

Rainer Buchty, Jan-Philipp Weiß (eds.)

High-performance and Hardware-aware Computing

Proceedings of the First International Workshop on New Frontiers
in High-performance and Hardware-aware Computing (HipHaC’08)

Lake Como, Italy, November 2008
(In Conjunction with MICRO-41)

High-performance and
Hardware-aware Computing
Proceedings of the First International Workshop on New Frontiers
in High-performance and Hardware-aware Computing (HipHaC’08)

Lake Como, Italy, November 2008
(In Conjunction with MICRO-41)

Rainer Buchty
Jan-Philipp Weiß
(eds.)

Universitätsverlag Karlsruhe 2008
Print on Demand

ISBN: 978-3-86644-298-6

Impressum

Universitätsverlag Karlsruhe
c/o Universitätsbibliothek
Straße am Forum 2
D-76131 Karlsruhe
www.uvka.de

Dieses Werk ist unter folgender Creative Commons-Lizenz
lizenziert: http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Organization

Workshop Organizers:

Rainer Buchty

Karlsruhe Institute of Technology, Germany

Jan-Philipp Weiß

Karlsruhe Institute of Technology, Germany

Steering Committee:

Jürgen Becker

Karlsruhe Institute of Technology, Germany

Vincent Heuveline

Karlsruhe Institute of Technology, Germany

Wolfgang Karl

Karlsruhe Institute of Technology, Germany

Jan-Philipp Weiß

Karlsruhe Institute of Technology, Germany

Program Committee:

Mladen Berekovic

Universität Braunschweig, Germany

Alan Berenbaum

SMSC, USA

Nevin Heintze

Google Inc.

Vincent Heuveline

Karlsruhe Institute of Technology, Germany

Eric D’Hollander

Ghent University, Belgium

Ben Juurlink

TU Delft, The Netherlands

Wolfgang Karl

Karlsruhe Institute of Technology, Germany

Richard Kaufmann

Hewlett-Packard, USA

Paul Kelly

Imperial College, UK

Hsin-Ying Lin

Intel, USA

Rudolf Lohner

Karlsruhe Institute of Technology, Germany

Andy Nisbet

Manchester Metropolitan University, UK

Ulrich Rüde

Universität Erlangen-Nürnberg, Germany

Martin Schulz

LLNL, USA

Thomas Steinke

Zuse-Institut Berlin, Germany

Robert Strzodka

Max Planck Institut Informatik, Germany

Stephan Wong

TU Delft, The Netherlands

Preface

High-performance system architectures are increasingly exploiting heterogeneity: multi- and manycore-based sys-

tems are complemented by coprocessors, accelerators, and reconfigurable units providing huge computational power.

However, applications of scientific interest (e.g. in high-performance computing and numerical simulation) are not

yet ready to exploit the available high computing potential. Different programming models, non-adjusted interfaces,

and bandwidth bottlenecks complicate holistic programming approaches for heterogeneous architectures. In mod-

ern microprocessors, hierarchical memory layouts and complex logics obscure predictability of memory transfers or

performance estimations.

For efficient implementations and optimal results, underlying algorithms and mathematical solution methods have

to be adapted carefully to architectural constraints like fine-grained parallelism and memory or bandwidth limitations

that require additional communication and synchronization. Currently, a comprehensive knowledge of underlying

hardware is therefore mandatory for application programmers. Hence, there is strong need for virtualization concepts

that free programmers from hardware details, maintaining best performance and enable deployment in heterogeneous

and reconfigurable environments.

The First International Workshop on New Frontiers in High-performance and Hardware-aware Computing

(HipHaC’08) – held in conjunction with the 41st Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO-41) – aims at combining new aspects of parallel, heterogeneous, and reconfigurable system architectures

with concepts of high-performance computing and, particularly, numerical solution methods. It brings together in-

ternational researchers of all affected fields to discuss issues of high-performance computing on emerging hardware

architectures, ranging from architecture work to programming and tools.

The workshop organizers would therefore like to thank the MICRO-41 Workshop Chair for giving us the chance to

host this workshop in conjunction with one of the world’s finest conferences on computer and system architecture –

and of course all the people who made this workshop finally happen, most notably Wolfgang Karl (KIT) for initial

inspiration. Thanks to the many contributors submitting exciting and novel work, HipHaC’08 will reflect a broad

range of issues on architecture design, algorithm implementation, and application optimization.

Karlsruhe, Rainer Buchty & Jan-Philipp Weiß

October 2008 Karlsruhe Institute of Technology (KIT)

Table of Contents

Architectures

OROCHI: A Multiple Instruction Set SMT Processor . 1
Takashi Nakada, Yasuhiko Nakashima, Hajime Shimada, Kenji Kise, and Toshiaki Kitamura

Stream Processing and Numerical Computation

Experiences with Numerical Codes on the Cell Broadband Engine Architecture . 9
Markus Stürmer, Daniel Ritter, Harald Köstler, and Ulrich Rüde

A Realtime Ray Casting System for Voxel Streams on the Cell Broadband Engine . 17
Valentin Fuetterling and Carsten Lojewski

Comparison of High-Speed Ray Casting on GPU using CUDA and OpenGL . 25
Andreas Weinlich, Benjamin Keck, Holger Scherl, Markus Kowarschik, and Joachim Hornegger

RapidMind Stream Processing on the PlayStation 3 for a 3D Chorin-based
Navier-Stokes Solver . 31

Vincent Heuveline, Dimitar Lukarski, and Jan-Philipp Weiß

Temporal Locality

Optimising Component Composition using Indexed Dependence Metadata .39
Lee W. Howes, Anton Lokhmotov, Paul H. J. Kelly, and A. J. Field

Accelerating Stencil-Based Computations by Increased Temporal Locality on
Modern Multi- and Many-Core Architectures . 47

Matthias Christen, Olaf Schenk, Peter Messmer, Esra Neufeld, and Helmar Burkhart

Fast Cache Miss Estimation of Loop Nests using Independent Cluster Sampling . 55
Kamal Sharma, Sanjeev Aggarwal, Mainak Chaudhuri, and Sumit Ganguly

List of Authors . 65

V

OROCHI: A Multiple Instruction Set
SMT Processor

Takashi Nakada∗, Yasuhiko Nakashima∗, Hajime Shimada†, Kenji Kise‡ and Toshiaki Kitamura§
∗Graduate School of Information Science, Nara Institute of Science and Technology, JAPAN

{nakada, nakashim}@is.naist.jp
†Graduate School of Informatics, Kyoto University, JAPAN

shimada@kuis.kyoto-u.ac.jp
‡Graduate School of Information Science and Engineering, Tokyo Institute of Technology, JAPAN

kise@cs.titech.ac.jp
§Graduate School of Information Sciences, Hiroshima City University, JAPAN

kitamura@arch.ce.hiroshima-cu.ac.jp

Abstract—To develop embedded computer systems, one
straightforward way is to employ heterogeneous multi-processors
or multi-cores that have a single traditional core and several
SIMD/VLIW cores. This approach is suitable not only for quick
integration of de-facto OS and new multimedia programs, but
also for QoS. However, such well-known architecture increases
the area, the complexity of the bus structure, the cost of the
chip and the inefficient use of the dedicated cache memory. As
an efficient embedded processor, we propose a heterogeneous
SMT processor that has two different front-end pipelines. Each
pipeline corresponds to ARM architecture for irregular programs
and FR-V (VLIW) architecture for multimedia applications. FR-
V instructions run through the simple decoder and are enqueued
into the VLIW queue. The instructions in the VLIW queue are
simultaneously shifted to the next stage after the instructions
at the final portion are all issued. On the other hand, ARM
instructions are decomposed into simple instructions suitable for
the VLIW queue. The instructions are scheduled based on the
data dependencies and the empty slots. After that, the mixed
instructions in the VLIW queue are issued to the common back-
end pipeline. In this paper, a simple instruction scheduler and a
mechanism for QoS are presented. We evaluated the performance
with an RTL-level simulator and evaluated the chip area. The
results show that the microarchitecture can increase the total IPC
by 20.7% compared to a well-known QoS mechanism controlled
by a process scheduler in OS, and can reduce the total chip
area by 34.5% compared to a well-known separated multi-core
implementation.

Index Terms—Heterogeneous SMT processor, VLIW, Quality
of Service

I. I NTRODUCTION

In recent years, it has become popular to enjoy high-quality
multimedia contents via portable devices. The processors for
such embedded devices are required to accomplish high per-
formance for multimedia applications and work on ultra low-
power to enable use of smaller batteries. Unfortunately, well-
known superscalar processors are unacceptable for such em-
bedded devices on two counts. First, power-hungry processors
with large heatsinks are hard to fit into the embedded devices
that are usually composed in a small chassis. Second, the
processors need to consume less power so as to extend battery
life as much as possible. For this field, in place of traditional

wide issue superscalars, many heterogeneous multi-cores have
been proposed to meet the requirements. Considering the
heavy multimedia workload in modern embedded devices,
VLIW processors are good candidates because enough ILP
in multimedia programs is easily detected by the compiler
so that complicated issue mechanisms can be omitted. By
incorporating well designed multimedia libraries, VLIW can
achieve good performance with low power. However, VLIW
is less competitive in applications with few ILP. Moreover,
library support for general purpose applications is compara-
tively poor. Consequently, some general purpose processors
are also included. This results in a heterogeneous multi-core
processor. Thus, heterogeneous multi-core processors have
become popular, as is the case with the Cell Broadband
Engine [1], which includes a POWER Processing Element
(PPE) as a general processor and eight Synergistic Processing
Elements (SPEs) as media processors.

However, from the point of view of semiconductor technol-
ogy, multi-cores that increase the footprint by incorporating
discrete cores straightforwardly are not the best solution
because static power leakage and process variation will be big
obstacles in next generation low power and high-performance
processors. Static power leakage is in proportion to footprint.
It is crucial to reduce the footprint in the near future. In
particular, the general processor in the multi-core is quite large
because its design tends to be imported from traditional imple-
mentations, despite the small performance contribution of the
general processor. If we unify the general purpose processor
with media processors such as VLIW, the footprint is min-
imized, and the dedicated cache area of the general purpose
processor can be effectively utilized as an additional cache for
the media processors. Such integration shows promise in the
field of smaller footprints and high-performance. Meanwhile,
conventional SMT execution models [2], which also share a
single pipeline and the data cache, are not suitable for QoS
control in general. However, in many embedded systems, QoS
control is one of the important requirements. The processor has
to guarantee the frame rate for a video decoder, for example.
The heterogeneous SMT for embedded processors should meet

1

demands such as these that are not popular in conventional
SMT.

Therefore, we propose a heterogeneous SMT processor
named OROCHI, which can execute simultaneously both the
conventional instruction set and the VLIW instruction set.
By unification of the back-end pipeline, which includes a
load/store unit, the processors based on different architecture
share execution units and a data cache. Each processor has
the opportunity to use more cache area during the time
that the other processor does not need a large cache area.
First, we propose a novel QoS-aware instruction scheduling
mechanism with a VLIW queue that is completely different
from traditional superscalar processors. It schedules VLIW
instructions directly and also transforms conventional instruc-
tions efficiently. Conventional instructions are decomposed
into simple instructions and inserted into the empty slot of
the VLIW queue. Second, we adopt a cache miss prediction
mechanism incorporated in branch predictors and a selective
instruction flush mechanism in the VLIW queue, which are
made more effective than previous QoS control mechanisms
by using an OS scheduler [3] or some hardware approach such
as dynamic cache partitioning [4].

The rest of this paper is organized as follows. Section 2
gives an overview of OROCHI. Section 3 reveals the mi-
croarchitecture of OROCHI. Section 4 describes its evaluation.
Finally, Section 5 concludes the paper and describes future
work.

II. PREVIOUS WORK ON QOS (QUALITY OF SERVICE)

To sustain the QoS, several methods are proposed. These
approaches are classified into two categories, a software ap-
proach and a hardware approach.

The most traditional and common software approach is
scheduling by an OS. However, reducing the execution time of
other applications is the only way to improve the performance
of the QoS-aware applications. With monitoring performance
counters, IPC, etc., an OS can sustain the fairness to some
extent [3]. However, the performance of each application tends
to be degraded. Therefore, it is hard to sustain the QoS by the
scheduler.

Hardware approaches are more powerful than OS ap-
proaches, one being a cache partitioning [5] that divides
the cache memory to achieve a dedicated cache for each
application. The dedicated cache is effective in alleviating the
interaction among applications. However, each cache size thus
decreases to less than the total cache size, as a result of which,
the performance is to an unacceptable degree decreased [6].
To alleviate this problem, dynamic cache partitioning [4],
which adjusts the boundaries of a cache, and virtual private
caches [7], which control cache bandwidth, have been pro-
posed. Unfortunately, their effectiveness is also limited.

A central problem in QoS resides in pipeline stalls due
to unexpected cache misses. So, some cache miss prediction
mechanism shows promise for sustaining QoS. For instance,
Compaq Alpha 21264 [8] has a cache hit/miss predictor for a
speculative issue mechanism. If the cache is predicted as hit,

to minimize load-use latency, Alpha 21264 issues instructions
speculatively that depend on the previous load instruction. If
the speculation fails, all integer pipelines are rewound. The
pipelines are restarted and the instructions are reissued. To
reduce this overhead, the cache hit/miss predictor is very
important for Alpha 21264.

Another approach is a selective instruction flush mecha-
nism [9]. When a cache miss occurs on some thread, instruc-
tions that depend on the load instruction are removed from an
instruction window to avoid unnecessary resource occupation.
After the cache is filled, the removed instructions are refilled
to the instruction window.

III. M ICROARCHITECTURE OFOROCHI

Recent embedded devices that deal with high-quality mul-
timedia contents have a conventional processor (scalar pro-
cessor) and a media processor (ex. VLIW). The conventional
processor usually executes OS codes and miscellaneous low
ILP applications. To minimize developing time, exploiting
conventional processors is crucial, so many legacy codes and
libraries are required to complete the system. On the other
hand, some media processor is required to accelerate the media
processing. There is much data parallelism in multimedia
applications, so typical media processors employ an effective
instruction set such as VLIW, SIMD, etc. that can easily
exploit data parallelism at a low hardware cost. We considered
that the legacy codes can be transformed to fit to some
VLIW structure to reduce the footprint of the total system.
We evaluated a heterogeneous SMT comprising ARM [10]
architecture, as one of the most popular embedded processors
with de-facto OS, and FR-V [11] architecture, as another
popular embedded processor for the image processing field.

FR550 is an eight issue FR-V architecture processor. FR550
can issue four integer instructions and four floating point
instructions or media instructions simultaneously. The media
instructions support saturation operation, multiply and accu-
mulate, SIMD, and so on. Branch and load/store instructions
are classified as integer instruction. It can issue two branch
instructions simultaneously to support a three-way branch and
also two load/store instructions.

Figure 1 outlines the concept of OROCHI with a VLIW
back-end pipeline based on FR550. The most important differ-
ence with a popular pipeline is aVLIW queue that holds two
different instruction sets simultaneously. The key point of this
structure is that some empty slots always exist in the queue.
Because the number of function units of a VLIW processor
is usually more than the maximum number of instructions
in one VLIW. As a result, even if the VLIW instruction
stream executes high performance multimedia applications that
occupy almost all of the instruction slots, enough empty slots
remain for execution legacy codes of ARM applications or OS.
Therefore, we considered that it is possible to integrate the two
different types of processors effectively without performance
degradation.

In detail, the back-end pipeline is comprised of instruction
queue, register file, execution units, data cache and I/O inter-

2

IA

IA

IF

BP

I1

ARM-D HOST-D

VLIW-D

ALU

GRF

MRF

ALU

ALU

OP1

BRC

MEDIA

MEDIA

MEDIA

MEDIA

WR RETI

IF

BP

I1 WR

Dispatch
Read

Schedule Rename

ARM Front-end

FR-V Front-end

Common Back-end

VLIW queue

SMT Execution

Fig. 1. Pipeline of OROCHI

face. A different type of instruction set is translated to fit the
back-end pipeline. Several front-end pipelines are connected
to the instruction queue. Thus, some kinds of processors can
be united with small cost.

A. Outline of the pipeline

OROCHI has two front-end pipelines. Each front-end has
an instruction address generator (IA), an instruction fetch stage
(IF) with a cache (I1) and a branch predictor (BP) that includes
a load-use miss predictor described later, a decoder (ARM-D,
HOST-D corresponding to instruction decomposition similar
to Intel P6 architecture [12] or Netburst architecture [13], and
VLIW-D). Additionally, ARM front-end has a rename stage
(Rename) for out-of-order execution. The decoded instruc-
tions from VLIW-D are directly enqueued into the left-most
portion of the queue. Meanwhile, the renamed instructions
from Rename are scheduled to the queue based on the data
dependencies and the empty slots (Schedule). The detailed
mechanism of such scheduling is described later.

The instructions, which have architecture flags to distin-
guish between ARM and FR-V instructions, in the queue are
shifted toward the execution units simultaneously when the
instructions in the right-most columns are all issued. The issue
mechanism is very similar to the popular VLIW architectures.
Obviously, it is very important to schedule instructions so
that interlocks in the instruction queue seldom occur because
partial data dependency interlocks the whole of the queue.

The back-end pipeline is based on VLIW, as mentioned, and
includes three integer units with shifter and partial multiplica-
tion functions (ALU), one load/store unit (OP1), one branch
unit (BRC) and four media units dedicated to FR-V instruction
streams (MEDIA)1. These function units are a subset of the
FR550 processor. All function units exceptMEDIA units are

1Floating point units are not included. ARM and FR-V use a soft-float
library instead.

shared by ARM and FR-V. The back-end pipeline also has a
general register file (GRF), which has eight read ports and five
write ports, and a media register (MRF), which has eight read
ports and four write ports. Since renaming is not necessary
for in-order execution of FR-V, only a logical register file is
required for FR-V. Even though logical register spaces are
separated between ARM and FR-V, the register file is shared
so that the size of the register file becomes large. However,
numbers of read and write ports are not increased. Since
OROCHI does not have a register transfer instruction between
the general register and media register, media register file is
independent from general register file.

As for ARM instructions, the results are written in the
reorder buffer out-of-order (WR) and then completed in-order
in the following retire stage (RETI). As for FR-V instructions,
the results are written in the architecture registers and also
completed in-order.

When branch prediction misses in a thread, the related
instructions are flushed from the front-end and the instruction
queue, while the other thread keeps executing the instruction
stream.

B. QoS Aware Instruction Scheduling

In the conventional SMT, the requirements for QoS are
not so strong because the fairness between processes is the
most important issue for the system. Besides, in an embedded
system area, special considerations are required to maintain
QoS for certain multimedia applications.

Under typical usage of OROCHI, the processor executes
both the multimedia processing thread written in the VLIW
instruction set and the OS thread written in the conventional in-
struction set simultaneously. From the multimedia processing
side, there are many deadlines. The processor has to guarantee
the completion of the task before the deadline to meet the
media QoS requirement.

3

Di spat ch /R ead

Map/Schedule

Ex ecut e

S1
S2
D

A
R

M
 D

e
c
o

d
e

A
R

M
 R

e
n
a
m

e
A

R
M

 S
c
h

e
d

u
le

S1
S2
D

S1
S2
D

S1

S2
D

G
e
n
e
ra

l
R

e
g
is

te
r

F
ile

S1
S2
D

F
R

-V
 D

e
c
o

d
e

F
R

-V
 S

c
h

e
d

u
le

S1
S2
D

AL U

AL U

AL U

Ca ch e

D

D

D

D

S1
S2
D

S1
S2
D

S1
S2
D

S1

S2
D

Wr it e By pa ss
D

D

S1 S2

S1 S2

Ta g

Da ta

VLIW queue

S1
S2
D

S1
S2
D

S1
S2
D

S1

S2
D

S1
S2
D

S1
S2
D

S1
S2
D

S1

S2
D

S1
S2
D

S1
S2
D

S1
S2
D

S1

S2
D

S1
S2
D

S1
S2
D

S1
S2
D

S1

S2
D

Fig. 2. Detailed Structure of OROCHI

The excessive method to maintain QoS of multimedia
applications running on FR-V is complete shutdown of ARM
instruction streams. However, this is not acceptable from the
point of view of real-time interruption handling.

It is known that the compiler for VLIW schedules instruc-
tions statically. If the compiler cannot find an instruction to
fill slots, empty slots are left as NOPs because the VLIW does
not schedule the instructions dynamically. Even if the ARM
instructions are inserted into such empty slots, performance
drop never occurs on the condition that ARM instructions do
not interfere with the instruction streams of FR-V applications.
The most reasonable technique to sustain the performance of
FR-V is to provide enough slots for FR-V and to schedule
ARM into the unused slots.

Figure 2 describes the structure of instruction scheduling.
In this figure, we omit media and branch units to simplify. At
first, if the left-most portion is empty, FR-V instructions are
enqueued into the left-most portion of the queue. Then ARM
instructions are inserted into the queue. To find a suitable
empty slot, the scheduler compares the destination register
numbers of instructions that are already scheduled in the queue
and source register numbers of the instruction to be scheduled,
then inserts into a suitable slot nearest to the corresponding
execution unit as possible. The scheduling mechanism allows
out-of-order execution with the preceding rename stage and
achieves comparable performance with out-of-order super-
scalar processors. After that, these mixed instructions in the
queue are issued to the common back-end unit in the same
manner as VLIW.

C. Issue Instructions

In the dispatch stage, VLIW hardware dispatches all of the
instructions in the right-most portion of the queue. If there is
an instruction that cannot be issued due to unresolved data
dependency, such as load-use that has a possibility of cache

miss, the following pipeline stages stall. When an L1 data
cache miss occurs, it stalls not only the dependent instructions
but also instructions in the same line. Such simple structure
results in lower complexity than superscalars that incorporate
complicated wakeup and select logics. Instead, performance
seriously drops when one of the instructions waits for the data
produced by previously dispatched instructions. The major
event of such a stall derives from a data cache miss. In the
traditional instruction scheduling, in order to greatly reduce
the execution latency, the instructions that require some load
data are scheduled as if there were no cache miss reported.
Conversely, OROCHI should insert ARM instructions without
interference to FR-V. We only have a limited instruction scope,
so that there is a high probability of pipeline hazards due to L1
data cache misses. Basically, OROCHI maintains QoS of the
FR-V application by scheduling ARM instructions carefully.
The key ideas of the mechanism are cache miss prediction and
selective instruction flush described in next section.

D. QoS Control with Cache Miss Prediction and Selective
Instruction Flush

To alleviate this pipeline stall problem, we propose a cache
hit/miss predictor and a selective instruction flush mechanism.

In general, the cache miss predictor indicates whether the
target cache access will hit or miss. However, OROCHI has
to control not only where the depended instruction should be
scheduled in the queue but also when it should be scheduled.
For instance, when a cache miss is predicted, instructions
that depend on the load data should be scheduled apart from
the load instruction. If we cannot find a suitable free slot in
the instruction window because a long delay is predicted, the
instruction should be delayed to schedule. Such a mechanism
has the potential to avoid pipeline stall due to the cache misses,
if it can learn cache behavior efficiently.

Conversely, if the prediction is incorrect, the processor
cannot avoid a pipeline stall. To alleviate this case, we propose
an additional selective instruction flush mechanism. When
an ARM load instruction results in a cache miss, all ARM
instructions that include the load instruction are purged from
the instruction window. Note that the cache fill request is not
canceled. Since all instructions have an architecture flag, it
is easy to find the ARM instructions. After that, the load
instruction and the following are scheduled again. With the
mechanism, the pipeline stall is eliminated and the FR-V
instructions are executed without interference from ARM.

Figure 3 outlines these techniques. In this figure, theLUMP
indicates a Load-Use Miss Predictor, which predicts whether
an instruction will bring cache miss or not. The LUMP is
implemented in the branch predictor. Note that at this stage, it
is unknown whether the instruction is a load or not. Instead,
the hardware cost is minimized by sharing the table with the
branch predictor. The additional information to the PHT of
the Gshare branch predictor is several bits that indicate the
estimated delay cycles to schedule. When a load instruction
is scheduled, the scheduler controls the insert point and the
timing according to the prediction (1a). For example, when

4

IA VLIW-D IF

BP

I1 WR

FR-V Front-end

IA IF

BP

LUMP

I1

ARM-D HOST-D ALU

ALU

ALU

OP1

BRC

WR RETI

Dispatch
Read

Schedule Rename

ARM Front-end Common Back-end

VLIW queue

(1b) LUMP Update

(2) Selective Flush

(1a) LUMP Lookup

MEDIA

MEDIA

MEDIA

MEDIA

GRF

MRF

Fig. 3. LUMP & Selective Flush

the corresponding counter indicates 3, three cycles of cache
delay can be hidden, but if the cache access is hit, the
three cycles become a penalty. When a load instruction is
executed, the corresponding entry of the table is updated
(1b). In detail, when a load instruction leads to cache miss,
the corresponding counter is incremented and vice versa. If
the selective instruction flush mechanism is enabled also, the
cache miss leads to flushing all of the ARM instructions
including the load instruction from the VLIW queue (2).

IV. EVALUATION

We evaluate the multiple instruction set SMT processor
OROCHI from the view of IPC and the feasibility. First, the
performance of the VLIW queue is evaluated as compared
with an out-of-order superscalar processor. Second, SMT per-
formance with both ARM and FR-V applications is evaluated.
Finally, the QoS features are measured. Table I shows the basic
parameters of OROCHI.

A. VLIW Queue

We preliminarily evaluate the performance of the VLIW
queue as compared with a superscalar processor using an
RTL-level simulator. We also design with ASIC (0.25µm
technology) to evaluate the delay and the area.

Also for the evaluation of the VLIW queue, we design
another ARM superscalar processor with a centralized instruc-
tion window as a baseline (ARMSS). Figure 4 outlines the
baseline processor. The fetch, decode, decompose and back-
end units are the same as OROCHI’s. However, ARMSS
has a centralized instruction window in order to support
dynamic out-of-order execution. ARMSS also has complicated
Wakeup-Select logic. The Wakeup-Select logic searches for
instructions that are ready to be issued (Wakeup) and decides
which instructions are issued from the candidates (Select)
within one cycle. In Figure 4, we can find an additional

TABLE I
EVALUATION PARAMETERS

Cache miss predictor PHT: additional 3bit× 8K
entries (integrated in the
branch predictor)

Branch predictor PHT: 2bit× 8K entries
(gshare)

Return Address Stack 8 entries
Physical register 32 entries
Store buffer 8 entries
Cache line size 64byte
ARM I1 cache 4way, 16KB

miss latency 8cycle
FR-V I1 cache 4way, 16KB

miss latency 8cycle
D1 cache 4way, 32KB

miss latency 8cycle
Unified L2 cache 4way, 2MB

miss latency 40cycle
VLIW queue depth 4

TABLE II
PERFORMANCE OFARM SUPERSCALAR(ARMSS)

IPC delay Freq IPC×Freq
[ns] [MHz] [MIPS]

ARMSS 1.335 13.51 74.0 98.8(1.00)
OROCHI 1.331 8.54 117.1 155.9(1.58)

large selector in the Select/Read stage. We compare IPC using
several programs from MiBench [14] running on ARM.

Table II shows the IPCs, the circuit delays and the over-
all performances. Table III shows the areas. From these
results, OROCHI outperforms ARMSS. The comparison of
IPCs shows that ARMSS gains only 0.3% over OROCHI.
The comparison in the delay shows that OROCHI is faster
than ARMSS by 36.8% due to the simple instruction issue
mechanism. As a result, the overall performance of OROCHI
is expressed as the product of IPC and frequency is superior

5

Sele ct /R ead Map Execute

S1
S2
D

D
e

c
o

d
e

R
e

n
a

m
e

S1
S2
D

S1
S2
D

S1

S2
D

R
e

g
is

te
r

F
il
e

AL U

AL U

AL U

Ca ch e

D

D

D

D

Instruction Window

Wr it e By pa ss Tag- U pdat e
D

D

S1 S2

S1 S2

Ta g

Da ta

D

D

D

D

S1
S2

S1
S2

S1
S2

S1

S2

S1
S2
D

S1
S2
D

S1
S2
D

S1

S2
D

S1
S2
D

S1
S2
D

S1
S2
D

S1

S2
D

S1
S2
D

S1
S2
D

S1
S2
D

S1

S2
D

S1
S2
D

S1
S2
D

S1
S2
D

S1

S2
D

Fig. 4. Pipeline of ARM Superscalar (ARMSS)

TABLE III
AREA OF ARM SUPERSCALAR(ARMSS)

Relative cell area

ARMSS 1.000
OROCHI (ARM only) 1.016

to ARMSS by 57.8%. The comparison in the area shows that
sizes of two implementations are almost the same. After that,
OROCHI is found to be an efficient implementation as an out-
of-order design.

B. Focus on IPC

The overall performance of the SMT is evaluated using
an RTL-level simulator that has a capability to run the
real µClinux/ARM [15] with no MMU. Some benchmarks
from MiBench are compiled as an ARM binary or an FR-
V binary respectively and run simultaneously with ‘small’
datasets under the control of the OS. We select some irregular
applications (e.g.bitcount and dijkstra) for ARM and 13
media applications for FR-V. The average IPC is measured
from the point from which both programs start to the point at
which the FR-V program terminates while the ARM program
is executed repeatedly.

Figures 5 and 6 show the average IPCs, which includes a
baseline comprised of the total IPC of separated execution
of ARM and FR-V where some heterogeneous multi-core
configuration is assumed. The leftmost bars of each result
show the baseline (oracle) IPCs that correspond to simple
summation of the IPCs of ARM and FR-V. The rest of the
bars of each show IPCs of SMT execution. Note that the IPC
of ARM includes the execution of OS codes.

With ARM bitcount, the IPC of FR-V achieves 98.3%
of the ideal performance and the IPC of ARM results in
73.4%. In the same manner, with ARMdijkstra, the IPC
of FR-V achieves 87.4% of the ideal and the IPC of ARM
results in 76.4%. These results clearly show that OROCHI
can successfully unite the two different types of processors in
a single pipeline.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
R

C
3
2

F
F

T

F
F

T
(i
)

a
d
p
c
m

(c
)

a
d
p
c
m

(d
)

b
a
s
ic

m
a
th

b
itc

o
u
n
t

b
lo

w
fis

h
(e

)

b
lo

w
fis

h
(d

)

d
ijk

s
tr

a

is
p
e
ll

jp
e
g
(e

)

jp
e
g
(d

)

q
s
o
rt

ri
jn

d
a
e
l(
e
)

ri
jn

d
a
e
l(
d
)

s
h
a

s
u
s
a
n
(s

)

s
u
s
a
n
(e

)

s
u
s
a
n
(c

)

a
v
e
ra

g
e

IP
C

FR-V ARM
Oracle

 SMT

Fig. 5. ARM bitcount & FR-V MiBench

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
R

C
3
2

F
F

T

F
F

T
(i
)

a
d
p
c
m

(c
)

a
d
p
c
m

(d
)

b
a
s
ic

m
a
th

b
it
c
o
u
n
t

b
lo

w
fi
s
h
(e

)

b
lo

w
fi
s
h
(d

)

d
ijk

s
tr

a

is
p
e
ll

jp
e
g
(e

)

jp
e
g
(d

)

q
s
o
rt

ri
jn

d
a
e
l(
e
)

ri
jn

d
a
e
l(
d
)

s
h
a

s
u
s
a
n
(s

)

s
u
s
a
n
(e

)

s
u
s
a
n
(c

)

a
v
e
ra

g
e

IP
C

FR-V ARM
Oracle

 SMT

Fig. 6. ARM dijkstra & FRV-MiBench

Considering the difference of the performance between
ARM bitcount and ARM dijkstra, some difference of data
cache miss ratio is observed. Although the miss ratio of the
first level data cache inbitcount is only 0.7%, the miss ratio
in dijkstra is 5.5%. The difference in memory pressure is
considered to be a major reason for the phenomenon.

C. Focus on QoS

In contrast to the assumption in the previous section, it is
easily imagined that the ARM programs with high memory
pressure interfere with the performance of FR-V. To alleviate
this case, we propose two key hardware mechanisms we
call ‘cache miss predictor’ and ‘selective flush’ as mentioned
before, which are more effective than the software approaches.

For the comparison, an OS-based QoS mechanism inspired
by a previous work [3] is evaluated. In this mechanism,
the process scheduler in OS controls the priority of ARM
programs so that the FR-V programs maintain the performance
to some extent.

Figure 7 shows the results.Oracle, Base, LUMP, Flush,
LUMP+Flush and OS Sched. correspond to oracle perfor-
mances, without any additional mechanism, using load-use
miss prediction (LUMP), selective flush, both the LUMP and
the Flush, and the OS scheduler respectively.TOTAL IPC
shows the sum of theARM IPC and theFR-V IPC. The
Oracle and theBase are the same as the results in Figure
6.

6

0

0.5

1

1.5

2

2.5

3

C
R
C
3
2

F
F
T

F
F
T
(i
)

a
d
p
c
m
(c
)

a
d
p
c
m
(d
)

b
a
si
c
m
a
th

b
it
c
o
u
n
t

b
lo
w
fi
sh
(e
)

b
lo
w
fi
sh
(d
)

d
ij
k
st
ra

is
p
e
ll

jp
e
g
(e
)

jp
e
g
(d
)

q
so
rt

ri
jn
d
a
e
l(
e
)

ri
jn
d
a
e
l(
d
)

sh
a

su
sa
n
(s
)

su
sa
n
(e
)

su
sa
n
(c
)

a
v
e
ra
g
e

TO
TA
L
 I
P
C

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

F
R
-V
 I
P
C

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

A
R
M
 I
P
C

Oracle

Base

LUMP

Flush

LUMP+Flush

OS sched.

Oracle

Base

LUMP

Flush

LUMP+Flush

OS sched.

Oracle

Base

LUMP

Flush

LUMP+Flush

OS sched.

Fig. 7. QoS Assurance of FR-V (w/ ARMdijkstra)

With LUMP or Flush, the performance of FR-V (FR-V
IPC)is increased from 87.4% (Base) to 90.1% and 92.5%
on average respectively. Moreover, when both the LUMP and
the Flush techniques are applied (LUMP+Flush), it achieved
92.8% on average, whereas the amount of the decrease in
ARM performance (ARM IPC) corresponds to the amount
of the increase in FR-V performance. Consequently, the
total performance (TOTAL IPC) does not decrease at all. In
addition, using the OS scheduler (OS Sched.), the perfor-
mance of FR-V reached 92.5% on average. However, in order
to achieve this performance, the OS scheduler limits ARM
execution time by 60.0%. Therefore the performance of ARM
is significantly decreased by 60.0% of Base and consequently
the total performance is only 82.9% as compared with our

hardware mechanism.
After that, the result shows LUMP and the selective flush

mechanism are efficient for sustaining QoS. In particular, the
latter can increase IPC of FR-V by 5.1%. Note that the total
performance is not decreased.

D. Feasibility Study

To evaluate the effectiveness of unification quantitatively,
we designed OROCHI using ASIC (0.25µm rule). Table IV
shows the comparison of several types of cores.OROCHI
indicates the entire area of OROCHI,OROCHI (FRV only)
and OROCHI (ARM only) indicate OROCHI without ARM
front-end and FRV front-end respectively. The differences of
these results correspond to the size of the ARM front-end

7

TABLE IV
AREA OF OROCHI

Configuration Relative cell area

OROCHI 1.000
OROCHI (FRV only) 0.668
OROCHI (ARM only) 0.859

ARM front-end 0.332
FRV front-end 0.141
Common back-end 0.527

(33.2%) and FR-V front-end (14.1%). The ARM front-end is
twice as big as the FRV front-end due to renaming and out-of-
order execution mechanisms. However, note that the difference
of the area is emphasized because of the small cache (L2 is
not included) and lack of floating point units as mentioned. If
we make a heterogeneous multicore using this front-end and
back-end, the size must be 152.7% due to redundant back-end;
thus, OROCHI can reduce the chip area by 34.5%. Assuming
the same semiconductor technology, OROCHI is comparable
to only one SPE of a Cell Broadband Engine in size.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a heterogeneous SMT processor
OROCHI that can execute both a conventional instruction set
and a VLIW instruction set simultaneously.

By unification of the back-end pipeline that includes a
load/store unit, the processors based on different architecture
can share execution units and a data cache. Each processor
has an opportunity to use more cache area while the other
processor does not need a large cache area. First, we proposed
a novel QoS aware instruction scheduling mechanism with
a VLIW queue. It schedules VLIW instructions directly and
also transforms conventional instructions efficiently. The latter
instructions are decomposed and inserted into the empty slot of
the VLIW queue. Second, we adopted a cache miss prediction
mechanism and a selective instruction flush mechanism in a
VLIW queue that are more effective than OS-based QoS.

We evaluated the performance with an RTL-level simulator
with MiBench and OS. The result shows that the microar-
chitecture can achieve 98.3% of the ideal FRV performance
and 73.4% of the ideal ARM performance simultaneously
when executing a light ARM process. Even if it executes
a heavy ARM process, the QoS is maintained by 92.8%

of FRV performance. As compared to a well-known QoS
mechanism controlled by a process scheduler in OS, this
microarchitecture can increase the total IPC by 20.7%. We also
evaluated the chip area by designing the microarchitecture on
ASIC. The result shows that it can successfully share back-
end, which accounts for 52.7% of the chip area. As a result,
the microarchitecture can reduce the total chip area by 34.5%
compared to well-known separated multi-core implementation.

As future work, we will measure the real power con-
sumption of OROCHI to evaluate the reduction of the power
consumption, which includes static power leakage.

ACKNOWLEDGMENT

This research is joint research with Semiconductor Technol-
ogy Academic Research Center and partially supported by the
Ministry of Education, Science, Sports and Culture, Grant-in-
Aid for Scientific Research (B), 19300012, 2006.

REFERENCES

[1] D. Phamet al., “The design and implementation of a first generation
cell processor,” inISSCC, 2005, pp. 184–592.

[2] J. A. Brown and D. M. Tullsen, “The shared-thread multiprocessor.” in
ICS, 2008, pp. 73–82.

[3] A. Fedorova, M. Seltzer, and M. D. Smith, “Improving performance
isolation on chip multiprocessors via an operating system scheduler,” in
PACT, 2007, pp. 25–38.

[4] J. Chang and G. S. Sohi, “Cooperative cache partitioning for chip
multiprocessors,” inICS, 2007, pp. 242–252.

[5] S. E. Raasch and S. K. Reinhardt, “The impact of resource partitioning
on smt processors,” inPACT, 2003, pp. 15–25.

[6] R. R. Iyer et al., “Qos policies and architecture for cache/memory in
cmp platforms,” inSIGMETRICS, 2007, pp. 25–36.

[7] K. J. Nesbit, J. Laudon, and J. E. Smith, “Virtual private caches,” in
ISCA, 2007, pp. 57–68.

[8] R. E. Kessler, “The alpha 21264 microprocessor,”IEEE Micro, vol. 19,
no. 2, pp. 24–36, 1999.

[9] A. R. Lebecket al., “A large, fast instruction window for tolerating
cache misses,” inISCA, 2002, pp. 59–70.

[10] ARM Architecture Reference Manual, ARM DDI0100E, ARM Limited,
2000.

[11] FR550 Series Instruction Set Manual Ver.1.1, FUJITSU Limited., 2002.
[12] L. Gwennap, “Intel’s p6 uses decoupled superscalar design,”Micropro-

cessor Report, vol. 9, no. 2, pp. 9–15, 1995.
[13] G. Hinton et al., “The microarchitecture of the pentium4 processor,” in

Intel Technology Journal, Q1, 2001.
[14] M. Guthaus et al., “Mibench: A free, commercially representative

embedded benchmark suite,” inIEEE 4th annual International Workshop
on Workload Characterization, 2001.

[15] “µclinux,” http://www.uclinux.org/.

8

Experiences with Numerical Codes
on the Cell Broadband Engine Architecture

Markus Stürmer, Daniel Ritter, Harald Köstler, and Ulrich Rüde
System Simulation Group

Department of Computer Science
University Erlangen-Nuremberg
Cauerstraße 6, 91058 Erlangen

markus.stuermer@informatik.uni-erlangen.de

Abstract

Many numerical computations in science and engineer-
ing require high memory bandwidth and computational
power. The Cell Broadband Engine Architecture (CBEA),
a heterogeneous multicore architecture, promises both. We
evaluated the potential of the CBEA for numerical codes in
the areas image processing, computational fluid dynamics,
and molecular dynamics. We present results and derive the
strengths and challenges for using this novel architecture.

Keywords: CBEA, Cell processor, performance opti-
mization, image processing, computational fluid dynamics,
molecular dynamics

1. Introduction

Multicore architectures are the current trend to serve the
insatiable demand for computational power in science, en-
gineering, economy, and gaming. In contrast to other chip
designers that put multiple, basically identical cores on a
chip, STI1 took a different approach with their Cell Broad-
band Engine Architecture (CBEA) that promises outstand-
ing performance by establishing a heterogeneous design,
whose key concepts are outlined in Sect. 2. The first ma-
chine to break the Petaflop barrier in Linpack was built
of 12,960 PowerXCell 8i, the latest implementation of the
CBEA, and 6,480 AMD Opteron processors at the Los
Alamos National Laboratory.

To explore the potential of this novel architecture for nu-
merical applications, we describe performance-optimized
implementations on the CBEA for applications in im-
age processing (Sect. 3), computational fluid dynamics

1Sony, Toshiba and IBM

(Sect. 4), and molecular dynamics (Sect. 5) before recapit-
ulating the special features of the architecture in Sect. 6.

2. Architectural overview

The first implementation of the CBEA, the so-called
Cell Broadband Engine (Cell/BE) is used e. g. in the Sony
PlaystationTM 3 game console and IBMs QS20 and QS21
blades. Its organization is depicted in Fig. 1 [5, 6]: The
backbone of the chip is a fast ring bus—the Element Inter-
connect Bus (EIB)—connecting all units on the chip and
providing a throughput of up to 204.8 GB/s in total when
running at 3.2 GHz. A PowerPC-based general purpose
core—the Power Processor Element (PPE)—is primarily
used to run the operating system and control execution, but
has only moderate performance compared with other gen-
eral purpose cores. The Memory Interface Controller (MIC)
can deliver data with up to 25.6 GB/s from Rambus XDR
memory and the Broadband Engine Interface (BEI) pro-
vides fast access to I/O devices or a coherent connection
to other Cell processors. The computational power resides
in eight Synergistic Processor Elements (SPEs), simple but
very powerful co-processors consisting of three compo-
nents: Synergistic Execution Unit (SXU), Local Storage
(LS), and Memory Flow Controller (MFC).

The SXU is a custom Single Instruction Multiple Data
(SIMD) only vector engine with a set of 128 128-bit-wide
registers and two pipelines. It operates on 256 kB of its own
LS, a very fast, low-latency memory. SXU and LS consti-
tute the Synergistic Processor Unit (SPU), which has a ded-
icated interface unit connecting it to the outside world: the
primary use of the MFC is to asynchronously copy data be-
tween LS and main memory or the LS of other SPEs using
Direct Memory Access (DMA). It also provides communi-
cation channels to the PPE or other SPEs and is utilized by
the PPE to control execution of the associated SPU. Each

9

SPE can be seen as a very simple computer performing its
own program, but dependent on and controlled by the PPE.

The Cell/BE is able to perform 204.8 GFlop/s using
fused-multiply-adds in single precision (not counting the
abilities of the PPE), but is limited regarding double preci-
sion. Only six SPEs are available under Linux running as a
guest system on the Sony PlaystationTM 3, what reduces the
maximum performance there accordingly to 153.6 GFlop/s.
The newer PowerXCell 8i [7], used in IBMs QS22 blades,
differs from the older Cell/BE by SPEs with higher per-
formance in double precision (12.8 instead of 1.8 GFlop/s
each) and a converter that allows connecting DDR2 mem-
ory to the MIC.

Figure 1. Schematic view of the STI Cell
Broadband Engine.

While standard PowerPC software and compilers can be
executed on the PPE’s computation unit (the PowerPC Pro-
cessor Unit, PPU), software must be adapted to take advan-
tage of the SPEs, whose SXUs use their own instruction
set. The basic approach to write CBEA-enhanced software
is to separately implement the parts running on PPE and the
SPEs, where libraries and language extensions help in issu-
ing and waiting for DMA transfers, and doing the commu-
nication and synchronization between the different agents.
From a software perspective, a program running on the PPU
acquires an SPE and loads a code image to its LS first. To
actually start the program on the SPE, a system call is used,
which does not return until the SPE code suspends execu-
tion or terminates.

There are several general or Cell-specific approaches
to ease the creation of heterogeneous parallel software,
like IBM’s Accelerated Library Framework (ALF) and
Data Communication and Synchronization (DaCS) library,
Cell Superscalar (CellSs) by the Barcelona Supercomputing
Center, the RapidMind Multi-Core Development Platform,
or Mercury’s Multicore Plus SDK, only to mention some of
them.

3. Image processing

Image processing is one of the applications for which the
Cell/BE is especially suitable. Images have naturally regu-
lar data structures and are processed using regular mem-
ory accesses so that data can be transferred easily by DMA.
Additionally, single precision is usually sufficient for im-
age processing tasks. Besides the traditional techniques for
image and video compression based e. g. on wavelets and
Fourier transforms, methods using partial differential equa-
tions (PDEs) have been developed. These methods have the
potential for providing high quality, however they are usu-
ally very compute intensive.

The PDE-based video codec PDEVC [10] is conception-
ally very simple. For each picture, typically 10–15% of the
pixels of an image are selected and stored. All remaing
pixels are discarded and must therefore be reconstructed in
the decoding stage. We will not discuss the algorithms for
selecting the so-called landmark pixels, but will rather fo-
cus on the core algorithm used in the reconstruction phase,
when the landmarks Ωc and the corresponding pixel values
u0 are given. Filling in the missing pixels is the so-called
inpainting problem [3], which is modeled by a partial dif-
ferential equation of the form

−div (Duσ
∇u) = 0 if x ∈ Ω \ Ωc
u = u0 if x ∈ Ωc

,

where the diffusion tensor Duσ can be one of the three
choices in order of increasing complexity

• homogeneous diffusion (HD),

• nonlinear isotropic diffusion (NID), or

• nonlinear anisotropic diffusion (NAD).

Examples of reconstructions are shown in Fig. 2. Homo-
geneous diffusion has a tendency to smoothen edges in the
images, but leads to the least costly algorithm. The nonlin-
ear variants attempt to preserve edges better by adjusting the
diffusion tensor to the local image features. The NAD regu-
larizer is currently state of the art, as it is best in preserving
edges, but is the computationally most expensive one.

The three color channels of an RGB image are encoded
separately and solving an equation is necessary for each of
them. Typically, a frame rate of about 25 frames per second
(FPS) is necessary to achieve smooth real-time playback.

The PDEVC-player is a typical multi-threaded applica-
tion: One thread interprets the video file and sets up the
necessary data structures in main memory. Multiple decom-
pressor threads produce one video frame at a time by solv-
ing the associated PDE(s) approximately. Another thread is
responsible for displaying. Two ring-buffers are necessary
to synchronize the data flow.

10

(a) original

(b) HD (c) NID (d) NAD

(e) HD (f) NID (g) NAD

Figure 2. Comparing the three different kinds
of diffusion.

In the CBEA-optimized version of the player, the decom-
pressor threads off-load the numerical work to an associ-
ated SPE. ω-red-black Gauss-Seidel (ωRBGS) solvers are
used for the HD and NID regularizers, and a damped Jacobi
(JAC) for NAD. More complex solvers, like multigrid meth-
ods that are typically used for these types of PDEs, give only
small improvement due to the high density of landmarks.
Especially JAC is suitable for processing in SIMD, but care
must be taken to preserve landmarks where known pixels
are given. This is achieved by first calculating a whole
SIMD vector containing four new single precision results,
regardless of the pixel types. The final result, that will be
written back to the Local Storage, is created by selecting
from the previous and updated values depending on a bit
field describing the landmarks in the current frame. The
SPU ISA allows for performing this very efficiently. The
kernels are implemented using intrinsics, because the com-
piler failed in vectorizing and unrolling the loops automati-
cally.

For the image sizes investigated, data from multiple im-
age rows can be held in a LS, so that blocking techniques re-
duce the DMA transfer with main memory drastically. The
ωRBGS solvers perform a whole iteration, JAC two itera-
tions per sweep as described in [8]. Table 1 shows the frame
rates that are achievable on a Sony PlaystationTM 3 when all
six available SPEs are used. These values do not include the

bandwidth and effort of the PPE for reading the file and set-
ting up the necessary data structures.

The ωRBGS implementations use the same approach as
for preserving landmarks to update only every second un-
known, so internally twice the computations need to be per-
formed. From the different types of diffusion tensors, HD
leads to a simple five-point stencil for the Laplace opera-
tor with fixed coefficients and therefore has a low compu-
tational density of 6 Flops per iteration and unknown. The
NID regularizer is also approximated by a five-point sten-
cil, but the coefficients are recomputed before each update,
requiring 29 Flops per update in total. The highest com-
putational density occurs when nonlinar anisotropic NAD-
tensors are used, since they result in a nine-point stencil,
whose coefficients are updated every second iteration, re-
sulting in 39.5 Flops per update on average.

Only image data needs to be transferred (4 Byte per pixel
and color), since coefficients are calculated on-the-fly on the
SPEs. Decoding a single frame using one SPE generates
about 120 MB main memory traffic per color frame for the
examples in the table.

Table 1. Decompression speed of pdevc.
Measured for a resolution of 320×240 pixels.
130 iterations of JAC for NAD or 65 ωRBGS it-
erations for NID and HD with 10% landmarks
were used to obtain comparable times.

regularizer FPS bandwidth computation
HD 101 12 GB/s 8.2 GFlop/s
NID 48 5.8 GB/s 18 GFlop/s
NAD 34 4.1 GB/s 36 GFlop/s

It can be seen that only the HD regularizer has extraordi-
nary bandwidth requirements. To interpret the GFlop rates
correctly, it should also be noted that many computations
actually performed were not accounted for: the NID kernel
reaches impressive 42% GFlop/s internally, but most results
are discarded due to the SIMD-vectorization of the ωRBGS
method or because they are landmarks.

4. Computational fluid dynamics

Computational fluid dynamics (CFD) has a large num-
ber of applications in science and engineering. Besides
classical Navier-Stokes solvers, lattice Boltzmann methods
(LBM) have become an interesting alternative. LBM use
an equidistant grid of cells, so-called lattice cells, that in-
teract only with their direct neighbors. However, both ap-
proaches are computationally very expensive, and single
computers often do not provide the necessary performance
to get results in reasonable time. LBM seem to be especially

11

suitable for the CBEA due to their simple access patterns,
higher computational density, and trivial parallelization on
shared memory machines.

cellbm[11] is a prototype LBM solver based on [4] that
has been designed especially for the CBEA and uses the
common D3Q19 BGK [1, 12] collision model. Its main
motivation was to explore the feasibility of blood flow sim-
ulation with the related problems—e. g. the complex blood
vessel structures— while using specialized hardware effi-
ciently. Single precision was used, since only Cell/BE hard-
ware with slow double precision was available during its
implementation.

The memory layout is a key to efficiency and good per-
formance. To save memory, the whole domain is divided
into so-called patches of 8 × 8 × 8 lattice cells in size, and
only patches containing fluid lattices are actually allocated.
This allows efficient processing of moderately irregular do-
mains, while providing all premises for good performance
on the CBEA.

The layout allows for efficient data movement to and
from the SPEs, transfers of multiple 128-Byte-blocks—
corresponding to cache lines of the PPE—with natural
alignment in both, main and local storage, result in optimal
DMA bandwidth. Besides the patch itself, data from outer
edges of possible neighbors needs to be fetched. To avoid
the related inefficient gather operations, a copy of these
faces and lines is reordered and stored contiguously while
processing a patch, and can be retrieved from its neighbors
in the next time step easily. Using two buffers for these
copies, patches can be processed independently and in any
order, so the parallelization is trivial and patches can be as-
signed dynamically to the SPEs using atomic counters.

Patch data is stored in a structure-of-arrays manner, so
all computations can be done in a SIMD way with as many
16 Byte vectors being naturally aligned as possible. SPEs
must emulate scalar operations by performing SIMD op-
erations and combining the previous SIMD vector and the
SIMD vector containing the desired modification, which
makes them extraordinary expensive. Furthermore, loading
or writing naturally aligned 16 B vectors are the only mem-
ory operations to the LS the SPU supports natively; two
aligned loads and a so-called shuffle instruction that extracts
the relevant part are necessary to emulate an unaligned load.

Branches may lead to long branch miss penalties on
the SXUs and are inherently scalar, so the implementation
avoids them wherever possible. Conditional computations
are vectorized by computing both possible results in SIMD
and creating a select mask according to the condition. The
resulting SIMD vector is obtained by combining the differ-
ent variants according to the mask using a select instruction.
The SPU ISA provides various operations for efficient mask
generation to perform that efficiently.

Table 2 compares performance of a serial lattice Boltz-

mann implementation written in C running on various
processor types and our SIMD-optimized implementation
mainly written in SPU assembly language to demonstrate
the importance of SIMDization on the SPUs. The typical
means of expressing LBM performance is the number of
lattice site updates or fluid lattice sizes updates per second
(LUP/s and FLUP/s). A single FLUP corresponds to 167
floating point operations in the optimized SPU kernel. The
codes purely run from the CPUs’ L2 caches or the SPU’s
LS, respectively. It can be seen that the PPE cannot keep
up with a modern server processor, but performance on the
SPU is worst due to the huge overhead of performing scalar
operations and branches. Advanced compilers may vector-
ize simpler scalar algorithms, but they cannot employ SIMD
in the LBM program yet.

Table 2. Performance of a straight-forward
single precision LBM implementation in C on
an Intel Xeon 5160 at 3.0 GHz, a standard 3.2
GHz PPE and SPU, compared with the opti-
mized SPU-kernel for an 83 fluid lattice cells
channel flow.

straight-forward C optimized
CPU Xeon PPE SPU SPU
MFLUP/s 10.2 4.8 2.0 49.0

There are two approaches for coping with the cache-
coherent non-uniform memory access (ccNUMA) topology
on the IBM QS blades that provide two Cell processors with
an attached main memory and a fast interconnect between
the processors. The simpler approach is to allocate all data
pagewise alternating on both memory locations, so that a
SPE on any CPU will access memory through the nearby
and the remote memory bus. Distributing half of the patches
to each memory location and the proximate SPEs allows for
optimizing for NUMA even better.

Table 3 shows the performance of the whole LBM solver
on a PlaystationTM 3 and a QS20 blade with different SPE
and CPU utilization. Generally, it can be seen that well opti-
mized kernels are able to saturate the memory bus with half
of the SPEs available.

When looking at one or two SPEs running on a single
CPU, the PlaystationTM 3 gets a slightly better performance.
On the QS20, the coherence protocol between the two CPUs
leads to a lower bandwidth achievable for a single SPE.
Memory benchmarks have shown that this is especially true
for DMAs writing to main storage.

Both approaches for exploiting the NUMA architecture
when utilizing the second CPU and its memory bus can im-
prove performance significantly with an efficiency of 79%
and 93%, respectively. If e. g. four Cell processors might

12

Table 3. Cell/BE MLUP/s performance for a
963 channel flow. MFLUP/s = MLUP/s · 943

963 .

PS3 QS 20
CPUs one one both both
memory local local interleaved NUMA-

aware
1 SPE/CPU 42 40 73 70
2 SPEs/CPU 81 79 129 136
3 SPEs/CPU 93 107 156 189
4 SPEs/CPU 94 110 166 204
6 SPEs/CPU 95 110 174 205
8 SPEs/CPU N/A 109 173 200

be connected in the future, the efficiency of the simple
approach that distributes data blindly will decrease drasti-
cally. For applications like the LB method, that are memory
bound and whose work can be distributed easily, manual
management of data and its memory locations is worthwhile
anyway.

5. Molecular dynamics

Molecular dynamics (MD) is another field where the out-
standing numerical performance of the CBEA can be of use.
One possibility to solve MD problems with a large num-
ber of particles and long-range interactions between those
effectively are grid-based methods, which are explained in
[9]. These methods require fast linear solvers, e. g. multi-
grid methods. They can be parallelized on a shared mem-
ory system with moderate effort and its high floating-point
performance and bandwidth make the CBEA a highly inter-
esting architecture for this class of algorithms.

A common issue in MD is the solution of Poisson’s equa-
tion on an unbounded domain, i. e. with open boundary con-
ditions. For 3D, this problem can be written as

∆Φ(x) = f(x), x ∈ R3,

with Φ(x)→ 0 for ‖x‖ → ∞,
where supp(f) ⊂ Ω is a bounded subset of R3. For nu-
merical treatment, the equation is discretized, which leads
to the following formulation:

∆hΦ(x) = f(x), x ∈ {x|x = h · z, z ∈ Z3},
with Φ(x)→ 0 for ‖x‖ → ∞,

with the discrete Laplace-operator ∆h and mesh size h.
This equation is still an infinite system, what prevents the
direct numerical solution. For that reason, the system is
reduced to a finite one using a stepwise coarsening and ex-
panding grid hierarchy of l levels (Gi, i = 1, . . . l) as de-
scribed in [2]. The expanding and coarsening leads to the

fact that the number of grid points is not halved in each
dimension from one level to the next one, but decreasing
slower (compare to Table 4). The values of Φ on the bound-
ary points of the coarsest grid are calculated as

Φ(xδ) =
1

4π

∫∫∫

Ω

f(y)
‖y − xδ‖2

dy,

what is discretized to

Φ(zδ) =
h3

4π

∑

zfine∈G1

f(zfine)
‖zfine − zδ‖2

.

This evaluation is only sensible for a small number of
boundary points because of its high cost. The solution with
a multigrid method is supported by that hierarchical grid
structure. From the class of multigrid methods, the Fast
Adaptive Composite Grid method (FAC) is used, which
restricts the original system equation and not the residual
equation.

The FAC was implemented using a Jacobi smoother for
pre- and postsmoothing, direct injection for restriction, and
linear interpolation for prolongation. The program was par-
allelized on the Cell/BE using domain decomposition. To
enhance the execution speed of the code, several optimiza-
tion techniques were applied:

• SIMDization of the computation kernels: All the oper-
ations such as restriction, smoothing, interpolation and
treatment of interfaces use the SPE vector operations.

• Linewise processing of the data using double buffer-
ing: Each line is 128-Byte-aligned in the Local Stor-
age and the main memory to utilize full memory band-
width.

• The interfaces between two grid levels need special
considerations and are treated using a ghost layer,
which avoids the access to both grids at the same time.

After a smoothing step and before the restriction is done, all
threads are synchronized to avoid data inconsistencies.

Tests were performed both on the PlaystationTM 3 and
on the IBM QS20 for different grid sizes. The memory
requirements for some of those are specified in Table 4.
Since the results are very similar on the PlaystationTM 3
and the QS20, but the QS20 enables more opportunities
because of its bigger main memory and more SPEs, only
the test runs on the QS20 are considered here. The first
tests were run using one Cell processor only. Exemplary
for the performance of the adapted computation kernels,
the runtime of the Jacobi smoother was analyzed. This
has been done using exact in-code timing commands at
each synchronization event, i. e. after each iteration of
the smoother. The timing results for different numbers of

13

Table 4. Overview of the four finest grid sizes,
total number of levels, and memory require-
ments of the FAC method.

grid size in each dim. on level memory
levels 1 2 3 4 [MB]

8 35 35 35 23 8
12 67 67 39 35 26
16 131 131 131 71 159
20 195 195 103 99 504

Table 5. Runtimes (in msecs) for one Jacobi
iteration depending on grid size and number
of threads.

problem size 643 1283 1923 2563

1 SPE 1.56 10.1 31.2 70.6
2 SPEs 0.78 5.03 15.6 35.3
3 SPEs 0.63 3.36 10.5 23.6
4 SPEs 0.46 2.55 8.14 17.9
5 SPEs 0.39 2.17 7.25 15.8
6 SPEs 0.34 1.96 6.28 13.8
7 SPEs 0.32 1.81 6.40 13.5
8 SPEs 0.25 1.78 6.08 13.8

unknowns are shown in Table 5.

The question of interest is, whether the memory band-
width or the floating-point performance is the limiting fac-
tor in terms of speed. The first can roughly be computed
by Pmem = (size−1)3·20

time , as 20 Byte have to be trans-
ferred per inner grid point, while the latter is given as
Pflop = (size−1)3·10

time , since 10 numerical operations are ex-
ecuted per inner grid point. Fig. 3 shows both measures for
the previous test runs.

The performance of the Jacobi smoother is basically
bound by the memory bandwidth. For up to six SPE threads,
scaling of speed is almost ideal, for seven and eight there is
hardly any effect, since the memory bus is already saturated.
The highest measured value is 22.7 GiB/s.

Additionally, experiments were performed on the QS20
distributing the threads to both processors and an inter-
leaved memory strategy. This strategy allocates memory
pages alternating to the two memory buses. So twice the
memory bandwidth compared to the default strategy is pos-
sible in theory. Practically an improvement of up to 26.8%
is gained, as shown in Table 6. The outcome of an advanced
memory strategy increases with the number of active SPEs,
i. e. for future setups with more processors, exploiting the
NUMA architecture more diligently will be crucial.

1 2 3 4 5 6 7 8
64³ 1.54 3.07 3.79 5.14 6.18 6.96 7.37 9.54
128³ 1.99 3.98 5.96 7.83 9.21 10.19 11.07 11.26
192³ 2.2 4.39 6.52 8.43 9.47 10.93 10.72 11.29
256³ 2.32 4.64 6.93 9.15 10.4 11.89 12.18 11.88

12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8Peak bandw.

1 2 3 4 5 6 7 8
1

3

5

7

9

11

2

6

10

14

18

22

1 12.8

64³
128³
192³
256³
Peak bandw.

Fl
oa

tin
g-

po
in

t p
er

fo
rm

an
ce

[G

Fl
op

/s]

Number of threads

M
em

or
y

B
an

dw
id

th
 [G

iB
/s]

Figure 3. Floating-point performance and
memory bandwidth of Jacobi smoother on
the QS20.

Table 6. Memory throughput of the Jacobi
smoother for grid size 1923 when using one
or both memory buses in GiB/s.

memory one bus interleaved relative
strategy speedup
1 SPE 4.1 4.1 0%
2 SPEs 8.18 8.20 0.24%
3 SPEs 12.1 12.2 0.25%
4 SPEs 15.7 16.2 3.1%
5 SPEs 17.6 20.4 15.5%
6 SPEs 20.4 23.0 13.0%
7 SPEs 20.0 25.3 26.8%
8 SPEs 21.0 26.7 26.8%

6. Conclusions

We have demonstrated the potential of the CBEA for sev-
eral scientific applications and shown that bandwidth and
computational power near to the theoretical peak perfor-
mance is achievable. However, big efforts are necessary to
accomplish that. The complexity is only partially caused by
specific features of this architecture.

Splitting the task into smaller subtasks and handling syn-
chronization and communication between multiple agents
becomes increasingly important since the advent of mul-
ticore systems. Heterogeneous architectures only increase
complexity in the way that a subtask must fit the abilities of
the core type it is executed on.

SIMD is a concept that is very common today, as it
is the most efficient way to exploit wide buses and data
level parallelism without much complicating the control

14

logic. The SPU ISA consequently makes SIMD the default
case and adds another penalty to performing scalar oper-
ations. Similarly, data alignment influences performance
on all advanced platforms. Alignment of scalar and SIMD
data in memory is restricted on most platforms, or result
in decreased performance if not appropriate. However, the
discrepancy of performing well aligned SIMD and badly
aligned scalar operations on an SPU is unmatched.

The concept of Local Storage, that is managed by copy-
ing data to and from main memory via asynchronous
DMAs, is perhaps the only concept not met in common gen-
eral purpose architectures at all. It allows for covering long
main memory latencies exceptionally well without using in-
creasingly complex out-of-order cores. On the downside,
exact knowledge of the working set and its management
is necessary, not mentioning the complexity of distributed,
parallel modifications of it. An analogy found on standard
cache-based architectures might be the necessary overview
of the current working set when using cache blocking tech-
niques, but there it affects only performance and is only rel-
evant for hot spots.

The question remains how much performance can be
preserved if one switches to higher-level programming ap-
proaches to increase productivity. Since the emphasis of
all projects was on how much performance is feasible, this
will have to be examined in the future. There is no doubt
that libraries and frameworks can ease communication, data
partition and movement. But as all general approaches rely
on established high-level language compilers, the problem
of optimizing numerical kernels in computationally bound
applications can be expected to remain.

References

[1] P. Bhatnagar, E. Gross, and M. Krook. A Model for Col-
lision Processes in Gases. I. Small Amplitude Processes in
Charged and Neutral One-Component Systems. Phys. Rev.,
94(3):511–525, 1954.

[2] M. Bolten. Hierarchical grid coarsening for the solution of
the poisson equation in free space. Electronic Transactions
on Numerical Analysis, 29:70–80, 2008.

[3] I. Galic, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, and
H. Seidel. Towards PDE-based image compression. In
Proceedings of variational, geometric, and level set meth-
ods in computer vision, Lecture Notes in Computer Sci-
ence, pages 37–48. Springer-Verlag, Berlin, Heidelberg,
New York, 2005.

[4] J. Götz. Simulation of bloodflow in aneurysms using the
Lattice Boltzmann method and an adapted data structure.
Technical Report 06-6, Department of Computer Science
10 (System Simulation), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany, 2006.

[5] IBM. Cell Broadband Engine Architecture, Oct. 2007.
[6] IBM. Cell Broadband Engine Programming Tutorial, Oct.

2007.

[7] IBM. Cell BE Programming Handbook Including PowerX-
Cell 8i, May 2008.

[8] M. Kowarschik. Data Locality Optimizations for Iterative
Numerical Algorithms and Cellular Automata on Hierarchi-
cal Memory Architectures. PhD thesis, Friedrich-Alexander-
Universität Erlangen-Nürnberg, Germany, Jun 2004. Ad-
vances in Simulation 13.

[9] M. Griebel, S. Knabek, S. Zumbusch, S. Caglar. Numerische
Simulation in der Molekulardynamik. Springer, 2003.

[10] P. Münch and H. Köstler. Videocoding using a varia-
tional approach for decompression. Technical Report 07-
1, Department of Computer Science 10 (System Simula-
tion), Friedrich-Alexander-Universität Erlangen-Nürnberg,
Germany, 2007.

[11] M. Stürmer, J. Götz, G. Richter, A. Dörfler, and U. Rüde.
Fluid Flow Simulation on the Cell Broadband Engine using
the Lattice Boltzmann Method. Accepted for publication in
the proceedings of the Fourth International Conference for
Mesocscopic Methods in Engineering and Science, 2007.

[12] S. Succi. The Lattice Boltzmann Equation - For Fluid Dy-
namics and Beyond. Clarendon Press, 2001.

15

16

A Realtime Ray Casting System for Voxel Streams
on the Cell Broadband Engine

Valentin Fuetterling
Fraunhofer ITWM

Email: valentin.fuetterling@itwm.fraunhofer.de

Carsten Lojewski
Fraunhofer ITWM

Email: carsten.lojewski@itwm.fraunhofer.de

Abstract—In this paper we introduce a volume rendering
system designed for the Cell Broadband Engine that only requires
a minimum of two voxel slices at a time to perform image
synthesis of a volume data set for a fixed number of user defined
views. This allows rendering volume data in a streaming fashion
and makes it possible to overlap rendering with data acquisition.

Imagine a screening line at the airport where luggage is
examined with an x-ray machine. As luggage passes through
the scanner multiple x-ray samples are taken from which 2D
voxel slices are derived. These finally form a full volume data
set that needs to be displayed for quick analysis. Traditional
software volume rendering systems are impractical for such a
task as they require the volume data set to be fully available for
image synthesis and thus need to wait until the x-raying process
has finished.

Our solution is better suited for the depicted situation and
related problems as it is able to perform time-critical rendering
in parallel with volume generation.

I. INTRODUCTION

Volume visualization requires information to be extracted
from a 3D scalar field to form a single color value that can
be displayed. This mapping can be performed by a maxi-
mum/average intensity projection or by evaluating the Volume
Rendering Integral [10] which in its discretized form can be
computed iteratively with the over operator [12]. In practice
the 3D scalar field usually is represented by a uniform grid
that is sampled multiple times in order to compute the Volume
Rendering Integral or other mappings for every pixel of a
viewing plane. Methods that can be used for the sampling pro-
cess are described in section II. The sampling rate necessary
to achieve acceptable results is determined by the Nyquist-
Shannon sampling theorem [13]. A huge number of samples
need to be taken to visualize a data set resolution of 5123 voxel
or higher which makes volume rendering a compute intensive
task. Optimization strategies exist [2], however most of them
rely on a pre-process that requires the full volume data set to
be analyzed prior to rendering. Thus these strategies are not
applicable to volume data sets that are not fully existent at the
beginning of the image synthesis process.

Another reason that favors a brute-force approach is its
constant runtime characteristic considering a constant volume
set resolution as execution time does not depend on the
actual volume data which is changing frequently. This is a
property often required in our targeted area of application.
Using a brute-force solution special purpose hardware is easily
designed and very efficient so it is commonly used in todays

time critical systems as depicted in the abstract. However
special purpose hardware is expensive and inflexible by nature.

We will show that our flexible software approach tailored to
the hardware architecture of the Cell Broadband Engine (CBE)
is capable of rendering an emerging volume data set ’just
in time’ from arbitrary view directions and thus delivers the
necessary performance for real-time volume data inspection.

II. VOLUME SAMPLING METHODS

For volume sampling object-order, image-order and hybrid
methods exist.

Texture slicing is a popular object-order method for interac-
tive volume visualization. Voxel slices are mapped to polygons
that are transformed by projection and blended together in
correct order to form the final image [11]. By design this
method produces low quality images and requires three sets
of voxel slices, each orthogonal to one of the major axes.

A widely used hybrid method is the shear-warp algorithm.
Voxel slices are first sheared and projected onto an interme-
diate plane aligned with the volume which is finally warped
onto the viewing plane [8]. The image quality suffers due to
the warp process and three sets of voxel slices are required
for this technique as well.

As both methods introduced so far demand the full volume
data set to be available they are obviously impractical for voxel
streaming. An image-order method that does not share this
handicap and provides high quality images is ray casting. For
each pixel of the view plane a ray is cast into the volume and
multiple samples are evaluated along the ray [7]. As each ray
can be processed independently this algorithm is very flexible.
The streaming model we will introduce in the course of this
paper depends on a flexible and easy sampling method in order
to be efficient so we decided for ray casting.

III. CELL BROADBAND ENGINE

The CBE comprises one Power Processing Element (PPE)
and eight Synergy Processing Elements (SPE) which are
attached to the Element Interconnect Bus (EIB) together with
a Memory Interface Controller (MIC) that provides Direct
Memory Access (DMA). The PPE is comparable to an ordi-
nary PowerPC and can offload compute intensive tasks to the
SPEs. Each SPE features a Memory Flow Controller (MFC)
for data transfer and communictaion, a Local Store (LS) which
is 256KB in size and a unified register set with 128 registers.

17

Fig. 1. The two green slices form the slab a) that is currently being sampled,
the red slices have already been processed and are no longer available, the
yellow slice is being generated by the scanning device and the slices in grey
will be produced in the near future. The arrows b) and c) indicate a sub-slice
and a sub-slice level respectively. The drawing d) symbolizes the object being
scanned.

Each register is 128 bit wide and has SIMD capabilities similar
to the AltiVec ISA of the PPE (for more general information
on the CBE see [4]).

Communication between the PPE and SPEs can be accom-
plished by a mailbox mechanism provided by the MFC that
allocates an in-tray for each SPE where 32 bit messages can
be written to by the PPE or other SPEs. The in-trays work
like FIFO queues with a capacity of four messages. A SPE
can check its in-tray for new messages at any time. If no
new messages are available it can stall until the next message
arrives.

In order to process a chunk of data a SPE must initiate an
asynchronous DMA transfer to fetch it from main memory
into its LS. When more than one continuous chunk of data is
required an efficient DMA list transfer can be initiated. The
DMA controller utilizes a list to gather multiple chunks from
main memory into the LS. The list can also be used to scatter
LS data back to memory. Lists must be located in the SPEs
LS and each list element must consist of 8 bytes providing
the chunk’s effective address in main memory and its size in
bytes (figure 2).

A DMA transfer will always transmit at least one cache line
of 128 bytes. Thus bandwidth is maximized by using addresses
and transfer sizes that are a multiple of 128 bytes.

IV. STREAMING MODEL

The Streaming Model is based on the observation that for
rendering a volume data set all sampling positions for each ray
remain constant if the view and the volume data set resolution
do not change. However the actual volume content can be
altered arbitrarily as it does not affect the sampling positions.
We will refer to such a combination of a constant volume set
resolution and a number of constant views from which the
volume set is rendered as a configuration.

A. Voxel Streams
A Voxel Stream of a volume data set consecutively delivers

packets of voxel data that are ordered in respect to time so

s t r u c t r a y p a c k e t{
v e c f l o a t 4 red , green , b lue , a l p h a ; / / b l e n d i n g
v e c f l o a t 4 c u r t r a v e r s a l d e p t h ;
v e c f l o a t 4 dx , dy , dz ; / / r a y d i r e c t i o n components

} ;

s t r u c t l i s t h e a d e r {
char n u m l i s t e l e m e n t s ;
char num ray packe t s ;
char v iew index ; / / i n d e x f o r view o r i g i n
char f l a g s ;

} ;

s t r u c t l i s t e l e m e n t {
unsigned s h o r t r e s e r v e d ; / / n o t used
unsigned s h o r t s i z e ; / / # o f r a y p a c k e t s ∗ 128b
unsigned i n t l e a ; / / t r a n s f e r s t a r t a d d r e s s

} ;

Fig. 2. Data structures. One list element (8 byte) can reference up to 255
ray packets (128 bytes each).

that their relative positions within the volume data set are
known in advance. In practice one packet amounts to one
voxel slice and the packet ordering in time is equivalent to the
slice ordering along a major axis of the volume data set. From
now on we will assume this axis to be the z-axis (figure 1).
A voxel stream of a volume data set can be easily rendered
using a related configuration. For each ray the information
which voxel slices are required and when these voxel slices
will be available can be precomputed and used at runtime
for efficient sampling. The direction of a ray along the z-axis
determines whether it traverses the volume front-to-back or
back-to-front. For both cases compositing methods exist to
compute the Volume Rendering Integral along the ray [12].

List Headers

List Elements

Ray Packets

Main Memory

Fig. 3. Illustration of the memory reference hierarchy. The list headers point
to continuous blocks of list elements which in turn reference continuous blocks
of ray packets inside the ray buffer. The data structures are described in figure
2. List headers are sent to the SPE as mails from the PPE. A SPE can then
issue two DMA commands, the first one transmitting the transfer-list elements
and the second is using the transfer-list to gather the ray packets.

18

B. Implementation on the CBE

In this section we describe the implementation of the
Streaming Model for a single SPE. The extension of this
algorithm for parallel execution on multiple SPEs will be the
topic of section V.

1) Sampling: Assuming that two neighboring voxel slices
are located in the LS of a SPE the set of rays that possess
sample points within the slab formed by the slices (figure 1)
must be retrieved from main memory, processed and written
back. Because the LS size is limited this ray set must be
split into several subsets. A triple buffer approach is necessary
to overlap the data transfer with computation. While one set
of rays is being processed, the next set is being fetched to
the LS and results from the previous set are written back to
main memory. As the set of rays associated with one slab
of voxel slices can be precomputed, it is possible to generate
transfer lists for a given slab. Assisted by a transfer-list the
DMA controller can automatically gather a ray set from main
memory freeing the SPU for other tasks. The same transfer-
list can be used to scatter the ray set back to main memory
after the computation has finished. It should be noted here
that the transfer lists also minimize bandwidth requirements
as no redundant ray data has to be transmitted. Admittedly a
transfer list needs to be fetched from main memory prior to
execution. However this overhead is insignificant compared to
ray data size (figure 2). In order to exploit the SPE’s SIMD
capabilities rays can be processed in packets of four. Each ray
requires three direction components, a traversal depth value
and four color components (RGBA) for blending (figure 2).
Using single precision floating point values the size of a ray
packet amounts to 128 bytes which matches exactly one cache
line. Thus ray packets that are discontinuously distributed in
main memory do not decrease bandwidth if they share the
same set.

Until now we have assumed that two full voxel slices can
reside in the LS at the same time. For an appropriate volume
resolution however the size of the LS is far too small. For this
reason voxel slices need to be partitioned into sub-slices along
one axis. We have chosen the y-axis for the remaining of the
paper. The partitioning of the volume data set into multiple
sub-slice levels is depicted in figure 1. Instead of tracing one
full voxel slab at once the process is serialized into sub-slabs
with their associated sub-sets of rays. The execution order of
the sub-slabs is critical for ensuring correct results as ray sub-
sets are not disjoint in most cases. An example is given in
figure 4. The ray sub-sets for the sub-slabs A,B,C and D are
shown. The sub-set of A is empty, so we do not consider it
any further. B, C and D all contain one independent ray that
is not shared with any other sub-set (rays 6, 4, 2 respectively).
B and C share ray 5 while D and C share ray 3. This sharing
implies that C must be processed prior to B and D in order to
maintain correctness because the blending of the samples is not
commutative1. In contrast rays 2, 4 and 6 can be processed in

1For the Volume Rendering Integral blending is not commutative. For the
maximum/average intensity projection it is.

arbitrary order. As the arrows a) and b) indicate dependencies
between two sub-sets only exist in one direction of the y-
axis. The y-coordinate of the view point (red dot) separates
the sub-slabs with potentially positive dependencies (C,D) and
potentially negative dependencies (C,B,A). Note that rays with
a large y-direction component can share more than two sub-
sets. Care must be taken to prevent read-after-write hazards
for rays belonging to multiple sub-sets that can arise during
DMA transfers.

Multiple ray buffers offer the possibility to circumvent the
strict ordering rules for dependent ray sets and to efficiently
eliminate read-after-write hazards for the cost of higher mem-
ory consumption. Figure 3 illustrates a ray buffer that consists
of all the ray packets for a given configuration. If copies of
this ray buffer are available for all sub-slice levels intermediate
blending results can be computed for each level independently
from the others. The final compositing of these intermediate
results is described in section IV-B4. Multiple ray buffers
are even more attractive for the parallelized version of our
algorithm (see section V).

Fig. 4. Dependencies between sub-slabs. The sub-slabs are denoted with
upper case letters from A-D. The red dot represents the view origin. The sub-
sets of active rays for the sub-slabs are shown in the list, dependencies are
marked with red boxes. Independent rays are 1,2,4 and 6 that pierce only one
or no sub-slabs. Rays 3 and 5 are positive and negative dependent along the
y-axis respectively. The arrows a) and b) indicate the directions of dependence.

So far we have neglected the issue of synchronizing the
rendering process with volume acquisition. This is a funda-
mental requirement in applications like the one depicted in
the abstract. We use the mailbox mechanism of the CBE to
control the rendering process. When a new voxel slice has
arrived in main memory the PPE will send a message to the
SPE which contains the list header (figure 2) that allows the
SPE to fetch the correct voxel data and ray data (figure 3) into
its LS. Every time a SPE has finished processing a ray sub-set
it queries its mail in-box for new jobs. If no mail is available
it will stall until new work or a termination signal arrives.
For a better understanding of how the previously described
algorithm is implemented on the SPU side see figure 5.

2) Multiple Views: An obvious approach to rendering mul-
tiple views of a configuration simultaneously is to utilize one
SPE for each view as it is described in section V-B. A different

19

P t r t r a n s f e r L i s t D a t a B u f f e r [3] ;
P t r r a y P a c k e t D a t a B u f f e r [3] ;
P t r s u b s l a b D a t a B u f f e r [2] ;

Var curMai l , nex tMai l , cu r Idx , n e x t I d x , s l a b I d x ;

whi le (! E x i t S i g n a l (c u r M a i l)){

n e x t M a i l = GetNextMai l () ;
S t a r t T r a n s f e r L i s t D a t a G a t h e r (n e x t I d x) ;
S t a r t R a y P a c k e t D a t a G a t h e r (n e x t I d x) ;

i f (S u b s l a b S i g n a l (c u r M a i l)){
W a i t F o r S u b s l a b D a t a G a t h e r () ;
S t a r t S u b s l a b D a t a G a t h e r (s l a b I d x) ;
s l a b I d x ˆ= 1 ; / / i d x = [0 , 1]

}

Wai tFo r RayPa cke t Da t a Ga th e r (c u r I d x) ;

f o r (i =0 ; i<NumberOfRayPackets (c u r M a i l) ; i ++)
SampleRayPacket (cu r Idx , i) ;

S t a r t R a y P a c k e t D a t a S c a t t e r (c u r I d x) ;
c u r I d x = n e x t I d x ;
c u r M a i l = n e x t M a i l ;
n e x t I d x = (1<<n e x t I d x) & 3 ; / / i d x = [0 , 1 , 2]

}

Fig. 5. A closer look at the SPU kernel. An actual implementation of this
pseudo code can be found in appendix A. curIdx and nextIdx are indices
for the transfer list and ray packet triple buffers. slabIdx is the index for
the volume data double buffer. curMail and nextMail contain the list headers
received from the PPU. All DMA transfers (except the subslab data gather)
are issued with a fence and a tag id equal to the index of the destination
buffer.

technique takes advantage of the memory reference hierarchy
(figure 3). List headers for multiple views can easily be mixed
without the notice of the SPE kernel (figure 6). All information
required on the SPE side is a list of all view origins of
a configuration that can be indexed with the view number
contained in a given list header (figure 2). For the parallelized
version of our algorithm this approach allows for overlapping
certain stalls (section V-A).

3) Preprocessing: Preprocessing for a given configuration
is straightforward. For each sub-slab all the ray packets of the
different views are tested for sample points within the sub-
slab to find the valid ray set. The ray packets in the ray set
are grouped by continuous main memory addresses (figure 3)
and each group is referenced by one list element or more if the
group is larger than 16Kb. List elements of the same sub-slab
and the same view are combined to form a transfer list that is
referenced with a transfer list header (figure 2).

4) Image compositing: Ultimately an image in RGB format
is required to be displayed on a monitor. Mapping the ray
packets’ blending values (figure 2) to pixel colors is straight-
forward. The red, green and blue color components need to be
scaled, cast to integers and stored into the framebuffer. This
task can be computed by the PPE or distributed among the
SPEs. If multiple ray buffers are used the different blending
values for the same ray packet need to be composited first
in the correct order. The ray buffers of positive and negative
dependent sub-slice levels demand ordering along their respec-
tive direction of dependence, starting with the sub-slice level

Fig. 6. The data flow of our algorithm. The scanning device writes a new
voxel slice into main memory (1) and notifies the PPE (2). The PPE retrieves
the next list header (3) and sends it to the SPE’s MFC (4). The SPU receives
the list header (5) and initiates three DMA transfers (6). The first transmits
the transfer-list to the LS (8). The second uses the transfer-list (9) to gather
the ray set data into the LS (10). The third moves the voxel data into the LS
(7). When all transfers have completed the SPU loads the required data for
the sampling process. After computation it writes the results back to the LS
(11). As soon as all ray packets have been processed another DMA transfer is
initiated (6) that scatters the ray set data back to main memory (12) assisted
by the transfer-list (9). Finally an RGB image is extracted from the ray packet
data and sent to the display (13).

that contains the y-origin of the given view (figure 4).
At this point all components required for our rendering

system have been described to enable an implementation on a
single SPE. A summary of the data flow is given in figure 6.
Note that for simplicity an unlimited LS size is assumed so
that all required data fits into it at the same time. In practise
some of the depicted steps need to be subdived into smaller
data packages. In the next section we will examine possibilities
for distributing our algorithm among multiple SPEs.

V. PARALLELIZATION

There are two basic approaches to parallelize our algorithm
introduced in section 2. The fine grained solution operates at
sub-slab granularity where each SPE is assigned one sub-slice
level. The coarse grained model ties one or more independent
views to different SPEs.

A. Fine-grained Parallelization

The subdivision of voxel slices into sub-slices which ini-
tially has been introduced to account for the limited LS size
now offers a convenient approach for parallelization. The sub-
slice levels (see figure 1) can be distributed evenly among the
participating SPEs for parallel rendering. Each SPE receives
only the transfer lists required for the sub-slice levels it
processes. Difficulties occur when rays belong to multiple sets
for the same slice as this results in dependencies between
the different sub-slice levels (see section IV-B1 and figure 4).
Sampling order must be preserved for these sets which can
be accomplished by the PPE through the mailbox mechanism.
The PPE will send the list header of a list containing dependent
rays to a SPE only after the dependent rays have been
processed by the SPE(s) responsible for the relevant sub-slice

20

levels. As the ordering can introduce stalls while one SPE
has to wait for another to complete its task it is important to
carefully generate and schedule jobs during the pre-process
to minimize stalls. Ray sets can be split into dependent and
independent parts. This allows for execution of independent
jobs while a dependent job has to wait. Another source for
independent ray sets is available if multiple views need to be
rendered (see section IV-B2).

An alternative to preserving ordering among multiple sub-
slice levels has already been proposed in section IV-B1. If one
ray buffer is dedicated to each SPE rendering can happen in
parallel without any constraints. In a final post-process the ray
buffers are composited to form a single image as described in
IV-B4. However more memory is required for this method.

B. Coarse-grained Parallelization

In case multiple views need to be rendered from the same
volume data set, a much simpler approach is to schedule
each SPE for a different view. As there are no dependencies
between the views the rendering process is equivalent to the
one described in section IV-B. The drawback of this method
is reduced flexibility as the number of views determines the
number of active SPEs. Further on more data needs to be
transfered because each SPE requires all sub-slices during the
image synthesis process.

VI. RESULTS

The results presented in this section have been measured on
three different platforms. The first is a IBM qs20 blade which
provides two CBE chips with a clock rate of 3.2 GHZ and
2x512 MB XDR-DRAM. The second is the more up-to-date
IBM qs22 blade. In contrast to its predecessor it offers 2x4 GB
DDR2-SDRAM and an advanced Double Precision Floating
Point Unit which is not utilized by our implementation. As a
cheaper alternative results are also reported for a Playstation
3 (PS3) which features one CBE chip clocked at 3.2 Ghz and
256 MB XDR DRAM. However only six SPEs are activated
for user applications on the PS3. All processors are running
Linux as the operating system.

The volume data set used for rendering is retrieved from a
x-rayed backpack (see figure 7) that represents a typical item
at an airport screening line. The slice resolution is 5122 voxels
and the slice quantity is 373. For the performance measure-
ments of varying slice resolutions and quantities empty volume
data sets are used that contain only zeros. This introduces no
implications as one characteristic of our algorithm is that its
execution is independent of the actual volume data.

For all measurements we use the fine-grained paralleliza-
tion technique. During experiments we found that sharing a
single ray buffer with all SPEs is inferior in performance
to the multiple ray buffer approach by a factor of 3-6. This
unacceptable slow-down occurs due to synchronization efforts
and serial execution forced by sub-slice dependencies. The
advantage of using eight SPEs is therefore diminished. In
contrast the increased memory footprint of multiple ray buffers
is acceptable as even a screen resolution of 10242 fits well into

the limited main memory of the PS3. Thus we will focus on
the multiple ray buffer approach in the subsequent results.

Fig. 7. The backpack data set rendered from different views using a transfer
function that clearly shows up internal items.

256x256 512x512 768x768

0

0.2

0.4

0.6

0.8

1

1.2

1.4

qs20
qs22
PS3

Screen Resolution

T
im

e
(s

)

Fig. 8. Timings for the backpack volume on the qs20, the qs22 and the PS3.
Only one CBE chip is activated.

Figure 8 shows the performance of our program for different
screen resolutions on the qs20, qs22 and the PS3 with only
one CBE chip activated. The scaling of the rendering time
across different screen resolutions is slightly sub-linear. As the
number of ray packets increases, screen resolution independent
cost decreases per ray packet. These costs include DMA
transfer of voxel slices and setup of the voxel slices on the
SPE side. Also the ratio of the number of DMA calls to the
number of transfered ray packets is reduced because more ray
packets of the same ray set are continuous in main memory.
Comparing the PS3, qs20 and qs22 rendering times differ
about 10% if performance is normalized to one SPE. Slight
differences between the hardware and the OSes might be
responsible for this small discrepancy. It is an indicator that
our application is not bandwidth limited as the PS3 offers more
bandwidth per SPE than the qs20 and qs22.

Figure 9 shows the bandwidth requirements for different im-
age resolutions. While the DMA-put bandwidth requirements
remain approximately constant increasingly more DMA-get
bandwidth is necessary for smaller resolutions. This phe-
nomenon is related to the ratio of computation to volume data
size. As the image resolution decreases less computation has
to be performed. However the size of the volume data that

21

256x256 512x512 768x768

0

2

4

6

8

10

12

14

read
write
total
peak

Screen Resolution

G
B

/s

Fig. 9. Bandwidth requirements for the backpack data set measured on
the qs22. The graph labled ”peak” demonstrates the maximum bandwidth
achieved without rendering computations.

Slice resolution Factor # of ray packets
128x128 0.502 3.2M
256x256 1.00 7.5M
512x512 1.476 11.1M
768x768 1.485 11.3M

TABLE I
PERFORMANCE FOR DIFFERENT SLICE RESOLUTIONS EXPRESSED AS A

FACTOR OF THE BASE SLICE RESOLUTION (2562). THE NUMBER OF
PROCESSED RAY PACKETS DURING RENDERING IS SHOWN AS WELL.

RESULTS MEASURED ON QS22.

needs to be transfered from main memory to the SPEs does
not change because the volume data set is streamed exactly
once to the SPEs, regardless of screen resolution. The graph
labled ”peak” in figure 9 demonstrate the maximum bandwidth
achieved with our application if rendering computations are
disabled. This maximum bandwidth verifies that the volume
rendering process is not bandwidth limited. The peak band-
width of the CBE to main memory is around 25 GB/s which
is considerably more than the maximum bandwidth delivered
by our application. The reason is that the average transfer size
of DMA transfers is only around 1 KB for which a reduction
in peak performance analogous to our observation is reported
by [5]. This also explains the slight increase in maximum
bandwidth for larger image resolutions as more coherent ray
packets in main memory tend to form larger transfer lists.

In order to efficiently facilitate both CBE chips of the qs20
and qs22 our application provides NUMA support. Due to

Slice quantity Factor # of ray packets
128 0.529 6.0M
256 1.00 11.1M
512 1.438 15.9M
768 1.443 16.1M

TABLE II
PERFORMANCE FOR DIFFERENT SLICE QUANTITIES EXPRESSED AS A

FACTOR OF THE BASE SLICE QUANTITY (256). THE NUMBER OF
PROCESSED RAY PACKETS DURING RENDERING IS ALSO REPORTED.

RESULTS OBTAINED FROM QS22.

256x256 512x512 768x768

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Scaling

Screen Resolution

F
ac

to
r

Fig. 10. Performance scaling for both CBE chips of the qs22 with NUMA
support.

the highly parallel nature of our algorithm only local memory
needs to be accessed during the rendering process. Just for the
compositing a small number of remote memory accesses are
required. Figure 10 demonstrates almost linear scaling for the
backpack example.

Although the timings in figure 8 are not comparable to those
achieved by current real-time volume renderering systems [1]
they are real-time in the sense that rendering is overlapped
with volume acquisition. Many of these real-time volume ren-
derering systems rely on pre-computed acceleration structures
that need to be updated or rebuilt when the volume data set
changes. Such pre-computation often requires several seconds
[9] which is not necessary in our system.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DMA Infras
tructure
Ray Packet
Setup
Ray Packet
Sampling

Fig. 11. Runtime distribution for different sections of our algorithm.

Figure 11 presents an evaluation of the runtime distribution
for different sections of our algorithm. For the analysis we
define three parts: DMA infrastructure, ray packet setup and
ray packet sampling. The source code provided in appendix A
implements the DMA infrastructure. Less than 1% of the total
computation time is consumed by the DMA infrastructure.
This indicates that our system of overlapped DMA transfers
works very well. More than 95% of the runtime is available for

22

volume rendering without any main memory latencies. The ray
packet setup requires around 4%. This overhead is introduced
by the design of our system because ray packets need to be
set up repeatedly.

Table I presents the change in performance for different
slice resolutions (x- and y-resolution of the volume data set).
The screen resolution is 5122 and the slice quantity (or z-
resolution) is 256 throughout. The performance of the results
is expressed as a factor of the base result which is obtained
from a 2562 slice resolution. The changes in performance
are suprising at first, especially the comparison between the
5122 and 7682 slice resolutions. However if the total number
of ray packets processed during rendering is considered an
almost linear scaling is revealed among the results of table
I. It is obvious that the number of processed ray packets can
not increase linearly with slice resolution. Changing the slice
resolution will not influence the required number of samples
at all if a ray is parallel to the z-axis of the volume data
set. Analogously if a ray is parallel to the diagonal of a voxel
slice it will only scale linearly with the square root of the slice
resolution. Most rays lie between both extremes. Additionally
our rendering system moves the view away from the volume
data set until its projection fits completely onto the view plane.
If the resolution is quite different for the three axes of the
volume data set this can lead to more inactive ray packets that
do not hit the volume at all. This is the case for the 7682

slice resolution. Table II is analogous to table I. Instead of
changing the slice resolution the slice quantity is varied. The
slice resolution is constant at 5122. The results are similar to
table I. Performance does not scale with the slice quantity but
with the number of packets that need to be processed during
rendering. The relationship between slice quantity and number
of ray packets is analogous to the relationship between slice
resolution and number of ray packets discussed previously.

VII. CONCLUSION AND FUTURE WORK

In this paper we have contributed a novel rendering system
for time critical volume data inspection that allows for overlap-
ping rendering with volume data acquisition. We have shown
how the algorithm can be mapped directly to the hardware
features of the Cell Broadband Engine and thus can deliver the
performance required for todays real-world applications. Such
applications comprise security scans, assembly inspection,
medical imaging and others.

Future work should focus on integrating our system into an
industrial environment in order to evaluate its suitability for
daily use. Additional features like complete local illumination
models [6] and multi-dimensional transfer functions [3] could
be implemented to further improve image quality.

ACKNOWLEDGMENT

The authors would like to thank the Fraunhofer Institute for
Industrial Mathematics (ITWM) for funding and supporting
this work.

REFERENCES

[1] A. Ghosh, P. Prabhu, A. Kaufmann, and K. Mueller. Hardware assisted
multichannel volume rendering. In Computer Graphics International,
pages 2–7, July 2003.

[2] S. Grimm, S. Bruckner, A. Kanitsar, and E. Grolle. Memory efficient
acceleration structures and techniques for cpu-based volume raycasting
of large data. Symposium on Visualization, 2004.

[3] G. K. J. Kniss and C. Hansen. Multidimensional transfer functions for
interactive volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 8(3):150–162, July–September 2002.

[4] J. Kahle, M. Day, and H. Hofstee. Introduction to the cell multiprocessor.
IBM Journal of RD, 49(4), 2005.

[5] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor communi-
cation network: Built for speed. IEEE Micro, 26(3):10–23, May–Jun
2006.

[6] J. Kniss, S. Premo, C. Hansen, P. Shirley, and A. McPherson. A model
for volume lighting and modeling. IEEE Transactions on Visualization
and Computer Graphics, 9(2):150–162, 2003.

[7] M. Levoy. Efficient ray tracing of volume data. ACM Transactions on
Graphics, 9(3):245–261, July 1990.

[8] M. Levoy and P. Lacroute. Fast volume rendering using a shear-warp
factorization of the viewing transformation. In Proc. SIGGRAPH 94,
pages 451–458, July 1994.

[9] S. Lim and B.-S. Shin. A distance template for octree traversal in cpu-
based volume ray casting. In Visual Comput, volume 24, pages 229–237,
2008.

[10] N. Max. Optical models for direct volume rendering. IEEE Transactions
on Visualization and Computer Graphics, 1(2):99–108, June 1995.

[11] K.-S. Oh and C.-S. Jeong. Acceleration technique for volume render-
ing using 2d texture based ray plane casting on gpu. International
Conference on Computational Intelligence and Security, 2:1755–1758,
November 2006.

[12] T. Porter and T. Duff. Compositing digital images. Computer Graphics,
18(3):253–259, July 1984.

[13] C. E. Shannon. Communication in the presence of noise. In Proc. IRE,
1949.

APPENDIX

A. SPU Kernel Code Listing

The C/C++ source code provided here is taken from our
working implementation. For reasons of insufficient space the
initialization code and the the actual volume sampling code
had to be omitted.

d e f i n e SLICE BUFFER SIZE 32∗1024
d e f i n e RAY PACKET BUFFER SIZE 16∗1024
d e f i n e LIST HEADER BUFFER SIZE 1024

d e f i n e MAIL NUM LISTELEM(a) spu add (spu and (a , 0
x000000f f) , 1)

d e f i n e MAIL NUM PACKET(a) spu and (s p u r l m a s k (a , −8) , 0
x000000f f)

d e f i n e MAIL INDEX CAM(a) spu and (s p u r l m a s k (a , −16) , 0
x000000f f)

d e f i n e MAIL NEXT SLICE (a) s p u r l m a s k (spu and (a , 0
x01000000) , −24)

d e f i n e MAIL NEXT SUBSLICE (a) spu and (a , 0 x02000000)
d e f i n e MAIL STOP RENDERING(a) spu and (a , 0 x04000000)

c l a s s VolumeViewer{

uchar s l i c e B u f f e r [2] [SLICE BUFFER SIZE] a t t r i b u t e ((
a l i g n e d (1 2 8))) ;

uchar r a y P a c k e t B u f f e r [3] [RAY PACKET BUFFER SIZE]
a t t r i b u t e ((a l i g n e d (1 2 8))) ;

uchar l i s t H e a d e r B u f f e r [3] [LIST HEADER BUFFER SIZE]
a t t r i b u t e ((a l i g n e d (1 2 8))) ;

v e c f l o a t 4 t r a n s f e r T a b l e [2 5 6] a t t r i b u t e ((a l i g n e d
(1 2 8))) ;

SpuData d a t a a t t r i b u t e ((a l i g n e d (1 2 8))) ;

p u b l i c :

void r e n d e r (u l l o n g ea) ;

23

} ;

void VolumeViewer : : r e n d e r (u l l o n g ea){

/ / no s p a c e f o r a l l i n i t code
v e c u i n t 4 s t a r t Y , s l i c e Y , o f f s e t Y , o f f s e t Z , dimX ,

s u b s l i c e I n d e x , subOffsetLUT , c u r B u f f e r I n d e x , curMai l ,
p p u L i s t E l e m e n t O f f s e t , VEC MAXSLICEINDEX,

VEC SLICEBUFFER SIZE , VEC SLICEBUFFERPART SIZE ,
VEC SLICE SIZE , VEC SUBSLICE SIZE , c u r S l a b A d r ;

v e c f l o a t 4 bMinX , bMaxX , VEC FLT MIN ;
u i n t d B u f f e r I d x , n e x t S l a b I n d e x , p p u S l i c e B u f f e r O f f s e t ,

s u b s l i c e T r a n s f e r S i z e ;

whi le (! s p u e x t r a c t (MAIL STOP RENDERING(c u r M a i l) , 0)){

/ / g e t new header , i t w i l l be p r o c e s s e d i n t h e n e x t
i t e r a t i o n

c o n s t v e c u i n t 4 n e x t M a i l = s p u s p l a t s (spu read in mbox
()) ;

/ / e x t r a c t t h e camera i n d e x f o r t h e c u r r e n t i t e r a t i o n
from t h e p r e v i o u s ma i l

c o n s t v e c u i n t 4 curCamIndex = MAIL INDEX CAM(n e x t M a i l) ;

/ / d e t e r m i n e b u f f e r i n d e x f o r t h e n e x t i t e r a t i o n
c o n s t v e c u i n t 4 n e x t B u f f e r I n d e x = spu and (s p u s l (

s p u s p l a t s ((u i n t) 1) , s p u e x t r a c t (c u r B u f f e r I n d e x , 0
)) , 3) ;

/ / l o a d t h e o r i g i n o f t h e c u r r e n t camera
c o n s t v e c f l o a t 4 orgX = d a t a . o r i g i n X [s p u e x t r a c t (

curCamIndex , 0)] ;
c o n s t v e c f l o a t 4 orgY = d a t a . o r i g i n Y [s p u e x t r a c t (

curCamIndex , 0)] ;
c o n s t v e c f l o a t 4 orgZ = d a t a . o r i g i n Z [s p u e x t r a c t (

curCamIndex , 0)] ;

/ / e x t r a c t number o f l i s t e l e m e n t s f o r t h e n e x t
i t e r a t i o n

c o n s t v e c u i n t 4 nextLis tElemNum = s p u s l (
MAIL NUM LISTELEM(n e x t M a i l) , 3) ;

c o n s t v e c u i n t 4 n e x t L i s t T r a n s f e r S i z e = spu andc (spu add
(nextListElemNum , 8) , s p u s p l a t s ((u i n t) 0 x0000000f)
) ;

/ / compute a d d r e s s o f t h e c u r r e n t r a y p a c k e t b u f f e r
uchar ∗ c u r R a y P a c k e t B u f f e r = &r a y P a c k e t B u f f e r [

s p u e x t r a c t (c u r B u f f e r I n d e x , 0)] [0] ;

/ / queue dma t r a n s f e r o f l i s t e l e m e n t s
mfc get f ((void ∗)&l i s t I n f o B u f f e r [s p u e x t r a c t (

n e x t B u f f e r I n d e x , 0)] [0] , d a t a . l i s t I n f o B u f f e r +
s p u e x t r a c t (p p u L i s t E l e m e n t O f f s e t , 0) , s p u e x t r a c t (
n e x t L i s t T r a n s f e r S i z e , 0) , s p u e x t r a c t (
n e x t B u f f e r I n d e x , 0) , 0 , 0) ;

/ / e x t r a c t number o f p a c k e t s f o r t h e c u r r e n t i t e r a t i o n
c o n s t v e c u i n t 4 num packet = s p u s l (MAIL NUM PACKET(

c u r M a i l) , 7) ;

/ / queue l i s t dma t r a n s f e r o f r a y p a c k e t s f o r t h e n e x t
i t e r a t i o n

m f c g e t l f ((void ∗)&r a y P a c k e t B u f f e r [s p u e x t r a c t (
n e x t B u f f e r I n d e x , 0)] [0] , d a t a . r a y P a c k e t B u f f e r , (
m f c l i s t e l e m e n t t ∗)&l i s t I n f o B u f f e r [s p u e x t r a c t (
n e x t B u f f e r I n d e x , 0)] [0] , s p u e x t r a c t (
nextListElemNum , 0) , s p u e x t r a c t (n e x t B u f f e r I n d e x ,
0) , 0 , 0) ;

/ / i n c r e a s e by t h e number o f l i s t e l e m e n t s t r a n s f e r e d
p p u L i s t E l e m e n t O f f s e t = spu add (p p u L i s t E l e m e n t O f f s e t ,

n e x t L i s t T r a n s f e r S i z e) ;

i f (MAIL NEXT SUBSLICE (c u r M a i l)){

/ / e x t r a c t c u r r e n t y−dim o f f s e t
o f f s e t Y = s p u s p l a t s (s p u e x t r a c t (s p u s l q w b y t e (d a t a .

boundY , s p u e x t r a c t (s u b s l i c e I n d e x , 0)) , 0)) ;
/ / n e x t s u b s l i c e I n d e x , wraps back t o 0 i f

MAXSLICEINDEX has been r e a c h e d

c o n s t v e c u i n t 4 msi mask = spu cmpeq (s u b s l i c e I n d e x ,
VEC MAXSLICEINDEX) ;

s u b s l i c e I n d e x = spu andc (spu add (s u b s l i c e I n d e x , 4) ,
msi mask) ;

/ / l o c a l s t o r e a d d r e s s o f s l a b d a t a f o r t h i s i t e r a t i o n
c u r S l a b A d r = s p u s p l a t s ((u i n t)&s l i c e B u f f e r [0] [0] +

n e x t S l a b I n d e x) ;
/ / l o c a l s t o r e a d d r e s s t o s t o r e s l a b d a t a f o r n e x t

i t e r a t i o n
n e x t S l a b I n d e x ˆ= SLICE BUFFER SIZE ;
c o n s t u i n t n e x t S l a b A d r = (u i n t)&s l i c e B u f f e r [0] [0] +

n e x t S l a b I n d e x ;

/ / main memory o f f s e t f o r s l i c e d a t a
p p u S l i c e B u f f e r O f f s e t += d a t a . s l i c e s i z e & s p u e x t r a c t

(msi mask , 0) ;
/ / i n c r e a s e t h e z o f f s e t i f t h e a p p r o p r i a t e ma i l f l a g

i s s e t
o f f s e t Z = spu add (o f f s e t Z , MAIL NEXT SLICE (c u r M a i l)) ;

/ / t r a n s f e r s l a b d a t a f o r n e x t i t e r a t i o n
c o n s t u l l o n g o f f s e t = d a t a . s l i c e B u f f e r +

p p u S l i c e B u f f e r O f f s e t + s p u e x t r a c t (s p u s l q w b y t e (
subOffsetLUT , s p u e x t r a c t (s u b s l i c e I n d e x , 0)) , 0) ;

mfc get ((void ∗) nex tS labAdr , o f f s e t ,
s u b s l i c e T r a n s f e r S i z e , 4 , 0 , 0) ;

mfc get ((void ∗) (n e x t S l a b A d r +SLICE BUFFER SIZE / 2) ,
d a t a . s l i c e s i z e + o f f s e t , s u b s l i c e T r a n s f e r S i z e , 4 ,
0 , 0) ;

/ / compute s u b s l a b bounding box
c o n s t v e c f l o a t 4 bMinY = spu add (s p u c o n v t f (o f f s e t Y ,

0) , VEC FLT MIN) ;
c o n s t v e c f l o a t 4 bMaxY = s p u c o n v t f (spu add (o f f s e t Y ,

s l i c e Y) , 0) ;
c o n s t v e c f l o a t 4 boundZ = s p u c o n v t f (o f f s e t Z , 0) ;

}

/ / w a i t f o r dma t r a n s f e r s t o t h e c u r r e n t b u f f e r t o
f i n i s h

mfc write tag mask (1<<s p u e x t r a c t (c u r B u f f e r I n d e x , 0)
) ;

m f c r e a d t a g s t a t u s a l l () ;

f o r (i n t i =0 ; b u i l t i n e x p e c t (i<=s p u e x t r a c t (
num packet , 0) , 1) ; i +=128){

/ / no s p a c e f o r r a y p a c k e t s e t u p and r a y p a c k e t
s a m p l i n g code

}

c o n s t v e c u i n t 4 curListElemNum = s p u s l (
MAIL NUM LISTELEM(c u r M a i l) , 3) ;

/ / s c a t t e r back i n t e r m i d i a t e r e s u l t s
mfc putl ((void ∗) c u r R a y P a c k e t B u f f e r , d a t a .

r a y P a c k e t B u f f e r , (m f c l i s t e l e m e n t ∗)&l i s t I n f o B u f f e r
[s p u e x t r a c t (c u r B u f f e r I n d e x , 0)] [0] , s p u e x t r a c t (
curListElemNum , 0) , s p u e x t r a c t (c u r B u f f e r I n d e x , 0) ,

0 , 0) ;

c u r B u f f e r I n d e x = n e x t B u f f e r I n d e x ;
c u r M a i l = n e x t M a i l ;

}

/ / . . .
}

24

Comparison of High-Speed Ray Casting on GPU
using CUDA and OpenGL

Andreas Weinlich, Benjamin Keck, Holger Scherl, Markus Kowarschik and Joachim Hornegger

Abstract—Iterative 3D volume reconstruction is one of the
most compute- and memory-intensive applications in the field of
medical image processing. The iterative reconstruction consists
of two major compute intensive steps: Forward- and back-
projection. Both steps have to be applied repeatedly in eachiter-
ation and several iterations are necessary until a reconstruction
result with high image quality is available. As a consequence
iterative reconstruction techniques are rarely used in practical
CT-like systems. To step towards clinical usage it is mandatory to
apply highly parallelized low-cost processing architectures such
as the stream processors on current GPUs (Graphics Processing
Units). In order to achieve high image quality we implemented
the forward-projection using a volumetric ray cast method. We
have carefully adapted our implementation to two recent GPU-
programming tools, CUDA (NVIDIA Compute Unified Device
Architecture) and OpenGL (Open Graphics Language). In terms
of execution performance and implementation complexity we
compared both tools for the forward-projection step.

Index Terms—computed tomography, iterative reconstruction,
volumetric ray casting, CUDA, OpenGL, forward-projection

I. I NTRODUCTION

For the last years mostly analytical methods like the fil-
tered back-projection have been used in clinical Cone-beam
CT (Computed Tomography) systems in order to achieve
3D volume reconstructions out of acquired 2D projection
images. Iterative 3D reconstruction algorithms like SART
(Simultaneous Algebraic Reconstruction Technique) or SIRT
(Simultaneous Iterative Reconstruction Technique) [1] can
produce less reconstruction artifacts [2], i.e. reconstructions
using a small amount of projections, even though they are
much more time consuming than the conventional Feldkamp
algorithm [3]. The iterative reconstruction consists of two
major compute- and memory-intensive parts: A forward- and
a back-projection step. We recently showed a comparison of
latest acceleration technologies for the back-projectionstep
[4]. Especially ray-driven implementations of the forward-
projection like a volume ray caster, which are used for their
superior precision [5], suffer from their computational demand.
Also in other application domains ray casting algorithms are
extensively used, like in the field of 2D-3D registration [6].
To overcome the limitations and build real time solutions for
clinical application, it is necessary to use hardware architec-
tures with massively parallel computation capabilities. Like
in similar applications, one of the most appropriate and cost

A. Weinlich, B. Keck and J. Hornegger are with the Friedrich-Alexander-
University Erlangen-Nuremberg, Department of Computer Science, Chair of
Pattern Recognition (LME), Martensstr. 3, D-91058 Erlangen, Germany.

H.Scherl and M. Kowarschik are with Siemens Healthcare, CV,Medical
Electronics & Imaging Solutions, P.O.Box 3260, D-91050 Erlangen, Germany.

efficient solutions are modern graphics cards [7]. For example,
NVIDIA’s GeForce 8800 GTX and QuadroFX5600, which
we utilized for our tests, use 128 stream processors in parallel
and can additionally benefit from some hardware-accelerated
features like texture interpolation. Recently NVIDIA has de-
veloped a C-like general purpose API for these GPUs to
implement for example parallelized numerical algorithms.

Unfortunately, the first CUDA versions up to 1.1 had still
some drawbacks like missing support for 3D textures. This
feature was introduced in the recently published major release,
CUDA 2.0. But maybe still the compiler is not as sophis-
ticated as in the OpenGL graphics programming language.
Furthermore, as a matter of principle, it can only be used on
modern NVIDIA graphics cards. On the other hand there exists
another very interesting hardware platform for CUDA applica-
tions called NVIDIA Tesla. In this paper we compare highly
optimized implementations of ray casting using CUDA 1.1,
CUDA 2.0 and OpenGL regarding programming techniques,
implementation time, and execution performance.

II. RELATED WORK

In the medical field, perspective projections are often used
to simulate and approximate the physical process of X-ray
attenuation. Over two decades ago, Joseph [8] introduced an
improved algorithm for forward-projecting rays. His algorithm
is not as precise as a ray cast based algorithm, but less
computationally complex, which was more important at this
time. Later Xu et. al. compared popular interpolation and
integration methods for use in CT [5] and showed that a
ray cast based algorithm is comparable to the other superior
methods regarding the root mean square (RMS) error. Because
modern GPUs provide hardware-accelerated interpolation,we
decided to implement the forward-projection using ray casting.

The iterative reconstruction performance of graphics accel-
erators has often been evaluated using OpenGL and shading
languages [7], [9].

III. M ETHODS

In this section we describe the principle of the forward-
projection step. Second, we explain our CUDA-based and
OpenGL-based implementations.

A. Forward-projection

We use a volumetric ray casting approach for the forward-
projection step. Its basic functionality is shown in Figure1 and
the algorithm is shown in Algorithm 1. To determine the grey
level value of a certain pixel on the image plane, a straight

25

source

detector
volume

raydirection vector

sample point

Fig. 1. Ray casting principle.

line (”ray”) is drawn pointing from the optical center towards
the pixel position. Afterwards voxel intensity values inside
the cuboid are sampled equidistantly along the ray. These
sampling values add up to the desired gray level value in
the image. As a result we get a perspective projection of the
volume data.

Algorithm 1 Forward-projection with a ray casting algorithm
for all projectionsdo

compute source position out of projection matrix
compute inverted projection matrix
for all rays inside the projectiondo

compute ray direction depending on the image plane
normalize direction vector
//RAY CASTING
compute entrance and exit point of the ray to the cuboid
if ray hits the cuboidthen

set sample point to the entrance point
initialize the pixel value
while sample point is inside the cuboiddo

add up the computed sample value at current
position to the pixel value
compute new sample point for given step size

end while
else

set pixel value to zero
end if
normalize pixel value to world coordinate system units

end for
end for

The physical process of acquiring an X-ray image works
just as well. In particular, in this case the optical center depicts
the X-ray source whereas the image plane depicts the detector.
While Strobel et. al. [10] have shown that the image quality of
a reconstruction can be improved by using projection matrices
instead of assuming an ideal geometry, we decided to use this
parameterization in our implementation.

Furthermore this section describes some general features
that are common to both implementations, CUDA as well as
OpenGL. There are some different methods to get the direction
vector of the ray, which is the first step in the inner for loop
in Algorithm 1. A simple one is to take two position vectors,
compute the difference vector, and normalize it. Such positions
are the optical center, the 3D coordinate of the pixel position,
or the points where the ray enters or leaves the cuboid. For
example the position of the optical center can be obtained

volume

texture

S1

S2

S3

S4

etc.

Fig. 2. Volume representation in a 2D texture by SlicesSi.

from the homogeneous projection matrix which is designed
to project a 3D point to the image plane. Depending on the
output format of the projection (2D image- vs. 3D world-
coordinates), this matrix has three or four rows. In the latter
case, the vector can be found in the fourth column of the
inverted matrix (first three components). In the case of a 3×
4 matrix it is possible to drop the fourth column, invert the 3×
3 matrix and multiply the inverse with the previously dropped
fourth column to get the center position. This holds, because
in case of a perspective projection with projection matrices,
this fourth column depicts the shift of the optical center tothe
origin of the coordinate system. But due to the fact that this
translation occurs not before the rest of the transformations,
these have to be undone in multiplying the inverse. Galigekere
et. al. have shown already how to reproject using projection
matrices in [11].

In the next step the entrance position of the ray into the
volume has to be calculated. The used method to get the
entering and leaving points depends on the implementation.
Between those points the cube is equidistantly sampled. To get
one sampling position, we take the entry vector and add the
direction vector multiplied with the step size times a counter
variable. The following sampling step itself proves to be
crucial for the algorithm’s efficiency. In order to get satisfying
results, a sub-pixel sampling is required, which introduces a
trilinear interpolation.

For a realistic simulation of X-ray imaging, the Beer-
Lambert law has to be fulfilled approximately:

I = I0 · e
−

t(vdetector)R

t(vsource)
ρ(x(t)) dt

(1)

The densitiesp are integrated along the linex(t) (or added
up in a discrete manner). Afterwards, they are transformed
with the exponential-function and multiplied with an initial
X-ray intensity to get the target intensity value. This subse-
quent transformation will not be considered here as it can be
computed for example during a post-processing step. For the
application in algebraic reconstruction, a pre-processing of the
original X-ray images may be also appropriate to fit the ray
caster projections.

26

B. Implementation in CUDA

CUDA offers an easy to use C-like application programming
interface with some extensions. There are two different parts in
each CUDA implementation: A host part, which executes in a
CPU thread, and a device part (kernel), which is invoked by the
controlling CPU thread, but runs in parallel on the GPU device.
In our case the program instructs the graphics card to createa
semi-parallel thread for each ray. On our hardware up to 128 of
these threads can be processed in parallel. Most of our CPU
code uses CUDA specific API functions for allocating data
structures on the device and to transfer data to the graphics
memory and back to RAM.

In the kernel code, the inverse of the projection matrix
is used to get the ray direction out of the pixel position in
the projection image. In order to check whether a sampling
position is inside the cuboid, the entrance and exit distances
with respect to the optical center are computed. In each step
the entrance position is incremented by a step size value until
it reaches the exit distance. A critical issue in CUDA 1.1 is
the sampling step since it does not provide support for 3D
textures. So unfortunately a trilinear hardware interpolation
is not available for the CUDA 1.1 API. In consequence,
a workaround had to be applied that used just the bilinear
interpolation capability of the GPU. It does a successive
linear software interpolation in between stacked 2D texture
slices (see Figure 2). Therefor, desired values are fetched
from proximate stack slices with hardware-accelerated bilinear
interpolation. These sampling steps are substituted with only
one hardware-accelerated 3D texture fetch in CUDA 2.0 and
OpenGL.

C. Implementation in OpenGL

The OpenGL implementation is more tricky in some as-
pects. This is a consequence of the fact, that OpenGL is
intended to be used in graphics applications. Nevertheless
there are some similarities like the perspective projection. In
the past years, the API itself was made more flexible by means
of shader languages, which makes it possible to implement a
forward projection using OpenGL [12].

Like in CUDA, the implementation divides into a CPU and
a GPU part. The CPU part (OpenGL code) was written in
C++. In our implementation the GPU fragment shader program
is written in the shader language, GLslang. The OpenGL
API invokes this code for each pixel in the projection. Due
to the fact that a pixel exactly corresponds to a ray, this
threading is the same as in CUDA. However, unlike CUDA,
this partitioning can not be defined by the programmer directly.
In fact this correspondence is a fixed OpenGL fragment shader
feature.

In the OpenGL code, there are some initializations estab-
lishing a desktop window for rendering. Furthermore, frame
buffer objects are initialized in order to store the projection into
a texture. As stated above, the volume data resides in a 3D
texture like in CUDA 2.0. This fact allows for the utilization
of hardware supported tri-linear interpolation. The projection
matrix for an image has to be transformed in order to fit the
OpenGL coordinate system. Afterwards some variables are

NVIDIA GeForce NVIDIA QuadroFX
8800GTX 5600

Core clock 575 MHz 600 MHz

Shader clock 1350 MHz 1400 MHz

Memory amount 768 MB 1500 MB

Memory interface 384-bit 384-bit

Memory clock speed 900 MHz 800 MHz

Memory bandwidth 86.4 GB/s 76.8 GB/s

TABLE I
TECHNICAL SPECIFICATION OF BOTH GRAPHICS CARDS USED IN OUR

EVALUATION

transferred to the shader, the six faces of the cuboid are drawn
using vertices, the cuboid is rendered to a texture and finally
this texture is copied back to host memory.

During the rendering, the instructions within the shader
program are executed instead of the texture lookup. These
instructions differ slightly from the corresponding CUDA
code. Corners of the 3D texture have been assigned to the
corners of the cuboid, so the OpenGL texturing step provides
the entrance position of the ray automatically in terms of
interpolated texture coordinates. The ray direction vector can
be obtained like it was outlined in the last section. In each
step the program checks, whether the sampling position is still
inside the cuboid. As mentioned, the sampling itself reduces
to a simple 3D texture fetch.

IV. RESULTS

In order to compare the performance of both approaches,
we measured execution times with different test parameters
on an NVIDIA GeForce8800 GTX as well as on an NVIDIA
QuadroFX 5600. Even though both graphics cards are as-
sembled with the NVIDIA GPU ”G80” they are slightly
different stated in Table I. Our evaluation system is a Fujitsu-
Siemens Workstation ”R650” using the Intel 5400 chip set.
The graphics cards are connected each via a PCI Express x16
slot.

For measurement purpose we used different projection
geometries and volume phantoms. If the phantom fits inside
the field of view, there exist rays that do not go through the
cuboid at all (case ”far”). These rays consume a minimum of
the computation time and the computation finishes noticeably
faster compared to the test case where optical center and image
plane are close to the cuboid (case ”near”). Associated param-
eters that have direct impact on the computational complexity
of the ray caster are image size (number of pixels and with
it number of rays) as well as the sampling rate along one
ray (distance of sampling positions compared to the size of a
voxel). Due to the fact that in CUDA the execution of the
kernel and thus the ordering of the texture fetches can be
configured by the block configuration [13], we also compared
this parameter for CUDA 1.1 and CUDA 2.0. Large images
have some additional side effects. On one hand, they allow a
more flexible schedule of threads, on the other hand each ray

27

5122 pixels 10242 pixels 20482 pixels
Blocksz. near far near far near far

16× 16 48.2 87.7 106 107 409 301

32× 8 50.5 101 109 111 412 315

32× 16 46.4 113 107 116 411 308

64× 4 59.8 127 109 138 424 340

64× 8 54.4 129 111 127 415 330

128 × 2 74.0 132 121 222 425 397

128 × 4 57.8 124 115 185 431 372

256 × 1 98.2 140 169 302 449 597

256 × 2 68.9 124 122 218 448 467

512 × 1 100 141 167 253 441 593

TABLE II
BLOCK PARAMETER COMPARISON OF RUNTIMES USINGCUDA 2.0 ON

THE NVIDIA G EFORCE8800GTX IN SECONDS WITH400 PROJECTIONS

AND DIFFERENT PROJECTION SIZES AT A STEP SIZE OF0.25OF THE

VOXELSIZE

needs some initial calculation steps apart from the sampling.
Unless otherwise noted, a block consists of16 × 16 pixels
within the projection. A block parameter comparison for the
GeForce8800 GTX using CUDA 2.0 is shown in Table II.
Another important parameter is the number of projections to
be acquired from the same volume data. The time required for
initialization steps, preparing the data structures and loading
the volume data to the device, is spent just once. So, a high
number of projections reduces the influence of such preceding
computations (e. g.1.6 seconds for CUDA and3.2 seconds
for OpenGL on the QuadroFX 5600).

If both implementations are well optimized, it is expected
that OpenGL will perform better than CUDA 1.1 and compa-
rable to CUDA 2.0.

We use a projection size of512×512 or 1024×1024 pixels.
The resulting execution times for the GeForce8800 GTX
and QuadroFX5600 using a projection size of1024 × 1024
are shown in Table IV and Table V, and for the QuadroFX
5600 in Table III using a projection size of512 × 512 and
2048 × 2048 in Table VI. In Figure IV we give an overview
of the dependency on the projection size using the QuadroFX
5600. In order to hit most of the voxels in the volume, the
step size (sampling rate) must not be greater than 1 voxel.
If we actually do not want to loose information, it should be
at most 0.5 of the voxel size. In favor of a smooth projection
image a step size of 0.25 voxels would be even better. A direct
comparison between GeForce8800 GTX and QuadroFX5600
for the computation time depending on the step size is shown
in Figure 7. The number of projections that can be computed
consecutively depends on the reconstruction algorithm. For
example, SART computes only a single projection per volume
update. In contrast, SIRT processes all projections consecu-
tively before a volume update is performed in the iteration.
Certainly there are algorithms in between such as the ordered
subset approach.

In Figure 6 we can see the dependency of the execution
time on the chosen step size for most common parameters.

5122 pixels
Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 6.22 1.60 3.25
far 6.47 1.60 3.24

16 near 14.2 3.30 5.32
far 18.2 4.97 6.45

100 near 55.5 13.1 21.7
far 92.5 24.4 25.3

400 near 145 41.8 47.0
far 386 88.7 90.3

TABLE III
COMPARISON OF RUNTIMES USING THENVIDIA Q UADROFX 5600 IN

SECONDS(CUDA 1.1 VS. CUDA 2.0VS. OPENGL) WITH A PROJECTION
SIZE OF 512SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF0.25OF THE VOXELSIZE

The measurements do not include the time required to write-
back the projections to the host memory or even to hard disk,
because it is not required for a complete GPU implemen-
tation of iterative CT reconstruction. Moreover, those times
(especially the write back to disk) can be hidden behind the
computation of the next slices. For example a projection of 100
images,1024×1024 including write back takes approximately
one additional second on the QuadroFX 5600 (0.35 sec write
back to host,0.19 sec write back to hard disc and 0.54 sec for
deletion of data, etc.). In most cases OpenGL and CUDA 2.0
operate two or three times faster than CUDA 1.1. For a small
number of projections, the results seem to depend on the other
parameters, i.e. the initialization time of the API, which takes
longer for OpenGL. In contrast, the tests with 400 projections
show a more interesting behavior. The best executed results
are highlighted in bold in Table IV, III, V and VI. In Table IV
it can be seen that CUDA 2.0 is faster in all tests by a constant
offset of approximately 8 seconds on the GeForce8800 GTX.
In Figure the dependency on the step size for the two different
geometric setups in a common setting for SIRT (1024× 1024
pixels; 400 projections) is shown. The time increases almost
linear with the step size except for an offset.

To give an impression of GPUs computational performance
we finally compare a specific test case also with a CPU
implementation. The CPU implementation is a single-threaded
non-optimized straight-forward implementation of the raycast
method as stated in Algorithm 1. The program is executed
on our test system equipped with two Intel Xeon E5410
processors running at2.33 GHz. For a simple comparison we
used16 projections1024× 1024 at a step size of0.25 of the
voxel size. Table V proves a performance of5.16 seconds for
such configuration using the ”near” field of view setting on
the NVIDIA QuadroFX5600. We measured764 seconds for
the single threaded CPU program. This indicates a maximal
speedup factor of 148.

V. D ISCUSSION

At higher numbers of projections the execution times for the
CUDA implementation which uses 2-D textures to compute

28

10242 pixels
Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 9.4 3.8 12.1
far 9.4 3.8 11.9

16 near 20.6 7.5 15.5
far 27.3 8.2 15.5

100 near 86.4 28.4 36.4
far 126 30.2 37.3

400 near 299 107 115
far 527 108 116

TABLE IV
COMPARISON OF RUNTIMES USING THENVIDIA G EFORCE8800GTX IN

SECONDS(CUDA 1.1 VS. CUDA 2.0VS. OPENGL) WITH A PROJECTION
SIZE OF1024SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF0.25OF THE VOXELSIZE

10242 pixels
Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 6.38 1.60 3.22
far 6.71 1.59 3.25

16 near 16.2 5.16 6.94
far 21.4 5.02 7.09

100 near 70.5 25.1 27.4
far 114 24.6 29.5

400 near 245 99.8 103
far 515 90.9 109

TABLE V
COMPARISON OF RUNTIMES USING THENVIDIA Q UADROFX 5600 IN

SECONDS(CUDA 1.1 VS. CUDA 2.0VS. OPENGL) WITH A PROJECTION

SIZE OF1024SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF0.25OF THE VOXELSIZE

trilinear interpolations are much longer than for our other
implementations using 3D textures (CUDA 2.0 or OpenGL). It
is therefore essential to use the hardware-accelerated functions
of the GPU in order to optimize the execution performance
of our CT reconstruction applications. The constant execution
time offset in each test case (approx. 12 seconds in OpenGL
and 4 seconds in CUDA 2.0 on the GeForce8800 GTX) can
be explained with the copy process of the volume data to the
graphics memory along with some other initializations. With
a QuadroFX5600 card we observed a significantly smaller

20482 pixels
Proj. FoV CUDA 1.1 CUDA 2.0 OpenGL

1 near 7.70 1.59 3.27
far 7.26 1.58 3.26

16 near 37.7 15.8 17.7
far 30.6 11.4 13.3

100 near 208 95.4 98
far 173 67.4 70.4

400 near 841 392 397
far 864 284 290

TABLE VI
COMPARISON OF RUNTIMES USING THENVIDIA Q UADROFX 5600 IN

SECONDS(CUDA 1.1 VS. CUDA 2.0VS. OPENGL) WITH A PROJECTION

SIZE OF2048SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF0.25OF THE VOXELSIZE.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

pr
oc

es
si

ng
 ti

m
e

(s
ec

)

ProjectionCount

Varying small number of projection (near object)

OpenGL, 512*512 px, Stepsize: 0.25 voxel
CUDA 2.0, 512*512 px, Stepsize: 0.25 voxel

OpenGL, 1024*1024 px, Stepsize: 0.25 voxel
CUDA 2.0, 1024*1024 px, Stepsize: 0.25 voxel

OpenGL, 2048*2048 px, Stepsize: 0.25 voxel
CUDA 2.0, 2048*2048 px, Stepsize: 0.25 voxel

Fig. 3. CUDA 2.0 and OpenGL comparison for varying projection size and
a small amount of projections.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400

pr
oc

es
si

ng
 ti

m
e

(s
ec

)

ProjectionCount

Varying number of projection (near object)

OpenGL, 512*512 px, Stepsize: 0.25 voxel
CUDA 2.0, 512*512 px, Stepsize: 0.25 voxel

OpenGL, 1024*1024 px, Stepsize: 0.25 voxel
CUDA 2.0, 1024*1024 px, Stepsize: 0.25 voxel

OpenGL, 2048*2048 px, Stepsize: 0.25 voxel
CUDA 2.0, 2048*2048 px, Stepsize: 0.25 voxel

Fig. 4. OpenGL and CUDA 2.0 comparison with similar execution time
behavior for varying projection count and size.

difference in initialization time between OpenGL and CUDA.
As expected, the increase in runtime is almost linear in the step
size and the number of projections. With increasing image
sizes, OpenGL and CUDA are able to dispatch the parallel
computations more efficiently to the multiprocessors of the
GPU up to a certain amount. This is the reason why the execu-
tion time increases remarkably slower and does not scale with
the number of pixels in an image. Merely at2048×2048 pixels
and an ROI including the complete data, there can be seen a
strong increase in execution time. As a consequence, it seems
that projection images with1024× 1024 pixels are optimally
suited for current GPUs generations. An implementation in
OpenGL requires more implementation efforts for non-experts
because it was built as a graphics programming language for
real-time rendering of vertex-based 3D scenes. In contrast, a
ray casting in the C programming language can be more easily
ported to CUDA, as it only requires some adaptations for
the parallelization strategy. However an OpenGL expert can
implement such an algorithm in equivalent time compared to
a C-Programmer using CUDA.

29

 0

 50

 100

 150

 200

 250

 300

 350

 400

 400 600 800 1000 1200 1400 1600 1800 2000 2200

pr
oc

es
si

ng
 ti

m
e

(s
ec

)

ProjectionSize

Dependency on projection size (400 projections, stepsize: 0.25 voxel)

OpenGL near
OpenGL far

CUDA 2.0 near
CUDA 2.0 far

Fig. 5. The projection size dependency on the QuadroFX5600.

 0

 100

 200

 300

 400

 500

 600

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Stepsize

Dependency on step size (1024*1024 px, 400 projections)

OpenGL near
CUDA 1.1 near
CUDA 2.0 near

OpenGL far
CUDA 1.1 far
CUDA 2.0 far

Fig. 6. The stepsize dependency on the QuadroFX5600.

VI. CONCLUSION

We have presented three highly optimized implementations
of volume ray casting usable i.e. as the forward-projectionstep
in iterative reconstruction. Our comparison of the execution
times shows that the performance of the recent CUDA version
is even slightly better than an implementation using OpenGL.
Older CUDA versions should not be used for ray casting due to
the lack of 3D texture support. CUDA unveils the processing
power of graphics cards even for programmers that are not
specialists in computer graphics. The OpenGL implementation
required much more implementation time, however it can also
be used with no CUDA capable devices. On the other hand,
the Tesla series from NVIDIA can only be used together with
CUDA.

ACKNOWLEDGMENTS

This work is being supported by Siemens Healthcare, CV,
Medical Electronics & Imaging Solutions. We wish to give
special thanks to Dr. Klaus Engel who supported us with his
wide OpenGL API knowledge.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Stepsize

GeForce 8800 vs. Quadro FX 5600 comparison step size (1024*1024 px, 400 projections)

GeForce 8800 GTX near
GeForce 8800 GTX far
Quadro FX 5600 near

Quadro FX 5600 far

Fig. 7. GeForce8800 GTX to QuadroFX5600 comparison on step-size
using CUDA 2.0.

REFERENCES

[1] A. Andersen and A. Kak, “Simultaneous algebraic reconstruction tech-
nique (sart): A superior implementation of the art algorithm,” Ultrasonic
Imaging, vol. 6, no. 1, pp. 81–94, January 1984.

[2] K. Mueller and R. Yagel, “Rapid 3d cone-beam reconstruction with
the algebraic reconstruction technique (art) by utilizingtexture mapping
graphics hardware,”Nuclear Science Symposium, 1998. Conference
Record. 1998 IEEE, vol. 3, pp. 1552–1559, 1998.

[3] L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,”
Journal of the Optical Society of America, vol. A1, no. 6, pp. 612–619,
1984.

[4] H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, “Fast GPU-Based
CT Reconstruction using the Common Unified Device Architecture
(CUDA),” in Nuclear Science Symposium, Medical Imaging Conference
2007, E. C. Frey, Ed., 2007, pp. 4464–4466.

[5] F. Xu and K. Mueller, “A comparative study of popular interpolation
and integration methods for use in computed tomography,”Biomedical
Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on,
pp. 1252–1255, April 2006.

[6] A. Kubias, F. Deinzer, T. Feldmann, S. Paulus, D. Paulus,B. Schreiber,
and T. Brunner, “2d/3d image registration on the gpu,” inProceedings
of the 7th Open German/Russian Workshop on Pattern Recognition and
Image Understanding (OGRW), FGAN-FOM, Ettlingen, 2007.

[7] K. Mueller, F. Xu, and N. Neophytou, “Why do commodity graphics
hardware boards (GPUs) work so well for acceleration of computed
tomography?” inSPIE Electronic Imaging Conference, San Diego, 2007,
(Keynote, Computational Imaging V).

[8] P. M. Joseph, “An improved algorithm for reprojecting rays through pixel
images,”IEEE Transactions on Medical Imaging, vol. MI-1, no. 3, pp.
192–196, 1982.

[9] M. Churchill, “Hardware-accelerated cone-beam reconstruction on a
mobile C-arm,” inProceedings of SPIE, J. Hsieh and M. Flynn, Eds.,
vol. 6510, 2007, p. 65105S.

[10] N. K. Strobel, B. Heigl, T. M. Brunner, O. Schuetz, M. M. Mitschke,
K. Wiesent, and T. Mertelmeier, “Improving 3D image qualityof x-ray
C-arm imaging systems by using properly designed pose determination
systems for calibrating the projection geometry,” inMedical Imaging
2003: Physics of Medical Imaging. Edited by Yaffe, Martin J.; Antonuk,
Larry E. Proceedings of the SPIE, Volume 5030, pp. 943-954 (2003).,
ser. Presented at the Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference, M. J. Yaffe and L. E. Antonuk, Eds., vol. 5030, Jun.
2003, pp. 943–954.

[11] D. H. R. Galigekere, K. Wiesent, “Cone-beam reprojection using
projection-matrices,”IEEE Transactions on Medical Imaging, vol. 22,
no. 10, pp. 1202–1213, 2003.

[12] K. Müller, “Fast and accurate three-dimensional reconstruction from
cone-beam projection data using algebraic methods,” Ph.D.dissertation,
Department of computer and information science, Ohio StateUniversity,
Columbus, Ohio, USA, 1998.

[13] N. Corp., “NVIDIA CUDA Compute Unified Device
Architecture Programming Guide,” 2007. [Online]. Available:
http://www.nvidia.com/cuda

30

RapidMind Stream Processing on the PlayStation 3
for a 3D Chorin-based Navier-Stokes Solver

Vincent Heuveline
Numerical Methods in High Performance Computing

Steinbuch Centre for Computing
Karlsruhe Institute of Technology, Germany

vincent.heuveline@kit.edu

Dimitar Lukarski and Jan-Philipp Weiß
SRG New Frontiers in High Performance Computing

Exploiting Multicore and Coprocessor Technology
Karlsruhe Institute of Technology, Germany

dimitar.lukarski@kit.edu, jan-philipp.weiss@kit.edu

Abstract—In Cell’s heterogeneous multi-core configuration the
issues related to data management are not treated at the
hardware level and have to be handled explicitly by the user and
its software environment. For dedicated applications the resulting
performance gains are impressive and exemplified in the existing
literature. However, an extensive programming effort and code
redesign are required to port applications to the Cell processor.
As a promising alternative, RapidMind’s stream processing
model provides an easy to use programming approach in single-
threaded manner where all data transfers and scheduling are
handled implicitly. Our investigation shows that algorithms of a
complex fluid dynamic application can be mapped to the Cell
BE in an efficient way. But due to programming model- and
problem-intrinsic restrictions with respect to temporal locality,
main memory resources and memory bandwidth are the limiting
factors for a profitable deployment in that field of application.

Index Terms—Cell BE, RapidMind, Navier-Stokes solver,
bandwidth-bound algorithms, stencil operation

I. I NTRODUCTION AND OVERVIEW

Technological limitations, strong desire for tremendous per-
formance and the market pressure to sell emerging products
have lead to the development of multi-core processors as
mainstream technology in multimedia and technical comput-
ing. However, currently only a limited number of applications
can benefit from the huge potential of these new hardware
architectures. Extensive efforts are required to fill the gap
between hardware capability and software efficiency. A major
challenge relies on the ability to design hardware-aware codes
for fine-grained parallelism which should be as generic as
possible. This situation becomes especially pronounced inthe
context of the Cell Broadband Engine (BE) jointly developed
by Sony, Toshiba and IBM (STI).

Aiming at huge bandwidth and unrivaled performance, the
designers of the Cell BE decided to refrain from the classical
approach of a hardware-controlled nested cache hierarchy
that automatically brings data closer to the cores and cares
for increasing temporal locality of frequently used data. For
Cell BE the users have to care at the software level for
providing the data for the cores in time. As a consequence,
programming models for Cell have become more compli-
cated and data management and organization is a critical
issue. A common programming approach relies on multi-
threading of applications. However, parallelization is a time-
consuming, difficult, and error-prone task. A specific expertise

for hardware-aware software development is required that
cannot always be handled by specialists from diverse scientific
disciplines who have to rely on fast computations and reliable
numerical simulations.

The RapidMind Multi-core Development Platform is pro-
viding a promising approach for sticking with a single-
threaded programming style and simultaneous full exploitation
of parallel power of emerging multi-core platforms. Based on
a stream processing model, RapidMind’s solution is conceived
to overcome the management of the complicated data transfers
to and from the cores. As a consequence, programmers and
algorithm designers can concentrate on the details of the algo-
rithm instead of coping with technical difficulties. Moreover,
RapidMind is offering a portable solution that may run on
the Cell processor, Graphics Processing units (GPUs) and x86
multi-core CPUs.

Our goal in this paper is to investigate the potential of
RapidMind’s high level concept on the Cell BE for the solution
of a highly compute time- and memory-demanding problem
in computational fluid dynamics (CFD). As opposed to an
approach encompassing only measurements of BLAS 3 rou-
tines (like SGEMM or the LINPACK benchmark) or isolated
application kernels, the main emphasis of this paper is put on
the usability and performance of the considered technologyfor
a CFD problem which meets the needs of typical real world
applications. We are investigating if RapidMind’s high-level
approach can leverage the parallel potential of the Cell BE
and if all necessary components are provided to map complex
numerical algorithms to Cell’s multi-core architecture inan
efficient manner with respect to both computational through-
put and development time. As we will outline, the stream
processing approach conflicts with concepts for increasing
temporal locality. Our investigation is mainly performed on
Sony’s PlayStation 3, Cell’s branch into the mass market.
Some results are compared to those obtained on IBM Cell
BladeCenter QS21.

This work is organized as follows. Section II gives a short
list of related work in the field of CFD, stream processing, and
implementation work on Cell. In Section III we are providing
a description of the fluid dynamic problem under considera-
tion: a three-dimensional incompressible Navier-Stokes solver
based on Chorin’s projection method and discretization on

31

staggered grids. Section IV is dedicated to a short overviewof
the architecture details of the STI Cell BE and its incorporation
into PlayStation 3 and the IBM Cell BladeCenter QS21.
In Section V we describe the RapidMind stream processing
model. Section VI shows the expected performance bounds
for the implementation of the considered fluid dynamic model
problem. In Section VII we present the performance results
of our fluid dynamic solver on PlayStation 3 implemented
in RapidMind. We conclude with a summary and outlook in
Section VIII.

II. RELATED WORK

Investigations of modern numerical methods and applica-
tions on the Cell BE and other multi-core platforms employing
diverse programming models are subject of current research
activities. Performance results for a Lattice Boltzmann based
fluid dynamic solver on Cell BE can be found in [1]. Another
parallel implementation of a similar fluid dynamic solver
on an emerging hardware platform can be found in [2]. To
the authors’ knowledge there are no performance results for
RapidMind implementations on the Cell BE available in the
literature. Our work is a first contribution. Related work with
RapidMind on GPU for an application of bioinformatics can
be found in [3].

III. F LUID DYNAMIC MODEL PROBLEM

Fluid dynamic problems are challenging problems in terms
of numerical modeling and algorithmic implementation. The
model problem under consideration is three-dimensional, time-
dependent, and force-driven motion of a viscous fluid in a cube
Ω = [0,1]3 subject to non-slip boundary conditions in the time
interval (0,T] described by the incompressible Navier-Stokes
equations

∂tv+(v ·∇)v−ν∆v+∇p = f in Ω× (0,T],
∇ ·v = 0 in Ω× (0,T],

v = 0 on ∂Ω× (0,T].

The unknowns are the scalar pressurep and the vector-valued
fluid velocityv. The right hand side of the momentum equation
is the prescribed forcef. In our model scenario a circular force
is applied to a fluid subject to zero boundary conditions and
zero initial conditions for the velocity, i.e.v(t = 0) = 0 in Ω.

With Chorin’s projection method [4], the time-dependent
equations can be solved by an iterative and explicit time
stepping scheme. Starting with inititial valuev0, a sequence
ṽk, pk, vk, k = 1, . . . , is determined by

ṽk+1−vk

△t
+(vk ·∇)vk−ν∆vk = f k in Ω, (1)

∆pk+1 =
1
△t

∇ · ṽk+1 in Ω, (2)

vk+1− ṽk+1

△t
=−∇pk+1 in Ω. (3)

We refer to [5] for more details regarding the properties and
the adequate formulation of the boundary conditions for this

scheme. The upper indexk is related to the definition of the
discrete timetk, and△t := tk+1− tk describes the uniform
time step size. The explicit character of this scheme leads to
stability constraints with respect to the time step size (see e.g.
[5] and references therein).

For the spatial discretization we use finite-difference ap-
proximations on staggered MAC grids [6] with uniform grid
size. The domain is discretized into small cubes with edge
length h = 1/n. The pressure values are associated with the
centers of the cubes whereas the three velocity components
in x-, y- and z- direction are associated with the faces of
the cubes with normals in corresponding directions. For the
Laplacian operator∆ we apply regular 7-point stencils. Central
differences are invoked for the divergence and the gradient
operator. The stencils for the non-linear term are obviously
more involved (see e.g. [7] for more details). A detailed
description of the discretization can be found in [8], [9].

The most expensive part of the solution process in terms of
necessary operations is the projection step (2) where a linear
system of equation (LSE) has to be solved for the discrete
pressure. The other two steps are explicit. We consider the
conjugate gradient (CG) method [10] for the solution of the
LSE. Several iteration steps have to be performed to compute
an approximate solution.

IV. CELL BROADBAND ENGINE

The Cell Broadband Engine (BE) is a processor architecture
relying on innovative concepts for heterogeneous processing
and memory management. In the STI approach specialized
cores are added to a main unit motivated by increasing both
computational power and memory bandwidth.

The main unit of the Cell BE is the Power Processing
Element (PPE) running at 3.2 GHz. The PPE mainly acts
as controller for the eight Synergistic Processing Elements
(SPE) which usually handle the computational workload. The
SPEs are SIMD processors with 256 KBytes local, software-
controlled memory called Local Store (LS). The LS does not
operate like a conventional CPU cache since it does not contain
hardware structures or protocols that predict which data may
possibly be reused or loaded. The SPEs mainly perform
SIMD instructions on 128-bit wide 128 entry register files.
Furthermore, they manage data transfers by Direct Memory
Access (DMA). Each SPE reaches 25.6 GFlop/s performance
for single precision (SP) instructions. In the first versionof
Cell, double precision (DP) instructions are not fully pipelined
leading to modest performance of 1.8 GFlop/s per SPE. In
its latest release PowerXCell 8i, DP performance reaches
12.8 GFlop/s. The eight SPEs are connected via the Element
Interconnect Bus (EIB) delivering aggregate peak bandwidth
of 204 GByte/s. However, the data has to be accessed from
main memory connected via a Memory Interface Controller
(MIC) to the EIB. Details on the Cell architecture can be found
in [11].

In the present work two different test environments are
investigated: Sony’s PlayStation 3 and IBM’s BladeCenter
QS21. The PlayStation 3 (PS3) incorporates the Cell BE

32

processor at a low price. However, only six SPEs are available
under a Linux OS due to economic viability and maintenance
of the game OS. In PS3 there are only 256 MByte of
XDR DRAM main memory. Thereof only around 200 MByte
are accessible under Linux. The Cell BladeCenter QS21 is
equipped with two Cell processors and each of them can access
1 GByte of XDR DRAM main memory (2 GByte together).
Both of the processors on the BladeCenter are connected
by the Broadband Engine Interface protocol (BIF) providing
around 20 GByte/s bandwidth for data exchange. With only
one processor of QS21 running, BIF enables memory access to
the second XDR DRAM. The aggregate SP compute capability
of the SPEs of QS21 is 409.6 GFlop/s and 153.6 GFlop/s on
PS3. On PS3 theoretical peak main memory bandwidth is 25.6
GByte/s. On QS21 both XDR DRAMs can be accessed with
25.6 GFlop/s each. Effects of Non-uniform Memory Access
(NUMA) have to be considered.

The main drawback of the Cell architecture is that the Local
Store is usually not large enough for the entire application
data. Therefore, data must be decomposed into pieces small
enough to fit into local memory. These data pieces must be
replaced subsequently through the DMA without losing the
performance gain associated to the usage of multiple SPEs.
Main memory bandwidth turns out to be the bottleneck for
many data-intensive applications. On Cell BE there is no
full conformity with IEEE 754 norm [12] in SP concerning
rounding modes, treatment of denormals and overflow.

With respect to the software-controlled memory hierarchy,
explicit data transfers, and different instruction sets ofthe PPE
and SPEs, a sophisticated programming model for the Cell
BE is required. A basic approach relies on the Software De-
velopment Kit (SDK) [12] provided by IBM. With no attempt
toward an exhaustive list, other solutions are CorePy [13],MPI
MicroTask [14], Sequoia project from Stanford [15], IBM’s
Octopiler [16], Barcelona Supercomputing Center’s CellSs
Superscalar [17], and the Mercury Multi-Core Framework
[18]. In our work we are focusing on RapidMind’s stream
processing approach (see Section V).

V. RAPIDM IND STREAM PROCESSING

In this paper we consider the RapidMind Multi-core Devel-
opment Platform for the implementation of our fluid dynamic
model problem on the Cell BE. RapidMind (RM) is based on a
stream processing model [19]. The RM platform is a collection
of libraries built on C++ with some language extensions and
its own predefined data types. Existing compilers can be
used; only specific header files need to be included. The RM
platform manages execution of RM programs on the target
device (the SPEs on Cell). It handles all memory transfers and
load balancing. Programmers can implement their applications
in a single-threaded manner with no explicit parallelism and
no hardware knowledge. The major advantages are the ease
of programming and the portability of implementations. In its
current release RM is supporting Cell BE, GPUs from nVIDIA
and AMD/ATI, and x86 multi-core CPUs. Anyhow, direct
portability remains limited due to architectural differences like

size of local memory and different instruction sets. Backend
specific tuning options for optimization and different data
layout are still necessary.

In the stream processing approach, computation is applied
in form of so-called kernels acting on data streams. In the
RapidMind framework data streams are tiles of arrays trans-
ferred to the SPEs. The kernels represent sets of instructions
defining uniform operations in the sense of the Single Program
Multiple Data (SPMD) execution model. A basic requirement
to reach flexibility in coding is dynamic flow control by loops
and branches within the kernels. However, no side effects are
allowed due to undetermined order of execution on the data
chunks. This concept directly excludes data conflicts and race
conditions but comes along with limitations with respect to
algorithmic flexibility.

The main disadvantages of stream processing models are the
model-intrinsic and design-specific limitations to data reuse.
Since the kernels are applied to tiles of large arrays, already
loaded data cannot be kept for later reference. Moreover,
intermediate write operations of processed data are prohibited.
As a consequence, concepts designed for temporal locality
cannot be meaningfully applied. Data reuse within several
steps of complex algorithms cannot be exploited and some
data may have to be transferred several times.

RM comes along with its own data types simplifying data
transfers and vectorization on SIMD units. New data types
are values (short vectors), arrays (containers for values)and
programs (kernels operating on arrays). The most efficient data
structure for computations on Cell are 4-component vectors
(Value4f for floats) that fit in registers of the SIMD units
on the SPEs. Inputs for kernels are either values or arrays
of values. For kernels with values as input, the optimal data
transfer is managed by RM. For blocking the data transfers for
algorithmic purpose (e.g. for stencil computation), arraytiles
of prescribed size are transferred. In order to reach maximal
bandwidth, data should be fetched from main memory in 16
KByte chunks. In- and output arrays are limited to 16 KByte
size. This restriction can be bypassed by the definition of
several in- or output arrays. Data for the kernels can be fetched
via input arrays or into local arrays. Local arrays are supported
on Cell but not on GPUs due to the small size of local memory.
Input and output arrays need to have the same size but may
have different types. Input arrays are automatically double-
buffered for overlap of communication and computation. The
access to arrays can be controlled by array accessors. Several
options are available to manipulate array access patterns.For
non-uniform operations on RM’s values, these short vectors
can be rearranged via permutations (swizzling) or by write-
masking. RM programs (kernels) are compiled dynamically by
the RM platform to machine language on the target hardware
specified by included backends. Compilation is invoked the
first time the kernels are used.

As observed in our experiments, access times to RM arrays
are longer than accesses to pure C++-arrays. However, they are
mandatory for data transfers. Rearrangements of short vectors
(values) by swizzling is more costly on Cell compared to

33

GPUs. A real disadvantage are repeated dynamical compila-
tions of kernels if source code is spread on several files.

All computations in this work are performed by using RM
Development Platform Version 2.1. In this version of RM there
is no double precision support. Further information about the
RM platform can be found in [20], [21], [22]. A different
and also promising stream processing approach is provided
by CUDA from nVIDIA [23].

VI. T HEORETICAL AND EXPECTED PERFORMANCE

The performance of numerical algorithms on hardware is
mainly influenced by two components: data transfers between
a nested memory hierarchy and the compute cores, and
computations, mainly performed on floating point operands.
Parallel codes additionally suffer from delays due to necessary
communication and synchronization between different threads
or read-write conflicts in the memory system.

A lower bound for the total run-timeTR of a numerical
application is given byTR≥ TC +TT , whereTC is the compute
time andTT is the time for the data transfers. In the case of
asynchronous transfers and overlapping of communication and
computation, the lower bound can be taken as max{TC,TT}.
On a given platform an algorithm is compute-bound forTC >
TT and bandwidth-bound forTT > TC. A simple performance
model can be derived by knowledge of the algorithm and
hardware characteristics. Letf the number of floating point
operations (Flop) in the algorithm to be performed andw the
number of floating point words to be transferred from memory
to the cores and back (if necessary doubly counted). Then we
get lower boundsTT ≥ 4w/B for 4 byte single precision words
where B (in GByte/s) is the maximal bandwidth between
memory and cores. Here, we have to consider the narrowest
bottleneck of possibly several data paths like main memory to
on-chip/on-board memory or caches to the cores. Furthermore,
we find TC ≥ f/P whereP (in GFlop/s) is the accumulated
theoretical peak performance of the functional units. An upper
bound for the effective performancePeff of the corresponding
implementation can hence be given by

Peff =
f

TR
≤ f

max{TC,TT}
≤min

{
P,

f B
4w

}
.

For unlimited bandwidth (B very large) or compute-dominated
algorithms (f very large), the upper bound is basically the
peak performanceP. For unlimited compute capability (P very
large) effective performance is bounded byPeff ≤ f B/(4w).
For the PS3 at least 24 Flop (32 Flop for one 8-SPE Cell)
have to be performed per data transfer such that the algorithm
is not bandwidth-bound. This does not apply to all components
of our simulation. Hence, the transfers dominate the total time
of computation. For specific problems dedicated strategiesfor
reduction of memory transfers may be developed in order to
cope with this issue.

Memory transfer reduction strategies include restrictionto
single precision with a basic performance gain of a factor of
two on most architectures. Matrix operations on regular grids

may be reduced to application of fixed stencils preventing ma-
trices to be transferred. Temporal blocking techniques like loop
skewing and circular queue [24], [25], [26] give significant
benefits for stencil applications but are intrinsically based on
explicit solution schemes. It is however important to note that
in the case of numerical solution of time-dependent partial
differential equations, explicit schemes come along with severe
constraints with respect to the time step size which may cancel
the achieved benefits.

In the following we investigate the algorithmic aspects more
detailed. For our application on PS3, we consider a fluid in
a cube with edge lengthn of size N = n3. On the applied
staggered MAC grids the components of the velocity profile
corresponding to a single fluid cell are gathered into 3-tuple
RM vectors (Value3f). Scalar pressure values of four fluid cells
can be gathered into 4-tuple pencils inz-directions (Value4f).
Data chunks of maximum 16 KByte size are built by 4×16×
16 3-tuples (quarter cubes) for the velocity and the force and
16×16×4 4-tuples (full cubes) for the pressure.

With respect to the stencil operation we consider the fol-
lowing data layout. The order of the subcubes as well as the
subcubes itself are organized in lexicographical order where z
is the unit stride direction. Within the subcubes two different
data layouts are considered. In the strict lexicographicalsub-
ordering data from neighboring subcubes have to be fetched
in fragmented manner. To overcome this issue, data of the
subcubes are reorganized by distinguishing interior nodesand
nodes at the interfaces. For efficient memory access within the
stencil kernel, the arrays for the subcubes start with the nodes
of its six interfaces and are followed by the interior nodes,all
in lexicographical order and grouped in 4-tuples. Due to the
overlap of the subcubes, the number of total data transfers in
the stencil kernel is 2.75N for our data layout (instead of 2N
without overlap).

In the advection step (1), a nonlinear stencil has to be ap-
plied to the three velocity components held in 3-tuple vectors
of quartered subcubes. For the application of the nonlinear
stencil thirteen 3-tuple vectors corresponding to neighboring
fluid cells are required. In order to access the components in
a non-uniform way, 3-tuples vectors have to be reorganized
by swizzling into temporary RM-tuples. Furthermore, an up-
date of the velocity components, computations of the 7-point
Laplace stencils for the velocity components, and initialization
of the force profile representing the right hand side have
to be performed. Moreover, homogeneous Dirichlet boundary
conditions apply to the intermediate velocity. The advection
step is the kernel with highest computational intensity dueto
evaluation of the non-linear term in (1).

In the projection step (2), Poisson equation with Neumann
boundary conditions has to be solved which results in solution
of a sparse and structured LSE where the matrix is represented
by a regular 7-point stencil acting on scalar values for the
pressure. The solution method considered in this paper relies
on the conjugate gradient (CG) method [10]. In order to
simplify the analysis of the obtained performance results,we
do not include any kind of preconditioning method.

34

The CG method consists of several components. In each
iteration step of the CG method, a single stencil operation
corresponding to the matrix-vector multiplication, a scalar
product, a vector norm, and threesaxpy vector updates
[27] have to be performed. Due to the Neumann boundary
conditions in the projection step (2), the computed pressure is
defined only up to a constant value. Therefore, a normalization
is required after application of the stencil and after every
vector update in order to ensure solvability of the LSE due
to perturbations caused by SP rounding errors.

In Table I we illustrate the properties of the components of
a single CG iteration step. The first column shows the number
of occurrences in a single step. The following columns present
the numberw of necessary words transferred, the number
f of Flop, the computational intensityf/w (in asymptotic
value for largeN), and the theoretical performance bound
for the complete operation. In the practical implementation
some steps, e.g. stencil operation and scalar product, can be
combined into a single kernel with associated reductions of
transfers. Each component of the CG step consists ofO(N)

Function Occ. w f f/w Perf. bound
[#words] [#Flop] [GFlop/s]

Vector norm 1 N+1 2N−1 2.0 12.8
Scalar product 1 2N+1 2N−1 1.0 6.4
Vector update 3 3N+1 2N 0.7 4.2

Stencil 1 2.75N 8N 2.9 18.6
Normalization 4 2N 2N 1.0 6.4

TABLE I
COMPUTATIONAL INTENSITY AND PERFORMANCE BOUNDS FOR

COMPONENTS OF ACG STEP.

operations onO(N) elements. The necessary number of CG
steps depends on the condition number of the LSE which is in
our case of orderO(n2) = O(N2/3). The number of iterations
to reach a prescribed error tolerance results inO(n)= O(N1/3).
The total amount of operations to solve the pressure equation
sums up toO(nN) = O(N4/3). Memory requirements for the
CG method are basically storage of four vectors.

In the velocity update step (3), a pressure gradient has to
be added to the velocity components. Due to the memory
organization, four data tiles for the velocity and a single data
tile for the pressure have to be accessed in each subcube of
size 163.

The total memory requirements are about 96N Bytes (2·9·
4N for two velocity and force vectors with 3 components,
2 · 4N for the pressure, 4· 4N for CG). Here, we assumed
that data for the velocity, force, and pressure are kept twice:
in lexicographical order for visualization and in block lexi-
cographical order for computation. On PS3 we have≈ 140
MBytes available, allowing forn = 112. On QS21 with 2
GByte we can usen = 272.

Typical applications for stream processing should have a
computational intensityf/w, defined as the ratio of performed
Flop per memory transfer, that is polynomially increasing in
N. For all components of our applied fluid dynamic solver the
numberw of data transfers is of orderO(N), i.e. in principle

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

20

Size of the vector in MByte

G
B

yt
e/

s

Performance − memory test − PS3

r 16 KByte
r 2x16 KByte
rw 16 KByte

Fig. 1. Main memory bandwidth on PS3.

single vectors are transferred. On every vector component
only a couple of computations can be performed. So the total
numberf of floating point operations in each kernel is also of
orderO(N). Hence, computational intensity is asymptotically
constant with respect to problem size, i.e.O(1). As a con-
sequence, all kernels represent bandwidth-bound operations
on Cell for largeN. Limiting factor is the still impressive
theoretical main memory bandwidth ofB = 25.6 GByte/s.
The outstanding peak performanceP= 153.6 GFlop/s on PS3
cannot by far be fully utilized. In fact, as our experiments
show, effective bandwidth on PS3 is less than expected. By
counting the total number of transfers we find that a single CG
step of the projection step (2) is more than twice as expensive
as compared to the advection step (1) and the velocity update
step (3).

VII. I MPLEMENTATION AND EXPERIMENTAL

PERFORMANCE RESULTS

As outlined in the previous sections, our Chorin-based
Navier Stokes solver is a bandwidth-bound algorithm on the
Cell BE. On account of this, we start with an investigation of
the main memory performance on PS3. Figure 1 shows that
kernels with 16 KByte in- and output arrays reach a bandwidth
of approximately 17.8 GByte/s. Bandwidth slightly increases
when only read operations are treated. A further increase
can be observed for two input arrays of size 16 KByte. In
Figure 2 the same investigation is performed on 8 SPEs of
one Cell processor of the QS21 with disabled BIF-connection
to the second Cell processor and its main memory channel. By
default settings on QS21, the BIF connection is enabled giving
higher bandwidth as compared to 25.6 GByte/s by employing
the second main memory channel. Peak performance is about
20.5 GByte/s for read and write operations and about 24.3
GByte/s considering only read operations of size 16 KByte.

35

0 50 100 150 200 250
0

5

10

15

20

25

Size of the vector in MByte

G
B

yt
e/

s

Performance − memory test − IBM BladeCenter (8 SPEs)

r 16 KByte
r 2x16 KByte
rw 16 KByte

Fig. 2. Main memory bandwidth on QS21, 8 SPEs of one Cell, BIF disabled.

In the second step we investigate the performance of the
RapidMind implementation considering thesaxpy vector
update operation. In- and output arrays for oursaxpy kernel
are one-dimensional arrays (multi-dimensional arrays arenot
supported in RM on Cell) of 4-tuples related to cubes of size
16×16×4 (16 KByte). Thesaxpy kernel is a bandwidth-
bound operation. Theoretically, there should be no notablede-
pendence on the number of SPEs performing the computation,
assuming that each SPE is fed by utilizing maximal available
bandwidth. However, measurements of effective bandwidth
show that each SPE can be fed with approximately 3 GByte/s
only. As depicted in Figure 3, this restriction directly translates
to performance of thesaxpy kernel. For 6 SPEs we only
get a maximum performance of 2.8 GFlop/s for vectors of
size 52 MByte corresponding to a grid of size 2403. This
performance drop with respect to the deduced upper bound of
4.2 GFlop/s is attributed to the effective bandwidth of about
17.5 GByte/s. Our result is in accordance with thesaxpy
result on Cell in [28] where an effective bandwidth of 17.5
GByte/s is observed as well. Our examination ofsaxpy on
QS21 shows a saturation effect. The full available bandwidth
(≈ 21.5 GByte/s) is already utilized for five SPEs and there are
no performance benefits with six, seven or eight SPEs. In this
experiment we disabled communication with the second Cell
processor of the blade via the BIF. A performance comparison
between PS3 and QS21 shows better results for QS21 in
Figure 4. We observe huge performance drops when the vector
size is smaller than 20 MByte. On QS21 main memory is
2× 1 GByte, hence larger vectors can be treated mitigating
the performance drop.

A similar observation applies to the scalar product and
the vector norms in Figure 5. We are transferring blocked
data of 16×16×4 4-tuples and compute local partial sums.
Let NB = (n/16)3 the number of blocks. Both operations
perform 2N− 4NB Flop and yieldNB local 4-tuples, which

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

Size of the vector in MByte

G
F

lo
p/

s

Performance − saxpy − PS3

6 SPEs
5 SPEs
4 SPEs
3 SPEs
2 SPEs
1 SPE

Fig. 3. Performance ofsaxpy vector update on PS3.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

Size of the vector in MByte

G
F

lo
p/

s
Performance − saxpy (IBM BladeCenter vs. PS3)

Blade 8 SPEs
Blade 6 SPEs
PS3 6 SPEs

Fig. 4. Performance ofsaxpy vector update on PS3 and QS21.

are accumulated by a collective operator. The vector norm
kernel requires only a single input array andN memory
transfers. Measured bandwidth is 16.5 GByte/s. A slightly
better bandwidth can be achieved for the scalar product kernel
with 19.1 GByte/s for two input arrays and 2N memory
transfers. Maximum values for performance without collective
operation (labeled with (1) in the legend of Figure 5) are
7.8 GFlop/s for the vector norm and 4.7 GFlop/s, matching
the upper bounds with respect to effective bandwidth. With
collective operation performance drops to 6.1 GFlop/s (12.5
GByte/s) and 4.0 GFlop/s (16.0 GByte/s).

For the stencil operation, data is blocked into 16 KByte
chunks of size 16×16×4 4-tuples. The interior nodes within a
subcube of size 14×14×2 4-tuples are treated first. Due to the
smallness of the subcube only 8·1568 Flop are performed per

36

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

Size of the vector in MByte

G
F

lo
p/

s

Performance − Vector norm and Scalar product − PS3

Vt*V(1)
Vt*V
Pt*Q(1)
Pt*Q

Fig. 5. Performance of vector norms and scalar products on PS3. Label (1)
refers to omitted collective operation.

inner subcube in this step instead of 8·4096 (38%). Effective
bandwidth of 17.5 GByte/s gives an upper performance bound
of Peff ≤ 17.5/4·1568·8/2/4096 GFlop/s= 6.65 GFlop/s. The
measured value is 6.4 GFlop/s. Some overhead is attributed
to the required swizzle operation with respect to the kernel
application to short vectors (Value4f) inz-direction (inx- and
y- direction the stencil can be applied to full short vectors
without reorganization).

For the treatment of the interfaces between the subcubes,
additional data have to be loaded. The upper bound becomes
now Peff ≤ 17.5/4 · 8/2.75 GFlop/s = 12.7 GFlop/s. This
bound is not achieved in the experiment because of additional
fetches of small data chunks at the subcube interfaces, the
non-regular treatment of several local arrays, accesses toRM-
arrays, swizzling, index control, branches due to position
of the subcubes, and incorporation of Neumann boundary
conditions. Performance results of the stencil operation on
PS3 are presented in Figure 6. There, the label (1) refers to
the block-lexicographical data layout. Label (2) refers tothe
results for the data layout where the layers at the interfaces
are grouped together.

As a basic observation we find that maximum performance
on PS3 only applies to large vectors of size 2403 (52 MByte)
or 2723 (76 MByte). However, due to main memory limitations
the full fluid simulation can run only with vectors of length
1123 (5 MByte) on PS3. This fact results in a dramatic drop
in performance.

Note that the performance results of 21 GFlop/s in SP for
the stencil operations on Cell in [25] relate to problems fitting
entirely into the LS. Temporal blocking strategies are usedin
[24] to overcome bandwidth limitations. The authors use layers
instead of cubic blocks for spatial blocking. The strategy is
to accumulate layers locally and exchange only single layers
in each iteration. Temporal blocking techniques do not apply

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

Size of the vector in MByte

G
F

lo
p/

s

Performance − 3D Laplace Stencil − PS3

Stencil on interior nodes of the subcubes
Stencil on whole subcubes (2)
Stencil on whole subcubes (1)

Fig. 6. Performance of stencil operation on PS3.

in our situation for two reasons. First, our stencil operation
is part of the CG iteration which prevents from executing
several steps in one go since intermediate computation of
scalar products and vector updates are required. Second,
local accumulation of data and temporary exchange of data
contradicts the principles of stream processing.

For the advection step (1), we countf = 108N and w =
12.4N. Due to the huge number of operations, we find a mea-
sured performance of 15.4 GFlop/s on PS3. For the velocity
update step (3), we findf = 9N and w = 10.4N. Measured
performance is 2.6 GFlop/s. Comparably bad performance for
both kernels is attributed to data transfers and SIMDization
of 3-tuple short vectors (Value3f) instead of optimal 4-tuples
and a lot of necessary vector reorganization (swizzling) for the
computation.

It is important to note that all computations with our
RapidMind version on Cell are restricted to single precision.
In practice however, one should mind the trade-off between
performance and accuracy with respect to the quality of the
simulation results.

VIII. C ONCLUSION

Numerical treatment of large scale 3D flow problems is
highly compute time- and memory-demanding and generally
necessitates a methodology relying on high performance com-
puting. With the advent of new multi-core technologies, new
capabilities become available from the broad market. Prospects
of fine-grained parallelism are the key for steady performance
increases.

Our investigation of a CFD-solver implementation on Cell
shows that RapidMind’s stream processing model is providing
a simple programming approach in single-threaded manner
allowing to take advantage of the parallel capabilities of the
Cell BE. The RapidMind Multi-core Development Platform
simplifies the development of parallel applications, reducing

37

the cost and time lines of software development in comparison
to multi-threaded projects. Moreover, RapidMind’s approach
is a step towards portability of implementations on heteroge-
neous platforms. With respect to the impressive compute ca-
pacity of the Cell BE and GPUs, stream processing models like
nVIDIA’s CUDA or RapidMind offer alternatives with great
potential for application areas typically involving structured
data. Without necessary insights into hardware peculiarities,
the programmer can concentrate on the essentials of the algo-
rithms and does not have to care for the memory transfers and
further communication issues. No severe code rearrangements
are necessary. Only the compute-intensive parts are assigned to
the parallel processing units by invoking stream kernels. The
implementation efforts stay moderate and performance results
are convincing for kernels with high computational intensity
where bandwidth limitations can be hidden. As for well-
known hardware technologies, memory organization and data
structures remain an issue with huge impact on performance.

A main drawback of the stream processing model is the
model-intrinsic absence of concepts to exploit temporal lo-
cality and data reuse. Algorithmic flexibility of the numer-
ical methods cannot be expressed in full coverage due to
the constraints of the underlying stream processing model.
The situation gets worse for problems involving irregular
data structures. For bandwidth-bound algorithms - typical
algorithms in numerical simulation and treatment of partial
differential equations - limitations of the stream programming
model in combination with Cell become apparent. Limitations
on the Cell BE arise mainly due to the limited main mem-
ory bandwidth (although superior compared to many other
devices). In our case, main memory limitations lead to short
vectors to be transferred resulting in severe bandwidth drops.
Limited size of the Local Store of Cell’s SPEs is no handicap
due to the the restriction on the size of in- and output arrays
within RapidMind. In- and output arrays for RM-kernels with
size larger than 16 KByte would increase the efficiency of the
stencil operation due to the fraction of interior nodes within
the subcubes. An essential part of the attained performanceof
our solver is owed to the memory organization by block-wise
lexicographical ordering plus reorganization of the data at the
interfaces.

ACKNOWLEDGEMENTS

The Shared Research Group 16-1 received financial support
by the Concept for the Future of Karlsruhe Institute of Tech-
nology in the framework of the German Excellence Initiative
and the industrial collaboration partner Hewlett-Packard. The
QS21 BladeCenter is let by courtesy of SVA System Vertrieb
Alexander GmbH, Germany. All mentioned products and
brand names are trademarks or registered trademarks of their
respective owners.

REFERENCES

[1] M. Stürmer, J. Götz, G. Richter, A. Dörfler, and U. Rüde, “Fluid flow
simulation on the Cell Broadband Engine using the Lattice Boltzmann

method,” in ICMMES’07: Proc. 4th Int. Conf. f. Mesoscopic Methods
in Engineering and Science, 2007, accepted.

[2] V. Heuveline and J.-P. Weiß, “Lattice Boltzmann methodson the
Clearspeed Advance accelerator board,” inDSFD’07: Proc. 16th Conf.
on Discrete Simulation in Fluid Dynamics, 2007, accepted.

[3] W. B. Langdon and A. P. Harrison, “GP on SPMD parallel graphics
hardware for mega Bioinformatics data mining,”Soft Comput., vol. 12,
no. 12, pp. 1169–1183, 2008.

[4] A. Chorin, “Numerical solution of the Navier-Stokes equations,” Math.
Comput., vol. 22, pp. 745–762, 1968.

[5] J. Guermond, P. Minev, and J. Shen, “An overview of projection methods
for incompressible flows,”Comput. Methods Appl. Mech. Eng., vol. 195,
no. 44-47, pp. 6011–6045, 2006.

[6] S. McKee, M. Tome, G. Ferreira, J. Cuminato, A. Castelo, F. Sousa, and
N. Mangiavacchi, “The MAC method,”Computers and Fluids, vol. 37,
no. 8, pp. 907–930, 2008.

[7] A. Quarteroni and A. Valli,Numerical approximation of partial differ-
ential equations, 2nd ed. Berlin: Springer, 1997.

[8] P. Gresho and R. Sani,Incompressible flow and the finite element
method. Vol. 1: Advection-diffusion. Vol. 2: Isothermal laminar flow.
Chichester: Wiley, 2000.

[9] D. Lukarski, “Specific aspects of a parallel implementation of a 3D
CFD solver on the Cell architecture,” Master’s thesis, Dept. Math., Univ.
Karlsruhe, Germany, 2008.

[10] Y. Saad,Iterative methods for sparse linear systems, 2nd ed. Philadel-
phia: SIAM, 2003.

[11] Cell Broadband Engine architecture, Ver. 1.02, IBM, 2007.
[12] A. Arevalo, R. Matinata, M. Pandian, E. Peri, K. Ruby, F.Thomas, and

C. Almond, Programming the Cell Broadband Engine, Examples and
Best Practices, IBM Redbooks, 2008.

[13] CorePy: Synthetic Programming in Python. Indiana Univ.,
http://www.corepy.org/, 2008.

[14] M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T. Nakatani, “MPI
Microtask for programming the Cell Broadband Engine processor,” IBM
Syst. J., vol. 45, no. 1, pp. 85–102, 2006.

[15] Sequoia. Stanford Univ., http://sequoia.stanford.edu/, 2008.
[16] Compiler Technology for Scalable Architectures. IBM Research,

http://www.research.ibm.com/cellcompiler/, 2008.
[17] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “CellSs: a

programming model for the Cell BE architecture,” inSC’06: Proc. 2006
ACM/IEEE Conf. on Supercomputing. New York: ACM, 2006, p. 86.

[18] B. Bouzas, R. Cooper, J. Greene, M. Pepe, and M. Prelle, 2000, Mercury
Computer Systems, http://www.mc.com/uploadedFiles/MCF-API-Conf-
Paper.pdf.

[19] M. D. McCool, “Scalable programming models for massively multicore
processors,”Proc. IEEE, vol. 96, no. 5, pp. 816–831, 2008.

[20] RapidMind Multi-Core Software Platform - User Guide. RapidMind,
2007.

[21] RapidMind Multi-Core Software Platform - API Reference Manual.
RapidMind, 2007.

[22] RapidMind Developer Portal. RapidMind,
https://developer.rapidmind.net, 2008.

[23] Compute Unified Device Architecture (CUDA). nVIDIA,
http://nvidia.com/cuda, 2008.

[24] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, andK. Yelick,
“Optimization and performance modeling of stencil computations on
modern microprocessors,”SIAM Review, to appear, 2008.

[25] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands,and K. Yelick,
“Scientific Computing Kernels on the Cell Processor,”Int. J. Parallel
Program., vol. 35, no. 3, pp. 263–298, 2007.

[26] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, andK. Yelick, “Im-
plicit and explicit optimizations for stencil computations,” in MSPC’06:
Proc. 2006 workshop on Memory System Performance and Correctness.
New York: ACM, 2006, pp. 51–60.

[27] G. H. Golub and C. F. Van Loan,Matrix computations, 3rd ed.
Baltimore: Johns Hopkins Univ. Pr., 1996.

[28] T. J. Knight, J. Y. Park, M. Ren, M. Houston, M. Erez, K. Fatahalian,
A. Aiken, W. J. Dally, and P. Hanrahan, “Compilation for explicitly
managed memory hierarchies,” inPPoPP’07: Proc. 12th ACM SIG-
PLAN symposium on Principles and Practice of Parallel Programming.
New York: ACM, 2007, pp. 226–236.

38

OPTIMISING COMPONENT COMPOSITION USING INDEXED DEPENDENCE METADATA

Lee W. Howes, Anton Lokhmotov, Paul H. J. Kelly, A. J. Field

Department of Computing, Imperial College London
email: {lwh01, anton, phjk, ajf}@doc.ic.ac.uk

ABSTRACT

This paper explores the use of dependence metadata for op-
timising composition in component-based parallel programs.
The idea is for each component to carry additional informa-
tion about how points in its iteration space map to memory
locations associated with its input and output data structures.
When two components are composed this information can
be used to implement optimisations that would otherwise
require expensive analysis of the components’ code at the
time of composition. This dependence metadata facilitates
a number of cross-component optimisations – in this paper
we focus on loop fusion and array contraction. We describe
a prototype framework, based on the CLooG loop generator
tool, that embodies these ideas and report experimental per-
formance results for three non-trivial parallel benchmarks.
Our results show execution time reductions of up to 50%
using the proposed framework on an 8 core xeon.

1. INTRODUCTION

Component based programming consists of writing software
entities to fulfill specified interfaces. Component models al-
low multiple component implementations to satisfy the same
interface, offering flexibility on the choice of implementa-
tion for a particular problem or computing platform. How-
ever, treating components as black boxes described by their
interfaces can limit the scope for optimisation. In particu-
lar, whilst individual components can be statically optimised
when the component is defined, component compositions
can only be optimised at the point of use. This requires an
element of dynamic optimisation that exploits context infor-
mation.

Powerful but expensive inter-procedural compiler opti-
misations such as enabled by the polyhedral framework [1]
could be used once the composite component structure is
known. However, the cost of the analysis would have to be
paid each time the same components were composed in the
same way.

Adaptive components are explicitly programmed to make
use of context information, e.g. knowledge of the compo-
nents with which they are composed, in order to produce op-
timised execution schedules. In this paper we propose to im-

plement a form of adaptive behaviour through the use of sup-
plied component metadata and to use that metadata to iden-
tify dynamic optimisation opportunities at the time of com-
position. The fact that the metadata is supplied rather than
extracted at composition time, obviates the need to analyse
a component’s code each time it is used, in order to identify
whether cross-component optimisation opportunities exist.

The metadata we explore in this paper, which we refer to
as indexed dependence metadata, defines the set of memory
locations that a component may access at a particular point
in its iteration space. The relationship between these map-
pings in different components serves to define implicitly the
communication requirements of their compositions.

By examining the memory dependence metadata of the
components in a composition, we seek to expose opportuni-
ties for cross-component optimisation that are not possible
by optimising the individual components in isolation.

Specifically, in this paper we use the dependence meta-
data to determine whether two loops occurring separately in
the components of a composition can be aligned whilst re-
specting dependences, in which case the loops can be fused.
Fusion in turn may facilitate array contraction, reducing the
space requirements of the composition, and inter-processor
communication in the case where the components themselves
comprise parallel loops. We use CLooG [2, 3] to generate
the code for a fused loop using a scheduling matrix gener-
ated from an analysis of the components’ metadata and a
matrix representation of the iteration space generated from
the components’ source code.

The contributions of the paper are as follows:

• We introduce the idea of indexed dependence meta-
data, which defines the set of memory locations that
may be read from and written to by a component at
each point in its iteration space (Section 3).

• We show how the dependence metadata can be used
in conjunction with a representation of the compo-
nents’ iteration spaces to implement loop fusion and
array contraction across the component boundaries in
a composition (Section 5). In particular, we extend
this to parallel components, where the contraction re-
duces inter-processor communication.

39

• We describe a prototype software component frame-
work incorporating the above ideas, which has poten-
tial applications in multi-core software development
(Sections 2 and 4).

• We illustrate the power of the approach by showing
substantial performance improvements through fusion
of parallel components in linear algebra and image
processing benchmarks and a 3D multigrid solver (Sec-
tion 6). On an eight-core Intel Xeon system, maxi-
mum performance improvements on these examples
range from 12% to 50%.

<interface id="iContourfilter">
<input type="float" name="image_in"

format="array(in_x,in_y)" />
<output type="float" name="image_out"

format="array(out_x,out_y)" />
</interface>
<interface id="iConvolution">

<input type="float" name="image_in"
format="array(in_x,in_y)" />

<input type="float" name="filter_in"
format="array(filter_x,filter_y)" />

<output type="float" name="image_out"
format="array(out_x,out_y)" />

</interface>

Listing 1. Interface specifications for the contour filter and
convolution.

<component id="cf" >
<implements id="iContourfilter" />
<uses name="conv">
iConvolution(

image_in(in_x, in_y), filter_in(3, 3),
image_out(out_x, out_y) flow to F1)

</uses>
<constraint type="equality">
conv.in_x=in_x

</constraint>
...

</component>

Listing 2. Part of the contourfilter component specification.

2. ARCHITECTURE OVERVIEW

Our component programming system is designed to select
and generate code from a library of components. Compo-
nents carry metadata describing functional interfaces and
data dependence relationships. We identify three elements:
Component, Interface and Manager.

The application and individual components depend on
one or more interfaces. Components also implement inter-
faces, satisfying the contract defined by the interface. The
manager maintains the component dependence graph and
allocates component implementations to the interfaces as
necessary. If a component C1 depends on an interface that

image_in

image_in

image_out

image_out

F1

F2

iContourfilter

iConvolution

iDilation

iDifference

(in_x, in_y)

(out_x, out_y)

(in_x, in_y)

(out_x, out_y)

image_in (in_x, in_y)

image2_in
(in_x, in_y)

image1_in
(in_x, in_y)

image_out (out_x, out_y)

filter_in
(3, 3)

image_out (out_x, out_y)

Fig. 1. A contour filter example showing dependencies, data
flows and size descriptions of inputs and outputs.

is implemented by a component C2, we say that C2 is a
subcomponent of C1. We generate the dependency graph of
an application by recursively expanding the dependencies in
the component graph. The assignment of components to in-
terfaces is performed during a later graph pass.

Figure 1 shows the dependency relationships for an im-
age filtering example. We see a iContourfilter interface with
one input and one output, implemented by a component that
depends on iConvolution, iDilation and iDifference inter-
faces to perform its computation. Flow annotations F1 and
F2 define data flow dependencies at the composition level.

Listing 1 shows the specification for two of the inter-
faces in Figure 1: iContourfilter and iConvolution. List-
ing 2 shows part of the component specification for the con-
tour filter (cf), including its dependence on its convolution
subcomponent.1 The cf component, which implements the
iContourfilter interface, depends on the iConvolution inter-
face. We name the dimensions of the input and output pa-
rameters, and specify a constant 3 × 3 size for the filter pa-
rameter. The flow to keyword names a data flow as in Fig-
ure 1.

The implementation language for a given component is
flexible. We currently support C/C++, a high level polyhe-
dral representation of C, or pre-compiled binaries. In prin-
ciple the system can integrate components in any language,
given support in the component manager.

1Note that our implementation currently uses XML to define interfaces,
component specifications and dependence metadata, although we envisage
the use of automated or GUI based tools in the future.

40

3. COMPONENT METADATA

In general, the input and output variables of components
need to interact with those in their subcomponents. For
example, variables in subcomponents can be configured to
share values of variables in the parent component, and hence
values can propagate through the component graph. Addi-
tional metadata can be attached to a component specification
in order to express these properties. For example, Listing 2
shows an equality constraint specifying that the value in x in
the interface matches the in x in the subcomponent named
conv.2 Additionally, data can flow from one subcomponent
to another, and hence through various levels of the compo-
nent graph when combined with parent/child relationships.
In the example, the image out value of iConvolution is con-
nected (flows to) the flow F1, which will be connected again
to an input variable in another dependency of the compo-
nent. Component graph data flows are defined in the meta-
data, to avoid composition-time component analysis.

It should be emphasised that the aim is to provide depen-
dence relationships on the component inputs and outputs at
composition time, without analysis of the component code;
indeed, this code might be in binary form, which could pre-
clude such analysis.

3.1. Indexed Dependence Metadata

Indexed dependence metadata defines a set of memory ad-
dresses that a component may access at a point in its iter-
ation space. By interpreting the metadata, the component
manager can map a given set of iterations onto a set of mem-
ory locations and, assuming predictable and reasonably sim-
ple patterns, can infer dependencies across sets of iterations.

In Figure 2 we see the region constraints of our convo-
lution filter from the running example, assuming a 3 × 3
filter. Listing 3 shows the generic component specification
for the convolution filter assuming an arbitrary-sized filter.
The specification includes various pieces of metadata that
the component manager can use to optimise the composition
to its context. Note that omitting some or all of the metadata
will not break the code; it will simply limit the scope for
optimisation.

The iteration space of the component corresponds to the
indices into the input image (image in), as shown. For each
point in the iteration space a 3× 3 rectangular region of im-
age in, relative to the point, will be read. This corresponds
to a radius of size 1 in each dimension around the point.
Additionally, the whole of filter in will be read and the cor-
responding point in image out (i.e. a radius of size 0 in each
dimension) will be written. The filter input variables are de-

2To generalise this, we can specify inequalities rather than equalities
to constraints, and hence define the possible ranges for subcomponent pa-
rameters. Relaxing the requirements of a subcomponent can allow more
specific and efficient subcomponents to be selected.

Input Region of

image_in

Convolution computation

at (x,y) in iteration space

Output Region of

image_out

3

3
All of filter_in

filter_y = 3

filter_x = 3

1

1

Fig. 2. Region dependencies at a point in the iteration space.

fined in the interface and their values propagated through the
component graph.

<component id="convolution">
<iteration_space

dimensions="(image_in.width,image_in.height)"
/>
<constraint type="dependentregion"

shape="rectangle">
<constraintinput name="image_in"
placement="relative"
radius="((filter_in.w-1)/2,(filter_in.h-1)/2)"

/>
<constraintinput name="filter_in"
placement="absolute"
range="(0->filter_in.w-1,0->filter_in.h-1)"

/>
<constraintoutput name="image_out"
radius="(0,0)" />

</constraint>
</component>

Listing 3. Constraints in the specification of a component.

3.2. Component relationships through metadata

Metadata directly affects the relationships between compo-
nents. If two components communicate either through a
functional dependence, or through a data flow, the metadata
will need to be propagated.

A component’s metadata must be combined with the meta-
data of other components to give a full specification of a
relationship. For example, in Listing 2 the contour filter re-
quires a 3×3 convolution operation, which defines an access
region on its input. The size of this access region depends on
the size of the filter. Therefore, to specify fully the convolu-
tion’s metadata we need to propagate the filter size specified
by the contour filter through the graph. This propagation
can be achieved by passing metadata bindings through par-
ent/child and data-flow relationships.

When the application requests an interface, values are
bound to the interface’s parameters. These values are com-
bined with constraints and dependence metadata throughout
the component graph to bind values to variables and define
component relationships as accurately as possible. Compo-
nent selection or composition uses the propagated informa-
tion to limit the binding of components to interfaces or to

41

b)

c)

c1

c2

d1

d2

c1

c2

d1

d2

c d
a)

Convolution Dilation

Halo

Input data Output dataCommunicated data

Fig. 3. The addition of region descriptors enables more effi-
cient parallelism.

define possible composition optimisation opportunities.
Figure 3 shows how the information provided by com-

bining region definitions with the size of the dataset can re-
duce the size of the required communication between two
components, in this case the convolution and dilation com-
ponents from Figure 1. Figure 3(a) is an example of a simple
component composition communicating via an intermediate
data set. If we parallelise the components with no knowl-
edge of the components’ internals, we do not know how
much of the data each thread will need and must commu-
nicate it all. In this case the individual components would
be parallel but not their composition, as illustrated in Fig-
ure 3(b).

With full region information we can minimise the com-
munication between parallel components. For example, if
the dilation component depends also on a 3 × 3 filter then
parallelisation of the component as shown in Figure 3(c) re-
quires only half the data set, plus an additional halo strip,
to be sent from each convolution thread to its corresponding
dilation thread. As a consequence, data can be kept in more
localised, faster, memory for longer and communication is
more predictable. If ci and di both execute in the same mem-
ory region, only the halo strips would need to pass through
higher levels in the memory hierarchy.

3.3. Scalability

The component metadata in the examples are currently writ-
ten by hand. We envisage that in practice the information
will be, at least partially, obtained by component analysis
at construction time. Clearly, complicated components limit
the feasibility of analysis. By limiting the dependence infor-
mation to the input and output data structures of the compo-
nent, and assuming the contents are correct, we simplify the
run time workload, and improve scalability in that manner,
ensuring that the complexity of individual components does
not affect composition time scalability. Generation time anal-

ysis may not be possible for all components. However, the
discussed system localises analysis at construction time and,
as a result, increases the possibility of correct dependence
construction over fully general system-wide analysis of all
possible interactions.

4. CODE GENERATION

Our system supports components in various forms. In the
simplest case we use a pre-compiled binary, which is linked
at run time. Alternatively, we can compile and link a com-
ponent code at run time. Delaying compilation to run-time
offers scope for performance improvements as the compiler
may have more information about the code, or the system.

A further possibility is to generate code at run time, be-
fore compilation and linking. Earlier work such as Task-
graph [4] shows that run time code generation and compi-
lation can be effective. In this system we view both run
time code generation and compilation as a lowering from
one implementation level to another. For example, we can
lower from a high level source representation, to C++; then
through compilation of C++ to a binary. Each stage takes
a component as input, and generates a replacement com-
ponent as output, with correct lowered annotations. This
approach is flexible and conveniently supports component
caching.

We use the CLooG [2, 3] code generator to construct the
code for compilation. CLooG-based components are high-
level representations of iteration spaces, and are converted to
C++ components in the first stage of the lowering process.

COMPONENT_TARGET(difference)
{

POLYHEDRAL_LOOP(i) [i < image1_in.height();
i >= 0;] {

POLYHEDRAL_LOOP(j) [j < image1_in.width();
j >= 0;] {

image_out(x,y) = image1_in(x,y)-image2_in(x,y)
}

}
}

Listing 4. A simple polyhedral representation of the itera-
tion space of an image difference operation.

CLooG is based on the polyhedral model [1] which rep-
resents execution schedules as polyhedra in multi-dimensional
iteration spaces. CLooG’s input defines a polyhedral iter-
ation space using a set of affine half-spaces as individual
inequalities in the rows of a matrix. An example of the in-
put matrix can be seen in Figure 5(b). CLooG outputs the
code necessary for each statement to visit each integer point
within the polyhedron. CLooG does not perform depen-
dence analysis and so for ill-considered input will generate
incorrect output. As a result, our input to the code generator
must satisfy data dependencies.

42

0 1 2
0

1

for int i = 0 to 2
 b(i) = ...;
end for
for int i = 0 to 2
 ... = b(i);
end for

0 1 2
0/1

for int i = 0 to 2
 b(i) = ...;
 ... = b(i);
end for

0 1 2
0

1

for int i = 0 to 2
 b(i) = ...;
end for
for int i = 0 to 2
 ...= b(i−1)+
 b(i+1);
end for

0 1 2 3
0

1

0 1 2 3
0/1

b(0) = ...;
for int i = 1 to 2
 b(i) = ...;
 ... = b(i−2) + b(i);
end for
... = b(1) + b(3);

a − Without skew b − With skew

Original

Fused

Original

Shifted

Fused

Fig. 4. A simplified one-dimensional loop fusion example.

We generate input to CLooG from a component imple-
mentation as in Listing 4. Full analysis of C code or a binary
representation of analysed dependencies as polyhedra would
work equally well but this syntax offers us a simple basis to
work with for experimentation. We specify the execution
polyhedron of the kernel using nesting to define dimensions
and lists of inequalities to define ranges for the variables.
This inequality syntax is converted into CLooG’s input ma-
trices during the process of lowering from CLooG input to
C++. CLooG is capable of generating hundreds or thou-
sands of lines of code to cover complicated iteration spaces
which would be extremely difficult to write by hand.

5. USING METADATA FOR OPTIMISATIONS

The presence of dependence metadata on components al-
lows the manager to perform component mapping decisions
and, in addition, cross-component optimisations. In this
work we illustrate the potential by applying loop fusion (and
the enabled array contraction) to a connected subgraph of
components.

5.1. Increasing temporal locality with loop fusion

Loop fusion [5] takes two or more consecutive loops and
merges the bodies together as illustrated in Figure 4(a). Fu-
sion reduces the number of control instructions, improves
the temporal locality of data and, when fusing parallel loops,
avoids unnecessary synchronisation (albeit with the risk of
harming cache performance or instruction scheduling).

Loop dependencies can complicate fusion. In Figure 4(b)
for example, statement 1 has a forward data dependence on
the output of statement 0. These two statements from the
same iteration number of the original loops cannot execute
in the same iteration of the fused loop. The dependence
can be resolved by shifting the iteration space of the sec-
ond loop. The shift allows each loop to perform its given set
of iterations with all dependencies satisfied before the data
is required. The result of this fusion and shift (sometimes
called “shift and peel” [6]) is a guarded or partially unrolled
loop nest as in Figure 4(b), with a necessary loss of paral-
lelism at the edges.

S1

S2

S1 & S2 without shift S1 & shifted S2

eq i1 j1 i j c
0 1 0 −1 0 0
0 0 1 0 −1 0

0 1 0 −1 0 0
0 0 1 0 −1 0

eq i1 j1 i j c
0 1 0 −1 0 0
0 0 1 0 −1 0

0 1 0 −1 0 −1
0 0 1 0 −1 −1

(a) (b) (c)

S1:

S2:

S1:

S2:

Fig. 5. The scatter matrix can be used to schedule the loop
by changing the logical execution time of a given iteration.

Input and output regions defined in the metadata make
the data dependencies explicit. We know which data values
may be read or written at a given point in a component’s
iteration space, and hence can compute the shift necessary
to resolve data dependencies.

We use CLooG to generate code representing the fused
set of components. We supply the individual input matrices
that define the iteration space. We also provide a mapping
of points in the iteration space to a logical execution time,
known as the scatter matrix. As demonstrated in Figure 5,
we can specify that a point (i, j) in the iteration space (a) of
a component can be mapped to (ti, tj) in time, where either
ti = i and tj = j (b), or ti = i + 1 and tj = j + 1 (c),
shifting the schedule.

The amount of shift required depends on the dependence
relationship between two components. These relationships
are computed from the access region metadata. For exam-
ple, a 3×3 region as input to the second component requires
a shift of 1 in the iteration space of the second component
so that the output of the first is ready when it is needed. In
the general case, we need to compute the last iteration in
the source component that may generate data needed by the
matching iteration in the target component. If the depen-
dence distance is constant, we can compute a static schedule
correction. We parameterise the scatter matrix by a set of
shift values computed from the dependence relationships to
shift the logical time of the component and therefore of its
statements. With a correct scheduling defined in the scatter
matrix, CLooG will generate a series of loops that respects
the inter-component data dependencies.

Component selection for fusion depends on the flow of
data between components. Unrelated components are easy
to fuse, but unlikely to benefit from fusion. Components
that share inputs, or communicate using a intermediate data
structure, are more likely to benefit. Having analysed the
data flow in the parent component at construction time, we
can fuse the children at composition time. Calls to the sub-

43

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Size of dataset (MPix)

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Contour filter with SSE

1 thread

1 thread fused and contracted

4 threads
4 threads fused and contracted

8 threads

8 threads fused and contracted

Fig. 6. Execution time of the contour filter example.

components can be replaced with calls to stub functions that
merely prepare data structures. The execution of the fused
component can be delayed until the last subcomponent call.
As a result, the parent component itself need not change.

5.2. Reducing storage through contraction

Loop fusion reduces the period between generation and use
of intermediate data values, often leading to more efficient
use of the cache and improved performance. Array contrac-
tion offers further scope for improvements and can be a key
enabler of high performance in large parallel fused loops [7].
Rather than storing entire intermediate arrays, we reduce the
intermediate storage to the minimum required to satisfy data
flow requirements, reducing the use of memory bandwidth
due to cache displacement.

6. EXPERIMENTAL RESULTS

We implement three examples using our component frame-
work to demonstrate its capabilities and how we can im-
prove the performance of an application. These examples
possess different data flow situations and hence show varied
performance.

To enable fusion, all subcomponents are implemented in
a high-level polyhedral representation, as in Listing 4, and
have appropriate dependent region and data flow metadata
attached to describe the relationships between component
inputs and outputs.

We compile using Intel C/C++ 10.1 or GCC 4.2 (whichever
performs better) on an eight core, dual-socket Intel Xeon
based machine running a 64-bit Linux 2.6 kernel and paral-
lelise using OpenMP. The single threaded code is the unpar-
allelised, sequential version.

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

Size of matrix dimension

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Biconjugate gradient

1 thread

1 thread MKL
1 thread fused

4 thread MKL

4 thread fused
8 thread MKL

8 thread fused

Fig. 7. Comparing MKL, with custom version of biconju-
gate gradient for 1, 4 and 8 threads (custom without fusion
shown only for 1 thread).

6.1. Image processing

The contour filter (Figure 1) operates on four-component
(RGBA) data and is vectorised using SSE instructions.

The dilation subcomponent selects a maximum value in
a region of the output of the convolution subcomponent. To
allow for this dependence, the fused execution space must
shift. The execution of the elements of both the dilation and
difference are delayed by the radius of the region.

Figure 6 shows performance results for the contour fil-
ter with SSE. There is a substantial reduction in execution
time for fusion combined with contraction. Execution time
is reduced by 21% for a single thread, 35% for four threads
and 48% for eight threads. While not plotted on the graphs,
fusion alone offers 4%, 11% and 20% respectively. The im-
provement from fusion alone is slightly erratic, but tends to
decrease with data set size as the larger range of visited ad-
dresses increases the chance of an individual element being
removed from the cache. A similar effect is not seen with
the contracted data sets where the accessed address range is
reduced to a circular buffer of a few image rows in size.

6.2. Linear Algebra

Our linear algebra example is a biconjugate gradient solver
from the Iterative Template Library [8], with components
defining various aspects of the computation flow. We al-
low fusion to occur between a standard matrix/vector mul-
tiplication, and a transposed matrix/vector multiplication.
Note that in this benchmark we share input matrices between
components, rather than having data flow from one compo-
nent to another. A result of this lack of data flow is that
there is no communicated array to contract and hence this
example supports fusion only.

In this example we use 1× 1 access regions because the
execution maps a single iteration space point to a single data

44

0 1 2 3 4 5

x 10
6

0

50

100

150

200

250

300

350

400

Size of dataset

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

3D Multigrid

1 thread

1 thread fused

4 threads
4 threads fused

8 threads

8 threads fused

Fig. 8. Execution time for single and four and eight threaded
3D multigrid solver kernel.

element from each input. As the input and output vectors
are present in a single dimension only, the mapping is a pro-
jection onto that dimension.

Figure 7 graphs performance results for the fused ver-
sions of the biconjugate gradient solver as well as results for
Intel’s Math Kernel Library (MKL) [9] as a baseline with a
comparison with the original version on a single thread. We
can see that while there is an improvement in performance
over MKL for all numbers of threads, this improvement is
more pronounced for 4 and 8 threads where memory con-
tention between cores is reduced by fusion.

6.3. 3D Multigrid

Multigrid solves differential equations using a hierarchy of
discretisation levels. We adapted this example from the NAS
Parallel benchmarks suite [10] using fixed boundary con-
ditions.3 We created a sequence of dependent components
based on the core functions that iterate on the data: Data
initialisation, Interpolation from a lower resolution compu-
tation stage, Computation of residuals and Application of a
smoother to the data.

The four components are related by region and data flow
dependencies describing how a value in the iteration space
of one component relates to a value in the iteration space of
the next in sequence. We require 3 × 3 × 3 regions around
the input to the interpolation, residual and smoother appli-
cations. We make the kernel more efficient by absorbing the
inner dimension of the loop nest, allowing hand tuning of
the inner loop. Given such a kernel, our access region speci-
fies an entire row of the data set in one dimension and a 3×3
region in the other two. Note that the component manager

3In the original code the computation is complicated by a cyclic depen-
dency due to a wrap-around boundary condition. While fusion is still pos-
sible with the cyclic dependency, performance benefits are lost due to the
increased loop shift necessary to support wrapping on all three dimensions.

need not know that our tuned kernel has a carefully written
inner loop, only that it needs to access an entire row of the
data set to perform its work.

Figure 8 offers performance results for 1, 4 and 8 threads.
The improvement from fusion peaks at 4 threads where we
see a mean reduction in execution time of 12% over the
range shown. For larger data sets the performance of fusion
falls off as the amount of data maintained by the 3D com-
putation skew creates stress on the cache and other shared
data structures of the CPU. The peak at 4 threads is simi-
larly explained because the L2 cache is shared between pairs
of cores, reducing the effective cache size per core when 8
threads are used.

7. RELATED WORK

Adaptive component models have been widely studied, for
example in embedded systems (e.g. see [11]), as well as
more generally in distributed systems (e.g. [12]). Dowling
and Cahill [13] offer a useful framework, emphasising the
importance of separating adaptational from computational
code. Recent work on the Common Component Architec-
ture (CCA) looks at composing, substituting and reconfigur-
ing components during application execution [14].

Our component composition builds on work on Archi-
tecture Description Languages (ADLs) such as Darwin [15]
and xADL [16], and is similar to Think [17]. Our work dif-
fers from other ADLs in its support for indexed dependence
metadata, that denotes dependence relationships for individ-
ual iteration space points.

CLooG arises from Bastoul’s work [3] and builds on ear-
lier work on code generation in the polyhedral model by
Griebl and Wetzel [1]. Griebl [18] applies the polyhedral
model to parallelisation of loop nests while recent work by
Pop et al. [19] looks at integrating polyhedron based analy-
sis into GCC.

This paper is an attempt to realise the THEMIS [20] pro-
posal and is part of a larger body of work including the Task-
graph [4] library, related work from Cornwall [7] and active
libraries in linear algebra from Russell [21].

ZPL [22] (a precursor of Chapel [23]) and KeLP [24]
(which led to Chombo [25]) had explicit regions - in fact
a “region calculus”. However their regions represent parti-
tions of iteration and data spaces - whereas in this work we
represent the mapping between points in the iteration space
and memory locations.

Languages like StreamIt [26] use the concept of sequences
of data items, called streams, which are operated on by pure
functions, called filters. Clear (and often static) data-flow re-
lationships between filters enable cross-component optimi-
sations. In contrast, our framework enables cross-component
optimisations for general programs operating on arbitrary
data sets.

45

8. CONCLUSIONS AND FUTURE WORK

We have shown how interfaces with indexed dependence
metadata can be used to improve the performance of com-
ponent compositions. Our experimental results show that
metadata can be used to perform aggressive component fu-
sion, generating hundreds of lines of code (200-300 in the
contour filter and over 1500 for the multigrid example) that
would be challenging to implement by hand. We have also
confirmed that loop fusion can substantially reduce execu-
tion time through improvements in temporal locality of data.

The THEMIS proposal discusses more possibilities for
metadata than we have been able to implement to date. In
the future we hope to proceed further with this investigation,
particularly in the area of applying cross-component optimi-
sation techniques to data layout by adding metadata annota-
tions describing the access patterns for data. More varied
access descriptors and tighter integration into the program-
ming language using C++ pragmas or compiler support for
iterator classes are other targets.

The multigrid example shows that in some cases fusion
gives only a small benefit. In these cases we plan to use
adaptive component mapping to use the original components
rather than fused sets when a fusion attempt reduces perfor-
mance. Optimal combinations may include calls to vendor
libraries wrapped in components, as used in the MKL com-
parison for the linear algebra example.

Novel architectures such as heterogeneous multicore plat-
forms require novel optimisation strategies. Hand coding
is often impractical. We envisage that adaptive, metadata-
driven optimisation techniques will be of increasing rele-
vance as technology develops.

9. REFERENCES

[1] M. Griebl, C. Lengauer, and S. Wetzel, Code generation in
the polytope model, Proc. PACT, IEEE Comp. Soc., 1998.

[2] CLooG, http://www.cloog.org/.

[3] C. Bastoul, Code generation in the polyhedral model is easier
than you think, Proc. PACT, IEEE Comp. Soc., 2004.

[4] O. Beckmann, A. Houghton, P. H. J. Kelly, and M. Mel-
lor, Run-time code generation in C++ as a foundation for
domain-specific optimisation, Proc. Domain-Specific Pro-
gram Generation International Seminar, 2003.

[5] K. Kennedy and K. S. McKinley, Maximizing loop paral-
lelism and improving data locality via loop fusion and dis-
tribution, Proc. LCPC, Springer, 1994.

[6] N. Manjikian and T. S. Abdelrahman, Fusion of loops for
parallelism and locality, IEEE Trans. Parallel Distrib. Sys.

[7] J. L. T. Cornwall, P. H. J. Kelly, P. Parsonage, and B. Nico-
letti, Explicit dependence metadata in an active visual effects
library, Proc. LCPC, Springer, 2007.

[8] A. Lumsdaine, L.-Q. Lee, and J. Siek. Iterative template
library, http://www.osl.iu.edu/research/itl/, 2001.

[9] Intel. Math Kernel Library, 2008

[10] B. L. Chamberlain, S. J. Deitz, and L. Snyder, A comparative
study of the NAS MG benchmark across parallel languages
and architectures, Proc. SC, IEEE Comp. Soc., 2000.

[11] H. Ma, I.-L. Yen, F. Bastani, and K. Cooper, Composition
analysis of QoS properties for adaptive integration of embed-
ded software components, Proc. ISSRE, 2003.

[12] L. Baresi, S. Guinea, and G. Tamburrelli, Towards decentral-
ized self-adaptive component-based systems, Proc. SEAMS,
ACM, 2008.

[13] J. Dowling and V. Cahill, The k-component architecture
meta-model for self-adaptive software, Proc. of the Third In-
ternational Conference on Metalevel Architectures and Sepa-
ration of Crosscutting Concerns, Springer, 2001.

[14] L. C. McInnes et al, Computational quality of service for
scientific CCA applications: Composition, substitution, and
reconfiguration, Argonne Nat. Lab., Tech. Rep. 2006

[15] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, Specifying
distributed software architectures, Proc. European Software
Engineering Conference, Springer, 1995.

[16] E. Dashofy, A. van der Hoek, and R. Taylor, A highly-
extensible, XML-based architecture description language,
Software Architecture, 2001.

[17] A. E. Özcan, O. Layaida, and J.-B. Stefani, A component-
based approach for MPSoC SW design: Experience with OS
customization for H.264 decoding, ESTImedia, IEEE Comp.
Soc., 2005.

[18] M. Griebl, Automatic Parallelization of Loop Programs for
Distributed Memory Architectures, Habilitation Thesis, Uni-
versity of Passau, 2004

[19] S. Pop, G.-A. Silber, A. Cohen, C. Bastoul, S. Girbal, and
N. Vasilache, GRAPHITE: Polyhedral analyses and opti-
mizations for GCC, Proc. GCC Summit, 2006.

[20] P. Kelly, O. Beckmann, A. J. Field, and S. Baden,
THEMIS: Component dependence metadata in adaptive
parallel computations, Parallel Processing Letters, 2001

[21] F. P. Russell, M. R. Mellor, P. H. J. Kelly, and O. Beckmann,
An active linear algebra library using delayed evaluation and
runtime code generation, Proc. LCSD, 2006.

[22] B. L. Chamberlain, E. C. Lewis, C. Lin, and L. Snyder,
Regions: an abstraction for expressing array computation,
SIGAPL APL Quote Quad, 1998.

[23] B. Chamberlain, D. Callahan, and H. Zima, Parallel pro-
grammability and the chapel language, Int. J. High Perf.
Comp. Appl., 1997.

[24] S. J. Fink, S. B. Baden, and S. R. Kohn, Efficient run-time
support for irregular block-structured applications, J. Paral-
lel Distrib. Comp., 1998

[25] P. Colella et al. Performance and scaling of locally-structured
grid methods for partial differential equations, SciDAC 2007
Annual Meeting.

[26] W. Thies, M. Karczmarek, and S. Amarasinghe, StreamIt: A
Language for Streaming Applications, Proc. Compiler Con-
struction, Springer, 2002.

46

Accelerating Stencil-Based Computations by Increased Temporal
Locality on Modern Multi- and Many-Core Architectures∗

Matthias Christen1

m.christen@unibas.ch

Olaf Schenk1

olaf.schenk@unibas.ch

Peter Messmer2
messmer@txcorp.com

Esra Neufeld3

neufeld@itis.ethz.ch

Helmar Burkhart1
helmar.burkhart@unibas.ch

Abstract—Stencil computations arise in a wide range of appli-
cations of computational sciences. This paper focuses on stencil
computations arising in the context of a biomedical simulation.
Compute-intensive bio-medical simulations represent an attrac-
tive application for the Cell Broadband Engine Architecture
(CBEA) and for graphics processing units (GPUs) as hardware
accelerators. Due to the low arithmetic intensity of stencil com-
putations and bandwidth limitations of the compute hardware,
the performance is usually only a fraction of peak performance.
We detail an implementation of parallel stencil computations on
the CBEA and GPUs, which improves performance by exploiting
temporal locality. We report on performance improvements over
CPU implementations.

Index Terms—Stencil computation, Cell processor, GPGPU,
parallel programming, performance measurement, biomedical
simulation

I. INTRODUCTION

Stencil computations arise in a wide range of applications
of computational sciences. A main application of stencil-based
computations are numerical PDE solvers that use a finite
difference or multigrid method [7], where stencil computa-
tions are typically performed in the smoothing step. Image
processing is another field in which stencils play a major
role. In stencil-based computations, each node in a multi-
dimensional grid is updated with weighted values contributed
by neighboring nodes.

Novel microarchitectures such as the the Cell Broadband
Engine Architecture and alternative hardware, such as GPUs,
have become of interest to the scientific computing commu-
nity. While commodity GPUs are available at very low prices,
they nevertheless deliver amazing computational power. Both
the Cell BE and GPUs outperform commodity desktop CPUs
by an order of magnitude. Both architectures are inherently
parallel.

In this paper a specific stencil type is considered, arising
in a biomedical simulation for hyperthermia cancer treatment.
The simulation is ported to the Cell BE, a GPU system, and
a CPU cluster. On the cluster MPI is used for parallelization.
In an ongoing work, the code is also used to parallelize for

∗ This work was supported by the Swiss National Science Foundation under
grant 200021−117745/1 and by an IBM Faculty Award on “Modeling,
Simulation and Optimization in Hyperthermia Cancer Treatment Plan-
ning”

1 High Performance and Web Computing Group, Dept. Computer Science,
University of Basel, Switzerland

2 Tech-X Corporation, Boulder CO, USA
3 IT’IS Foundation, ETH Zurich, Switzerland

a Cell BE cluster. Algorithms are discussed that are used to
boost performance.

In [5] and [17], optimizations for stencil computations are
discussed and benchmarks of the code running on state-of-
the-art microprocessors including the Cell BE processor are
presented. In this work, in contrast to [5] and [17], a more
versatile stencil stemming from a real-world application is
considered, which entails additional challenges. In particular,
a lot more data has to be transferred per calculation. Also, this
work adds a GPU version of the stencil computation, and the
code could be run on a CPU or Cell BE cluster using MPI for
parallelization.

II. STENCIL AND APPLICATION

The stencil considered in this paper is a 7-point stencil of
the form

u
(n+1)
ijk = (1)cijk

(
u

(n)
ijk

)2

+(2) cijku
(n)
ijk +(3) cijk+

(4)cijku
(n)
i+1,j,k +(5) cijku

(n)
i−1,j,k+

(6)cijku
(n)
i,j+1,k +(7) cijku

(n)
i,j−1,k+

(8)cijku
(n)
i,j,k+1 +(9) cijku

(n)
i,j,k−1

(n = 0, 1, 2, . . .)

(1)

with coefficients (`)cijk, ` = 1, 2, . . . , 9, which are constant
in time, but not constant in space. The upper indices (n),
(n+1) indicate the time step, while i, j, k are the spatial grid
coordinates.

This type of stencil arises in the Finite Volume discretization
of Penne’s “Bioheat” equation [11], the parabolic PDE

ρCp
∂T

∂t
= ∇ · (k ∇T)− ρbωbCb(T − Tb) +

σ

2
‖E‖2 (2)

used to model the temperature distribution T within (a part of)
the human body. The simulation based on this equation is an
essential part of hyperthermia cancer treatment planning [10].
In this treatment, the tumor is heated up to approximately
41◦C, which makes it more susceptible to both radio and
chemo therapies. In fact, heat is the most powerful sensi-
tizer known to date [16]. Therefore, it is usually used as a
complementary therapy. The heating process is done using
non-ionizing radiation (microwaves). The aim is to create a
constructive interference at the tumor location while avoiding
hot-spots in the healthy tissue to minimize tissue damage. In
equation (2), E models the electric field, ρ, Cp, k, ω, σ stand
for physical material properties, the index b denotes a blood
property.

47

III. HARDWARE ARCHITECTURES

The stencil code has been implemented on different archi-
tectures, which are briefly described in this section before
detailing some of the algorithms that have been applied to
improve performance.

A. The STI Cell BE Processor

The Cell BE was designed in a joint effort of Sony, Toshiba,
and IBM. The novel processor is the core of Sony’s Playstation
3, but it is also used as a high performance computing solution
in IBM’s Cell BE Blades.

The Cell BE’s approach to achieving the high performance
with a theoretical peak at 230 single precision GFlop/s is,
contrary to the approach of recent CPUs, to provide eight
specialized compute workhorses (“Synergistic Processing El-
ements”, SPEs) that are controlled by a PowerPC processor,
the PPE. The SPEs are composed of a “Synergistic Processing
Unit” (SPU), which is a simple dual-issue, statically scheduled
SIMD core, a local memory (“local store”), and the memory
flow controller (MFC).

Both the PPE and the SPEs are simple processors in the
sense that they are in-order RISC processors with a fixed-width
instruction format. Forgoing branch prediction and out-of-
order logic means freeing silicon space in favor of transistors
dedicated to computation.

Each SPE contains 128 SIMD registers of 128 bits width.
This means that a register could contain four single precision
floating point data elements or two double precision data
elements. Operands are always 128 bit words. Operations are
therefore carried out in SIMD fashion. Depending on the
datatype the SPEs perform 2-way, 4-way or 8-way SIMD
operations.

Running at 3.2 GHz and supporting a fused multiply-
add operation, the SPE’s theoretical single precision peak
performance is 4 units · 2 Ops/unit · 3.2 GHz = 25.6 GFlop/s
or 12.8 GFlop/s for double precision. (Note that the first
generation of Cell BE chips only reached 1.8 GFlop/s double
precision performance because the corresponding operations
requiring 13 cycles would stall the 7-stage pipelined SPE for
6 cycles.)

While the PPE features a conventional cache hierarchy, there
aren’t any caches on the SPEs, and each SPUs can only access
the data residing within its 256 KB of local memory, i.e. it
is not possible to access main memory directly from an SPE.
The memory flow controller provides coherent data transfers
between the main memory and the local memories, or between
the local stores of the individual SPEs. Memory accesses
have to be done by explicit DMA commands. The DMA
transfers work asynchronously. Thus the access latencies can
(and should) be hidden by computation. In fact, each SPE has
two instruction pipelines for calculation and I/O commands,
respectively.

On chip, the data is transferred over the “element inter-
connect bus”, which provides high communication bandwidth
with a peak of 204.8 GB/s. The bus is organized in a
ring structure; it consists of 4 data rings, 2 rings running

clockwise, and 2 rings running counterclockwise. The element
interconnect bus is the network connecting the SPEs and also
the interface to main memory providing a bandwidth of 25.6
GB/s.

B. NVIDIA’s GeForce 8800/Tesla Computing Solution

With the G80 series, NVIDIA has launched a product
line of GPUs that could be easily used for general purpose
computation (GPGPU). The Tesla S870 computing system
used for our benchmarks consists of four GeForce 8800 GTX
GPUs and is endowed with 6 GB of DDR3 RAM (1.5 GB
on-board per GPU).

The GeForce 8800 GTX GPUs feature 8 texture processor
clusters, each containing 2 so-called “streaming multiproces-
sors”, which are in fact 8-way SIMD units. In other words,
there are 128 scalar arithmetic units. Each multi-processor is
endowed with a small amount of on-chip local memory, which,
with a size of 16 KB, is even smaller than the local store of the
Cell BE. However, there is a large register file containing 8192
registers for each multi-processor. The bandwidth to the on-
board DRAM is as high as 86 GB/s, while the access latencies
are in the range of hundreds of cycles. To hide the latencies,
the GPU is designed to potentially run millions of threads. In
contrast to CPU threads, GPU threads are very lightweight,
and context switching is virtually free.

The GPUs run at a clock speed of 1.35 GHz. A
fused multiply-add operation is supported, thus the theo-
retical single-precision peak performance of the Tesla sys-
tem is 4 GPUs · 128 ALUs/GPU · 2 Ops/ALU · 1.35 GHz =
1382.4 GFlop/s. (Note that the system supports only single
precision operations. However, with the new Tesla C1060 and
Tesla S1070 models, NVIDIA has made 64-bit precision GPU
systems available.)

In parallel to the hardware, a language, CUDA [9], or
rather a programming model and API, has been developed
by NVIDIA that abstracts the graphics hardware. Its purpose
it to serve as a general purpose programming language for
GPUs. As a language, CUDA is a slight extension of ANSI
C. The GPU is invoked by executing a “kernel” function that
is run by potentially thousands of GPU threads in parallel.

IV. ALGORITHMIC CONSIDERATIONS FOR THE CELL BE

An essential prerequisite for maximizing performance is
to avoid stalls of the computation units that are caused by
waiting for input data on which the computation is executed.
Ideally, the data movement would occur concurrently with
the computation, i.e. data transfer latencies are hidden with
computation.

On an architecture with explicitly managed memory such as
the Cell BE, double or multibuffering is a common technique
to achieve this [1]. Conceptually, two or more data buffers are
used; one set of buffers is receiving data while on another set
the computation is performed.

Unfortunately, for stencil codes, if implemented in the ob-
vious manner, the arithmetic intensity (i.e. the Flop per trans-
ferred byte ratio) is so low that double buffering alone does not

48

result in a well-performing code. Clearly, the performance of
such a code is bandwidth-limited. In order to increase the Flop
per byte ratio the structure of the algorithm has to be modified.
We use blocking in the temporal dimension, i.e. the data is kept
in local memory as long as possible for re-use. This is done in
an explicit manner (as opposed to a cache-oblivious method
[6]), since the amount of available memory is known and no
further data structure is needed for bookkeeping.

To calculate an upper bound for the performance if no
time blocking is used, we could assume that the entire grid
of solution values is loaded simultaneously into the local
memory. This means that per grid point we have to load one
solution value, while the neighbor solution values are assumed
to be readily available, and 9 coefficients for the stencil
considered here. After the computation, one data element is
written back to main memory. The stencil considered carries
out 16 floating point operations per grid point. As the Cell BE
could provide 25.6 GB/s of bandwidth to main memory, for
single precision data we could expect at most

Pmax ≤ 25.6 GB/s · 16 Flop
(1 + 9 + 1) · 4 B

= 9.31 GFlop/s.

A. Spatial Blocking

The local stores of the SPUs are too small to hold all the
buffers required for real-world problems. Therefore, the data
must be partitioned into smaller chunks that fit into local
memory. The way of decomposing the data that allows for
maximum data reuse is depicted in Fig. 1. The data cube is
split into planes along the x axis. Each plane is subdivided
into panels along the y axis. As in [5], we decided not to split
the data in z direction, which is the unit stride direction. This
simplifies data transfers because contiguous chunks of data
could be loaded from main memory.

The algorithm proceeds panelwise in x direction before the
neighboring panel in y direction is selected. This allows to
reuse previously loaded input data: in order to compute the
stencil on the inner points of a panel, three input panels are
required, namely the current panel as well as the panels in
front of and behind the current panel are required. Therefore,
when proceeding to the next panel in x direction, two of the
panels could be reused while the data in the first of the three
panels is discarded. If the y direction were prioritized over the
x direction only one line of data could be reused.

Since we allow non-constant coefficients in space, panels
of coefficient data have also to be loaded. Note that, since
the result value u

(n+1)
ijk depends on its nearest neighbors, each

panel of solution input data must contain two extra lines to
the left and to the right. However, the coefficients are required
only on the inner grid points.

Another advantage of this decomposition scheme is suitabil-
ity for parallelization. Domain decomposition cuts along the
x and y axis are straight forward to implement. Cutting along
the z axis is neglected. We have found that cutting only along
the x axis yields the best performance.

Fig. 1. Spatial decomposition of the data for the Cell BE. The arrow indicates
the direction in which the data is processed.

B. SIMDization

In order to take full advantage of the Cell BE’s compu-
tational power, the code must be vectorized. The SPUs are
SIMD units that operate on 128 bit registers and therefore
could carry out 4 single precision or 2 double precision floating
point operations at once.

For the stencil code, this implies that four values in unit
stride direction, i.e. along the z axis, are calculated at once.
However, since SIMD operations are restricted to input data
elements that are a multiple of 128 bit apart, the data has to be
re-aligned so that the operation u′i,j,k ← αui,j,k−1 +βui,j,k+1

could be performed. The spu shuffle intrinsic is used to do
that. It allows to arbitrarily “mix” two adjacent 128 bit vectors
byte by byte.

Since the use of the shuffle operation introduces a potential
computation bottleneck, it is only applied when absolutely
necessary: in non-unit stride directions it could be avoided
by adding paddings so that the number of grid nodes in y and
z direction becomes divisible by 4.

C. Double Buffering

The decomposition method and the choice to process the
panels in x direction in the inner loop, suggests a double
buffering scheme. Besides the three buffers of panel data that
are used for calculation, a fourth buffer is needed in which the
data for the following computation is preloaded. The handling
of the coefficients follow the regular double buffering scheme:
there are two sets of coefficient buffers, one being used for the
current calculation while the other set receives the data being
preloaded.

This could be viewed as a pipeline, which is depicted
in 2. The pipeline time proceeds along the horizontal axis.
The arrows indicate data dependencies. In the first step, the
coefficients used to calculate panel 1 are loaded (“ld c1”),
together with the input data on the panels 0, 1, and 2 (“ld
u

(0)
0 ”, “ld u

(0)
1 ”, “ld u

(0)
2 ”). (The super-index (0) indicates

that the data concerned is the zero-th timestep of the current
iteration.)

In the next step the second coefficient set c2 and the third
panel of input data is preloaded into additional buffers because

49

Fig. 2. The double buffering pipeline. “ld u
(0)
i ” means that the 0th timestep (i.e. the initial values) of panel i is loaded, “ax u

(1)
n ” stands for the computation

of the data in panel i (“assess u
(1)
n ”), while “wr u

(1)
i ” denotes writing back of the result to main memory. The arrows indicate data dependencies.

c1 and the buffers used for u
(0)
0 , u

(0)
1 , u

(0)
2 are still in use

as indicated by the arrows ending at “ax u
(1)
1 ”. This box

symbolizes that the first timestep of panel 1 is calculated,
which is done simultaneously while loading, i.e. computation
and I/O is overlapped.

In the third pipeline step the pipeline has reached its full
state. Data is loaded and computed as before. Additionally, the
data computed in the previous step could be written back to
main memory (“wr u

(1)
1 ”) simultanously with the computation

of u
(1)
2 .

When the last panels in x direction are reached, the pipeline
again requires two steps to drain. Note that in the last step used
to write back the solution data of the last computed panel
the input and coefficient data for the next panel block in y
direction could already be preloaded.

D. Temporal Blocking

The pipeline described above could be extended so that in
each pipeline step multiple stencil timesteps are performed.
This allows to reuse computed data for a further stencil
iteration in the same pipeline step without having to write
the intermediate data back to main memory. This, of course,
is only feasible if none or not all of the intermediate results
are of interest. This method, referred to as “circular queue”
[5] dramatically reduces memory traffic. However, the local
memory requirements increase because data (computed data
and coefficients) have to be kept in local memory for several
pipeline steps.

Fig. 3 shows the filling phase of the pipeline. For clarity,
the loading of the coefficients has been omitted in the dia-
grams. The diagrams demonstrate 3-stage time blocking as an
example, i.e. per iteration 3 stencil applications are performed.

As in the double buffering case, 3 panels (along with the first
set of coefficients) need to be loaded until the first calculation
step could be performed, which could be overlapped with the
data transfer loading the fourth panel (and the second set of
coefficients). In the third step the calculation result u

(1)
2 is

used to calculate the second timestep on the first panel u
(2)
1 .

Fig. 3. The filling phase of the time blocking pipeline

The diagrams are “wirings” for PDEs with Dirichlet boundary
conditions. Hence, the required inputs for u

(2)
1 are u

(1)
0 = u

(0)
0 ,

u
(1)
1 , u

(1)
2 .

Note that the first write back occurs only in the 5th pipeline
step in Fig. 4, or in the (B + 2)nd step, respectively, if B is
the “time blocking factor”, the number of stencil applications
per iteration.

Also note that double buffering is in fact a special case of
the circular queue method for temporal blocking with B = 1.

For B-stage temporal blocking, 3(B+1) buffers are required
to hold the solution data as could be seen in a step of the
pipeline’s working phase:

• one buffer has to hold the panel preload data u
(0)
i+2,

• 3 buffers are required as input data to compute the first
timestep in the sequence, i.e. the first stencil application
on the input data, u

(0)
i−1, u

(0)
i , u

(0)
i+1,

• Each of the B−1 following timesteps require one buffer
to which the result is written, u

(t)
i−t+1, t = 1, 2, . . . , B−1,

as well as two buffers u
(t)
i−t−1, u

(t)
i−t needed to compute

the next timestep in the next pipeline step,
• In the last timestep only two buffers are required, one that

receives the data from the current calculation u
(B)
i−B+1 and

one for u
(B)
i−B serving as source for the write-back to main

memory.
For the non-constant coefficient stencil in addition to the

solution buffers the coefficient buffers are required. Since the

50

Fig. 4. The working phase of the time blocking pipeline

Fig. 5. Panels holding solution data and number of lines per panel. The
trapezoid shape is caused by the data dependencies symbolized be the small
arrows to the left.

Fig. 6. The draining phase of the time blocking pipeline

computation of timestep t lags behind in space by t panels, B
sets of coefficients are required, and an additional one used to
preload the coefficients for the next pipeline step.

Note however, that, because of the data dependencies, the
panel sizes vary. The number of computable lines is reduced
by 2 per blocked timestep. Let m be the number of inner lines
in the last timestep B of a phase. Then the panels assigned
to timestep B − 1 must hold m + 2 lines, etc. m + 2B lines
are required for the coefficient panels. This is shown in Fig.
5. Hence,

4(m + 2B) + 3
B−1∑

i=1

(m + 2i) + 2m +

+9(B + 1) (m + 2(B − 1))
= 12(B + 1)m + 21B2 + 5B − 18

lines are required to be stored simultaneously in the local store.
Let nx, ny , nz be the number of inner nodes in the

respective direction. If the maximum number of lines fitting
into the local store is C (which, of course, is dependent on
the line length, C = bZ/nzc if Z is the available local store
space), m is limited from above by

m ≤ C − 21B2 − 5B + 18
12(B + 1)

.

Note that the coefficients constitute a large part of the data.
If the coefficients are constant in space, as many as m ≤
C−3B2−5B

3(B+1) inner lines per panel could be used, i.e. 7/4 times
more than in the non-constant case.

The major drawback of the circular queue method is the
fact that redundant computation is performed, which increases
with increasing B (the “steps” at the panel boundaries in
Fig. 5 are computed several times). To minimize redundant
computation the number of lines m should be therefore as
large as possible. Specifically, 1

2 (Ny − 1)B(B + 1)nxnz

redundant stencil computations are performed per pipeline
step, where Ny := dny/me is the number of panels along
the y axis. As opposed to this, nxnynzB stencil computations
are actually required.

The arithmetic intensity is roughly 16B
44 Flop/B since per

pipeline step B stencil applications are performed, each con-
tributing 16 Flops per grid node. At the same time (1 + 9) · 4
Bytes are loaded for solution data and coefficient and 4 Bytes
are written per grid node. So the performance is bounded by

Pmax ≤ 25.6 GB/s · 16B Flop
44 B

.

For B = 3, for which we achieved best performance, e.g.,
Pmax ≤ 27.9 GFlop/s. Note that this calculation doesn’t count
the redundant stencil computations. The real performance will
decrease with increasing number of redundant calculations.

E. Loop Unrolling

Formulating equation (1) as a sequence of fused multiply-
adds (fmas) results in a long and skinny arithmetic expression
tree, which means that the result of the previous computation
is required to proceed with the next computation. On the Cell
BE, fma has a 6 cycle latency, thus many stalls are incurred.

For the temporally blocked codes less bandwidth is required,
so it is essential to remove these stalls in order to get good
performance. This could be done with loop unrolling: several
of the arithmetic expression trees are interleaved so that
register loads and stores and arithmetic evaluations could occur
in parallel (the SPUs feature two instruction pipelines to allow
this; the “even” pipeline handles arithmetic operations, and the
“odd” pipeline I/O-specific instructions).

V. PARALLELIZING WITH MPI

In order to solve large-scale problems fast, we have par-
allelized the code with MPI. Essentially the same MPI code

51

could be used for both traditional CPU clusters and Cell Blade
clusters. Only the stencil kernel code has to be substituted for
the respective architecture.

Algorithm 1
1: for number of iterations do
2: {send boundaries}
3: for all neighbors do
4: MPI Irecv (recv buf)
5: copy boundaries to send buf
6: MPI Isend (send buf)
7: end for
8: compute stencil
9: {process boundaries}

10: while (id = MPI Waitany) 6= UNDEFINED do
11: for i on boundary do
12: result[i] ← result[i] + coeff[i, id] · recv buf[i′]
13: end for
14: end while
15: end for

The MPI code handles the domain decomposition and
boundary data communication. The latter is implemented in a
way that allows overlapping communication with computation
[15] as shown in Algorithm 1. This procedure is executed in
parallel by each of the MPI processes. The domain could be
decomposed along all of the three axes. Each MPI process is
assigned one of the subdomains.

In the first phase (lines 2 to 7) the boundary values are
prepared for sending. The values are copied to a special
send buffer because they will be modified in the second,
the compute phase. A non-blocking receive (MPI_Irecv) is
pre-posted that will receive the data transmitted by the non-
blocking MPI_Isend command (of another process). After
the compute phase, the processes are synchronized by waiting
for the boundary data of any of the neighboring processes (line
10).

In order for the stencil code from the sequential CPU or the
Cell version to be used without modifications, each subdomain
must be endued with a layer of ghost nodes at the boundary
that is initialized with zero values. If a stencil is evaluated at
the subdomain boundary, the contribution in the direction of
the boundary is cut off. It is added in the boundary processing
phase in line 12. Note, however, that the temporally blocked
version requires extra handling of the boundaries.

VI. GPU IMPLEMENTATION

So far, the GPU version of the stencil code has been imple-
mented in a straight-forward manner without any algorithmic
optimizations. Nevertheless, quite satisfactory performance
results are obtained.

The domain is decomposed in x direction to share the
workload among the GPUs. All the data within a subdomain
are then copied to the respective GPU and kept there until
all required stencil iterations have been performed. Between
two iterations the subdomain boundary is exchanged similarly

as in the MPI case by copying it back to the CPU system
and distributing it to the neighboring GPUs (as there is no
possibility for inter-GPU data communication).

The stencil sweep itself is then computed by one thread
per grid point. To access the values on the neighboring grid
points, textures are used instead of accessing global memory
directly, because texture memory is cached. This is a major
performance benefit.

VII. EXPERIMENTAL PERFORMANCE RESULTS

The performance benchmarks have been carried out on an
IBM Blade Center QS22 operating two Cell BE chips (16
SPUs in total) and on an NVIDIA Tesla S870 GPU system.
Note that we only present single precision results here.

Additionally, for comparison, a “traditional” system has
also been used. For the MPI benchmarks, we used a cluster
powered by Intel Xeon X5355 Clovertown quad-core CPUs
running at 2.66 GHz and equipped with 2 × 4 MB of L2
cache. The fully buffered DIMM technology allows up to 21
GB/s of bandwidth. Some OpenMP-parallelized benchmarks
of the sequential reference implementation have been carried
out on the Intel Clovertown dual quad-core SMP machine for
comparison with the Cell BE. In Fig. 7 the theoretical peak
performances for single precision operations of the machines
used are listed. The bandwidth lists the bandwidth available
to the main memory, in case of the GPU to the CPU system,
which is limited by the data rate of the PCIexpress bus. The
bandwidth to the 1.5 GB of on-card memory however is a lot
larger (86 GB/s).

All the codes have been compiled using the GNU C
compiler, except for the GPU codes, which require a special
compiler.

A. Cell BE vs. CPU Performance

As seen in Fig. 8, the stencil code running on a Cell BE
blade displays a linear speedup up to 4 SPUs. When using
more SPUs the bandwidth requirements exceed the available
bandwidth causing the SPUs to stall. The left figure shows the
performances of the non-time blocked version. Using 3-stage
time blocking, the performance could be roughly doubled,
while the scaling behavior is preserved as shown in the right
bar chart. Since in the current implementation, the domain
is not decomposed in z direction, the algorithm performs
better for for small z dimensions, because more panel lines
could fit into the local store and hence decrease redundant
computations. For problem sizes with small z dimension, an
absolute performance of 4.1 GFlop/s on 1 SPU and 20 GFlop/s
on 16 SPUs was observed.

The performance of the CPU version is shown in the top
left portion of Fig. 8. Note that this code, other than using
the -O3 compiler flag, hasn’t been optimized. Datta et al.
have shown in [5] that for Intel processors (Itanium 2), for
the stencil with constant coefficients a speedup of ≈ 1.7×
over the naı̈ve implementation could be obtained when using
time skewing, which is another method for temporal blocking.

52

Architecture Sockets / Cores Performance/core Performance/socket Overall performance Bandwidth
Intel Clovertown X5355 1 · 4 18.66 GFlop/s 74.64 GFlop/s 74.64 GFlop/s 21 GB/s
IBM QS22 2 · 8 25.6 GFlop/s 204.8 GFlop/s 409.6 GFlop/s 52.2 GB/s
NVIDIA S870 4 · 128 2.7 GFlop/s 345.6 GFlop/s 1382.4 GFlop/s 16 GB/s

Fig. 7. Theoretical peak performances of the architectures used to perform the benchmarks

0 8 0 8 0 81. 1 1. 2 1 . 21 . 6 2. 0 2. 02. 2 2 . 0 2. 0
0. 8 0. 8 0. 8 1 0. 4 16 . 6 9 5 12 . 3

2 2 . 5
1 3 . 1 1 1 . 7 1 5 . 8

2 6 . 6
1 0. 4 4. 5 3 . 69 . 5

6. 4 6. 6 6. 26. 7 8. 9 8 . 15 . 9 6. 3
9 . 9

1 . 7 1 . 7 1 . 63 . 4 3 . 4 3 . 1 8 11 1. 4 1 0. 8 1 4. 21 1. 2 1 1. 5 17 . 01 1. 1 9. 6
2 0. 7

3. 7 4. 0 4. 16. 8 7 . 2 8. 1

Fig. 8. Results of the performance benchmarks on the architectures used

The number suggest that we have a per core speedup (1
CPU core — 1 SPU) of 3× and a per processor speedup (1
Cell BE processor — 1 Intel Clovertown X5355) of 6×.

B. GPU Performance

The performance achieved on the Tesla S870 GPU comput-
ing solution is shown in the top row to the right in Fig. 8. The
large problem (5123 grid points) displays a good performance
of 22 GFlop/s on 2 GPUs (there was not enough memory
to run the problem on a single GPU). This result has been
obtained without any algorithmic optimization. GPU-specific
code optimizations have been applied, though. The figure
shows almost linear speedup when going from 1 GPU to 2
GPUs. The transition from 2 to 4 GPUs results in a slowdown
due to limited bandwidth.

C. MPI Results

The MPI code has been run on a CPU cluster. The code
scales very well up to 128 processes on the CPU architec-
ture. The figure demonstrates perfect scaling with up to 32
processes, which is due to the fact that the machine has 32
nodes. For up to 32 processes, only one core per node was
used. For 64 and 128 processes, 2 and 4 cores per node were

Fig. 9. Performance benchmark results on the CPU cluster. Parallelization
was done using MPI.

used, resulting in increased network traffic, incurring a relative
performance decrease.

VIII. RELATED WORK

Stencil performance on the Cell BE processor has been
benchmarked in [17] and [5]. Using temporal blocking, per-
formances of up to 65 GFlop/s for single precision stencil

53

computations are reported. The stencils considered are, how-
ever, somewhat simpler: the coefficients are kept constant both
in time and space, which allocates more of the bandwidth and
local store memory for the solution values.

Temporal blocking and tiling algorithms for stencil compu-
tations have been investigated and described in [6], [8], [12],
[13], [14], [7], [18].

In [4], [3] GPUs are explored as accelerators for a computa-
tional fluid dynamics simulation. The method used to compute
the simulation translate to stencil computations. Speedups of
29× (in 2D) and 16× (in 3D), respectively, over the Fortran
reference implementation running on an Intel Core 2 Duo 2.33
GHz CPU are reported.

IX. CONCLUSION AND FUTURE WORK

Stencil-based methods constitute an important class of nu-
merical methods [2]. Unfortunately, the low arithmetic inten-
sity for most stencil applications result in poor performance
that is far from the machine’s peak performance. On the Cell
BE, the available bandwidth is the limiting factor if the stencil
is implemented in the obvious way. Therefore, algorithmic
optimizations must be applied to exploit the Cell BE’s com-
putational power. The same holds true for GPUs, although the
high on-board bandwidth allows decent performance.

We have detailed a method of temporal blocking, to improve
performance by considering the data locality. Other methods
of temporal blocking have been proposed; the one chosen is
easily parallelizable and naturally extends the double buffering
scheme. So far, on a dual quad-core Intel Clovertown X5355
(8 cores) a performance of 2 GFlop/s was reached. On a Cell
blade (16 SPUs) 22 GFlop/s could be measured while a single
GeForce 8800GTX GPU provided 7.8 GFlop/s.

Adapting the MPI code to run on a Cell BE cluster is work
in progress. Other blocking methods for both the Cell BE and
GPUs will be investigated in the hope that a performance-
wise more efficient method will be found. It is also planned to
extend to prototypes to a framework supporting more general
stencils.

ACKNOWLEDGMENTS

The authors like to thank Hema Reddy from IBM, Austin,
for her support and the IBM Systems and Technology Group,
Poughkeepsie, New York for providing access to their Cell
BE cluster and for their support. The authors also acknowledge
Georgia Institute of Technology, its Sony-Toshiba-IBM Center
of Competence, and the National Science Foundation, for the
use of Cell Broadband Engine resources that have contributed
to this research. Finally, we would also like to thank Philip
Lüscher, Master student at the Computer Science Department,
for porting the code to CUDA.

REFERENCES

[1] Abraham Arevalo, Ricardo M. Matinata, Maharaja Pandian, Eitan Peri,
Kurtis Ruby, Francois Thomas, and Chris Almond. Programming the
Cell Broadband Engine

TM
Architecture: Examples and Best Practices.

http://www.redbooks.ibm.com/redbooks/pdfs/sg247575.pdf, checked in
08/2008.

[2] Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph J. Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William L. Plishker, John
Shalf, Samuel W. Williams, and Katherine A. Yelick. The landscape of
parallel computing research: a view from Berkeley. Technical Report
UCB/EECS-2006-183, Electrical Engineering and Computer Sciences,
University of California at Berkeley, December 2006.

[3] Tobias Brandvik and Graham Pullan. Acceleration of a 3D Euler solver
using commodity graphics hardware. In In Proc. of 46th AIAA Aerospace
Sciences Meeting and Exhibit, 7-10 Jan 2008, Reno, Nevada, USA. In
Press.

[4] Tobias Brandvik and Graham Pullan. Acceleration of a two-dimensional
Euler flow solver using commodity graphics hardware. Proceedings of
the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, 221(12):1745 – 1748, 2007.

[5] Kaushik Datta, Shoabib Kamil, Samuel Williams, Leonid Oliker, John
Shalf, and Katherine Yelick. Optimization and Performance Modeling
of Stencil Computations on Modern Microprocessors. SIAM Review,
2008. To appear.

[6] Matteo Frigo and Volker Strumpen. Cache oblivious stencil compu-
tations. In ICS ’05: Proceedings of the 19th annual international
conference on Supercomputing, pages 361–366, New York, NY, USA,
2005. ACM.

[7] Markus Kowarschik, Christian Weiβ, Wolfgang Karl, and Ulrich Rüde.
Cache-aware multigrid methods for solving Poisson’s equation in two
dimensions. Computing, 64(4):381–399, 2000.

[8] Zhiyuan Li and Yonghong Song. Automatic tiling of iterative stencil
loops. ACM Trans. Program. Lang. Syst., 26(6):975–1028, 2004.

[9] NVIDIA. NVIDIA CUDA Compute Uni-
fied Device Architecture – Programming Guide.
http://developer.download.nvidia.com/compute/cuda/2.0-
Beta2/docs/Programming Guide 2.0beta2.pdf, Checked in 08/2008.

[10] M. M. Paulides, J. F. Bakker, E. Neufeld, J. van der Zee, P. P. Jansen,
P. C. Levendag, and G. C. van Rhoon. The HYPERcollar: A novel
applicator for hyperthermia in the head and neck . International Journal
of Hyperthermia, 23:567 – 576, 2007.

[11] Harry H. Pennes. Analysis of Tissue and Arterial Blood Temperatures
in the Resting Human Forearm. J Appl Physiol, 1(2):93–122, 1948.

[12] Gabriel Rivera and Chau wen Tseng. Tiling optimizations for 3D
scientific computations. In In Proceedings of SC’00, 2000.

[13] Sriram Sellappa and Siddhartha Chatterjee. Cache-Efficient Multigrid
Algorithms. Lecture Notes in Computer Science, 2073:107–116, 2001.

[14] Yonghong Song and Zhiyuan Li. A compiler framework for tiling
imperfectly-nested loops. In In Proc. of 12th International Workshop
on Languages and Compilers for Parallel Computing, (LCPC99, pages
185–200. Springer-Verlag, 1999.

[15] Volker Strumpen and Thomas L. Casavant. Exploiting communication
latency hiding for parallel network computing: Model and analysis. In
Proc. PDS’94, pages 622–627. IEEE, 1994.

[16] J. van der Zee. Heating the patient: a promising approach? Ann Oncol,
13(8):1173–1184, 2002.

[17] Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry
Husbands, and Katherine Yelick. Scientific computing Kernels on the
cell processor. Int. J. Parallel Program., 35(3):263–298, 2007.

[18] David Wonnacott. Time skewing for parallel computers. In Proceedings
of the Twelfth Workshop on Languages and Compilers for Parallel
Computing, pages 477–480. Springer-Verlag, 1999.

54

Fast Cache Miss Estimation of Loop Nests using

Independent Cluster Sampling

Kamal Sharma, Sanjeev Aggarwal, Mainak Chaudhuri, Sumit Ganguly
Computer Science and Engineering Department,

Indian Institute of Technology Kanpur, India
{kamals,ska,mainakc,sganguly}@iitk.ac.in

Abstract—We introduce independent cluster sampling, a
compile-time sampling technique applied to the iteration space of
perfectly nested loops for estimating the number of cache misses
experienced by the loop body. In this study, we squarely focus on
dense array accesses in nested loops and present statistical error
analysis of our approach and detailed experiments on a number
of popular loop kernels drawn from dense linear algebra and the
SPEC95 suite executing on a range of cache organizations dif-
fering in capacity, associativity, and block size. The experimental
results show that in most cases we achieve much better cache
miss estimates compared to other popular sampling techniques
that work on full cache access traces. Since our technique does
not require full cache access tracing or profiling, it speedsup the
estimation process by more than a factor of hundred on complex
loops compared to full cache simulations. Further, we show how
our cluster sampling technique, when integrated in a compiler
pass, can be directly applied to drive loop optimizations such as
loop permutation and tile size determination.

Index Terms—Performance measurement, memory hierarchy,
cache miss estimation, iteration space sampling, loop optimiza-
tion.

I. I NTRODUCTION

DRAM latency continues to be the most prominent bot-
tleneck in server, desktop, and mobile computing systems. A
large number of memory hierarchy optimization techniques
has been proposed for loop nests. The analytical techniques
like integer liner programming methods, linear Diophantine
equations and first order logic formulation for estimating the
number of cache misses in a loop nest. Full-scale profiling
and trace-driven cache simulation techniques are also usedfor
optimizing large complex programs. However, this technique
often turns out to be ineffective for highly associative caches
either due to significant complexity of the logic formulas or
due to time consuming nature to have a full profile run.

In this paper, we introduce a source-level independent
cluster sampling technique for fast estimation of the number of
cache misses. As a first step to demonstrate its effectiveness,
we focus on perfectly nested loops with dense array accesses.
The technique draws clusters of consecutive samples from the
dynamic iteration space of the loop. Each sample is an array
access coming from the loop body. By sampling a cluster
of consecutive dynamic accesses our technique accounts for
spatial locality (if any) in the loop body. Multiple such sampled
clusters try to capture the temporal locality in the access
stream. While speeding up the estimation process by more
than two orders of magnitude compared to full cache trace
profiling on complex loops, our technique offers excellent

cache miss estimates for extremely large datasets across a
large number cache organizations differing in capacity, block
size, and associativity. We compare our technique against four
previously proposed sampling techniques that draw samples
from a full trace of cache accesses. The most attractive
aspect of our technique is that it does not require the full
access trace and can be easily integrated into a compiler pass.
To demonstrate the usefulness of this technique, we show
that it can be successfully applied to identify the optimal
permutation of a loop nest (leading to subsequent generation of
the necessary unimodular transformation) and to determinethe
tile size of a tile-transformed loop as a part of the compilation
process itself.

In the next section, we discuss the related work. Section II
presents some background terminology and formalizes some
of the assumptions. Section III outlines our independent cluster
sampling approach. A mathematical analysis for our approach
is given in Section IV, which identifies the key parameters and
offers an estimation error bound of our approach. Section V
discusses detailed experimental results on several important
loop kernels drawn from linear algebra and the SPEC95 suite.
We conclude in Section VI.

A. Related Work

There have been numerous techniques proposed for cache
miss estimation. We broadly classify these into three cate-
gories, namely, analytical methods, sampling, and full simu-
lation.

Analytical methods: Prior research in this area deals with
the precision in calculating cache miss behavior. The concept
of cache miss equations (CME) was introduced by Ghosh
et al. [9]. This technique used linear Diophantine equations
to calculate the number of cache misses. First order logic
formulas in the form of Presburger arithmetic were used
by Chatterjee et al. [4] to count the exact number of cache
misses in loop nests. Both these methods use affine references
for modeling cache misses. As the loop bounds and cache as-
sociativity increase, these approaches become unusable due to
the complexity of the equations. These constraints are avoided
in our independent cluster sampling algorithm. However, the
cluster sampling scheme does not give the exact estimates of
the number of cache misses.

The proposal by Fraguela et al. [7] creates probabilistic
equations based on the data reuse between the references.
This scheme uses probability factor for affine references to

55

approximate the misses. An added benefit that this work offers
is to estimate the number of cache misses without knowing the
base addresses of the data structures. However, the problems
of affine references and error range bound persist.

The systems proposed by Vera et al. [18] and Vera and Xue
[17] use simple sampling techniques in conjunction with cache
miss equations (CME) to estimate the number of cache misses
of whole programs. The complexity of generating numerical
expressions for the data references still remains. This is in
contrast to the ease of using our scheme. However, in this
work we focus on loop nests only, and leave the extension to
handle whole programs to future work.

Sampling: Most of the studies in this domain use memory
access traces for estimating the cache miss ratios. All of
the proposed schemes require full execution of the program.
Collecting traces of large programs becomes a time-consuming
task. These techniques are normally used for architectural
studies.

The concept of set sampling on memory traces was intro-
duced by Laha et al. [12]. The work used the sets where a
past access was present in a cluster of references.

A theoretical bound on unknown references (first reference
to a cache set) that are present in a cluster of references
was proposed by Wood et al. [20]. The unknown references
were estimated as misses using the life time of the known
reference cache sets. To avoid errors, Kessler [11] proposed
to always use trace samples large enough to fill half the cache
sets. Our model ignores the unknown references and considers
only full sets similar to the method introduced by Laha et al.
[12]. However, our scheme does not require entire program
execution to collect sampled traces.

Another proposal by Fu and Patel [8] to avoid the unknown
references is to simulate certain percentage of instructions as
cache warmup and use the rest of the references to predict the
cache behavior.

Techniques proposed by John W. Haskins and Skadron [10]
try to reduce the amount of warmup references. Choosing the
appropriate sample length is important for accuracy and it
depends on the kind of stream generated by the application.
Eeckhout et al. [6] try to solve this problem by determining
the optimal sample length. However, it requires one complete
pass over the benchmark.

To avoid storing the entire trace, checkpointing techniques
over the trace are introduced by Wunderlich et al. [21]. The
proposal by Wenisch et al. [19] further optimizes the storage
space of the checkpoint library by using a reduced set of states
in the simulation window. Nevertheless, storing the statesstill
requires a large amount of storage.

Other approaches use representative phases of the entire
program to summarize the execution behavior. SimPoint, in-
troduced by Perelman et al. [14], is one such tool, which
partitions the program into phases based on basic block
behavior by profiling.

In contrast with all these techniques, our scheme does not
require any profiling of the application.

Full Simulation: Cascaval and Padua [3] developed a stack
histogram scheme for estimating the number of cache misses.
An entire pass is made on the data for a fully associative cache

and then approximate estimates are made for set-associative
caches. However, the scheme tends to produce large errors as
the associativity increases beyond two.

These approaches are time-consuming. Our method offers
significant advantage over these schemes in terms of the time
required to carry out the estimation process.

II. A SSUMPTIONS ANDBACKGROUND TERMINOLOGY

In this work, we consider perfectly nested loops with
dense array accesses. The array sizes and the loop bounds
are assumed to be known in advance. Further, the iteration
space is assumed to be lexicographically ascending with unit
step (standard transformations are available for converting
any ascending iteration space to have unit step). Each array
in a program is assumed to be allocated contiguously in
virtual memory (this is true for statically allocated arrays
and often true for dynamically allocated arrays). We consider
only virtually indexed caches in this work (this holds true
for the L1 caches in all high-end microprocessors today).
An LRU replacement policy is assumed throughout for cache
replacement.

A. Array Reference Mapping

For each array reference, we can define a mapping function
that generates a <set value, wrap value> pair. The set value
denotes the set number of the cache which the reference
maps to (notice that the generation of this value assumes the
knowledge of the cache indexing function). The wrap value is
the number of times the array has wrapped around the cache
leading to the current reference. In each program we assign
some serial order of allocation to the arrays and assume thatan
array starts at set 0 of wrapw, where the previous array in the
allocation order ends within wrapw − 1. Notice that the <set
value, wrap value> pair uniquely defines an array reference
relative to a particular cache topology, given the startingwrap
value of the array.

As discussed in Parker [13], the mapping function can
choose row-major or column-major reference pattern based
on the programming language. We choose the former as C
programs are considered in this work.

B. Cache Miss Classification

In this work, we adopt a simple approach of classifying
the cache misses into two categories, namely, cold misses
and interior misses. Cold misses occur when a cache set is
accessed for the first time (see Ghosh et al. [9]). Interior misses
occur due to conflicts and capacity limitations in cache (see
Chatterjee et al. [4]). An access to an already occupied cache
set results in an interior miss if the currently held block and
the accessed block are different.

III. I NDEPENDENTCLUSTER SAMPLING

ALGORITHM(ICS)

Sampling is widely used to succinctly capture some property
of a large population. However, cache miss estimation cannot

56

be directly transformed into a simple sampling problem be-
cause the probability of a reference causing a cache miss is
inherently dependent on the past cache references which define
the current cache contents. To take into account this temporal
effect, we employ ICS for counting cache misses. In ICS, the
samples are picked from a number of (temporally) localized
regions in the population.

Each array reference in the program gets translated into a
pair (s,e)wheres is the set number ande is wrap value based
on the mapping function. A miss is generated in a direct-
mapped cache when two references have the same set value but
different wrap values. In the case of a K-way set-associative
cache, a cache miss occurs when the current wrap value is not
present in the latest distinct K references to a particular cache
set.

In our model, instead of looking at the whole stream of(s,e)
pairs, subsequences of this stream are sampled for counting
misses. These subsequences will be referred to as clusters or
blocks (not to be confused with cache blocks).

A. Direct Mapped Cache Algorithm

The cache miss estimation algorithm takes as input a
sequenceSTR of references of the form(s, e), where,s ∈ S
is a cache set value ande is a wrap value. The setS is the
set of all cache set values. Each pair inSTR is assigned a
unique index in the temporal order of its appearance. The
substreamSTRs0 defined by a given set values0 ∈ S is
the subsequence of references of the form(s0, ∗). A segment
of the substreamSTRs is a maximal contiguous sequence of
occurrences inSTRs, all of which have the samee-value. A
segment is represented as[a, b], wherea is the starting index
of the segment inSTR andb is the final index of the segment in
STR. The number of misses forSTRs is defined as the number
of segments inSTRs and is denoted asMs. Our goal is to
estimate

M =
∑

s∈S

Ms = sum of misses over all cache sets.

Let C be a parameter which will be used to denote the
cluster size. Assume that the length of the sequencem of
references is known. Pick a random positionu uniformly from
from 1, . . . , m. Consider the random subsequenceB of length
l = min(C, m − u + 1) starting atu. Define the following
random variable, for each cache sets in a direct-mapped cache.

Xs =
∑

[a,b] is a non-first segment fors in Bs

[a,b] preceded by[a′,b′]∈Bs

m

C − (a− b′)

The final estimate is

X =
∑

cache-sets

Xs .

Thus, Xs considers each segment[a, b] that is not the first
segment corresponding to cache sets in Bs. If [a′, b′] is its
preceding segment inBs, a contribution of m

C−(a−b′) is added
towards[a, b].

For cache sets, denote byM ′
s,C the number of seg-

ments[a, b] in the substreamSTRs, such that its immediately

preceding segment (for the same cache set)[a′, b′] satisfies
a− b′ < C. Let

M ′
C =

∑

s

M ′
s,C .

The above algorithm counts 0 for any segment whose pre-
ceding segment is at a distance ofC or larger from it. The
algorithm producesM ′

C as the final estimate.

B. Set Associative Cache Algorithm

Consider the sequence of accesses of all elements that
map to the same cache set. For a given memory addressa,
an LRU-segment segment fora is an interval[i, j] of the
sequence, such that the positioni corresponds toa being
loaded in the cache andj corresponds to an eviction of the
item from the cache orj is the end of the sequence. Thus,
[i, j] represents one of the lifetimes ofa in the cache.

Property 1.Suppose positioni is occupied by addressa.
Then,i is the start of anLRU-segment iff the firstk distinct oc-
currences of items prior to positioni do not includea. Define
f(i) as follows. Supposei is occupied bya. Going backwards
from i, look at the firstk distinct occurrences of addresses
prior to positioni. If a does not belong to thesek addresses,
then, i is the start position of anLRU-segment andf(i) is
the address of thekth distinct occurrence backwards fromi.
Otherwise,i is not the start position of anLRU-segment and
f(i) is undefined.

If the sequence of references[f(i), i] belongs to the sampled
cluster, then,i is correctly discovered as the start of an
LRU-segment and otherwise it is not.

Let C be the length of a cluster block andm be the
length of the entire address sequence (trace) across all cache
sets. Supposei is the starting point of anLRU-segment. The
probability thati is discovered as the start of anLRU-segment
is that the segment[f(i), i] lies wholly in the cluster, which
is,

C − (i− f(i) + 1)
m− C + 1

.

The probability is 0 ifC < (i− f(i) + 1).
a) Algorithm.: Choose a random starting positions be-

tween 1 andm − C + 1 with equal probability and consider
the cluster defined by[s, s + C − 1]. For eachLRU-segment
[i, j] such thatf(i) lies within the cluster, form the estimate
as follows.

Y =
∑

LRU-segment[i,j]∈ cluster
f(i)∈cluster

m− C + 1
C − (i− f(i) + 1)

Finally, form t independent estimatesY1, . . . , Yt and return
their average (or median of averages).This is the final estimate
for the cache misses.

C. Complete Algorithm

The above algorithm presented count the corresponding
misses for a given cluster of references. For a given stream,
the miss distance between the sets may be too large. Thus, it
is more rational to count the hits and misses of sets rather

57

than counting only misses. The same algorithm is used to
count the hits. The final estimate of the misses is based on
the corresponding proportion of hits/misses occurring in the
cluster. Algorithm 1 presents the complete algorithm.

Algorithm 1 ICS Algorithm
1: count_hit← 0 , count_miss← 0
2: hit_bound← 0 , miss_bound← 0
3: for clusters from 1to nu do
4: for all reference <s,e> of clusterdo
5: Update_cache(reference)
6: if reference is hit then
7: updateM ′

s,H

8: count_hit++
9: hit_bound← hit_bound+

check_hit_bound(reference)
10: else if reference is missthen
11: updateM ′

s,C

12: count_miss++
13: miss_bound← miss_bound+

check_miss_bound(reference)
14: end if
15: end for
16: calculateM ′

C , M ′
H

17: Reset_Cache()
18: end for
19: M ′

Cavg
← avg(M ′

C1 , ..., M
′
Cnu

)
20: M ′

Havg
← avg(M ′

H1 , ..., M
′
Hnu

)
21: if count_hit> count_miss then
22: miss_estimate←m−M ′

Havg

23: else
24: miss_estimate←M ′

Cavg

25: end if
26: if hit_bound> 0.9*nu*C then
27: miss_estimate←M ′

Cavg

28: end if
29: if miss_bound> 0.9*nu*C then
30: miss_estimate←m−M ′

Havg

31: end if
32: return miss_estimate

Steps 3 to 18 perform the basic counting of the hits/misses
for the clusters in the stream. Based on the proportion of
the hit/misses counted, appropriate miss estimation is pro-
vided (lines 21 - 25). The miss estimate for the counted
hits is provided by subtracting the stream sizem with the
hits. Conditions in lines 26 - 31 are inserted to contain the
upper bound errors as discussed in Lemma 2. The function
check_(hit/miss)_bound returns a1 if the corresponding dis-
tance between previous and current reference is1, else it
returns0.

D. Applying the Algorithm

Figure 1 depicts a diagrammatic representation of the algo-
rithm.

m1

a’ b ’ a b

S e t x S e t x

Fig. 1. Working of ICS

Each box represents a cluster of sizeC. The starting position
of a cluster is randomly chosen. There arenu such clusters
sampled from the stream. We count the misses in each cluster
using the technique discussed in the last section. The cache
state is reset before the start of each cluster. Finally, an
average is taken over the sampled clusters. Let us consider the
following simple stream of(s,e): (2,1) (2,1) (2,1) (6,5) (7,8)
(5,4) (2,3) (2,3). While counting misses for set 2 in a direct-
mapped cache,(2,1) is the first segment. Thus, for reference
(2,3) , [a′, b′] = [1, 3] and [a, b] = [7, 8]. The miss for set 2 is
calculated as m

(C−4) .
For selecting the starting points of the clusters, one method

is to pick random pairs from the stream and then sort them
by their temporal order. However, this would consume time
equivalent to sorting. Instead, we employ the method presented
in [2] to generate sorted random numbers on the fly.

By looking at the above algorithm, one may get an im-
pression that an entire pass over the program is necessary to
collect the cache miss statistics. The uniqueness of our method
is that it avoids full tracing or profiling. We implement the
sampling technique in the compiler pass itself. Consider a
perfectly nested loop of depthd with the kth loop having
lower and upper bounds oflk and uk, respectively. Let all
the array references be part of the inner-most loop body and
let there bet statements in the loop body. Thekth statement
containsrk distinct array references (notice that two references
to the same array are considered distinct if they access different
elements of the array). We define the order of references
within a statement to be from right to left. The compiler
first generates a stream of <set value, wrap value> of length∏d−1

p=0(up − lp)
∑t−1

q=0 rq, with each dynamic array reference
representing one tuple. Nextnu clusters each of lengthC are
sampled from this stream. Finally, for each cluster, the cache
miss count is estimated using the already discussed technique.
We show the cache miss estimation process with the help of
a C-like pseudocode for matrix-matrix multiplication.

// C - Cluster Size
// ITER_PTS - number of clusters(nu) in the

stream
t1 = Random_sorted(ITER_PTS,ITER_SPACE);
for(it = t1.next() ; it != -1 ; it = t1.next())
{
for(l = it ; l <= (it + C) ; l++)
{

Map_iteration(l)->(i,j,k,reference)
Update_cache(reference,i,j,k)

}
Reset_cache();

}

ITER_SPACE refers to the entire stream of references
and t1 is the set of sampled clusters with each cluster
containing C consecutive <set value, wrap value> pairs.
Map_iteration(l) maps each pair back to the unique
array reference in the source loop, which is then used to
determine if this reference results in a miss by looking up a
simulated cache. Note that the simulated cache is invalidated
at the end of each cluster.

IV. M ATHEMATICAL VALIDATION

In this section, we analyze the mean and variance of the
random variableX defined in the last section and derive the

58

relative error in the estimate for a direct-mapped cache. The
analysis for a set-associative cache is similar.

Lemma 1:E [X] = M ′
C − |S|.

Proof: SupposeR = [a, b] is a segment corresponding
to a cache sets such thatR is not the first segment in the
global stream fors.Recall that|S| is the size of the cache set.
Define an indicator variableyw which is 1 provided eitherR
or some prefix ofw is not the first segment corresponding to
s in the random blockB and if the preceding segment ofR,
say R′ = [a′, b′], is at a distance of less thanC. Define the
set of segments

denses,C = {[a, b] is a segment fors |
its preceding segment is[a′, b′] anda− b′ < C}

Then,

Xs =
∑

[a,b]∈denses,C

m

C − (a− b′)
yw

where,b′ is the closing index of the previous segment of[a, b]
of cache sets. Thus,

E [Xs] =
∑

[a,b]∈denses,C

1 =
∣∣denses,C

∣∣ = M ′
s,C − 1

where, the−1 appears since the algorithm always misses
counting the first segment. Adding over all thes’s gives the
statement of the lemma.

There are two parameters here, namely, the distance be-
tween successive segments for a cache set and the lengthC of
block size. Both are set toC. However, the length of successive
segments can be set toαC, for some constant 0< α < 1,
say α = 0.75. The algorithm slightly changes as follows: if
b′ − a > αC, we count 0 instead of the scaled expression. In
this case, the expectation becomes

E [Xs] = M ′
αC − |S| .

Next, we compute the variance ofX . Define the statisticG
as follows. In the following, for any segment[a, b] ∈ denses,D,
let b′ denote the ending point of the immediately previous
segment for the same cache sets.

Gα,C =
∑ {

m(C − (max(a1, a2)−min(b′1, b
′
2)))

(C − (a1 − b′1))(C − (a2 − b′2))

∣∣∣∣
[a1, b1] ∈ dense(s1, αC)
and [a2, b2] ∈ dense(s2, αC)

and max(a1, a2)−min(b′1, b
′
2) < C

}

Note that the sum is taken over segments[a1, b1] and [a2, b2]
of arbitrary cache set pairss1, s2, such that (i) the end point
b′1 of the predecessor segment of[a1, b1] is within a distance
of αC from a (and analogously for the end-pointb′2 of the
predecessor segment of[a2, b2]), and, (ii) C is large enough
so that there exists a block of lengthC to include b′1 and
a1, and, b′2 and a2. The latter is equivalent to saying that
C > max(a1, a2)−min(b′1, b

′
2).

Lemma 2:Var
[
X
]
≤ Gα,C .

Proof: We will calculateE
[
X2
]
.

E
[
X2
]

= E

(∑

s

∑

[a,b]∈denses,αC

m

C − (a− b′)
y[a,b]

)2

The calculation ofG is exactly the above expectation.
Let X1, X2, . . . , Xr denoter independent estimations ofX .
Consider the average estimatorX̄ = 1

r (X1 + . . . + Xr). By
Chebychev’s inequality, the error is the following

Pr

{
|X̄ − (M ′

αC − |S|)| <
(

8Gα,C

r

)1/2
}

>
7
8

Thus, the error isO((Gα,C/r)1/2).

Gα,C ≤
∑

[a,b]∈denses,αC

m

C − (b′ − a)
(# segments[a1, b1]

s.t. a1 ≤ a andb′1 ≥ a− C + 1)

For a fixed segment[a, b] ∈ denses,αC , the number of
segments[a1, b1] s.t. a1 ≤ a and b′1 ≥ a − C + 1 is at most
C − 1. The upper bound is attained when each segment is of
size 1 in the intervala− C + 1 until a. Therefore,

Gα,C ≤
∑

[a,b]∈denses,αC

m

C − (b′ − a)
(C − 1)

≤
∑

[a,b]∈denses,αC

m

(1− α)C
(C − 1)

=
m(C − 1)
(1− α)C

(M ′
αC − |S|) < mM ′

αC/(1− α) .

Relative error is given byǫ =
1

M ′
αC − |S|

(
8Gα,C

r

)1/2

<

(
8mM ′

αC

r(M ′
αC − |S|)2(1− α)

)1/2

≈ O

(√
m√

M ′
αCr(1 − α)

)

Space requirement forǫ-accuracy is

O

(
mC

ǫ2M ′2
αC(1− α)

)
, 0 < α < 1 .

V. EXPERIMENTAL VALIDATION

In this section, we present detailed experimental results that
validate our cache miss estimation technique across a number
of cache organizations with varying capacity, associativity, and
block size. We measure the relative error of our technique
against full cache simulation of a number of important micro-
kernels and dominant loops drawn from dense linear algebra
and the SPEC95 benchmark suite. In the following, we show
the results for matrix-matrix multiplication, a five-pointed sys-
tem, 3-D stencil, the loop kernel 140 of101.tomcatv (from
SPEC95), and the nested loop of depth three inPSINV sub-
routine of107.mgrid (from SPEC95). Since our technique
relies on known loop bounds, in107.mgrid we used 2000
as the value ofN, which is passed toPSINV as a parameter.
We have created our own cache measurement infrastrucutre to
measure the cache misses. This was necessary to observe the

59

necessary behaviour of interior misses over arrays employed
by our ICS method.

Along with the relative error of our technique, we also
present the relative errors of four major sampling techniques
namely All References [5],Primed Method [12], Half Warmup
Method [8] andStitch Method [1]have been proposed in the
past with the similar goal of reducing the time overhead of
the estimation process. All these four techniques first generate
a full cache access trace and then sample random clusters
from this trace. For more information, the readers should refer
to Uhlig and Mudge [15] and Yi et al. [22].

We also show how our technique can be successfully applied
to identify the optimal loop permutation in a loop nest (leading
to the generation of the corresponding unimodular transforma-
tion) and to quickly determine the optimal tile size in a tile-
transformed loop. We close this section with a discussion on
the speedup achieved by our estimation technique compared
to full cache simulation.

A. Relative Estimation Errors on Loop Kernels

We start the discussion of the results by presenting the
relative errors of our estimation technique and the other four
methods discussed above for the different loop nests running
on a 4-way set associative cache with block size of 32 bytes.
We consider three cache sizes, namely, 16 KB, 512 KB,
and 1 MB. In all the experiments, the number of sampled
clusters (nu) is kept fixed at 300.

1) Matrix-matrix Multiplication: A matrix of size4096×
4096 is chosen for this experiment. Figure 2 shows the relative
errors of our ICS method and the four previously proposed
schemes. Each plot shows how the relative error varies with
the cluster size for a particular cache size. For 16 KB cache,
all methods except thePrimedmethod deliver error rate below
1% for cluster size higher than1000. Interestingly, as the cache
size increases, only thePrimed method seems to perform
better. However, with a significant increase in cluster size,
relative error rate of ICS decreases to about 0.1%. A point
worth noting is that the ICS method tends to perform better
across all three cache sizes compared to any other single
method.

2) Five-pointed System:Five-pointed systems are very pop-
ular in iterative solvers where a weighted average of the
neighbors of a point is taken as the new value of the point
at the end of the current iteration. We show a representative
five-pointed kernel below. We use 40 thousand as the value of
N in our measurements.

The evaluation across different schemes is presented in
Figure 3. Our ICS technique offers error rates below 0.1%,
and as already pointed out, the cluster sizes required to achieve
this error rate increase significantly in large caches. However,
for 1 MB Cache, all techniques except ICS have a significantly
high error rate of about 100% even for larger cluster sizes.

3) 3-D Stencil: 3-D stencils are often used in applications
like fluid dynamics, heat transfer, etc. This experiment is
carried out on the loop structure described in Veldhuizen [16].
We useN = 4000. Figure 4 shows the relative errors in
estimation.

The relative errors of ICS andHalf warmupare around 0.1%
to 1% for 16 KB cache. As cache size increases to 512 KB
and 1 MB, the ICS approach converges to less than 0.1% error
for cluster sizes above35000. A fact worth noting is that none
of the other techniques have such low error rates for higher
cache sizes.

4) Tomcatv:The estimation results for the selected loop of
tomcatv are shown in Figure 5. All the techniques tend to
stabilize around 1% error rate as the cluster size is increased.

5) Mgrid: Figure 6 shows the relative error rates of dif-
ferent estimation schemes for the selected loop ofmgrid.
For all cache sizes theAll referencesmethod delivers a 100%
error rate. Sincemgrid has a very large working set, this
method ends up over-estimating due to scaled up cold misses.
For Primed method, the situation is reverse, it underestimate
because of lesser full sets. Our ICS method tends to stabilize
around 1% error as we increase the cache size.Half warmup
andStitchalso offer similar error rates.

B. Effect of Associativity and Block Size

Figure 7 shows the relative error rates of our ICS technique
on the 3-D stencil kernel as the associativity is varied from
direct-mapped to 8-way. The cache block size is kept fixed
at 32 bytes. The results reveal that error rates seems to
increase as we move from direct-mapped to 8-way. However,
the convergence pattern remains the same due to the nature of
references.

Next, we explore the impact of varying the cache block
size. Figure 8 shows the relative errors of our ICS technique
on the matrix-matrix multiplication kernel for a 512 KB 4-
way set associative cache and on the selected loop kernel of
tomcatv for a 512 KB direct-mapped cache as the cache
block size is varied. We find that while increasing the block
size from 32 bytes to 128 bytes lowers the estimation error for
matrix-matrix multiplication, there is almost no effect ofblock
size on the estimation error intomcatv. The reduction in
estimation error with increasing block size for regular kernels
like matrix-matrix multiplication can be explained by the fact
that increasing block size decreases the number of cache sets.
As a result, the number of cold misses decreases leading to
better estimation.

C. Application to Loop Optimization

In this section, we show that our ICS technique can be
applied to two different kinds of loop optimization. In the
first experiment, we use our technique to decide that the
ikj permutation of the matrix-matrix multiplication loop nest
offers the best cache performance. In the second experiment,
we show that our technique can correctly decide the optimal
tile size for a tile-transformed matrix-matrix multiplication
kernel. Both the experiments are carried out for4096× 4096
matrices on a 512 KB 4-way set associative cache with 32-
byte block size. Figure 9 presents these results. For the loop
permutation experiment, we plot the number of cache misses
estimated by our technique for each of the six permutations
normalized to theijk permutation as a function of the cluster
size. It is very encouraging to note that our technique correctly

60

 0.001

 0.01

 0.1

 1

 10

 100

 500 1000 1500 2000

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

Cluster Sampling
Half Warmup

All References
Primed

Stich

 0.001

 0.01

 0.1

 1

 10

 100

 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

Cluster Sampling
Half Warmup

All References
Primed

Stich

 0.001

 0.01

 0.1

 1

 10

 100

 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

Cluster Sampling
Half Warmup

All References
Primed

Stich

Fig. 2. Comparison of different estimation schemes for a4096 × 4096 matrix-matrix multiplication on a 4-way set associative cache with capacity (a)
16 KB, (b) 512 KB, (c) 1 MB.

 0.001

 0.01

 0.1

 1

 10

 100

 200 400 600 800 1000 1200 1400 1600 1800

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

Cluster Sampling
Half Warmup

All References
Primed

Stich

 0.001

 0.01

 0.1

 1

 10

 100

 500 1000 1500 2000 2500 3000 3500 4000 4500

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

Cluster Sampling
Half Warmup

All References
Primed

Stich

 0.001

 0.01

 0.1

 1

 10

 100

 190000 200000 210000 220000 230000 240000

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

Cluster Sampling
Half Warmup

All References
Primed

Stich

Fig. 3. Comparison of different estimation schemes for a five-pointed system running on a 4-way set associative cache of capacity (a) 16 KB, (b) 512 KB
(c) 1 MB.

 0.001

 0.01

 0.1

 1

 10

 100

 500 1000 1500 2000

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

Cluster Sampling
Half Warmup

All References
Primed

Stich

 0.001

 0.01

 0.1

 1

 10

 100

 30000 35000 40000 45000

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

Cluster Sampling
Half Warmup

All References
Primed

Stich

 0.001

 0.01

 0.1

 1

 10

 100

 25000 30000 35000 40000 45000

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

Cluster Sampling
Half Warmup

All References
Primed

Stich

Fig. 4. Comparison of different estimation schemes for a 3-Dstencil running on a 4-way set associative cache of capacity(a) 16 KB, (b) 512 KB, (c) 1 MB.

 0.001

 0.01

 0.1

 1

 10

 100

 200 400 600 800 1000 1200 1400 1600 1800

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

Cluster Sampling
Half Warmup

All References
Primed

Stich

 0.001

 0.01

 0.1

 1

 10

 100

 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

Cluster Sampling
Half Warmup

All References
Primed

Stich

 0.001

 0.01

 0.1

 1

 10

 100

 5000 10000 15000 20000 25000 30000 35000

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

Cluster Sampling
Half Warmup

All References
Primed

Stich

Fig. 5. Comparison of different estimation schemes for the loop kernel 140 oftomcatv running on a 4-way set associative cache of capacity (a) 16 KB,
(b) 512 KB, (c) 1 MB.

identifies thejki and kji permutations to be much worse
than theijk permutation. It also correctly ranks thejik
permutation to be worse than theijk permutation. In the
figure, ikj andkij have a small factor of difference, with
former being better. Finally,ikj permutation is best ranked
amongst other permutations. For the tile size experiment, we
show the estimated number of cache misses for tile sizes 4,
8, 16, 32, 128, and 256 normalized to no tiling. For the given
cache organization, one can verify that, indeed, the 8×8 tile
is the optimal one. Our ICS technique correctly identifies

this optimal size. It is important to note that a full cache
simulation to decide the optimal tile size would take much
longer compared to our sampling algorithm. It is not at all
difficult to envision a compiler pass that not only tiles a loop
nest, but also runs our sampling algorithm to generate the tiled
loop with the optimal tile size embedded.

D. Estimation Speedup

Finally, before closing this section, we present the speedup
achieved by our estimation scheme compared to full cache

61

 0.001

 0.01

 0.1

 1

 10

 100

 500 1000 1500 2000 2500 3000 3500 4000 4500

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

Cluster Sampling
Half Warmup

All References
Primed

Stich

 0.001

 0.01

 0.1

 1

 10

 100

 500 1000 1500 2000 2500 3000 3500 4000 4500

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

Cluster Sampling
Half Warmup

All References
Primed

Stich

 0.001

 0.01

 0.1

 1

 10

 100

 5000 10000 15000 20000

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

Cluster Sampling
Half Warmup

All References
Primed

Stich

Fig. 6. Comparison of different estimation schemes for the loop kernel inPSINV subroutine ofmgrid running on a 4-way set associative cache of capacity
(a) 16 KB, (b) 512 KB, (c) 1 MB.

 0.001

 0.01

 0.1

 1

 10

 100

 2000 4000 6000 8000 10000 12000 14000

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

1-way
2-way
4-way
8-way

 0.001

 0.01

 0.1

 1

 10

 100

 30000 35000 40000 45000

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

1-way
2-way
4-way
8-way

 0.001

 0.01

 0.1

 1

 10

 100

 25000 30000 35000 40000 45000

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

1-way
2-way
4-way
8-way

Fig. 7. Effect of associativity on estimation error of ICS for the 3-D stencil kernel with cache capacity of (a) 16 KB, (b) 512 KB, (c) 1 MB.

 0.001

 0.01

 0.1

 1

 10

 100

 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

32B
64B

128B

 0.001

 0.01

 0.1

 1

 10

 100

 5000 10000 15000 20000

A
bs

. R
el

at
iv

e
E

rr
or

 %

Cluster Size

32B
64B

128B

Fig. 8. Effect of cache block size on estimation error of ICS on (a) matrix-matrix multiplication for a 512 KB 4-way set associative cache, (b)tomcatv
for a 512 KB direct-mapped cache.

 0.5

 1

 1.5

 2

 2.5

 150000 160000 170000 180000 190000 200000 210000 220000 230000 240000

N
or

m
al

iz
ed

 to
 ij

k

Cluster Size

ijk
jki
kji
jik
kij
ikj

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 32 128 256

N
or

m
al

iz
ed

 to
 N

o
T

ili
ng

Blocking Factor

Fig. 9. (a) Estimated number of cache misses in the matrix-matrix multiplication kernel for all six loop permutations normalized to theijk permutation.
(b) Estimated number of cache misses for different tile sizes in the tiled matrix-matrix multiplication kernel normalized to no tiling.

simulation. Figure 10 shows these speedup results for all the
loop kernels that we have considered (except for the random
reference stream) running on a 512 KB cache with 32-byte
block size. We present the results for direct-mapped and set
associative caches with up to eight ways. In these experiments,
the cluster size was chosen such that the estimation error is
less than 5%. All these experiments are run on a 3.4 GHz
Pentium 4 with 1 GB RAM. The results show that for complex
nested loops (e.g., all the loops except five-pointed systemand
matrix-vector multiplication) our algorithm achieves speedup

factors of more than hundred for all associativities. The
speedup on 3-D stencil was in the order of thousand. Finally,as
expected, the speedup decreases with increasing associativity,
since to achieve an error rate of less than 5%, our sampling
technique needs to consider bigger cluster sizes (this trend is
already discussed above). Overall, we found that our technique
always produces results in minutes. These results clearly
underscore the feasibility of integrating our ICS scheme in
a compiler pass for estimating cache misses of loop nests
with known bounds and known array sizes, and using this

62

estimation to compare the quality of different optimizations.

Fig. 10. Speedup of ICS technique compared to full cache simulation on a
512 KB cache with 32-byte block size and different associativities.

VI. SUMMARY AND POSSIBLE EXTENSIONS

This paper has introduced source-level independent cluster
sampling as an effective means to estimate the number of
cache misses in perfectly nested loops with dense array
accesses. Across a number of cache organizations, this tech-
nique offers excellent estimates for a number of popular loop
kernels drawn from dense linear algebra and the SPEC95
suite. Although in some instances this technique is inferior to
some of the previously proposed cache access trace sampling
techniques, it offers less than 5% error with more than a factor
of hundred speedup in the estimation time compared to full
access tracing schemes. For some of the complex loops, the
speedup is in the range of thousand. This fast cache miss
estimation scheme naturally lends itself to compile-time loop
optimization techniques and we successfully demonstrate its
applicability to two such optimizations, namely, loop per-
mutation (a popular unimodular transformation) and tile size
determination (which is often determined by full executionof
loop kernels).

The next natural step would be to integrate this algorithm in
a full-fledged compiler pass and apply it to more optimizations
related to memory hierarchy. One significant weakness of
this technique is that it fails to handle phase behaviors in a
loop kernel. Since the sampling technique is not guided by
any information drawn from the loop’s structure, it would
not be surprising if the algorithm misses out on important
samples characterizing certain phases of execution. However,
it is encouraging to note that the compiler can offer a signif-
icant amount of information and feedback about the dynamic
regions (i.e., regions in the iteration space) of the loop where
the sampling effort should be focused.

VII. A CKNOWLEDGEMENTS

We would like to thank Nitin Gorde for participating in
discussions during the course of this research work.

REFERENCES

[1] Anant Agarwal, John Hennessy, and Mark Horowitz. Cache
performance of operating system and multiprogramming work-
loads. ACM Trans. Comput. Syst., 1988.

[2] Jon Louis Bentley and James B. Saxe. Generating sorted lists
of random numbers.ACM Trans. Math. Softw., 1980.

[3] Calin Cascaval and David A. Padua. Estimating cache misses
and locality using stack distances. InProceedings of the 17th
annual international conference on Supercomputing, New York,
NY, USA, 2003. ACM Press.

[4] Siddhartha Chatterjee, Erin Parker, Philip J. Hanlon, and
Alvin R. Lebeck. Exact analysis of the cache behavior of
nested loops. InPLDI ’01: Proceedings of the conference on
Programming language design and implementation, New York,
NY, USA, 2001. ACM Press.

[5] M.C. Easton. Computation of cold-start miss ratios.IEEE
Transactions on Computers, May 1978.

[6] Lieven Eeckhout, Smaïl Niar, and Koen De Bosschere. Optimal
sample length for efficient cache simulation.J. Syst. Archit.,
2005.

[7] Basilio B. Fraguela, Ramón Doallo, and Emilio L. Zapata.
Probabilistic miss equations: Evaluating memory hierarchy per-
formance.IEEE Trans. Comput., 2003.

[8] J.W.C. Fu and J.H. Patel. Trace driven simulation using
sampled traces.Twenty-Seventh Hawaii Internation Conference
on System Sciences, 4-7 Jan 1994.

[9] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache
miss equations: a compiler framework for analyzing and tuning
memory behavior.ACM Trans. Program. Lang. Syst., 1999.

[10] Jr. John W. Haskins and Kevin Skadron. Accelerated warmup
for sampled microarchitecture simulation.ACM Trans. Archit.
Code Optim., 2005.

[11] Richard Eugene Kessler.Analysis of multi-megabyte secondary
CPU cache memories. PhD thesis, Madison, WI, USA, 1991.

[12] S. Laha, J. H. Patel, and R. K. Iyer. Accurate low-cost methods
for performance evaluation of cache memory systems.IEEE
Trans. Comput., 1988.

[13] Erin Parker. Analyzing the Behavior of Loop Nests in the
Memory Hierarchy: Methods, Tools, and Applications. PhD
thesis, North Carolina, USA, 2004.

[14] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Tim-
othy Sherwood, and Brad Calder. Using simpoint for accurate
and efficient simulation. InInternational conference on Mea-
surement and modeling of computer systems, New York, NY,
USA, 2003. ACM.

[15] Richard A. Uhlig and Trevor N. Mudge. Trace-driven memory
simulation: a survey.ACM Comput. Surv., 1997.

[16] Todd Veldhuizen. Scientific computing: C++ vs. fortran. Dr.
Dobb’s Journal, 1997.

[17] Xavier Vera and Jingling Xue. Let’s study whole-program cache
behaviour analytically. In8th International Symposium on High-
Performance Computer Architecture, page 175, Washington,
DC, USA, 2002. IEEE Computer Society.

[18] Xavier Vera, Nerina Bermudo, Josep Llosa, and Antonio
González. A fast and accurate framework to analyze and
optimize cache memory behavior.ACM Trans. Program. Lang.
Syst., 2004.

[19] T.F. Wenisch, R.E. Wunderlich, B. Falsafi, and J.C. Hoe.Sim-
ulation sampling with live-points.International Symposium on
Performance Analysis of Systems and Software, 19-21 March
2006.

[20] David A. Wood, Mark D. Hill, and R. E. Kessler. A model
for estimating trace-sample miss ratios.SIGMETRICS Perform.
Eval. Rev., 1991.

[21] R.E. Wunderlich, B. Wenisch, T.F.and Falsafi, and J.C. Hoe.
Smarts: accelerating microarchitecture simulation via rigorous
statistical sampling.30th Annual International Symposium on
Computer Architecture, 9-11 June 2003.

[22] Joshua J. Yi, Sreekumar V. Kodakara, Resit Sendag, David J.
Lilja, and Douglas M. Hawkins. Characterizing and comparing
prevailing simulation techniques. In11th International Sympo-
sium on High-Performance Computer Architecture, Washington,
DC, USA, 2005. IEEE Computer Society.

63

64

List of Authors

Aggarwal, Sanjeev . 55

Burkhart, Helmar .47

Chaudhuri, Mainak . 55

Christen, Matthias . 47

Field, A. J. .39

Fuetterling, Valentin . 17

Ganguly, Sumit . 55

Heuveline, Vincent . 31

Hornegger, Joachim . 25

Howes, Lee W. 39

Keck, Benjamin . 25

Kelly, Paul H. J. 39

Kise, Kenji . 1

Kitamura, Toshiaki . 1

Köstler, Harald . 9

Kowarschik, Markus . 25

Lojewski, Carsten . 17

Lokhmotov, Anton . 39

Lukarski, Dimitar . 31

Messmer, Peter . 47

Nakada, Takashi . 1

Nakashima, Yasuhiko . 1

Neufeld, Esra . 47

65

Ritter, Daniel . 9

Rüde, Ulrich . 9

Schenk, Olaf . 47

Scherl, Holger . 25

Sharma, Kamal . 55

Shimada, Hajime . 1

Stürmer, Markus . 9

Weinlich, Andreas . 25

Weiß, Jan-Philipp . 31

66

Financial support

The Shared Research Group (SRG) 16-1 on New Frontiers in High Performance Computing Exploiting Multicore

and Coprocessor Technology is a joint initiative of Karlsruhe Institute of Technology and Hewlett-Packard. The

SRG receives grants by the Concept for the Future of Karlsruhe Institute of Technology in the framework of the

German Excellence Initiative and by the industrial collaboration partner Hewlett-Packard. The present proceedings

of the First International Workshop on New Frontiers in High-performance and Hardware-aware computing are

kindly sponsored by the SRG.

