
The Decentralized File System Igor-FS
as an Application for Overlay-Networks

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik
der Universität Fridericiana zu Karlsruhe (TH)

genehmigte

Dissertation

von

Dipl.-Ing. Kendy Kutzner

aus Karl-Marx-Stadt

Tag der mündlichen Prüfung: 14. Februar 2008
Erster Gutachter: Dr. Thomas Fuhrmann
Zweiter Gutachter: Prof. Dr. Klaus Wehrle

2

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Zusammenfassung in deutscher Sprache 11
1.3 Structure of this work . 13

I Foundations 15

2 Cryptography 17
2.1 Hash Functions . 18

2.1.1 Cyclic Redundancy Check 18
2.1.2 Cryptographic Hash Functions 19
2.1.3 Hash Function MD5 . 20
2.1.4 Hash Function SHA . 21
2.1.5 Hash Functions for authentication – Merkle Hashes 22
2.1.6 Rabin hashes as rolling checksums 22

2.2 Encryption and Decryption . 23
2.2.1 One Time Pad . 23
2.2.2 Rijndael as Advanced Encryption Standard – AES 24
2.2.3 RC4 . 25

2.3 Modes of Block Ciphers . 25
2.3.1 Electronic Codebook Mode 26
2.3.2 Cipher Block Chaining . 27
2.3.3 Feedback Modes . 28
2.3.4 Counter Mode . 28

2.4 Padding . 29
2.5 Summary . 30

3 Overlay Networks 31
3.1 Peer-to-Peer Networks . 31

3.1.1 BitTorrent . 32
3.1.2 Freenet . 33

3.2 Structured Overlays and Key Based Routing 35
3.2.1 Kademlia . 38

3

4 CONTENTS

3.2.2 Pastry . 38

3.2.3 Chord . 39

3.2.4 Content Addressable Network – CAN 39

3.2.5 de Bruijn Networks . 40

3.3 Distributed Hash Tables . 40

3.3.1 Bamboo and other DHT Services 42

3.4 Optimizing Overlay Networks . 42

3.4.1 Degrees of freedom . 43

3.4.2 Proximity Route Selection 43

3.4.3 Proximity Neighbor Selection 44

3.4.4 Finding Close Neighbors 44

During Bootstrapping . 45

Measuring . 45

Coordinate Approaches: from GNP to Vivaldi 46

Meridian . 46

3.5 Other issues . 47

3.5.1 Route convergence . 47

3.5.2 Bootstrapping . 47

3.5.3 Implementation Issues . 48

3.6 Summary . 49

4 File Systems 51

4.1 Local File Systems . 51

4.1.1 File Allocation Table – FAT 51

4.1.2 Process File System . 52

4.1.3 Fourth Extended File System 53

4.2 Distributed File Systems . 54

4.2.1 Network File System . 55

4.2.2 Other Distributed File Systems 57

4.3 Decentralized File Systems . 57

4.4 User Space File Systems . 57

4.4.1 FUSE . 58

4.4.2 Parrot . 59

4.4.3 Gnome-VFS etc . 60

4.5 Summary . 60

II The Overlay Network Igor 63

5 Goals 65

5.1 Application . 66

5.2 Igor . 66

5.3 Network . 66

CONTENTS 5

6 Design 67
6.1 Application Interface . 67

6.1.1 The Service Concept . 67
6.1.2 The Upcall Concept . 67

6.2 Message Routing and Forwarding 69
6.2.1 Iterative vs. Recursive . 69
6.2.2 Metric . 70
6.2.3 Aggregation Tree . 71
6.2.4 Service Routing . 71
6.2.5 Connections . 72

6.3 Routing Table Maintenance . 73
6.3.1 Creation of New Entries 73
6.3.2 Creation of the First Entry 73
6.3.3 Eviction of Old Entries 73
6.3.4 Connections for Services 74

6.4 Proximity . 74
6.4.1 Proximity Route Selection 75
6.4.2 Proximity Neighbor Selection 75

Combination of Vivaldi and Meridian 75
Finding new neighbors . 76

6.5 Interface to Applications . 76
6.5.1 Connections . 76
6.5.2 Library libigor . 77

6.6 Summary . 78

7 Implementation 79
7.1 The Call Back List . 79
7.2 Plugins . 80
7.3 IPv6 . 81

8 Test and Deployment 83
8.1 Testing . 83

8.1.1 PlanetLab . 83
8.2 Build Process . 84
8.3 Running Igor . 84

8.3.1 Start . 84
8.3.2 Stop . 84
8.3.3 The Configuration File . 84
8.3.4 The Log File . 85

8.4 Application Examples . 86
8.4.1 Filesystem . 86
8.4.2 Videgor . 86

Scheduling . 87
Video Data Transport . 89
Electronic Program Guide 89

8.4.3 LinyPhone . 90

6 CONTENTS

8.5 Summary . 91

9 Conclusions 93
9.1 Future Work . 93

9.1.1 Integration with Scalable Source Routing 93
9.1.2 Control Plane . 93
9.1.3 Firewall and NAT Traversal 94
9.1.4 Bootstrapping . 94

9.2 Summary . 95

III The Decentralized File System IgorFS 97

10 Goals 99
10.1 Security . 100
10.2 Distributedness and Decentralization 100
10.3 Scalability and Efficiency . 100
10.4 Easy Deployment . 101

11 Design 103
11.1 Interface to the Applications . 103
11.2 Security . 104

11.2.1 Encapsulation of Cryptographic operations 104
11.2.2 Authentication . 106
11.2.3 Authorization . 107
11.2.4 Confidentiality . 107
11.2.5 Trust Issues . 107
11.2.6 Examples . 108

11.3 Handling of File System Objects 109
11.3.1 Files . 109
11.3.2 Directories . 111
11.3.3 Directory Layout . 111

11.4 Block Cut . 112
11.4.1 Requirements . 112
11.4.2 Rolling Checksums . 114

Fixed Block Size . 114
Adler32 . 115
CRC and Rabin . 115
XOR32 . 116

11.4.3 Conclusion . 116
11.5 Snapshot . 117

11.5.1 Data Structures Necessary 117
11.5.2 Process . 117

Read-Only Access . 117
Write/Modify Access . 118
Start of a new Epoch . 119

CONTENTS 7

Process Snapshot / Make Persistent 120
11.5.3 Summary of Snapshot . 122

11.6 Block Cache . 122
11.6.1 Requirements . 123
11.6.2 Design . 123

11.7 Igor Interface . 124
11.7.1 Pointer Cache . 125
11.7.2 Data Transfer . 125
11.7.3 Block Transmission . 126

11.8 The Proc System . 127
11.8.1 Registering . 127
11.8.2 Reading and Writing . 127
11.8.3 Example Uses . 127

12 Implementation 129
12.1 Overview . 129
12.2 Logging . 130
12.3 User space tools . 131

12.3.1 Export Key . 132
12.3.2 Mounting and Unmounting 132

12.4 File System Daemon IgorFS . 132
12.5 Modules . 132

12.5.1 Module BlockingModule 133
12.5.2 Block Cache . 133
12.5.3 Module BlockCut . 133
12.5.4 Module BlockFetcherModule 134
12.5.5 Module BlockTransModule 135
12.5.6 Module FileFolderModule 136
12.5.7 Module IgorInterfaceModule 137
12.5.8 Module PointerCache . 137
12.5.9 Module SnapShotInitiator 138
12.5.10cProcModule . 138
12.5.11Fuse Interface Module . 138

Overview . 138
Supported Operations on File System Objects 139
Supported Operations on the Entire File System 140
Operations not Supported 141

12.6 Summary . 141

13 Conclusions 143
13.1 Open Issues . 143

13.1.1 Obfuscation . 143
13.1.2 Denial of Service . 143
13.1.3 Hash Collisions . 144
13.1.4 Reliability and Block Deletion 144
13.1.5 Read Ahead . 145

8 CONTENTS

13.1.6 XML and Other Interfaces 145
13.1.7 Business/Legal Aspects 145

13.2 Summary . 146

IV Evaluation and Summary 147

14 Evaluation and Testing 149
14.1 Checksum Algorithm . 149
14.2 Adaptive Block Size . 150
14.3 TCP kernel information . 152
14.4 End-to-End Evaluation . 155
14.5 Summary . 157

15 Conclusions 159
15.1 Acknowledgments . 159

A Igor Configuration options 161

B Messages in IgorFS 163
Message cBFUpdateStatus 163
Message cCryptoMsg . 163

cMsgEncrypt . 163
cMsgEncrypted . 163
cMsgDecrypt . 163
cMsgDecrypted . 163
cMsgHash . 163
cMsgHashed . 163
cMsgVerify . 163
cMsgVerified . 163
cMsgHashNEncryptNHash 164
cMsgHashedNEncryptedNHashed 164
cMsgVerifyNDecryptNVerify 164
cMsgVerifiedNDecryptedNVerified 164

Message cFsoPersistenceRequest 164
Message cIFSMessage . 164

cMsgBlockRequestFromBfToBc 164
cMsgBlockResponseFromBcToBf 164
cBCJobContainer 164
cBCDBUpdateMessage 164
cBCDBResponse . 164
cBCFSCKCommand 164
cBCFSCKSweepComplete 164
cBCShutdownMessage 164
cInventoryUpdateMsg 164

Message cIgorInterfaceMessage 165

CONTENTS 9

cMsgBlockRequestFromBfToBf 165
cMsgBlockResponseFromBfToBf 165
cMsgPointerAnnounceFromPcToPc 165
cMsgPointerRequestFromPcToPc 165
cMsgPointerResponseFromPcToPc 165

Message cMsgBlockCutRequest 165
Message cMsgBlockCutResponse 165
Message cMsgBlockRequestFromBcToBf 165
Message cMsgPcCleanUp 165
Message cMsgPcPeriodicAnnouncement 165
Message cMsgPcQueueUpdateStatus 165
Message cMsgPointerRequestFromBfToPc 166
Message cMsgPointerResponseFromPcToBf 166
Message cMsgReadReqFFH 166
Message cMsgReqBase . 166

cMsgReqModDev . 166
cMsgReqTwoNames 166
cMsgReqOffSetSize 166
cMsgReqTwoTimes 166

Message cMsgResBase . 166
cMsgResName . 166
cMsgResReadOnly 166
cMsgResStat . 166
cMsgResStatfs . 166
cMsgResVector . 166

Message cMsgWriteReqFFH 166
Message cSnapShotRequest 166
Message cSnapShotReply 167
Message cSnapShotTimer 167

List of Figures 167

List of Tables 170

Index 171

Glossary 176

Bibliography 178

10 CONTENTS

Chapter 1

Introduction

Jedem Anfang wohnt ein Zauber inne
Hermann Hesse

1.1 Motivation

Working in distributed systems is part of the information society. More and
more people and organizations work with growing data volumes.

Often, part of the problem is to access large files in a share way. Until
now, there are two often used approaches to allow this kind off access. Either
the files are tranfered via FTP, e-mail or similar medium before the access
happens, or a centralized server provides file services. The first alternative
has the disadvantage that the entire file has to be transfered before the first
access can be successful. If only small parts in the file have been changed
compared to a previous version, the entire file has to be transfered anyway. The
centralized approach has disadvantages regarding scalability and reliability. In
both approaches authorization and authentication can be difficult in case users
are seperated by untrusted network segements.

1.2 Zusammenfassung in deutscher Sprache

Das Arbeiten in verteilten Systemen ist Bestandteil der Informationsgesellschaft.
Immer mehr Menschen und Organisationen arbeiten mit immer größer werden-
den Daten.

Dabei geht es auch häufig darum, gemeinsam auf diese große Datenmengen
zuzugreifen. Bisher gibt es zwei gebräuchliche Ansätze um diese Art der Zusam-
menarbeit zu ermöglichen. Entweder werden die Dateien via FTP, E-Mail, oder
Ähnlichem vor dem Zugriff transportiert oder ein zentraler File-Server stellt die
Datei-Dienste zur Verfügung. Die erste Variante hat den Nachteil, dass immer

11

12 CHAPTER 1. INTRODUCTION

erst die gesamte Datei transportiert werden muss, bevor der erste Zugriff er-
folgen kann. Wenn sich nur kleine Teile der Dateien ändern, muss trotzdem
der gesamte Datenbestand erneut kopiert werden. Der zentralisierte Ansatz
mit einem File-Server hat Nachteile bei der Skalierbarkeit und bei der Ausfall-
sicherheit. In beiden Ansätzen kann es Probleme mit der Authorisierung der
Zugriffe und Authentifizierung der Daten geben, wenn zwischen den Nutzern
nicht vertrauenswürdige Netzsegmente liegen.

Das Promotionsvorhaben verfolgt das Ziel ein Gesamtsystem zu beschreiben,
welches die beschriebenen Nachteile nicht mehr aufweist und zusätzlich den
Ansprüchen an Vertraulichkeit und Sicherheit genügt. Diese Arbeit ist dazu in
drei Teile untergliedert. Im ersten Teil werden die existierenden Grundlagen
dargelegt, die für die Arbeit relevant sind. Dabei liegen die Schwerpunkte auf
Kryptographie, Overlay-Netzen und Dateisystemen.

Im zweiten Teil wird das neu entwickelte Overlaynetz Igor beschrieben.
Strukturierte Overlaynetze bieten ein skalierbares Substrat für viele Anwen-
dungen. Igor baut auf den im ersten Teil eingeführten Ideen auf, fügt ser-
viceorientiertes Routing hinzu und bringt neuartige Wege zur Adaption an das
bestehende Netz ein. Serviceorientiertes Routing ist notwendig, damit mehrere
Applikationen das Overlaynetzwerk gleichzeitig nutzen können. Mehrere solche
neu entwickelten Anwendungen werden beschrieben, die wichtigste darunter ist
das Dateisystem aus dem dritten Teil der Arbeit.
Die Adaption an das darunterliegende Netz ist für Overlaynetze eine wichtige
Eigenschaft um hohe Datenraten und kleine Latenzen zu erreichen. Die vor-
liegende Arbeit beschreibt ein neues Verfahren, welches schnellen Erfolg mit
wenig Overhead kombiniert.

Der dritte Teil der Arbeit beschreibt schliesslich das verteilte und dezentral-
isiert Dateisystem IgorFS. Dieses nutzt das Overlaynetz Igor als Kommunika-
tionssystem. Daten in IgorFS werden in einer besonderen Art in Blöcke zerteilt,
die das verteilte Erkennen und Vermeiden von Redundanzen ermöglicht. Solche
Redundanzen werden sowohl zwischen Dateien als auch zwischen verschiede-
nen Versionen der gleichen Datei erkannt. Datenblöcke werden ausschliesslich
verschlüsselt gespeichert und übertragen, so dass die Vertraulichkeit gewährleis-
tet ist. Der Besitz des zur Dechiffrierung notwendigen Schlüsselmaterial wird
als Authorisierungsmerkmal benutzt. Dies erlaubt die sichere verteilte Autho-
risierung: Ohne Schlüssel sind keine Daten lesbar. Zusätzlich werden Blöcke
sowohl für Verzeichnisse als auch für Dateien über ihre kryptografische Prüf-
summe addressiert, wodurch jeglicher Inhalt authentifiziert werden kann.

Die Datenblöcke werden nach Anforderung im System verteilt, was dazu
führt das von häufig angeforderten Blöcken vielen Repliken existieren. Dies
führt zu sehr skalierbaren Systemen, ohne dass zentrale Server notwendig sind.
Andererseits kann ein Zugriff bereits durchgeführt werden, sobald die dafür
notwendingen Blöcke lokal vorhanden sind. Es ist nicht notwendig, vorher die
gesamte Datei zu transferieren.

Die Benutzung von IgorFS erfordert an vorhandenen Applikationen keine
Änderungen, da über ein Kernel-Modul allen Linux-Anwendungen die gewohnte
POSIX-Schnittstelle zur Verfügung gestellt wird. Die vorstellbaren praktischen

1.3. STRUCTURE OF THIS WORK 13

Einsatzszenarien von IgorFS reichen von der Verteilung von Softwaredistribu-
tionen bis zur gemeinsamen Nutzung großer pharmazeutischer Datenbanken.

1.3 Structure of this work

In order to reach these goals, this work is subdivided in three major parts. In
the first part, the existing foundations relevant for this work are laid out. A
special focus is set on cryptography, overlay networks and file systems.

The second part describes the newly developed overlay network Igor. Such
structured overlay networks form a rich substrate for many different kinds of
applications. Igor is based on ideas presented in the first part and extends these
ideas by service oriented routing and adds new ways to adapt to the underlaying
network. Service oriented routing is essential if more than one application can
use the overlay network at once. Some newly developed applications based on
Igor are described, the most important one the file system IgorFS presented in
the third part.
The adaption of the overlay network towards the underlaying system is an im-
portant property to reach higher data rates and lower latencies. This work
presents a new method, which combindes faster success with less overhead.

The third part describes the distributed and decentralized file system IgorFS.
This file system uses the overlay network Igor as communcation primitive. In
IgorFS, data is cut into blocks in a special way in order to detect redundancies
and avoid them. Such redundancies are detected between different versions of
the same file as well as between different files on remote systems. Data blocks are
stored and transfered in an encrypted form only. This way the confidentiality
is ensured at all times. Possession of a decryption key is used as proof of
authorization, allowing a distributed authorization scheme: No data is readable
without the proper decryption key. Additionally, all data blocks are identified
by their cryptographic hash sum, which automatically ensures authentication
of all content.

Data blocks are distributed on demand, which leads to more replicas for
objects requested more often. With this property, the overall system is very
scalable, without the need for a centralized server system. On the other hand,
an access can already be fulfilled as soon as the required block is available. It
is not necessary that the entire file has to be transfered before.

To use IgorFS it is not neccessary to modifiy applications. Using a kernel
module, IgorFS is avalible via the POSIX interface to all Linux applications.
The imaginable usage scenarios for IgorFS reach from software distribution to
shared usage of large pharmaceutical data bases.

14 CHAPTER 1. INTRODUCTION

Part I

Foundations

15

Chapter 2

Cryptography

Trying to stop this is like trying to legislate the tides and the weather.
Philip R. “Phil” Zimmermann Jr.

Later chapters in this work rely on cryptography to ensure security. There-
fore this chapter will introduce some cryptographic primitives like encryption
and hash functions. To explain things in cryptography, virtual characters intro-
duced by [142] are often used. These virtual characters play standard roles and
therefore can make understanding the description of cryptographic processes
easier.

The most often used roles are listed below.

• The sender of a message Alice.

• Bob, the intended receiver of that message.

• In between Alice and Bob, Eve tries to eavesdrop the communication and
learn as much as possible from doing so.

• Even more malicious, Mallory can change messages and tries to hamper
the communication.

This work follows the tradition and uses the canonic virtual characters to de-
scribe cryptographic processes.

Cryptography deals, among others, with the following problems:

• Traditionally, protecting the confidentialiality of information was one of
the major goals of cryptography. To keep information confidential, a larger
secret (the clear text) is encrypted with a (usually) smaller secret (the key).
This process yields the ciphertext. The reverse process, i. e. transform-
ing the ciphertext into the clear text with the help of the key, is called
decryption.

17

18 CHAPTER 2. CRYPTOGRAPHY

• Authentication is a procedure to ensure that a given data object is genuine,
i. e. the user is really the one she claims to be or a data packet is from the
assumed source.

• Anonymity tries to prevent that communicating parties are identifiable.
To do that, pseudonyms, i. e. additional identities that are not easily link-
able to the real identities, can be created.

• Sometimes it is necessary to hide the fact that communication happened
at all. Cryptography can be a building block to implement steganography.
A weaker concept is plausible deniability, where the communicating parties
can deny knowledge about the communication and third parties cannot
prove the contrary.

Note that the cryptographic algorithm can be public. The security of the system
rests on the secrecy of the key and the computational infeasability of all known
attacks. For few algorithms such an infeasability has been proven, nevertheless
it is often assumed (Standard Hardness Assumption).

2.1 Hash Functions

A hash function in general is a deterministic function h() that maps a number
of input values m to a smaller number of integer output values h:

h = h(m)

Since the output h of the hash function can be smaller than the input m, hash
function can not be bijective. Usually, it is desired that these output values are
evenly distributed, so that the hash function can map keys to values in hash
tables.

As such, they are related to CRC functions (see section 2.1.1).

2.1.1 Cyclic Redundancy Check

Cyclic Redundancy Checks (CRC) are used as a general purpose checksum al-
gorithm. They are based on polynomial residue division. To apply polynomial
residue division to bit streams, both the input bit stream as divisor as well as
the dividend are taken as binary coefficients of the polynomials.

CRCs can be viewed as shift registers with feedback, where the dividing
polynomial denotes the positions of feedback lines. Shifting the input data
stream through the register yields the desired CRC value.

Cyclic redundancy checks are linear functions. As such, they are useful to
discover unintended changes (e. g. transmission errors) of the message in transit.
In general, they are not useful to protect messages in a cryptographic sense for
integrity protection or authentication. Discovered flaws in the IEEE 802.11b
WEP protocol [15] show this impressively.

2.1. HASH FUNCTIONS 19

2.1.2 Cryptographic Hash Functions

Cryptographic hash functions are hash functions that are sometimes also called
message digest or compression functions. In the cryptographic context, hash
functions are required to have the following additional properties:

• Given a value of h, it is hard to find any m that hashes to the value of
h = h(m) (preimage resistance).

• It is hard to find any two input values m1, m2 that hash to the same
output value h (collision resistance). This means because of the birthday
paradox the hash output size must be at least twice as large as required
for preimage resistance.

• For any given input m1 it should be hard to find a second input m2, such
that h(m1) = h(m2) (second preimage resistance). Note that this property
is implied if collision resistance and preimage resistance are given.

One weaker requirement is that every output bit must depend on every
input bit and for every input bit flip, every output bit has a probability p =
0.5 of changing. Internally, cryptographic hash functions use the avalanche
effect (every bit in the computation influences many other bits) to create these
dependencies.

In order to be practically useful, cryptographic hash functions should also

• be reasonably fast and

• require a reasonable amount of memory.

What is reasonable in this context depends on the available computing infras-
tructure and the required security. Furthermore these considerations change
over time because of Moore’s Law [116] and advances in cryptography.

Algorithm Bytes processed per second

md5 1.86 · 108

sha1 1.69 · 108

rc4 1.56 · 108

aes-128 cbc 9.76 · 107

aes-256 cbc 7.78 · 107

Table 2.1: Speed of cryptographic operations. Computed blocks of 8192 bytes
of data on a AMD Opteron 248 Stepping 8 with 1024 KiB Cache running at
2.2 GHz. Implementation of the algorithms: OpenSSL 0.9.7e with standard
SuSE 9.3 compiler flags.

Cryptographic hash functions have different intended usages. They can be
used to implement integrity checks, because if the hashed content changes there
is a very high probability that the hash value changes too (otherwise one would

20 CHAPTER 2. CRYPTOGRAPHY

have discovered a hash collision). Cryptographic hash functions are also a build-
ing block for many digital signature schemes (e. g. [41], [85], [4]):

Computing digital signatures on large amounts of data is not practical be-
cause of the large integer numbers involved in many signature algorithms. Com-
putations with such numbers are relatively slow (see table 2.2).

The same holds true for verifying such signatures. On the other hand, hash
functions are faster (see table 2.1). Therefore only a cryptographic hash over
the message content is signed, and only the signature over the hash has to be
verified.

Besides in signature algorithms (for integrity checks and authentication),
cryptographic hash functions are used for message authentication codes (MAC).
There, the hash function is computed over a secret k shared between Alice and
Bob and the message m itself. For example [93] defines the Hash-MAC (HMAC):

HMACk(m) = h

(

(k ⊕ 0x5c0x5c0x5c · · ·)‖h
(

(k ⊕ 0x360x360x36 · · ·)‖m
)
)

Cryptographic hash functions can be constructed from encryption functions.
Since current encryption functions are slower than current hash functions (see
table 2.1), this approach is rarely used.

Algorithm Signatures per second Verifications per second

rsa 1024 bits 9.87 · 102 1.63 · 105

rsa 2048 bits 1.68 · 102 5.45 · 103

dsa 1024 bits 1.96 · 103 1.60 · 103

dsa 2048 bits 6.16 · 102 4.98 · 102

Table 2.2: Speed of asymmetric cryptographic operations. For details of param-
eters see table 2.1

2.1.3 Hash Function MD5

The message digest algorithm MD5[141] was designed to be a fast and secure
cryptographic hash function. It was used widely for integrity checks and digital
signatures.

The MD5 algorithm works on chunks of 512 bits. The input is padded (see
section 2.4) so that the length of the input is evenly divisible by 512:

• A binary ’1’ is appended.

• Binary ’0’s are appended until the length is congruent to 448 modulo 512.

• The length of the input before padding is added as a 64 bit integer.

2.1. HASH FUNCTIONS 21

MD5 has an internal state of 128 bits. After this state is initialized, for every
512 bits of input, 64 rounds are executed. Each round is a function of the state,
the input data and some internal constants. The function is changed every 16
rounds.

The cryptographic hash function MD5 must be considered broken, because
it has been demonstrated[37, 170] that two meaningful messages can have the
same MD5-value. Tables 2.3 and 2.4 show two different messages. Processed
with MD5, both result in the hash value 0bcfc4ded8b9a153f8c59b7c19598138.

25215053 2d41646f 62652d31 2e300d0a

2525426f 756e6469 6e67426f 783a2030

20302036 31322037 39322020 20202020

20202020 20202020 20202020 200d0a28

e842a66a de4d00e0 d5895ff8 e59cc1a7

2fcab717 0a467eaa c003543e b1fb7f08

456d3305 01fc53e0 5befa083 13237952
ed5a33ce 36990d9c 076e45da 528479eb

2fbd0f95 f557e576 3aecbfaa 0f0bd9ca

b5735948 32f47d0b 2cb9a376 d4361e20

fdef3b83 a1f27deb ca361c53 86586bc8
f494f44e 611f7c84 8060cfef 94b50390

Table 2.3: Message 1 with MD5-Hash 0bcfc4ded8b9a153f8c59b7c19598138

25215053 2d41646f 62652d31 2e300d0a

2525426f 756e6469 6e67426f 783a2030

20302036 31322037 39322020 20202020

20202020 20202020 20202020 200d0a28

e842a66a de4d00e0 d5895ff8 e59cc1a7

2fcab797 0a467eaa c003543e b1fb7f08

456d3305 01fc53e0 5befa083 13a37852
ed5a33ce 36990d9c 076e455a 528479eb

2fbd0f95 f557e576 3aecbfaa 0f0bd9ca

b57359c8 32f47d0b 2cb9a376 d4361e20

fdef3b83 a1f27deb ca361c53 86d86bc8
f494f44e 611f7c84 8060cf6f 94b50390

Table 2.4: Message 2 with MD5-Hash 0bcfc4ded8b9a153f8c59b7c19598138

2.1.4 Hash Function SHA

Very similar to the MD5 hash function, SHA1 [121] is also based on the Merkle-
Damg̊ard-Construction [36]: A collision resistant compression function is used

22 CHAPTER 2. CRYPTOGRAPHY

to create a cryptographic hash function for arbitrary sized inputs. Since the
design is similar, most weaknesses are shared.

Germany’s Bundesnetzagentur has announced [11] that SHA1 is believed to
be secure until 2009. The same announcement published that the successors of
SHA1, SHA224 and SHA256 (up to SHA512) are believed to be secure until the
end of 2012.

2.1.5 Hash Functions for authentication – Merkle Hashes

Cryptographic hash functions allow the integrity check of a data block: The
hash value is transmitted over a trusted channel and the data block can be
transfered in an untrusted manner. The receiver can than compute the hash
function over the received data block and is convinced that the block has not
been tampered with if the computed value matches the one received over the
trusted channel.

This scheme has the disadvantage that the receiver can check the integrity
only after the full block has been received. Such a check can be too late if the
data block is large or if the application in question has a streaming character.

To overcome this problem, hash lists were introduced. The data block
m is split into chunks m0, m1, . . . , mn. The hash function is applied to each
chunk hi = h(mi), i ∈ (0, n) and to the list of all hash values computed:
hr = h(h0|h1| . . . |hn). This root hash hr is transmitted over the trusted channel,
the list itself does not need to be protected. The receiver can, given the hash
list and the authenticated root hash, check the integrity of arbitrary chunks by
comparing the hash of the chunk with the hash in the list and by computing the
root hash over the list and comparing it with the one received over the trusted
channel.

If the message size grows or the chunk size is decreased, hash lists grow
and become impractical too. Hash trees as an extension to hash lists can solve
this problem, even if they were invented to make Lamport-Signatures [97] more
efficient [112]. Again, each chunk is hashed separately. In a tree with degree k,
every k hash values are combined to a list and the hash is computed over this
list. If the resulting list of intermediated hashes hi has more than k entries, the
procedure is repeated on this intermediate list. This process continues until the
root hash hr is found (see figure 2.1 for an example with k = 2).

2.1.6 Rabin hashes as rolling checksums

Originally invented as a tool for fast string search [83], Rabin hashes are a way of
implementing a rolling checksum. The term rolling checksum refers to the fact
that given the checksum over the bytes n . . .m, it is relatively easy to compute
the checksum over the bytes n + 1 . . .m + 1. The Rabin checksum is given by

h(n, m) = c[n] ∗ am−n−1 + c[n + 1] ∗ am−n−2

+ c[n + 2] ∗ am−n−3 · · · + c[m] ∗ a0 (mod q)

2.2. ENCRYPTION AND DECRYPTION 23

h2 h3 h4 hn−1 hn

m1 m2 m3 m4 mn−1 mn

h1

hr

hi hi hi

hi hi

Figure 2.1: Merkle Hashes

where c[n] is the byte at position n in the input. The parameters q and a
influence the quality of the algorithm. In [99] good values for q and a are listed.
To move one step forward, just

h(n + 1, m + 1) = h(n, m) ∗ a − c[n] ∗ am−n + c[m + 1]

needs to be computed.
Rabin hashes, like CRC values, are not cryptographically secure, but have

applications in pattern matching (see section 11.4).

2.2 Encryption and Decryption

There is a distinction between symmetric and asymmetric encryption algo-
rithms. The distinctive property is that symmetric algorithms use the same
key for encryption and decryption, where asymmetric algorithms use different
key material for both operations.

Symmetric ciphers can be block ciphers and stream ciphers. Stream ciphers
encrypt/decrypt each input byte independently. Block ciphers on the other
hand operate on a number of bytes at once. It is easy to use a stream cipher
as block cipher. Some cipher modes (see section 2.3) allow a block cipher to be
turned into a stream cipher.

2.2.1 One Time Pad

The One Time Pad is a symmetric stream cipher. It works by XOR-ing every
clear text bit Pi with a key bit ki:

Ci = Pi ⊕ ki

If the key k is randomly selected and never used twice, this algorithm is provably
secure [153]. The obvious disadvantage is that the key must have the same length
as the plaintext. Furthermore the key must not be used twice.

24 CHAPTER 2. CRYPTOGRAPHY

2.2.2 Rijndael as Advanced Encryption Standard – AES

The block cipher AES [122, 34], also known as Rijndael after its Belgian de-
signers Joan Daemen and Vincent Rijmen, has been selected as the encryption
standard by the National Institute of Standards and Technology (NIST) of the
United States of America. The standardization process was started in 1997 after
the previous standard DES (Data Encryption Standard, standardized in 1981)
was increasingly considered insecure. Weaknesses of DES include short keys
(effectively 56 bits) and the existence of weak keys. Further progress in linear
and differential crypto analysis showed success against DES. In the year 2001
Rijndael was announced as the new standard for symmetric block ciphers, be-
cause it is considered secure (NSA has approved the use of AES for top secret
material) and reasonably fast both in hardware and software implementations.

Rijndael can work on any key and block sizes which are multiples of 32
between 128 and 256, but the AES standard prescribes that the block size
is always 128 bits while the key size can be 128, 192 or 256 bits. AES is a
substitution-permutation network. After generation of the round keys from the
input key, the following round is executed 10 to 14 times, depending on the size
of the input key.

AddRoundKeys All operations of AES work on a matrix of 4 × 4 octets.
Every round key has a length of 128 bits that are arranged as 4×4 octets.
In the AddRoundKeys step the current data matrix is combined with the
round key by a XOR operation.

SubBytes This step substitutes every byte by means of a lookup in a substi-
tution table (S-box). Here, substitution is a highly non-linear operation
and the basis for the security of the algorithm.

ShiftRows The ShiftRows step shifts the n-th row by n − 1 bytes, e. g. the
first row is not touched and the 4th row is shifted 3 times. With this
step, information is transported between columns, i. e. columns become
dependent on each other during the next rounds.

MixColumns Similarly, the column mixing step creates interdependencies be-
tween rows. This step works by using the four bytes from one column as
input to a function over Rijndael’s Galois field GF(28), which yield four
output bytes that replace the original column.

However, some new weaknesses have been discovered. Implementations of the
algorithm with a reduced number of rounds can be broken [53]. Further, AES
can be described in closed algebraic form [54]. This is a new property of block
ciphers, and whether this will lead to real attacks is still unknown. Despite
these weaknesses, the algorithm is in widespread use since the standardization
as AES.

2.3. MODES OF BLOCK CIPHERS 25

2.2.3 RC4

Ron’s Code Number 4 (after Ronald L. Rivest), also called RC4, is a stream
cipher. That means the cipher itself will output a sequence of octets that are
XOR-combined with the cleartext to form the ciphertext. The decryption op-
eration is analogous.

The algorithm works in two steps, initialization and usage. The first step is
the initialization of a 256-octet working area s. At starting time, this working
array contains all octets from 0 to 255 in this sequence (i. e. si = i, i ∈ (0, 255)).
Further, an array k of the same size contains the key (if the key is shorter
than 256 octets, it is repeated). Then, a variable j is initialized to 0 and for
i = 0 . . . 255 the two operations

1. j = j + si + ki (mod 256)

2. Exchange si and sj

are executed. The second step is the usage of the array s to produce the key
stream. For every byte of the key stream the following operations are required:

1. i = i + 1 j = j + si (mod 256)

2. Exchange si and sj

3. k = si + sj (mod 256)

The generated key stream is the sequence of sk.
RC4 excels by its simplicity and speed. However, there exists some weak keys

and further attacks on the algorithm. A prominent usage of RC4 is probably
the encryption in the IEEE 802.11 standard (WEP/WPA[128]).

2.3 Modes of Block Ciphers

Block ciphers as described above work on a single block of data.

C = Ek(P) P = Dk(C)

where P and C are blocks of plain- and ciphertext and Ek and Dk are encryption
and decryption algorithms, respectively. The key k is identical to encryption
and decryption (symmetric cipher). Both P and C usually have the same length.
C should not be larger than P , otherwise the cipher would become impractical
for many applications. On the other hand, C can not be smaller than P because
the cipher must be invertible. The size of such blocks is typically in the order
of 128 bits (e. g. DES uses 64 bits, Rijndael, which is a super set of AES,
supports 128, 192 and 256 bits). A block size of 64 bits is unsuitable for many
applications today, since there are only 264 possible blocks and because of the
birthday paradox, a collision can be expected with a probability 0.5 after 232

blocks, even if more advanced operation modes (see below) are used.

26 CHAPTER 2. CRYPTOGRAPHY

Since the overall input data size can be larger than the block length of
the cipher, the input data is split into multiple blocks. The last block may
be padded (see section 2.4). If multiple blocks have to be encrypted, there
can be different operation modes how encryption of one block influences the
other. Such operation modes differ in their complexity to implement, attack
possibilities, susceptibility to bit errors, how they can be executed in parallel
and other factors.

2.3.1 Electronic Codebook Mode

Electronic codebook mode (ECB) is the simplest of all modes, because different
blocks do not influence each other at all. Each block is encrypted separately:

Ci = Ek(Pi) Pi = Dk(Ci)

This mode is very easy to implement. The execution can be completely
parallel for all blocks, both for encryption and decryption. Bit errors in the
ciphertext (e. g. because of transmission errors) will only influence one block of
the clear text after decryption.

Figure 2.2: Unencrypted bitmap

Since each block is treated completely separately, the same input block is
always encrypted in the same way (given the same key is used). This is not
alway desirable, as figure 2.3 shows. The image is the ECB-encrypted version
of figure 2.2 shown before1. Even if AES256 is a strong encryption algorithm,
the content of the image is clearly perceivable.

As figure 2.4 shows, other modes 2do not show this weakness. Of course the
inverse conclusion is not true: The fact that the image is not directly perceivable
in figure 2.4 does not say much about the strength of the encryption.

1The uncompressed input image with 8 bit color depth was encrypted using AES256
with the randomly selected key fc7d bd38 5b1a 57bf 9cca 447b df0a ee13 4638 8b23 1a2f

d7aa 2963 1b7d b271 5584.
2Encrypted with AES256 in CBC mode (see section 2.3.2) with same key as figure 2.3 and

a initialization vector 0.

2.3. MODES OF BLOCK CIPHERS 27

Figure 2.3: Bitmap from figure 2.2, encrypted with AES256 in ECB mode

2.3.2 Cipher Block Chaining

To overcome the weaknesses mentioned above for the Electronic Codebook
mode, Cipher Block Chaining links the result of one block’s encryption with
the next:

Ci = Ek(Pi ⊕ Ci−1) Pi = Dk(Ci) ⊕ Ci−1

Different to ECB, every single bit error distorts all blocks starting from
the block containing the bit error. This can be seen as an advantage, because
transmission errors (caused by noise or by an adversary) are clearly visible.
Encryption in CBC can not be parallelized, because handling block i requires
that the treatment of block i − 1 is complete. The decryption operation can
start as soon as two consecutive cipher blocks are available.

To encrypt the first block P1, the value C0 is necessary. This value, also called
Initialization Vector IV, is an additional input parameter to the algorithm. The
initialization vector should be chosen at random for every message to ensure that
even if the same key is used, the cipher texts differ. The IV C0 must be known
at decryption time because P1 depends on it.

Figure 2.4: Bitmap from figure 2.2, encrypted with AES256 in CBC mode

28 CHAPTER 2. CRYPTOGRAPHY

2.3.3 Feedback Modes

Both Cipher Feedback Mode (CFB) as well as Output Feedback Mode (OFB)
effectively turn block ciphers into stream ciphers. The advantage of this ap-
proach is that the last block of input data does not need to be padded to the
block length of the algorithm.

In cipher feedback mode, the plaintext is xor-ed with the encrypted previous
cipher block.

Ci = Ek(Ci−1) ⊕ Pi Pi = Ek(Ci−1) ⊕ Ci

Note that for both operations the encryption direction of the block cipher is
used. CFB has the nice property that it is self-synchronizing. That means
that with any two consecutive blocks of ciphertext the decryption of the second
block is possible. This makes CFB suitable for continuous data streams where
decryption must be possible even without listening since the beginning of the
stream. The encryption operation can only be done sequentially, whereas the
decryption can be parallelized.

The Output Feedback Mode (OFB) on the other hand does not use the plain
text but computes a stream cipher. The stream cipher for OFB is given by:

Oi = Ek(Oi−1)

With that stream encryption and decryption is the XOR with plain- and ci-
phertext respectively:

Ci = Oi ⊕ Pi Pi = Oi ⊕ Ci

Again, O0 acts as initialization vector. The other values of Oi can be precom-
puted, so the actual encryption/decryption is only the XOR-operation.

2.3.4 Counter Mode

Counter mode is called counter mode because a nonce value is increased by one
for every block encryption. Nonce values are number used only once and are
written as Nonce from time to time. Sometimes counter mode is also called Seg-
mented Integer Counter (SIC) mode. In theory, every non-repeating sequence
of nonce values would be sufficient. In practice, a counter is used because of its
simplicity for many applications:

Ci = Ek(Nonce + i) ⊕ Pi Pi = Ek(Nonce + i) ⊕ Ci

Similar to the feedback modes described above, counter mode effectively
turns a block cipher into a stream cipher (with the notation from above, here
Oi = Ek(Nonce + i)). This has the advantage that the last block does not need
to be padded to multiples of the cipher block length.

Again, the block cipher is used in the encryption direction only.
To be effective, the value of Nonce must be chosen in a way not predictable

by an attacker. Further it is important that the nonce values are never reused,

2.4. PADDING 29

otherwise the scheme is compromised: If the sender transmits C1 = Ek(Nonce)⊕
P1 and C2 = Ek(Nonce)⊕P2 and the attacker computes C1⊕C2 = Ek(Nonce)⊕
P1⊕Ek(Nonce)⊕P2 = P1⊕P2. If the attacker further knows P1, he can compute
P2 easily.

Another important advantage of counter mode is the random access property.
Each block of the ciphertext can be decrypted independently, which allows easy
parallelism. Together that makes applications like disk block encryption easy
to implement.

Given the constrains above, the security of counter mode is believed to be
equivalent to the security of the underlying block cipher (see for example [111],
which also shows how counter mode can be used for authentication).

2.4 Padding

In general, padding is the process of adding symbols to the clear text. This can
serve a number of purposes. First, many plain-texts start or end with predi-
catable sequences of symbols. For example, documents in the Adobe Portable
Document Format PDF contain always the sequence 0x25 0x50 0x44 0x46

0x2d (the string “%PDF-”) at the beginning of the file or PostScript files often
end with 0x25 0x25 0x45 0x4f 0x46 0x0a (the string “%%EOF<line end>”).
Since in such cases the plaintext is know to a potential attacker, known plain-
text attacks can be mounted. However, todays ciphers are believed immune to
such attacks so this kind of padding is not common.

Some block ciphers or block cipher operation modes require that the length
of the clear text is evenly dividable by the block length of the cipher. There are
methods to circumvent this (e. g. ciphertext stealing [151, 5] or residual block
termination [151]).

Both methods add an significant amount of complexity. If such a complexity
increase cannot be justified and the application can deal with the fact that the
ciphertext is a little bit longer than the clear text, padding can be used. Here,
padding is the process of adding information the the clear text so that the length
of the clear text becomes evenly dividable by the block length.

Many cryptographic hashing functions (see section 2.1.2) also require the
input data to be a multiple of an internal block length and use padding to
achieve this.

One easy way to do it is to extend the clear text with N, N, N, . . ., where N
is the number of padding octets. That also means that this padding method is
only applicable if the padding length is a whole number of bytes. To do it in a
unambiguous manner, the padding is always added, even if is not necessary (if
the input data length is already evenly dividable by the cipher length). That
means, for a cipher with block length 64 bit there are exactly eight different
paddings possible: 0x01, 0x02 0x02, 0x03 0x03 0x03, . . ., 0x08 0x08 0x08

0x08 0x08 0x08 0x08 0x08. This kind of padding is for example suggested
in [76], [67], [78] and [77].

One other way to pad clear text blocks is to first append one 1 bit, then

30 CHAPTER 2. CRYPTOGRAPHY

a sequence of 0 bits. This padding method can be applied to messages whose
length is not a whole number of octets and is recommended by [44].

There is a similar alternative that includes the total length of the clear text.
For that, again one 1 bit is followed by a number of 0 bits until the condition

length of input + length of padding + length of length field ≡ block length

is true. Then the length of the input data before padding is appended. For
example [141] uses this type of padding with a 64 bit length field.

Table 2.5 shows applications of the last three padding schemes.

block length 8 16
Original CAFEBABE CAFEBABE

RFC2315[77] CAFEBABE04040404 CAFEBABE0C0C (8×0C) 0C0C
NIST SP-800-38A[44] CAFEBABE80000000 CAFEBABE8000 (8×00) 0000
RFC1321[141] CAFEBABE80000004 CAFEBABE8000 (8×00) 000C

Table 2.5: Padding Examples

2.5 Summary

This chapter introduced important concepts from the field of cryptography,
encryption, decryption and hashing. These will be important building blocks
in later chapters. Also some non-cryptographic algorithms were presented, e. g.
cyclic redundancy checks. The next chapter will deal with the foundations of
overlay networks and peer-to-peer networks in particular.

Chapter 3

Overlay Networks

It is always possible to add another level of indirection.
Ross Callon

Computer networks connect a set of communicating computers or devices
so that the participating nodes can exchange messages over the established
links. The topology of the network is determined by the physical links (wired or
wireless). Overlay networks are virtual networks which are built on top of other
networks. As such, overlay networks can choose their own topology. Probably
the most prominent example for overlay networks is the Internet itself, which
was initially deployed to a large extend on top of the plain old telephone network
(POTN).

Since overlay networks as considered in this and the following chapters cre-
ate a their connections with the help of the transport layer from the OSI/ISO
standard model[178][71], they conceptually reside on top of OSI layer 4.

This chapter first covers peer-to-peer networks, which are a related, but not
identical, concept. Then, the idea of structured overlay networks is introduced
together with key based routing. The chapter concludes with an important
application for key based routing systems, distributed hash tables, and opti-
mization opportunities for overlay networks.

3.1 Peer-to-Peer Networks

The term peer-to-peer is used for interaction among equals. In computer science,
it is the opposite of the client-server approach. Client-Server communication is
characterized by a clear distinction of roles between a requestor (client) and
responder (server). On the other hand, in peer-to-peer communication systems,
all participants can take on (at least in theory) all responsibilities. In real-
ity, many systems are neither pure peer-to-peer systems nor pure client-server
approaches, but are based on both concepts and called hybrid systems.

31

32 CHAPTER 3. OVERLAY NETWORKS

The goal of peer-to-peer systems is the sharing of resources. Resources in
this context can be network connectivity, storage space or computing power,
sometimes also the generation of content or human presence and attention.
For examples see [158]. This sharing of resources makes peer-to-peer networks
distributed.

Another important aspect of peer-to-peer networks is decentralization. That
means the system tries to avoid a single central component, whose failure would
be fatal for the system. Decentralized peer-to-peer systems try to avoid such
single point of failures.

The next subsections will show examples of peer-to-peer systems, one more
hybrid and one more pure peer-to-peer.

3.1.1 BitTorrent

The distribution of (large) files between users was one of the main drivers to
increase popularity of peer-to-peer systems in the last decade. In such sys-
tems, bandwidth and storage capacity are the shared resources. In centralized
approaches for data distribution both can become a limit.

BitTorrent [21] is one of the more hybrid approaches. A BitTorrent sys-
tem consists of a tracker, an initial seeder and potentially many downloaders.
The initial seeder is the publisher of the file. It splits the file in parts and
computes a cryptographic hash over each part. These hashes are used for iden-
tifying the data blocks and later for integrity-checks after download. The initial
seeder compiles all these hashes and the address of the tracker into a so called
torrent-file. Such a torrent-file is distributed separately from the publisher to
the downloaders. Traditional methods like a HTTP-server are used regularly,
since the torrent-file is small compared to the to be transfered file. Then the
initial seeder announces to the tracker that it has all the blocks of the file.

In order to fetch the file, the downloader first needs the torrent-file. As
mentioned above, web-servers are a common source for them. In the torrent-
file, the downloader finds identifiers of all blocks of the file as well as the address
of the tracker. From the tracker the downloader gets the address of the initial
seeder. As soon as the first blocks are transfered from the initial seeder to
the first downloader, the first downloader informs the tracker of the successful
download and the new source. This way, successive downloaders can fetch blocks
either from the initial seeder or the first downloader. By implementing a rarest-
block-first strategy, BitTorrent ensures that the load on the initial seed is quickly
distributed over all downloaders.

The tracker component in the BitTorrent system is a centralized compo-
nent, since all downloaders need the tracker to find the seeder and each other.
This centralized component is a single point of failure: If communication to the
tracker is not possible (for whatever reason), the BitTorrent system ceases to
work. Later implementations of the BitTorrent protocol do not have the require-
ment of the centralized tracker. Instead of the tracker, they use a distributed
hash table (see section 3.3) based on Kademlia (see section 3.2.1).

3.1. PEER-TO-PEER NETWORKS 33

3.1.2 Freenet

Freenet [19] is a peer-to-peer network for distributed data storage and access.
One major design goal was to have the network as anonymous as possible and
make censorship of content in the network as hard as possible.

A

B

C

D

E F

G

1 12

2
3

5

4

6

7

8

9

10

11

return path
query path

Figure 3.1: Routing in Freenet

The two main operations of Freenet are the storage (put) and the retrieval
(get) of single data items. Both work by first assigning each data item a unique
identifier. The Freenet node generating a get request chooses among its neigh-
bors which one is the most likely to serve the request. Then the request is
forwarded to this node, which does the same recursively, again evaluating the
likelihood that the next hop has the requested data1. At each step, every node
inserts itself as the originator of the request with a given probability. That
makes it impossible for the receiver of a request to be sure where the request
originally came from and creates the anonymity properties of Freenet.

If a node does not have any possibility left for forwarding requests (either
because such forwarding would create loops or because such forwarding would
decrease the probability of success), the request is returned. Upon such a non-
successful return of a request, a node forwards the request to the second best
neighbor. In effect, the network is searched as a tree in a depth-first manner
(see figure 3.1).

Once a data item is found, it is returned on the same path the request took.
Again, each hop on the path has a probability to set itself as the source of the
item and preserves by that the anonymity of the real origin. The protection
of the origin of data is an important part in the censorship resistant design
of Freenet. To further strengthen censorship and denial-of-service resistance,
intermediate nodes on the path from data origin to requestor save a copy of
the item. Once a data item request returns successfully, the probabilities for
subsequent similar requests to take this path are increased.

1Since version 0.5 of Freenet not only the probability of success is evaluated but also the
estimated time until success. This is a form of proximity route selection, see section 3.4.2.

34 CHAPTER 3. OVERLAY NETWORKS

Storage requests are routed in similar manner, again with a probability that
intermediate nodes disguise the identities of the publisher and the storage nodes.

For the request routing and forwarding process it is important that data
items are identified in a unambiguous way. Freenet provides at least three ways
to do so:

• For Keyword Signed Keys (KSKs), the publisher describes the data item
with a descriptive text. From this text, an asymmetric key is computed
in a deterministic manner. The public part serves as identifier for the
data item, the secret part is used to sign the data. Note that since the
key is produced in a deterministic way, such a signature provides integrity
protection but no authentication. As such, the security of KSKs is pretty
weak, but they are used nevertheless. The content of the data item does
not influence the generation of the identifier, so it is possible for an attacker
Eve to modify the data.

• Content Hash Keys (CHKs) are used for the bulk of data transported over
Freenet. These identifiers are computed as a cryptographic hash function
over the content of the data block. By this method, Eve the attacker can
not modify data associated with a CHK without Bob noticing it. Further,
the data block is encrypted with a symmetric cipher. This encryption
ensures that intermediate nodes can not read the data they transmit. In
fact, these intermediate nodes can plausibly deny that they have knowledge
about the data. The publisher and the requestor of the data item share
knowledge about the cryptographic hash as well as about the symmetric
key.

• Since the required transportation of the symmetric key from publisher to
reader is a disadvantage of CHKs, Signed Subspace Keys (SSKs) were in-
troduced. First, the publisher randomly creates an asymmetric key pair.
Then the identifier of a data block is computed as ID = h(public key) ⊕
h(text). The text can be arbitrarily chosen by the publisher. In order
to check the integrity of the stored data, the data block is signed with
the private key of the publisher. Since asymmetric cryptographic is more
expensive than symmetric one, SSKs are often used as a forwarding mech-
anism to CHKs. For the descriptive text some conventions have been
established, e. g. the text can include a version number of the data item or
a time stamp when the data has been published. Both conventions allow
a receiver to deduce future description strings.

Freenet is designed to be anonymous and censorship resistant, but it does not
conceal the identities (network (i. e. IP-) addresses) of nodes running Freenet nor
the fact that they running Freenet. This made Freenet susceptible to scanning
and banning. Since version 0.7 Freenet tries to address this problem by changing
the way new connections are established. Previously, nodes could be queried for
connections to other nodes. Newer versions create new connections only after
a human has introduced the new peer. With this strategy, Freenet is modeled

3.2. STRUCTURED OVERLAYS AND KEY BASED ROUTING 35

after the human trust relationships network. This network is a Small-World -
network and [145] showed that routing in such networks is possible. Since it
can be difficult to detect and enter such a network, they are sometimes called
darknets, a term allegedly introduced by [7].

3.2 Structured Overlay Networks

and Key Based Routing

The peer-to-peer overlay networks just described do not have a special structure
in their connection topology (besides all BitTorrent nodes connecting to a central
tracker). The established links between peers are created on demand. Therefore
these networks belong to the class of unstructured overlay networks. Structured
overlay networks on the other hand use the freedom to choose their own topology
to their advantage. The idea is to create invariants that are helpful for the tasks
at hand. One task for overlay networks is to forward messages.

Key based routing systems are networks specialized in forwarding messages.
In general, this works as follows:

1. Each node in the network is assigned a unique identifier.

2. Each message has a destination identifier from the same identifier space.
Typically, the number space where node identifiers and message destina-
tions are taken from is large, e. g. 2128 or 2256.

3. A metric d = f(ID1, ID2) is defined.

4. The messages are routed until d(IDnode, IDmessage) becomes minimal.

The topology of the network is chosen in a way that facilitates finding the
minimum in a fast, efficient and guaranteed manner. The process of routing
can take place in two different manners:

Recursive routing forwards the message hop by hop from sender (S) over in-
termediate nodes (I) to the final receiver (R). Each hop evaluates the
destination of the message and takes an appropriate forwarding decision.
Figure 3.2 shows the concept.

Iterative routing on the other hand does not forward the message hop by hop.
The sender of the message computes the next hop and queries this next
hop for the target of the message. The next hop replies with an even
better next hop, which is queried again (thin arrows in figure 3.3). This
process of iterative querying continues until no better next hop is found.
The message itself traverses only this single hop (bold arrow).

The ideas behind such strongly structured networks are not recent. For
example [148] explores the usage of de Bruijn-graphs for message routing in
multi-processor machines. Later, the idea was picked up for distributed and
decentralized systems [40, 104, 132, 81].

36 CHAPTER 3. OVERLAY NETWORKS

S I I I R

Figure 3.2: Recursive Key Based Routing

I I I RS

Figure 3.3: Iterative Key Based Routing

Since there is no specialized central component in such networks, they work
in a peer-to-peer fashion. However, not all key based routing schemes are nec-
essarily overlay networks, as [12] and [59] indicate. They showed that key based
routing schemes can also be used as normal routing/forwarding protocols at the
network layer.

topology based flooding

Figure 3.4: Message Forwarding Protocols

Traditionally, message forwarding protocols are assessed in terms of required
state. Flooding (i. e. forwarding all messages to all nodes) requires O(1) state,
but on the other hand flooding imposes high load on the network. Topology
based protocols need to consider the full topology of the network (O(N)), but
message forwarding itself is much more efficient. There are approaches to reduce
the amount of required state or required flooding by introducing hierarchies in
the network. These hierarchies are either in the topology itself (mostly trees),
or in the address space (like the subnets in IP-networks). Both approaches,
flooding and topology based, have in common that messages travel on a very
short path, often the shortest possible path. Figure 3.4 shows the tradeoff:
Either a small state and a high network load or large state and lower network
load. In any case, the shortest path is found.

On the other hand, key based routing protocols forward messages via in-
termediate hops. These intermediate hops are not necessarily on the shortest
path, but the key based routing protocols have the advantage that they neither
need flooding nor a large state on the forwarding nodes. Figure 3.5 shows how
key based routing protocols open up a new dimension in the design space for
message forwarding protocols. While giving up the shortest path property, key
based routing protocols are able to route efficiently even with a small local state.

3.2. STRUCTURED OVERLAYS AND KEY BASED ROUTING 37

topology based flooding

key based routing

shortest path

lo
w

ne
tw

or
k
lo
ad

low
state

Figure 3.5: Message Forwarding Protocols and Key Based Routing

Key based overlay routing protocols themselves can also be assessed in terms
of required state and the message overhead they create. Figure 3.6 shows some
popular protocols and how they relate in terms of scalability ([158, 137, 160,
144, 148]).

The following sections describe some selected protocols in more detail. Oth-
ers have been left out (e. g. [106] and [101]), either because the system is very
similar to a presented one or the system lacks practical relevance.

2

1

4

5 3

O(N1/d)

1 − full mesh
2 − flooding
3 − Chord, Pastry, etc
4 − CAN
5 − deBruijn

state

ho
ps

O(1)

N

N

O(log N)

O(1) O(log N)
O(d)

Figure 3.6: Scalability of Overlay Networks

38 CHAPTER 3. OVERLAY NETWORKS

3.2.1 Kademlia

Kademlia [110] is a key based routing protocol and uses XOR as the metric, i. e.
the distance of two identifiers is given by d(a, b) = a⊕ b. The protocol message
FindNode contains an identifier of the searched-for-target t and is sent to the
node i where d(t, i) becomes minimal. This node may have knowledge of other
nodes even closer to t, and returns node identifiers and transport addresses
(i. e. Kademlia IDs as well as IP address and UDP port number). This process
continues iteratively until no node closer to the target is found. The XOR metric
has the useful property that it is commutative (d(a, b) = d(b, a)). In this way,
nodes quickly learn about their neighborhood: If A is close to B and sends B a
message, B can learn the existence of A from that message. In order to guarantee
the convergence of the lookup process, each node has to keep information about
O(k log2 N) specific other nodes, where N is the number of nodes in the network
and k is a design parameter. This routing table is divided into buckets by the
Kademlia specification. If the distance d(A, B) of two nodes A and B has a
prefix of i digits of zero, A and B store each other in the ith bucket. Each
bucket has a size of up to k entries, hence they are called k-buckets.

On top of the simple FindNode-procedure Kademlia uses the messages Store
and FindValue to implement a distributed hash table (see section 3.3). A fourth
message, Ping, is used to check the liveliness of nodes.

On startup (see section 3.5.2), a Kademlia node performs a lookup for its own
identifier. This lookup has the effect of informing other nodes of the existence
of the new node. In particular, the node with the ID closest to the ID of the
new node is informed too.

3.2.2 Pastry

Pastry [144] uses a similar metric as Kademlia. It also tries to increase the prefix
match between node identifier and to-be-searched-for key. To do so, it employs
a more strict routing table than Kademlia. First, every m bits of the identifiers
are grouped into digits. The routing table has 2m columns and n

2m rows, if n
is the number of bits per identifier (usually larger than 100 bits). Table 3.1
shows a much smaller table as example. To insert new nodes in the routing
table, first the largest common prefix is computed. The number of common
digits gives the row of the routing table, the first non-equal digit the column. A
lookup for a next hop of a message works similarly: First the largest common
prefix between the current node and the target identifier is determined. The
quantity of matching digits specifies the table row, the first non-matching digit
the column. If node A uses row i for lookup and forwards a message to node B,
node B uses at least row i + 1, otherwise A would not have sent the message
to B. In this way, the lookup mechanism is guaranteed to be deterministic and
bounded.

Even if the routing table contains n
2m rows, the forwarding process is ex-

pected to complete after O(log2m(N)) steps. The reason behind this is that
many of the lower routing table entries are empty, because the number of nodes

3.2. STRUCTURED OVERLAYS AND KEY BASED ROUTING 39

0 1 2 3 4 5 6 7

1 0xxxx 1xxxx — 3xxxx 4xxxx 5xxxx 6xxxx 7xxxx
2 20xxx 21xxx 22xxx 23xxx 24xxx — 26xxx 27xxx
3 250xx 251xx 252xx — 254xx 255xx 256xx 257xx
4 2530x 2531x 2532x 2533x 2534x 2535x 2536x —
5 25370 25371 25372 25373 — 25375 25376 25377

Table 3.1: Example Pastry Routing Table for a node with identifier 25374,
assuming m = 3 and 15 bit identifiers. For brevity, octal numbers have been
used.

N in the network is expected to be much lower than 2n.

3.2.3 Chord

The metric in Chord [160] is a little bit different to that in Kademlia and Pastry.
Chord assumes a circular address space and uses subtraction as metric: d(a, b) =
b−a (mod 2n). Again, n is the number of bits in each identifier. Contrary to
XOR, this metric is not commutative. Every node x tries to establish a routing
table entry to the nodes x + 2i with i ∈ (0, n].

Again, for small i the entry is likely to be empty. Overall, there are O(log2 N)
entries expected in the table. The routing table in Chord is called the finger
table, because if one draws the circular address space together with the routing
table entries of one node, these entries are spread like the fingers of a hand.
Note that each node knows its two direct neighbors on the address ring.

Message forwarding in Chord works by using the “longest” finger, i. e. the
finger just before the target. This way it is ensured that the forwarding process
terminates at the node closest (according to the metric) to the target. The
expected number of hops is O(log2 N), because on average, each hop halves the
distance to the destination.

3.2.4 Content Addressable Network – CAN

With CAN (Content Addressable Network) [137], the address space is not
thought of as a ring as with Chord, but as a d-dimensional torus2. To do
so, each identifier (node identifiers as well as message identifierss) is split into d
components.

Message forwarding works in the same way as with geographic routing in
ad-hoc routing protocols [82]. The next hop is selected based on the euclidian
metric. If ai are the d components (i. e. i ∈ (1, d)) of the identifier of node a,
then the distance d between a and b is given by

d(a, b) =

√

(a1 − b1)
2
+ (a2 − b2)

2
+ · · · + (ad − bd)

2

2The number of dimensions d is a design parameter.

40 CHAPTER 3. OVERLAY NETWORKS

Because of the d dimensions, there are on average N1/d nodes per dimension
and the expected number of hops to the destination are O(d · N1/d). For the
routing to work, it is necessary that each node in the network knows its direct
neighbors in all dimensions. This number can be larger than 2d in case nodes
are not evenly distributed.

To establish these connections, a new node A first does a lookup of its own
position in the torus. This lookup will yield a node B, which will be queried
for its neighbors. The area of responsibility, in CAN called zone, will be split
between A and B and all the neighbors will be notified of this event. By choosing
d to be d = log N , the performance characteristics of CAN can be brought to
the hop count and state amount of Chord and Kademlia: O(log N).

3.2.5 de Bruijn Networks

Overlay networks based on de Bruijn-graphs [148] have a constant node degree,
i. e. the state at every node is in the order of O(1). The node identifiers are
made of k letters from an alphabet with size m. Each node selects m outgoing
(i. e. the graph is directed) connections, one for each symbol of the alphabet.
The next node is selected by shifting one letter out at the left hand side of the
node identifier and shifting one new symbol in at the right hand side. Figure 3.7
shows such a network with m = 2 and k = 3. Note that some edges are reflexive
by construction.

Routing in such a network works by taking the node identifier of the message
origin and the routing key for the destination and shifting out the symbols of
the source and shifting in the symbols of the destination. Each of these shift
operations traverses one edge in the network. After at most m shift operations,
the destination is reached.

001

000

100

011

110

111010 101

Figure 3.7: de Bruijn-graph with the alphabet {0, 1} and node identifiers with
three letters

In its original design, de Bruijn graphs exists only for exactly mk nodes in a
network. However it is possible to weaken this condition [163, 164].

3.3 Distributed Hash Tables

As hash tables are an efficient data structure to associate keys with values
on a local computer, distributed hash tables are an efficient way to do so in

3.3. DISTRIBUTED HASH TABLES 41

distributed systems. Here, some of the key-value associations are stored on
every participating machine.

Key based routing systems are a very suitable substrate to implement the
functionality of a hash table on top of the distributed key based routing network.
Basically, this works with two types of messages:

Put This is the message to store a key-value pair in the system. Sometimes the
message is also called store or publish. There is either no answer at all or
an acknowledgment (possibly with a handle to later modify or delete the
entry). The routing key (i. e. the destination) of the message is the key of
the key-value pair.

Get The routing of this message works in the same way as the routing of the
put message, which is the main idea of distributed hash tables on top of
key based routing systems. The node receiving the get message replies
with the value stored by a previous put message.

Possibly other messages are implemented to query properties of stored elements
without retrieving them or to modify and delete entries.

Applications

KBR

Underlay (IP)

DHT CAST ...

Figure 3.8: Relation of Key Based Routing and Distributed Hash Tables

On the other hand, key based routing systems can be seen as a distributed
hash table themselves. Key based routing systems map routing keys to nodes
(e. g. the nodes IP-address). Communication can thereafter occur directly. For
both ways it is important that the allocation of objects to nodes does not change
rapidly when nodes join or leave the system. This requirement can be satisfied
with consistent hashing [81].

Figure 3.8 shows the former way to construct a distributed hash table on top
of a key based routing system. Of course applications can access the network
layer as usual. Furthermore, the key based routing system offers a service to the
application, i. e. applications can send messages targeted at given routing keys
and these messages are delivered to the node with the identifier closest to the
key. On top of the key based routing layer, services like distributed hash tables
can be implemented. [33] mentions multicast, anycast (CAST in figure 3.8),
publish/subscribe systems and distributed object location and referencing [65] as
other examples. These higher level services can then be used by the application.

42 CHAPTER 3. OVERLAY NETWORKS

3.3.1 Bamboo and other DHT Services

Bamboo [139] is a DHT implemented on top of the ideas from Pastry [144] with
the help of [171]. However, it is optimized to work well under churn, i. e. it is
more stable if many nodes join and leave per unit of time.

Bamboo is deployed on PlanetLab (see section 8.1.1) as OpenDHT [140] and
running there continuously. It implements some basic security measures against
malicious deletion of key-value pairs: During store operations, the cryptographic
hash of a secret is attached. Later, a delete operation is only executed if the
secret is revealed.

Many other distributed hash table concepts have been proposed, e. g. [32],
[101] and [107]. Kato et. al compares different designs and implementations with
special attention to return rates of get queries, reply delay and required network
bandwidth [84]. These parameters are tested with static networks as well as
dynamic ones. Furthermore it is checked how the distributed hash table reacts
to multiple put requests with identical keys but different values. Additionally
the scalability of designs and implementations is evaluated.

3.4 Optimizing Overlay Networks

Overlay networks as described in [160, 137, 144] and others in their basic form do
not consider that connections in the underlying network differ in their properties.
However, there are big disparities in latency, reliability, bandwidth and other
parameters among network connections. The parameters may vary over time
and direction, e. g. the bandwidth of a consumer link is asymmetric and latency
depends on network usage and route selection. Since the network properties are
not considered, “bad” connections occur are as often as “good” connections.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000 10000 100000 1e+06 1e+07

W
ah

rs
ch

ei
nl

ic
hk

ei
t

RTT (ms)

Figure 3.9: Round trip time distribution of replies in Overnet

Figure 3.9 from [96] shows that the distribution of round trip times in the

3.4. OPTIMIZING OVERLAY NETWORKS 43

measured network3 follows a power-law distribution over many orders of mag-
nitude. This shows that “bad” connections are not a rare event. An overlay
network without optimizations would choose connections from such a distri-
bution at random, because it does not consider latency during connection es-
tablishment. Even if power-law distributions have a small median value, the
mean value of random draws can be surprisingly large4 because of the “heavy
tail” [125]. Since overlay networks have to some extend the flexibility to choose
their connections and routing decisions, they can optimize the performance even
in the face of uneven and changing conditions.

3.4.1 Degrees of freedom

The key based routing systems and distributed hash tables described above have
some degrees of freedom on

• how to select neighbors

• how to forward messages once neighbors have been selected.

For example, Pastry (see section 3.2.2) has great freedom on which neighbors
are used to fill the upper columns of the routing table. Table 3.1 shows this
freedom marked with an ‘x’. As a second example, Chord has the liberty to
choose any node from the finger table as next hop as long as the distance to
the destination is decreased (i. e. there is no jump over the target). Many of
these degrees of freedom and how they impact the performance and stability of
routing in different topologies are studied in [62].

3.4.2 Proximity Route Selection

Proximity Route Selection (PRS) can be employed everywhere the forwarding
rules in overlay networks allow to choose from more than one entry in the routing
table For example Chord and Kademlia have this kind of freedom, whereas
deBruijn networks and Pastry do not. From the set of all possible next hops
PRS first selects all next hops allowed by the routing metric, i. e. all next hops
that decrease the distance to the destination in the identifier space. All next
hops in this set are then evaluated using a second metric, e. g. latency. The
message is then forwarded to the next hop where the second metric is optimal.

Optimizing overlay networks for latency is shown to have a significant effect
on average end-to-end latency [62]. This is a useful goal for many overlay
applications, especially if user interactions are involved. However, latency is
not the only possible metric, other metrics are possible as well, e. g. bandwidth,
reliability, trust or uptime. There is an interaction between bandwidth and

3The experiment measured the Overnet overlay network for two weeks during July 2004.
During that time, the Overnet had between 2 ·105 and 2.65 ·105 participants. The experiment
collected over 4.82 · 109 round trip time measurements. A round trip time in this measured
as the time it takes to receive an application layer answer.

4The mean value for round trip times the Overnet experiment was more than 5 seconds,
where as the median value was 4 · 10−1 seconds

44 CHAPTER 3. OVERLAY NETWORKS

latency: If the bandwidth is saturated, the latency can increase because of filled
buffers in the responsible routers.

Employing PRS has disadvantages too. First, there is no guarantee that
the overall performance is enhanced. Second, the number of necessary hops
to the destination will likely increase. With this increase, the reliability of
the overall transfer can decrease. Advanced PRS schemes therefore strive to
balance improvements in the identifier space metric with improvements in the
performance metric.

3.4.3 Proximity Neighbor Selection

As seen in the previous section, PRS tries to optimize the use of connection af-
ter these connections have been established. Complementary to PRS, Proximity
Neighbor Selection (PNS) tries to optimize the selection of entries in the con-
nection table. As with PRS, not all key based routing schemes and distributed
hash tables can freely select the routing table entries. For example for Pastry
the freedom is obvious: All entries ending with an ‘x’ in the routing table (see
section 3.2.2) have more than one possibility to be assigned. If the entry has i
out of n identifier bits set to ‘x’ and the network has N nodes, then the position

can be set to one of ⌊N · 2i

2n ⌋. Especially in the upper rows a high number of
nodes is eligible. On the other hand, de Bruijn networks do not have any flexi-
bility at all when it comes to neighbor selection. With Chord, the requirement
for the i-th finger to point to the closest node after ID + 2i can be loosened
to the requirement that this finger should point to any node in the interval
(ID + 2i, ID + 2i+1]. With this weaker condition, a similar degree of freedom as
in Pastry is achievable, because for each finger, a similar number of possibilities
exists.

The difficulty with PNS is to find these proximity-optimal neighbors, because
a potentially large number of nodes are eligible. These problems and possible
solutions are discussed in the section 3.4.4.

3.4.4 Finding Close Neighbors

To implement proximity route selection (PRS, see section 3.4.2) is a straightfor-
ward task. The distance to all routing table entries has to be determined. Since
one of the design goals of structured overlay networks is to limit the number of
routing table entries (there are O(log N) entries or less), the amount of work to
be done to estimate all the distances is limited.

On the other hand, proximity neighbor selection (PNS, see section 3.4.3) is
more difficult. Here, a potentially large5 fraction of all members of the overlay
network are possible candidates for routing table entries.

The order of magnitude of todays overlay networks prohibits the methodic
probing of all distances. Since finding the best routing table entry has been

5For example, in Kademlia (see section 3.2.1), the first half of all nodes are eligible for the
first bucket. Similar, Chord allows half of all nodes to be the target of the largest finger.

3.4. OPTIMIZING OVERLAY NETWORKS 45

shown to be difficult, a number of heuristics to find good neighbors have been
developed. Hildrum [64] describes an algorithm to find the nearest neighbor in
growth restricted metrics with O(log N) steps on average. Clarkson [20] gives a
good overview over other approaches.

During Bootstrapping

Nodes can already actively select close neighbors in the early phase of joining the
network. In [28] it is proposed to use common IP-prefixes as hint for topological
closeness. This paper and [96] show that it is common for overlay nodes to share
large prefixes.

Measuring

Most approaches to finding and using neighbors close by have in common that
the distance to the neighbors has to be measured6. The protocols used at the
network and transport layer influence how this can be done.

If the transport protocol does its own latency measurements, these measure-
ments can of course be used. Some transport protocols need to do their own
latency measurements in order to compute expectations for packet arrivals. For
example the Transport Control Protocol (TCP [135]) keeps an estimation of the
round trip time (RTT) and its variation in order to estimate arrival time for
acknowledgments. Since such measurements are part of the implementation of
the transport protocol, the application (i. e. the overlay network) needs access
to the internals of the network stack. Linux for example allows such access with
the system call

getsockopt(int socket s, SOL_TCP, TCPINFO,

struct tcp_info *, socklen_t *)

The structure struct tcp info contains values required for PRS and PNS.
Other transport protocols like the user datagram protocol (UDP [133]) do

not implement such features and leave it to the user application to realize it
if it is necessary. Transport protocols like Stream Control Transport Protocol
(SCTP [129]), Datagram Congestion Control Protocol (DCCP [91]), Real-time
Transport Protocol (RTP [152]) need to perform some of the measurements
to implement congestion and flow control, either by the protocol or by the
application.

It is also possible to measure one level below the transport protocol at
the network level. IP networks provide the Internet Control Message Proto-
col (ICMP [134, 24]). This protocol contains a pair of messages (Echo Request
and Echo Reply) that are used to measure the latency between two hosts.

Note that the systems described above all measure the round trip time and
not the one-way delay.

6Measuring means comparison. Here, the latency to neighbors is either compared to other
latencies or to the local system clock.

46 CHAPTER 3. OVERLAY NETWORKS

Coordinate Approaches: from GNP to Vivaldi

In order to predict latencies between Internet hosts, the idea of a coordinate
system was proposed. Such a system tries to embed the Internet and the la-
tencies between hosts into a metric space (the model). These systems depend
on measurements to or from known locations (e. g. Global Network Positioning
GNP [126], IDmaps [56]) or between participating hosts (e. g. Vivaldi [27]). Af-
ter a measurement takes place, the result is compared to the values estimated
by the model. If they differ, the model is adapted. Challenges in these systems
include:

• The right model has to be selected. Possibilities from [27] include d-
dimensional Euclidean spaces, similar with an additive constant and non-
Euclidean spherical spaces.

• Measurement traffic has to be balanced with the quality of results. Higher
quality coordinates can be achieved with more measurements, but more
measurement traffic also means more overhead.

• The model adaption rate has to be balanced with the prediction quality. If
the model is quickly adapted, the system can react fast to changing condi-
tions in the network, but tends to overreaction and oscillation. Damping
can become necessary. If the model is not adapted quickly enough, it may
produce useful results far too late.

Recent systems do not take the Internet as a black box, but incorporate the
structure of the network into the model in order to improve the quality of
predictions [105].

Meridian

Coordinate based systems have at least two drawbacks: First, to keep the co-
ordinates up-to-date, a constant measurement traffic is necessary. Second, once
the coordinates are estimated, they are only partially helpful in finding close
neighbors. Greedily following to the next best neighbor does not work because
of the high dimensionality and local minima7.

Meridian [172] circumvents the need to create or maintain artificial coordi-
nates. Each node keeps the latency to a number of neighbors. These neighbors
are grouped into so called rings. A ring consists of neighbors with similar dis-
tance. The radii of the rings grow exponentially.

The rings are populated with a gossiping protocol. From each ring one
member is selected at random. Then a list of representatives from each ring
is compiled and sent to the selected node. Upon reception of such a list, the
receiving node measures its distance to each of the nodes in the list and adds
them, according to their distance, to the local rings.

7A greedy algorithm chooses the local optimum at every step. Note that such an algorithm
may fail to find the global optimum.

3.5. OTHER ISSUES 47

To find close neighbors, a member of the outermost ring is queried. It will
reply with nodes from the next innermost ring. The distance to each of these
nodes is measured and the node with the smallest distance is queried for the
next ring.

3.5 Other issues

3.5.1 Route convergence

Route convergence is a property of many key based routing schemes and de-
scribes the fact that messages from two different origins to a common destina-
tion share the later part for their routes. Since the in-degree of every node (here
especially the destination node) is limited, routes are bound to converge.

In many cases, there is more than one route possible from source to desti-
nation. If all nodes optimize routes in the same way (either for the identifier-
distance metric only or with proximity route selection), routes converge early.
This is a very useful property for some applications on top of the key based
routing system:

• Storage and caching systems can locate replicates at the points where
routes converge. This has the advantage that the node at the conver-
gence point can already reply to requests and reduce the load on the real
destination.

• If PRS (and potentially PNS) is in use, routes have a high probability to
converge locally. This property is useful because local communication is
often cheaper and/or better.

• The convergence points can aggregate messages, a useful property if the
key based routing system is used for more complex tasks.

On the other hand, there are overlay structures where route convergence is
not prevalent. In de Bruijn-Graphs (see section 3.2.5), which can also be used as
substrate for overlay networks [163, 164], routes do not converge early. This can
be used as an advantage. Some security sensitive applications might want to
route a single message on multiple paths. An adversary which wants to tamper
with the message need to intercept and modify the message on all paths to stay
undetected.

3.5.2 Bootstrapping

Since overlay networks are built on top of other networks, a newly joining node
does not have an a priori connectivity to the network. In order to join the
overlay network, at least one other overlay node must be known.

There are different solutions to the problem, including:

48 CHAPTER 3. OVERLAY NETWORKS

Static Nodes Used for example in the early Gnutella network [79]. There,
the static DNS name of some Gnutella nodes were hard-coded into each
Gnutella client. These nodes were called pong caches because they stored
the replies to ping-messages. When newly joining nodes queried for nodes
in the overlay, the pong cache replied with recently received pongs.

The telephony network Skype uses such a central entry point, too [8].
These central entry points are again hard-coded in the Skype client.

Native IP Multicast/Anycast By using IP anycast it is easy to join an over-
lay network. It requires that all overlay nodes are part of the anycast
group. The joining node sends a request to the group and one node an-
swers. The answering node becomes the bootstrap node of the joining
one. If multicast is used, a scheme like [60] must be used in order not to
overwhelm the requestor with replies. Both approaches have the disad-
vantage that neither IP multicast nor anycast is available at a large scale
in the current Internet.

Out of Band Here, the bootstrap node is known to the joining node by a
mechanism outside the scope of the overlay network. Examples include
Gnutella web caches and the Freenet node list.

The Gnutella web caches [35] are CGI-scripts that store addresses of re-
cently seen Gnutella Hosts. However, the Web Caches are either over-
loaded or the informations are outdated: According to [80] the fraction of
nodes effectively online and responding to connections requests can be as
low as 16%.

During runtime, a Freenet node (see section 3.1.2) periodically dumps its
current table of connections. This dump is used to connect to the network
the next time the node is started. On deployment, an initial node list is
provided.

Meta-Overlay networks can be used to do a service lookup to find a bootstrap
node. Such meta-overlay networks can also be used to implement multicast
or anycast (see above). Note that a meta-overlay just introduces a level of
indirection [14] and moves the problem to how to join the meta-overlay.

Random Address Probing can be successful if there are already many par-
ticipants in the searched-for network. In [96] it is shown that in some parts
of the IPv4 space mainly used for consumer networks, a large fraction of
hosts are part of certain overlay networks. However, random address prob-
ing is also the strategy used by viruses and worms, so using this technique
may trigger intrusion detection systems.

3.5.3 Implementation Issues

[119] reports on experiences while deploying the node manager service on Plan-
etLab and draws conclusions on the do’s and dont’s for developing highly dis-
tributed applications. It emphasis especially that networks and systems are

3.6. SUMMARY 49

neither reliable nor work consistently. This includes clock synchronization and
DNS name resolution. The paper then encourages developers to reconsider their
assumptions made on the system, handle all corner cases correctly and grace-
fully, and pay attention to the overall resource consumption of the system.

3.6 Summary

This chapter introduced overlay networks and peer-to-peer systems. A special
focus was on structured overlay networks and key based routing systems and
how these systems are a good substrate for scalabe distributed applications, e. g.
distributed hash tables. Later sections showed existing approaches to optimize
overlay networks by adapting them to the underlaying Internet infrastructre
with proximity route and neighbor selection and showed how to bootstrap over-
lay networks in the first place.

50 CHAPTER 3. OVERLAY NETWORKS

Chapter 4

File Systems

But something’s wrong. The files are too big.
Abby, Minimum Security, Navy CIS, CBS

File systems have the task of organizing (or to let the user organize) data into
logical units called files. Often, file system can also group files into directories
and store meta-data along with file data. Some file systems store the content
on permanent storage like hard disks, optical drives or flash memory. Others
keep the entire state in transient memory. Some file systems can be used over
a communication network, some with central servers, some without. Another
distinguishing feature of file systems is the level of the operating system at which
they are implemented.

4.1 Local File Systems

Local file systems (the opposite of network- or distributed file systems) serve
different requirements. For example they need to store data on permanent
(magnetic systems, flash) or volatile (RAM) storage, with constant (flash, RAM)
or variable (disks-based) access times. Some of them allow free write access,
others incremental and some no write at all. Another kind of local file systems
are virtual file systems, which do not manage data on a storage device but
represent (virtual) objects as files to the application.

The following sections will describe some selected local file systems.

4.1.1 File Allocation Table – FAT

The name of the FAT file system is derived from one of its main data structures,
the File Allocation Table (FAT). The system was developed for DOS (Disk
Operating System) from Microsoft. It can operate on files, directories and
subdirectories. The initial main use was for floppy and small hard disks. Later,

51

52 CHAPTER 4. FILE SYSTEMS

the FAT was improved to be useful on larger hard disks and today its main
use is for portable flash disks that are mounted on different computers with
potentially different operation systems.

A storage medium consists of many sectors. A FAT file system groups the
provided sectors into four main areas.

Boot sector The boot sector is always the first sector of a FAT file system.
It stores descriptive information, including especially the position, size,
number of the following components and a designator that the file system
on this volume is a FAT file system.

File Allocation Table The file allocation table contains one entry for every
cluster. Because the number of sectors can be large, especially on larger
hard disks, a number of sectors are combined to form a cluster. One
cluster is the allocation unit in FAT file systems. The file allocation table
can encode the following values for each cluster:

• Free clusters

• Bad clusters, i. e. clusters where read/write problems have been de-
tected and which should not be used anymore

• Entry ends. This special value indicates that the entry (file or direc-
tory) which this cluster belongs to ends inside this cluster.

• Entry continuation. Here, the value indicates the next cluster number
for the entry. In effect files are stored as a linked list of clusters.

Root Directory The root directory is the starting point for usage of the file
system. It can contain file entries and entries for subdirectories. Along
with each entry (which consists of file name, file date and six flags (archive,
read-only, system, hidden, device label and directory)) the number of the
starting cluster is stored. Following clusters can be determined with a
lookup in the file allocation table.

Main Storage Space Data clusters start after the root directory. The data
clusters contain, if allocated, either file data or subdirectories.

Early versions of the file system FAT were designed for floppy disks. As
such, they had limitations when used on larger hard disks, e. g. only 4096 clus-
ters were allowed (cluster numbers were encoded in 12 bit numbers), file names
were limited to 11 characters (8 for the name, 3 for the extension). Later ver-
sions removed these limits. Since most operating systems support the FAT file
systems, it is a common file system for data exchange, even if it has disadvan-
tages like missing user and permission management or its tendency to fragment
files over time. FAT is standardized in [45] and [72].

4.1.2 Process File System

The process file system (procfs) is an example of a purely virtual file system. It
is supported on many Unix-like operating systems (Solaris, BSD, Linux, AIX).

4.1. LOCAL FILE SYSTEMS 53

Once mounted, often at /proc, the file system contains a virtual directory for
each process [86, 51]. Virtual files in this directory can be read to obtain in-
formation about this process, for example its working directory, resource con-
sumptions and running statistics. Linux’ version of the process file system offers
also the ability to gather information about open file descriptors and many non-
process related items. Such items include the current state of the system, power
management and other hardware related information.

4.1.3 Fourth Extended File System

The fourth extended file system (ext4) and its predecessor ext3 are based on
the second extended file system [16]. The main data structures are:

Boot Record Here the fact is marked that the file system is a fourth extended
file system.

Block Group The entire volume is split into blocks. A typical block size ranges
from 1KiB to 8KiB. Blocks are grouped into one or more block groups.
Each block group has its own superblock, group descriptor, block and
inode bitmap and inode table, which are described below.

Superblock The superblock collects all important information about the file
system. The sizes of the other data structures and their position are
crucial. Also included are an unique identifier for the file system, the
creation time and how often the file system has been mounted.

Group Descriptors There is a structure in each block group describing all
the block groups. This kind of redundancy makes it easier to recover
from problems in case the file system is damaged. Each group descriptor
contains the layout inside the group (i. e. where block/inode bitmaps and
the inode table start) as well as some statistical data about the group.

Block Bitmap In the block bitmap every data block in the group is repre-
sented as one bit. If the bit is zero, the block is free, if the bit is one, the
block is allocated.

Inode Bitmap The inode1 bitmap works similarly, but does indicate free/used
inodes in the inode table instead of blocks.

Inode Table The inode table is an array of inodes. Each inode represents one
object in the file system. The attributes of the object are described in
the inode e. g. the type of the object, ownership, size, access attributes.
The inode also contains data block pointers. Most data block pointers
are direct pointers, i. e. the entry points directly to a data block. The
third last entry contains an indirect pointer, i. e. it does not point to a
block with data, but to a block with an array of block identifiers. The last
but one entry contains a double indirect pointer, i. e. the block which it

1Inode is an abbreviation for Index Node.

54 CHAPTER 4. FILE SYSTEMS

points to contains indirect pointers. The last entry is a triple indirection.
Figure 4.1 shows the concept of indirect pointers to data blocks. Another
important field is the link counter. UNIX-like file systems allow that more
than one directory entry points to an inode, in this case the files are hard
linked. The link counter may also be zero if the file was deleted but is still
opened by a process.

Data Blocks Data blocks finally contain the actual file date.

Note that directories are also stored as files. Directories are basically a sequence
of (inode, name, type)-tuples and associate an object name and type with an
inode.

��
��
��
��

��
��
��
�� �

�
�
�

�
�
�
�

����

��
��
��
����
��
��
����
��
��
��

��

��

��

�
�
�
��
�
�
��
�
�
���

��

���� data block

indirection block

triple
double
single

direct

Figure 4.1: Direct and indirect pointers in inodes

The third extended file system ext3 [166] added the journalling capability
in a backward and forward compatible manner. Journalling means that write
access to the file systems happens in transactions. A transaction consists of
the actual data write and the meta data updates. Journalling ensures that the
transaction either happens completely or can be rolled back if the execution of
the transaction is interrupted. In this way, the expensive file system check after
a non-clear unmount can be omitted. This increases the availability of systems
because the time for a reboot is reduced.

The fourth generation ext4 [109] increases the scalability of the system (file
size, file system size). Further it adds extends, a new way to allocate blocks.

4.2 Distributed File Systems

In contrast to local file systems, in distributed file systems the machine using a
file system is not necessarily identical to the machine providing the permanent

4.2. DISTRIBUTED FILE SYSTEMS 55

storage or file system implementation. Both machines can be connected over a
network.

The following sections exemplarily introduce two distributed network file
systems. Of course this selection leaves out important others, for example
SMB/CIFS ([69, 70]).

4.2.1 Network File System

The Network File System (NFS [115]) was standardized in 1989. It is based
on remote procedure calls (RPC [114]) from a client to a server. In order to
be independent of details of the participating operating systems, all calls and
replies are encoded according to a standard called eXternal Data Representation
(XDR [113, 48]).

The network file system protocol tries not to create additional state at the
server side (of course the files themselves are stateful). This makes clients robust
against transient failures in the network and at the server side, i. e. if a server
must be restarted, the client just notices a longer delay. To further increase
robustness, most operations in the protocol are idempotent, i. e. they can be
safely repeated.

To access a file on a server, a client has to execute the following steps:

1. The client needs to mount a file system from the server. The client issues
a mount request, containing a string describing what it wants to mount.
Usually this string is a path name interpreted by the server. The server
checks if the mount request is authorized (by looking at the IP address of
the client). If it is, the server returns a file handle for the root directory.
For the client, such a file handle is an opaque sequence of octets (32
octets in NFSv2). Because of the stateless nature of the server, it must
encode everything the server needs to know to access the object. Usually
the device and the inode numbers are encoded. Once the client has a
reference to the root directory, the file system is considered mounted.

2. With the handle of the root directory, the client can issue read-dir calls.
The server replies with a linked list of entries.

3. The client can traverse the directory tree, potentially via other directories
or by following symbolic links.

4. Once the client has read the directory where the file is located in, it can
use the lookup call to find the file handle for the file in question.

5. With this file handle, the client can perform the actual read or write
operation.

The stateless nature of the server makes the implementations of some semantics
difficult. For example some Unix systems support deleted but still open files.
Since NFS does not have a notion of open files, the semantic can not be directly
supported. Most clients however implement a workaround: As soon as an open

56 CHAPTER 4. FILE SYSTEMS

file is deleted, it is transparently renamed. When the file is finally closed, the
client deletes the (renamed) file.

The version two of the NFS protocol (NFSv2 [115]) works solely on UDP.
Version three (NFSv3 [13]) allows the use of TCP, which allows to use NFS on
links where packet drops due to congestion are likely. Further, NFSv3 intro-
duces asynchronous writes. Before that, all calls from client to server have been
synchronous, i. e. the client had to wait for the result from the server. NFSv3
allows write calls to return early. To compensate for the uncertainty at the
client, a synchronous new call commit was introduced.

Other changes include better permission checking with an access call, better
handling of the end-of-file situation and informational calls to allow the client
to get more information about the mounted file system.

The fourth version of the network file system (NFSv4 [154]) introduces many
new features missing in previous standards:

• Authentication, integrity and privacy protection. This is achieved by using
established standards like GSSAPI (Generic Security Services Application
Programming Interface [103]), and Kerberos 5 [177].

• Compound operations. The client can pack many separate operations into
one compound and send this compound to the server. This speeds up the
operation on links with higher latency, since only one round trip time is
required to fulfill many requests.

• Support for UTF-8 [174] in file names allows easier use in international
contexts.

• Open, Close and more detailed Locking. With these operations, the NFS
standard gives up the statelessness of the server, but decreases latencies
because fewer calls are required to read/write one file.

• Delegations. Servers can hand out temporary rights to clients to work
with files without notifying the server at all.

• Callbacks. In order for a server to be able to revoke delegations, a call
back system was introduced.

After NFSv4, further development [155] went into the parallelizing of the
protocol. Currently, the following features are designed and implemented for
NFSv4.1 (sometimes also called pNFS for parallel NFS):

• The file server is split into one meta-data server and one or more data
servers.

• Files can be striped over multiple data servers, thus aggregating their
input/output performance.

• For the client, the meta-data server provides a unified view of all the data
servers. Clients see all files in a single namespace.

These extensions are aimed at larger installations like file server clusters.

4.3. DECENTRALIZED FILE SYSTEMS 57

4.2.2 Other Distributed File Systems

Andrew File System (AFS[68][117]) is based on the Kerberos[124] security infras-
tructure and allows for extensive client side caching. The Coda file system[147]
added even more distributed operations and conflict management. The dis-
tributed file system of the distributed computing environment (DCE DFS[130,
100, 74]) is a successor of AFS and shares most of the design principles. In IBM’s
Global Parallel File System (GPFS[150]) all nodes have equal access to all disks
through a switching fabric. Lustre[10] seperates meta data servers (MDS) from
object storage servers (OSS). By this, it achieves good IO-performance and it
is popular within high performance computing centers.

The nature of all these systems is centralized, therefore they are not elabo-
rated further in this document.

4.3 Decentralized File Systems

In contrast to distributed file systems, decentralized file systems do not have
central components. This design paradigm avoids single points of failures, but
has the additional problem that no trust anchor is directly available.

That such decentralized systems are possible has been shown for example
with the Coorperative File System (CFS[30][31]). There, all content is stored
in DHash, a distributed hash table running on the Chord[160] overlay network.
Nearly all of the file system data is stored in self-authenticating content hash
blocks, with the exception of the identifier of the root directory, which is signed
asymetrically. By checking this signature, clients can verify the data integrity.

In the Ivy file system[120], this trust is introduced with the participants
public keys in the content-hashed view blocks. Contrary to to CFS, Ivy supports
writing to the file system. All transactions in the Ivy file system are written in
a log and the public keys are used to verify the log of other users. Using the
transaction logs, users can work locally even in case of network partitions. After
the network split ended, some possible conflicts have to be resolved manually.
File system data is stored in DHash, too.

OceanStore[94][138] is decentralized in the sense that there is no single server
but multiple ones. It also supports distributed modification access to the file
system and uses a Byzantine-fault tolerant commit protocol[98] to achieve a
consistent view on the global state. Because of massive replication and fault
tolerant storage OceanStore excels as archive system. The system includes an
economic utility model to allocate resources between consumers and among
providers.

4.4 User Space File Systems

Traditionally, file systems are part of the operating system and as such imple-
mented in kernel space. This has a number of reasons and advantages:

58 CHAPTER 4. FILE SYSTEMS

• The file system has to access the hardware devices that finally store the
data blocks.

• Since file systems are relevant for security, they have been implemented
in the trusted kernel zone.

• File systems offer resources to user processes and are as such part of the
operating system.

In recent years, there is a trend away from this monolithic way to implement
file systems. Micro-kernels or modularized kernels separate functionality. A
new way for implementations are user space file systems. They offer some new
advantages:

• Development is easier because a programming error in the file system code
does not crash the operating system.

• Deployment is easier because the operating system does not have to be
modified.

• More complex file systems are possible because user space offers much
more libraries.

• Networked file systems need access to the network layer. Creating TCP-
connections from the kernel is difficult.

The major disadvantage of user space file systems are security and safety because
they are harder to guarantee in user space.

An important precondition to implement modular file systems is the exis-
tence of a central point to intercept calls from applications. Examples for such
hooks include:

• Microsoft Windows systems offer Installable File Systems (IFS [26]).

• Linux has a Virtual File System (VFS [61]) layer.

• If applications use a common library to do file system access, this library
can be replaced.

4.4.1 FUSE

FUSE [161] stands for file system in user space. It exports a virtual file system
layer in the kernel back to the user space (see figure 4.2). FUSE has been ported
from Linux to BSD systems (including MacOS X). It works by implementing
a new file system at kernel level. This new file system does not reply to the
calls from user space directly, but forwards these calls back to user space again.
There, the real user space file system can be implemented.

4.4. USER SPACE FILE SYSTEMS 59

Application file system
implementation

VFS

fuse kernel
module

procext3

User

Kernel
syscall /dev/fuse

Figure 4.2: FUSE architecture

As mentioned above, user space file systems have security implications. If
users are allowed to run file systems (and FUSE does so by default by providing
a special setUID2 mount helper), they can do harm in the following ways:

• Operations by other processes can be arbitrarily delayed.

• The amount of data returned by system calls can now be arbitrarily large,
potentially larger than an application expected.

• Permission checks are not enforced.

• Arbitrary device files can be created.

To prevent exploitation of these problems, FUSE restricts user space file
system in two ways. First, a mounted file systems is only accessible by the
mounting user. That means the mounting user (any user, not necessarily the
super-user) can mount FUSE file systems, but only this user can access it after-
wards. Second, the creation of device file is not allowed. Both restrictions can
be lifted by the super user.

4.4.2 Parrot

The Parrot [162] approach works differently. Here, the user space file system
implementation intercepts system calls before they really reach the kernel level.
Parrot uses the process tracing facility (ptrace), found in many Unix-like oper-
ating systems, for this.

Figure 4.3 shows the concept, which can be transparently [90] applied to any
process except

2A binary executed with the permission of its owner, instead of the permissions of the
executing user.

60 CHAPTER 4. FILE SYSTEMS

• SetUID-processes, where the ptrace call is not allowed for security reasons,

• Processes where the ptrace call is used for something else, e. g. debugging
or monitoring.

An important advantage of the parrot concept is that it can work without any
interaction from the super-user, i. e. no kernel modification is necessary and no
setUID-program has to be installed. On the other hand, the ptrace interception
has to be set up for each process separately, while mounting with FUSE is visible
for all processes.

file system
implementation

Application

User

Kernel

ptrace

syscall

Figure 4.3: Parrot architecture

4.4.3 Gnome-VFS etc

Another possibility to implement user space file systems is shown by Gnome
and similar projects. There, a virtual file system layer [127] is introduced in the
user space. Note that this layer is independent from the VFS layer in the kernel
which is used by FUSE. Here, applications do not use direct system calls any
more. Instead, they use the functionality from the VFS library (see figure 4.4).
This has the advantage that there is no dependency on the operating system.
On the other hand, applications are not allowed to directly use the interface
from the operating system any more, that means they are dependent on the
user space VFS library.

4.5 Summary

This chapter gave an overview over file systems in todays computing infrastruc-
ture. First of all, local file systems that are used for single computers are coverd.
Second, this chapter introduced distributed file systems. Such file systems are
used to share data between different hosts. Additionally, virtual file systems
and file systems in user space have been discussed.

4.5. SUMMARY 61

Application

VFS

file system
implementation

User

Kernel
syscall

Figure 4.4: Gnome VFS architecture

62 CHAPTER 4. FILE SYSTEMS

Part II

The Overlay Network Igor

63

Chapter 5

Goals

Der Sturm hat nicht Falken getragen weit über die Felder hin:
Dohlen jagen in Zügen zum großen Don.Ñëîâî î ïîëêó Èãîðåâåtranslation by Rainer Maria Rilke

The project Igor was started with the aim of gaining experience in overlay
networks and key based routing systems. Igor itself is a reverse acronym and
stands for Internet Grid Overlay Routing. Over time, quickly more objectives
were included in the design guideline for Igor. On the one hand, these goals came
from experience gained from practical uses and by developing applications using
Igor. On the other hand, by developing overlay networks and key based routing
systems one can gain a deeper understanding.

As an overlay network, Igor should run on top of existing networks, i. e. in
the OSI model on top of other transport protocols (see figure 5.1). It offers
services for applications running on top of it. The next sections describe the
design goals for Igor related to applications running on top of Igor, the overlay
network itself and issues regarding the network it is running on.

Application

Igor

Transport Protocol

Figure 5.1: Igor Stack

65

66 CHAPTER 5. GOALS

5.1 Application

Overlay networks and especially key based routing systems allow a new class
of distributed applications. Key based routing systems offer new semantics for
message forwarding (forwarding a message to the node closest to the target), and
Igor should offer these semantics to the applications. Further it will be designed
to support a wide range of such applications and put as few restrictions on them
as possible. In particular more than one application will be supported, i. e. Igor
should be able to multiplex different uses.

For the development of applications using overlay networks and key based
routing systems it is important that the Application Programming Interface
(API) is simple and easy to use. To achieve this goal, an API similar to existing
ones should be selected. Further it is important that Igor is easy to integrate
in applications.

5.2 Igor

One reason to introduce structured overlay networks in the first place is their
scalability. A network with many thousands of nodes must work as well as a
network with only a couple of them. Second, the Igor-network must scale with
the resources of its nodes. Powerful nodes will be able to take over more work,
whereas weaker nodes must still be able to participate.

The implementation of Igor itself must be resource efficient. Since it is a
research project, the Igor implementation must be easy to extend and modify.

5.3 Network

The Igor overlay network must be designed to be used by many different kinds
of applications, among them applications that transfer larger amounts of data.
Therefore, the overlay network must not put undue stress on the underlying
network, especially it must obey the rules for regarding congestion and it must
be fair to other users of the network.

If the conditions in the underlying network change, the Igor network should
quickly adapt to these changes.

For network and firewall administrators the implications of running overlay
networks must be clear.

Chapter 6

Design

What goeth around, cometh around
Terry Pratchett

This chapter describes the design of the Igor overlay network. It details the
interface to the applications as well as some internal design decisions for the
implementation of the daemon.

6.1 Application Interface

6.1.1 The Service Concept

One of the main concepts of Igor is that a single overlay network can be used
for different applications. These different applications are called services and
are distinguished by their service identifier IS . The service identifiers are from
the same number space 2l as the node identifiers, where l is the length of the
identifier. Why this is necessary is explained in more detail in section 6.2.4.

Applications can register with Igor that they are of a given type IS . During
message delivery it is ensured that messages of type IS1

are delivered only at
nodes where a service of type IS1

is registered. While it is possible that multiple
applications IS1

and IS2
register at the same Igor node, it may also happen that

at a given application/service is not registered at one node at all.

6.1.2 The Upcall Concept

For recursive overlay networks (and Igor is recursive, see section 6.2.1) another
dimension in the design space opens. In iterative overlay networks, the source of
a message is responsible for discovering a route to the destination. After a route
is discovered, the messages are forwarded directly from source to destination.
In recursive overlay networks, messages are forwarded hop-by-hop through the

67

68 CHAPTER 6. DESIGN

1 2 3

Application ApplicationApplication

IGOR IGOR IGOR

upcall: false final: false final: true

upcall: true upcall: true final: true

Figure 6.1: The upcall concept

network, and the route to the destination is found along the forwarding path.
That has the consequence that messages are handled by nodes besides source
and destination. If on these nodes the same application is registered (see sec-
tion 6.1.1), it can be useful that these applications are given a chance to handle
the message, too. Because this is not always useful, an additional parameter
upcall is attached to every message1. The value of this parameter can be ei-
ther true or false. If the value of upcall is true, the message is handed to the
first application of the correct type along the way from source to destination,
providing that such an application exists. If such intermediate application does
not exist or the upcall flag is set to false, the message is transfered normally to
the destination. The intermediate application (if it exists) can decide how to
handle the message:

• Forward the message unmodified.

• Forward a different message (potentially a modified version of the received
one).

• Delete the message.

• Delete the message and send a reply.

Applications may want to adjust their behavior depending on whether there
is another application they potentially can forward the message to. For this
purpose, the flag final is introduced. This flag is set by Igor on messages sent to
applications. The flag is set to true if this Igor-node is the final destination for
this message and set to false if this delivery is to an intermediate application. If
upcall is set to false, the message is forwarded directly (potentially via different
Igor-hops) to the destination and delivered there with the final flag set to true.
Applications on intermediate nodes can not exert influence on this process.

1In [33] a similar problem is solved by introducing to down-calls: route() and forward().

6.2. MESSAGE ROUTING AND FORWARDING 69

upcall: true upcall: false

final:
true

message delivered directly, no
intermediate applications exist
(corresponds to message 3 in
figure 6.1)

message delivered directly by
request (corresponds to
message 3 in figure 6.1)

final:
false

message delivered to an
intermediate application
(corresponds to message 1 in
figure 6.1)

not possible

Table 6.1: Possible combinations of the flags upcall and final.

Figure 6.1 shows the concept again and table 6.1 gives all possible combi-
nations of the flags upcall and final. Note that the upcall flag is set by the
application, whereas the final flag is set by Igor.

One main reason for sending messages with the upcall flag set to true is ag-
gregation, i. e. intermediate nodes receive the message collect more messages to
the same target and send on a summary towards the real destination. The other
main reason is the possiblity of caching and early answers. Since intermediate
nodes are expected to be closer (latency-wise) to the source of the message be-
cause of PRS/PNS (see section 6.4), answers from these nodes reduce the overall
latency experienced by the requestor. Early answers also reduce the load on the
real destination, which is important to releave hot spot behaviour (slash dot
effect[1]).

On the other hand, applications should set upcall to false in case delivery
speed to the final destination is important. The less intermediate systems are
involved, the faster the message reaches the target. Also, if the message content
is of no interest to the intermediate nodes (either by application design of for
privacy reasons), the upcall flag should be set to false.

6.2 Message Routing and Forwarding

6.2.1 Iterative vs. Recursive

As shown in section 3.2 there is a distinction between iterative and recursive
message delivery. Table 6.2 summarizes some of the differences. The big advan-
tage for iterative implementations is that the message is transfered only once,
from the sender to the final receiver. For every message, the final receiver is
computed by iterative lookups in the routing tables of other nodes. This leads
to a large number of connections. Each connection has to be set up, which
takes some time and adds up to a significant delay for every message. Fur-
thermore, this frequent set up of new connections is a burden for the operating
system and all middle boxes, for example NAT-gateways, connections-oriented

70 CHAPTER 6. DESIGN

firewalls and flow-accounting routers. NAT systems have to be traversed for
every new connections, adding more connection problems and additional delay.
Also proximity route and neighbor selection are more difficult with iterative
message forwarding. PNS is useful, because in an iterative forwarding chain A-
B-C, if A is close to B, then B is usually close to C too. However, PRS is more
difficult to employ, because even if C is the closest node to B, it is not necessarily
the closest node to A too. The only important disadvantage of recursive mes-
sage forwarding, the fact that the message has to traverse many intermediate
systems, is also an argument in favor of recursive routing: These intermediate
systems can also process the message, for example caching the message content,
answering requests early, or aggregating many messages into a single upstream
message (see section 6.1.2). This is especially useful for networks where routes
converge early (see section 3.5.1). Igor therefore implements recursive message
forwarding.

Property iterative recursive

message sending overhead no yes
message delay yes no
number of new connections many few
PRS more difficult yes
PNS yes yes
firewall/NAT traversal more difficult solvable
upcall no yes
make sure message arrives easy difficult
connection to the destination easy difficult

Table 6.2: Some comparison between iterative and recursive routing

6.2.2 Metric

Every message is handed to a neighboring intermediate system that is closer
to the destination than the current node. This process continues until the
message arrives at the destination. To evaluate the closenesses between a given
overlay neighbor and the destination of a message a metric is required. Igor
uses digor(ID1, ID2) = f(ID1, ID2) = |ID1 − ID2| as its metric. This metric
has the properties that it is:

• symmetric, that means d(ID1, ID2) = d(ID1, ID2),

• forms a ring, which XOR does not and

• easy to compute.

Message forwarding is guaranteed to work if the following invariant holds: As-
sume the node identifiers are laid out on a virtual ring like in Chord (see sec-
tion 3.2.3). Each node needs to know its left-hand neighbor and its right-hand

6.2. MESSAGE ROUTING AND FORWARDING 71

neighbor on the ring. If this invariant is given, then there is a path between
each pair of nodes where the distance (according to the metric) to the destina-
tion decreases strictly monotonicly. These two connections ensure consistency
in the routing algorithm. To ensure efficiency too, shortcut connections [89] are
necessary. These shortcut connections are opened to nodes with exponentially
increasing distance.

6.2.3 Aggregation Tree

Due to the limited number of connections and the strict monotonic routing
towards the message destination, a implicit tree is formed for every message
destination. The node finally responsible for the message is the root of the
tree. All nodes connected to this node are by construction more distant to the
destination and form the second level of the tree. The third and all subsequent
levels consist of nodes that would route messages with the given destination to
the node in the level above. On the lowest level there are nodes that do not
receive message with the given destination, because for all other nodes there is
a better routing decision. Not that the aggregation tree is constantly changing
because of changes in the Igor topology and due to changes in the underlaying
network.

6.2.4 Service Routing

There are different ways to ensure that messages are delivered to

• one of the nodes where the service as indicated in the message is running
and

• to the node whose identifier is closest to the destination of the message.

First, it is possible to enforce that the service is running on the destination
node, either permanently or on demand. Both variants are not feasible in the
Igor scenario.

Second, a multi-dimensional routing seems to be viable: one dimension for
service identifiers, one dimension for node identifiers. Routing in such multi-
dimensional spaces is not straight forward since local minima for a greedy algo-
rithm may exist. Nevertheless, geographic routing [82] or CAN [137] show that
it is possible. The disadvantage of such a scheme is that nodes that are not part
of a service still have to forward messages for it.

Therefore the third alternative [88, 173] was chosen for Igor[167]. Here, all
participants of a given service form a subgraph of Igor, where the invariant that
neighbors on the virtual ring know each other holds for each subgraph. To find
and join such a subgraph, the global Igor network is used as a lookup service
(see section 6.3.4 and figure 6.2).

72 CHAPTER 6. DESIGN

igor

igor

igor

igor

igor

igor

igor

igor

igor

Globales Igor−Netz

Anwendung A: IgorFS

Anwendung B: videgorTC
P

Figure 6.2: Service Sub-Graphs in Igor

6.2.5 Connections

As overlay network, Igor runs on top of a transport protocol. In todays Internet,
two transport protocols (ISO/OSI layer 4) are in wide use: TCP and UDP.
Table 6.3 compares the requirements of the Igor design (see section 5) with
the features TCP and UDP provide. Both protocols have their advantages and
disadvantages. UDP excels with its simplicity in the protocol stack, while TCP
already implements more features required for Igor. Given these properties, Igor
was implemented on top of TCP.

Property Igor requirement TCP UDP

timely error detection nice-to-have not easy not easy
connection oriented yes yes no
flow control yes yes no
congestion control yes yes no
packet sending yes no yes
delay measurement yes yes no
bandwidth measurement yes no no
TCP-friendliness yes yes no
simplicity yes yes yes
message size > 64k yes yes no
NAT and firewall traversal yes possible possible

Table 6.3: Requirements of Igor and features of available transport protocols

6.3. ROUTING TABLE MAINTENANCE 73

6.3 Routing Table Maintenance

All connections of an Igor-node are kept in a table called routing table (some-
times also referred as finger or connection table). This section describes how
new entries are added to and how old entries are removed from this table.

6.3.1 Creation of New Entries

Periodically, each Igor-node tries to optimize its routing table. This works by
selecting a random destination on the ring in a way that far away destinations
are selected exponentially less often than local destinations. Next a message
is sent to this destination, using the current routing table. The receiving node
replies with a list of other nodes close to the selected random destination. This
way, every node learns about new nodes, with a strong bias to local (on the
virtual ring) ones and a small world network [89] will form.

Secondly, the two neighbors on the virtual ring are queried periodically for
their virtual neighbors. If the network is in a consistent state, one of the neigh-
bors’ neighbor must be the querying node. This stabilization procedure is there
to detect inconsistencies in the virtual ring and to quickly correct them.

6.3.2 Creation of the First Entry

Bootstrapping is the process of joining an existing network of Igor nodes (see
section 3.5.2). To join an overlay network, at least one node of the existing
network must be known. Since Igor is an overlay network, this holds true for
Igor. There are different ways to gain knowledge of this first other node:

• Outside channel. The user gives the first node(s), for example via a con-
figuration file or on the command line.

• Scanning. In [23] it has been shown that it is feasible for reasonable
deployed networks to scan whole address ranges for other peers.

• Multicast/Anycast. When multicast or anycast is available, all existing
nodes can join such a multicast or anycast group. The new peer also joins
that group and sends a query. If multicast is used, a feedback suppression
scheme (e. g. [60]) should be used to prevent too many answers to the
newly joined peer.

Multicast and anycast are not readily available in the Internet (overlay multicast
systems only shift the problem [14] to “How to bootstrap the overlay multicast
system?”) Since Igor is not sufficiently widely deployed (yet) and scanning is
considered offensive, the “Outside Channel” method is used to bootstrap Igor.

6.3.3 Eviction of Old Entries

With the mechanism described above, the routing table would quickly become
too large. To prevent this, there is a periodic mechanism to erase less useful
connections. The algorithm works as follows:

74 CHAPTER 6. DESIGN

1. Order all connections according to the distance (using the distance metric)
from the node.

2. Compute the logarithm of the distance.

3. For each node in the ordered list, compute the difference between the
logarithms of the succeeding and the preceeding node.

4. Close the connection to the node where this difference has the least value.

Some connections are exempt from closing by this algorithm: Direct neighbors
in the virtual ring, direct neighbors in one of the service rings, and connections
that have been opened recently. The last constraint was introduced to bring
more stability into the routing table.

6.3.4 Connections for Services

For each service offered locally, Igor must maintain the invariant that connec-
tions to the left- and righthand neighbors in the virtual ring for that service are
established and kept. The connection eviction algorithm prevents that these
connections are closed after they have been opened.

To open these connections in the first place, a lookup mechanism is required.
For this lookup mechanism to work, a minimal soft-state DHT is implemented
inside Igor: After an application has registered with its local node, the node
periodically announces this fact. To do so, it sends an announcement message,
containing the identifier of the local node and the identifier of the service, to-
wards the identifier of the service. The upcall flag is set to true, so intermediate
nodes can aggregate these messages and limit the number of nodes announced
per service.

In parallel, the node queries this minimal DHT for other nodes where the
same service is registered. With this mechanism, nodes with the same services
are able to find each other and establish the invariant that neighboring nodes
are mutually connected per service.

6.4 Proximity

As described in section 3.4, proximity neighbor selection (PNS) and proximity
route selection (PRS) are important for the performance of an overlay network.
They exploit the basic property of overlay networks that they can choose their
own topology. PNS forms the topology of the network in a way that the per-
formance is optimized. Good links (low latency, high bandwidth) are favored.
Links with low latency are local links, since the speed of light limits the lower
bound for latency of long distance links. This way, Igor will prefer connections
in the network neighborhood.

As soon as the topology of the overlay network is established, multiple
paths from a source in the overlay to a given destination are usually possi-
ble. Proximity route selection ensures that a good one (again with respect to

6.4. PROXIMITY 75

latency/bandwidth) is selected. It works by including link quality in the routing
decision.

Igor employs both PNS and PRS with latency as metric to improve the
quality of the message routing process.

6.4.1 Proximity Route Selection

For PRS, Igor employs the following algorithm.

1. All nodes are evaluated using the identifier metric (see section 6.2.2). Each
connection is assigned a score ∈ (0, 1). Connections that lead closest to
the destination receive the highest scores. All connections that are farther
away from the target than the current node are evaluated with 0. The
last condition ensures that no routing loops can occur.

2. The set of all nodes is evaluated given the proximity metric (see sec-
tion 6.4). Each connection is given a score between 0 and 1, where con-
nections with the best proximity value receive the value 1.

3. Then, connections are evaluated regarding services. If the next hop offers
the service the message indicates, it receives a score of 1 and 0 otherwise.

4. The product of all scores is computed and the connection with the highest
product is selected.

Note that all operations and required measurements can be done locally. That
means that PRS can be employed easily and no protocol extension is required.

6.4.2 Proximity Neighbor Selection

Contrary to PRS, proximity neighbor selection is not a local process. Here,
many nodes must work together to find closest neighbors for each of them.

Combination of Vivaldi and Meridian

Vivaldi (see section 3.4.4) excels at embedding a network like the Internet into a
metric space. Coordinates are assigned to every node in the network. However,
it does not prescribe a way to find close neighbors.

On the other hand, Meridian (see section 3.4.4) shows how to find close
neighbors in networks, but it has to do a number of measurements to execute
the protocol.

A combination of these two protocols, called Merivaldi[87], can merge the
advantages of both. In order to do so, Vivaldi is executed to compute the coor-
dinates of the nodes. The traffic to compute the coordinates can be neglected
as it is part of normal protocol operations as in TCP. The information re-
quired are piggy-backed in every message. Meridian can then use the computed
coordinates to find close nodes without further measurement actions.

76 CHAPTER 6. DESIGN

Finding new neighbors

To compute the Vivaldi coordinates, the coordinates of neighboring nodes and
the latency to these nodes are required. The coordinates of neighboring nodes
are piggy-backed in regular messages. The protocol TCP is used for the mea-
surement. TCP needs to do similar measurements already, so there is no need
to re-implement it at the Igor-level.

To find better neighbors using the combination of Meridian and Vivaldi,
the Meridian find-closest-neighbor protocol is executed regularly. Since Vivaldi
keeps up-to-date coordinates for all nodes and the coordinates are communicated
regularly, Merivaldi ([87]) does not need to do measurement during its execution.
Merivaldi can resort to distance computations based on the Vivaldi coordinates
instead of measurements.

6.5 Interface to Applications

6.5.1 Connections

The message exchange between Igor and applications can be implemented with
a number of inter-process communication (IPC) methods like shared memory
or pipes. Table 6.4 compares the advantages and disadvantages of some of
them. The easiest would be a direct linking of Igor and the application. This
option has the downside that only one application can use the Igor network
at a time, other applications would have to start their own instances. Shared
memory was not chosen because then the application is bound to run on the
same machine as the Igor daemon. If, from a network administrator point
of view, the Igor daemon has to run in a demilitarized zone (DMZ) because
it opens connections to and receives connections from the outside world, the
placement of applications is limited. Usage of pipes has the same restrictions as
shared memory, but additional disadvantages of the need to serialize messages
in between. If the application and Igor communicate through TCP-sockets, the
restrictions regarding placement of the components are lifted. Many different
applications can connect to one Igor daemon, and the daemon can run in a
DMZ.

IPC pro con

single process easy inflexible
shared memory fast single machine
pipes same interface as network single machine, serialization
TCP socket very flexible serialization

Table 6.4: Comparison of different inter process communications between Igor
and applications

6.5. INTERFACE TO APPLICATIONS 77

ephemeral
ports

libigor

Application

libigor libigor

ApplicationApplication

network port

client port

Igor daemon

other Igor daemons

Figure 6.3: TCP port usage in Igor

Because of the advantages of TCP at the node-client interface and the sim-
ilarities between node-node and node-client communictation, it was decided to
use TCP connections in Igor for both purposes:

• First, connections between two Igor instances are TCP connections.

• Connections between the Igor node itself and the library use TCP too.
This makes the Igor network accessible by applications.

A TCP socket in listening mode is opened for both purposes. Figure 6.3 sum-
marizes both ways TCP connections are used. In section 6.2.5 the usage of
TCP connections for inter-Igor links is explained. Note that application-to-Igor
connections are always opened by the application towards the client port of the
Igor daemon. On the other hand, node-to-node connections are opened by Igor
processes from ephemeral ports and received by Igor-processes on the network
port.

6.5.2 Library libigor

In order to make the Igor network easy to use for application developers, an
interface with which many programmers are familiar with was chosen. The
BSD socket interface [159] is available in many operating systems to interact
with the network stack.

78 CHAPTER 6. DESIGN

Figure 6.4 shows the similarities and some of the differences between pro-
gramming regular BSD sockets and using Igor sockets.

Applications using Igor first need to open a socket. This socket is used for
all further communication between Igor and the application. Once the socket
is created, it can be bound to a specific service (traditionally called “giving
the socket a name”). If this is done successfully, send and receive calls can be
used to transmit messages. Finally, the function igor close() terminates a
connection between the application and Igor.

The structure sa igor is used to communicate addresses and to name the
service an Igor socket is bound to. This structure allows to encapsulate the
large identifiers used by Igor. Furthermore, some convenience functions exist to
hash arbitrary strings into the Igor identifier space.

A library called libigor provides the socket and convenience functions.
Further the library encapsulates the TCP connection to the Igor daemon.

BSD-Sockets

int s = socket(sock_dgram);

bind(s, struct sa_inet);

send(s, msg);

recv(s, msg);

close(s);

Igor-Sockets

int s = igor_socket();

igor_bind(s, struct sa_igor);

igor_sendto(s, ...);

igor_recvfromto(s, ...);

igor_close(s);

Figure 6.4: Comparison of regular BSD-sockets with Igor sockets

6.6 Summary

This chapter described the design of the overlay network Igor. It covered the
services offered by Igor via a library to the applications as well as the service
oriented design of Igor itself. Important concepts like the upcall or final flag
were introduced. The chapter explained how Igor forwards messages, regarding
to services, identifiers and proximity.

Chapter 7

Implementation

The Implementation is brainless
Paul DiLascia

7.1 The Call Back List

In order to keep Igor simple, it was decided to abstain from multi-threading.
Igor is implemented as a single threaded application. As such, all actions are
driven by a single event loop. Actions can be triggered by

• events on file descriptors. Such events can be the transition of a file de-
scriptor from the blocked state into a readable or writable state. Other
events include a successful connection setup or termination of a connec-
tion.

• timers. Timers can be used for periodic actions (e. g. a call stabilize(),
every tstabilize seconds, see section 6.3.1 every) or single events (e. g.
resend message if no reply is received within ttimeout).

If one event (either on a file descriptor or a timer) happens, a function is
executed. This function is registered on demand (creation of the timer or file
descriptor) and is called call back function.

Call back functions in object oriented languages are more difficult than in
non-object oriented ones because functions can be called on objects only1. Since
Igor is implemented in C++, the problem occurs. To circumvent this, a abstract
base class (figure 7.1) and a template (figure 7.2) have been introduced.

This construction allows to create call backs to every method inside classes,
given the method takes two integers as parameters and returns nothing.

1Functions on objects are called methods in object oriented languages.

79

80 CHAPTER 7. IMPLEMENTATION

class cCallbackBase {

public:

virtual void Go(int vHandle)=0;

};

Figure 7.1: Abstract Base Class for call backs

template <class C>

class cCallback : public cCallbackBase {

public:

void Init(C* rTargetObject,

void(C::*rTargetMethod)(int,int));

virtual void Go()

{

(*mTargetObject.*mTargetMethod)

(vHandle, mState);

}

private:

C* mTargetObject;

void (C::*mTargetMethodFunction)(int,int);

};

Figure 7.2: Call Back Template

7.2 Plugins

As a research project, the Igor implementation must be easily extendable. To
achieve this, a plugin concept was introduced. Such plugins can be included
at compile time. A mechanism to select plugins at load or run time was not
deemed necessary. To extend Igor, there are four different types of plugins:

cMessagePlugin Plugins of this type handle incoming messages, i. e. the plugin
is responsible for the message. That can include unmodified forwarding,
modified forwarding, generation of a reply or even a silent discarding.

cPeekPlugin This type of plugin may have a look at every incoming message,
but has no possibility to influence the further fate of the message. Uses of
this plugin type include the evaluation of piggy-backed information and
statistical purposes.

cPolicyPlugin Policy plugins can influence decisions in an Igor node. Such
decisions include

• the forwarding/routing of node-to-node messages. For every message
to be transmitted, policy plugins are queried.

7.3. IPV6 81

• connection opening. Before a new connection is actually opened,
policy plugins can give their evaluation of the new connection.

• connection closing. Policy plugins are queried which connection they
would close first.

• delivery of node-to-client messages. If more than one client can re-
ceive an incoming message, policy plugins are included in the deci-
sion.

Furthermore policy plugins are notified when connections are opened or
closed.

cTaskPlugin In order to do regular (periodic) tasks, task plugins can be regis-
tered.

With the C++ multiple inheritance mechanism, a plugin can be of more than
one kind. For example, a combination of cPeekPlugin and cTaskPlugin could
record statistical information from incoming messages and output these statis-
tics in regular intervals. Another example is a plugin derived from the two classes
cPolicyPlugin and cMessagePlugin. Such a plugin can register for incoming
connection recommendations and evaluate which of these will be opened.

7.3 IPv6

The Igor daemon has been implemented in a way that works equally well with
IPv4 and IPv6 addresses. This was done by strictly encapsulating all network
related functionality in the two classes cTransport and cConnection. The
former is responsible to carry a OSI layer 4 address, the latter to handle all
connection related calls into libc. All network related system calls that are
specific to one address family, especially name resolution functions, have been
avoided.

82 CHAPTER 7. IMPLEMENTATION

Chapter 8

Test and Deployment

If the implementation is hard to explain, it’s a bad idea.
The Zen of Python

8.1 Testing

8.1.1 PlanetLab

Igor has been successfully tested on PlanetLab[131], the distributed (for a node
distribution, see figure 8.1) overlay network research platform. To this end,
specialized testing tools have been developed[92].

Figure 8.1: Node Distribution in PlanetLab on 2007-02-18

83

84 CHAPTER 8. TEST AND DEPLOYMENT

8.2 Build Process

Igor is built using the GNU1tool chain of autoheader, automake and autoconf.
For the user this creates the familiar environment to compile, link and deploy
Igor by using configure, make and make install. As maintainer of Igor, one
uses the shell script bootstrap.sh which executes all necessary tools of the
tool chain in the correct sequence. Note that the name of this shell script has
nothing to do with the bootstrapping process described in section 6.3.2

8.3 Running Igor

This section will gives details on how to start and stop Igor. This includes
configuration parameters on the command line as well as in the configuration
file. The log file and the bootstrap process are also described.

8.3.1 Start

Since Igor is intended to be used as a daemon (background) process. There-
fore the system call fork() is executed immediately after starting the binary.
The process called by the user quits soon, while the process in the background
detaches all terminals and stays in the background.

During start, the command line of Igor is read. The command line may
contain the options shown in table 8.1. Many options need a parameter.
Parameters to the long form of an option are mandatory to the short form too.
Network port and client port are explained in section 6.5.1.

8.3.2 Stop

During startup, the daemon writes a file containing the process identifier (PID)
of the newly started Igor instance. The location and name of this file is de-
termined at configure and compile time, but can be changed at startup, ei-
ther via command line parameter or via configuration file settings. The script
igor-stop.sh uses this PID-file to stop the running Igor. Alternatively, Igor
may be killed with the signals SIGINT or SIGTERM, i. e. by either hitting
Ctrl-C on foreground processes or terminating background processes with kill.

8.3.3 The Configuration File

In addition to options on the command line, the behavior of Igor can be in-
fluenced via a configuration file. The file names searched for as configuration
files are igor.conf and <name of the binary>.conf. The files are searched
for in the /etc, /usr/local/etc and the current directory. The format of the
file is relatively common: Empty lines and lines starting with a hash mark are
ignored, all other lines are expected to be of the form “key colon space value

1A recursive acronym: “GNU is not Unix”

8.3. RUNNING IGOR 85

short and long form of option meaning

-h –help Show usage
-v –version Print version numbers and exit
-b –bootstrap=TRANSPORT Transport address of one boot-

strap node (host name or IP ad-
dress and port name or number)

-t –cont if no conns Continue even if their are no con-
nections left

-i –id=ID ID of the local node (in hex form)
-p –netport=PORT TCP port where to listen for

other nodes (in decimal)
-u –clientport=PORT TCP port where to listen for

clients (in decimal)
-c –config=FILE Name of a configuration file
-d –debug=STRING Debug options (see section 8.3.4)
-l –logfile=FILE Log file to use
-n –no-daemon Do not start Igor as a daemon

and log to standard output
-s –silent Do not print daemon information

to standard output
-P –pidfile=FILE Write process identifier to this

file

Table 8.1: Command Line Parameters of Igor

newline” (e. g. id: da4de85db275...). Possible keys and the meaning of their
corresponding values are listed in appendix A.

8.3.4 The Log File

In order to track execution, inform the user about important events and aid
debugging, the Igor daemon can output log information. These are configurable
and are either written to a log file or to standard out.

Every line in the log file consists of four items:

1. Current time. Format for time values is the number of seconds since
the Unix epoch (1970-01-01T00:00:00) (as most RFCs, maybe with the
exception of [136]), here given as a decimal floating point number.

2. Facility. Current facilities are listed in table 8.2.

3. Priority. Priorities range from 0 to 9, where 0 indicates fatal error messages
and 9 signals verbose debug output.

4. Message. The last item on every line is the message itself.

86 CHAPTER 8. TEST AND DEPLOYMENT

Facility Meaning

DBG The debugging system itself. Print why some messages are
printed while others are suppressed. Debug configuration
of the debugging system.

DFLT Default. When the developer did not mention a facility,
this one is chosen automatically.

CBL Print messages related to the call back list.
NODE Information regarding the Igor node itself. Message routing

is one example.
CONN Connection establishment, usage and teardown to other

nodes are logged using this facility.
PARSE Parsing of incoming messages into raw messages.
MESG Handling of parsed messages.
CFG Reading configuration files and parsing command line op-

tions.
ID Dealing with node identifiers. This includes parsing and

metric computations.
RAWMSG Transportations of raw messages.
BUF Buffers are the entities for memory management. Debug

the allocation, usage and destruction of such buffers.
LIB Information regarding libigor.
PLUGIN Information from plugins.
SERVICE Service oriented message routing.
MERIVALDI PRS/PNS and latency oriented message routing.

Table 8.2: Igor Debug Facilities

8.4 Application Examples

This section will detail some applications we implemented and that are deploy-
able on top of Igor to show the usability of the system. Figure 8.2 shows some
instances of the application described in the next sections together with an Igor
overlay network. Since each application opens its own service in Igor, the figure
is similar to figure 6.2.

8.4.1 Filesystem

One application implemented on top of Igor is the decentralized file system
IgorFS. The third part of this document covers IgorFS in detail.

8.4.2 Videgor

Videgor [58] is a peer-to-peer hard disc video recorder based on the overlay
network Igor. Our design goal was the seamless integration into the video disc

8.4. APPLICATION EXAMPLES 87

igor

igorfs

igorfs

videgor igorfs

igor

igor igor

videgor

igor

linypphone

linypphone
igor−igor TCP connection
app−igor TCP connection

Internet

Figure 8.2: Application Connectivity with Igor

recorder user interface users are already familiar with[95, 29]. With its help it
is possible to record missed broadcasts from the past and coordinate recordings
in the future, i. e. much more user requests can be fulfilled with videgor than
with non-networked video disk recorders. This works by using the distributed
resources of many networked Videgor systems in a completely decentralized
way. The distribution and decentralization was possible by using the key based
routing interface from Igor.

Videgor is an extension to the Video Disk Recorders (VDR) from Klaus
Schmidinger [149]. VDR is a program that enables a Linux PC to act as a
video disc recorder with time shifting capabilities. Videgor extends the VDR
to a distributed video recorder by providing three plugins and by automatically
connecting the participating devices via Igor. The three plugins are presented
below. With this peer-to-peer system the Videgor recorders can share past
recordings as well as program data and can further coordinate future recordings
(similar to [156] and [118]).

Scheduling

Users can request broadcasts to be recorded. If on different channels, these
broadcasts can overlap. Users on other systems may have other requests, and
may attach different priorities to each requests. The task of the distributed
scheduling algorithm is to maximize the fulfilled user requests with the available
receiver cards in the distributed system. The algorithm should also consider the
priorities users gave different recordings. Furthermore, the number of recordings
scheduled should increase with the number of users requesting this broadcast to
be recorded.

Each Videgor system may have a number of receiver cards. Such a receiver
card can usually be tuned to a single transponder (frequency), but multiple

88 CHAPTER 8. TEST AND DEPLOYMENT

channels can be broadcasted on one transponder. Therefor channels on one
transponder can be recorded in parallel. Channels which are transmitted on
different transponders usually can not be received simultaneously, because re-
ceiving nodes usually have only one tuner2.

The problem of distributed scheduling can be mapped to the Knapsack
problem, which is NP-hard [108]. In [95, 29] some approximation have been
presented, which can easily be implemented with the Igor overlay network.

The scheduler plugin for the VDR implements these ideas. With this plugin
it is possible to virtually record multiple broadcasts, even if the local receiver
card is not capable of that. In order to compute the estimation of the schedule,
the scheduler plugin uses two kinds of messages (see figure 8.3):

Request/Commit The RC-message is used to communicate the (aggregated,
see below) user wishes (requests) as well as the current scheduling decision.

Suppress Nodes further up in the hierarchy (see figure 8.3) can change com-
mitments of nodes further down by issuing suppress messages.

RC-messages have a target as the destination address and are sent via Igor with
upcall flag set to true. This target is computed as a hash over the minute the
schedule is computed for, i. e. for every minute, there is a seperate tree. This
way, the load for figuring out the schedule approximation is distributed among
all nodes. To further reduce the load on nodes further up in the hierarchy,
intermediate nodes aggregate the RC-messages. With such an aggregation, the
load on all nodes in the aggregation tree (see section 6.2.3) is similar.

videgor videgor videgor videgor videgor

videgor videgor

target

RC RCRC S

S
SRC

RC

RC S

Figure 8.3: Example of Videgor Scheduling. The tree shown is also an Igor
aggregation tree (see section 6.2.3).

If a node receives multiple RC-messages and detects imbalances between
them (i. e. the node can improve the schedule for its subtrees), it sends suppress
messages downwards. These suppress messages have the downwards node ad-
dress as destination and are sent with upcall=false. Upon reception of suppress
messages, further downward suppress messages may be triggered.

2As mentioned before, it is possible to have more than one receiver card per system.

8.4. APPLICATION EXAMPLES 89

The described scheduling algorithm uses some important features of the Igor
key based routing system to approximate an optimal schedule for the distributed
video recorder videgor. First, the route convergence of key based routing sys-
tems is used to do efficient aggregation. Since Igor employs PRS/PNS, the ag-
gregation is likely to happen early on a nearby node. Second, the upcall concept
is used to do computation on intermediate nodes, which would be impossible
with iterative key based routing systems or DHTs.

Video Data Transport

A second plugin is the video data transport plugin. The task of this plugin
is to fetch recordings from other videgor nodes. This is especially useful in
conjunction with the scheduler plugin: After the scheduler plugin coordinated
different recordings, the video data transport plugin can exchange the results.

The basic idea is similar to the scheduler plugin. Each node announces its
local recordings in multiple aggregation trees as follows. The trees are rooted at
the hash of the concatenation of the channel name and the minute the recording
was done (e. g. the value of hash(“CNN” + “2007-09-23t22-30”) will become
the root of one aggregation tree). This way, for every channel and every minute
there is a separate tree. Since the hash values are distributed evenly, the overall
load is distributed evenly too. Further, all intermediate nodes in these trees
aggregate the announcement messages to reduce the load. Each announcement
contains the node identifier from the announcing node and a list of hashes of
groups of pictures in that minute. The video stream broadcasted is subdivided
into GOPs (group of pictures). The video data transport plugin computes hash
values over these GOPs and announces the hash values (see figure 8.4).

To transfer video data, the node requesting data sends a message in the
appropriate aggregation tree. The first node with an answer sends a reply
containing GOP-hashes together with node identifiers. The requesting node
then directly contacts the announcing node and the transfer of the video data
is the reply, as shown in figure 8.4.

Electronic Program Guide

Some channels broadcast the Electronic Program Guide (EPG) together with
their normal program. The overview contains at least title of the broadcast,
start time and duration. Additionally, EPG can also transport other meta data
like detailed description, aspect ratio and sound format. The task of the EPG
plugin is to transport this EPG data between videgor instances. Similar to video
data, EPG data can be received only for the transponder currently tuned to.
However, with this plugin, videgor nodes are able to receive all EPG data that
they have channel identifier entries for. This also includes EPG entries from the
past. Such old EPG entries are especially useful in conjunction with the video
data transport plugin, which can fetch such past broadcasts from other videgor
nodes.

The EPG plugin sends two different kinds of messages over the Igor network:

90 CHAPTER 8. TEST AND DEPLOYMENT

recording

VDR

intermediate

VDR

responsible

VDR

requestor

VDR

record

announce hash

announce hash

store hash

request hash

request hash

announce hash

request data

send data

Figure 8.4: Message Sequence for Videgor Video Data Transport

Data and request. Request messages indicate for which channel and which time
the message requests data. The granularity of time within the EPG plugin is
one day, i. e. EPG data can be requested per channel per day. This decision
leads to reasonable sized messages. A hash over channel and time is again the
destination identifier of such requests. The upcall flag is set to true for request
messages in order to allow intermediate nodes with proper knowledge to answer
early.

Data messages on the other hand contain EPG data. They are sent for
two different purposes: Announcements and replies to requests. First, regular
announcements are sent. These regular announcements have the upcall flag set
to true so that intermediate nodes can aggregate many announcements and take
load from the aggregation destination (hash value of channel and day). Second,
data messages are used as replies to request messages. Here the destination is
set to the requesting node and the upcall flag is false. In this way, the message
is delivered directly to the requestor.

8.4.3 LinyPhone

Linyphone is a peer-to-peer voice-over-IP application[46, 47]. It is mainly tar-
geted at mesh networks, but is in parts based on key based routing and can
therefore run on top of Igor. To initiate a voice-over-IP connection, the Session

8.5. SUMMARY 91

Initiation Protocol (SIP [157, 143]) is used. SIP uses a central server (the reg-
istrar) to map the identities of users to an IP address where they are currently
reachable. Linyphone uses a structure similar to distributed hash tables on top
of key based routing to deliver a similar service as the SIP registrar.

8.5 Summary

This chapter dealt with the deployment of Igor. First some details of the build
process, then the usage of the Igor daemon have been described. The file system
IgorFS as an application to Igorhas its own part in this work. Videgor, another
application we have designed and implemented to run on top of Igor, is explained
in this chapter and finally Linyphone is mentioned.

92 CHAPTER 8. TEST AND DEPLOYMENT

Chapter 9

Conclusions

There yet remains but one concluding tale
Aleksandr Pushkin

9.1 Future Work

The development of Igor is not finished. Many more applications are imaginable
for an overlay network like Igor.

9.1.1 Integration with Scalable Source Routing

Scalable Source Routing (SSR[59]) could use Igor as tunneling network between
smaller mesh networks as shown in figure 9.1. Key based routing systems could
be used to store larger amounts of messages, and together act as a NNTP[52, 66]
server. Content distribution systems [169, 57] already use key based routing
systems. Another possible application are anonymizing systems like TOR[42],
where the directory service might benefit from the distributed nature of key
based routing systems as well as the anonymized routing itself.

At the backend side, an integration with key based routing protocols running
at lower layers (like SSR[59]) could be possible. For applications, this would
have the advantage that they do not have to care on which key based routing
system they run on. Applications could seamlessly communicate even if they
are attached to very different networks and key based routing systems, like
application 1 and application 2 in figure 9.2.

9.1.2 Control Plane

To ease the debugging, a control protocol similar to ICMP[25] might be included
in the Igor message system. Tracing routes and controlling latencies (echo re-
quest/echo reply) and the transport of error message are possibe applications

93

94 CHAPTER 9. CONCLUSIONS

App 1

SSR SSR

Igor Igor

SSR SSR

App 2

Figure 9.1: Possible Tunneling of SSR trough Igor

here.

App 1

Igor Igor SSR SSR

App 2

Figure 9.2: Possible Interaction between Igor and SSR

9.1.3 Firewall and NAT Traversal

Although the traversal of firewalls and Network Address Translation (NAT)
devices was part of many design decisions, it is not fully implemented yet.
However, there exists libraries that ease this task and integration of such libraries
should be not difficult. Further, since message forwarding is the main task
of the Igor overlay network, indirect message forwarding is not a problem in
case NAT/firewall traversal is not possible. Through the plugin concept, such
indirect connection can be penalized during normal routing.

9.1.4 Bootstrapping

The current Igor implementation uses just one node for bootstrapping. In case
this bootstrapping node is not available for any reason, the startup of the Igor
daemon fails. This behaviour will be changed in the way that multiple nodes can
be given for bootstrapping purposes. During normal run time, the Igor process
will memorize good (either latency-wise, because they offer similar services or
because they are close in the virtual metric) neighbors and try them during the
next startup.

9.2. SUMMARY 95

9.2 Summary

The second part of this work introduced the overlay network Igor. After the
design goals were laid out, the design decisions of the key based routing sys-
tem has been described. Adaption to the Internet and service oriented routing
have been important points here. The implementation and test of Igor has been
reviewed. Applications based on the key based routing system have been il-
lustrated, including applications developed by us. In this section, it has been
shown how development on Igor could continue.

96 CHAPTER 9. CONCLUSIONS

Part III

The Decentralized File
System IgorFS

97

Chapter 10

Goals

I suggest you target these coordinates.
Spock, Star Trek, In Harms Way

This chapter will describe and justify the IgorFS design goals.

The aim of a file system in general is to map the user interface (system calls
like open(), seek() and read()) of individual files to the underlying infras-
tructure, often a device with fixed block size. Further it is the task of the file
system to allow the organization of files into directories and grant or deny read
and write access to these files and directories. Often the tasks of the file system
are accomplished by defining directory blocks, data blocks and meta-data blocks
(in some file systems called inodes, see section 4.1.3), where information on how
to find other blocks are stored.

The idea behind the distributed file system is to share access to data between
multiple systems. IgorFS will prove that there are more efficient ways to share
files than to copy the entire file over the network.

The IgorFS system should work without a central authority. Such a central
entity would introduce a single point of failure and a performance bottleneck.
Further this work assumes that the data handled is confidential by default.
Therefore the file system should ensure that the data stays confidential. Unau-
thorized access to information is prevented and the authenticity of information
is checked.

The scenario that is envisioned has large files, which change often but the
changes are small compared to the overall file size. Every file has a designated
writer (the creator/maintainer of that file), while there are potentially many
readers of each file. The owner of the file must be able to determine who is able
to read the file.

99

100 CHAPTER 10. GOALS

10.1 Security

IgorFS should work over untrusted networks, so security is a crucial part of the
design. One important point is the assurance that the data stays confidential
while it is in transit. Confidentiality of the data while it is on permanent storage
would be an additional benefit. Such confidentiality should be ensured by using
state-of-the-art encryption functions.

For readers of data it is important that they receive the data as it has been
written, i. e. that the data item is authentic. This is not obvious in distributed
systems and requires integrity protection mechanisms. The integrity assurance
mechanism should cover every data and meta-data item and must therefore
effienciently cope with large amounts of data. It is not feasible that the reader
verifies each read data item with the publisher.

On the other hand, the writer (publisher) of data needs some control over
who is able to read the data. Reading data without permission from the pub-
lisher should not be possible, i. e. the publisher must authorize reading its data
from IgorFS. However, IgorFS should not be able to solve the Digital Rights
Managment (DRM) problem, i. e. once a user has copied the data to a location
outside IgorFS, the file system should no longer protect the data.

10.2 Distributedness and Decentralization

IgorFS should be a distributed system by the basic usage scenario, because
it should be designed to exchange data between systems. These systems are
connected via the overlay network Igor.

Further, IgorFS should also be a decentralized system, in order to avoid
single points of failure and to increase robustness in case some nodes in the
IgorFS network fail. Also, no central trust issues should be introduced, because
different readers and writers may not necessarily agree on shared trust anchors.

Last but not least IgorFS is also a research project. One objective of this
project is to prove the usefulness and performance of the overlay network Igor.

10.3 Scalability and Efficiency

The distributed and decentralized file system IgorFS should be designed in a way
that utilizes the scalability properties of structured overlay networks and key
based routing systems. This means that IgorFS must function efficiently with
a couple of nodes as well as with thousands of nodes. Moreover, if thousands of
nodes join the network, the resources of these nodes must be used in a shared
way to increase the overall performance of the network.

Data in the file system IgorFS is expected to be large and changed often,
however the changes are small compared to the overall size of the files. That
means, between different versions of data in IgorFS there is a lot of redundancy.
The system must therefore efficiently detect such duplications and avoid double

10.4. EASY DEPLOYMENT 101

storage and double transmission of such duplicates. Figure 10.1 shows how
current systems handle such situations and how IgorFS can do.

entire file

FTP

changed parts

rsync

required parts

NFS

IgorFS

Figure 10.1: Efficiency Improvement with IgorFS

10.4 Easy Deployment

In order to be useful for practical applications, IgorFS must not have difficult
installation procedures or extensive external requirements. The system should
not require undue modifications, neither on the target system nor on the appli-
cations using the file system. In order to use unmodified applications on top of
IgorFS, the systems strives for compatibility with the POSIX standard.

It must be possible to do a gradual deployment, i. e. IgorFS must be useful
from the first installation with one writing and one reading instance towards
thousands of deployed systems.

102 CHAPTER 10. GOALS

Chapter 11

Design

Digital files cannot be made uncopyable,
any more than water can be made not wet.

Bruce Schneier

This section will explain the design decisions made for IgorFS, based on the
design goals laid out in the previous chapter. It covers the interface to the
applications using the file system as well as security aspects. Also the internal
representation of file system objects is explained together with their handling in
memory and on disk. One of the key issues of IgorFS, the cutting of data blocks
is introduced and the modularization of the implemented system is justified.

11.1 Interface to the Applications

Traditionally file systems are implemented as part of the operating system ker-
nel. Section 4.4 showed the disadvantages of this option and how user space
file systems offer alternatives. For IgorFS, the Parrot (see section 4.4.2) way to
implement the file system was ruled out because exclusively using the ptrace()
system call was deemed to be too intrusive for applications. To use a virtual
file system layer like Gnome-VFS (see section 4.4.3) was not an option either,
because that would restrict IgorFS to one special framework.

Therefore FUSE is used as interface between IgorFS and applications. This
way, applications use the regular kernel interface and do not have to be modified
(neither by introducing a VFS library nor by intercepting the ptrace()-call) at
all.

On the file system side, FUSE works by registering a number of functions,
mostly equivalents of functions at the VFS layer like open, read, write, and
calling the main FUSE event loop. Then, FUSE creates a thread for each new
request from the kernel and calls one of the registered functions.

103

104 CHAPTER 11. DESIGN

11.2 Security

Data and meta-data stored in the file systems will, at some point, be put into
chunks of data. To reach the security objectives of Igor (see section 10.1),
cryptography is used at this block level.

We assume the following standard cryptographic primitives:

• Cryptographic hash function and

• Symmetric encryption and decryption.

Every single piece of data is part of a block. Note that at this point the size
of the block does not need to be fixed. Each block has an unique identifier,
gained by hashing the content of the (encrypted) block with a cryptographic
hash function. The result of the hash function will be called the identifier or
the ID of that block. This implies that the content of a block can not be changed
(given standard hardness assumptions of the hash function). When something
in the file system changes, a new block is created. The old block is available
until everybody has deleted it. This means that it is an inherent feature of the
file system that access to snapshots from previous points in time is possible, as
long as the data blocks are cached in the system.

The content of every block will be symmetrically encrypted1. The key for
the encryption process is derived from the hash result described above, i. e. the
key is depedent of the content of the block. With this procedure, the same
block is always encrypted in the same way, independent of other factors. The
encryption key is not guessable by an attacker, but deterministic in case the
same block is encrypted somewhere else.

To read anything from the file system, one needs first the identifier of a
block. This is necessary because of the properties of the used hash function:
The identifiers are not guessable. Note that if the content of a block is present,
the ID can be computed. Since in that case the content of the block is known
(but still encrypted as we will see later), there is nothing to be gained.

The second thing necessary to read a block is the key to decrypt the block.
Table 11.1 formalizes the process.

11.2.1 Encapsulation of Cryptographic operations

All the cryptographic operations that are performed in IgorFS are encapsu-
lated in a separate module. This module provides the following cryptographic
services:

1. Symmetric encryption and decryption (see section 2.2). Given a fixed
length key k, the module transforms arbitrary length of clear text input
data B into encrypted data (encryption): BE = Ek(B). Because the the
reverse operation B = Dk(BE) (decryption) uses the same key k, the
cipher is called symmetric. Some symmetric cipher algorithms work in

1Asymmetric cryptography would be possible, too

11.2. SECURITY 105

Description Formalization

A block (clear text) B
Encryption function with key k Ek()
Hash function H()
Block, as transported or stored BE = EH(B)(B)
Block identifier ID(BE) = H(BE)
Block flag fb: i – indirection; d – data block
Indirection block List of (H(BE), H(B), fb)-tuples
Human readable file name N
Directory flag fd: d – directory; f – file entry
Directory entry Vi = (N, H(BE), H(B), fd)
Directory List of Vi

Decryption function Dk()

Table 11.1: Formalization

a block-by-block manner. If the input data is not a integral multiple of
the cipher block length, then the input data is padded to the next integer
multiple (see section 2.4). The padding will include the original length
of the input data. The way padding is done, the output data may be
larger than the input data, but at decryption time the original data can
be restored.

2. Hashing and verification. Hashing (as described in section 2.1) is the pro-
cedure of compressing an arbitrary amount of input data into a fixed sized
output: h = H(B). Further properties of cryptographic hash functions
inlcude that it is hard to (a) create two sets of input data that hash to
the same value and (b) hard to create a second set of input data that
hashes to the value of a first one. Verification is the complementary op-
eration. Given a block of input data B and a hash value h, the module
checks whether the result of the hash function is equal to the one provided:

h
?
= H(B)

3. Combination of the above. Some cryptographic operations frequently
occur together in IgorFS. Input data is often hashed to get an encryp-
tion key, then encrypted with that key and hashed again to derive the
block identifier. This module provides the most often needed combi-
nations as functionality: (B) ⇒ (EH(B)(B), H(EH(B)(B)), H(B)). The
reverse operation is also supported. Here, the module expects an en-
crypted block as input along with a block identifier and a decryption key:
(EH(B)(B), H(EH(B)(B)), H(B)) ⇒ (B, bool). The boolean value is set
to true if all verification operation have been successful. It will decrypt
the block and verify the outer and the inner hash.

106 CHAPTER 11. DESIGN

The encapsulation of all cryptographic operations has a number of advan-
tages. To increase the processing speed of IgorFS, cryptographic co-processors,
once they are widely available, can be used. Also parallelism for normal multi-
CPU systems can be implemented in this central facility.

A second advantage is that the selection of cryptographic algorithms is
pooled in one place. This is useful because not all combinations of cryptographic
algorithms have the same level of security. Useful combinations of algorithms
are grouped into crypto suites. Cryptographic algorithms also need to be ex-
changed from time to time, either because of advances in crypto analysis or
because of legal changes (export, import or usage restrictions).

Currently, IgorFS is designed to use SHA-256 as the hash function and AES-
256-CBC (see sections 2.2.2 and 2.3.2) to encrypt and decrypt. Both algorithms
are considered secure right now and in the near future [11]. Once one of the
algorithms is considered broken, a change is easily implemented by defining a
new crypto suite. The cipher block chaining (CBC) mode (see section 2.3.2) is
appropriate, because it does not have the weaknesses of electronic code book and
blocks are always encrypted and decrypted at once. Random access into blocks
is not necessary. CBC mode requires an initialization vector to encrypt its first
block (note that this block has nothing to do with data blocks from IgorFS, but
with the block cipher characteristics of AES). Regarding initialization vectors,
it is important that the same initialization vector IV (see sectionsec:ciphermod)
is never used with the same key and different data. Because each block is
encrypted with a different key, the initialization vector can be kept constant.

11.2.2 Authentication

As described above, the blocks building up files and directories are authenticat-
ing themselves in the way that the identifier of the block ensures, with the use
of the hash function, that the block has not been tampered with. This implies
that the authenticity of the block identifiers must be protected. These block IDs
are contained either in indirection blocks or directory entries. Recursively, these
indirection blocks or directory entries are themselves saved in blocks which are
identified by self-authenticating IDs. In the end, everything is authenticated
by the identifier of the root directory. This again means that a trusted anchor
point of entry is necessary. Such an anchor point can be created by at least two
ways:

• The first block identifier is transported over a trusted out-of-band channel.
Such a channel can be personal contact, cryptographically secured e-mail
transport or a secure web page.

• The first block identifier is transported over an untrusted out-of-band
channel, but secured with other authentication schemes like a signature
with a trusted key. How this key is trusted is outside the scope of IgorFS.

11.2. SECURITY 107

11.2.3 Authorization

The authorization system inside the file system is based on the fact that every
single piece of data and meta-data is encrypted. The authorization to read a
block equals the ability to decrypt that block. This means the security of the au-
thorization rests on the security of the block encryption and not on the trust in
a (third party) authorization system. There is no explicit authorization mecha-
nism to allow or deny to change a file. Since blocks are immutable (changing the
content of a block changes the identifier), it is not possible to change an existing
file and therefore an authorization for change is not necessary. Changing a file
means creating a new file, which in turn is a change to the parent directory (i. e.
creation of a new parent directory). The additional required storage is limited
because blocks shared between the old and the new version are encrypted and
therefore stored in the same way. The ability to write new blocks is not limited
by the authorization system but by the amount of local free disk capacity. Older
blocks are not affected by newly written blocks.

11.2.4 Confidentiality

All data in the system is regarded and treated as confidential by default. There
are no unencrypted blocks of data, every single piece of information is only
stored and transfered in encrypted form. To decrypt and read a block in order
to serve local user requests, the matching key is necessary. Such a key can be
learned by two mechanisms:

• Receiving it via an out-of-band mechanism (already mentioned in sec-
tion 11.2.2).

• Reading it in an upper level structure. For example the key to a file is
listed in the directory together with a block identifier for that file.

Note that intermediate systems do not have the key for the blocks they transport
and therefore move around opaque data. The handling of unencrypted data
is limited to two points. First, the initial publisher writes the data it wants
to publish towards the daemon. The daemon encrypts the data and creates
the block structures described above. Second, the final user (reader) of the
data receives the blocks in an unencrypted form. Again, the daemon does the
decryption and hands the data to the user.

11.2.5 Trust Issues

A publisher of data wants to keep the data confidential except for legitimate
users. The publisher has to trust:

• first and foremost, in the strength of the cryptographic algorithms.

– If a known-plaintext attack to the encryption function is possible,
not much is gained for an attacker, since the keys are based on the
plain text in many contexts.

108 CHAPTER 11. DESIGN

– If a known-ciphertext attack is possible, the file system can be con-
sidered broken.

– If the collision resistance of the hash function is not given, attackers
may have the possibility to publish different data in different con-
texts.

– If the used hash function is not second-pre-image resistant any more,
attackers may introduce non-authentic data into the system.

– If the one-way property of the hash function is weakened, attackers
may learn confidential keys to data.

• legitimate users of data. These users have access to the unencrypted data
(that is the purpose of the whole system) and the keys that let them
decrypt the data. It must be ensured by measures outside the IgorFS that
these users stick to the rules set by the publisher.

• administrators of the system of said users. Since the user have access to
the data, the administrators can gain access, too.

On the other hand, the publisher of data does explicitly not have to trust

• intermediate systems, as they merely pass on encrypted data blocks.

• administrators of intermediate systems, for the same reason.

• other users of the same system as the legitimate user. Here the local (local
to the legitimate user) file system rules (enforced by the local administra-
tor) ensure that no access is granted.

11.2.6 Examples

This section walks through the encryption and decryption mechanism and uses
the formalization shown in table 11.1. A producer of two files (1 and 2) wants to
publish them in the above described file system. Both files are smaller than one
block (to skip the indirection block steps). The producer then computes: The
two encrypted data blocks B1

E = EH(B1)(B
1) and B2

E = EH(B2)(B
2), the two

block identifiers H(B1
E) and H(B2

E). Then a directory is created with the two
entries (N1, H(B1

E), H(B1), f1
d) and (N2, H(B2

E), H(B2), f2
d). This directory

forms a third block B3, of which H(B3
E) and H(B3) are computed as above.

The three blocks B1
E , B2

E and B3
E are pushed into the network.

The producer may then decide to sell access to the two files to an user A. The
user pays and receives the tuple (H(B3

E), H(B3)) together with the indication
that this is a directory. It may also receive a signature of the producer to check
the authenticity of the tuple.

The user is then able to fetch the block B3
E , since she knows the block

identifier H(B3
E). With this identifier she is able to verify the authenticity of

the block by re-computing the block identifier H(B3
E). She can then decrypt

the block, since the decryption key H(B3) is also known. The decrypted block

11.3. HANDLING OF FILE SYSTEM OBJECTS 109

is the directory containing further file names N , block identifiers and decryption
keys. With these information the user is able to fetch the blocks, verify, decrypt
and use them.

At some other point in time, the producer decides to sell another directory
with files 1 and 4 in it to user B. The directory then contains the two tuples
(N1, H(B1

E), H(B1), f1
d) and (N4, H(B4

E), H(B4), f4
d). Note that the entries for

file 1 are the same as for user A. User B, however, is not able to read file 2, since
user B is not able to decrypt B2

E because the key is not known to her. Even
the mere existence of file 2 and the directory published to user A is kept secret.
Everything user B can learn by chance is that the blocks B2

E and B3
E exist and

have been transfered.

11.3 Handling of File System Objects

To answer requests from the FUSE layer efficiently, IgorFS needs an in-memory
representation of file system objects. Otherwise, for each request from FUSE,
the full process of encryption/decryption would be necessary, which is not fea-
sible. This representation needs to fulfill at least two requirements: First, ap-
plication requests received via FUSE must be dealt with efficiently. Second, the
transformation into blocks and back should be simple.

11.3.1 Files

Files consists of, potentially many, blocks. The size of each block will be chosen

• large enough so that the overhead of requesting and transferring the block
is small compared to the transfer of the block itself.

• small enough so that random-access read patterns can be served fast.

• large enough so that the overhead of maintaining the block structure is
reasonable.

As desribed above, every block is encrypted: For each block, a distinct and
unique encryption key is selected. This key is based on the content of the block2

and derived by applying the hash function to the content of the block. See
table 11.1 for a formalization of this procedure. This ensures that if two entities
store the same data in the system, they encrypt it with the same key. The
result is that every unique block is stored only once. Otherwise it would be
possible that the same block occupies storage with many different encryption
keys. Again see table 11.1 how this key is derived.

Every directory entry (see section 11.3.2 below) points to a single block and
contains the decryption key to that block. The block contains either the final file
data, given the entire content of the file fits into one block or a list of identifiers

2This is not strictly required. The key can also be selected randomly to avoid unforeseen
weaknesses by the combination of hash function and encryption function. Then, however, the
property that every block is stored only once is lost.

110 CHAPTER 11. DESIGN

of other blocks and the keys to decrypt them (indirection block). The latter
allows the construction of a B-tree[6] like structure to implement large files,
since indirection blocks can point to other indirection blocks again.

Figure 11.1 shows how indirection influences the maximum allowed file size.
The figure assumes that each pointer requires 72 octets (8 octets offset, 32 octets
block identifier, 32 octets decryption key). Note the logarithmic scales of the
plot.

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 100 1000 10000 100000

m
ax

 fi
le

 s
iz

e
(o

ct
et

s)

block size (octets)

no indirection
single indirection

double indirection
triple indirection

Figure 11.1: Influence of Indirection on Maximum File Size

Since these blocks are identified by the result of a cryptographic hash func-
tion, they are self-authenticating in that way. Because of the second pre-image
resistance of the hash function it is not possible for an intermediate system (read:
Eve the attacker) to modify the block without changing the block identifier. As
mentioned above, by changing the block identifier an entirely different block is
created. The same logic applies to indirection blocks and directory blocks. The
idea of encoding files in this way is loosely based on content hash keys (CHK)
described in [18].

A specialty of files in Unix-like operating systems is that files can contain
holes. A hole in a file is an unallocated area where no write access ever hap-
pened. Such areas can emerge if applications seek() over the end of the file
and write data. IgorFS can efficiently deal with such holes because indirec-
tion blocks always store the offset where the pointed-to-block belongs. Missing
bytes between successive blocks represent holes in the file. Note that such holes
neither require hard disk storage capacity nor network bandwidth.

11.3. HANDLING OF FILE SYSTEM OBJECTS 111

11.3.2 Directories

At the first sight directories are indistinguishable from other files: They are
made of encrypted blocks and one needs the identifier of these blocks and the
key(s) to fetch and decrypt them. The difference between directories and or-
dinary files lies in the fact that directories are interpreted by the file system
itself. Directories contain pointers to other blocks (block identifiers), keys to
these blocks and human readable names to identify these pointers together with
a flag indicating whether the pointed-to-item is an ordinary file or another di-
rectory.

11.3.3 Directory Layout

In memory, directories are handled as tree, using the entry name as key. The
C++ standard template library (STL) allows efficient implementation. The
in-memory representation as a tree avoids slow reactions to FUSE requests if
directories contain many entries.

Once directories are converted to blocks (serialized), the content is a linear
list of entries. This has the advantage that directories can be treated exactly like
files and all lower layers do not need to distinguish between files and directories.

Serialized directory entries consist of the following items:

• The first item is the name of the the entry. IgorFS does not need to
deal with encoding problems of entry names, since this problem is already
handled at the FUSE layer.

• A flag indicates the type of the entry. Currently supported types include
files, directories and soft links. Hard links are not supported because their
POSIX semantic is difficult to map to the IgorFS context. Hard links are
two directory entries (potentially in different directories) that point to the
same file. If the file is changed, the change is visible through both directory
entries. In IgorFS, directory entries point to block identifiers. Altough it
is possible that two directory entries point to the same block identifier,
changing a file creates a new block (including a new block identifier). The
change would not be visible through the other directory entry, because the
block identifier would not change their. Device files and named pipes have
been left out too because they are highly dependent on the host system,
which may vary in a distributed system like IgorFS.

• The block identifier and decryption key to read the entry are serialized
next. This is only required for files and directories. Soft links are stored
directly in the directory entry.

• For files, the overall length of the file is noted.

• Other meta-data including the creation and modification time of the entry
follows. Storing access time is not useful because that would require very
frequent updates of block identifiers and associated operations. Also access

112 CHAPTER 11. DESIGN

rights are stored, however their usefulness is limited. Anyone in possession
of the key to decrypt the directory can locally alter the access rights. The
most meaningful of the POSIX access bits is the executable bit, because
it allows to store executable files on IgorFS.

Once a directory is serialized, it is treated like any other serialized content,
i. e. it is subject to block cutting and cryptographic operations. The result will
be an identifier and decryption key for this directory and all of the content
below. These numbers can then either be embedded in the parent directory or
be transported to the subscriber by another mechanism.

11.4 Block Cut

Block cutting is the operation of taking data written by the user processes and
chop it up into pieces which are transferable through the network. The next
section lays out some goals to select the best option for IgorFS.

11.4.1 Requirements

Some requirements for the cutting operations are:

• The block size must be reasonable. Blocks that are too large take too
much time to transfer and thereby generate latencies. If users want only
parts of that block, other parts are transfered without any need. On
the other hand, if block sizes are too small, a lot of overhead is created
by transferring lots of small blocks. The optimum depends on expected
usage patterns, expected bandwidth and the overhead to transport one
block.

• Equivalent pieces in different files should be detected, i. e. they should be
chopped the same way.

• Equivalent files should be cut in the same way at different hosts. That
means the algorithm should be deterministic.

• Small modifications in a file should influence the cutting algorithm only
locally. That means that when the content of one block changes, most
block boundaries in the file should stay the same.

• Insertion or deletion of some data should influence block boundaries as
slightly as possible. This requirement is related to the previous.

• Application behavior can be honored. The application may know how to
store the file: IgorFS could use the block boundaries used by the applica-
tion writing the file.

• Knowledge about the general file structure can be incorporated. For ex-
ample:

11.4. BLOCK CUT 113

– Cut out consecutive 0x00s, a pattern which occurs in binary files as
well as in files with holes. Further “natural” cutting points in binary
files are the transitions between different sections (e. g. text segment
and data segment) or the boundaries of function code.

– Text files can be cut preferably at line endings. This concept is
especially useful for source files, where changes happen often in one or
many consecutive source lines. Version control systems like CVS [49]
use this concept.

– Video files could be cut at Group of Pictures (GOP) boundaries.

– Some databases used by the Sequence Retrieval System (SRS [50])
have the marker \n\n as separator between data items. It is useful
to cut SRS files at these points, because data items are always read
as a whole.

• Implement an interface for the application to explicitly give hints to the
cutting algorithm.

• Because the final algorithm must be fast enough to run on large amounts
of data.

These requirements in part contradict each other, e. g. the algorithm can not
honor application behaviour and be completely deterministic on data at the
same time. The next sections will list possible solutions and explain which
tradeoffs have been taken.

Possible variants to cut data include:

• Cut data at fixed positions (fixed block length). File systems designed to
work on hard disks cut files at sector boundaries, often 512 octets.

• Cut data at fixed, but user specified positions (allow adaption to struct

lengths). Applications with fixed record lengths would benefit most from
this option.

• Cut data at some (not all) line endings to improve storage for text-based
files. Since identical blocks are stored only once in IgorFS, this option
would be especially efficient if text files with small changes are the major
workload for IgorFS.

• Cut data at 0x00 bytes in the file to ease storage of files with holes in
them.

• Cut data at positions determined by an algorithm on the data.

A combination of the variants is possible.
Cutting at fixed data patterns (like 0x00 or \n) is ruled out because it would

restrict IgorFS to specific file formats. The same holds true for approaches that
try to understand the data at a higher level than octet sequences. Honoring
application behaviour is difficult for two reasons. First, this would require an

114 CHAPTER 11. DESIGN

interface between the application and IgorFS beyond the POSIX file system
interface. The write pattern can not be used as such an interface, because the
specifics how an application writes can be hidden by the kernel and by FUSE.
The second reason against honoring application behaviour is that the data cut
algorithm should be deterministic. Even if one file is written by two different
applications (e. g. the orginal producer and a copy process), it should be cutted
in the same way.

11.4.2 Rolling Checksums

To achieve these goals, it became clear that the cutting algorithm had to be
data dependent only. However, format dependency was abolished because of
the number of possible formats and the paradigm to design a general-purpose
file system. Therefore a data dependent and format independent way to cut
files is required.

Rolling checksums (e. g. Rabin hashes (see section 2.1.6)) have the property
that they are

• easy to compute in general.

• easy to compute for a sliding window which is moved over the data.

The second property is important here: data outside the sliding window does
not influence the computation of the checksum. This way, the checksum of
similar strings in the data is identical, even if the data is preceeded by different
strings.

The rolling checksum is used to find cutting marks in the data stream. Given
the checksum algorithm outputs the values from 0 to x with a uniform proba-
bility and the desired average block size is b. Then a cutting mark is inserted
every time the rolling checksum stays below the threshold of t = x/b.

Before blocks are actually cut, small holes in the data stream are replaced
with a sequence of ’0’-octets. At the same time, larger sequences of ’0’-octets
are replaced with real holes in the file.

After the block cutting is done, very small segments are joined again to
avoid unnecessary overhead. Similarly, segments that are too large are split by
decreasing the threshold.

Fixed Block Size

A fixed block size is a simple and deterministic algorithm to cut files. Available
commodity hard disks use 512 octets as sector size and file systems designed
for these split file content in (multiples of) the sector size. This scheme keeps
most blocks constant if some data is overwritten. However, when some data
(not a multiple of 512 octets) is inserted or deleted, many blocks (e. g. most of
the blocks behind the modification) have to be changed. For the same reason,
if two files differ only by an insertion/deletion early in the file, most of the

11.4. BLOCK CUT 115

blocks stored are different. As stated above, one of the goals of IgorFS is to find
similarities in independent files, the fixed block size approach is not suitable3.

Adler32

The Adler32 (defined in [39], based on [55]) checksum is computed as

A = 1 +
n−1∑

i=0

di (mod 65521)

B = (1 + d0) + (1 + d0 + d1) + · · ·

+ (1 + d0 + d1 + · · · + dn−1) (mod 65521)

= n +

n−1∑

i=0

(n − i) · di (mod 65521)

Adler32(d) = B · 65536 + A

Note that the final computation does not need to be computed modulo 232

to fit in a 32 bit value, because the result is always below or equal to 65520 ·
65535 + 65520 ≈ 231.9996. The definition used in this work is slightly different
for two reasons. First, the checksum has to be easily computable from previous
values. Second and more important, the checksum must be independent of the
position of the data in the file. Therefore Adler32∗ over b octets with the last
octet at position x (with x ≥ b) is defined as:

Adler32∗(dx) =

B
︷ ︸︸ ︷

(b +

x∑

i=x−b

(x − i) · di) mod 65521 · 65536

+

A
︷ ︸︸ ︷

(1 +

x∑

i=x−b

di) mod 65521

CRC and Rabin

Both CRC checksums as well as Rabin hashes (see sections 2.1.6 and 2.1.1)
quickly achieve the desired equal distribution of hash values. The associated
graphs have been omitted for that reason. However, both share with Adler32∗

the disadvantage that all octets in the sliding window need to be memorized in
order to remove them once the windows is moved. Both checksums have some
computation overhead compared to the XOR32 algorithm introduced next.

3This may not be true for very small blocks. However, very small blocks are not suitable
because of the large overhead introduced as explained in the goals in section 11.4.1.

116 CHAPTER 11. DESIGN

XOR32

Taken the file as continuous data stream of octets di, the XOR32 rolling check
sum with bit width b at position x is defined as

RCx =
b−1⊕

k=0

2k · dx−k (mod 2b)

With this definition, the continuous (rolling) checksum is easy to compute.
Given the checksum at position x, the checksum at position x + 1 follows
RCx+1 = (2 · RCx) ⊕ dx+1 (mod 2b), i. e. no previous data is required. Both
operations, one shift and one XOR, are very cheap to implement and fast to
execute. The effects of data patterns are fading out: After b shift operations
the influence of a single byte is gone. On the other hand, every bit position of
the input data can affect every bit of the checksum.

11.4.3 Conclusion

The previous sections showed the design issues around splicing a continuous
stream of data into blocks. Fixed size blocks can not cope with insertions or
deletions of data amounts which are not a multiple of the block size. Sec-
tion 11.4.2 also explained why it is not feasible that IgorFS is aware of multiple
file formats. A similar argument holds true for direct hints by the application.

Therefore a data dependent but deterministic algorithm to cut data into
blocks is the right design for IgorFS. Previous sections together with section 14.1
compare CRC32, Rabin Checksum, Adler32∗ and the XOR32 algorithms. Ta-
ble 11.2 compares the results. CRC32 is not easily computable in a sliding
window manner and is more complex than the other solutions. The Rabin
and Adler32∗ approaches work with sliding windows. The computed values for
Adler32∗ are not distributed evenly4, which is required for proper operations.
Rabin has a noticable computation overhead, too. Therefor the XOR32 algo-
rithm is most suitable one to find cutting marks, given the desired block size is
larger than 32 octets.

Feature CRC Adler Rabin XOR

Sliding Window no yes yes yes
Equal Distribution yes no yes yes
Small Overhead no yes no yes

Table 11.2: Comparison of Checksum Algorithms for Block Cut

4The reason behind this is the fact that the sums A and B do not overflow early enough

11.5. SNAPSHOT 117

11.5 Snapshot

This section will described the goals of snapshotting in general. A snapshot of
the file system conserves the state of the file system at one point in time. This is
useful to export exactly this state to other peers or to revert to this state in case
something goes wrong. Some Logical Volume Managers (LVM) provide a sim-
ilar service. The difficulty in creating such snapshots exists because additional
modification requests for the file system may arrive from the application while
creating the snapshot. The goal is to design a snapshot mechanism that can
deal with the problem efficiently. Generation of snapshots should not hamper
normal performance significantly. It must also be possible to generate multiple
snapshots in parallel.

11.5.1 Data Structures Necessary

To implement the snapshotting process several additional data structures are
necessary. First of all, an epoch designator is introduced. The name and concept
are borrowed from Java garbage collector systems [43, 102]. The variable epoch
starts with the value 0 at program start-up and is incremented whenever a
snapshot is started. One instance of this variable must be kept per mount point.
The counter may overflow if sufficiently many snapshots have been generated.
IgorFS handles this situation properly, however, no more than 232 (assuming
integers with a length of 32 bit) snapshots may run at once. Note that the
epoch counter is an in-memory structure and has a local meaning only.

Second, all in-memory representations of file system objects (e. g. files, direc-
tories, links, . . .) keep their current epoch. Each instance of an object belongs
to exactly one epoch. On the contrary, not every object exists in every epoch.

Last, file system objects (FSOs) from previous epochs must be accessible
somehow. For that, all file system objects can keep references to previous rep-
resentations of themselves if such a previous object exists.

FSOs can contain multiple references to other FSOs (e. g. directories point
to their content). The semantic of these references is now slightly changed:
The reference points to an instance in the same or an older epoch. Figure 11.2
shows how FSOs and epochs are related. Note that not every FSO exists in
every epoch.

If the file system object is current with respect to the global epoch (see sec-
tion 11.5.2 how this is detected), then references to the child objects are always
to the current epoch of the child object. On the other hand, if a FSO is not
current any more, references to older epochs of children may exists. Figure 11.2
shows the concept.

11.5.2 Process

Read-Only Access

Accesses to the file system or to file system objects that do not modify the
objects are not changed at all. That means that the introduction of the snap-

118 CHAPTER 11. DESIGN

root

dir 1 file 2

file 3 file 4

head head−1 head−2

links between epoch copies

directory structure links

Figure 11.2: Connections Between File System Objects and their Epoch Copies

shotting process has no implication for read-only access. The reading process
can lock the current head epoch of the object and has read access for it. This is
true since the access time is noted in IgorFS. Otherwise each read access would
be equal to a write access at least to the meta data of a file system object.
Efficient snapshotting is one reason why the access time is not tracked.

Write/Modify Access

There is a distinction between memory blocks and disk blocks. During (over-
)write access from user space, first the disk block has to be read from disk,
decrypted and converted to a memory block. The the write call from user space
can affect more than one memory block, therefore it is checked which memory
blocks it will modify. Then the write call from user space is dissected into
chunks, one chunk for every affected memory block. These chunks are written
into the memory blocks and the blocks are marked dirty. The boundaries of
memory blocks may be affected during this process, i. e. new memory blocks
can appear because old ones are cut.

For write access (any access that modifies the object), two cases have to be
distinguished:

1. The object was not modified since the object was made persistent the last
time. In this case the epoch counter of the object is set to the current
epoch and the write access can occur as normal.

11.5. SNAPSHOT 119

2. The object was modified since it has been written to disk the last time.
In this case, the previous version of the object is still required, because
it has to be written out. That’s why an in-memory copy of the object is
created. After the copy is complete the objects’ epoch counter is set to
the current global one and the object modification can occur as described
before.

The algorithm is shown in figure 11.3. If the object is not dirty (i. e. it has been
written to disk since the last snapshot), no special handling occurs: The epoch
counter is incremented and the write request is fulfilled. In case the object
has been modified after the global epoch has been incremented the last time
(i. e. the last snapshot is not yet complete), a copy of the object is created in
memory. The old snapshot process can continue on the copy, while the current
write request is served on the original. The object is dirty after both cases.

if (fso.is_modified()) then {

fso.clone = clone_object();

}

fso.epoch_counter = current_epoch_counter;

/* write as normal */

Figure 11.3: Modifying Access with Epochs

A good moment in the write process to implement the epoch counter check
is when the object is locked for write access. The write lock is a procedure that
is necessary for all modifications of an object, because the implementation needs
to deal with concurrency.

Writing to child objects invalidates the block identifiers for parent object,
because the parent object in its serialized form contains the block identifier of
the child object. This block identifier of the child object changes if the child
object is modified. Therefore all parent objects need to be marked as ‘dirty’
when a child object is modified. This recursive setting of objects to dirty requires
a lock on the parent object. To avoid lock contention on the objects closer to
the root of the tree, two techniques are employed:

1. Truncation of the recursion. As soon as a dirty object on the way up-
wards is discovered, the recursion is stopped. This is justified because this
algorithm ensures that dirty objects have dirty parents.

2. Overlapped locking. Locks on intermediate objects (between the object
to-be-written-to and the root) are acquired as late and given up as early
as possible. Figure 11.4 shows the algorithm used for that.

Start of a new Epoch

To start a new epoch (i. e. to induce the creation of a new snapshot), the epoch
counter (kept per mount moint) is incremented. After the increment, the root

120 CHAPTER 11. DESIGN

object.setdirty() {

metawritelock(object)

bool objectwasdirty = object.isdirty;

if (object.isdirty)

object.dirtyflag = true;

parent = object.parent;

unlock(object);

if (objectwasdirty)

parent->setdirty();

}

Figure 11.4: Algorithm for overlapped locking during setdirty()

block is queued to be made persistent. Note that after these two operations,
normal file system calls can resume. Because of the mechanisms described in sec-
tion 11.5.2, data that has not been written out yet is preserved. The persistence-
making of objects can happen asynchronously. That means, that normal file
system operations are not delayed because of the snapshotting mechanism. A
special case occurs if the root object is not marked dirty. That means the file
system has not been modified since the last snapshot and the result of this
snapshot is the same as the result of the last snapshot.

Process Snapshot / Make Persistent

File system objects in main memory are volatile. In order to be persistent, they
have to be stored to hard disk. Objects saved from main memory onto a hard
disk drive or into the network are called persistent objects. As described above,
the persistence making of objects is an asynchronous process, i. e. normal file
system operations are not affected by it and continue in parallel. The process is
invoked by the request to make the root object (the root directory) persistent.
This request triggers requests to make the childen objects (files and directories)
persistent too. To make the in-memory representation of a directory persistent,
the following steps are necessary.

1. Serialization of the in-memory representation. That means, all fields of
every directory entry (as described in section 11.3.3) have to be converted
into a linear sequence of octets. Note that this includes the block identifier
and decryption key for the sub-entries.

2. The linearized content of the entry is then subject to the block cutting
procedure. The process has been described in detail in section 11.4. The
main properties of the result are that it is deterministic and that octet
sequences with similarities are cut in a similar way.

3. Encryption and hashing. Per design requirements (see section 10), data

11.5. SNAPSHOT 121

blocks5 are stored in encrypted form only. The process of encryption and
hashing (see section 11.2) yields the block identifier and the decryption
key for this directory itself. In case the directory was a sub-directory to
some other directory, the new block identifier and decryption key can now
be used in the parent directory.

4. Disk storage and network publication. Once the cut block is encrypted, it
can be stored on the local disk. Blocks on the local disk are then published
in the Igor overlay network (see section 11.7) in order to allow other nodes
to fetch this block.

If the sub-object in the above mentioned directory is not a sub-directory but a
file, the required steps are similar:

1. Serialization. Here, all data octets of the file need to be serialized and
organized. The serialization of data octets themselves is straightforward:
Each octet in a file is represented by that octet in the serialized stream.
One exception are holes in files (see section 11.3.1). These are either
represented by a sequence of octets with value 0x00 (if the hole is short)
or are encoded by the number of consecutive zero-valued octets. The
former are stored as regular data, the latter as a hint in the file’s block
list by the fact that the end of one block (given by the start offset of this
block and its length) does not coincide with the start offset of the next
block.

2. Block cutting. The process of block cutting splits the file’s content in
discrete blocks. This process is described in detail in section 11.4. If the
block cutting process decides the file is not stored as a single block, an
additional data structure becomes necessary. After all plain data blocks
have been made persistent (that means encryption/hashing has computed
a block ID and a decryption key and the block has been stored to disk),
a list of (block-identifier, decryption key)-pairs is compiled. This list con-
tains next to the just mentioned pair the offset of the block. The result is
serialized. If the compiled list is too large to fit in one block (as again de-
cided by the block cutting algorithm), the process is repeated recursively,
i. e. the serialized block is cut in sub-blocks, which are stored separately
and their block identifiers are listed. As soon as the list is complete, it is
subject to encryption and hashing.

3. Encryption and hashing. Depending on the size of the file, either the entire
file or its separate blocks are (maybe recursively) encrypted and hashed.
In any case, as soon as the result of the encryption and hashing process is
available, the parent object can be serialized.

4. Storage and publication. Encrypted data blocks are handled the same way
as encrypted directory blocks. After storage on local disk other nodes are
informed via the Igor network.

5Directory content is regarded as data in this context.

122 CHAPTER 11. DESIGN

The algorithm in figure 11.5 shows that there are no differences between
directories and files with regard to the process of creating persistence at this
abstraction level. The distinctions are in the types of sub-items and the way
the objects are serialized. After serialization, files as well as directories are
linear streams of data. Directories are streams that are interpreted by the file
system itself. As such, they are comparable to indirection blocks with names
attached to each indirection. In figure 11.5 sub-items for files are data blocks
or indirections blocks, sub-items for directories are other directories or files.

make_persistant(x) {

foreach (subitem y of x)

make_persistant(y);

serialize(x)

x’=block_cut(x)

encryption(x’)

store_persistant(x’)

}

Figure 11.5: Algorithm to Create Persistent Objects

11.5.3 Summary of Snapshot

The preceding sections showed the design of the snapshot system. This system
allows the creation of fixed states of the file system without interruption of
regular access.

The result of the snapshot process is a block identifier and a decryption key
for the root directory. With these two values, the fixed state can be accessed at
a later point in time. Since the block identifier of the root directory is indirectly
based on the entire content of the file system via cryptographic hash functions,
this block identifier also indirectly authenticates the entire content of the file
system.

11.6 Block Cache

The amount of data handled by IgorFS in the scenario it is designed for is larger
than the typical main memory of nodes. Therefore, and because data should be
persistent across system restarts, an additional storage medium is required.

Second, IgorFS is designed to cache data on intermediate nodes. This creates
no security problems for confidential data, since all blocks are encrypted. This
caching on foreign nodes increases performance (data is available from multiple
sources) and robustness (if one source fails, another one can be selected).

This section describes the design of the block cache component [146] of
IgorFS. The block cache is responsible for permanent storage as well as inter-
mediate caching.

11.6. BLOCK CACHE 123

An important design parameter for such a caching component is the cache
strategy, which controls the sequence items are evicted if the cache becomes
full. The least recently used (LRU) strategy is an often used one. Similar
projects to IgorFS, for example [19], [18], [94] or [138], all use LRU as their main
caching strategy. More advanced strategies like least value based on caching time
(LVCT [73]) or object LRU (OLRU [63]) include the time a data item already
stays in the cache and the size of the object. Both can increase the hit rate in
the cache, at the expense of a more difficult maintenance. Since the success of
a caching strategy highly depend on the usage patterns and the usage patterns
for IgorFS are not yet clear, the more robust strategy LRU is used in the IgorFS
block cache.

11.6.1 Requirements

In order to scale with the expected load, the block cache component must meet
a couple of requirements. First of all, the block cache must be able to store at
all, i. e. the block cache should not have artificial limits on data size. Since the
overall data volume is high and the size of blocks is limited in order to restrict
latency, the number of blocks is large too. The speed of all operations on the
block cache (store block, retrieve block, reference block, expel block) must scale
well with large number of blocks.

As mentioned above, there is the distinction between permanent storage and
intermediate caching. At least for these two different kinds of storage a separate
LRU-list should be kept. Blocks cached can be expelled from the block cache at
any time, since it is expected that the block can be reloaded from the network on
demand. Blocks which are in the block cache for permanent storage should only
be evicted with consent from the file system user. If the limit for permanently
stored blocks is exceeded, IgorFS will signal “no space left on device” to the
user application.

The block cache component stores data on hard disks. Todays hard disks
are relatively slow compared to main memory. That’s why it is important that
the block cache uses parallelism and asynchronous communication to the hard
disk in order not to slow down the overall system.

11.6.2 Design

The IgorFS block cache stores encrypted data blocks on disks using a local file
system. The following design allows that to be done efficiently. Blocks are stored
in the file system using the hexadecimal representation of the block identifers
as file name. Many local file systems have scalability problems with many files
in one directory, therefore the files are distributed into directories. For that, the
first two octets of the block identifers are used as directory and sub-directory
names, e. g. the block with the identifier 1234567890... will be stored in the
path 12/34/1234567890.... That means the number of directories per level
is fixed to 256. This trick reduces the number of entries per directory in the

124 CHAPTER 11. DESIGN

local file system by a factor of 216. It can easily be extended to three or more
prefixing octets.

This scheme allows the efficient storage and retrieval of blocks. However, to
implement a LRU caching strategy more is necessary. LRU requires that two
operations can be performed efficiently: Finding the oldest entry and updat-
ing a timestamp of an arbitrary entry. To do so, a secondary tree is used
in the local file system, this tree is ordered by time. For example, if the
block mentioned above was last used at 2007-07-09t23-59, the (symbolic) link
2007/07/09/23/59/1234567890... will be created. This technique allows di-
rectly finding the oldest entry by traversing the directory structure in a depth-
first manner. Updating such time stamps requires that the stored block also
memorizes the last time stamp, which can be done easily.

Reading a block already in the block cache therefore consists of the actual
transfer from disk to memory and a update of the time stamp, done in the
following steps:

1. Given the block identifier, the path name to the block file is clear. Using
this path name, the local file system will quickly find the file, because the
number of entries per directory is limited.

2. Reading the block will yield a time stamp telling when the block was last
read.

3. Using this time stamp, the link in the secondary tree can be found and
removed.

4. Using the current time, a new link in the secondary tree will be created.

5. Using the same current time, the time stamp in the primary tree will be
updated.

Using the local file system as storage solution for the block cache of course
introduces overhead. In [146] the overhead is estimated to be less than 2%6.

To implement different storage classes with separate LRU parameters, the
time stamp in the time stamp tree and in the block itself will include the stor-
age class. Currently, permanent storage and intermediate caching are used as
storage classes.

11.7 Igor Interface

For the distributed components, IgorFS relies on the overlay network Igor. To
do so, messages between IgorFS instances are sent via Igor. All these messages
have to be serialized before Igor can handle them. After transmission, each
message has to be deserialized again.

In order to limit the required bandwidth in the idle case, it was decided to
transfer encrypted data blocks on demand only. This requires that there is a way

6The average block size is assumed to be 216 octets, the used local file system was ReiserFS.

11.7. IGOR INTERFACE 125

to find nodes that are currently in possession of a given block. The association
of a block identifier and one or more node identifers is called a pointer.

11.7.1 Pointer Cache

The task of the component pointer cache is the distributed management of these
pointers. Initially, once a block is stored into or evicted from the block cache,
the block cache notifies the local pointer cache. Because of this, pointer cache
and block cache are assumed to be synchronized, i. e. the pointer cache knows
at least one pointer for each block in the local block cache. These pointers refer
to the local node identifier.

The pointer cache publishes the availability of blocks (i. e. pointers) via Igor.
The destination of the messages is the identifier of the block. The upcall flag (see
section 6.1.2) is set to true in these announcements. This allows intermediate
nodes (nodes with identifers between the publishing node and the node with the
identifier closest to the block identifier) to aggregate multiple announcements
for the same block. This aggregation prevents the root of the aggregation tree
to be overloaded.

The announcements happen

• once when the block is written locally.

• once when the block is requested and successfully transfered from a remote
IgorFS instance.

• periodically when the local block cache is the original writer of the block.

• every time the neighbor set changes and the final flag was set during
reception of that pointer. This happens at the root of the aggregation
tree and ensures that pointers are stored in the correct location even if
membership in the Igor network changes.

Pointers in the pointer cache can be replaced or deleted at any time. Excep-
tion to this rule include:

• If the block is available in the local block cache. This ensures that the
block can be found by other IgorFS-instances.

• The final flag was set during reception. This ensures the root of the
aggregation tree always keeps a pointer to the block.

The pointer cache is kept as a soft-state cache. That means that received
pointers are deleted after a certain period of time, and that nodes in possession
of blocks must re-announce their pointers before this interval expires.

11.7.2 Data Transfer

Since the file system IgorFS will only transport encrypted blocks, they are not
regarded as confidential material, but rather as opaque data. The file system

126 CHAPTER 11. DESIGN

will, to improve performance, cache encrypted blocks in the block cache and
may retrieve encrypted blocks in advance for anticipated read-calls. The file
system will never move around unencrypted blocks.

Transported blocks may and should be cached at intermediate nodes. The
cache itself knows or can learn the identifier of the block. This is useful because
the cache than can verify the authenticity of the block. Note that this however
does not imply that the intermediate node can decrypt the block, it remains
opaque data. Only encrypted blocks will be cached, since clear text blocks are
never transfered and therefore never cached.

The transfer between different instances of the file system (daemons) can
be secured additionally. This, however, does not increase the security of the
transported data, but helps to establish trust between the systems running the
file system (see section 13.1.2).

11.7.3 Block Transmission

As mentioned earlier, in IgorFS it is sufficient to have the block identifier (and
a decryption key) to read a file systems object. To decrypt such an object, it
must be available locally. If the block is not in the local block cache yet, it has
to be fetched from another IgorFS instance. For that, the following steps are
performed (see figure 11.6):

a The orginal possessor of a block announces that it has the block locally avail-
able by announcing a pointer. This pointer is stored on the node responsi-
ble for this block (as determined by the Igor metric). Intermediate nodes
may also store (cache) this pointer.

b The local read request contains the identifier of the required block. A request
for a pointer to that block identifier is sent towards the responsible node.

c An answer including one or more pointers to possessors of that block is re-
ceived. Intermediate nodes may also answer if they have the pointers
available.

d A block transfer request is sent to one of block possessing nodes.

e The node replies with the block.

a After the block is received and stored in the local block cache, the local pointer
cache will be informed. The local pointer cache will send announcements
to other pointer caches. After this is done, the local node will act as an
additional source for this block.

Since in this process many network operations with potentially many other Igor
and IgorFS nodes are involved and these nodes are not completely reliable,
reasonable timeouts have to be installed and operations need to be repeated if
they are not completed within the timeout.

11.8. THE PROC SYSTEM 127

block requestor block possessor

d

e

responsible or intermediate node

a
b

c

Figure 11.6: Block Transfer

11.8 The Proc System

Similar to the Linux proc file system, IgorFS has such a file system, too. Here,
different modules and components of the system can offer information about
their current state. The user may access these information via normal POSIX
file system calls, because the information is offered inside the IgorFS file name
space.

11.8.1 Registering

In order to use the proc system, the components have to register. Together
with the registration they have to provide a file name (their information will be
published using this file name) and a callback for retrieval of the information.
Registration for writable files is also possible. In this case, the proc file system
is used to transfer information from the user (application) towards IgorFS.

11.8.2 Reading and Writing

Currently, there are some limitations in using the proc file sub-system. Direc-
tories have not been implemented. Write requests need to deliver their entire
information in one request. For read requests, the full information is retrieved
in each request, even if the user (application) asks for only a small part of it.
However, these restrictions do not limit the usability of the proc system inside
IgorFS.

11.8.3 Example Uses

Two example should illustrate the usage of the proc file system. First, writing
anything to the file proc/debug clear will set the debug logging system in a
state where no restrictions regarding logging are in place. Second, reading the

128 CHAPTER 11. DESIGN

file proc/pointercache params will result in a list of parameters for the pointer
cache currently in force.

Chapter 12

Implementation

These obviously are not your ordinary bugs, to say the least
Doug Spinney, The X-Files, Darkness Falls

This chapter will detail some implementation issues regarding IgorFS. First,
a general overview is given, then the tools to control IgorFS are explained and
finally some important modules are delineated.

12.1 Overview

The IgorFS implementation is divided in four major layers shown in table 12.1.
The previous chapter explained why FUSE is used as interface to the kernel.
FUSE forwards system calls from applications via the kernel VFS interface back
to the user space. Here, IgorFS installs handlers for these calls. In order to treat
these calls, IgorFS needs an in-memory representation of all file system objects.
The file system objects are encapsulated as C++-objects.

For persistence, all file system objects are put in a block store. This storage
is much larger than the memory requirements of IgorFS. The block store, here
called block cache, is implemented using regular file systems. Finally, blocks
from the block store are distributed in the IgorFS network. The interface is
similar to distributed hash tables, but not identically. Most important, IgorFS
transports blocks on demand only.

From table 12.1 and figure 12.1 it is visible that IgorFS has three major
interfaces to other systems. First, FUSE is used to intercept file system calls
from the kernel VFS layer. Second, IgorFS needs a way to store blocks persis-
tently, here a local file system is used. Third, to interoperate with other IgorFS
instances and thus creating the distributed file system, the Igor overlay network
is used.

In addition to the interfaces mentioned above and shown in figure 12.1, out-
of-band channels are required. This mechanism is required to establish first

129

130 CHAPTER 12. IMPLEMENTATION

block identifiers and keys to decrypt these blocks. Section 12.3 shows how this
channel works technically. Business and legal aspects of the system can be
attached to this channel, see section 13.1.7 for details about this.

Layer Data Interface

FUSE en-clear syscall
in memory en-clear file system objects
on disk encrypted only block store
network encrypted only distributed hash table

Table 12.1: IgorFS Layers

IgorFS is implemented as a process network [75], where independent modules
communicate via messages. This design was chosen because

• modules are independent. They can be separately developed and tested.

• it is easy to separate modules into different processes. These processes
can even run on different machines, given that messages are serialized and
deserialized in between.

• the design makes it easy to port IgorFS to simulation environments using
discrete event simulators, e. g. [168][123][176].

12.2 Logging

In order track execution of IgorFS, a logging system has been established. This
system is useful for debugging (even post-mortem), profiling and can give hints
to the user. Since C++, the language IgorFS is implemented in, does not have
advanced inspection and stack examination capabilities, the following function-
ality has been implemented.

The GNU C++ compiler can be queried about the current file, line num-
ber and method and in IgorFS these information are encapsulated in the class
cCodeLocation. To remember these code locations, the class cCodeSegment

(more precisely: the constructor of this class) pushes one of these code locations
on a stack. There is one stack for each running thread. Since most non-trivial
methods in IgorFS contain a local variable of type cCodeSegment (via the pre-
processor macro BLOCK(), the constructor and destructor of this variable take
care of maintaining the stack.

To trace IgorFS or output messages of varying importance, objects of types
cDebug, cWarning, cError and cFatalError can be instanciated. All of them
can take additional input via the << operator and cVariable objects.

All messages are written to an output file. Because the amount of output can
be enormous, a filtering system has been established. Messages can be switched

12.3. USER SPACE TOOLS 131

FUSE Linux VFS

FuseInterface Proc

FileFolderModule
SnapShotInitiator

BlockCut

BlockTransfer Cryptography

BlockCache
BlockCacheDB

DiskWriter

BlockFetcher

PointerCache

IgorInterface

Local File System

Igor Daemon TCP/IP

Figure 12.1: Modularization and Interfaces in IgorFS

on and off by adding regular expressions to match the message location to
cDebug::Hide() and cDebug::Show(). To modify this behaviour at run time,
the proc files debug hide and debug show give an interface to this message
filtering system.

12.3 User space tools

The IgorFS daemon runs in the background and does not interact with the user
except via the POSIX file system interface. User space tools allow two operations
that are not possible otherwise. First, communication with the running daemon
is possible. Second, file system functions not available throught he POSIX
interface can be used.

132 CHAPTER 12. IMPLEMENTATION

12.3.1 Export Key

During operation, especially during the snapshot operation (see section 11.5),
IgorFS computes a block ID which identifies and authenticates the entire content
of the locally mounted file system. This identifier is required later to mount the
file system again. In order to retrieve the newly computed identifier, the tool
exportkey is used.

12.3.2 Mounting and Unmounting

Mounting a file system is the process to communicate the operating system
the existence of the new file system, while unmounting does the reverse. With
FUSE, starting the file system implementation is equivalent to mounting the
file system. IgorFS can either be mounted as an empty file system, or using a
previously available block identifier and decryption key. Unmounting happens
either during termination of the binary, or with the FUSE tool fusermount -u.

12.4 File System Daemon IgorFS

The file system is implemented using a daemon running on a computer system.
There is one daemon per computer using the file system. All these daemons can
communicate equally among each other via the Igor overlay network, hence the
name peer-to-peer file system.

There are at least three threads:

• Threads created by FUSE wait for requests from kernel. FUSE can create
a separate thread for each request1. Each of these threads sends a message
into the IgorFS process network and blocks until it receives an answer.
This answer is delivered back to FUSE by returning from a call.

• The Igor-receiver thread blocks and is unblocked every time a message is
received via the Igor overlay network.

• All other actions within IgorFS are executed from the message queue driver
thread. There can be more than one queue driver. In the IgorFS process
network, modules communicate by sending messages to each other. Timers
are modeled as messages from one module to itself. These messages are
sorted by delivery time in the main message queue. Queue driver threads
take the first message from the message queue and call the message handler
from the destination module.

12.5 Modules

The IgorFSis designed to be modular. Modules communicate through messages
only. This enables that modules can be located in different processes and even

1For debugging purposes, FUSE can be instructed to use just one thread for all requests.

12.5. MODULES 133

in different machines. Further this design makes integration in a discrete event
simulator (e. g. [168][123]) more easy.

This section describes the more important modules IgorFSis made of. All
modules are based on a C++ class called cModule. Modules are the entities
that can send and receive messages.

12.5.1 Module BlockingModule

The BlockingModule is not a real module but an abstract base class for all
modules that need to wait synchronously for messages from other modules.
This is required at the FUSE interface, because calls from FUSE must not
return until the request is fulfilled. Second this feature is useful for testing
other modules. The BlockingModule is used for thread synchronization and
simply waits (blocks) until a specified message arrives.

12.5.2 Block Cache

For a description of the design criterias of the block cache, refer to section 11.6.
To implement the block cache, the problem was divided in four sub-modules.
One reason for this approach is that it is expected that many tasks of the block
cache require disk I/O, and these system calls may block for a longer period of
time.

The module BlockCache receives the request regarding block cache tasks
from other modules. Such requests include loading of blocks from and stor-
ing blocks to disk. The module BlockCache first checks for duplicate requests
and then wraps the request in a block cache internal data structure called job
container.

These job containers are then handled by the block cache workers (BC-
Worker). The advantage of this approach is that there can be multiple block
cache workers in parallel. This parallelism is used to counter the effect of block-
ing system calls.

The seperate module BCLinkDatabase keeps track of the LRU time stamps.
As described in section 11.6, these time stamps are kept as soft links in the
underlaying file system.

Since the time stamps and the content of the block cache can become in-
consistent (time stamps to non-existing blocks or blocks without time stamp),
there is a the module BCFSCheck. This module implements a file system check
for the block cache data structures on disk. Since the execution of this check
can be expensive in terms of run time and I/O load, it is ran on request only.

12.5.3 Module BlockCut

The design and functionality of the block cut module has been described in
section 11.4.

134 CHAPTER 12. IMPLEMENTATION

12.5.4 Module BlockFetcherModule

When the block cache gets the request to deliver a block to the local file system
but does not have this block available, it forwards the requst to the block fetcher
module. This module in turn has the task to retrieve the block from remote
IgorFS instances. Figure 12.2 shows the process in the following steps:

a The block cache has received a load request it can not fulfil. Therefore the
block cache forwards the request (including the identifier of the block to
retrieve) to the block fetcher, so the block fetcher could get the block from
another IgorFS.

b In order to retrieve the block, the block fetcher first needs a node identifier
where to fetch this block from. The association of a block identifier with
node identifiers of nodes in possession of that block is called a pointer. To
get such a pointer, the request is forwarded to the pointer cache module.
The pointer cache either has such a pointer locally available or it has not.
In case the pointer is there, the pointer is returned in the process at step i.

c If the pointer is not available locally, other pointer caches have to be queried.
In order to do so, a request is generated and sent to the igor interface
module.

d Here the request is serialized and sent via Igor to other instances of IgorFS.

e Upon reception (the request is sent with the upcall flag set to true), the
request is deserialized again and sent to the remote instance of the pointer
cache. This remote pointer cache either has a cache miss too (not shown
in figure 12.2), in which case the request is forwarded to other pointer
caches towards the root in the aggregation tree rooted at the identifier of
the block.

f Or the wanted pointer is available. In this case a reply with the pointer is
generated and sent back.

g The reply is sent with the upcall flag set to false, because intermediate nodes
are not likely to be interested.

h The local pointer cache receives the reply and stores the results. From this
time onwards, the local pointer cache can answer requests from other
pointer caches for this block identifer. The pointer cache is cleaned again
after a timer expires.

i The pointer cache has successfully acquired pointers and sends them to the
block fetcher.

j The block fetcher extracts the node identifiers from the received pointer and
sends request to another IgorFS instance to get the block. If there is no
answer to this request after a specified amount of time, the next node
identifier is extracted and the next request is sent.

12.5. MODULES 135

k This serialized request is forwarded through the Igor network directly to the
node with the identifier mentioned in the pointer.

l After reception, the request is sent by the igor interface module to the remote
block fetcher. Note that the remote pointer cache and the remote block
fetcher do not run in the same instance of IgorFS necessarily.

m The blockfetcher gets the block from the block cache. The requested block
should be in this block cache, otherwise the pointer would have been
invalid.

n The block cache reads the block from disk and sends a reply back to the
remote block fetcher module.

o Again, the block fetcher just forwards the reply.

p A message containing the block is sent through the Igor network. The omit
uneccesary overhead, the reply is always sent directly, i. e. the upcall flag
is set to false.

q At the local igor interface, the message is deserialized and the block is ex-
tracted.

r Finally, the block requested in step a is sent to the local block cache. Here,
it is stored on disk and the request that initially triggerd the block cache
can be fulfilled.

During operation of the block fetcher, two failure modes can occur. First,
the pointer cache may not return a pointer. This can happen if the request or
the reply got lost for any reason, or if the pointer (and the block) does not exists
at all. In both cases, the request from block fetcher to pointer cache (step b
in figure 12.2) is repeated up to three times. The second failure mode occurs
if the pointer cache returned a list of node identifiers where the block should
be available, but node of the requests successfully returned the block (step j).
This case is handled identically to the first failure mode, i. e. it is treated as
if the pointer cache would have returned an empty pointer containing no node
identifiers.

After block fetcher failed three times, this failure is reported back to the
block cache.

12.5.5 Module BlockTransModule

The block transfer module is an intermediate module that moderates between
the FSO handling, the cryptographic module and the block cache (see fig-
ure 12.3).

Storage requests from the FSO handling are first encrypted and hashed and
then sent to the block cache, where the encrypted result is stored on disk. In
parallel, the result of the hashing (the block identifier) is sent back to the FSO
handling module.

136 CHAPTER 12. IMPLEMENTATION

block cache

block fetcher

igor interface

pointer cache

block cache

block fetcher

igor interface

pointer cache

a

b

c

d

e
f

gh

i

j k l

mn

o

p

q

r

Figure 12.2: Block Fetcher Operation

During read requests, FSO handling asks with a block identifier and a de-
cryption key. The block transfer module uses the block identifier to retrieve the
block from the block cache. Using the block identifier, the authenticity of the
(still encrypted) block can checked by the crypto module. Since the decryption
key is also provided by the FSO handler, the block can be decrypted too. With
the same key, the authenticity of the decrypted block can be checked. As soon
as all authenticity checks are passed and the block has been decrypted, the clear
text block is transfered from the block transfer module to the FSO handler.

fso handling block transfer block cache

crypto

Figure 12.3: Interaction of the Block Transfer module

12.5.6 Module FileFolderModule

The module is responsible for storing the in-memory representations of all file
system objects and executing all operations on them. These file system objects
include directories, regular files and soft links. Section 11.3.3 explained why

12.5. MODULES 137

hard links, device files and named pipes are not handled.
Further the transformation of these in-memory objects to blocks on disk and

vice versa is initiated here. Part of the forward transformation is the snapshot
process. The snapshot related procedures are described in section 11.5.

12.5.7 Module IgorInterfaceModule

The module IgorInterfaceModule is the interface between IgorFS and Igor. Mes-
sages from modules in the local IgorFS are sent to the IgorInterfaceModule,
where they are forwarded via Igorto other instances of IgorFS. On the other
hand, messages from other IgorFS nodes are received and handed to the module
in charge. Since Igor expects messages to be octet streams, the IgorInterface-
Module has to serialize and de-serialize all messages.

Currently, the pointer cache module (see section 12.5.8) and the block fetcher
module (see section 12.5.4) make use of the services offered by the IgorInter-
faceModule.

The IgorInterfaceModule is further responsible to retrieve the identifier of
the local node from Igor. This is necessary to embed this identifier in pointer
announcements made by the pointer cache (see next section).

12.5.8 Module PointerCache

A Pointer in the context of IgorFS is an association between a block identifier
and a node identifier. The semantic behind is that the block with the given
ID is stored on the node with the ID in the pointer. It does not neither imply
anything about the permanence of that storage nor why this node stores the
block. The node may be the initial writer, an intermediate caching system or
the finally responsible node (see section 6.2.3) for this pointer.

Pointers for blocks in the local block cache are kept as long the block is kept
in the block cache. If the pointer has been acquired as an intermediate caching
system, the pointer can be evicted at any point in time without influence for
other IgorFS-nodes. In case the node is the finally responsible node for this
pointer, the pointer is kept without limits.

The entire system is designed to be soft-state: Owners of blocks (nodes with
the block in the block cache) regularly re-publish their pointers. This way all
pointers (and by that all blocks) can be found even if some systems fail non-
gracefully. The nodes which are finally responsible for pointers re-publish these
pointers if Igor signals that the network neighborhood changed. Changes in the
network neighborhood could imply that the responsibility for pointers changed.

All publications of pointers (either initial publications or one of the repe-
titions mentioned above) are sent with the Igor flag upcall set to true. This
means that intermediate systems can aggregate these announcement messages
and aggregate them. Aggregation here means that if multiple pointers with for
the same block identifier arrive at a node, only one pointer with a subset of
these nodes is forwarded in the aggregation tree. This way it is ensured that
the root of the aggregation tree (a) receives at least one pointer if such a pointer

138 CHAPTER 12. IMPLEMENTATION

exists and (b) is not overloaded if many pointers exists in the overall system of
all IgorFS instances.

12.5.9 Module SnapShotInitiator

The module SnapShotInitiator initiates the creation of snapshots. Periodically
the appropriate message cSnapShotRequest is sent to the file/folder handling
module. As soon as the answer cSnapShotReply is received, the snapshot is
successful and the computed pair of block identifier and decryption key can be
exported. Even if the produced pair of block ID and key is not exported, periodic
snapshotting ensures that all written data is periodically made persistent. That
means the snapshotting process also triggers the local write to hard disks and
with that the freeing of memory resources.

12.5.10 cProcModule

As described in section 11.8, IgorFS features a interface similar to the proc
interface similar to Linux. Here, the proc interface is used to query internals
from the running IgorFS system as well as to modify its behaviour. The proc
modules is responsible for accepting registrations of proc file system entries
from different modules. Then, the fuse interface module forwards requests to
the proc module. The proc modules has to decide how to handle the request (see
figure 12.4). If an appropriate handler has been registered by another module
(here called proc user), this handler is called. The answer is reported back to
the fuse module, where it is delivered to the requesting process.

fuse proc module pointer cache

block cache

. . .

Figure 12.4: Interaction of the proc module

12.5.11 Fuse Interface Module

Overview

The Linux kernel sends all file system related requests towards the VFS layer.
Here it is decided which Linux file system should deal with the request. If the

12.5. MODULES 139

request regards the IgorFS file system, the fuse kernel modules forwards them to
the user space, where libfuse receives them. This modules receives the requests
from libfuse and serves them. It does so by registering for C function callbacks
and forwarding them into a C++ object.

The requests are either answered directly or encapsulated in IgorFS internal
messages and forwarded to the responsible module. The libfuse library can
create a new thread per request. Since the fuse interface module is a blocking
module (see section 12.5.1), each of these threads blocks until an answer is
received from other modules. This parallelism is important so IgorFS can work
on multiple requests from fuse at once.

Supported Operations on File System Objects

int (*mknod) (const char *, mode_t, dev_t);

int (*mkdir) (const char *, mode_t);

int (*symlink) (const char *, const char *);

The call mknod() is used to create ordinary files, device nodes and named
pipes. Since IgorFS does not support the latter, only regular files may be
created. The file is created empty.

After return of mknod(), the file exists as an in-memory object only. The
creation of this in-memory objects makes all parent directories dirty, if they
had been clean previously. The next snapshot operation makes the new file
persistent, as well as all new versions of the parent directories.

Directories and softlinks are created with calls to mkdir() and symlink(),
respectivly. Since both dirty the parent directory, all comments from mknod()

apply too.

int (*unlink) (const char *);

int (*rmdir) (const char *);

These operations remove files, softlinks (unlink()) and directories (rmdir())
from the directory hierarchy. Removing an objects changes the parent directory,
see comments for mkdir() above.

The local block cache (and therefore the pointer cache too) is not affected
by the operation. This is useful because other instances of IgorFS may require
the blocks, even if the objects are deleted locally.

int (*rename) (const char *, const char *);

The rename() call is used to change the visible name (absolute path) of a
file system object. The object may be transfered to a different directory during
this operation, change its name in the directory, or experience both changes at
once.

The renamed object is not dirtied during this operation, but containing
directory/directories is/are.

140 CHAPTER 12. IMPLEMENTATION

int (*chmod) (const char *, mode_t);

int (*chown) (const char *, uid_t, gid_t);

int (*utime) (const char *, struct utimbuf *);

These requests change the meta information about file system objects: own-
ership, access permissions and creation/modification times. Since the data items
themselfes are not changed, only the containing directory gets dirty. The access
time is kept locally, but not transfered over the network. Note that the access
right also have local significance only.

int (*write) (const char *, const char *, size_t,

off_t, struct fuse_file_info *);

int (*truncate) (const char *, off_t);

Both operations have influence on the contents of files. To overwrite parts of
a file, it may be necessary to request other parts from the file from the network
first.

int (*getattr) (const char *, struct stat *);

The kernel requests meta information about a file system object. Such infor-
mation include file size, hard link counter, access time and many other details.
Since this call is issued often, quick operation is essential here. In order to fulfil
the requests, it may be necessary to fetch directory blocks, including parent
directory blocks.

int (*read) (const char *, char *, size_t,

off_t, struct fuse_file_info *);

int (*readlink) (const char *, char *, size_t);

int (*readdir) (const char *, void *, fuse_fill_dir_t,

off_t, struct fuse_file_info *);

These operations read the content of files, softlinks and directories, respec-
tivly. First the local block cache is checked for information and if nothing is
available the block is fetched from the network. As above, all requests dealing
with file system objects may need to fetch many blocks and therefore block for
a some time.

Supported Operations on the Entire File System

int (*statfs) (const char *, struct statfs *);

This operation is called in order to obtain general information about the
mounted file system. Such information inlcude overall file system used and free
space.

void *(*init) (void);

void (*destroy) (void *);

These two operations are the main hooks to start and stop the internal
working of IgorFS. Fuse calls these just after the file system has been mounted
and just before it is going to be unmounted. Here all the C++ objects required
to run IgorFS are constructed and destructed.

12.6. SUMMARY 141

Operations not Supported

int (*opendir) (const char *, struct fuse_file_info *);

int (*releasedir) (const char *, struct fuse_file_info *);

int (*fsyncdir) (const char *, int, struct fuse_file_info *);

These operations are useful for stateful operations. Since IgorFS is right
now implemented in a stateless manner (regarding the interface to fuse), these
calls are not required. Later version of IgorFS may support these. One reason
to support these functions would be to pass state from opendir() to related
readdir() calls. Another would be to trigger prefetching of other blocks, be-
cause once readdir() has been called it is expected that other calls to this
directory or its children will follow.

int (*open) (const char *, struct fuse_file_info *);

int (*release) (const char *, struct fuse_file_info *);

int (*flush) (const char *, struct fuse_file_info *);

int (*fsync) (const char *, int, struct fuse_file_info *);

The same holds true for file objects. Right now, the IgorFS operates stateless
with regard to the fuse interface. Later version may pass state between calls
and use prefetching to improve performance or use flush() and fsync() as
signals to start snapshot operations.

int (*setxattr) (const char *, const char *,

const char *, size_t, int);

int (*listxattr) (const char *, char *, size_t);

int (*getxattr) (const char *, const char *, char *, size_t);

int (*removexattr) (const char *, const char *);

Extended attributes are not supported at the moment, but proably are a
way to integrate IgorFS-specific interfaces.

int (*link) (const char *, const char *);

As explained in the previous chapter, IgorFS does not support the semantic
of hard links, therefore this call is not supported either.

int (*getdir) (const char *, fuse_dirh_t, fuse_dirfil_t);

This interface to fuse is depreciated and therefore not supported.

12.6 Summary

This chapter gave an overview over the IgorFS implementation. First the logging
and debugging facilities in the IgorFS process have been covered. Next, the
user space tools that are necessary to use IgorFS were discussed. The chapter
concluded with a description of the more important modules IgorFS is comprised
of.

142 CHAPTER 12. IMPLEMENTATION

Chapter 13

Conclusions

Gaebe es die letzte Minute nicht, so wuerde niemals etwas fertig
Mark Twain

13.1 Open Issues

13.1.1 Obfuscation

If required, traffic and usage patterns may be obfuscated by the following mea-
sures:

• Proactive Caching: The daemons may, when idle, fetch blocks where fu-
ture requests by neighboring daemons are anticipated. Random blocks
may be fetched when available disk space and bandwidth permit it. This
has the further advantage that proactive caching helps to increase the
performance of the overall system. Participants requiring anonymity can
gain anonymity by paying with bandwidth and hard disc space.

• Onion Routing: Based on the ideas in [17], every request in wrapped in
multiple asymmetric encryption layers.

• Random Routing: Every request is either routed correctly or, with a given
low probability, sent in the wrong direction. Every peer in the system can
act as proxy, thereby hiding the real source of a request.

• A combination of the above.

Note that none of the above mentioned options provides real anonymity.

13.1.2 Denial of Service

Denial of Service by resource exhaustion is one of the most difficult attacks to
resist for an open system. Possible defenses include:

143

144 CHAPTER 13. CONCLUSIONS

• Ignore the problem. This is probably the most common route.

• Try to provide more resources than the attacker can consume. Static
WWW-Content can be distributed by resource-providers like Akamai[2].
This is working well but can be expensive.

• Deny some requests to serve others well. For example some FTP- or
SMTP-Servers take this path. Only a given number of connections are
allowed, others are denied/deferred. In many cases, there is no distinction
between good and bad requests.

• Require explicit resource reservations. This is the basis of many Quality-
of-Service proposals.

• Try to block bad requests, like e. g. firewalls do.

• Admit that one can not solve the problem entirely, but make attackers
traceable, for example [3].

In this context, we suggest that the last alternative is the way to go.
This requires some out-of-band administrative effort. Either all daemons

are authorized by a certificate based from a central certification authority. File
system daemons can then identify each other in a secure way. An alternative is
that daemons are introduced to each other by the local administrator, and by
this act, the local administrator ‘vouches’ for the remote daemon.

13.1.3 Hash Collisions

It is open how to deal with hash collisions. Since cryptographic hash function
(see section 2.1) compress input data of arbitrary length into a fixed number of
bits, a collision (the event that two different inputs map to the same output) is
not avoidable. The birthday paradox [9] is the reason that the expected number
of invocation of a hash function with N bits before experiencing a collision is
2N/2. Table 13.1 gives some examples on how soon the first hash collision is
expected for some popular hash widths. Note that this table assumes hash func-
tions with no weaknesses, where the output is a uniform random distribution.
The table also shows how many blocks of 100 kibibytes can be hashed without
expecting a collision.

Since the probability of a hash collision is very small but not zero, a hash
collision avoidance field can be added to every block. The write of that block
checks whether the block identifier exists and if it yields to the same block. If
not, the writer can change the hash collision avoidance field and gain a different
block identifier.

13.1.4 Reliability and Block Deletion

Right now, blocks on disk are managed by the LRU mechanism in the block
cache module. In the future, other possibilities could be useful. First, the LRU

13.1. OPEN ISSUES 145

Width Possible Expected Data
of hash results first collision

128 ≈3.40e38 ≈1.84e19 1638400 exbi-bytes
160 ≈1.46e47 ≈1.21e24 1.07e11 exbi-bytes
256 ≈1.16e77 ≈3.40e38 3.02e25 exbi-bytes

Table 13.1: Expected hash collisions. Data assumes the block size is 100 kibi-
bytes

mechanism does not guarantee any reliability on block availability. This was a
deliberate decision based on the design goal that block transfers should happen
on demand only. To create reliability, possessors of a given block are in charge
of ensuring that x copies of that block exists at any point in time. The larger x,
the larger the overall reliability. On the other hand, such a scheme would never
delete blocks. However, because of limited storage space, block deletion might
be necessary. Here it would be useful that publishers could either explicitly mark
blocks for deletion, or that the block cache could give a limit which snapshots
are still fully available.

13.1.5 Read Ahead

Network latencies are large compared to today’s computing speeds. This is es-
pecially severe since most applications do read in a synchronous manner, i. e.
they block until the read result returns. To overcome this, a read-ahead mech-
anism can be employed. FUSE does so already at the file level. The overall
read performance for applications could be further improved by implementing
a read-ahead mechanism in IgorFS itself. Here, x pointers and y blocks could
be fetched in advance, where usually x > y, because it is less resource intensive
to fetch pointers than it is to fetch blocks.

13.1.6 XML and Other Interfaces

The IgorFS design aims at the POSIX file system interface. However, other
interfaces to access data exists and are in use. For example, data bases and
especially XML backed data bases need a different API. Such APIs include
functions to insert, delete and move sequences of bytes. Similar functions are
not available in the POSIX interface, but can be easily supported by the IgorFS
design.

13.1.7 Business/Legal Aspects

The initial keys and block identifiers have to be transported by some out-of-band
(with respect to the file system) means.

146 CHAPTER 13. CONCLUSIONS

This is the point where we envision some money can be made. This is also
the point where we envision some legal contracts can be established. Such a
contract must include the things that the receiver of the key is allowed to do
with the decrypted data (and with the key). This contract may include among
others:

• The admission or interdiction to re-sell the key.

• The admission or interdiction to re-sell keys decryptable by the key men-
tioned above.

• The level of admission to use the decrypted data.

• The admission or interdiction to publish derivate work.

Note that these are entirely legal aspects. The abilities of the receiver of a key
are not (and can not be) limited by technical means.

There is also some trust needed between instances of the file system. Such
trust can be established by creating a central certification authority (CA) and
requiring every participating daemon to provide an identity signed by the CA.
This would enable the CA to control participants of the system and earn money
by issuing these signatures.

Furthermore, these certificates can be used to sign the distributed keys (as
described in section 11.2.2) to authenticate them. This way illegal content can
be traced back to its origins.

13.2 Summary

After the the first part of this work laid out the basics and the second part
covered the overlay network Igor, the third part of this work dealed with the
distributed and decentralized file system IgorFS. After identifying the design
goals of the file system, the overall architecture has been described. Then some
more important concepts have been presented more detailed. The implementa-
tion idea was explained along with again a more detailed coverage of some fine
points. This part concluded with some open issues, the next part of this work
continues with tests and evaluations of IgorFS.

Part IV

Evaluation and Summary

147

Chapter 14

Evaluation and Testing

One test result is worth one thousand expert opinions.
attributed to Wernher von Braun

This section shows how Igor and IgorFS is evaluated and tested. It cov-
ers tests of system details like network measurements and the checksumming
algorithm to tests that check the entire system.

14.1 Checksum Algorithm

Section 11.4.2 discussed different approaches to compute cutting marks with the
help of rolling checksums. One main selection criteria is the uniform distribution
of checksum values. This section compares different algorithms and shows their
distribution functions.

Figure 14.1 presents the complementary culumlative distribution function
(CCDF) of Adler32∗ and with that a major disadvantage of this checksum. For
each line in the graph 105 equally distributed random octet strings of the given
length were generated and the checksum were computed over each of them. The
figure shows the distribution of the results and the desired equal distribution
of checksum values. For shorter sliding windows, the distribution of possible
checksums is not uniformly distributed, i. e. some checksums are much more
likely than others. A secondary disadvantage not visibile from the graph is
that in order to move the sliding window, all octets in the windows need to be
memorized in order to remove them once the window is advanced.

Figure 14.2 shows clearly that the distribution of checksum values is close to
the optimum except for sliding windows shorter than 32 octets. The plots for
checksum lengths with 32 octets and more are all located on top of each other
toghether with the desired equal distribution. Note that for clarity abscissa is
shown with a logarithmic scale.

149

150 CHAPTER 14. EVALUATION AND TESTING

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09 3e+09 3.5e+09 4e+09

C
C

D
F

Adler32

8 octets
16 octets
32 octets
64 octets

128 octets
equal distribution

Figure 14.1: Checksum Distribution for Adler32∗

14.2 Adaptive Block Size

This section evaluates the usefulness of the adaptive block cutting mechanism
introduced in section 11.4 and especially 11.4.2. In order to do this, 218 files
from the IgorFS source code repository were taken and cut with two different
algorithms. The first algorithm simply cuts the file to the desired fixed block
size. The second algorithm is the one that has been described in the design
section. Figure 14.3 shows that with the IgorFS approach more storage space
than with fixed block size is conserved by omitting duplicate blocks. It plots
the (normalized) required storage over (average normalized) block size, where

Property Value

Measurement host onelab03.inria.fr

Reflector iraclyde.iralab.uni-karlsruhe.de

Records 15467
Time span (s) 1.000 · 103

Average measurement by TCP (s) 5.308 · 10−2 ± 9.257 · 10−4

Average measurement (s) 5.312 · 10−2 ± 3.326 · 10−3

Average relative error (s) 2.271 · 10−3 ± 5.017 · 10−2

Min/max relative error (s) −4.352 · 10−1/5.758 · 10−1

Table 14.1: TCP round trip time measurement experiment 1

14.2. ADAPTIVE BLOCK SIZE 151

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 100 10000 1e+06 1e+08 1e+10

C
C

D
F

XOR32

8 octets
16 octets
32 octets
64 octets

128 octets
equal distribution

Figure 14.2: Checksum Distribution for XOR32

required storage less than one means saved space. Both algorithms safe signif-
icant storage for very small block sizes. However, as discussed in section 11.4,
small block sizes lead to more overhead and are therefore not desireable. The
IgorFS algorithm is able to preserve much more storage already at larger blocks.
Note that the IgorFS algorithm is able to save storage even when the normal-
ized block size is equal to 1. The reason behind this is that file sizes differed
significantly, so larger files have been cut in a way that duplicates have been
discovered.

Property Value

Measurement host planetlab2.dtc.umn.edu

Reflector planetlab2.eecs.northwestern.edu

Records 45199
Time span (s) 1.142 · 103

Average measurement by TCP (s) 1.399 · 10−2 ± 4.068 · 10−4

Average measurement (s) 1.385 · 10−2 ± 2.236 · 10−3

Average relative error (s) 1.513 · 10−2 ± 5.050 · 10−2

Min/max relative error (s) −9.487 · 10−1/5.819 · 10−1

Table 14.2: TCP round trip time measurement experiment 2

152 CHAPTER 14. EVALUATION AND TESTING

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1

no
rm

al
iz

ed
 r

eq
ui

re
d

st
or

ag
e

normalized average block size

fixed blocksize
adaptive blocksize

Figure 14.3: Storage savings through block cutting

14.3 TCP kernel information

In section 3.4.4, it has been described how Igor uses a system call to gather
latency estimates from the kernel.

To evaluate how well suited this system works, real round trip time measure-
ments have been compared with the values returned by the Linux TCP stack.
Each experiment consists of a measurement hosts and a reflector. The mea-
surement hosts sends out short sequences of octets1over TCP to the reflector.
The reflector returns them as fast as possible over the same connection. Upon

1In this case, the sequence contained eight octets. These octets represented a floating point

Property Value

Measurement host planetlab2.wiwi.hu-berlin.de

Reflector planetlab2.larc.usp.br

Records 3810
Time span (s) 1.000 · 103

Average measurement by TCP (s) 2.493 · 10−1 ± 7.807 · 10−4

Average measurement (s) 2.511 · 10−1 ± 1.105 · 10−1

Average relative error (s) −2.695 · 10−4 ± 1.733 · 10−2

Min/max relative error (s) −9.647 · 10−1/3.059 · 10−2

Table 14.3: TCP round trip time measurement experiment 3

14.3. TCP KERNEL INFORMATION 153

Property Value

Measurement host planetlab-02.naist.jp

Reflector planetlab-03.naist.jp

Records 77791
Time span (s) 1.000 · 103

Average measurement by TCP (s) 2.108 · 10−3 ± 5.307 · 10−4

Average measurement (s) 8.499 · 10−4 ± 2.120 · 10−3

Average relative error (s) 7.316 · 100 ± 5.014 · 100

Min/max relative error (s) −8.344 · 10−1/4.335 · 101

Table 14.4: TCP round trip time measurement experiment 4

Property Value

Measurement host 77-57-169-132.dclient.hispeed.ch

Reflector 220-245-140-197.static.tpgi.com.au

Records 15243
Time span (s) 1.851 · 104

Average measurement by TCP (s) 1.095 · 100 ± 9.514 · 10−1

Average measurement (s) 1.202 · 100 ± 2.258 · 100

Average relative error (s) 1.601 · 10−1 ± 5.069 · 10−1

Min/max relative error (s) −9.612 · 10−1/5.013 · 100

Table 14.5: TCP round trip time measurement experiment 5

reception, the measurement hosts determines the time the octet sequence was
underway. At the same time, the measurement hosts queries the TCP stack
about its estimation of the round trip time. Both values, the stacks estimation
as well as the measured value, are recorded together with the current wall clock
time.

Tables 14.1 to 14.3 show that the method works well. The measurements
were done inside Europe (table 14.1), inside North America (table 14.2) and
across the Atlantic (Europe – South America, table 14.3). Each experiment
lasted for at least 1000 seconds. In all three cases, the measurements and the
values from TCP agree. The relative error is small on average, and there are no
outliers. The standard deviation of all values is small. The number of records is
smaller in the trans-atlantic case (Humboldt University Berlin – University of
São Paulo) because the number of records is (for constant experiment length)
inverse proportional to the average round trip time.

The following two experiments (table 14.4 and table 14.5) show the limits
of the technique. The run between two machines with very short latency in
between them shows the problem of granularity in the tcp info RTT informa-

number of double precision encoding the number of seconds since the UNIX epoch.

154 CHAPTER 14. EVALUATION AND TESTING

 0.1

 1

 10

 100

 15550 15600 15650 15700 15750 15800

rt
t (

s)

time (s)

measured
tcp_info

Figure 14.4: Effect of RTT smoothing

tion. The Linux kernel returns RTTs with a granularity of 1
8000s. If the real

values are in the same order of magnitude or lower, the measurement is bound
to produce large relative errors. Figure 14.5 shows a part of the CDF of values
returned by Linux from all experiments.

In figure 14.4 two other limitations of the approach are visible. The TCP
standard[135] gives an example how TCP instances can measure the round trip
time (RTT) and how to keep an exponentially smoothed version of the RTT as
follows:

RTTsmoothed = α · RTTsmoothed + (1 − α) · RTTmeasured

The standard suggests a value of α between 0.8 and 0.9, the Linux kernel2 uses
α = 7

8 because of its efficient computability. This smoothing is necessary for
TCP in order to prevent overly fast reactions to network fluctiations. On the
other hand this means that real changes in the network are reflected in RTT
values only after the exchange of few more segments. The second limitation
is that large RTTs (singular high value in figure 14.4) due to short network
outages (in figure 14.4 visible as horizontal space between values) and package
retransmissions are not accounted for. The latter limitation is not a real problem
since these events have no predictive value for future RTTs.

2The responsible code is located in net/ipv4/tcp input.c in function
tcp rcv rtt update()

14.4. END-TO-END EVALUATION 155

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.00175

 0.001875

 0.002

 0.002125

 0.00225

 0.002375

 0.0025

 0.002625

 0.00275

 0.002875

 0.003

 0.003125

 0.00325

 0.003375

 0.0035

 0.003625

 0.00375

 0.003875

 0.004

C
D

F

RTT (s)

Figure 14.5: CDF of RTT values from TCP

A B C D file 1

E B C F file 2

Figure 14.6: File Setup for Performance Comparison

14.4 End-to-End Evaluation

This section describes test that test the entire system, i. e. the file system IgorFS
running on top of the overlay network Igor. PlanetLab would be a nice testing
platform, but using IgorFS on top of PlanetLab is unfortunately not possible.
PlanetLab uses VServer [38], an approach to virtualize the Linux kernel. With
VServers, the kernel is shared among all virtualized machines. Since the Plan-
etLab kernel does not contain the FUSE module and IgorFS depends on this
module, IgorFS can right now neither be deployed nor tested on PlanetLab.

In order to verify that IgorFS reached its designed goals, a comparison be-
tween scp (secure copy, based on [175]), rsync[165], sshfs (a file system based
on [175]) and IgorFS was set up. Two files were set up as seen in figure 14.6.
The first file consists of four large (larger than the IgorFS block size) parts A
to D. The second file has the same size, also is comprised of four parts, but
shares two parts with file 1, whereas the parts E and F are different from file 1.

156 CHAPTER 14. EVALUATION AND TESTING

 0

 50

 100

 150

 200

 250

scp rsync sshfs IgorFS

tim
e

(s
)

file 1
file 2

Figure 14.7: Overall performance comparison

Both files were created at one host. Afterwards, the second part of each file was
read at a different host using scp, rsync over ssh, sshfs and IgorFS The results
of this evaluation are shown in figure 14.7. It shows the times required to read
the second part of both files.

With scp, there is no good way to read any part of the file if it has not
been copied to the second host in full. It does neither exploit the fact that only
parts of the files are read nor that parts of the files are identical. All blocks are
transfered over the network, blocks B and C twice. The rsync protocol is able to
detect the shared blocks between both files. In order to not to introduce another
variable, the transfer for rsync was also ssh, but an independend experiment
has shown that the transfer is dominated by the network time, so the additional
CPU overhead for cryptography does not influence the transfer. Each block is
transfered over the network once. The time savings compared to scp result in the
fact that blocks B and C are not transferred twice. Using sshfs, only the blocks
that are actually read are transfered over the network. Since only half of all data
is read for both files, sshfs is able to complete the experiment in half the time
compared to scp. Overall, blocks C, D and F are transfered, however block C is
transfered twice. IgorFS is able to combine the advantages of rsync and sshfs.
Here, only distinct blocks that are actually read need to be transported. That
means for file 1, blocks C and D are transmitted, but for file 2 only block F needs
to cross the network. One could expect that the read time of file 2 is exactly
a quarter of the scp method and half of the rsync and sshfs times, however it
is more for two reasons. First and foremost, the block boundaries in IgorFS
do not necessarily exactly match the block boundaries in this experiment (and

14.5. SUMMARY 157

user requests in real life). A second reason is that the IgorFS implementation is
not yet fully optimized. Even with these two drawbacks, the savings in network
capacity are still very significant.

14.5 Summary

This section showed evaluations of subsystems of Igor and IgorFS with an em-
phasis on new ideas presented in this work. The section concluded with a
end-to-end test of the entire system where it was possible to show significant
advantages over other systems that are in use today.

158 CHAPTER 14. EVALUATION AND TESTING

Chapter 15

Conclusions

Now this is not the end. It is not even the beginning of the end. But it is,
perhaps, the end of the beginning.

Winston Churchill

This thesis presented the overlay network Igor and the secure, distributed
and decentralized file system IgorFS. Together, they offer a new way to share
access to potentally large files, even if these files change often. The distributed
use is more secure and more efficient than before.

The design is open to new ideas. At the Igor level, the integration of overlay
networks with network layer routing protocols seems promising. In the area
of IgorFS, new interfaces offer complete new use cases even beyond file system
access.

15.1 Acknowledgments

Alone, adj.: In bad company.
Ambrose Bierce, “The Devil’s Dictionary”

This work would not have been possible without the help of many people
and organizations.

I would like to thank Dr. Andreas Kämpfe, Anita Kutzner, Axel Sanwald,
Benedikt Elser, Dr. Bernd Kämpfe, Bernhard Amann, Björn Saballus, Carola
Kämpfe, Dr. Curt Cramer, Dominik Vallendor, Georgi Kehaiov, Ivan Kostov,
Ivan Zlatanchev, Johannes Eickhold, Johannes Franz, Dr. Klaus Wehrle, Nitin
Verma, Pengfei Di, Dr. Robert Cowan, Rolf Kutzner, Roman Krenický, Saurab
Argawal, Dr. Sean O’Donoghue, Dr. Thomas Fuhrmann, Yaser Houri and Yves
Kising. Thank you!

159

160 CHAPTER 15. CONCLUSIONS

Thanks for advice and criticism, for motivating me before and during every
phase of this thesis, for reading and commenting on (even early) revisions of
this document, for many hours of fruitful discussions on ideas and designs,
for your help with implementing Igor and IgorFS, for help with design and
implementation of Videgor, for your friendship and for your support.

Further this work was possible because of funding from Deutsche Forschungs-
gemeinschaft (DFG) under grant number FU/448 and from the European Com-
mision under contract number IST-2004-511438 (project SIMDAT as part of
the Information Society Technologies (IST) programme).

Appendix A

Igor Configuration options

The following list describes possible values in the configuration file of the Igor
daemon. The format of the file is relatively common among configuration files:
Empty lines and lines starting with a hash mark are ignored. All other lines are
expected to be of the form “key colon space value newline”. For example:

igor config file

id: da4de85db275...

bootstrap: host.example.org:11071

netport: 11071

end igor config file

bootstrap Host name and port number of another Igor instance. This Igor
instance is used to bootstrap into the network.

clientport TCP port where to listen for connections from the library libigor

(see section 6.5.2).

cont if no conns Influence the behavior when no connections to other Igor
nodes are available (any more). Usually, an Igor instance quits if no con-
nections to other Igors are left. This behavior is reasonable because a
standalone Igor is not useful. However, to start a new network, at least
one node must run initially without outside connections. If set to an in-
teger with boolean value “false” (i. e. set to zero), Igor quits after the last
connection closes. If set to a “true” (i. e. all other integers), Igor does not
quit and waits for other incoming connections.

id The ID of the local Igor node, given in the hexadecimal form. If the ID is
not provided during start, a new ID is randomly generated.

max conns allowed Upper bound on number of connections.

merivaldi Disable Merivaldi algorithm.

161

162 APPENDIX A. IGOR CONFIGURATION OPTIONS

min conn alive time Connections younger than this timeout are not closed.
Useful to stabilize the routing table.

min conns wanted Lower bound on the number of desired connections.

netport At this TCP port Igor will listen for connections from other Igor nodes.

timer fixfingers Time interval between two consecutive invocations of the fix-
finger procedure (see section 6.3.1), given in seconds.

number of ringmembers Number of nodes kept per Meridian ring.

number of rings Number of Meridian rings.

prs Enable/Disable the latency oriented message forwarding.

timer fixfingers Time between two executions of the finger fixing algorithm.

timer improvement consideration Interval between two executions of Merivaldi.

timer lookup Time between two RTT-estimations of the Merivaldi plugins.

timer pinger Number of seconds between two ping message. Ping messages
are sent periodically on every network connection, given the connection is
not idle.

timer service Service Announcement Interval.

timer stabilize Time between two executions of the stabilize algorithm.

vivaldi dimensions Size of Vivaldi coordinates.

Appendix B

Messages in IgorFS

Section 12 showed, IgorFS is implemented as network of message handling mod-
ules (a process network). There are a lot of different messages, and most of them
are exchanged between two distinct modules. This section lists the messages
and explains their content very briefly.

Message cBFUpdateStatus

Sent from block fetcher to notify that the status of one fetch request changed.

Message cCryptoMsg

This is not a real message but a base class of all crypto messages.

cMsgEncrypt Request to encrypt something.

cMsgEncrypted Something has been ciphered/encrypted, sent as a result to
cMsgEncrypt.

cMsgDecrypt Request to symmetrically decrypt a block of encrypted data.

cMsgDecrypted Result of decryption.

cMsgHash There is a need to compress some data with a cryptographic hash
function.

cMsgHashed Some data has been processes with a crypto hash function.

cMsgVerify Check whether a hash is correct.

cMsgVerified The result of checking with cMsgVerify.

163

164 APPENDIX B. MESSAGES IN IGORFS

cMsgHashNEncryptNHash This message is often needed by the block transfer
mechanism (see section 12.5.5): hash some data, encrypt with the hash result
as key, hash again

cMsgHashedNEncryptedNHashed The triple operation has been done.

cMsgVerifyNDecryptNVerify Reverse of the above: check the outer hash,
decrypt the data, check the inner hash.

cMsgVerifiedNDecryptedNVerified Reverse operation done.

Message cFsoPersistenceRequest

This message orders to make an FSO persistant.

Message cIFSMessage

This is the base class of all messages used in relation with the block cache.

cMsgBlockRequestFromBfToBc The outside world needs a block, and requests
the block with this message.

cMsgBlockResponseFromBcToBf Maybe we have the block, then this message
contains it. Otherwise the message transports the negative result.

cBCJobContainer Messages of type cBCJobContainer transport requests be-
tween the block cache and its sub-modules.

cBCDBUpdateMessage The block cache updated something on disk and needs
to tell the block cache data base about.

cBCDBResponse Confirmation that something in the data base changed.

cBCFSCKCommand Start a check of all on-disk structures of the block cache.

cBCFSCKSweepComplete Ends such a check.

cBCShutdownMessage This is the end. . .

cInventoryUpdateMsg The block cache state changed and the pointer cache
or other modules need to know about this.

165

Message cIgorInterfaceMessage

All messages that are serializable and can be transfered via Igor are derived
from this base class.

cMsgBlockRequestFromBfToBf Block requests between different IgorFS in-
stances are transfered with the help of this message.

cMsgBlockResponseFromBfToBf Here, the actual block transfer (or a negative
reply) happens.

cMsgPointerAnnounceFromPcToPc We have a pointer and tell other IgorFS
systems about.

cMsgPointerRequestFromPcToPc This IgorFS needs a block. Before the block
can be requested, a pointer to it is required.

cMsgPointerResponseFromPcToPc With this message, pointer requests are
answered.

Message cMsgBlockCutRequest

Request from the file system to the block cut algorithm to cut this collection of
blocks.

Message cMsgBlockCutResponse

Answer to the above.

Message cMsgBlockRequestFromBcToBf

The local block cache has a search request for a block and can not answer itself
so it needs outside help.

Message cMsgPcCleanUp

Timer message in the pointer cache to time out stale pointers.

Message cMsgPcPeriodicAnnouncement

Pointers are periodically announced. This message is the timer for this periodic
action.

Message cMsgPcQueueUpdateStatus

Used to time out requests in the pointer cache.

166 APPENDIX B. MESSAGES IN IGORFS

Message cMsgPointerRequestFromBfToPc

Going to request pointers from other IgorFS instances.

Message cMsgPointerResponseFromPcToBf

Going to request pointers from other IgorFS instances.

Message cMsgReadReqFFH

A block needs to be read by the file system.

Message cMsgReqBase

Base class from for messages between fuse interface and file/folder module.

cMsgReqModDev Request to change the mode of a FSO.

cMsgReqTwoNames A request with two paths, e. g. link, rename, etc.

cMsgReqOffSetSize A request with offset and size, e. g. read.

cMsgReqTwoTimes Change access times of a FSO.

Message cMsgResBase

All answers to cMsgReqBase are derived from cMsgResBase.

cMsgResName Return just a name.

cMsgResReadOnly Something has been read.

cMsgResStat The status of a file system object is returned.

cMsgResStatfs The status of the entire file system is reported.

cMsgResVector Directory content.

Message cMsgWriteReqFFH

A block needs to be written to disk.

Message cSnapShotRequest

Start a snapshot, i. e. a new epoch.

167

Message cSnapShotReply

A snapshot is complete.

Message cSnapShotTimer

Internal timer to snapshot initiator module: the next snapshot is due.

168 APPENDIX B. MESSAGES IN IGORFS

List of Figures

2.1 Merkle Hashes . 23
2.2 Unencrypted bitmap . 26
2.3 Bitmap from figure 2.2, encrypted with AES256 in ECB mode . 27
2.4 Bitmap from figure 2.2, encrypted with AES256 in CBC mode . 27

3.1 Routing in Freenet . 33
3.2 Recursive Key Based Routing . 36
3.3 Iterative Key Based Routing . 36
3.4 Message Forwarding Protocols . 36
3.5 Message Forwarding Protocols and Key Based Routing 37
3.6 Scalability of Overlay Networks 37
3.7 de Bruijn-graph with the alphabet {0, 1} and node identifiers with

three letters . 40
3.8 Relation of Key Based Routing and Distributed Hash Tables . . 41
3.9 Round trip time distribution of replies in Overnet 42

4.1 Direct and indirect pointers in inodes 54
4.2 FUSE architecture . 59
4.3 Parrot architecture . 60
4.4 Gnome VFS architecture . 61

5.1 Igor Stack . 65

6.1 The upcall concept . 68
6.2 Service Sub-Graphs in Igor . 72
6.3 TCP port usage in Igor . 77
6.4 Comparison of regular BSD-sockets with Igor sockets 78

7.1 Abstract Base Class for call backs 80
7.2 Call Back Template . 80

8.1 Node Distribution in PlanetLab on 2007-02-18 83
8.2 Application Connectivity with Igor 87
8.3 Example of Videgor Scheduling 88
8.4 Message Sequence for Videgor Video Data Transport 90

169

170 LIST OF FIGURES

9.1 Possible Tunneling of SSR trough Igor 94
9.2 Possible Interaction between Igor and SSR 94

10.1 Efficiency Improvement with IgorFS 101

11.1 Influence of Indirection on Maximum File Size 110
11.2 Connections Between File System Objects and their Epoch Copies118
11.3 Modifying Access with Epochs 119
11.4 Algorithm for overlapped locking during setdirty() 120
11.5 Algorithm to Create Persistent Objects 122
11.6 Block Transfer . 127

12.1 Modularization and Interfaces in IgorFS 131
12.2 Block Fetcher Operation . 136
12.3 Interaction of the Block Transfer module 136
12.4 Interaction of the proc module 138

14.1 Checksum Distribution for Adler32∗ 150
14.2 Checksum Distribution for XOR32 151
14.3 Storage savings through block cutting 152
14.4 Effect of RTT smoothing . 154
14.5 CDF of RTT values from TCP 155
14.6 File Setup for Performance Comparison 155
14.7 Overall performance comparison 156

List of Tables

2.1 Speed of cryptographic operations 19
2.2 Speed of asymmetric cryptographic operations 20
2.3 Message 1 with MD5-Hash 0bcfc4ded8b9a153f8c59b7c19598138 . 21
2.4 Message 2 with MD5-Hash 0bcfc4ded8b9a153f8c59b7c19598138 . 21
2.5 Padding Examples . 30

3.1 Example Pastry Routing Table for a node with identifier 25374,
assuming m = 3 and 15 bit identifiers. For brevity, octal numbers
have been used. 39

6.1 Possible combinations of the flags upcall and final. 69
6.2 Some comparison between iterative and recursive routing 70
6.3 Requirements of Igor and features of available transport protocols 72
6.4 Comparison of different inter process communications between

Igor and applications . 76

8.1 Command Line Parameters of Igor 85
8.2 Igor Debug Facilities . 86

11.1 Formalization . 105
11.2 Comparison of Checksum Algorithms for Block Cut 116

12.1 IgorFS Layers . 130

13.1 Expected hash collisions. Data assumes the block size is 100
kibi-bytes . 145

14.1 TCP round trip time measurement experiment 1 150
14.2 TCP round trip time measurement experiment 2 151
14.3 TCP round trip time measurement experiment 3 152
14.4 TCP round trip time measurement experiment 4 153
14.5 TCP round trip time measurement experiment 5 153

171

Index

de Bruijn-Graphs, 47
Igor, 65

AddRoundKeys, 24
Adler32, 115
Adobe PDF, 29
Advanced Encryption Standard, 24
AES, 24, 25
AFS, 57
Alice, 17
Andrew File System, 57
Anonymity, 18, 33
API, 145
Asymmetric Cipher, 23
Authentication, 18, 22
Avalanche Effect, 19

birthday paradox, 19
BitTorrent, 32
Block Cache, 122, 133
Block Cipher, 23
Block Cipher Mode, 25
block cut module, 133
block fetcher module, 134
Block Identifier, 105, 106
block transfer module, 135
blocking module, 133
Bob, 17
Bootstrapping, 45, 47, 73
BSD Sockets Interface, 77

CA, 144, 146
CAN, 39
CBC, 27
Censorship Resistence, 33
Certification Authority, 146
CFB, 28

CHK, 34
Chord, 39
Cipher Block Chaining, 27
Cipher Feedback Mode, 28
Cipher Mode, 25
ciphertext, 17
clear text, 17
Client-Server, 31
clock synchronization, 49
Coda File System, 57
collision resistance, 19
Compression Function, 19
Computer Network, 31
Content Addressable Network, 39
Content Hash Key, 34
Counter Mode, 28
CRC, 18
Cryptography, 17
CTR, 28
Cyclic Redundancy Check, 18

Data Encryption Standard, 24
Datagram Congestion Control Proto-

col, 45
DCCP, 45
DCE, 57
Decentralization, 32
Decryption, 23

Symmetric, 104
decryption, 17
Demilitarized Zone, 76
DES, 24, 25
DFG, 160
DFS, 57
DHT, 40
Digital Rights Management, 100
Directory Layout, 111

172

INDEX 173

Distributed Computing Environment,
57

Distributed File System, 57
Distributed Hash Table, 40
Distributed Object Locations and Re-

trieval, 40
Distributedness, 32
DMZ, 76
DNS name resolution, 49
DOLR, 40
DRM, 100

ECB, 26
Electronic Codebook, 26
Electronic Program Guide, 89
Encryption, 23

Symmetric, 104
encryption, 17
EPG, 89
Eve, 17

file system object, 117
FileFolderModule, 136
Firewall Traversal, 94
Flooding, 36
Forwarding, 36
Freenet, 33
FSO, 117
FUSE, 58, 138
fuse interface, 138

Global Network Positioning, 46
Global Parallel File System, 57
GNP, 46
GNU, 84
Gnutella, 48
GPFS, 57

hash, 105
Hash Collision, 144
Hash Function, 18
Hash Tree, 22
HMAC, 20
HTTP, 32
Hybrid Peer-to-Peer System, 31
Hyper Text Transport Protocol, 32

IBM, 57
ICMP, 45
IgorInterfaceModule, 137
Initialization Vector, 27
Integrity Check, 32
Inter-Process Communication, 76
Internet Control Message Protocol, 45
IPC, 76
IPv6, 81
IV, 27

Kademlia, 32, 38
Kerberos, 57
key, 17
Key Based Routing, 35
Keyword Signed Key, 34
KSK, 34

Lamport-Signature, 22
Least Recently Used, 123
Least Value based on Caching Time,

123
LRU, 123
LVCT, 123

MAC, 20
Mallory, 17
MD5, 20
MDS, 57
Meridian, 46, 75
Merivaldi, 75
Merkle Hash, 22
Merkle-Damg̊ard-Construction, 22
Message Authentication Code, 20
Message Digest Function, 19
Message Forwarding, 36
Message Routing, 69
messages, 163
Meta Data Server, 57
MixColumns, 24
module, 132
Moore’s Law, 19

NAT Traversal, 94
National Institute of Standards and Tech-

nology, 24

174 INDEX

Network Address Translation, 94
Network File System, 55
NFS, 55
NIST, 24
nonce, 28

Object LRU, 123
Object Storage Server, 57
OFB, 28
OLRU, 123
One Time Pad, 23
OSS, 57
Output Feedback Mode, 28
Overlay Network, 31

P2P, 31
Padding, 29
parrot, 59
Pastry, 38
PDF, 29
Peer-to-Peer, 31
PID, 84
PlanetLab, 48, 155
Plausible Deniability, 34
plausible deniability, 18
PNS, 44
Pointer Cache, 125
pointer cache, 137
Pong Cache, 48
Portable Document Format, 29
POTN, 31
preimage resistance, 19
proc system, 127
ProcModule, 138
Proximity, 42
Proximity Neighbor Selection, 44
Proximity Route Selection, 43
PRS, 33, 43, 75
Pseudonym, 18
Publisher, 32

Rabin Hash, 22
RC4, 25
Real-time Transport Protocol, 45
Recording Scheduling, 87
Remote Procedure Calls, 55

Rijndael, 25
Rolling Checksum, 22
Ron’s Code, 25
Round Trip Time, 45
Route Convergence, 47
RPC, 55
RTP, 45
RTT, 45

S-box, 24
SCTP, 45
second preimage resistance, 19
secret, 17
Secure Hash function, 21
Seeder, 32
Segmented Integer Counter, 28
Server, 31
Service Concept, 67
SHA-1, 21
ShiftRows, 24
SIC, 28
Signed Subspace Key, 34
SIMDAT, 160
Single Point of Failure, 32
Small World, 35
Snapshot, 117
snapshot initiator, 138
SSK, 34
Standard Hardness Assumption, 18
Standard Template Library, 111
Steganography, 18
STL, 111
Stream Cipher, 23
Stream Control Transport Protocol, 45
String Search, 22
Structured Overlay Network, 35
SubBytes, 24
Symmetric Cipher, 23
Symmetric Encryption and Decryption,

104

TCP, 45, 72
topology, 31
Tracker, 32
Transmission Control Protocol, 45

UDP, 45

INDEX 175

Upcall Concept, 67
User Datagram Protocol, 45

VFS, 138
Videgor, 86
Vivaldi, 46, 75
VServer, 155

WEP, 25
WPA, 25

176 INDEX

Glossary

⊕Exclusive Or
Igor Internet Grid Overlay Routing
AES Advanced Encryption Standard
AFS Andrew File System
Alice Canonic sender in cryptography
API Application Programming Interface
Bob Canonic receiver in cryptography
BSDBerkeley Software Distribution
CA Certification Authority
CAN Content Addressable Network
CBC Cipher Block Chaining
CCDF Complementary Cumulative Distribution Function
CDF Cumulative Distribution Function
CFBCipher Feedback
CHK Content Hash Key
ciphertext The transformation of a clear text with an encryption function
CRC Cyclic Redundancy Check
CTR Counter Mode
DCCPDatagram Congestion Control Protocol
DCE Distributed Computing Environment
DFG Deutsche Forschungsgemeinschaft
DFS Distributed File System
DHT Distributed Hash Table
DMZ Demilitarized Zone
DNSDomain Name System
DOLRDistributed Object Location and Retrieval
DRMDigital Rights Management
ECBElectronic Codebook
EPG Electronic Program Guide
EveCanonic eavesdropper in cryptography
exbi-byte 260 Bytes [22]
FSO file system object
FUSE File System in User Space
GNP Global Network Positioning
GNU GNU is not Unix

177

178 Glossary

GOP Group of Pictures
Gossiping Protocol A protocol where neighboring nodes often chat with each other
GPFS Global Parallel File System
Greedy algorith . . .An algorithm that chooses the local optimum at every step
HMAC Hash-MAC
HTTPHypter Text Transport Protocol
ICMP Internet Control Message Protocol
Inode Index Node
IPC Inter-Process Communication
IV Initialization Vector
kibi-byte210 Bytes [22]
KSKKeyword Signed Key
LRULeast Recently Used
LVCT Least Value based on Caching Time
MAC Message Authentication Code
MalloryCanonic malicious party in cryptography
MD5 Message Digest Function 5
MDS Meta Data Server
NAT Network Address Translation
NFS Network File System
OFB Output Feedback
OLRUObject LRU
OSS Object Storage Server
P2P Peer-to-Peer
Padding Adding bits or bytes for security or alignment reasons
PDFPortable Document Format
PNS Proximity Neighbor Selection
POTNPlain Old Telephone Network
PRS Proximity Route Selection
RPC Remote Procedure Call
RTPReal-time Transport Protocol
RTTRound Trip Time
S-box Substitution Box
SCTP Stream Control Transport Protocol
SICSegmented Integer Counter
Snapshot Preserving the state of the system as it was at one point in time
SSK Signed Subspace Key
STL Standard Template Library
TCPTransmission Control Protocol
TLATree Letter Acronym
UDP User Datagram Protocol
WEP Wired Equivalence Privacy
WPA WiFi Protected Access

Bibliography

[1] Stephen Adler. The Slashdot Effect – An Analysis of Three Internet
Publications, January 1999. http://ssadler.phy.bnl.gov/adler/SDE/
SlashDotEffect.html, accessed 2007-10-12.

[2] Akamai: The Leader in Web Application Acceleration and Performance
Management, Streaming Media Services and Content Delivery, 2007.
http://www.akamai.com, accessed 2007-10-19.

[3] E. Allman, J. Callas, M. Delany, M. Libbey, J. Fenton, and M. Thomas.
DomainKeys Identified Mail (DKIM) Signatures. RFC 4871 (Proposed
Standard), May 2007.

[4] D. Atkins, W. Stallings, and P. Zimmermann. PGP Message Exchange
Formats. RFC 1991 (Informational), August 1996. obsoleted by RFC
4880.

[5] R. Baldwin and R. Rivest. The RC5, RC5-CBC, RC5-CBC-Pad, and
RC5-CTS Algorithms. RFC 2040 (Informational), October 1996.

[6] Rudolf Bayer. Binary B-Trees for Virtual Memory. In Edgar F. Codd and
Albert L. Dean, editors, SIGFIDET Workshop, pages 219–235. ACM,
1971.

[7] Peter Biddle, Paul England, Marcus Peinado, and Bryan Willman. The
darknet and the future of content protection. In Eberhard Becker, Willms
Buhse, Dirk Günnewig, and Niels Rump, editors, Digital Rights Manage-
ment – Technological, Economic, Legal and Political Aspects, volume 2770
of LNCS, pages 344–365, Berlin, November 2003.

[8] Philippe Biondi and Fabrice Desclaux. Silver needle in the skype. Black-
Hat Europe, 2006.

[9] D. M. Bloom. A birthday problem. American Mathematical Monthly,
pages 1141–1142, 1973.

[10] Peter J. Braam. Lustre File System. Technical report, Cluster File Sys-
tems, Inc., July 2007. Version 2.

179

180 BIBLIOGRAPHY

[11] Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und
Eisenbahnen. Bekanntmachung zur elektronischen Signatur nach dem Sig-
naturgesetz und der Signaturverordnung (Übersicht über geeignete Algo-
rithmen). Bundesanzeiger Nr. 69, Seiten 3759–3761, February 2007.

[12] Matthew Caesar, Miguel Castro, Edmund B. Nightingale, Greg O’Shea,
and Antony Rowstron. Virtual Ring Routing: Network Routing Inspired
by DHTs. In Proc. ACM SIGCOMM ’06, Pisa, Italy, September 2006.

[13] B. Callaghan, B. Pawlowski, and P. Staubach. NFS Version 3 Protocol
Specification. RFC 1813 (Informational), June 1995.

[14] R. Callon. The Twelve Networking Truths. RFC 1925 (Informational),
April 1996.

[15] Nancy Cam-Winget, Russell Housley, David Wagner, and Jesse Walker.
Security flaws in 802.11 data link protocols. Commun. ACM, 46(5):35–39,
2003.

[16] Rémy Card, Theodore Ts’o, and Stephen Tweedie. Design and imple-
mentation of the second extended filesystem. In Proceedings of the First
Dutch International Symposium on Linux, December 1994.

[17] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 4(2), February 1981.

[18] Ian Clarke, Theodore W. Hong, Scott G. Miller, Oskar Sandberg, and
Brandon Wiley. Protecting Free Expression Online with Freenet. IEEE
Internet Computing, 6(1):40–49, 2002.

[19] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A Distributed Anonymous Information Storage and Retrieval
System. Lecture Notes in Computer Science, 2009, 2001.

[20] Kenneth L. Clarkson. Nearest-Neighbor Searching and Metric Space Di-
mensions. In Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk,
editors, Nearest-Neighbor Methods for Learning and Vision: Theory and
Practice, pages 15–59. MIT Press, 2006.

[21] Bram Cohen. Incentives Build Robustness in BitTorrent. Technical report,
bittorrent.org, 2003.

[22] International Electrotechnical Commission. Addendum to IEC 60027-2
on binary prefixes, 2000.

[23] Michael Conrad and Hans-Joachim Hof. A Generic, Self-Organizing, and
Distributed Bootstrap Service for Peer-to-Peer Networks. In Proceedings
of New Trends in Network Architectures and Services: 2nd International
Workshop on Self-Organizing Systems (IWSOS 2007), September 2007.

BIBLIOGRAPHY 181

[24] A. Conta and S. Deering. Internet Control Message Protocol (ICMPv6)
for the Internet Protocol Version 6 (IPv6) Specification. RFC 2463 (Draft
Standard), December 1998. obsoleted by RFC 4443.

[25] A. Conta, S. Deering, and M. Gupta. Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification. RFC
4443 (Draft Standard), March 2006. updated by RFC 4884.

[26] Microsoft Corporation. IFS Kit - Installable File System Kit.
http://www.microsoft.com/whdc/DevTools/IFSKit/default.mspx,
accessed 2007-08-19.

[27] Russ Cox, Frank Dabek, Frans Kaashoek, Jinyang Li, and Robert Mor-
ris. Practical, distributed network coordinates. In Proceedings of the
Second Workshop on Hot Topics in Networks (HotNets-II), Cambridge,
Massachusetts, November 2003. ACM SIGCOMM.

[28] Curt Cramer, Kendy Kutzner, and Thomas Fuhrmann. Bootstrapping
locality-aware p2p networks. In Proceedings of the IEEE International
Conference on Networks (ICON 2004), volume 1, pages 357–361, Singa-
pore, November 16–19 2004.

[29] Curt Cramer, Kendy Kutzner, and Thomas Fuhrmann. Distributed Job
Scheduling in a Peer-to-Peer Video Recording System. In Proceedings
of the Workshop on Algorithms and Protocols for Efficient Peer-to-Peer
Applications (PEPPA) at Informatik 2004, pages 234–238, Ulm, Germany,
September 23 2004.

[30] Frank Dabek. A cooperative file system. Master’s thesis, Massachusetts
Institute of Technology, September 2001.

[31] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and
Ion Stoica. Wide-area cooperative storage with CFS. In Proceedings of
the 18th ACM Symposium on Operating Systems Principles (SOSP ’01),
Chateau Lake Louise, Banff, Canada, October 2001.

[32] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek,
and Robert Morris. Designing a DHT for low latency and high through-
put. In Proceedings of the 1st USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’04), San Francisco, California, March
2004.

[33] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Sto-
ica. Towards a Common API for Structured Peer-to-Peer Overlays. In
Proceedings of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS ’03), Berkeley, CA, USA, 2003.

[34] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the
Advanced Encryption Standard. Springer-Verlag, 2002.

182 BIBLIOGRAPHY

[35] Hauke Dämfpling. Gnutella Web Caching System, July 2002.
http://www.gnucleus.com/gwebcache/specs.html, accessed 11 March
2004.

[36] Ivan Bjerre Damg̊ard. A design principle for hash functions. In CRYPTO
’89: Proceedings on Advances in cryptology, pages 416–427, New York,
NY, USA, 1989. Springer-Verlag New York, Inc.

[37] Magnus Daum and Stefan Lucks. Attacking Hash Functions by Poisoned
Messages “The Story of Alice and her Boss”, 2005. http://www.cits.

rub.de/MD5Collisions, accessed 2007-03-28.

[38] Benoit des Ligneris. Virtualization of Linux Based Computers: The Linux-
VServer Project. In HPCS ’05: Proceedings of the 19th International
Symposium on High Performance Computing Systems and Applications,
pages 340–346, Washington, DC, USA, 2005. IEEE Computer Society.

[39] P. Deutsch and J-L. Gailly. ZLIB Compressed Data Format Specification
version 3.3. RFC 1950 (Informational), May 1996.

[40] Robert Devine. Design and implementation of ddh: A distributed dynamic
hashing algorithm. In FODO ’93: Proceedings of the 4th International
Conference on Foundations of Data Organization and Algorithms, pages
101–114, London, UK, 1993. Springer-Verlag.

[41] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.1. RFC 4346 (Proposed Standard), April 2006. updated by
RFCs 4366, 4680, 4681.

[42] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The
Second-Generation Onion Router. In USENIX Security Symposium, pages
303–320. USENIX, 2004.

[43] Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Eliot E. Salant, Kather-
ine Barabash, Itai Lahan, Yossi Levanoni, and Erez Petrank. Implement-
ing an on-the-fly garbage collector for java. In ISMM, pages 155–166,
2000.

[44] Morris Dworkin. Recommendation for Block Cipher Modes of Operation.
Technical report, National Institute of Standards and Technology, 2001.

[45] ECMA. ECMA-107: Volume and File Structure of Disk Cartridges for
Information Interchange. ECMA (European Association for Standardizing
Information and Communication Systems), Geneva, Switzerland, second
edition, June 1995.

[46] Johannes Eickhold. Entwicklung einer SSR-basierten Peer-to-Peer-
Telefonieanwendung für das Nokia 770. Master’s thesis, System Archi-
tecture Group, University of Karlsruhe, Germany, 2006.

BIBLIOGRAPHY 183

[47] Johannes Eickhold. Linyphone: Voice over P2P net with SIP on Nokia
770, 2007. http://linyphone.net, accessed 2007-11-01.

[48] M. Eisler. XDR: External Data Representation Standard. RFC 4506
(Standard), May 2006.

[49] Per Cederqvist et. al . Version Management with CVS, 2007. http://

ximbiot.com/cvs/manual/stable, accessed 2007-07-08.

[50] Thure Etzold and Patrick Argos. SRS – an indexing and retrieval tool
for flat file data libraries. Computer Applications In The Biosciences:
CABIOS, 9(1):49–57, February 1993.

[51] Roger Faulkner and Ron Gomes. The Process File System and Process
Model in UNIX System V. In USENIX Winter, pages 243–252, 1991.

[52] C. Feather. Network News Transfer Protocol (NNTP). RFC 3977 (Pro-
posed Standard), October 2006.

[53] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Mike Stay,
David Wagner, and Doug Whiting. Improved cryptanalysis of Rijndael.
In Seventh Fast Software Encryption Workshop, page 19. Springer-Verlag,
2000.

[54] Niels Ferguson, Richard Schroeppel, and Doug Whiting. A simple al-
gebraic representation of Rijndael. Lecture Notes in Computer Science,
2259, 2001.

[55] John Georg Fletcher. An arithmetic checksum for serial transmissions.
IEEE Transactions on Communications, 30:247–252, January 1982.

[56] Paul Francis, Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval
Shavitt, and Lixia Zhang. IDMaps: A Global Internet Host Distance
Estimation Service. IEEE/ACM Transactions on Networking, 9(5):525–
540, 2001.

[57] Michael J. Freedman, Eric Freudenthal, and David Mazières. Democra-
tizing content publication with Coral. In Proceedings of the 1st USENIX
Symposium on Networked Systems Design and Implementation (NSDI
’04), San Francisco, California, March 2004.

[58] Research Group Fuhrmann. Videgor, 2007. System Architecture Group,
University of Karlsruhe, http://www.videgor.net, accessed 2007-02-22.

[59] Thomas Fuhrmann. A self-organizing routing scheme for random net-
works. In Proceedings of the 4th IFIP-TC6 Networking Conference, pages
1366–1370, Waterloo, Canada, May 2–6 2005.

184 BIBLIOGRAPHY

[60] Thomas Fuhrmann and Jörg Widmer. Extremum feedback with partial
knowledge. In Burkhard Stiller, Georg Carle, Martin Karsten, and Peter
Reichl, editors, Networked Group Communication, volume 2816 of Lecture
Notes in Computer Science, pages 181–192. Springer, 2003.

[61] Richard Gooch and Pekka Enberg. Overview of the linux virtual file
system, October 2005. Part of the Linux kernel source at Documenta-
tion/filesystems/vfs.txt.

[62] Krishna Gummadi, Ramakrishna Gummadi, Steve Gribble, Sylvia Rat-
nasamy, Scott Shenker, and Ion Stoica. The Impact of DHT Routing
Geometry on Resilience and Proximity. In Proceedings of the SIGCOMM
2003 conference, pages 381–394. ACM Press, 2003.

[63] Ulrich Hahn, Werner Dilling, and Dietmar Kaletta. Improved adaptive re-
placement algorithm for disk-caches in HSM systems. In IEEE Symposium
on Mass Storage Systems, pages 128–140, 1999.

[64] Kirsten Hildrum, John Kubiatowicz, Sean Ma, and Satish Rao. A Note
on the Nearest Neighbor in Growth-Restricted Metrics. In In proceedings
of the Symposium on Discrete Algorithms, January 2004.

[65] Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and Ben Y. Zhao.
Distributed Object Location in a Dynamic Network. In Proceedings of the
fourteenth annual ACM symposium on Parallel algorithms and architec-
tures, pages 41–52. ACM Press, 2002.

[66] M.R. Horton and R. Adams. Standard for interchange of USENET mes-
sages. RFC 1036, December 1987.

[67] R. Housley. Cryptographic Message Syntax (CMS). RFC 3852 (Proposed
Standard), July 2004. updated by RFCs 4853, 5083.

[68] John H. Howard. An Overview of the Andrew File System. In USENIX
Winter Technical Conference, February 1988.

[69] NetBIOS Working Group in the Defense Advanced Research
Projects Agency, Internet Activities Board, and End to End Ser-
vices Task Force. Protocol standard for a NetBIOS service on a
TCP/UDP transport: Concepts and methods. RFC 1001 (Standard),
March 1987.

[70] NetBIOS Working Group in the Defense Advanced Research
Projects Agency, Internet Activities Board, and End to End Ser-
vices Task Force. Protocol standard for a NetBIOS service on a
TCP/UDP transport: Detailed specifications. RFC 1002 (Standard),
March 1987.

BIBLIOGRAPHY 185

[71] ISO/IEC. ISO/IEC 7498-1:1994 Information technology — Open Systems
Interconnection — Basic Reference Model: The Basic Model. Interna-
tional Organization for Standardization / International Electrotechnical
Commission, 1994.

[72] ISO/IEC. ISO/IEC 9293:1994 Information technology – Volume and file
structure of disk cartridges for information interchange. International Or-
ganization for Standardization / International Electrotechnical Commis-
sion, 1994.

[73] Song Jiang and Xiaodong Zhang. Efficient Distributed Disk Caching in
Data Grid Management. In CLUSTER, pages 446–451. IEEE Computer
Society, 2003.

[74] Brad Curtis Johnson. A Distributed Computing Environment Framework:
An OSF Perspective. Technical Report DEV-DCE-TP6-1, Open Software
Foundation, June 1991.

[75] Gilles Kahn. The semantics of simple language for parallel programming.
In IFIP Congress, pages 471–475, 1974.

[76] B. Kaliski. The MD2 Message-Digest Algorithm. RFC 1319 (Informa-
tional), April 1992.

[77] B. Kaliski. PKCS #7: Cryptographic Message Syntax Version 1.5. RFC
2315 (Informational), March 1998.

[78] B. Kaliski. PKCS #5: Password-Based Cryptography Specification Ver-
sion 2.0. RFC 2898 (Informational), September 2000.

[79] Gene Kan. Gnutella. In Andy Oram, editor, Peer-to-Peer. Harnessing
the Power of Disruptive Technologies, pages 94–122. O’Reilly, Sebastopol,
CA, 2001.

[80] Pradnya Karbhari, Mostafa Ammar, Amogh Dhamdhere, Himanshu Raj,
George Riley, and Ellen Zegura. Bootstrapping in Gnutella: A Measure-
ment Study. In Proceedings of the PAM 2004 workshop, Antibes Juan-les-
Pins, France, April 2004. Springer-Verlag.

[81] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. Consistent hashing and random trees: dis-
tributed caching protocols for relieving hot spots on the World Wide Web.
In Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing, pages 654–663. ACM Press, 1997.

[82] Brad Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for
wireless networks. In Mobile Computing and Networking, pages 243–254,
2000.

186 BIBLIOGRAPHY

[83] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-
matching algorithms. IBM Journal of Research and Development,
31(2):249–260, 1987.

[84] Daishi Kato and Toshiyuki Kamiya. Evaluating DHT Implementations in
Complex Environments by Network Emulator. In International workshop
on Peer-To-Peer Systems (IPTPS 2007), Bellevue, WA, USA, February
2007.

[85] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC
4301 (Proposed Standard), December 2005.

[86] Tom J. Killian. Processes as files. In Proceedings of the Summer 1984
USENIX Conference, 1984.

[87] Yves Philippe Kising. Proximity neighbor selection and proximity route
selection for the overlay-network igor. Diploma thesis, Network Architec-
tures, Technical University Munich, Germany, June 15 2007.

[88] Michael Klein, Birgitta König-Ries, and Philipp Obreiter. Lanes - a
lightweight overlay for service discovery in mobile ad hoc networks. In
Proceedings of the 3rd Workshop on Applications and Services in Wire-
less Networks (ASWN 2003), Berne, Switzerland, July 2003.

[89] Jon Kleinberg. The Small-World Phenomenon: An Algorithmic Perspec-
tive. In Proceedings of the 32nd ACM Symposium on Theory of Comput-
ing, 2000.

[90] Sander Klous, Jaime Frey, Se-Chang Son, Douglas Thain, Alain Roy,
Miron Livny, and Jo van den Brand. Transparent access to grid resources
for user software. Concurrency and Computation: Practice and Experi-
ence, 18(7):787–801, 2006.

[91] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control
Protocol (DCCP). RFC 4340 (Proposed Standard), March 2006.

[92] Ivan Kostov. Entwicklung einer automatisierten Testumgebung fuer das
Overlaynetz IGOR, 2006.

[93] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for
Message Authentication. RFC 2104 (Informational), February 1997.

[94] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-
erspoon, Westley Weimer, Chris Wells, and Ben Zhao. OceanStore: An
architecture for global-scale persistent storage. In Proceedings of the Ninth
international Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS 2000), November 2000.

BIBLIOGRAPHY 187

[95] Kendy Kutzner, Curt Cramer, and Thomas Fuhrmann. A self-organizing
job scheduling algorithm for a distributed vdr. In Workshop ”Peer-to-
Peer-Systeme und -Anwendungen”, 14. Fachtagung Kommunikation in
Verteilten Systemen (KiVS 2005), Kaiserslautern, Germany, February
2005.

[96] Kendy Kutzner and Thomas Fuhrmann. Measuring large overlay networks
- the overnet example. In Konferenzband der 14. Fachtagung Kommunika-
tion in Verteilten Systemen (KiVS 2005), Kaiserslautern, Germany, 2005.

[97] Leslie Lamport. Constructing digital signatures from a one-way function.
Technical Report SRI-CSL-98, SRI International Computer Science Lab-
oratory, Palo Alto, October 1979.

[98] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
Generals Problem. ACM Transactions on Programming Languages and
Systems, 4(3):382–401, 1982.

[99] P. L’Ecuyer. A table of linear congruential generators of different sizes
and good lattice structure. Mathematics of Computation, 1999.

[100] Norbert Leser. Towards a Worldwide Distributed File System. Technical
Report DEV-DCE-TP4-1, DCE Evaluation Team, Open Software Foun-
dation, September 1990.

[101] Jinyang Li, Jeremy Stribling, Robert Morris, and M. Frans Kaashoek.
Bandwidth-efficient management of DHT routing tables. In Proceedings
of the 2nd USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI ’05), Boston, Massachusetts, May 2005.

[102] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, Second edition, 1999.

[103] J. Linn. Generic Security Service Application Program Interface Version
2, Update 1. RFC 2743 (Proposed Standard), January 2000.

[104] Witold Litwin, Marie-Anna Neimat, and Donovan A. Schneider. LH* –
a scalable, distributed data structure. ACM Transactions on Database
Systems, 21(4):480–525, 1996.

[105] Harsha V. Madhyastha, Thomas Anderson, Arvind Krishnamurthy, Neil
Spring, and Arun Venkataramani. A structural approach to latency pre-
diction. In IMC ’06: Proceedings of the 6th ACM SIGCOMM on Internet
measurement, pages 99–104, New York, NY, USA, 2006. ACM Press.

[106] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A Scalable
and Dynamic Emulation of the Butterfly. In Proceedings of the 21st ACM
Symposium on Principles of Distributed Computing, 2002.

188 BIBLIOGRAPHY

[107] Gurmeet Singh Manku, Mayank Bawa, and Prabhakar Raghavan. Sym-
phony: Distributed hashing in a small world. In Proceedings of the
4th USENIX Symposium on Internet Technologies and Systems (USITS
2003), 2003.

[108] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and
Computer Implementations. Wiley Interscience Series in Discrete Mathe-
matics and Optimization. John Wiley & Sons Inc, 1990.

[109] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dil-
ger, and Alex Tomas Laurent Vivier. The new ext4 filesystem: current
status and future plans. In Proceedings of the Linux Symposium, Ottawa,
Ontario, Canada, June 2007.

[110] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer In-
formation System Based on the XOR Metric. In Revised Papers from
the First International Workshop on Peer-to-Peer Systems, pages 53–65.
Springer-Verlag, 2002.

[111] David A. McGrew and John Viega. The security and performance of the
galois/counter mode (gcm) of operation. In Anne Canteaut and Kapalee
Viswanathan, editors, INDOCRYPT, volume 3348 of Lecture Notes in
Computer Science, pages 343–355. Springer, 2004.

[112] Ralph C. Merkle. Secrecy, authentication, and public key systems. PhD
thesis, Department of Electrical Engineering, Stanford University, 1979.

[113] Sun Microsystems. XDR: External Data Representation standard. RFC
1014, June 1987.

[114] Sun Microsystems. RPC: Remote Procedure Call Protocol specification:
Version 2. RFC 1057 (Informational), June 1988.

[115] Sun Microsystems. NFS: Network File System Protocol specification. RFC
1094 (Informational), March 1989.

[116] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics Magazine, April 1965.

[117] James H. Morris, Mahadev Satyanarayanan, Michael H. Conner, John H.
Howard, David S. Rosenthal, and F. Donelson Smith. Andrew: A Dis-
tributed Personal Computing Environment. Commun. ACM, 29(3):184–
201, 1986.

[118] John Morris, James Walker, and Bostjan Marusic. Share it! A rights man-
aged network of peer-to-peer set top boxes system architecture. In Pro-
ceedings of the International Broadcasting Convention (IBC) 2003, Ams-
terdam, September 2003.

BIBLIOGRAPHY 189

[119] Steve Muir. The seven deadly sins of distributed systems. In First Work-
shop on Real, Large Distributed Systems, 2004.

[120] Athicha Muthitacharoen, Robert Morris, Thomer Gil, and Benjie Chen.
Ivy: A Read/Write Peer-to-peer File System. In Proceedings of the 5th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’02), Boston, Massachusetts, December 2002.

[121] National Institute of Standards and Technology. Secure Hash Standard.
Federal Information Processing Standards Publication 180-1, April 1995.

[122] National Institute of Standards and Technology. Specification for the
Advanced Encryption Standard (AES). Federal Information Processing
Standards Publication 197, 2001.

[123] The Network Simulator ns2. http://nsnam.isi.edu/nsnam/, accessed
2007-09-15.

[124] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network
Authentication Service (V5). RFC 4120 (Proposed Standard), July 2005.
updated by RFCs 4537, 5021.

[125] Mej Newman. Power laws, Pareto distributions and Zipf’s law. Contem-
porary Physics, 46(5):323–351, September 2005.

[126] T. S. E. Ng and Hui Zhang. Predicting Internet Network Distance with
Coordinates-Based Approaches. In Proceedings of the Twenty-First An-
nual Joint Conference of the IEEE Computer and Communications Soci-
eties (INFOCOM) 2002, volume 1, pages 170–179, 2002.

[127] Seth Nickell. GnomeVFS - Filesystem Abstraction library. http://

developer.gnome.org/doc/API/gnome-vfs/ accessed 2007-07-06.

[128] Institute of Electrical and Electronics Engineers. IEEE Standard for In-
formation technology-Telecommunications and information exchange be-
tween systems-Local and metropolitan area networks-Specific require-
ments - Part 11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications, 2007. IEEE Std 802.11-2007 (Revision
of IEEE Std 802.11-1999).

[129] L. Ong and J. Yoakum. An Introduction to the Stream Control Trans-
mission Protocol (SCTP). RFC 3286 (Informational), May 2002.

[130] Open Software Foundation, Inc. File Systems in a Distributed Computing
Environment, July 1991.

[131] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A
Blueprint for Introducing Disruptive Technology into the Internet. In
Proceedings of HotNets–I, Princeton, New Jersey, October 2002.

190 BIBLIOGRAPHY

[132] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Access-
ing nearby copies of replicated objects in a distributed environment. In
Proceedings of the ninth annual ACM symposium on Parallel algorithms
and architectures, pages 311–320. ACM Press, 1997.

[133] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[134] J. Postel. Internet Control Message Protocol. RFC 792 (Standard),
September 1981. updated by RFCs 950, 4884.

[135] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September
1981. updated by RFC 3168.

[136] J. Postel and K. Harrenstien. Time Protocol. RFC 868 (Standard), May
1983.

[137] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A Scalable Content-Addressable Network. In Proceedings of the
SIGCOMM 2001 conference, pages 161–172. ACM Press, 2001.

[138] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao,
and John Kubiatowicz. Pond: The oceanstore prototype. In Proceedings
of the 2nd USENIX Conference on File and Storage Technologies, pages
1–14, San Francisco, CA, USA, 2003.

[139] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Han-
dling churn in a DHT. In Proceedings of the 2004 USENIX Annual Tech-
nical Conference, Boston, Massachusetts, June 2004.

[140] Sean C. Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia
Ratnasamy, Scott Shenker, Ion Stoica, and Harlan Yu. OpenDHT: a
public DHT service and its uses. In Roch Guérin, Ramesh Govindan, and
Greg Minshall, editors, SIGCOMM, pages 73–84. ACM, 2005.

[141] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321 (Informa-
tional), April 1992.

[142] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communica-
tions of the ACM, 21(2):120–126, 1978.

[143] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.
RFC 3261 (Proposed Standard), June 2002. updated by RFCs 3265, 3853,
4320, 4916.

[144] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proceedings
of the IFIP/ACM International Conference on Distributed Systems Plat-
forms (Middleware) 2001, Heidelberg, Germany, November 2001.

BIBLIOGRAPHY 191

[145] Oskar Sandberg. Distributed Routing in Small-World Networks. In 8th
Workshop on Algorithm Engineering and Experiments (ALENEX06), Jan-
uary 2006.

[146] Axel Sanwald. Entwurf und Implementierung eines Block-
Zwischenspeichers für verteilte Dateisysteme, July 15 2006. Study
Thesis.

[147] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E.
Okasaki, Ellen H. Siegel, and David C. Steere. Coda: A Highly Available
File System for a Distributed Workstation Environment. IEEE Transac-
tions on Computers, 39(4), April 1990.

[148] Maurice Lorrain Schlumberger. De-Bruijn Communications Networks.
PhD thesis, 1974.

[149] Klaus Schmidinger. Video Disk Recorder, 2007. http://www.cadsoft.

de/vdr, accessed 2007-02-23.

[150] Frank Schmuck and Roger Haskin. GPFS: A Shared-Disk File System for
Large Computing Clusters. In Proc. of the First Conference on File and
Storage Technologies (FAST), pages 231–244, January 2002.

[151] Bruce Schneier. Applied Cryptography. John Wiley & Sons, Inc., New
York, NY, USA, 1996.

[152] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Trans-
port Protocol for Real-Time Applications. RFC 3550 (Standard), July
2003.

[153] Claude Shannon. Communication Theory of Secrecy Systems. Bell System
Technical Journal, pages 656–715, 1949.

[154] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,
and D. Noveck. Network File System (NFS) version 4 Protocol. RFC 3530
(Proposed Standard), April 2003.

[155] Spencer Shepler, Mike Eisler, and Dave Noveck. NFSv4 Minor Version
1, June 2007. Internet Draft draft-ietf-nfsv4-minorversion1-11.txt, expires
2007-12-13.

[156] Sergios Soursos, George D. Stamoulis, and Theodoros Bozios. Distributed
Scheduling of Recording Tasks with Interconnected Servers. In Proceed-
ings of the Third International IFIP-TC6 Networking Conference, pages
1483–1488, Athens, Greece, May 2004.

[157] R. Sparks. Actions Addressing Identified Issues with the Session Initi-
ation Protocol’s (SIP) Non-INVITE Transaction. RFC 4320 (Proposed
Standard), January 2006.

192 BIBLIOGRAPHY

[158] Ralf Steinmetz and Klaus Wehrle, editors. Peer-to-Peer Systems and Ap-
plications, volume 3485 of Lecture Notes in Computer Science. Springer,
2005.

[159] W. Richard Stevens. UNIX Network Programming. Prentice-Hall, Upper
Saddle River, NJ 07458, USA, 1990.

[160] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications. Technical report, MIT
Laboratory for Computer Science, PDOS Group, 2002.

[161] Miklos Szeredi. FUSE: Filesystem in userspace. http://fuse.sf.net,
accessed 2007-07-06.

[162] Douglas Thain and Miron Livny. Parrot: Transparent user-level mid-
dleware for data-intensive computing. In Workshop on Adaptive Grid
Middleware, New Orleans, Louisiana, September 2003.

[163] Manuel Thiele. Entwicklung eines sicheren Protokolls für ein Peer-to-
Peer-Hotspot–Accounting-System. Diploma thesis, Institute of Telemat-
ics, University of Karlsruhe (TH), Germany, February 15 2005.

[164] Manuel Thiele, Kendy Kutzner, and Thomas Fuhrmann. Churn resistant
de bruijn networks for wireless on demand systems. In Proceedings of the
Third Annual Conference on Wireless On demand Network Systems and
Services, Les Ménuires, France, January 18–20 2006.

[165] Andrew Tridgell. Efficient Algorithms for Sorting and Synchronization.
PhD thesis, The Australian National University, 1999.

[166] Theodore Y. Ts’o and Stephen Tweedie. Planned extensions to the linux
ext2/ext3 filesystem. In Chris G. Demetriou, editor, USENIX Annual
Technical Conference, FREENIX Track, pages 235–243. USENIX, 2002.

[167] Dominik Vallendor. Service Oriented Message Routing for the Structured
Overlay Network Igor. Study thesis, System Architecture Group, Univer-
sity of Karlsruhe, Germany, July 10 2007.

[168] András Varga. The OMNeT++ discrete event simulation system. In Pro-
ceedings of the European Simulation Multiconference (ESM’2001). June
6-9, 2001. Prague, Czech Republic, 2001.

[169] Limin Wang, KyoungSoo Park, Ruoming Pang, Vivek S. Pai, and Larry
Peterson. Reliability and Security in the CoDeeN Content Distribution
Network. In Proceedings of the USENIX 2004 Annual Technical Confer-
ence, Boston, MA, June 2004.

[170] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash
Functions. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of
Lecture Notes in Computer Science, pages 19–35. Springer, 2005.

BIBLIOGRAPHY 193

[171] Dave Winer. XML/RPC specification. Technical report, Userland Soft-
ware, 1999.

[172] Bernard Wong, Aleksandrs Slivkins, and Emin Gün Sirer. Meridian: a
lightweight network location service without virtual coordinates. In Pro-
ceedings of the ACM SIGCOMM 2005 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications,
Philadelphia, Pennsylvania, USA, August 22-26, 2005, pages 85–96, 2005.

[173] Qi Xia, Ruijun Yang, Weinong Wang, and De Yang. Fully decentralized
DHT based approach to grid service discovery using overlay networks. In
Fifth International Conference on Computer and Information Technology
(CIT 2005), pages 1140–1045, Shanghai, China, September 2005. IEEE
Computer Society.

[174] F. Yergeau. UTF-8, a transformation format of ISO 10646. RFC 3629
(Standard), November 2003.

[175] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture.
RFC 4251 (Proposed Standard), January 2006.

[176] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. GloMoSim: A Library
for Parallel Simulation of Large-Scale Wireless Networks. In Workshop on
Parallel and Distributed Simulation, pages 154–161, 1998.

[177] L. Zhu, K. Jaganathan, and S. Hartman. The Kerberos Version 5 Generic
Security Service Application Program Interface (GSS-API) Mechanism:
Version 2. RFC 4121 (Proposed Standard), July 2005.

[178] Hubert Zimmermann. OSI Reference Model — The ISO Model of Archi-
tecture for Open Systems Interconnection. IEEE Transactions on Com-
munications, 28(4):425–432, 1980.

