the additional space requirement is
quite high, since two distance values are stored for each node-landmark pair.
The PCD algorithm may perform more preprocessing than landmarks, but it
achieves goal-direction more space-efficiently through the adjustable number
of clusters.

If a graph is provided with a geometric layout, Dijkstra’s algorithm can be
directed using geometric containers requiring a linear amount of additional
space: for each edge of the input graph, a geometric object is preprocessed that
covers all nodes to which a shortest path starts with this edge. Edges not rele-
vant for the target node are omitted in the query. High speed-ups of about 30
in terms of size of the search space are obtained even for simpler geometric
objects such as bounding boxes [Wagner and Willhalm 2003]. Though showing
good speed-ups, preprocessing geometric containers requires one single-source
shortest-path search from every node, which is prohibitive for larger graphs.

An approach similar to geometric containers is based on the concept of edge
flags [Lauther 2004; Köhler et al. 2005; Möhring et al. 2007]: the input graph is
partitioned, and a flag is computed for each edge and each partition, indicating
whether the edge is contained in a shortest path to any node of this partition.

The query only considers edges whose flag corresponding to the target region
is set. The original approach used variants of grid partitioning [Lauther 2004],
while applied to partitions obtained by Metis [1995], the approach yields excel-
lent speed-ups of up to 1,400 for a road network of about 1 million nodes and 225
partitions [Köhler et al. 2005]. An extension to multiple levels further acceler-
ates unidirectional search without increasing the space requirement [Möhring
et al. 2007]. Though lower than for geometric containers, the preprocessing
time is still high, since executing one shortest-path search from every border
node of every partition is necessary. For a road-network of 475,000 nodes and
100 partitions, this takes 2.5 hours [Köhler et al. 2005].

2.4 Hierarchical Preprocessing Heuristics

Hierarchical speed-up techniques exploit that shortest routes are largely re-
stricted to smaller and smaller networks of important edges, the further away
the search gets from source and target. During the original development of
PCD, these methods were only beginning to show their full potential. Since
then, hierarchical techniques have become very important since they, regarded
as stand-alone methods, generally give higher speed-ups than goal directed
techniques alone (e.g., Bast et al. [2007], Geisberger et al. [2008]). We refer to
Delling et al. [2008] for a detailed overview. However, note that using hierarchy
has turned out to be mostly orthogonal to goal-directed techniques, so combi-
nations suggest themselves as described in the following section. The fastest
hierarchical technique now known is transit-node routing [Bast et al. 2007]
and can be viewed as a descendant of PCD because it is also based on distance
tables. The difference is that it computes actual distances between important
nodes rather than lower bounds between clusters and uses the hierarchy of the
network to reduce shortest-path calculation to a small number of lookups in
the distance table.

2.5 Combinations

Most preprocessing heuristics can be combined with bidirectional search, and
also combining bidirected search with A∗ can be beneficial [Pohl 1971; Kaindl
and Kainz 1997]. Both A∗ and arc flags can be combined with hierarchical
techniques to achieve improved speed-up. We refer to Bauer et al. [2008] for a
recent summary. Generally, we believe that replacing landmarks with PCD is
promising for future work because it gives us a more flexible trade-off between
preprocessing time, space, and query time.

2.6 Advantages of PCD over Related Methods

Similar to the edge flag approach and multi-level graph decomposition, the
number of clusters k can be adjusted to decrease the costs of preprocessing.
However, the preprocessing time for PCD is independent of the number of
border nodes, and thus independent of the partitioning method, since exactly k
single-source shortest-path computations are performed. In contrast, the edge
flag approach requires one shortest path search from every border node of ev-
ery cluster. Also, PCD achieves high speed-ups even for a simple clustering

Table I. Speed-ups and preprocessing costs of goal-directed
preprocessing heuristics. k denotes the number of clusters, l the
number of landmarks, n the number of nodes, m the number of

edges, B the number of border nodes, and D(n) the running time of
Dijkstra’s algorithm. Plus signs (“+”) mean a method is beneficial

regarding the respective objective, a circle (“◦”) or minus signs (“−”)
indicate average and bad performance, respectively.

Preprocessing
Method Time Space

Landmarks1 �(l ·D(n)) ++ �(l ·n) −−
Geometric Containers �(n·D(n)) −− �(m) ◦
Edge Flags2,3 �(B·D(n)) − �(k ·m) bits −
PCD2 �(k ·D(n)) + �(k2+B) ++
1Preprocessing time does not include landmark selection and may increase
depending on selection scheme [Goldberg and Werneck 2005].
2Preprocessing time does not include clustering.
3Space can be reduced through hierarchical clustering [Möhring et al. 2007].

method such as grid clustering, while the performance of the separator-based
multilevel method highly depends on the size of the separator. Furthermore,
suitably choosing the number of clusters allows an amount of preprocessed data
sublinear in the input graph size unlike, for example, the landmark method.
Moreover, PCD does not require graphs provided with a layout in contrast to
geometric pruning, though partitions might still be obtained by techniques
from computational geometry if a layout is given. The preprocessing costs
and average speed-ups of PCD are compared to other goal-directed methods in
Table I.

3. PRELIMINARIES

A directed graph G is a pair (V , E) of a finite set of nodes V and a set of
edges E ⊆ V × V , n := |V | and m := |E| denote their sizes, and G is called
sparse if m = O(n). For an undirected graph the set of edges is given by E ⊆
{{u, v} |u, v ∈ V , u �= v}. For a weighted graph each edge is assigned a weight
by a function w : E → IR≥0. The length of a path P is denoted by w(P), and
the distance d (s, t) between two nodes s and t is defined by the length of the
shortest path from s to t.

Given a weighted graph G = (V , E), w : E → IR≥0 and a source node s ∈ V ,
the single-source shortest-paths problem is the problem of finding a shortest
path from s to u for every u ∈ V . Additionally given a target node t ∈ V ,
the single-source single-target shortest-path problem is the problem of finding
the shortest path from s to t, which is clearly solved by solving the former
problem.

Given a graph G = (V , E), a collection V = {V1, . . . , Vk} of pairwise disjoint
sets Vi ⊆ V , 1 ≤ i ≤ k, such that

⋃k
i=1 Vi = V is called a partition of G and each

set Vi, 1 ≤ i ≤ k a cluster of G. The size |Vi| of a cluster Vi is denoted by s(Vi),
and its diameter diam(Vi) defined by diam(Vi) := maxu,v∈Vi d (u, v). Further, the
radius r(Vi) is defined by r(Vi) := minv∈Vi max(maxu∈Vi d (v, u), maxu∈Vi d (u, v)).
Note that 2 r(Vi) ≥ diam(Vi).

Fig. 4. Preprocessing connections from cluster Vi .

A node u ∈ Vi is called a border node of Vi if there is an edge (u, v) ∈ E
with v /∈ Vi, and an inner node of Vi otherwise. The set of all border nodes
of Vi is denoted by B(Vi), and B denotes the total number of border nodes in
a partitioned graph. A node u ∈ Vj , j �= i, is called a neighbour node of Vi
if there is an edge (u, v) ∈ E with v ∈ Vi, and Vj is then called a neighbor
cluster of Vi. The distance d (Vi, Vj) between two clusters Vi and Vj is defined
by d (Vi, Vj) := minu∈Vi ,v∈Vj d (u, v), and any path p = (u, . . . , v) with u ∈ Vi and
v ∈ Vj is called a shortest path from Vi to Vj if w(p) = d (Vi, Vj).

4. PREPROCESSING

Suppose the input graph has been partitioned into clusters V1
.∪ · · · .∪ Vk . We

want to compute a complete distance table that allows to look up

d (Vi, Vj) := min
s∈Vi ,t∈Vj

d (s, t)

in constant time. We can compute d (S, Vi) for a fixed cluster S and i = 1, . . . , k
using just one single-source shortest-path computation: add a new node s′ con-
nected to all border nodes of S using zero weight edges. Perform a single-source
shortest-path search starting from s′. Figure 4 illustrates this approach.

The following simple lemma shows that this suffices to find all connections
from S to other clusters. The proof might be almost obvious, nevertheless, this is
an interesting result, since several other speed-up techniques require shortest-
path computations from all border nodes of all clusters.

LEMMA 4.1. d (S, Vi) = minv∈Vi d (s′, v).

PROOF. On the one hand we have d (S, Vi) ≤ minv∈Vi d (s′, v) as any shortest
path (s′, s, . . . , v ∈ Vi) found during the search from s′ contains a path (s, . . . , v)
connecting the clusters S and Vi.

On the other hand, there cannot be a shorter connection from S to Vi. Assume
the contrary, that is, there is a path (s ∈ S, . . . , u ∈ S, u′ /∈ S, . . . , v′ ∈ Vi)
with d (s, v′) < minv∈Vi d (s′, v). Then (s′, u, . . . , v′) would constitute a shorter
connection from s′ to v′, which is a contradiction.

Fig. 5. Updating the upper bound d̂ (s, t) of d (s, t) when settling the first node sU T of a precomputed
path from U to T .

Repeating this procedure for every cluster yields the complete distance table.
In addition, for each pair Vi, Vj we store a start point sij ∈ Vi and an end point
ti j ∈ Vj such that d (sij , ti j) = d (Vi, Vj).

5. QUERY

The PCD query algorithm generally follows Dijkstra’s algorithm, additionally
applying the preprocessed information. To allow sublinear execution time, the
algorithm assumes that the distance values and predecessor information used
by Dijkstra’s algorithm have been initialized properly during preprocessing. In
the following description of the bidirectional variant of the query, s and t denote
the source and target node, respectively, and S and T their clusters. A more-
detailed description including the unidirectional query can be found in Maue
[2006]. The search works in two phases.

Algorithm Outline. In the first phase, we perform ordinary bidirectional
search from s and t until the search frontiers meet, or until d (s, s′) and d (t ′, t)
are known, where s′ is the first border node of S settled in the forward search,
and t ′ the first border node of T settled in the backward search.

For the second phase we only describe forward search—backward search
works completely analogously. The forward search grows a shortest-path tree
using Dijkstra’s algorithm, additionally maintaining an upper bound d̂ (s, t) for
d (s, t), and computing lower bounds d (s, u, t) for the length of any path from
s to t containing u. The search is pruned using the observation that any edge
incident to u need not be considered if d (s, u, t) > d̂ (s, t). Phase 2 finishes when
the search frontiers of forward and backward search meet. In a cleanup phase,
the distance values and predecessor values changed during the search are reset
to provide a proper initialization for the next query, which is efficiently done by
maintaining a stack of all nodes visited during the search. It remains to explain
how d̂ (s, t) and d (s, u, t) are computed.

Upper Bounds. The upper bound is updated whenever a shortest path from
s to a node sU T ∈ U is found such that u is the first node of a precomputed
shortest connection between clusters U and T as illustrated in Figure 5. Then,
a path from s to t—though not necessarily the shortest—has been discovered,

Fig. 6. Estimating a lower bound d (s, u, t) for the length of any path from s to t containing u. The
border node t ′ of T which is the closest to t has been determined by the end of the first phase.

and the upper bound is always updated to the length of the shortest such path
found so far.

LEMMA 5.1. Let sU T ∈ U, tU T ∈ T be the startnode-endnode pair of a precom-
puted shortest path from a cluster U to T and d (U, T) denote its length. Then,
d (s, t) satisfies both the following conditions:

d (s, t) ≤ d (s, sU T) + d (U, T) + d (tU T , t), (1)
d (s, t) ≤ d (s, sU T) + d (U, T) + 2 r(T). (2)

PROOF. s and t are connected by a path p = (s, . . . , sU T , . . . , tU T , . . . , t) with
length w(p) = d (s, sU T) + d (U, T) + d (tU T , t). Since d (s, t) ≤ w(p), condition (1)
holds. Furthermore, d (tU T , t) ≤ diam(T) ≤ 2 r(T), which proves inequality (2).

The value of d (s, u) has just been found by the forward search, and d (U, T)
and tU T have been precomputed; thus, the sum in Equation (1) is defined if tU T

has already been found by the backward search. Otherwise, we use an upper
bound of the diameter of T instead of d (tU T , t) and Equation (2) applies.

Upper Bounds. In every settling step, a lower bound is estimated as shown
in Figure 6.

LEMMA 5.2. Consider any node u �∈ T, and let U denote its cluster. Then, the
length of any path from s via u to t satisfies

d (s, u, t) := d (s, u) + d (U, T) + min
t ′∈B(T)

d (t ′, t). (3)

PROOF. We show that d (s, u, t) ≤ d (s, u) + d (u, t), which is equivalent to
showing d (U, T) + mint ′∈B(T) d (t ′, t) ≤ d (u, t). Consider a shortest path P =
(u, . . . , t ′′, . . . t) from u to t where t ′′ denotes the first node on this path that is in
cluster T . We have d (u, t) = d (u, t ′′) + d (t ′′, t). Since (u, . . . , t ′′) is a connection
from U to T we have d (u, t ′′) ≥ d (U, T). Furthermore, since t ′′ is a border node
of T , we have d (t ′′, t) ≥ mint ′∈B(T) d (t ′, t).

The estimate in (3) can be computed efficiently as d (s, u) has been found by
forward search, U can be found by storing a cluster identifier with each node,

d (U, T) has been precomputed, and mint ′∈T d (t ′, t) has been determined in the
first phase.

Robustness. It seems possible that the query algorithm keeps pruning nodes
without inserting new nodes so that the priority queues run empty in the end.
However, this will not happen since nodes on the shortest path are never pruned
as shown in Lemma 5.3.

LEMMA 5.3. The PCD query algorithm never prunes a node on the shortest
path.

PROOF. Let SP be the shortest path from s to t and let u ∈ V be any node
of SP. If d (u, t) ≤ minv∈B(T) d (v, t), u will be settled in the backward search
already in the first phase; further, it will not be considered for pruning in the
opposite direction in the second phase anymore.

Now assume that d (s, u) >minv∈B(S)d (s, v) and d (u, t) >minv∈B(T) d (v, t). As
w(SP) = d (s, t), d (s, t) ≥ d (s, u, t) is satisfied by Lemma 5.2. On the other hand,
d (s, t) ≤ d̂ (s, t) at any time by Lemma 5.1, so d (s, u, t) ≤ d̂ (s, t).

The immediate consequence from this is that the PCD query algorithm never
runs dry, and the search fronts eventually meet. The path found when finishing
not only is a valid path from the source to the target, it also is the shortest, which
follows from the correctness of Dijkstra’s algorithm.

Space Efficient Implementation. The query algorithm described above is
straight forward to implement using space O(k2 + n), which can be improved
to O(k2 + B). The problem is that when settling a node u, we need to know its
cluster id. The key observation is that clusters only change at border nodes
so that it suffices to store the cluster ids of the B border nodes in a hash
table.

6. PARTITIONING

Three different graph partitioning methods are introduced in the following. For
the sake of simplicity, graphs are assumed undirected in this section, but the
methods can be extended to directed graphs. In particular, the preprocessing
and query algorithms of PCD do not require undirected graphs.

6.1 k-Center Clustering

For any set C = {c1, . . . , ck} ⊆ V of k distinct centers, assigning each node
v ∈ V to the center closest to it results in a k-center clustering. In connection
with k-center clustering, the radius r(Vi) of a cluster Vi denotes the distance
from its center ci to the furthest member. Note that 2 r(Vi) is an upper bound of
diam(Vi) for this definition of radius too. A k-center clustering can be obtained
using k′-oversampling: a sample set C′ of k′ centers is chosen randomly from
V for some k′ ≥ k, and a k′-center clustering is computed for it by running one
single-source shortest-path search from a dummy node connected with each
center by a zero-weight edge. Then, clusters are deleted successively until k
clusters are left.

Fig. 7. Deleting cluster Vi by distributing its member nodes to the neighboured clusters.

A cluster Vi is deleted by removing the corresponding center ci from C′ and
reassigning each member of Vi to the center now closest to it (see Figure 7). This
amounts to a shortest-path search from the neighboring clusters, which now
grow into the deleted cluster. This process terminates with a (k′−1)-clustering.
There are several ways to choose a cluster for deletion: In Section 7, results are
shown for the MinSize and the MinRad heuristics, which choose the cluster of
minimum size and minimum radius, respectively, and the MinSizeRad heuris-
tic, which alternates between the former two.

Calculating the initial k′-center clustering affords a time of D(n), and delet-
ing a cluster Vi takes D(s(Vi)) where D(x) denotes the time needed for set-
tling x nodes using Dijkstra’s algorithm for a sparse graph. The cluster size is
bounded by s(Vi) ≤ n − k′ + i = O(n) in the i-th deletion step, i ∈ {1, . . . , k′−k},
so the time of calculating a k-center clustering by k′-oversampling amounts to
O((k′ − k) D(n)), which is O(k lg k D(n)) for k′ := k lg k.4 If the MinSize heuris-
tic is used, the cluster size can be bounded by s(Vi) ≤ n

k′−(i−1) in the i-th step,
i ∈ {1, . . . , k′ − k}. This allows improving the running time to O(n lg n lg k′

k),
which becomes O(n lg n lg lg k) for k′ := k lg k and D(n) = O(n lg n):

O
(

k′∑
i=k+1

D
(n

i

))
= O

(
k′∑

i=k+1

n
i

lg
n
i

)
= O

⎛
⎜⎜⎜⎜⎝

k′∑
i=k+1

n
i

lg n −
k′∑

i=k+1

n
i

lg i

︸ ︷︷ ︸
≥0

⎞
⎟⎟⎟⎟⎠

= O
(

n lg n

(
k′∑

i=1

1
i

−
k∑

i=1

1
i

))
= O

(
n lg n

(
lg k′ − lg k

)) = O
(

n lg n lg
k′

k

)
Thus, the partitioning algorithm has negligible cost compared to computing
cluster distances, which requires searching O(nk) nodes. Maue [2006] contains
a more-detailed description of k-center clustering.

The radius of a cluster affects the lower bounds of its members, and it seems
that a good partition for PCD has clusters of similar size and a low average
radius. Oversampling indeed keeps a low average radius as deleted clusters

4Throughout this article, lg x stands for log2 x.

tend to be distributed to neighbors of lower radius. But, a higher radius is
acceptable for smaller clusters, since the lower bound is not worsened for too
many nodes then, whereas a low radius allows a bigger size. Both values can
be combined into the weighted average radius, where single radii are weighted
by their clusters’ sizes.

Our k-center heuristics are compared with a simple partitioning based on
a rectangular grid and with Metis [1995]. Metis was originally intended for
parallel processing where clusters should have close to equal size and small
boundaries in order to reduce communication volume.

6.2 Grid Clustering

A quite simple approach of graph partitioning is to arrange a clustering in a
grid-like manner: A square grid is applied above the graph, and all nodes in the
same square together form a cluster. This method needs node coordinates, and
the graph instances used for testing indeed contain this information. However,
this is the only point where they are used.

To achieve a grid clustering with (at least) k clusters, the side length l of a
square has to be chosen carefully. W.l.o.g. let xmin = 0, xmax = 1, ymin = 0, and
ymax = c be the minimum and maximum x- and y-coordinates, respectively,
of all nodes in a given graph. Now, put the side length � = √ c

k , the number of
squares in the horizontal direction a = 1

�
�, and the number of squares in the

vertical direction b = a
�
�. With this choice, all nodes will be covered since a � ≥ 1

and b� ≥ c, and sufficiently many clusters will be achieved since a b ≥ k. Note
that empty squares might occur, which would yield empty clusters and thus
can be deleted. For a graph with n nodes featuring geographic coordinates, a
grid clustering can be calculated in time �(n).

6.3 Metis

An approach much more sophisticated than grid clustering is provided by the
software package Metis [1995], which is originally intended for balancing com-
putations in parallel processing while minimizing the communication volume.
It contains a variety of programs and libraries for partitioning graphs, partic-
ularly for k-way partitioning. A k-way partition of a graph G = (V , E) is a
partition V of k clusters with the additional property that |U | = n

k for every
cluster U ∈ V. The relevant Metis procedure follows a multilevel k-way parti-
tioning scheme described in [Karypis and Kumar 1998], and finds a clustering
of k equal size regions (not necessarily contiguous), minimizing the edge cut,
where the edge cut of a partition denotes the number of edges with end nodes
in different clusters.

The clusters obtained by Metis are of perfectly uniform size. On the other
hand, this is paid for with highly differing diameters, which is further added
to by possible noncontiguous clusters. The resulting effects on the query are
examined in Section 7.4.

Table II. The graph instances of the European road network used for the
experiments.

Instance n m Description
CEN 5,342,276 6,664,561 Belgium, Danmark, Germany, Luxembourg,

the Netherlands
WSO 4,190,068 5,251,527 Austria, France, Switzerland, Italy
SCA 2,453,610 2,731,129 Norway, Sweden
GBR 2,149,793 2,590,401 Great Britain
IBE 872,083 1,177,734 Spain, Portugal
DEU 4,375,849 5,483,579 Germany
SUI 630,962 771,694 Switzerland

7. EXPERIMENTS

The performance of the PCD algorithm is examined experimentally and com-
pared to that of Dijkstra’s algorithm in terms of query time and size of the
search space. Here, search space refers to the subset of nodes settled in a single
query. The main value to specify this comparison is speed-up, which denotes
the ratio of a measured value of Dijkstra’s algorithm to that of PCD and refers
to either query time or number of settled nodes. All numbers presented in this
section are average values over 1, 000 shortest-path queries, each for a random
pair of source and target node.

7.1 Instances

All test instances used for the experiments presented in this article represent
real-world road networks, whose names and sizes can be found in Table II for
the European and Table III for the U.S. road network. In these graphs, edges
correspond to road segments, and nodes represent junctions of segments. For
every instance, two different edge weight functions are available, one corre-
sponding to average travel times, the other to travel distances.

The graphs listed in Table II represent the road network of 14 Western Euro-
pean states. The original data for this—which was made available for scientific
use by PTV AG—contains one length value for each edge, which provides the
distance function mentioned above. Furthermore, each edge is assigned one out
of 13 road categories, ranging from forest roads to fast motorways. To each cate-
gory, an average travel speed between 10km/h and 130km/h is assigned, which
yields the average travel time of each edge. Furthermore, some edges represent
ferry connections for which the average travel times are contained in the input
data. The graphs DEU and SUI are subgraphs of CEN and WSO respectively.

The graphs listed in Table III represent the road network of the 48 contiguous
states of the United States and the District of Columbia, which was obtained
from the U.S. Census Bureau [2002]. The original data also contains a road
category for each edge as well as a length value, from which an average travel
time is determined in the same way as above. However, there are only four
different categories ranging from local roads to primary highways, to which
average speeds between 40 km/h and 100 km/h are assigned.

All instances are undirected, connected, and do not have any self-loops or
parallel edges. As mentioned before, undirected graphs are only used for the

Table III. The graph instances of the US road network used for the experiments.

Instance n m Description
SOU 7,588,996 8,851,170 South (AL, AR, FL, GA, KY, LA, MS, MO, NC, SC, TN, VA, WV)
MID 5,246,822 6,494,670 Midwest (IL, IN, IA, KS, MI, MN, NE, ND, OH, SD, WI)
WES 4,429,488 5,296,150 West (CA, CO, ID, MT, NV, OR, UT, WA, WY)
SWT 3,561,925 4,382,697 Southwest (AZ, NM, OK, TX)
MAT 2,226,138 2,771,948 Middle Atlantic (DC, DE, MD, NJ, NY, PA)
NEN 896,115 1,058,481 New England (CT, ME, MA, NH, RI, VT)

sake of simpler partitioning—the precomputing and query algorithms work for
directed graphs too. The information about the direction of each edge in the
original data for the European instances is ignored, whereas no direction is
available for the US instances. Furthermore, the original data provides geo-
graphic coordinates for each node; this information is only used for estimating
the grid clustering described in Section 6.2. The instances used are generated
in the same way as in Sanders and Schultes [2005], in particular, the same
average speeds are assigned to the road categories when deriving the travel
times.

The graphs reflect the following characteristic of the real-world road net-
works they represent: While a higher amount of junctions in urban areas yields
shorter road segments, the distances between intersections are typically higher
in rural areas. Therefore, the terms urban and rural will be used to refer
to partitions of the graphs with lower and bigger edge weights, respectively.
This notion is independent of the graphs’ geometries, particularly of the node
coordinates.

7.2 Experimental Setup

All experiments presented in this section were performed on an AMD Opteron
clocked at 2.4 GHz with 8 GB of main memory running Linux. The PCD algo-
rithm has been implemented in C++ using the data structure “static graph” of
the C++ library LEDA 5.1 [Mehlhorn and Näher 1999] and compiled with the
GNU C++ compiler g++-3.4 with optimisation level -O3.

7.3 Query Performance

k-center clustering with (k lg k)-oversampling using the MinSize deletion
heuristic serves as the basis clustering method and is used for all experiments
of this section. This method outperforms the other clustering methods, which
is shown in Section 7.4. Moreover, all results refer to the bidirectional version
of PCD unless otherwise stated.

Table IV summarizes the values measured for the PCD query algorithm
comparing different instances for the same number of clusters k = 210, while
results for varying k and the fixed instance DEU are shown in Table V. The
highest speed-up measured is 114.9 in terms of average query time, achieved
for the graph DEU with travel time edge weights. Moreover, speed-ups of more
than 30 are still achieved for a small preprocessing time and a number of border
nodes and cluster pairs (B + k2) significantly smaller than n.

Table IV. Performance of PCD for several graphs with travel time
edge weights using the same number of clusters k = 210. The

following abbreviations are used: prep. denotes the preprocessing
time (including partitioning), t the average query time, settled

means the average number of settled nodes, and spd the
corresponding average speed-up.

prep. Bidirectional PCD Query
Graph k B+k2

n [min] t [ms] spd settled [�] spd

CEN 210 0.22 144.3 188 34.5 161,597 20.1
WSO 210 0.27 92.3 175 21.3 176,514 14.2
SCA 210 0.44 60.7 81 36.5 70,766 22.9
GBR 210 0.51 43.6 53 39.6 54,727 25.7
IBE 210 1.25 11.7 20 24.7 26,591 20.4
DEU 210 0.26 123.0 157 35.0 127,604 20.2
SUI 210 1.71 11.1 9 31.1 12,848 31.4

SOU 210 0.15 160.2 319 20.5 299,202 13.9
MID 210 0.22 89.2 223 18.5 242,153 12.8
WES 210 0.25 80.8 169 19.0 159,409 14.4
SWT 210 0.31 60.9 137 21.3 126,383 15.5
MAT 210 0.50 35.5 76 21.1 83,577 15.2
NEN 210 1.21 11.0 28 19.3 34,625 15.0

Table V. Performance of PCD for varying numbers of clusters k
measured on DEU with travel times. The same abbreviations as in

Table IV are used.

prep. Bidirectional PCD Query
Graph k B+k2

n [min] t [ms] spd settled [�] spd

DEU 24 <0.01 2.6 2114 2.5 1,028,720 2.4
25 <0.01 6.5 1631 3.3 833,545 3.1
26 0.01 11.1 971 5.2 553,863 4.3
27 0.01 19.1 622 7.7 404,121 5.8
28 0.03 35.0 422 12.3 295,525 8.5
29 0.08 68.6 242 20.9 188,239 13.2
210 0.26 123.0 157 35.0 127,604 20.2
211 0.99 246.9 105 60.3 82,404 32.7
212 3.88 558.2 62 114.9 50,417 57.4

7.3.1 Search Space and Query Time. Figure 8 compares the shape of the
area explored by a bidirectional Dijkstra search to that of PCD for selected
values of k. Dijkstra’s algorithm roughly searches two touching balls centered
at the source and target node, respectively.

In contrast, the search space of PCD describes a narrow corridor surrounding
the shortest-path from the source to the target. This corridor approximately
covers those clusters that contain one or more nodes of the shortest-path since
nodes outside these clusters are mostly pruned: when crossing the border to a
cluster outside the corridor, there is a jump in the lower bound estimate as a
different precomputed shortest-path is used for the estimation.

The number of these clusters covering the shortest-path roughly doubles if k
is multiplied by four, while the average cluster size is n

k , so PCD roughly explores

Fig. 8. Search spaces of a sample query from Frankfurt to Berlin for the graph DEU with travel
time edge weights and different values of k.

O(
√

k) clusters visiting O(n√
k
) nodes, on average. Dijkstra’s algorithm visits an

average number of nodes of O(n) independent of k, which suggests the speed-up
of PCD toward Dijkstra is O(

√
k). This heuristic consideration is supported by

Figure 9: plotting the average speed-up values in terms of number of settled
nodes, scaled by

√
k, against the number of clusters k yields nearly-flat lines.

Figure 8 also illustrates the gap in the lower bound estimate mentioned in
Section 1: In this example, reducing the number of clusters to k = 128 causes a
second corridor to be explored around a path slightly longer than the shortest.
Because the lower number of clusters results in less exact lower bound
estimates, nodes close to this nearly shortest path are not pruned. Apparently,
the first gap in the lower bound estimate mentioned in Section 1 is greater
than the difference in length between these two paths for k = 128 but not for
k = 256.

Going back to Table IV and V, the measured speed-ups in terms of average
query time are generally higher than those in terms of average number of set-
tled nodes. A minor reason for this is that nodes pruned after settling contribute
to the size of the search space, but take only little time, since their adjacent
edges are not explored.

Fig. 9. Performance of PCD for several instances and varying values of k with travel time edge
weights. The speed-ups in terms of number of settled nodes are scaled by

√
k.

Table VI. Performance of PCD for several graph
instances with travel distance edge weights using

the same number of clusters k = 210. The
abbreviations are explained in Table IV.

Bidirectional PCD Query
Graph k t [ms] spd settled [�] spd

CEN 210 404 9.5 368,704 7.7
WSO 210 269 8.5 313,208 7.3
SCA 210 108 12.0 131,543 10.3
GBR 210 182 9.0 156,321 8.0
IBE 210 35 10.8 47,903 10.3
DEU 210 275 10.0 294,779 7.9
SUI 210 36 10.9 40,351 9.8

SOU 210 475 10.0 501,127 8.0
MID 210 424 9.0 384,047 7.4
WES 210 200 11.1 249,061 9.4
SWT 210 187 10.5 226,929 8.6
MAT 210 106 10.2 137,903 8.4
NEN 210 48 9.6 64,835 8.3

However, the main reason lies in the sizes of the priority queues, on which
the execution times for queue operations depend. In Dijkstra’s algorithm, the
priority queues keep growing until the search frontiers meet. In contrast, PCD
searches two small balls around the source and the target, pruning the nodes on
their boundaries shortly after. The search frontiers turn into the small corridor
mentioned earlier, and the corresponding priority queues both hold a number
of nodes remaining roughly constant until finishing. Since the average queue
size of PCD is smaller than that of Dijkstra’s algorithm, the average speed-up
in terms of query time is higher than in terms of number of settled nodes. This
relation is analyzed in more detail in Maue [2006].

7.3.2 Travel Times vs. Travel Distances. The speed-ups achieved for travel
times are generally higher than those for travel distances (see Table VI). This

Fig. 10. Relation between number of settled nodes in the unidirectional and bidirectional PCD
query algorithm for several instances and both edge weight functions.

is because edges away from the quickest path (i.e., the shortest-path w.r.t. the
travel time edge weights) have relatively high travel time values compared
to edges on the quickest path, since most of the latter represent major roads
allowing a high travel speed. If the quickest path is left in a query, pruning
therefore happens after fewer steps for travel times compared to leaving the
shortest-path using distances. PCD visits fewer nodes for travel time edges
weights, while the size of the search space for Dijkstra’s algorithm is similar
for both weight functions.

This dependency on the edge weight function is even more significant for the
speed-ups in terms of average query times. The reason for this lies in the smaller
average size of the priority queue in Dijkstra’s algorithm. This is bigger if travel
times are used since they give the shortest-path search some flavor of depth first
search, while travel distances show more similarity to breadth first search. Fur-
thermore, the speed-ups measured with travel time edge weights are generally
lower for the U.S. instances compared to the European. The less hierarchical
road classification in the input data of the United States (see Section 7.1) has
an effect similar to using travel distances. Nevertheless, the values are still
higher than those for travel distance edge weights.

7.3.3 Bidirectional vs. Unidirectional. The unidirectional query algorithm
traverses the corridor only in the direction from s to t, while it searches a
small ball around the target additionally without any pruning. The smaller
the distance between t and the border of its cluster T , the more nodes outside
this cluster are explored in the backward search until T is fully explored. In
contrast, the bidirectional algorithm may prune nodes in T , particularly if a
beneficial position of s in S causes a small gap in the lower bound estimates of
the backward direction.

Figure 10 illustrates the relation between the uni- and bidirectional query
algorithm in terms of average number of settled nodes. For travel distances,
this relation is slightly greater than 1, which could be expected from the con-
sideration mentioned earlier, while it goes up to two for travel times. This can

Fig. 11. Search spaces of the unidirectional and the bidirectional algorithm for a sample source-
target pair.

be explained in the following way: For travel times, the search may follow major
roads—which usually have low edge weights—and run far outside T after few
steps. Hence, the backward search might already settle many nodes outside T
before all nodes of T on side roads are settled and the backward search stops.
Figure 10 also shows that this is less significant for the U.S. instances: Due to
the less hierarchical road classification the plots for WES and MAT are below the
two European examples (but still above the plots for travel distances).

Furthermore, the relation rises with increasing k in all cases: the more clus-
ters there are, the earlier and more often the upper bound is updated, which
takes stronger effect in the bidirectional query.

To sum up, the unidirectional algorithm is affected stronger by an adverse
position of t in T , but cannot profit from the position of s in S unlike the
bidirectional version. The example shown in Figure 11 further illustrates this
issue: The source node’s position close to its cluster’s border causes the backward
search to explore only a narrow corridor, while the unidirectional algorithm
traverses a wider corridor from left to right due to the adverse position of the
target. Moreover, there is a large ball around the target for the unidirectional
algorithm due to the target’s position close to the border.

7.4 Partitioning Methods

All results presented so far use k-center clustering with (k lg k)-oversampling
using the MinSize deletion heuristic for partitioning the input graph. In the
following this is compared with results for variants of k′-oversampling and the
other partitioning methods from Section 6. They all turn out to perform worse.
All speed-up values in this section are measured on the graph DEU using travel
time edge weights, while oversampling is performed with k′ = k lg k unless
otherwise mentioned.

7.4.1 Oversampling vs. Grid and Metis. Figure 12 compares the average
speed-ups of several heuristics for (k lg k)-oversampling as well as grid cluster-
ing and Metis. Both Metis and the simple grid approach perform better than

Fig. 12. Performance of PCD depending on the partitioning method.

the MinRad heuristic, but yield average speed-ups still smaller than those
for MinSizeRad. All methods are well outperformed by the MinSize deletion
heuristic.

At first sight, low cluster diameters improve the speed-ups, since they im-
prove the lower bound estimates, and oversampling with the MinSize deletion
heuristic indeed shows the lowest average cluster radius. On the other hand,
the average radius does not fully reflect the quality of a partition. Oversampling
may generally yield fairly low diameters, since the nodes of a deleted cluster
tend to be distributed to neighbours with smaller radii. However, the fairly
low average radius for the MinRad heuristic and also for Metis suggests much
better speed-ups, particularly compared to grid clustering.

The following insight helps explaining this: It seems that an ideal partition
should have clusters of the same size and a very small diameter. Nevertheless,
a higher diameter is acceptable for clusters with a small number of nodes. In
such a case, only a few nodes are affected by the poor lower bound resulting
from their cluster’s big diameter. Analogously, a low diameter allows a bigger
cluster size.

That is what the MinSize heuristic exactly implements: Just after oversam-
pling (i.e., before deletion has started), all clusters have a very small size, while
their radii differ a lot, with lower values in urban and bigger radii in rural
areas. MinSize now picks clusters for deletion regardless of their radius, so
deletion happens in all areas of the graph unlike for MinRad (see later discus-
sion). As mentioned before, the way of redistributing deleted clusters causes
high-diameter clusters to grow less in size than clusters with low diameter.
MinSize produces partitions with a nonzero standard deviation of the size and
a relatively high deviation of the radii. (See Maue [2006] for deviation of clus-
ter radii and sizes from average of measured values.) The crucial point is that
clusters with a great radius are small in size, and the big-sized clusters have a
low radius.

In contrast, the MinRad heuristic mostly selects clusters in urban areas for
deletion and therefore grows urban clusters in size and diameter. This results
in similar diameters but highly differing sizes, so the urban clusters—in which

Fig. 13. Results for k′-oversampling with MinSize deletion depending on the value of k′.

most most of the nodes are contained—have a bad relation between size and
diameter. The opposite holds for Metis: It yields a zero-standard deviation of
the sizes, which must be paid for with some clusters of very high radius, which
explains the moderate query performance of this method.

7.4.2 Choice of k′ for k′-Oversampling. The performance of k′-
oversampling depends on the value of k′, which is illustrated in Figure 13.
In this figure, the value � = k lg k − k denotes the gap between k lg k and k.
Starting from k′ = k, which means just choosing k centers randomly, even a
small value of � > 0 causes considerably higher speed-ups. Further increasing
k′ also increases the measured speed-ups, until values higher than k lg k show
no significant improvement.

7.5 Border Nodes and Additional Space

Apart from the precomputed cluster distances, the cluster ids add to the space
for precomputed data and must be stored for the B border nodes. As illustrated
in Figure 14, this number B depends on the partitioning method, of which Metis
yields the fewest border nodes, since one of its objectives is reducing the edge cut
(see Section 6.3). However, independent from the method, the amount of border
nodes is negligible compared to k2 for larger values of k, since B = O(

√
k).

For lower k, the value of B + k2 is very small anyway (also see Table V), so
the number of border nodes B and, therefore, the partitioning method does
not affect the space requirement significantly. This holds for oversampling in
particular, further supporting its use as the reference method for partitioning
in Section 7.3.

7.6 Preprocessing Time

Figure 15 shows the time needed for precomputing the cluster distances scales
with k as expected from Section 4. Though DEU and WES are of similar size (see
Tables II and III), their preprocessing times differ by a factor of about two,
which holds for SCA and MAT, analogously. Similar to the different speed-ups
in terms of query time, as explained in Section 7.3, the less hierarchical road-
classification of the U.S. instances causes a smaller size of the priority queue
and thus a faster preprocessing.

Fig. 14. Relative number of border nodes depending on the method of partitioning. The numbers
refer to DEU with travel time edge weights.

Fig. 15. Time required for precomputing the cluster distances (scaled by the number of clusters
k) using travel time edge weights.

The partitioning times for several methods are presented in Figure 16: The
oversampling heuristics need less than 1 minute for the fairly big graph in-
stance DEU, again supporting the role as the basis clustering technique through-
out this section. Though MinSizeRad shows a somewhat unspecific behavior,
MinSize works slightly faster than MinRad as expected from Section 6. Com-
pared to oversampling, which estimates cluster radii while partitioning, the
times for grid clustering and Metis are relatively high, since they compute the
radii in an additional step. Still, the partitioning time is negligible compared to
the time needed for computing the cluster distances for all tested partitioning
methods.

Fig. 16. Partitioning time for several methods and varying k, measured for DEU using travel time
edge weights.

8. CONCLUSION

We have demonstrated that PCD can give route planning in road networks
a strong sense of goal direction leading to significant speed-ups compared to
Dijkstra’s algorithm using only sublinear space. The most obvious task for fu-
ture work is to combine PCD with hierarchical speed-up techniques (e.g., with
contraction hierarchies [Geisberger et al. 2008]), which are both simple and pro-
vide very good speed-ups with little preprocessing time. Experiments in Bauer
et al. [2008] indicate that goal directed techniques, such as landmark A∗, can be
applied to a contracted version of the input graph for which further contraction
would not be useful. This kind of combination thus yields a more robust tech-
nique for graphs, which exhibit less hierarchy than road networks. PCD might
be an alternative to landmark A∗, which needs less space. On the other hand,
hierarchical techniques can be used to quickly compute cluster distances (i.e.,
for large graphs we are no longer constrained by the invested preprocessing
time but only the space consumption of the table of cluster distances [Knopp
et al. 2006; Geisberger et al. 2008]).

PCD itself could be improved by giving better upper and lower bounds. Up-
per bounds are already very good and can be made even better by splitting
edges crossing a cluster border such that the new node has equal distance from
both cluster centers. For example, this avoids cluster connections that use a
small road just because the next entrance from a motorway is far away from
the cluster border. While this is good if we want to approximate distances, ini-
tial experiments indicate that it does not give additional speed-up for exact
queries. The reason is that lower bounds have a quite big error related to the
cluster diameters. Hence, better lower bounds could lead to significant improve-
ments. For example, can one effectively use all the information available from
precomputed distances between clusters explored during bidirectional search?

It seems that a good partitioning algorithm should look for clusters of about
equal size and low diameter. These might be two of the main parameters for an
easily computable objective function whose value indicates whether a clustering
might be suitable for PCD. In the literature, there is a lot of work on approxima-
tion algorithms for various k-center problems. It would be interesting to adapt

some of the proposed algorithms to our situation, both in order to develop an
objective function and to further improve the query speed-up.

REFERENCES

BAST, H., FUNKE, S., SANDERS, P., AND SCHULTES, D. 2007. Fast routing in road networks with transit
nodes. Science 316, 5824, 566.

BAUER, R., DELLING, D., SANDERS, P., SCHIEFERDECKER, D., SCHULTES, D., AND WAGNER, D. 2008. Com-
bining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm. In Proceed-
ings of the 7th Workshop on Experimental Algorithms (WEA). Springer, Berlin, 319–333.

DELLING, D., SANDERS, P., SCHULTES, D., AND WAGNER, D. 2008. Engineering route planning algo-
rithms. submitted for publication, http://i11www.ira.uka.de/extra/publications/dssw-erpa-09.pdf.

DIJKSTRA, E. W. 1959. A note on two problems in connexion with graphs. Numerische Mathematik
1, 269–271.

FREDMAN, M. L. AND TARJAN, R. E. 1987. Fibonacci heaps and their uses in improved network
optimization algorithms. JACM 34, 3, 596–615.

GEISBERGER, R., SANDERS, P., SCHULTES, D., AND DELLING, D. 2008. Contraction hierarchies: Faster
and simpler hierarchical routing in road networks. In Proceedings of the 7th Workshop on Exper-
imental Algorithms (WEA). Springer, Berlin, 319–333.

GOLDBERG, A. V. 2001. A simple shortest path algorithm with linear average time. In Proceedings
of the 9th Annual European Symposium on Algorithms (ESA’01). Springer, Berlin, 230–241.

GOLDBERG, A. V. AND HARRELSON, C. 2005. Computing the shortest path: A search meets graph the-
ory. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’05).
SIAM, Philadelphia, 156–165.

GOLDBERG, A. V. AND WERNECK, R. F. 2005. Computing point-to-point shortest paths from exter-
nal memory. In Proceedings of the 7th Workshop on Algorithm Engineering and Experiments
(ALENEX’05). SIAM, Philadelphia, 26–40.

HAGERUP, T. 1998. Sorting and searching on the word RAM. In Proceedings of the 15th Annual
Symposium on Theoretical Aspects of Computer Science (STACS’98). Springer, Berlin, 366–398.

HART, P. E., NILSSON, N. J., AND RAPHAEL, B. 1968. A formal basis for the heuristic determination
of minimum-cost paths. IEEE Trans. Syst. Sci. Cybernet. SSC 4, 2, 100–107.

HENZINGER, M. R., KLEIN, P., RAO, S., AND SUBRAMANIAN, S. 1997. Faster shortest-path algorithms
for planar graphs. J. Comput. Syst. Sci. 55, 1, 3–23.

KAINDL, H. AND KAINZ, G. 1997. Bidirectional heuristic search reconsidered. J. Artif. Intell. Res.
7, 283–317.

KARYPIS, G. AND KUMAR, V. 1998. Multilevel k-way partitioning scheme for irregular graphs. J.
Parallel Distrib. Comput. 48, 1, 96–129.

KNOPP, S., SANDERS, P., SCHULTES, D., SCHULZ, F., AND WAGNER, D. 2006. Computing many
to many shortest paths using highway hierarchies. http://algo2.iti.uni-karlsruhe.de/schultes/
hwy/distTable.pdf

KÖHLER, E., MÖHRING, R. H., AND SCHILLING, H. 2005. Acceleration of shortest path and constrained
shortest path computation. In Proceedings of the 4th International Workshop on Experimental
and Efficient Algorithms (WEA’05). Springer, Berlin, 126–138.

LAUTHER, U. 2004. An extremely fast, exact algorithm for finding shortest paths in static net-
works with geographical backgrounds. In Geoinformation und Mobilität—Von der Forschung zur
praktischen Anwendung. IfGIprints, vol. 22.

MAUE, J. 2006. A goal directed shortest path algorithm using precomputed cluster distances.
Diploma thesis, Saarland University, Saarbrücken.

MAUE, J., SANDERS, P., AND MATIJEVIC, D. 2006. Goal-directed shortest-path queries using pre-
computed cluster distances. In Proceedings of the 5th International Workshop on Experimental
Algorithms (WEA’06). Springer, Berliln, 316–327.

MEHLHORN, K. AND NÄHER, S. 1999. LEDA—A Platform for Combinatorial and Geometric Com-
puting. Cambridge University Press, Cambridge, UK.

METIS. 1995. Metis: A software package for partitioning unstructured graphs, partitioning
meshes, and computing fill-reducing orderings of sparse matrices. http://glaros.dtc.umn.edu/
gkhome/views/metis.

MEYER, U. 2003. Average-case complexity of single-source shortest-path algorithms: lower and
upper bounds. J. Algorithms 48, 91–134.

MÖHRING, R. H., SCHILLING, H., SCHÜTZ, B., WAGNER, D., AND WILLHALM, T. 2007. Partitioning graphs
to speed up dijkstra’s algorithm. ACM J. Exp. Algorithms, 11.

POHL, I. 1971. Bi-directional search. In Machine Intelligence. Vol. 6. Edinburgh University Press,
127–140.

SANDERS, P. AND SCHULTES, D. 2005. Highway hierarchies hasten exact shortest path queries. In
Proceedings of the 13th Annual European Symposium on Algorithms (ESA’05). Springer, Berlin,
a568–579.

THORUP, M. 1999. Undirected single-source shortest paths with positive integer weights in linear
time. JACM 46, 3, 362–394.

THORUP, M. 2004. Integer priority queues with decrease key in constant time and the single
source shortest paths problem. J. Comput. Syst. Sci. 69, 3, 330–353.

U.S. CENSUS BUREAU. 2002. UA Census 2000 TIGER/Line Files. http://www.census.gov/geo/www/
tiger/tigerua/ua tgr2k.html.

WAGNER, D. AND WILLHALM, T. 2003. Geometric speed-up techniques for finding shortest paths
in large sparse graphs. In Proceedings of the 11th Annual European Symposium on Algorithms
(ESA-03). Springer, Berlin, 776–787.

Repository KITopen

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Maue, J.; Sanders, P.; Matijevic, D.
Goal directed shortest path queries using precomputed cluster distances.
2006. Experimental Algorithms. 5th International Workshop, WEA 2006, Cala Galdana,
Menorca, Spain, May 24-27, 2006. Proceedings., Springer Verlag
doi:10.5445/IR/1000009512

Zitierung der Originalveröffentlichung:

Maue, J.; Sanders, P.; Matijevic, D.
Goal directed shortest path queries using precomputed cluster distances.
2006. Experimental Algorithms. 5th International Workshop, WEA 2006, Cala Galdana,
Menorca, Spain, May 24-27, 2006. Proceedings., 316–327, Springer Verlag

Lizenzinformationen: KITopen-Lizenz

https://publikationen.bibliothek.kit.edu/1000009512
https://publikationen.bibliothek.kit.edu/1000009512
https://publikationen.bibliothek.kit.edu/1000009512
https://www.bibliothek.kit.edu/cms/kitopen-workflow.php

