Rainer Buchty, Jan-Philipp WeiB (eds.)

High-performance and
Hardware-aware Computing

Proceedings of the First International Workshop on
New Frontiers in High-performance and
Hardware-aware Computing (HipHaC’08)

D

universitatsverlag karlsruhe

Rainer Buchty, Jan-Philipp Weil (eds.)

High-performance and Hardware-aware Computing

Proceedings of the First International Workshop on New Frontiers
in High-performance and Hardware-aware Computing (HipHaC’08)

Lake Como, Italy, November 2008
(In Conjunction with MICRO-41)

High-performance and
Hardware-aware Computing

Proceedings of the First International Workshop on New Frontiers
in High-performance and Hardware-aware Computing (HipHaC’08)

Lake Como, Italy, November 2008
(In Conjunction with MICR0-41)

Rainer Buchty

Jan-Philipp WeiB
(eds.)

D

universitatsverlag karlsruhe

Impressum

Universitatsverlag Karlsruhe
c¢/o Universitatshibliothek
StraBe am Forum 2
D-76131 Karlsruhe

www.uvka.de

(@80

Dieses Werk ist unter folgender Creative Commons-Lizenz
lizenziert: http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Universitatsverlag Karlsruhe 2008
Print on Demand

ISBN: 978-3-86644-298-6

Organization

Workshop Organizers:

Rainer Buchty

Karlsruhe Institute of Technology, Germany
Jan-Philipp Weil3

Karlsruhe Institute of Technology, Germany

Program Committee:

Mladen Berekovic

Universitit Braunschweig, Germany

Alan Berenbaum

SMSC, USA

Nevin Heintze

Google Inc.

Vincent Heuveline

Karlsruhe Institute of Technology, Germany
Eric D’Hollander

Ghent University, Belgium

Ben Juurlink

TU Delft, The Netherlands

Wolfgang Karl

Karlsruhe Institute of Technology, Germany
Richard Kaufmann

Hewlett-Packard, USA

Paul Kelly

Imperial College, UK

Steering Committee:

Jiirgen Becker

Karlsruhe Institute of Technology, Germany
Vincent Heuveline

Karlsruhe Institute of Technology, Germany
Wolfgang Karl

Karlsruhe Institute of Technology, Germany
Jan-Philipp Weif3

Karlsruhe Institute of Technology, Germany

Hsin-Ying Lin

Intel, USA

Rudolf Lohner

Karlsruhe Institute of Technology, Germany
Andy Nisbet

Manchester Metropolitan University, UK
Ulrich Riide

Universitdt Erlangen-Niirnberg, Germany
Martin Schulz

LLNL, USA

Thomas Steinke

Zuse-Institut Berlin, Germany

Robert Strzodka

Max Planck Institut Informatik, Germany
Stephan Wong

TU Delft, The Netherlands

Preface

High-performance system architectures are increasingly exploiting heterogeneity: multi- and manycore-based sys-
tems are complemented by coprocessors, accelerators, and reconfigurable units providing huge computational power.
However, applications of scientific interest (e.g. in high-performance computing and numerical simulation) are not
yet ready to exploit the available high computing potential. Different programming models, non-adjusted interfaces,
and bandwidth bottlenecks complicate holistic programming approaches for heterogeneous architectures. In mod-
ern microprocessors, hierarchical memory layouts and complex logics obscure predictability of memory transfers or
performance estimations.

For efficient implementations and optimal results, underlying algorithms and mathematical solution methods have
to be adapted carefully to architectural constraints like fine-grained parallelism and memory or bandwidth limitations
that require additional communication and synchronization. Currently, a comprehensive knowledge of underlying
hardware is therefore mandatory for application programmers. Hence, there is strong need for virtualization concepts
that free programmers from hardware details, maintaining best performance and enable deployment in heterogeneous
and reconfigurable environments.

The First International Workshop on New Frontiers in High-performance and Hardware-aware Computing
(HipHaC’08) — held in conjunction with the 41st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-41) — aims at combining new aspects of parallel, heterogeneous, and reconfigurable system architectures
with concepts of high-performance computing and, particularly, numerical solution methods. It brings together in-
ternational researchers of all affected fields to discuss issues of high-performance computing on emerging hardware
architectures, ranging from architecture work to programming and tools.

The workshop organizers would therefore like to thank the MICRO-41 Workshop Chair for giving us the chance to
host this workshop in conjunction with one of the world’s finest conferences on computer and system architecture —
and of course all the people who made this workshop finally happen, most notably Wolfgang Karl (KIT) for initial
inspiration. Thanks to the many contributors submitting exciting and novel work, HipHaC’08 will reflect a broad

range of issues on architecture design, algorithm implementation, and application optimization.

Karlsruhe, Rainer Buchty & Jan-Philipp Weif;
October 2008 Karlsruhe Institute of Technology (KIT)

Table of Contents

Architectures
OROCHI: A Multiple Instruction Set SMT Processoroieiii i 1
Takashi Nakada, Yasuhiko Nakashima, Hajime Shimada, Kenji Kise, and Toshiaki Kitamura
Stream Processing and Numerical Computation

Experiences with Numerical Codes on the Cell Broadband Engine Architecture 9
Markus Stiirmer, Daniel Ritter, Harald Kostler, and Ulrich Riide

A Realtime Ray Casting System for Voxel Streams on the Cell Broadband Engine 17
Valentin Fuetterling and Carsten Lojewski
Comparison of High-Speed Ray Casting on GPU using CUDA and OpenGL 25

Andreas Weinlich, Benjamin Keck, Holger Scherl, Markus Kowarschik, and Joachim Hornegger

RapidMind Stream Processing on the PlayStation 3 for a 3D Chorin-based
Navier-Stokes SOIVET e e 31
Vincent Heuveline, Dimitar Lukarski, and Jan-Philipp Weifs

Temporal Locality

Optimising Component Composition using Indexed Dependence Metadata 39
Lee W. Howes, Anton Lokhmotov, Paul H. J. Kelly, and A. J. Field

Accelerating Stencil-Based Computations by Increased Temporal Locality on
Modern Multi- and Many-Core ATChIteCTUIESttt ettt e et 47
Matthias Christen, Olaf Schenk, Peter Messmer, Esra Neufeld, and Helmar Burkhart

Fast Cache Miss Estimation of Loop Nests using Independent Cluster Sampling 55
Kamal Sharma, Sanjeev Aggarwal, Mainak Chaudhuri, and Sumit Ganguly

List Of AUtROTS 65

OROCHI: A Multiple Instruction Set
SMT Processor

Takashi Nakadg Yasuhiko Nakashima Hajime Shimadh Kenji Kiset and Toshiaki Kitamura

*Graduate School of Information Science, Nara Institute of Science and Technology, JAPAN
{nakada, nakaship@is.naist.jp

fGraduate School of Informatics, Kyoto University, JAPAN
shimada@kuis.kyoto-u.ac.jp
iGraduate School of Information Science and Engineering, Tokyo Institute of Technology, JAPAN
kise@cs.titech.ac.jp
§Graduate School of Information Sciences, Hiroshima City University, JAPAN
kitamura@arch.ce.hiroshima-cu.ac.jp

Abstract—To develop embedded computer systems, onewide issue superscalars, many heterogeneous multi-cores have
straightforward way is to employ heterogeneous multi-processors peen proposed to meet the requirements. Considering the
or multi-cores that have a single traditional core and several heavy multimedia workload in modern embedded devices

SIMD/VLIW cores. This approach is suitable not only for quick .
integration of de-facto OS and new multimedia programs, but VLIW processors are good candidates because enough ILP

also for QoS. However, such well-known architecture increases in multimedia programs is easily detected by the compiler
the area, the complexity of the bus structure, the cost of the so that complicated issue mechanisms can be omitted. By

chip and the inefficient use of the dedicated cache memory. As incorporating well designed multimedia libraries, VLIW can
an efficient embedded processor, we propose a heterogeneou%chieve good performance with low power. However, VLIW

SMT processor that has two different front-end pipelines. Each . | titive | licati ith f ILP. M
pipeline corresponds to ARM architecture for irregular programs IS less competiive In applications with few - Moreover,

and FR-V (VLIW) architecture for multimedia applications. FR- library support for general purpose applications is compara-

V instructions run through the simple decoder and are enqueued tively poor. Consequently, some general purpose processors
into the VLIW queue. The instructions in the VLIW queue are are also included. This results in a heterogeneous multi-core
simultaneously shifted to the next stage after the instructions processor. Thus, heterogeneous multi-core processors have

at the final portion are all issued. On the other hand, ARM b | is th ith the Cell Broadband
instructions are decomposed into simple instructions suitable for ecome popular, as Is the case wi e tLe roadban

the VLIW queue. The instructions are scheduled based on the Engine [1], which includes a POWER Processing Element
data dependencies and the empty slots. After that, the mixed (PPE) as a general processor and eight Synergistic Processing
instructions in the VLIW queue are issued to the common back- Elements (SPES) as media processors.

end pipeline. In this paper, a simple instruction scheduler and a However, from the point of view of semiconductor technol-

mechanism for QoS are presented. We evaluated the performance
with an RTL-level simulator and evaluated the chip area. The ©9Y: multi-cores that increase the footprint by incorporating

results show that the microarchitecture can increase the total IPC discrete cores straightforwardly are not the best solution
by 20.7% compared to a well-known QoS mechanism controlled because static power leakage and process variation will be big
by a process scheduler in OS, and can reduce the total chip gpstacles in next generation low power and high-performance
ﬁﬁe?eﬁqyeﬁé{t?zﬁ compared to a well-known separated multi-core 55cessors. Static power leakage is in proportion to footprint.
Ilondex Terms.—Heterogeneous SMT processor, VLIW, Quality It is_ crucial to reduce the footprint in th(_a near futu_re. In
of Service particular, the general processor in the multi-core is quite large
because its design tends to be imported from traditional imple-
mentations, despite the small performance contribution of the
general processor. If we unify the general purpose processor
In recent years, it has become popular to enjoy high-qualityith media processors such as VLIW, the footprint is min-
multimedia contents via portable devices. The processors forized, and the dedicated cache area of the general purpose
such embedded devices are required to accomplish high gaecessor can be effectively utilized as an additional cache for
formance for multimedia applications and work on ultra lonthe media processors. Such integration shows promise in the
power to enable use of smaller batteries. Unfortunately, wefleld of smaller footprints and high-performance. Meanwhile,
known superscalar processors are unacceptable for such eamventional SMT execution models [2], which also share a
bedded devices on two counts. First, power-hungry processsirsgle pipeline and the data cache, are not suitable for QoS
with large heatsinks are hard to fit into the embedded devicasntrol in general. However, in many embedded systems, QoS
that are usually composed in a small chassis. Second, twatrol is one of the important requirements. The processor has
processors need to consume less power so as to extend batteguarantee the frame rate for a video decoder, for example.
life as much as possible. For this field, in place of traditiondlhe heterogeneous SMT for embedded processors should meet

I. INTRODUCTION

demands such as these that are not popular in conventiciaminimize load-use latency, Alpha 21264 issues instructions
SMT. speculatively that depend on the previous load instruction. If

Therefore, we propose a heterogeneous SMT procestite speculation fails, all integer pipelines are rewound. The
named OROCHI, which can execute simultaneously both thgelines are restarted and the instructions are reissued. To
conventional instruction set and the VLIW instruction seteduce this overhead, the cache hit/miss predictor is very
By unification of the back-end pipeline, which includes @nportant for Alpha 21264.
load/store unit, the processors based on different architecturénother approach is a selective instruction flush mecha-
share execution units and a data cache. Each processoriss [9]. When a cache miss occurs on some thread, instruc-
the opportunity to use more cache area during the tiniens that depend on the load instruction are removed from an
that the other processor does not need a large cache aistruction window to avoid unnecessary resource occupation.
First, we propose a novel QoS-aware instruction scheduliddter the cache is filled, the removed instructions are refilled
mechanism with a VLIW queue that is completely differento the instruction window.
from traditional superscalar processors. It schedules VLIW
instructions directly and also transforms conventional instruc-
tions efficiently. Conventional instructions are decomposedRecent embedded devices that deal with high-quality mul-
into simple instructions and inserted into the empty slot d¢imedia contents have a conventional processor (scalar pro-
the VLIW queue. Second, we adopt a cache miss predictioassor) and a media processor (ex. VLIW). The conventional
mechanism incorporated in branch predictors and a selectiv@cessor usually executes OS codes and miscellaneous low
instruction flush mechanism in the VLIW queue, which ard.P applications. To minimize developing time, exploiting
made more effective than previous QoS control mechanise@nventional processors is crucial, so many legacy codes and
by using an OS scheduler [3] or some hardware approach slibreries are required to complete the system. On the other
as dynamic cache partitioning [4]. hand, some media processor is required to accelerate the media

The rest of this paper is organized as follows. Sectiongrocessing. There is much data parallelism in multimedia
gives an overview of OROCHI. Section 3 reveals the mapplications, so typical media processors employ an effective
croarchitecture of OROCHI. Section 4 describes its evaluatidnstruction set such as VLIW, SIMD, etc. that can easily
Finally, Section 5 concludes the paper and describes futeploit data parallelism at a low hardware cost. We considered
work. that the legacy codes can be transformed to fit to some
VLIW structure to reduce the footprint of the total system.
We evaluated a heterogeneous SMT comprising ARM [10]

To sustain the QoS, several methods are proposed. Thasghitecture, as one of the most popular embedded processors
approaches are classified into two categories, a software afith de-facto OS, and FR-V [11] architecture, as another
proach and a hardware approach. popular embedded processor for the image processing field.

The most traditional and common software approach isFR550 is an eight issue FR-V architecture processor. FR550
scheduling by an OS. However, reducing the execution timedn issue four integer instructions and four floating point
other applications is the only way to improve the performandestructions or media instructions simultaneously. The media
of the QoS-aware applications. With monitoring performandastructions support saturation operation, multiply and accu-
counters, IPC, etc., an OS can sustain the fairness to samaate, SIMD, and so on. Branch and load/store instructions
extent [3]. However, the performance of each application tendee classified as integer instruction. It can issue two branch
to be degraded. Therefore, it is hard to sustain the QoS by thstructions simultaneously to support a three-way branch and
scheduler. also two load/store instructions.

Hardware approaches are more powerful than OS ap-Figure 1 outlines the concept of OROCHI with a VLIW
proaches, one being a cache partitioning [5] that dividésmck-end pipeline based on FR550. The most important differ-
the cache memory to achieve a dedicated cache for eatite with a popular pipeline is\&LIW queue that holds two
application. The dedicated cache is effective in alleviating ththfferent instruction sets simultaneously. The key point of this
interaction among applications. However, each cache size tistisicture is that some empty slots always exist in the queue.
decreases to less than the total cache size, as a result of wHadtause the number of function units of a VLIW processor
the performance is to an unacceptable degree decreasedifglsually more than the maximum number of instructions
To alleviate this problem, dynamic cache partitioning [4Jn one VLIW. As a result, even if the VLIW instruction
which adjusts the boundaries of a cache, and virtual priveggeam executes high performance multimedia applications that
caches [7], which control cache bandwidth, have been preecupy almost all of the instruction slots, enough empty slots
posed. Unfortunately, their effectiveness is also limited. remain for execution legacy codes of ARM applications or OS.

A central problem in QoS resides in pipeline stalls du€herefore, we considered that it is possible to integrate the two
to unexpected cache misses. So, some cache miss predidiiffierent types of processors effectively without performance
mechanism shows promise for sustaining QoS. For instandegradation.

Compag Alpha 21264 [8] has a cache hit/miss predictor for aln detail, the back-end pipeline is comprised of instruction
speculative issue mechanism. If the cache is predicted as qiteue, register file, execution units, data cache and /O inter-

IIl. MICROARCHITECTURE OFOROCHI

Il. PREVIOUS WORK ON QOS (QUALITY OF SERVICE)

SMT Execution

< ARM Front-end > :: Common Back-end >
| 1A ||:| |F |:||ARM-D||:||HOST-D||:||Rename||:| Schedule \EQOQ|QE gzes;:tch
BP = VOOl [wr][|[ReT]
i e (OROIOK | ore
< FR-V Front-end > ; 4 \1\ |Q|Q§
IA H:I IF I:I vuw-o/@@@| :
P VOO0
X /o O O R
0 O
> OO

VLIW queue

Fig. 1. Pipeline of OROCHI

face. A different type of instruction set is translated to fit thehared by ARM and FR-V. The back-end pipeline also has a
back-end pipeline. Several front-end pipelines are connectgeheral register fileGRF), which has eight read ports and five
to the instruction queue. Thus, some kinds of processors aarite ports, and a media registaviRF), which has eight read

be united with small cost. ports and four write ports. Since renaming is not necessary
) o for in-order execution of FR-V, only a logical register file is
A. Outline of the pipeline required for FR-V. Even though logical register spaces are

OROCHI has two front-end pipelines. Each front-end ha&sparated between ARM and FR-V, the register file is shared
an instruction address generattk)(an instruction fetch stage so that the size of the register file becomes large. However,
(IF) with a cachelfl) and a branch predictoBP) that includes numbers of read and write ports are not increased. Since
a load-use miss predictor described later, a decodBM-D, OROCHI does not have a register transfer instruction between
HOST-D corresponding to instruction decomposition similathe general register and media register, media register file is
to Intel P6 architecture [12] or Netburst architecture [13], ariidependent from general register file.

VLIW-D). Additionally, ARM front-end has a rename stage As for ARM instructions, the results are written in the
(Rename) for out-of-order execution. The decoded instrucreorder buffer out-of-ordeM{R) and then completed in-order
tions from VLIW-D are directly enqueued into the left-mosin the following retire stageRETI). As for FR-V instructions,
portion of the queue. Meanwhile, the renamed instructiotse results are written in the architecture registers and also
from Rename are scheduled to the queue based on the datapleted in-order.

dependencies and the empty sloBcltedule). The detailed When branch prediction misses in a thread, the related
mechanism of such scheduling is described later. instructions are flushed from the front-end and the instruction

The instructions, which have architecture flags to distirueue, while the other thread keeps executing the instruction
guish between ARM and FR-V instructions, in the queue astream.
shifted toward the execution units simultaneously when the
instructions in the right-most columns are all issued. The issBe QoS Aware Instruction Scheduling

mechanism is very similar to the popular VLIW architectures. |, the conventional SMT. the requirements for QoS are

Obviously, it is very important to schedule instructions Sgq g5 strong because the fairess between processes is the
that_lnterlocks in the mstr_uctlon queue seldom occur becaurﬁ%st important issue for the system. Besides, in an embedded
partial data dependency interlocks the whole of the queue.qystem area, special considerations are required to maintain
The back-end pipeline is based on VLIW, as mentioned, aghs for certain multimedia applications.
includes three integer units with shifter and partial multiplica- Under typical usage of OROCHI, the processor executes
tlop fun(élonsdAfLU), or:f Ioa(.ils;org. umt?Pl), one branch both the multimedia processing thread written in the VLIW
unit (BR)IgerIIAolur T]e |a]:Jn|ts_ edicated to FR'Vt;nStru:ft'?]rﬂwstruction set and the OS thread written in the conventional in-
strean(;s W)" T"efse unction units are a subset of gy ction set simultaneously. From the multimedia processing
FR550 processor. All function units excedEDIA units are side, there are many deadlines. The processor has to guarantee
IFloating point units are not included. ARM and FR-V use a soft-flodi® gompletlon o_f the task before the deadline to meet the
library instead. media QoS requirement.

Write Bypass

[s1][s2][D] > Tag miss, the following pipeline stages stall. When an L1 data
- Data u“ u l @J cache miss occurs, it stalls not only the dependent instructions

— . [T3 but also instructions in the same line. Such simple structure
F>S1 > | S1-+S1$S1-+»S1 | : i I
'»[S2| > Lt [S2+52 52452 |+ ALU results in lower complexity than superscalars that incorporate
’i* [TLD=D+D+D I+ complicated wakeup and select logics. Instead, performance
NI I it 2 seriously drops when one of the instructions waits for the data
%I%I %;% [y Sepsariart2 M 5 ALY P produced by previously dispatched instructions. The major
3 T |28 ¥ ‘ & event of such a stall derives from a data cache miss. In the
ETS R el ¢ ALY me— traditional instruction scheduling, in order to greatly reduce
i* “p [r[D*D*D+D Iy § the execution latency, the instructions that require some load
sl L Wreesere data are scheduled as if there were no cache miss reported.
(mS2m o [riSerSerSatss iy Cache /87— Conversely, OROCHI should insert ARM instructions without
— [o interference to FR-V. We only have a limited instruction scope,
sy 2 e so that there is a high probability of pipeline hazards due to L1
8 ™=y Di h/Read
gr-loh 2 fepatehiens, - sxecue data cache misses. Basically, OROCHI maintains QoS of the
> ST o FR-V application by scheduling ARM instructions carefully.
S il The key ideas of the mechanism are cache miss prediction and
_’[L T Map/Schedule y P
I

selective instruction flush described in next section.

Fig. 2. Detailed Structure of OROCHI D. QoS Control with Cache Miss Prediction and Selective

Instruction Flush

The excessive method to maintain QoS of multimedia To alleviate this pipeline stall problem, we propose a cache
applications running on FR-V is complete shutdown of ARMit/miss predictor and a selective instruction flush mechanism.
instruction streams. However, this is not acceptable from theln general, the cache miss predictor indicates whether the
point of view of real-time interruption handling. target cache access will hit or miss. However, OROCHI has

It is known that the compiler for VLIW schedules instructo control not only where the depended instruction should be
tions statically. If the compiler cannot find an instruction técheduled in the queue but also when it should be scheduled.
fill slots, empty slots are left as NOPs because the VLIW do&$r instance, when a cache miss is predicted, instructions
not schedule the instructions dynamically. Even if the ARNhat depend on the load data should be scheduled apart from
instructions are inserted into such empty slots, performanie load instruction. If we cannot find a suitable free slot in
drop never occurs on the condition that ARM instructions d&e instruction window because a long delay is predicted, the
not interfere with the instruction streams of FR-V applicationgistruction should be delayed to schedule. Such a mechanism
The most reasonable technique to sustain the performancé@$ the potential to avoid pipeline stall due to the cache misses,
FR-V is to provide enough slots for FR-V and to schedulié it can learn cache behavior efficiently.

ARM into the unused slots. Conversely, if the prediction is incorrect, the processor

Figure 2 describes the structure of instruction schedulingannot avoid a pipeline stall. To alleviate this case, we propose
In this figure, we omit media and branch units to simplify. A&n additional selective instruction flush mechanism. When
first, if the left-most portion is empty, FR-V instructions aré&n ARM load instruction results in a cache miss, all ARM
enqueued into the left-most portion of the queue. Then ARMStructions that include the load instruction are purged from
instructions are inserted into the queue. To find a suitadie instruction window. Note that the cache fill request is not
empty slot, the scheduler compares the destination regist@nceled. Since all instructions have an architecture flag, it
numbers of instructions that are already scheduled in the quétieeasy to find the ARM instructions. After that, the load
and source register numbers of the instruction to be schedul@gfruction and the following are scheduled again. With the
then inserts into a suitable slot nearest to the correspondmgchanism, the pipeline stall is eliminated and the FR-V
execution unit as possible. The scheduling mechanism allolstructions are executed without interference from ARM.
out-of-order execution with the preceding rename stage andrigure 3 outlines these techniques. In this figure LtiP
achieves comparable performance with out-of-order supéidicates a Load-Use Miss Predictor, which predicts whether
scalar processors. After that, these mixed instructions in tA@ instruction will bring cache miss or not. The LUMP is
queue are issued to the common back-end unit in the satfiglemented in the branch predictor. Note that at this stage, it

manner as VLIW. is unknown whether the instruction is a load or not. Instead,
. the hardware cost is minimized by sharing the table with the
C. Issue Instructions branch predictor. The additional information to the PHT of

In the dispatch stage, VLIW hardware dispatches all of thee Gshare branch predictor is several bits that indicate the
instructions in the right-most portion of the queue. If there isstimated delay cycles to schedule. When a load instruction
an instruction that cannot be issued due to unresolved daascheduled, the scheduler controls the insert point and the
dependency, such as load-use that has a possibility of catiéng according to the prediction (1a). For example, when

ARM Front-end Common Back-end

| 1A ”:H IF ||:||ARM-D||:||HOST—D||:||Rename||:|
BP

Schedule Dispatch

Read

(1a) LUMP Lookup l?\j! |Q|
I, DO [ore
IE] _ FR-V Front-end { i | |Q
| IA ||:| IF |:| VLIW-D i_(;2 ; |
" ‘ <><>E%
1
MRF
@D 1D
DO
VLW queue
(2) Selective Flush
(1b) LUMP Update
Fig. 3. LUMP & Selective Flush

TABLE |

the corresponding counter indicates 3, three cycles of cache EVALUATION PARAMETERS

delay can be hidden, but if the cache access is hit, the

three cycles become a penalty. When a load instruction is Cache miss predictor] PHT: additional 3bitx 8K
executed, the corresponding entry of the table is updated erires g‘;‘;f‘?c'fgsd in the
(1b). In detail, yvhen a Ioad_ in_struction leads to <_:ache miss, Branch predictor PHT: 2bit x 8K entries
the corresponding counter is incremented and vice versa. If (gshare)
the selective instruction flush mechanism is enabled also, the Return Address Stack 8 entries
. . . . Physical register 32 entries
cache miss leads to flushing all of the ARM instructions Store buffer 8 entries
including the load instruction from the VLIW queue (2). Cache line size 64byte
ARM 11 cache 4way, 16KB
IV. EVALUATION miss latency 8cycle
)]] FR-V 11 cache 4way, 16KB
We evaluate the multiple instruction set SMT processor miss latency 8cycle
OROCHI from the view of IPC and the feasibility. First, the D1 cache 4way, 32KB
. miss latency 8cycle
performance of the VLIW queue is evaluated as compared Unified L2 cache 4way, 2MB
with an out-of-order superscalar processor. Second, SMT per- miss latency 40cycle
formance with both ARM and FR-V applications is evaluated. VLIW queue depth 4
Finally, the QoS features are measured. Table | shows the basic
TABLE ||

parameters of OROCHI.
PERFORMANCE OFARM SUPERSCALAR(ARMSS)

A. VLIW Queue

IPC delay Freq IP&Freq

We preliminarily evaluate the performance of the VLIW [ns] [MHZz] [MIPS]
gueue as compared with a superscalar processor using an ARMSS | 1.335 13.51 74.0 98.8(1.00)
RTL-level simulator. We also design with ASIC (0,2% OROCHI | 1.331 854 1171 155.9(158)

technology) to evaluate the delay and the area.

Also for the evaluation of the VLIW queue, we design
another ARM superscalar processor with a centralized instriiarge selector in the Select/Read stage. We compare IPC using
tion window as a baseline (ARMSS). Figure 4 outlines thgeveral programs from MiBench [14] running on ARM.
baseline processor. The fetch, decode, decompose and bacKable Il shows the IPCs, the circuit delays and the over-
end units are the same as OROCHI's. However, ARMSS8l performances. Table Ill shows the areas. From these
has a centralized instruction window in order to supporesults, OROCHI outperforms ARMSS. The comparison of
dynamic out-of-order execution. ARMSS also has complicatéeCs shows that ARMSS gains only 0.3% over OROCHI.
Wakeup-Selectlogic. The Wakeup-Select logic searches fofhe comparison in the delay shows that OROCHI is faster
instructions that are ready to be issued (Wakeup) and decidesn ARMSS by 36.8% due to the simple instruction issue
which instructions are issued from the candidates (Selentechanism. As a result, the overall performance of OROCHI
within one cycle. In Figure 4, we can find an additionalk expressed as the product of IPC and frequency is superior

ot
OFR-V B
' SMT FR-V B ARM

N 11 A1}
= S1 > {S1]S1]8S1]S1 \,—» - =51
pS2l> S2[S2[S2[S2 H- ST ALU |
*i» D/ D|D|D ’—y | =D |
([STl» {ST[ST[S1[s1 > =EH
- S2 > S2|S2|s82]s2 2 =57 ALU >
ol»Dj>» 2+ D|[D|D|D o L L
HilHIE===(E
(ST © (HSITSTISITST > o § =) VT SoTEETT LT 2TETTE288 S
= S2 1> M S2[s2]|s2]s2 t T BT ALU =/ — QrFEeE @ S EE L 5 AT WEEE®
D M D|D|D|D D] PrLEEESGE 2233582 T8 ® &
i § T88985€5 a8 88 2843
T T £ c c ®
>STl» HST[ST[ST[ST > [» FEH sl 229 gE * 00
~S2l> e S2|S2|s2|s2 '+ B2 Cachems/5/—
= D > = D D D D = gl
— — \—‘ E— Fig. 5. ARM bitcount & FR-V MiBench
Instruction Window
Map Select/Read

T
’ SMT FR-V B ARM

Fig. 4. Pipeline of ARM Superscalar (ARMSS)

TABLE IlI
AREA OFARM SUPERSCALAR(ARMSS)

| Relative cell area

ARMSS 1.000
OROCHI (ARM only) 1.016
IO - R AR O IOCOEIOIOIOR -
OLEFEEE 3855255 0EEE D
x t55§5322288°588 §8¢5¢
. . O o =5%5%ET L2 T T
to ARMSS by 57.8%. The comparison in the area shows that R S 33 £S5 2a2aa2°
o O

sizes of two implementations are almost the same. After that,
OROCHlI is found to be an efficient implementation as an out- Fig. 6. ARM dijkstra & FRV-MiBench
of-order design.

B. Focus on IPC Considering the difference of the performance between
The overall performance of the SMT is evaluated usingRM bitcount and ARM dijkstra, some difference of data
an RTL-level simulator that has a capability to run theache miss ratio is observed. Although the miss ratio of the

real pClinux/ARM [15] with no MMU. Some benchmarks first level data cache ibitcount is only 0.7%, the miss ratio
from MiBench are compiled as an ARM binary or an FRin dijkstra is 5.5%. The difference in memory pressure is
V binary respectively and run simultaneously with ‘smallconsidered to be a major reason for the phenomenon.
datasets under the control of the OS. We select some irregular
applications (e.gbitcount and dijkstra) for ARM and 13 C- Focus on QoS
media applications for FR-V. The average IPC is measuredin contrast to the assumption in the previous section, it is
from the point from which both programs start to the point aasily imagined that the ARM programs with high memory
which the FR-V program terminates while the ARM prograrpressure interfere with the performance of FR-V. To alleviate
is executed repeatedly. this case, we propose two key hardware mechanisms we

Figures 5 and 6 show the average IPCs, which includeall ‘cache miss predictor’ and ‘selective flush’ as mentioned
baseline comprised of the total IPC of separated executibafore, which are more effective than the software approaches.
of ARM and FR-V where some heterogeneous multi-core For the comparison, an OS-based QoS mechanism inspired
configuration is assumed. The leftmost bars of each reshit a previous work [3] is evaluated. In this mechanism,
show the baseline (oracle) IPCs that correspond to simple process scheduler in OS controls the priority of ARM
summation of the IPCs of ARM and FR-V. The rest of thgrograms so that the FR-V programs maintain the performance
bars of each show IPCs of SMT execution. Note that the IRG some extent.
of ARM includes the execution of OS codes. Figure 7 shows the result®racle, Base, LUMP, Flush,

With ARM bitcount, the IPC of FR-V achieves 98.3%LUMP+Flush and OS Sched. correspond to oracle perfor-
of the ideal performance and the IPC of ARM results imances, without any additional mechanism, using load-use
73.4%. In the same manner, with ARMijkstra, the IPC miss prediction (LUMP), selective flush, both the LUMP and
of FR-V achieves 87.4% of the ideal and the IPC of ARMhe Flush, and the OS scheduler respectiv8@TAL IPC
results in 76.4%. These results clearly show that OROCHKhows the sum of thé&RM IPC and theFR-V IPC. The
can successfully unite the two different types of processors@racle and theBase are the same as the results in Figure
a single pipeline. 6.

18 Oracle

: Base
1.6 //,Lump
1.4) - /"/Fush
L2 b1 1T Wl T T T b0 T 1 -1 T/ ump+riush
% 1 i~ L . o I — L OS sched.
s 0.8 H {1
< 0.6
0.4
0.2
0 ; i ,Oracle
1.8 i / Base
1.6
1.4
O 1.2 L-LUMP+Flush
; 1 OS sched
1 0-8
T 06
0.4
0.2
0 . : ,Oracle
3 : _ / Base
M T m LUMP
2.5 T T 1 Flush
2 | Tt | UL (T et LUMP+Flush
L—-0S sched.

=

TOTAL IPC
o _
o U, U,

—_— o~~~ — —_— —_ —_ o~ 4= —_ o~ —_— o~ — Q
MEECST £ E£ETTETETTETZT L2 ow
ooE = A S = = = =— % € ¥ F ®©
2 L E E E S8 5 5 2o @ ¥ & T S & & 5
S G (S . = T © I n 9
(@) Q g £ £ £ £ 3 2 o o T = A
T ©- ¥ o 2 32 - c c > 3 =0 ©

© o 8 o o = s

) e — S

Fig. 7. QoS Assurance of FR-V (w/ ARMijkstra)

With LUMP or Flush, the performance of FR-VFAR-V hardware mechanism.
IPC)is increased from 87.4%Bg@se) to 90.1% and 92.5% After that, the result shows LUMP and the selective flush
on average respectively. Moreover, when both the LUMP amgechanism are efficient for sustaining QoS. In particular, the
the Flush techniques are appliddJMP+Flush), it achieved latter can increase IPC of FR-V by 5.1%. Note that the total
92.8% on average, whereas the amount of the decreasepénformance is not decreased.
ARM performance ARM IPC) corresponds to the amount
of the increase in FR-V performance. Consequently, tli2 Feasibility Study

total performance {OTAL IPC) does not decrease at all. In To evaluate the effectiveness of unification quantitatively,

addition, using the OS schedule®$ Sched.), the perfor- e designed OROCHI using ASIC (0,25 rule). Table IV
mance of FR-V reached 92.5% on average. However, in orcfwows the comparison of several types of cO@ROCHI

to achieve this performance, the OS scheduler limits ARM Jicates the entire area of OROCHDROCHI (FRV only)
execution time by 60.0%. Therefore the performance of AR d OROCHI (ARM only) indicate OF&OCHI without ARM
is significantly decreased by 60.0% of Base and consequely; end and FRV front-end respectively. The differences of
the total performance is only 82.9% as compared with tese results correspond to the size of the ARM front-end

TABLE IV

AREA OF OROCHI of FRV performance. As compared to a well-known QoS

mechanism controlled by a process scheduler in OS, this
Configuration | Relative cell area microarchitecture can increase the total IPC by 20.7%. We also
8582:: RV only) é;ggg evaluated the chip area by designing the microarchitecture on
OROCHI (ARM only) 0.859 ASIC. The result shows that it can successfully share back-
ARM frontend 0332 end, which accounts for 52.7% of the chip area. As a result,
FRV front-end 0.141 the microarchitecture can reduce the total chip area by 34.5%
Common back-end 0527 compared to well-known separated multi-core implementation.

As future work, we will measure the real power con-

_sumption of OROCHI to evaluate the reduction of the power
(33.2%) and FR-V front-end (14.1%). The ARM front-end '%onsumption, which includes static power leakage.

twice as big as the FRV front-end due to renaming and out-of-

order execution mechanisms. However, note that the difference ACKNOWLEDGMENT

of the area is emphasized because of the small cache (L2 ighis research is joint research with Semiconductor Technol-
not included) and lack of floating point units as mentioned. §gy Academic Research Center and partially supported by the
we make a heterogeneous multicore using this front-end agghistry of Education, Science, Sports and Culture, Grant-in-

back-end, the size must be 152.7% due to redundant back-exi for Scientific Research (B), 19300012, 2006.

thus, OROCHI can reduce the chip area by 34.5%. Assuming

the same semiconductor technology, OROCHI is comparable REFERENCES
to only one SPE of a Cell Broadband Engine in size. [1] D. Phamet al, “The design and implementation of a first generation
cell processor,” iNSSCC 2005, pp. 184-592.
V. CONCLUSIONS AND FUTURE WORK [2] J. A. Brown and D. M. Tullsen, “The shared-thread multiprocessor.” in

ICS, 2008, pp. 73-82.
In this paper, we proposed a heterogeneous SMT procesd8lr A. Fedorova, M. Selizer, and M. D. Smith, “Improving performance

OROCHI that can execute both a conventional instruction set isolation on chip multiprocessors via an operating system scheduler,” in
PACT, 2007, pp. 25-38.

and a VLIW instruction set simultaneously. [4] J. Chang and G. S. Sohi, “Cooperative cache partitioning for chip
By unification of the back-end pipeline that includes a — multiprocessors,” inCS, 2007, pp. 242-252. o

load/store unit, the processors based on different architectufd S: E: Raasch and S. K- Reinhardt, "The impact of resource partitioning

X . on smt processors,” iRACT, 2003, pp. 15-25.

can share execution units and a data cache. Each procesgprr. r. iyeret al, “Qos policies and architecture for cache/memory in

has an opportunity to use more cache area while the other cmp platforms,” inSIGMETRICS2007, pp. 25-36. = .

processor does not need a large cache area. First, we propogéchJA ggg?'t'p;' ;?Egg”' and J. E. Smith, "Virtual private caches,” in

a novel QoS aware instruction scheduling mechanism witfg) Rr. E. Kessler, “The alpha 21264 microprocesstEEE Micro, vol. 19,

a VLIW queue. It schedules VLIW instructions directly and no. 2, pp. 24-36, 1999.

; ; ; s] A. R. Lebecket al, “A large, fast instruction window for tolerating
also transforms conventional instructions efficiently. The lattel® cache misses.” iSCA 2002, pp. 59-70,

instructions are decomposed and inserted into the empty sloti@f ARM Architecture Reference Manual, ARM DDIO10@RM Limited,
the VLIW queue. Second, we adopted a cache miss prediction 2000. _ _ o
mechanism and a selective instruction flush mechanism i 1% FR550 Senesulnstr‘uctlon Set Manual Ver,JFUJITSU lelteq., 2002.
. 17] L. Gwennap, “Intel's p6 uses decoupled superscalar deshicfopro-

VLIW queue that are more effective than OS-based QoS. cessor Reportvol. 9, no. 2, pp. 9-15, 1995.

We evaluated the performance with an RTL-level simulat®¥3] G. Hintonet al, “The microarchitecture of the pentium4 processor,” in

: : : _Intel Technology Journal, Q12001.
Wlt_h MiBench and_OS. The result ShOWS that the microa 14] M. Guthauset al, “Mibench: A free, commercially representative
chitecture can achieve 98.3% of the ideal FRV performance’ embedded benchmark suite, lIBEE 4th annual International Workshop
and 73.4% of the ideal ARM performance simultaneously on Workload Characterizatior2001.
when executing a light ARM process. Even if it executds® “#clinux” http:/www.uclinux.org/

a heavy ARM process, the QoS is maintained by 92.8%

Experiences with Numerical Codes
on the Cell Broadband Engine Architecture

Markus Stiirmer, Daniel Ritter, Harald Kostler, and Ulrich Riide
System Simulation Group
Department of Computer Science
University Erlangen-Nuremberg
Cauerstralie 6, 91058 Erlangen
markus.stuermer @informatik.uni-erlangen.de

Abstract

Many numerical computations in science and engineer-
ing require high memory bandwidth and computational
power. The Cell Broadband Engine Architecture (CBEA),
a heterogeneous multicore architecture, promises both. We
evaluated the potential of the CBEA for numerical codes in
the areas image processing, computational fluid dynamics,
and molecular dynamics. We present results and derive the
strengths and challenges for using this novel architecture.

Keywords: CBEA, Cell processor, performance opti-
mization, image processing, computational fluid dynamics,
molecular dynamics

1. Introduction

Multicore architectures are the current trend to serve the
insatiable demand for computational power in science, en-
gineering, economy, and gaming. In contrast to other chip
designers that put multiple, basically identical cores on a
chip, STI! took a different approach with their Cell Broad-
band Engine Architecture (CBEA) that promises outstand-
ing performance by establishing a heterogeneous design,
whose key concepts are outlined in Sect.2. The first ma-
chine to break the Petaflop barrier in Linpack was built
of 12,960 PowerXCell 8i, the latest implementation of the
CBEA, and 6,480 AMD Opteron processors at the Los
Alamos National Laboratory.

To explore the potential of this novel architecture for nu-
merical applications, we describe performance-optimized
implementations on the CBEA for applications in im-
age processing (Sect.3), computational fluid dynamics

Sony, Toshiba and IBM

(Sect.4), and molecular dynamics (Sect. 5) before recapit-
ulating the special features of the architecture in Sect. 6.

2. Architectural overview

The first implementation of the CBEA, the so-called
Cell Broadband Engine (Cell/BE) is used e. g. in the Sony
Playstation™ 3 game console and IBMs QS20 and QS21
blades. Its organization is depicted in Fig.1 [5, 6]: The
backbone of the chip is a fast ring bus—the Element Inter-
connect Bus (EIB)—connecting all units on the chip and
providing a throughput of up to 204.8 GB/s in total when
running at 3.2 GHz. A PowerPC-based general purpose
core—the Power Processor Element (PPE)—is primarily
used to run the operating system and control execution, but
has only moderate performance compared with other gen-
eral purpose cores. The Memory Interface Controller (MIC)
can deliver data with up to 25.6 GB/s from Rambus XDR
memory and the Broadband Engine Interface (BEI) pro-
vides fast access to I/O devices or a coherent connection
to other Cell processors. The computational power resides
in eight Synergistic Processor Elements (SPEs), simple but
very powerful co-processors consisting of three compo-
nents: Synergistic Execution Unit (SXU), Local Storage
(LS), and Memory Flow Controller (MFC).

The SXU is a custom Single Instruction Multiple Data
(SIMD) only vector engine with a set of 128 128-bit-wide
registers and two pipelines. It operates on 256 kB of its own
LS, a very fast, low-latency memory. SXU and LS consti-
tute the Synergistic Processor Unit (SPU), which has a ded-
icated interface unit connecting it to the outside world: the
primary use of the MFC is to asynchronously copy data be-
tween LS and main memory or the LS of other SPEs using
Direct Memory Access (DMA). It also provides communi-
cation channels to the PPE or other SPEs and is utilized by
the PPE to control execution of the associated SPU. Each

SPE can be seen as a very simple computer performing its
own program, but dependent on and controlled by the PPE.

The Cell/BE is able to perform 204.8 GFlop/s using
fused-multiply-adds in single precision (not counting the
abilities of the PPE), but is limited regarding double preci-
sion. Only six SPEs are available under Linux running as a
guest system on the Sony Playstation™ 3, what reduces the
maximum performance there accordingly to 153.6 GFlop/s.
The newer PowerXCell 8i [7], used in IBMs QS22 blades,
differs from the older Cell/BE by SPEs with higher per-
formance in double precision (12.8 instead of 1.8 GFlop/s
each) and a converter that allows connecting DDR2 mem-
ory to the MIC.

Figure 1. Schematic view of the STI Cell
Broadband Engine.

While standard PowerPC software and compilers can be
executed on the PPE’s computation unit (the PowerPC Pro-
cessor Unit, PPU), software must be adapted to take advan-
tage of the SPEs, whose SXUs use their own instruction
set. The basic approach to write CBEA-enhanced software
is to separately implement the parts running on PPE and the
SPEs, where libraries and language extensions help in issu-
ing and waiting for DMA transfers, and doing the commu-
nication and synchronization between the different agents.
From a software perspective, a program running on the PPU
acquires an SPE and loads a code image to its LS first. To
actually start the program on the SPE, a system call is used,
which does not return until the SPE code suspends execu-
tion or terminates.

There are several general or Cell-specific approaches
to ease the creation of heterogeneous parallel software,
like IBM’s Accelerated Library Framework (ALF) and
Data Communication and Synchronization (DaCS) library,
Cell Superscalar (CellSs) by the Barcelona Supercomputing
Center, the RapidMind Multi-Core Development Platform,
or Mercury’s Multicore Plus SDK, only to mention some of
them.

10

3. Image processing

Image processing is one of the applications for which the
Cell/BE is especially suitable. Images have naturally regu-
lar data structures and are processed using regular mem-
ory accesses so that data can be transferred easily by DMA.
Additionally, single precision is usually sufficient for im-
age processing tasks. Besides the traditional techniques for
image and video compression based e.g. on wavelets and
Fourier transforms, methods using partial differential equa-
tions (PDEs) have been developed. These methods have the
potential for providing high quality, however they are usu-
ally very compute intensive.

The PDE-based video codec PDEVC [10] is conception-
ally very simple. For each picture, typically 10-15% of the
pixels of an image are selected and stored. All remaing
pixels are discarded and must therefore be reconstructed in
the decoding stage. We will not discuss the algorithms for
selecting the so-called landmark pixels, but will rather fo-
cus on the core algorithm used in the reconstruction phase,
when the landmarks 2. and the corresponding pixel values
u” are given. Filling in the missing pixels is the so-called
inpainting problem [3], which is modeled by a partial dif-
ferential equation of the form

—div(D,, Vu) = 0 ifxeQ\Q.
u = u ifxeQ, ’

where the diffusion tensor D, can be one of the three
choices in order of increasing complexity

e homogeneous diffusion (HD),
e nonlinear isotropic diffusion (NID), or
e nonlinear anisotropic diffusion (NAD).

Examples of reconstructions are shown in Fig. 2. Homo-
geneous diffusion has a tendency to smoothen edges in the
images, but leads to the least costly algorithm. The nonlin-
ear variants attempt to preserve edges better by adjusting the
diffusion tensor to the local image features. The NAD regu-
larizer is currently state of the art, as it is best in preserving
edges, but is the computationally most expensive one.

The three color channels of an RGB image are encoded
separately and solving an equation is necessary for each of
them. Typically, a frame rate of about 25 frames per second
(FPS) is necessary to achieve smooth real-time playback.

The PDEVC-player is a typical multi-threaded applica-
tion: One thread interprets the video file and sets up the
necessary data structures in main memory. Multiple decom-
pressor threads produce one video frame at a time by solv-
ing the associated PDE(s) approximately. Another thread is
responsible for displaying. Two ring-buffers are necessary
to synchronize the data flow.

(a) original

(c) NID (d) NAD

(e) HD

(f) NID (g) NAD
Figure 2. Comparing the three different kinds
of diffusion.

In the CBEA-optimized version of the player, the decom-
pressor threads off-load the numerical work to an associ-
ated SPE. w-red-black Gauss-Seidel (VRBGS) solvers are
used for the HD and NID regularizers, and a damped Jacobi
(JAC) for NAD. More complex solvers, like multigrid meth-
ods that are typically used for these types of PDEs, give only
small improvement due to the high density of landmarks.
Especially JAC is suitable for processing in SIMD, but care
must be taken to preserve landmarks where known pixels
are given. This is achieved by first calculating a whole
SIMD vector containing four new single precision results,
regardless of the pixel types. The final result, that will be
written back to the Local Storage, is created by selecting
from the previous and updated values depending on a bit
field describing the landmarks in the current frame. The
SPU ISA allows for performing this very efficiently. The
kernels are implemented using intrinsics, because the com-
piler failed in vectorizing and unrolling the loops automati-
cally.

For the image sizes investigated, data from multiple im-
age rows can be held in a LS, so that blocking techniques re-
duce the DMA transfer with main memory drastically. The
wRBGS solvers perform a whole iteration, JAC two itera-
tions per sweep as described in [8]. Table 1 shows the frame
rates that are achievable on a Sony Playstation™ 3 when all
six available SPEs are used. These values do not include the

bandwidth and effort of the PPE for reading the file and set-
ting up the necessary data structures.

The wRBGS implementations use the same approach as
for preserving landmarks to update only every second un-
known, so internally twice the computations need to be per-
formed. From the different types of diffusion tensors, HD
leads to a simple five-point stencil for the Laplace opera-
tor with fixed coefficients and therefore has a low compu-
tational density of 6 Flops per iteration and unknown. The
NID regularizer is also approximated by a five-point sten-
cil, but the coefficients are recomputed before each update,
requiring 29 Flops per update in total. The highest com-
putational density occurs when nonlinar anisotropic NAD-
tensors are used, since they result in a nine-point stencil,
whose coefficients are updated every second iteration, re-
sulting in 39.5 Flops per update on average.

Only image data needs to be transferred (4 Byte per pixel
and color), since coefficients are calculated on-the-fly on the
SPEs. Decoding a single frame using one SPE generates
about 120 MB main memory traffic per color frame for the
examples in the table.

Table 1. Decompression speed of pdevc.
Measured for a resolution of 320x240 pixels.
130 iterations of JAC for NAD or 65 wRBGS it-
erations for NID and HD with 10% landmarks
were used to obtain comparable times.

| regularizer | FPS | bandwidth | computation |

HD 101 12 GB/s | 8.2 GFlop/s
NID 48 5.8 GB/s 18 GFlop/s
NAD 34 | 41GB/s | 36 GFlop/s

It can be seen that only the HD regularizer has extraordi-
nary bandwidth requirements. To interpret the GFlop rates
correctly, it should also be noted that many computations
actually performed were not accounted for: the NID kernel
reaches impressive 42% GFlop/s internally, but most results
are discarded due to the SIMD-vectorization of the WRBGS
method or because they are landmarks.

4. Computational fluid dynamics

Computational fluid dynamics (CFD) has a large num-
ber of applications in science and engineering. Besides
classical Navier-Stokes solvers, lattice Boltzmann methods
(LBM) have become an interesting alternative. LBM use
an equidistant grid of cells, so-called lattice cells, that in-
teract only with their direct neighbors. However, both ap-
proaches are computationally very expensive, and single
computers often do not provide the necessary performance
to get results in reasonable time. LBM seem to be especially

11

suitable for the CBEA due to their simple access patterns,
higher computational density, and trivial parallelization on
shared memory machines.

cellbm[11] is a prototype LBM solver based on [4] that
has been designed especially for the CBEA and uses the
common D3Q19 BGK [1, 12] collision model. Its main
motivation was to explore the feasibility of blood flow sim-
ulation with the related problems—e. g. the complex blood
vessel structures— while using specialized hardware effi-
ciently. Single precision was used, since only Cell/BE hard-
ware with slow double precision was available during its
implementation.

The memory layout is a key to efficiency and good per-
formance. To save memory, the whole domain is divided
into so-called patches of 8 x 8 x 8 lattice cells in size, and
only patches containing fluid lattices are actually allocated.
This allows efficient processing of moderately irregular do-
mains, while providing all premises for good performance
on the CBEA.

The layout allows for efficient data movement to and
from the SPEs, transfers of multiple 128-Byte-blocks—
corresponding to cache lines of the PPE—with natural
alignment in both, main and local storage, result in optimal
DMA bandwidth. Besides the patch itself, data from outer
edges of possible neighbors needs to be fetched. To avoid
the related inefficient gather operations, a copy of these
faces and lines is reordered and stored contiguously while
processing a patch, and can be retrieved from its neighbors
in the next time step easily. Using two buffers for these
copies, patches can be processed independently and in any
order, so the parallelization is trivial and patches can be as-
signed dynamically to the SPEs using atomic counters.

Patch data is stored in a structure-of-arrays manner, so
all computations can be done in a SIMD way with as many
16 Byte vectors being naturally aligned as possible. SPEs
must emulate scalar operations by performing SIMD op-
erations and combining the previous SIMD vector and the
SIMD vector containing the desired modification, which
makes them extraordinary expensive. Furthermore, loading
or writing naturally aligned 16 B vectors are the only mem-
ory operations to the LS the SPU supports natively; two
aligned loads and a so-called shuffle instruction that extracts
the relevant part are necessary to emulate an unaligned load.

Branches may lead to long branch miss penalties on
the SXUs and are inherently scalar, so the implementation
avoids them wherever possible. Conditional computations
are vectorized by computing both possible results in SIMD
and creating a select mask according to the condition. The
resulting SIMD vector is obtained by combining the differ-
ent variants according to the mask using a select instruction.
The SPU ISA provides various operations for efficient mask
generation to perform that efficiently.

Table 2 compares performance of a serial lattice Boltz-

12

mann implementation written in C running on various
processor types and our SIMD-optimized implementation
mainly written in SPU assembly language to demonstrate
the importance of SIMDization on the SPUs. The typical
means of expressing LBM performance is the number of
lattice site updates or fluid lattice sizes updates per second
(LUP/s and FLUP/s). A single FLUP corresponds to 167
floating point operations in the optimized SPU kernel. The
codes purely run from the CPUs’ L2 caches or the SPU’s
LS, respectively. It can be seen that the PPE cannot keep
up with a modern server processor, but performance on the
SPU is worst due to the huge overhead of performing scalar
operations and branches. Advanced compilers may vector-
ize simpler scalar algorithms, but they cannot employ SIMD
in the LBM program yet.

Table 2. Performance of a straight-forward
single precision LBM implementation in C on
an Intel Xeon 5160 at 3.0 GHz, a standard 3.2
GHz PPE and SPU, compared with the opti-
mized SPU-kernel for an 82 fluid lattice cells
channel flow.

straight-forward C | optimized
CPU Xeon PPE SPU SPU

MFLUP/s | 102 48 20 | 490 |

There are two approaches for coping with the cache-
coherent non-uniform memory access (ccNUMA) topology
on the IBM QS blades that provide two Cell processors with
an attached main memory and a fast interconnect between
the processors. The simpler approach is to allocate all data
pagewise alternating on both memory locations, so that a
SPE on any CPU will access memory through the nearby
and the remote memory bus. Distributing half of the patches
to each memory location and the proximate SPEs allows for
optimizing for NUMA even better.

Table 3 shows the performance of the whole LBM solver
on a Playstation™ 3 and a QS20 blade with different SPE
and CPU utilization. Generally, it can be seen that well opti-
mized kernels are able to saturate the memory bus with half
of the SPEs available.

When looking at one or two SPEs running on a single
CPU, the Playstation™ 3 gets a slightly better performance.
On the QS20, the coherence protocol between the two CPUs
leads to a lower bandwidth achievable for a single SPE.
Memory benchmarks have shown that this is especially true
for DM As writing to main storage.

Both approaches for exploiting the NUMA architecture
when utilizing the second CPU and its memory bus can im-
prove performance significantly with an efficiency of 79%
and 93%, respectively. If e.g. four Cell processors might

Table 3. Cell/lBE MLUP/s performance for a
963 channel flow. MFLUP/s = MLUP/s - %.

PS3 QS 20

CPUs one one both both

memory local | local interleaved NUMA-
aware

1 SPE/CPU 42 40 73 70

2 SPEs/CPU | 81 79 129 136

3 SPEs/CPU | 93 107 156 189

4 SPEs/CPU | 94 110 166 204

6 SPEs/CPU | 95 110 174 205

8 SPEs/CPU | N/A | 109 173 200

be connected in the future, the efficiency of the simple
approach that distributes data blindly will decrease drasti-
cally. For applications like the LB method, that are memory
bound and whose work can be distributed easily, manual
management of data and its memory locations is worthwhile
anyway.

5. Molecular dynamics

Molecular dynamics (MD) is another field where the out-
standing numerical performance of the CBEA can be of use.
One possibility to solve MD problems with a large num-
ber of particles and long-range interactions between those
effectively are grid-based methods, which are explained in
[9]. These methods require fast linear solvers, e. g. multi-
grid methods. They can be parallelized on a shared mem-
ory system with moderate effort and its high floating-point
performance and bandwidth make the CBEA a highly inter-
esting architecture for this class of algorithms.

A common issue in MD is the solution of Poisson’s equa-
tion on an unbounded domain, i. e. with open boundary con-
ditions. For 3D, this problem can be written as

AD(x) = f(x), x € B,
with ®(x) — 0 for ||x|| — oo,

where supp(f) C € is a bounded subset of R3. For nu-
merical treatment, the equation is discretized, which leads
to the following formulation:

Ap®(x) = f(x), x € {x|x =h 2,2 € Z*},
with ®(x) — 0 for ||x|| — oo,

with the discrete Laplace-operator Ay and mesh size h.
This equation is still an infinite system, what prevents the
direct numerical solution. For that reason, the system is
reduced to a finite one using a stepwise coarsening and ex-
panding grid hierarchy of [levels (G;,7 = 1,...1) as de-
scribed in [2]. The expanding and coarsening leads to the

fact that the number of grid points is not halved in each
dimension from one level to the next one, but decreasing
slower (compare to Table 4). The values of ¢ on the bound-
ary points of the coarsest grid are calculated as

=[] 5

what is discretized to

3 Zfine
(P(ZJ) = % Z | f(2)

T Zfine €1 |Zﬁne B Z6||2

This evaluation is only sensible for a small number of
boundary points because of its high cost. The solution with
a multigrid method is supported by that hierarchical grid
structure. From the class of multigrid methods, the Fast
Adaptive Composite Grid method (FAC) is used, which
restricts the original system equation and not the residual
equation.

The FAC was implemented using a Jacobi smoother for
pre- and postsmoothing, direct injection for restriction, and
linear interpolation for prolongation. The program was par-
allelized on the Cell/BE using domain decomposition. To
enhance the execution speed of the code, several optimiza-
tion techniques were applied:

e SIMDization of the computation kernels: All the oper-
ations such as restriction, smoothing, interpolation and
treatment of interfaces use the SPE vector operations.

e Linewise processing of the data using double buffer-
ing: Each line is 128-Byte-aligned in the Local Stor-
age and the main memory to utilize full memory band-
width.

e The interfaces between two grid levels need special
considerations and are treated using a ghost layer,
which avoids the access to both grids at the same time.

After a smoothing step and before the restriction is done, all
threads are synchronized to avoid data inconsistencies.
Tests were performed both on the Playstation™ 3 and
on the IBM QS20 for different grid sizes. The memory
requirements for some of those are specified in Table4.
Since the results are very similar on the Playstation™ 3
and the QS20, but the QS20 enables more opportunities
because of its bigger main memory and more SPEs, only
the test runs on the QS20 are considered here. The first
tests were run using one Cell processor only. Exemplary
for the performance of the adapted computation kernels,
the runtime of the Jacobi smoother was analyzed. This
has been done using exact in-code timing commands at
each synchronization event, i.e. after each iteration of
the smoother. The timing results for different numbers of

13

Table 4. Overview of the four finest grid sizes,
total number of levels, and memory require-
ments of the FAC method.

grid | size in each dim. on level | memory
levels 1 2 3 4 [MB]
8 35 35 35 23 8
12 67 67 39 35 26
16 131 131 131 71 159

20 195 195 103 99 504

Table 5. Runtimes (in msecs) for one Jacobi
iteration depending on grid size and number
of threads.

[problem size | 64° 128° 192° 256° |
1 SPE 156 10.1 312 70.6
2 SPEs 078 503 156 353
3 SPEs 063 336 105 236
4 SPEs 046 255 814 179
5 SPEs 039 217 725 158
6 SPEs 034 196 628 1338
7 SPEs 032 181 640 135
8 SPEs 025 178 608 1338

unknowns are shown in Table 5.

The question of interest is, whether the memory band-
width or the floating-point performance is the limiting fac-
tor in terms of speed. The first can roughly be computed
by Punem = % as 20 Byte have to be trans-
ferred per inner grid point, while the latter is given as
% since 10 numerical operations are ex-
ecuted per inner grid point. Fig. 3 shows both measures for
the previous test runs.

The performance of the Jacobi smoother is basically
bound by the memory bandwidth. For up to six SPE threads,
scaling of speed is almost ideal, for seven and eight there is
hardly any effect, since the memory bus is already saturated.
The highest measured value is 22.7 GiB/s.

Additionally, experiments were performed on the QS20
distributing the threads to both processors and an inter-
leaved memory strategy. This strategy allocates memory
pages alternating to the two memory buses. So twice the
memory bandwidth compared to the default strategy is pos-
sible in theory. Practically an improvement of up to 26.8%
is gained, as shown in Table 6. The outcome of an advanced
memory strategy increases with the number of active SPEs,
i.e. for future setups with more processors, exploiting the
NUMA architecture more diligently will be crucial.

Pﬂop =

14

[GFlop/s]

pe
. i = o o

v 128

///xi///n A 192 N
3= o 256° -6
/ = Peak bandw.

1+/ 2

2 3 4 5 6 7 8
Number of threads

Floating-point performance

|
Memory Bandwidth [GiB/s]

Figure 3. Floating-point performance and
memory bandwidth of Jacobi smoother on
the QS20.

Table 6. Memory throughput of the Jacobi
smoother for grid size 1922 when using one
or both memory buses in GiB/s.

memory | one bus interleaved | relative
strategy speedup
1 SPE 4.1 4.1 0%

2 SPEs 8.18 8.20 0.24%
3 SPEs 12.1 12.2 0.25%
4 SPEs 15.7 16.2 3.1%
5 SPEs 17.6 20.4 15.5%
6 SPEs 20.4 23.0 13.0%
7 SPEs 20.0 253 26.8%
8 SPEs 21.0 26.7 26.8%

6. Conclusions

We have demonstrated the potential of the CBEA for sev-
eral scientific applications and shown that bandwidth and
computational power near to the theoretical peak perfor-
mance is achievable. However, big efforts are necessary to
accomplish that. The complexity is only partially caused by
specific features of this architecture.

Splitting the task into smaller subtasks and handling syn-
chronization and communication between multiple agents
becomes increasingly important since the advent of mul-
ticore systems. Heterogeneous architectures only increase
complexity in the way that a subtask must fit the abilities of
the core type it is executed on.

SIMD is a concept that is very common today, as it
is the most efficient way to exploit wide buses and data
level parallelism without much complicating the control

logic. The SPU ISA consequently makes SIMD the default
case and adds another penalty to performing scalar oper-
ations. Similarly, data alignment influences performance
on all advanced platforms. Alignment of scalar and SIMD
data in memory is restricted on most platforms, or result
in decreased performance if not appropriate. However, the
discrepancy of performing well aligned SIMD and badly
aligned scalar operations on an SPU is unmatched.

The concept of Local Storage, that is managed by copy-
ing data to and from main memory via asynchronous
DMAs, is perhaps the only concept not met in common gen-
eral purpose architectures at all. It allows for covering long
main memory latencies exceptionally well without using in-
creasingly complex out-of-order cores. On the downside,
exact knowledge of the working set and its management
is necessary, not mentioning the complexity of distributed,
parallel modifications of it. An analogy found on standard
cache-based architectures might be the necessary overview
of the current working set when using cache blocking tech-
niques, but there it affects only performance and is only rel-
evant for hot spots.

The question remains how much performance can be
preserved if one switches to higher-level programming ap-
proaches to increase productivity. Since the emphasis of
all projects was on how much performance is feasible, this
will have to be examined in the future. There is no doubt
that libraries and frameworks can ease communication, data
partition and movement. But as all general approaches rely
on established high-level language compilers, the problem
of optimizing numerical kernels in computationally bound
applications can be expected to remain.

References

[1] P. Bhatnagar, E. Gross, and M. Krook. A Model for Col-
lision Processes in Gases. I. Small Amplitude Processes in
Charged and Neutral One-Component Systems. Phys. Rev.,
94(3):511-525, 1954.

[2] M. Bolten. Hierarchical grid coarsening for the solution of
the poisson equation in free space. Electronic Transactions
on Numerical Analysis, 29:70-80, 2008.

[3] L Galic, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, and
H. Seidel. Towards PDE-based image compression. In
Proceedings of variational, geometric, and level set meth-
ods in computer vision, Lecture Notes in Computer Sci-
ence, pages 37—-48. Springer-Verlag, Berlin, Heidelberg,
New York, 2005.

[4] J. Gotz. Simulation of bloodflow in aneurysms using the
Lattice Boltzmann method and an adapted data structure.
Technical Report 06-6, Department of Computer Science
10 (System Simulation), Friedrich-Alexander-Universitit
Erlangen-Niirnberg, Germany, 2006.

[5] IBM. Cell Broadband Engine Architecture, Oct. 2007.

[6] IBM. Cell Broadband Engine Programming Tutorial, Oct.
2007.

(7]
(8]

(9]

(10]

(11]

[12]

IBM. Cell BE Programming Handbook Including PowerX-
Cell 8i, May 2008.

M. Kowarschik. Data Locality Optimizations for Iterative
Numerical Algorithms and Cellular Automata on Hierarchi-
cal Memory Architectures. PhD thesis, Friedrich-Alexander-
Universitdt Erlangen-Niirnberg, Germany, Jun 2004. Ad-
vances in Simulation 13.

M. Griebel, S. Knabek, S. Zumbusch, S. Caglar. Numerische
Simulation in der Molekulardynamik. Springer, 2003.

P. Miinch and H. Kostler. Videocoding using a varia-
tional approach for decompression. Technical Report 07-
1, Department of Computer Science 10 (System Simula-
tion), Friedrich-Alexander-Universitdt Erlangen-Niirnberg,
Germany, 2007.

M. Stiirmer, J. Gotz, G. Richter, A. Dorfler, and U. Riide.
Fluid Flow Simulation on the Cell Broadband Engine using
the Lattice Boltzmann Method. Accepted for publication in
the proceedings of the Fourth International Conference for
Mesocscopic Methods in Engineering and Science, 2007.

S. Succi. The Lattice Boltzmann Equation - For Fluid Dy-
namics and Beyond. Clarendon Press, 2001.

15

16

A Realtime Ray Casting System for Voxel Streams
on the Cell Broadband Engine

Valentin Fuetterling
Fraunhofer ITWM
Email: valentin.fuetterling @itwm.fraunhofer.de

Abstract—In this paper we introduce a volume rendering
system designed for the Cell Broadband Engine that only requires
a minimum of two voxel slices at a time to perform image
synthesis of a volume data set for a fixed number of user defined
views. This allows rendering volume data in a streaming fashion
and makes it possible to overlap rendering with data acquisition.

Imagine a screening line at the airport where luggage is
examined with an x-ray machine. As luggage passes through
the scanner multiple x-ray samples are taken from which 2D
voxel slices are derived. These finally form a full volume data
set that needs to be displayed for quick analysis. Traditional
software volume rendering systems are impractical for such a
task as they require the volume data set to be fully available for
image synthesis and thus need to wait until the x-raying process
has finished.

Our solution is better suited for the depicted situation and
related problems as it is able to perform time-critical rendering
in parallel with volume generation.

I. INTRODUCTION

Volume visualization requires information to be extracted
from a 3D scalar field to form a single color value that can
be displayed. This mapping can be performed by a maxi-
mum/average intensity projection or by evaluating the Volume
Rendering Integral [10] which in its discretized form can be
computed iteratively with the over operator [12]. In practice
the 3D scalar field usually is represented by a uniform grid
that is sampled multiple times in order to compute the Volume
Rendering Integral or other mappings for every pixel of a
viewing plane. Methods that can be used for the sampling pro-
cess are described in section II. The sampling rate necessary
to achieve acceptable results is determined by the Nyquist-
Shannon sampling theorem [13]. A huge number of samples
need to be taken to visualize a data set resolution of 5123 voxel
or higher which makes volume rendering a compute intensive
task. Optimization strategies exist [2], however most of them
rely on a pre-process that requires the full volume data set to
be analyzed prior to rendering. Thus these strategies are not
applicable to volume data sets that are not fully existent at the
beginning of the image synthesis process.

Another reason that favors a brute-force approach is its
constant runtime characteristic considering a constant volume
set resolution as execution time does not depend on the
actual volume data which is changing frequently. This is a
property often required in our targeted area of application.
Using a brute-force solution special purpose hardware is easily
designed and very efficient so it is commonly used in todays

Carsten Lojewski
Fraunhofer ITWM
Email: carsten.lojewski @itwm.fraunhofer.de

time critical systems as depicted in the abstract. However
special purpose hardware is expensive and inflexible by nature.
We will show that our flexible software approach tailored to
the hardware architecture of the Cell Broadband Engine (CBE)
is capable of rendering an emerging volume data set ’just
in time’ from arbitrary view directions and thus delivers the
necessary performance for real-time volume data inspection.

II. VOLUME SAMPLING METHODS

For volume sampling object-order, image-order and hybrid
methods exist.

Texture slicing is a popular object-order method for interac-
tive volume visualization. Voxel slices are mapped to polygons
that are transformed by projection and blended together in
correct order to form the final image [11]. By design this
method produces low quality images and requires three sets
of voxel slices, each orthogonal to one of the major axes.

A widely used hybrid method is the shear-warp algorithm.
Voxel slices are first sheared and projected onto an interme-
diate plane aligned with the volume which is finally warped
onto the viewing plane [8]. The image quality suffers due to
the warp process and three sets of voxel slices are required
for this technique as well.

As both methods introduced so far demand the full volume
data set to be available they are obviously impractical for voxel
streaming. An image-order method that does not share this
handicap and provides high quality images is ray casting. For
each pixel of the view plane a ray is cast into the volume and
multiple samples are evaluated along the ray [7]. As each ray
can be processed independently this algorithm is very flexible.
The streaming model we will introduce in the course of this
paper depends on a flexible and easy sampling method in order
to be efficient so we decided for ray casting.

ITII. CELL BROADBAND ENGINE

The CBE comprises one Power Processing Element (PPE)
and eight Synergy Processing Elements (SPE) which are
attached to the Element Interconnect Bus (EIB) together with
a Memory Interface Controller (MIC) that provides Direct
Memory Access (DMA). The PPE is comparable to an ordi-
nary PowerPC and can offload compute intensive tasks to the
SPEs. Each SPE features a Memory Flow Controller (MFC)
for data transfer and communictaion, a Local Store (LS) which
is 256KB in size and a unified register set with 128 registers.

17

Fig. 1. The two green slices form the slab a) that is currently being sampled,
the red slices have already been processed and are no longer available, the
yellow slice is being generated by the scanning device and the slices in grey
will be produced in the near future. The arrows b) and c) indicate a sub-slice
and a sub-slice level respectively. The drawing d) symbolizes the object being
scanned.

Each register is 128 bit wide and has SIMD capabilities similar
to the AltiVec ISA of the PPE (for more general information
on the CBE see [4]).

Communication between the PPE and SPEs can be accom-
plished by a mailbox mechanism provided by the MFC that
allocates an in-tray for each SPE where 32 bit messages can
be written to by the PPE or other SPEs. The in-trays work
like FIFO queues with a capacity of four messages. A SPE
can check its in-tray for new messages at any time. If no
new messages are available it can stall until the next message
arrives.

In order to process a chunk of data a SPE must initiate an
asynchronous DMA transfer to fetch it from main memory
into its LS. When more than one continuous chunk of data is
required an efficient DMA list transfer can be initiated. The
DMA controller utilizes a list to gather multiple chunks from
main memory into the LS. The list can also be used to scatter
LS data back to memory. Lists must be located in the SPEs
LS and each list element must consist of 8 bytes providing
the chunk’s effective address in main memory and its size in
bytes (figure 2).

A DMA transfer will always transmit at least one cache line
of 128 bytes. Thus bandwidth is maximized by using addresses
and transfer sizes that are a multiple of 128 bytes.

IV. STREAMING MODEL

The Streaming Model is based on the observation that for
rendering a volume data set all sampling positions for each ray
remain constant if the view and the volume data set resolution
do not change. However the actual volume content can be
altered arbitrarily as it does not affect the sampling positions.
We will refer to such a combination of a constant volume set
resolution and a number of constant views from which the
volume set is rendered as a configuration.

A. Voxel Streams

A Voxel Stream of a volume data set consecutively delivers
packets of voxel data that are ordered in respect to time so

18

struct ray_packet{
vec_float4 red, green, blue, alpha;
vec_floatd cur_traversal_depth;
vec_floatd4 dx, dy, dz; //ray direction components

//blending

struct list_header{
char num_list_elements;
char num_ray_packets;
char view_index; //index for view origin
char flags;

5

struct list_element{
unsigned short reserved; //not used
unsigned short size; // # of ray packets * 128b
unsigned int lea; //transfer start address

Fig. 2. Data structures. One list element (8 byte) can reference up to 255
ray packets (128 bytes each).

that their relative positions within the volume data set are
known in advance. In practice one packet amounts to one
voxel slice and the packet ordering in time is equivalent to the
slice ordering along a major axis of the volume data set. From
now on we will assume this axis to be the z-axis (figure 1).
A voxel stream of a volume data set can be easily rendered
using a related configuration. For each ray the information
which voxel slices are required and when these voxel slices
will be available can be precomputed and used at runtime
for efficient sampling. The direction of a ray along the z-axis
determines whether it traverses the volume front-to-back or
back-to-front. For both cases compositing methods exist to
compute the Volume Rendering Integral along the ray [12].

List Headers

List Elements

Ray Packets

Fig. 3. [Illustration of the memory reference hierarchy. The list headers point
to continuous blocks of list elements which in turn reference continuous blocks
of ray packets inside the ray buffer. The data structures are described in figure
2. List headers are sent to the SPE as mails from the PPE. A SPE can then
issue two DMA commands, the first one transmitting the transfer-list elements
and the second is using the transfer-list to gather the ray packets.

B. Implementation on the CBE

In this section we describe the implementation of the
Streaming Model for a single SPE. The extension of this
algorithm for parallel execution on multiple SPEs will be the
topic of section V.

1) Sampling: Assuming that two neighboring voxel slices
are located in the LS of a SPE the set of rays that possess
sample points within the slab formed by the slices (figure 1)
must be retrieved from main memory, processed and written
back. Because the LS size is limited this ray set must be
split into several subsets. A triple buffer approach is necessary
to overlap the data transfer with computation. While one set
of rays is being processed, the next set is being fetched to
the LS and results from the previous set are written back to
main memory. As the set of rays associated with one slab
of voxel slices can be precomputed, it is possible to generate
transfer lists for a given slab. Assisted by a transfer-list the
DMA controller can automatically gather a ray set from main
memory freeing the SPU for other tasks. The same transfer-
list can be used to scatter the ray set back to main memory
after the computation has finished. It should be noted here
that the transfer lists also minimize bandwidth requirements
as no redundant ray data has to be transmitted. Admittedly a
transfer list needs to be fetched from main memory prior to
execution. However this overhead is insignificant compared to
ray data size (figure 2). In order to exploit the SPE’s SIMD
capabilities rays can be processed in packets of four. Each ray
requires three direction components, a traversal depth value
and four color components (RGBA) for blending (figure 2).
Using single precision floating point values the size of a ray
packet amounts to 128 bytes which matches exactly one cache
line. Thus ray packets that are discontinuously distributed in
main memory do not decrease bandwidth if they share the
same set.

Until now we have assumed that two full voxel slices can
reside in the LS at the same time. For an appropriate volume
resolution however the size of the LS is far too small. For this
reason voxel slices need to be partitioned into sub-slices along
one axis. We have chosen the y-axis for the remaining of the
paper. The partitioning of the volume data set into multiple
sub-slice levels is depicted in figure 1. Instead of tracing one
full voxel slab at once the process is serialized into sub-slabs
with their associated sub-sets of rays. The execution order of
the sub-slabs is critical for ensuring correct results as ray sub-
sets are not disjoint in most cases. An example is given in
figure 4. The ray sub-sets for the sub-slabs A,B,C and D are
shown. The sub-set of A is empty, so we do not consider it
any further. B, C and D all contain one independent ray that
is not shared with any other sub-set (rays 6, 4, 2 respectively).
B and C share ray 5 while D and C share ray 3. This sharing
implies that C must be processed prior to B and D in order to
maintain correctness because the blending of the samples is not
commutative'. In contrast rays 2, 4 and 6 can be processed in

!For the Volume Rendering Integral blending is not commutative. For the
maximum/average intensity projection it is.

arbitrary order. As the arrows a) and b) indicate dependencies
between two sub-sets only exist in one direction of the y-
axis. The y-coordinate of the view point (red dot) separates
the sub-slabs with potentially positive dependencies (C,D) and
potentially negative dependencies (C,B,A). Note that rays with
a large y-direction component can share more than two sub-
sets. Care must be taken to prevent read-after-write hazards
for rays belonging to multiple sub-sets that can arise during
DMA transfers.

Multiple ray buffers offer the possibility to circumvent the
strict ordering rules for dependent ray sets and to efficiently
eliminate read-after-write hazards for the cost of higher mem-
ory consumption. Figure 3 illustrates a ray buffer that consists
of all the ray packets for a given configuration. If copies of
this ray buffer are available for all sub-slice levels intermediate
blending results can be computed for each level independently
from the others. The final compositing of these intermediate
results is described in section IV-B4. Multiple ray buffers
are even more attractive for the parallelized version of our
algorithm (see section V).

sub—set%é; = E% 61 o

ub- = ’

ubset(C) = {,,4} 9
sub-set(D) = {2,3}

® |a

e |p

> =<

ﬂ.
ENVZS AN
/
3

®

—_—7

Fig. 4. Dependencies between sub-slabs. The sub-slabs are denoted with
upper case letters from A-D. The red dot represents the view origin. The sub-
sets of active rays for the sub-slabs are shown in the list, dependencies are
marked with red boxes. Independent rays are 1,2,4 and 6 that pierce only one
or no sub-slabs. Rays 3 and 5 are positive and negative dependent along the
y-axis respectively. The arrows a) and b) indicate the directions of dependence.

So far we have neglected the issue of synchronizing the
rendering process with volume acquisition. This is a funda-
mental requirement in applications like the one depicted in
the abstract. We use the mailbox mechanism of the CBE to
control the rendering process. When a new voxel slice has
arrived in main memory the PPE will send a message to the
SPE which contains the list header (figure 2) that allows the
SPE to fetch the correct voxel data and ray data (figure 3) into
its LS. Every time a SPE has finished processing a ray sub-set
it queries its mail in-box for new jobs. If no mail is available
it will stall until new work or a termination signal arrives.
For a better understanding of how the previously described
algorithm is implemented on the SPU side see figure 5.

2) Multiple Views: An obvious approach to rendering mul-
tiple views of a configuration simultaneously is to utilize one
SPE for each view as it is described in section V-B. A different

19

Ptr transferListDataBuffer [3];
Ptr rayPacketDataBuffer[3];
Ptr subslabDataBuffer[2];

Var curMail, nextMail, curldx, nextldx, slabldx;
while (!ExitSignal (curMail)){
nextMail = GetNextMail () ;

StartTransferListDataGather (nextldx);
StartRayPacketDataGather (nextldx);

if (SubslabSignal (curMail)){
WaitForSubslabDataGather () ;
StartSubslabDataGather (slabIdx);
slabldx "= 1; //idx = [0,1]

WaitForRayPacketDataGather (curldx);

for (i=0; i<NumberOfRayPackets(curMail); i++)
SampleRayPacket(curldx , i);
StartRayPacketDataScatter (curldx);
curldx = nextldx;
curMail = nextMail;
nextldx = (I<<nextldx) & 3; //idx = [0,1,2]
¥
Fig. 5. A closer look at the SPU kernel. An actual implementation of this

pseudo code can be found in appendix A. curldx and nextldx are indices
for the transfer list and ray packet triple buffers. slabldx is the index for
the volume data double buffer. curMail and nextMail contain the list headers
received from the PPU. All DMA transfers (except the subslab data gather)
are issued with a fence and a tag id equal to the index of the destination
buffer.

technique takes advantage of the memory reference hierarchy
(figure 3). List headers for multiple views can easily be mixed
without the notice of the SPE kernel (figure 6). All information
required on the SPE side is a list of all view origins of
a configuration that can be indexed with the view number
contained in a given list header (figure 2). For the parallelized
version of our algorithm this approach allows for overlapping
certain stalls (section V-A).

3) Preprocessing: Preprocessing for a given configuration
is straightforward. For each sub-slab all the ray packets of the
different views are tested for sample points within the sub-
slab to find the valid ray set. The ray packets in the ray set
are grouped by continuous main memory addresses (figure 3)
and each group is referenced by one list element or more if the
group is larger than 16Kb. List elements of the same sub-slab
and the same view are combined to form a transfer list that is
referenced with a transfer list header (figure 2).

4) Image compositing: Ultimately an image in RGB format
is required to be displayed on a monitor. Mapping the ray
packets’ blending values (figure 2) to pixel colors is straight-
forward. The red, green and blue color components need to be
scaled, cast to integers and stored into the framebuffer. This
task can be computed by the PPE or distributed among the
SPEs. If multiple ray buffers are used the different blending
values for the same ray packet need to be composited first
in the correct order. The ray buffers of positive and negative
dependent sub-slice levels demand ordering along their respec-
tive direction of dependence, starting with the sub-slice level

20

MFC SPU

Scheduler Mailbox —>

Kernel
DMA Controller «—H=H—

Voxel Slice data

@ Local Store @
List Header data |
8 Transfer-List data (triple-buffered)
Transfer-List data 7
13 Ray set data (triple-buffered) |
Ray-Packet data =
Sub-Slab data (double-buffered) |

Display

Fig. 6. The data flow of our algorithm. The scanning device writes a new
voxel slice into main memory (1) and notifies the PPE (2). The PPE retrieves
the next list header (3) and sends it to the SPE’s MFC (4). The SPU receives
the list header (5) and initiates three DMA transfers (6). The first transmits
the transfer-list to the LS (8). The second uses the transfer-list (9) to gather
the ray set data into the LS (10). The third moves the voxel data into the LS
(7). When all transfers have completed the SPU loads the required data for
the sampling process. After computation it writes the results back to the LS
(11). As soon as all ray packets have been processed another DMA transfer is
initiated (6) that scatters the ray set data back to main memory (12) assisted
by the transfer-list (9). Finally an RGB image is extracted from the ray packet
data and sent to the display (13).

that contains the y-origin of the given view (figure 4).

At this point all components required for our rendering
system have been described to enable an implementation on a
single SPE. A summary of the data flow is given in figure 6.
Note that for simplicity an unlimited LS size is assumed so
that all required data fits into it at the same time. In practise
some of the depicted steps need to be subdived into smaller
data packages. In the next section we will examine possibilities
for distributing our algorithm among multiple SPEs.

V. PARALLELIZATION

There are two basic approaches to parallelize our algorithm
introduced in section 2. The fine grained solution operates at
sub-slab granularity where each SPE is assigned one sub-slice
level. The coarse grained model ties one or more independent
views to different SPEs.

A. Fine-grained Parallelization

The subdivision of voxel slices into sub-slices which ini-
tially has been introduced to account for the limited LS size
now offers a convenient approach for parallelization. The sub-
slice levels (see figure 1) can be distributed evenly among the
participating SPEs for parallel rendering. Each SPE receives
only the transfer lists required for the sub-slice levels it
processes. Difficulties occur when rays belong to multiple sets
for the same slice as this results in dependencies between
the different sub-slice levels (see section IV-B1 and figure 4).
Sampling order must be preserved for these sets which can
be accomplished by the PPE through the mailbox mechanism.
The PPE will send the list header of a list containing dependent
rays to a SPE only after the dependent rays have been
processed by the SPE(s) responsible for the relevant sub-slice

levels. As the ordering can introduce stalls while one SPE
has to wait for another to complete its task it is important to
carefully generate and schedule jobs during the pre-process
to minimize stalls. Ray sets can be split into dependent and
independent parts. This allows for execution of independent
jobs while a dependent job has to wait. Another source for
independent ray sets is available if multiple views need to be
rendered (see section IV-B2).

An alternative to preserving ordering among multiple sub-
slice levels has already been proposed in section IV-B1. If one
ray buffer is dedicated to each SPE rendering can happen in
parallel without any constraints. In a final post-process the ray
buffers are composited to form a single image as described in
IV-B4. However more memory is required for this method.

B. Coarse-grained Parallelization

In case multiple views need to be rendered from the same
volume data set, a much simpler approach is to schedule
each SPE for a different view. As there are no dependencies
between the views the rendering process is equivalent to the
one described in section IV-B. The drawback of this method
is reduced flexibility as the number of views determines the
number of active SPEs. Further on more data needs to be
transfered because each SPE requires all sub-slices during the
image synthesis process.

VI. RESULTS

The results presented in this section have been measured on
three different platforms. The first is a IBM qs20 blade which
provides two CBE chips with a clock rate of 3.2 GHZ and
2x512 MB XDR-DRAM. The second is the more up-to-date
IBM @s22 blade. In contrast to its predecessor it offers 2x4 GB
DDR2-SDRAM and an advanced Double Precision Floating
Point Unit which is not utilized by our implementation. As a
cheaper alternative results are also reported for a Playstation
3 (PS3) which features one CBE chip clocked at 3.2 Ghz and
256 MB XDR DRAM. However only six SPEs are activated
for user applications on the PS3. All processors are running
Linux as the operating system.

The volume data set used for rendering is retrieved from a
x-rayed backpack (see figure 7) that represents a typical item
at an airport screening line. The slice resolution is 5122 voxels
and the slice quantity is 373. For the performance measure-
ments of varying slice resolutions and quantities empty volume
data sets are used that contain only zeros. This introduces no
implications as one characteristic of our algorithm is that its
execution is independent of the actual volume data.

For all measurements we use the fine-grained paralleliza-
tion technique. During experiments we found that sharing a
single ray buffer with all SPEs is inferior in performance
to the multiple ray buffer approach by a factor of 3-6. This
unacceptable slow-down occurs due to synchronization efforts
and serial execution forced by sub-slice dependencies. The
advantage of using eight SPEs is therefore diminished. In
contrast the increased memory footprint of multiple ray buffers
is acceptable as even a screen resolution of 10242 fits well into

the limited main memory of the PS3. Thus we will focus on
the multiple ray buffer approach in the subsequent results.

Fig. 7. The backpack data set rendered from different views using a transfer
function that clearly shows up internal items.

0.8

—qs20

——gs22
PS3

0.6

Time (s)

0.4

0.2

0
256x256

512x512

768x768
Screen Resolution

Fig. 8. Timings for the backpack volume on the qs20, the qs22 and the PS3.
Only one CBE chip is activated.

Figure 8 shows the performance of our program for different
screen resolutions on the qs20, qs22 and the PS3 with only
one CBE chip activated. The scaling of the rendering time
across different screen resolutions is slightly sub-linear. As the
number of ray packets increases, screen resolution independent
cost decreases per ray packet. These costs include DMA
transfer of voxel slices and setup of the voxel slices on the
SPE side. Also the ratio of the number of DMA calls to the
number of transfered ray packets is reduced because more ray
packets of the same ray set are continuous in main memory.
Comparing the PS3, qs20 and qs22 rendering times differ
about 10% if performance is normalized to one SPE. Slight
differences between the hardware and the OSes might be
responsible for this small discrepancy. It is an indicator that
our application is not bandwidth limited as the PS3 offers more
bandwidth per SPE than the qs20 and gs22.

Figure 9 shows the bandwidth requirements for different im-
age resolutions. While the DMA-put bandwidth requirements
remain approximately constant increasingly more DMA-get
bandwidth is necessary for smaller resolutions. This phe-
nomenon is related to the ratio of computation to volume data
size. As the image resolution decreases less computation has
to be performed. However the size of the volume data that

21

©» —read
S s — write
\\\\ total

4 —— —peak

256x256 512x512 768x768

Screen Resolution

Fig. 9. Bandwidth requirements for the backpack data set measured on
the gs22. The graph labled “peak” demonstrates the maximum bandwidth
achieved without rendering computations.

Slice resolution ~ Factor # of ray packets
128x128 0.502 32M
256x256 1.00 7.5M
512x512 1.476 11.IM
768x768 1.485 11.3M

TABLE 1

PERFORMANCE FOR DIFFERENT SLICE RESOLUTIONS EXPRESSED AS A
FACTOR OF THE BASE SLICE RESOLUTION (2562). THE NUMBER OF
PROCESSED RAY PACKETS DURING RENDERING IS SHOWN AS WELL.

RESULTS MEASURED ON QS22.

needs to be transfered from main memory to the SPEs does
not change because the volume data set is streamed exactly
once to the SPEs, regardless of screen resolution. The graph
labled “peak” in figure 9 demonstrate the maximum bandwidth
achieved with our application if rendering computations are
disabled. This maximum bandwidth verifies that the volume
rendering process is not bandwidth limited. The peak band-
width of the CBE to main memory is around 25 GB/s which
is considerably more than the maximum bandwidth delivered
by our application. The reason is that the average transfer size
of DMA transfers is only around 1 KB for which a reduction
in peak performance analogous to our observation is reported
by [5]. This also explains the slight increase in maximum
bandwidth for larger image resolutions as more coherent ray
packets in main memory tend to form larger transfer lists.

In order to efficiently facilitate both CBE chips of the qs20
and gs22 our application provides NUMA support. Due to

Slice quantity ~ Factor # of ray packets
128 0.529 6.0M
256 1.00 11.IM
512 1.438 15.9M
768 1.443 16.IM
TABLE II

PERFORMANCE FOR DIFFERENT SLICE QUANTITIES EXPRESSED AS A
FACTOR OF THE BASE SLICE QUANTITY (256). THE NUMBER OF
PROCESSED RAY PACKETS DURING RENDERING IS ALSO REPORTED.
RESULTS OBTAINED FROM QS22.

22

2
1.9
1.8
1.7
1.6
1.5

Factor

1.4 —Scaling
1.3
1.2
1.1

1

256x256 512x512 768x768

Screen Resolution

Fig. 10. Performance scaling for both CBE chips of the qs22 with NUMA
support.

the highly parallel nature of our algorithm only local memory
needs to be accessed during the rendering process. Just for the
compositing a small number of remote memory accesses are
required. Figure 10 demonstrates almost linear scaling for the
backpack example.

Although the timings in figure 8 are not comparable to those
achieved by current real-time volume renderering systems [1]
they are real-time in the sense that rendering is overlapped
with volume acquisition. Many of these real-time volume ren-
derering systems rely on pre-computed acceleration structures
that need to be updated or rebuilt when the volume data set
changes. Such pre-computation often requires several seconds
[9] which is not necessary in our system.

100%
90%
80%
70%

O DMA Infras-

tructure

H Ray Packet

Setup

M Ray Packet
Sampling

60%

50%

40%

30%

20%

10%

0%

Fig. 11. Runtime distribution for different sections of our algorithm.
Figure 11 presents an evaluation of the runtime distribution
for different sections of our algorithm. For the analysis we
define three parts: DMA infrastructure, ray packet setup and
ray packet sampling. The source code provided in appendix A
implements the DMA infrastructure. Less than 1% of the total
computation time is consumed by the DMA infrastructure.
This indicates that our system of overlapped DMA transfers
works very well. More than 95% of the runtime is available for

volume rendering without any main memory latencies. The ray
packet setup requires around 4%. This overhead is introduced
by the design of our system because ray packets need to be
set up repeatedly.

Table I presents the change in performance for different
slice resolutions (x- and y-resolution of the volume data set).
The screen resolution is 5122 and the slice quantity (or z-
resolution) is 256 throughout. The performance of the results
is expressed as a factor of the base result which is obtained
from a 2562 slice resolution. The changes in performance
are suprising at first, especially the comparison between the
5122 and 7682 slice resolutions. However if the total number
of ray packets processed during rendering is considered an
almost linear scaling is revealed among the results of table
L. It is obvious that the number of processed ray packets can
not increase linearly with slice resolution. Changing the slice
resolution will not influence the required number of samples
at all if a ray is parallel to the z-axis of the volume data
set. Analogously if a ray is parallel to the diagonal of a voxel
slice it will only scale linearly with the square root of the slice
resolution. Most rays lie between both extremes. Additionally
our rendering system moves the view away from the volume
data set until its projection fits completely onto the view plane.
If the resolution is quite different for the three axes of the
volume data set this can lead to more inactive ray packets that
do not hit the volume at all. This is the case for the 7682
slice resolution. Table II is analogous to table I. Instead of
changing the slice resolution the slice quantity is varied. The
slice resolution is constant at 5122. The results are similar to
table I. Performance does not scale with the slice quantity but
with the number of packets that need to be processed during
rendering. The relationship between slice quantity and number
of ray packets is analogous to the relationship between slice
resolution and number of ray packets discussed previously.

VII. CONCLUSION AND FUTURE WORK

In this paper we have contributed a novel rendering system
for time critical volume data inspection that allows for overlap-
ping rendering with volume data acquisition. We have shown
how the algorithm can be mapped directly to the hardware
features of the Cell Broadband Engine and thus can deliver the
performance required for todays real-world applications. Such
applications comprise security scans, assembly inspection,
medical imaging and others.

Future work should focus on integrating our system into an
industrial environment in order to evaluate its suitability for
daily use. Additional features like complete local illumination
models [6] and multi-dimensional transfer functions [3] could
be implemented to further improve image quality.

ACKNOWLEDGMENT

The authors would like to thank the Fraunhofer Institute for
Industrial Mathematics ITWM) for funding and supporting
this work.

REFERENCES

[1] A. Ghosh, P. Prabhu, A. Kaufmann, and K. Mueller. Hardware assisted
multichannel volume rendering. In Computer Graphics International,
pages 2-7, July 2003.

[2] S. Grimm, S. Bruckner, A. Kanitsar, and E. Grolle. Memory efficient
acceleration structures and techniques for cpu-based volume raycasting
of large data. Symposium on Visualization, 2004.

[3] G. K. J. Kniss and C. Hansen. Multidimensional transfer functions for
interactive volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 8(3):150-162, July—September 2002.

[4] J. Kahle, M. Day, and H. Hofstee. Introduction to the cell multiprocessor.
IBM Journal of RD, 49(4), 2005.

[5] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor communi-
cation network: Built for speed. [EEE Micro, 26(3):10-23, May—Jun
2006.

[6] J. Kniss, S. Premo, C. Hansen, P. Shirley, and A. McPherson. A model
for volume lighting and modeling. IEEE Transactions on Visualization
and Computer Graphics, 9(2):150-162, 2003.

[71 M. Levoy. Efficient ray tracing of volume data. ACM Transactions on
Graphics, 9(3):245-261, July 1990.

[8] M. Levoy and P. Lacroute. Fast volume rendering using a shear-warp
factorization of the viewing transformation. In Proc. SIGGRAPH 94,
pages 451-458, July 1994.

[9] S.Lim and B.-S. Shin. A distance template for octree traversal in cpu-

based volume ray casting. In Visual Comput, volume 24, pages 229-237,

2008.

N. Max. Optical models for direct volume rendering. /EEE Transactions

on Visualization and Computer Graphics, 1(2):99-108, June 1995.

K.-S. Oh and C.-S. Jeong. Acceleration technique for volume render-

ing using 2d texture based ray plane casting on gpu. [International

Conference on Computational Intelligence and Security, 2:1755-1758,

November 2006.

T. Porter and T. Duff. Compositing digital images. Computer Graphics,

18(3):253-259, July 1984.

C. E. Shannon. Communication in the presence of noise. In Proc. IRE,

1949.

[10]

[11]

[12]

[13]

APPENDIX
A. SPU Kernel Code Listing

The C/C++ source code provided here is taken from our
working implementation. For reasons of insufficient space the
initialization code and the the actual volume sampling code
had to be omitted.

#define
#define
#define

SLICE_BUFFER_SIZE 32x1024
RAY_PACKET_BUFFER_SIZE 16%1024
LIST_HEADER_BUFFER_SIZE 1024

#define MAIL_NUM_LISTELEM(a) spu_add(spu_and(a, O
x000000ff), 1)

#define MAIL_NUM_PACKET(a) spu_and(spu_rlmask(a, —8), 0
x000000ff)

#define MAIL_INDEX CAM(a) spu_and(spu_rlmask(a, —16), 0
x000000ff)

#define MAIL_NEXT_SLICE(a) spu_rlmask(spu_and(a, 0O
x01000000), —24)

#define MAIL_NEXT_SUBSLICE(a) spu_and(a, 0x02000000)

#define MAIL_STOP_RENDERING(a) spu_and(a, 0x04000000)

class VolumeViewer{

uchar sliceBuffer [2][SLICE_BUFFER_SIZE] __attribute__ ((
aligned (128)));

uchar rayPacketBuffer [3][RAY_PACKET_BUFFER_SIZE]
__attribute__ ((aligned (128)));

uchar listHeaderBuffer [3][LIST_HEADER_BUFFER_SIZE]
__attribute__ ((aligned (128)));

vec_floatd transferTable[256] __attribute__ ((aligned
(128)));

SpuData data __attribute__ ((aligned (128)));

public:

void render(ullong ea);

23

}

vo

24

id VolumeViewer:: render(ullong ea){

//no space for all init code

vec_uintd startY , sliceY , offsetY, offsetZ, dimX,
subsliceIndex , subOffsetLUT, curBufferIndex , curMail,
ppuListElementOffset , VEC_MAXSLICEINDEX,
VEC_SLICEBUFFER_SIZE, VEC_SLICEBUFFERPART_SIZE,
VEC_SLICE_SIZE, VEC_SUBSLICE_SIZE, curSlabAdr;

vec_float4 bMinX, bMaxX, VEC_FLT_MIN;

uint dBufferldx , nextSlabIndex , ppuSliceBufferOffset ,
subsliceTransferSize ;

while (!'spu_extract (MAIL_STOP_RENDERING (curMail), 0)){

// get new header, it will be processed in the next

iteration
const vec_uint4 nextMail = spu_splats (spu_read_in_mbox
03

// extract the camera index for the current iteration
from the previous mail
const vec_uintd4 curCamlIndex = MAIL_INDEX CAM(nextMail);

// determine buffer index for the next iteration

const vec_uint4 nextBufferIndex = spu_and(spu_sl(
spu_splats ((uint) 1), spu_extract(curBufferIndex , 0
), 3);

//1load the origin of the current camera

const vec_floatd orgX = data.originX[spu_extract(
curCamlIndex, 0)];

const vec_float4 orgY = data.originY [spu_extract(
curCamlndex, 0)];

const vec_floatd orgZ = data.originZ[spu_extract(
curCamIndex, 0)];

// extract number of list elements for the next
iteration

const vec_uint4 nextListElemNum = spu_sl(
MAIL_NUM_LISTELEM (nextMail), 3);

const vec_uint4 nextListTransferSize = spu_andc(spu_add
(nextListElemNum, 8), spu_splats ((uint)0x0000000f)
);

// compute address of the current ray packet buffer
uchar xcurRayPacketBuffer = &rayPacketBuffer|[
spu_extract (curBufferIndex , 0)][0];

// queue dma transfer of list elements

mfc_getf ((void x)&listInfoBuffer[spu_extract(
nextBufferIndex , 0)][0], data.listInfoBuffer+
spu_extract(ppuListElementOffset, 0), spu_extract(
nextListTransferSize , 0), spu_extract(
nextBufferIndex , 0), 0, 0);

// extract number of packets for the current iteration
const vec_uint4 num_packet = spu_sl (MAIL_NUM_PACKET(
curMail), 7);

//queue list dma transfer of ray packets for the next
iteration

mfc_getlf ((void x)&rayPacketBuffer[spu_extract(
nextBufferIndex , 0)][0], data.rayPacketBuffer, (
mfc_list_element_t=)&listInfoBuffer[spu_extract(
nextBufferIndex , 0)][0], spu_extract(
nextListElemNum, 0), spu_extract(nextBufferIndex ,
0), 0, 0);

//'increase by the number of list elements transfered
ppuListElementOffset = spu_add(ppuListElementOffset ,
nextListTransferSize);

if (MAIL_NEXT_SUBSLICE(curMail)){

// extract current y—dim offset

offsetY = spu_splats(spu_extract(spu_slqwbyte(data.
boundY, spu_extract(subsliceIndex, 0)), 0));

// next subslicelndex , wraps back to 0 if
MAXSLICEINDEX has been reached

const vec_uint4 msi_mask = spu_cmpeq(subslicelndex ,
VEC_MAXSLICEINDEX) ;
subslicelndex = spu_andc(spu_add(subslicelndex , 4),

msi_mask) ;

//local store address of slab data for this iteration

curSlabAdr = spu_splats ((uint)&sliceBuffer [0][0]+
nextSlabIndex);

//local store address to store slab data for next
iteration

nextSlabIndex "= SLICE_BUFFER_SIZE;

const uint nextSlabAdr = (uint)&sliceBuffer [0][0]+
nextSlabIndex ;

//main memory offset for slice data

ppuSliceBufferOffset += data.slice_size & spu_extract
(msi_mask, 0);

//increase the z offset if the appropriate mail flag
is set

offsetZ = spu_add(offsetZ , MAIL_NEXT_SLICE(curMail));

// transfer slab data for next iteration

const ullong offset = data.sliceBuffer+
ppuSliceBufferOffset+spu_extract(spu_slqwbyte (
subOffsetLUT, spu_extract(subslicelndex, 0)), 0);

mfc_get((void=*)nextSlabAdr, offset,
subsliceTransferSize , 4, 0, 0);

mfc_get((void=x)(nextSlabAdr+SLICE_BUFFER_SIZE/2) ,
data.slice_size+offset, subsliceTransferSize , 4,
0, 0);

// compute subslab bounding box

const vec_floatd bMinY = spu_add(spu_convtf(offsetY ,
0), VEC_FLT_MIN) ;

const vec_float4d bMaxY = spu_convtf(spu_add(offsetY ,
sliceY), 0);

const vec_float4 boundZ = spu_convtf(offsetZ, 0);

}

// wait for dma transfers to the current buffer to
finish

mfc_write_tag_mask (I<<spu_extract(curBufferIndex, 0)
)3

mfc_read_tag_status_all();

for(int i=0; __builtin_expect(i<=spu_extract(
num_packet, 0), 1); i+=128){

//no space for ray packet setup and ray packet
sampling code

const vec_uint4 curListElemNum = spu_sl(
MAIL_NUM_LISTELEM (curMail), 3);

// scatter back intermidiate results

mfc_putl ((void x)curRayPacketBuffer, data.
rayPacketBuffer , (mfc_list_elementx)&listInfoBuffer
[spu_extract(curBufferIndex , 0)][0], spu_extract(
curListElemNum, 0), spu_extract(curBufferIndex, 0),

0, 0);
curBufferIndex = nextBufferIndex;
curMail = nextMail;

0 cco

Comparison of High-Speed Ray Casting on GPU
using CUDA and OpenGL

Andreas Weinlich, Benjamin Keck, Holger Scherl, Markus kwschik and Joachim Hornegger

Abstract—Iterative 3D volume reconstruction is one of the
most compute- and memory-intensive applications in the fiel of
medical image processing. The iterative reconstruction ¢tsists
of two major compute intensive steps: Forward- and back-
projection. Both steps have to be applied repeatedly in eactter-
ation and several iterations are necessary until a reconstiction
result with high image quality is available. As a consequere
iterative reconstruction techniques are rarely used in pratical
CT-like systems. To step towards clinical usage it is mandaty to
apply highly parallelized low-cost processing architecttes such
as the stream processors on current GPUs (Graphics Processi
Units). In order to achieve high image quality we implementd
the forward-projection using a volumetric ray cast method. We
have carefully adapted our implementation to two recent GPUY
programming tools, CUDA (NVIDIA Compute Unified Device
Architecture) and OpenGL (Open Graphics Language). In terms
of execution performance and implementation complexity we
compared both tools for the forward-projection step.

Index Terms—computed tomography, iterative reconstruction,
volumetric ray casting, CUDA, OpenGL, forward-projection

I. INTRODUCTION

efficient solutions are modern graphics cards [7]. For examp
NVIDIA's GeForce 8800 GTX and QuadroFX5600, which
we utilized for our tests, use 128 stream processors inlparal
and can additionally benefit from some hardware-accelérate
features like texture interpolation. Recently NVIDIA has-d
veloped a C-like general purpose API for these GPUs to
implement for example parallelized numerical algorithms.
Unfortunately, the first CUDA versions up to 1.1 had still
some drawbacks like missing support for 3D textures. This
feature was introduced in the recently published majoasse
CUDA 2.0. But maybe still the compiler is not as sophis-
ticated as in the OpenGL graphics programming language.
Furthermore, as a matter of principle, it can only be used on
modern NVIDIA graphics cards. On the other hand there exists
another very interesting hardware platform for CUDA apglic
tions called NVIDIA Tesla. In this paper we compare highly
optimized implementations of ray casting using CUDA 1.1,
CUDA 2.0 and OpenGL regarding programming techniques,
implementation time, and execution performance.

Il. RELATED WORK

For the last years mostly analytical methods like the fil-
tered back-projection have been used in clinical Cone-beanin the medical field, perspective projections are often used
CT (Computed Tomography) systems in order to achiete simulate and approximate the physical process of X-ray
3D volume reconstructions out of acquired 2D projectioattenuation. Over two decades ago, Joseph [8] introduced an
images. Iterative 3D reconstruction algorithms like SARimproved algorithm for forward-projecting rays. His algbm
(Simultaneous Algebraic Reconstruction Technique) orTSIRs not as precise as a ray cast based algorithm, but less
(Simultaneous lIterative Reconstruction Technique) [1h ca&omputationally complex, which was more important at this
produce less reconstruction artifacts [2], i.e. recomsiipns time. Later Xu et. al. compared popular interpolation and
using a small amount of projections, even though they airgegration methods for use in CT [5] and showed that a
much more time consuming than the conventional Feldkamgy cast based algorithm is comparable to the other superior
algorithm [3]. The iterative reconstruction consists ofotwmethods regarding the root mean square (RMS) error. Because
major compute- and memory-intensive parts: A forward- anmdodern GPUs provide hardware-accelerated interpolatven,

a back-projection step. We recently showed a comparisondscided to implement the forward-projection using rayioast
latest acceleration technologies for the back-projectitap The iterative reconstruction performance of graphics lacce
[4]. Especially ray-driven implementations of the forwarderators has often been evaluated using OpenGL and shading
projection like a volume ray caster, which are used for thdmnguages [7], [9].

superior precision [5], suffer from their computationatdand.

Also in other application domains ray casting algorithme ar 1. M ETHODS

extensively used, like in the field of 2D-3D registration.[6] |n this section we describe the principle of the forward-

To overcome the limitations and build real time solutions fqygjection step. Second, we explain our CUDA-based and
clinical application, it is necessary to use hardware &chi openGL-based implementations.

tures with massively parallel computation capabilitieskel.
in similar applications, one of the most appropriate and coR Forward-projection

A. Weinlich, B. Keck and J. Hornegger are with the Friedridexander- We use a volumetric ray casting approach for the forward-
University Erlangen-Nuremberg, Department of Computder@e, Chair of projection step. Its basic functionality is shown in Fig(lrand
Pattern Recognition (LME), Martensstr. 3, D-91058 Erlang8ermany.

H.Scherl and M. Kowarschik are with Siemens Healthcare, Kagdical the algorithm is shown in Algorithm 1. To determine the grey
Electronics & Imaging Solutions, P.O.Box 3260, D-9105GEden, Germany. level value of a certain pixel on the image plane, a straight

25

detector

T T
volume I I I
. - =
sample point ; S1 ! !
p p - ——ZAN T~~~ === - - - - - = - =4
source L : | | |
L : g I I I
@\ ! I U N N 2
= o ele L [[[
. T L | \ \
direction vector I ray] S3 \ [[
L volume N\ F---- --=-- - ==
L I I I
S4 [I [
| . |

Fig. 1. Ray casting principle. . FTT7~

texture

line ("ray”) is drawn pointing from the optical center tovesr
the pixel position. Afterwards voxel intensity values bhesi Fig. 2. Volume representation in a 2D texture by Slicss
the cuboid are sampled equidistantly along the ray. These
sampling values add up to the desired gray level value in
the image. As a result we get a perspective projection of t

ﬂ%m the homogeneous projection matrix which is designed
volume data.

to project a 3D point to the image plane. Depending on the
Algorithm 1 Forward-projection with a ray casting algorithmggg;:itnzgga ttr?i];, trz?e\trpi);o#\?sf"t)r?re(g%rl?:)i?er;)v\\g. I?]Dthvgeot:?t-
for all projectionsdo - — . case, the vector can be found in the fourth column of the
compute source posn_lon_out of p_rOJect|on matrix inverted matrix (first three components). In the case ofxa 3
compute mv_ert_ed prOJectu_)n r_natnx 4 matrix it is possible to drop the fourth column, invert the 3
for all rays |n3|dg thg prOJecnodg . 3 matrix and multiply the inverse with the previously drodpe
compu'Fe ray dm_acnon depending on the image plan‘?ourth column to get the center position. This holds, beeaus
normalize direction vector in case of a perspective projection with projection magjce
/IRAY CASTING o this fourth column depicts the shift of the optical centettte
_comput_e entrance "’T”d exit point of the ray to the Cubobgrigin of the coordinate system. But due to the fact that this
if ray hits the cupmdhen . translation occurs not before the rest of the transformatio
set sample point to the entrance point these have to be undone in multiplying the inverse. Galigeke

m;]t!;';\llze thelplxel_va!ug ide th boith et. al. have shown already how to reproject using projection
while sample point is inside the cubo matrices in [11].

add up the computed sample value at current .)

position to the pixel value :n thehnext step theI elntrance r|?osmon of thﬁ ray into thﬁ

compute new sample point for given step size VO'UME Nas to bg calcu ated. The used meF od to get _t e
entering and leaving points depends on the implementation.

end while . h -
else Between those points the cube is equidistantly sampledeto g
set pixel value to zero one sampling position, we take the entry vector and add the
end if direction vector multiplied with the step size times a caunt

normalize pixel value to world coordinate system unité@iable. The following sampling step itself proves to be
end for crucial for the algorithm’s efficiency. In order to get siting

end for results, a sub-pixel sampling is required, which introduae
trilinear interpolation.

The physical process of acquiring an X-ray image worlﬁ_s For a realistic 5|mulat|9n of X-ray imaging, the Beer-
. : - . : ambert law has to be fulfilled approximately:
just as well. In particular, in this case the optical centgpidts
the X-ray source whereas the image plane depicts the detecto
While Strobel et. al. [10] have shown that the image quality o - t<%?ectuﬂp($(t)) w
a reconstruction can be improved by using projection medric I=1Iy-¢ ‘(soucd B (1)
instead of assuming an ideal geometry, we decided to use this
parameterization in our implementation.

Furthermore this section describes some general featufé® densitiep are integrated along the line(t) (or added
that are common to both implementations, CUDA as well ag in a discrete manner). Afterwards, they are transformed
OpenGL. There are some different methods to get the directimith the exponential-function and multiplied with an iaiti
vector of the ray, which is the first step in the inner for loo-ray intensity to get the target intensity value. This sibs
in Algorithm 1. A simple one is to take two position vectorsguent transformation will not be considered here as it can be
compute the difference vector, and normalize it. Such jorsit computed for example during a post-processing step. For the
are the optical center, the 3D coordinate of the pixel pmsjti application in algebraic reconstruction, a pre-procegsiithe
or the points where the ray enters or leaves the cuboid. Fwiginal X-ray images may be also appropriate to fit the ray
example the position of the optical center can be obtainedster projections.

26

B. Implementation in CUDA NVIDIA GeForce | NVIDIA QuadroFX

. o _ 8800GTX 5600
_ CUDA of_fers an easy to use C-like apphcatlon.programmmg Core clock | 575 Mz | 500 MH2
interface with some extensions. There are two differertspar p—— S 00
each CUDA implementation: A host part, which executes in a ader clock | z_ | z
CPU thread, and a device part (kernel), which is invoked ey th _Memory amount | 768 MB | 1500 MB
controlling CPU thread, but runs in parallel on the GPU devic Memory interface | 384-bit | 384-bit
In our case the program instructs the graphics card to ceeate memory clock speed| 900 MHz | 800 MHz
semi-parallel thread for each ray. On our hardware up to 128 o Memory bandwidth | 86.4 GBS | 76.8 GBJs

these threads can be processed in parallel. Most of our CPU
code uses CUDA specific API functions for allocating data TABLE |
structures on the device and to transfer data to the graphicEECHN'CALSPEC'F'CAT'ONE?/'ZESIIT'TOGNRAPH'CS CARDS USED IN OUR
memory and back to RAM.

In the kernel code, the inverse of the projection matrix
is used to get the ray direction out of the pixel position in

the projection image. In order to check whether a Samp”ﬁ@nsferred to the shader, the six faces of the cuboid averdra

position is inside the cuboid, the entrance and exit digtand/5ing vertices, the cub0|dk|s rﬁndered to a texture and yinall
with respect to the optical center are computed. In each s t€xture is copied back to host memory.
the entrance position is incremented by a step size valie unt PUring the rendering, the instructions within the shader

it reaches the exit distance. A critical issue in CUDA 1.1 jBrogram are executed instead of the texture lookup. These

the sampling step since it does not provide support for dpstructions differ slightly from the corresponding CUDA

textures. So unfortunately a trilinear hardware interpofa CCde. Corers of the 3D texture have been assigned to the

is not available for the CUDA 1.1 APL In consequencecomers of the cuboid, so the OpenGL texturing step provides

a workaround had to be applied that used just the bilinetl}e entrance position of the ray automatically in terms of

interpolation capability of the GPU. It does a successiJBtérpolated texture coordinates. The ray direction vecem
linear software interpolation in between stacked 2D textu

pe obtained like it was outlined in the last section. In each

slices (see Figure 2). Therefor, desired values are fetch@P the program checks, whether the sampling positiorlis st
from proximate stack slices with hardware-acceleratéddar MSide the cuboid. As mentioned, the sampling itself reduce
interpolation. These sampling steps are substituted witl o 0 @ Simple 3D texture fetch.

one hardware-accelerated 3D texture fetch in CUDA 2.0 and

OpenGL. IV. RESuULTS
In order to compare the performance of both approaches,
C. Implementation in OpenGL we measured execution times with different test parameters

. N . . on an NVIDIA GeForce8800 GTX as well as on an NVIDIA
The OpenGL implementation is more tricky in some as: s
L uadroFX 5600. Even though both graphics cards are as-
pects. This is a consequence of the fact, that OpenGL . N . .
;) . . sémbled with the NVIDIA GPU "G80" they are slightly
intended to be used in graphics applications. Neverthelé . .) N
there are some similarities like the perspective projectin erent stated in Table |. Our evaluation system is a Bujt
persp broj Siemens Workstation "R650” using the Intel 5400 chip set.

the past years, the API itself was made more flexible by me . .
. . . . e graphics cards are connected each via a PCI Express x16
of shader languages, which makes it possible to implement a

forward projection using OpenGL [12]. slot.

Like in CUDA, the implementation divides into a CPU and
a GPU part. The CPU part (OpenGL code) was written in For measurement purpose we used different projection
C++. In our implementation the GPU fragment shader prograggometries and volume phantoms. If the phantom fits inside
is written in the shader language, GLslang. The OpenQGhe field of view, there exist rays that do not go through the
API invokes this code for each pixel in the projection. Dueuboid at all (case "far”). These rays consume a minimum of
to the fact that a pixel exactly corresponds to a ray, thike computation time and the computation finishes notigeabl
threading is the same as in CUDA. However, unlike CUDAaster compared to the test case where optical center amgtima
this partitioning can not be defined by the programmer diyectplane are close to the cuboid (case "near”). Associatechpara
In fact this correspondence is a fixed OpenGL fragment shadgers that have direct impact on the computational comtgiexi
feature. of the ray caster are image size (number of pixels and with

In the OpenGL code, there are some initializations estab-number of rays) as well as the sampling rate along one
lishing a desktop window for rendering. Furthermore, franmy (distance of sampling positions compared to the size of a
buffer objects are initialized in order to store the prameinto voxel). Due to the fact that in CUDA the execution of the
a texture. As stated above, the volume data resides in a B&nel and thus the ordering of the texture fetches can be
texture like in CUDA 2.0. This fact allows for the utilizatio configured by the block configuration [13], we also compared
of hardware supported tri-linear interpolation. The pectin this parameter for CUDA 1.1 and CUDA 2.0. Large images
matrix for an image has to be transformed in order to fit tHeave some additional side effects. On one hand, they allow a
OpenGL coordinate system. Afterwards some variables armre flexible schedule of threads, on the other hand each ray

27

5122 pixels 10242 pixels 20482 pixels 5122 pixels

Blocksz. near far | near far | near far #Proj. FoV | CUDA 11 CUDA20 OpenGL
16 x 16 | 48.2 87.7| 106 107 | 409 301 1 near 6.22 1.60 3.25
32x8 | 505 101|109 111 | 412 315 far | 647 160 324
f 16 near 14.2 3.30 5.32
32x16 | 46.4 113 | 107 116 | 411 308 far 18.2 197 6.45
64x4 | 59.8 127|109 138 | 424 340 100 near| 555 13.1 217
64 x 8 | 54.4 129| 111 127 | 415 330 far 92.5 24.4 25.3
128 x2 | 740 132 | 121 222 | 425 397 400 near| 145 41.8 47.0

far 386 88.7 90.3
128 x4 | 57.8 124 | 115 185 | 431 372
256 x 1 | 98.2 140 | 169 302 | 449 597 TABLE il

COMPARISON OF RUNTIMES USING THENVIDIA Q UADROFX 5600 IN

256 x2 | 68.9 124 | 122 218 | 448 467 SECONDS(CUDA 1.1vs. CUDA 2.0vs. OPENGL) WITH A PROJECTION
512x 1 | 100 141 | 167 253 | 441 593 SIZE OF512 SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A

STEP SIZE OF).250F THE VOXELSIZE

TABLE Il
BLOCK PARAMETER COMPARISON OF RUNTIMES USINGCUDA 2.00N

THE NVIDIA G EFORCE8800GTX IN SECONDS WITH400PROJECTIONS
AND DIFFERENT PROJECTION SIZES AT A STEP SIZE OF.250F THE The measurements do not include the time required to write-

VOXELSIZE back the projections to the host memory or even to hard disk,
because it is not required for a complete GPU implemen-
tation of iterative CT reconstruction. Moreover, those &fm

needs some initial calculation steps apart from the sa@pliéespemall'y the write bacl§ to disk) can be hldde'n bghmd the
computation of the next slices. For example a projectior0éf 1

Unless otherwise noted, a block consists16fx 16 pixels . : . .)
within the projection. A block parameter comparison for thlernages,1024>< 1024 including write back takes approximately

GeForcess00 GTX using CUDA 2.0 is shown in Table II. one additional second on the QuadroFX 5608% sec write

Another important parameter is the number of projections Pack to host().19 sec write back to hard disc and 0.54 sec for

be acquired from the same volume data. The time required Oerlenon of data, etc.). In most cases OpenGL and CUDA 2.0

L . . operate two or three times faster than CUDA 1.1. For a small
initialization steps, preparing the data structures aradlitog L
o . number of projections, the results seem to depend on the othe
the volume data to the device, is spent just once. So, a hi . T .
- - arameters, i.e. the initialization time of the API, whictkes
number of projections reduces the influence of such preged

n . o
computations (e. gl.6 seconds for CUDA and.2 seconds onger for OpenGL. In contrast, the tests with 400 projetio
for OpenGL on the QuadroFX 5600).

show a more interesting behavior. The best executed results
- ; L . are highlighted in bold in Table IV, Ill, V and VI. In Table IV

If both implementations are well optimized, it is expectef ., e seen that CUDA 2.0 is faster in all tests by a constant
that OpenGL will perform better than CUDA 1.1 and COMP33¢tset of approximately 8 seconds on the GeFaiee) GTX.
rable to CUDA 2.0. In Figure the dependency on the step size for the two differen

We use a projection size 612 x 512 or 1024 x 1024 pixels. geometric setups in a common setting for SIRT x 1024
The resulting execution times for the GeForgg00 GTX pixels; 400 projections) is shown. The time increases almos
and QuadroFX5600 using a projection size 0f024 x 1024 |inear with the step size except for an offset.
are shown in Table IV and Table V, and for the QuadroFX o give an impression of GPUs computational performance
5600 in Table Il using a projection size d§12 x 512 and e finally compare a specific test case also with a CPU
2048 x 2048 in Table VI. In Figure IV we give an overview jmplementation. The CPU implementation is a single-thesiad
of the dependency on the projection size using the Quadrok¥n-optimized straight-forward implementation of the qast
5600. In order to hit most of the voxels in the volume, thenethod as stated in Algorithm 1. The program is executed
step size (sampling rate) must not be greater than 1 voxgh our test system equipped with two Intel Xeon E5410
If we actually do not want to loose information, it should bgrocessors running at33 GHz. For a simple comparison we
at most 0.5 of the voxel size. In favor of a smooth projectiofisedig projections1024 x 1024 at a step size 00.25 of the
image a step size of 0.25 voxels would be even better. A dirggfxel size. Table V proves a performancesof6 seconds for
comparison between GeForgg00 GTX and QuadroFX600 sych configuration using the "near” field of view setting on
for the computation time depending on the step size is shoyyz NVIDIA QuadroFX5600. We measured64 seconds for

in Figure 7. The number of projections that can be computggk single threaded CPU program. This indicates a maximal
consecutively depends on the reconstruction algorithm. Féheedup factor of 148.

example, SART computes only a single projection per volume
update. In contrast, SIRT processes all projections cansec
tively before a volume update is performed in the iteration.
Certainly there are algorithms in between such as the oddere
subset approach. V. DiscussioN
In Figure 6 we can see the dependency of the executiorAt higher numbers of projections the execution times for the
time on the chosen step size for most common parameteZ&lDA implementation which uses 2-D textures to compute

28

10242 piXeIS Varying small number of projection (near object)
#Proj, FoV | CUDA11 CUDA20 OpenGL 18 ‘ cS’éi"?B' gg:‘gg px, gtep‘sizegggg vox‘e: ——
1 near 9.4 38 121 16 OpenGLflbza:mza Si: siiﬁiﬁiigo:zstgi/iluf*n j
: : : Chomg inp e e e 2
far 9.4 3.8 11.9 " CUDA 2.0, 2048*2048 px, Stepsize~0.25 voxel -6~
16 near| 206 7.5 155 . ‘
far 27.3 8.2 15.5 B
100 near| 86.4 28.4 36.4 £ o
far 126 30.2 37.3 7 s
400 near| 299 107 115 5 I SO i
far 527 108 116 PP T D T B
TABLE IV B e M WIS S e R
COMPARISON OF RUNTIMES USING THENVIDIA G EFORCE8800GTX IN
SECONDS(CUDA 1.1vs. CUDA 2.0vs. OPENGL) WITH A PROJECTION o 5 p - . S = = 16
S1ZE OF1024SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A ProjectionCount

STEP SI1ZE OF0.250F THE VOXELSIZE

Fig. 3. CUDA 2.0 and OpenGL comparison for varying projettgize and

10242 pixels a small amount of projections.
Proj. FoV ‘ CUDA 1.1 CUDA2.0 OpenGL
1 near 6.38 1.60 3.22
far 671 159 325 Varying number of projection (near object)
400 T T T — T 7
16 near ‘ 16.2 5.16 6.94 COBAS6, S15:515 b, Stcpaize 0.3 vorel -2
far 21.4 5.02 7.09 350 COBAS 6. 109441054 b Stcpaze: 635 voutl & |
OpenGL, 2048*2048 px, Stepsize: 0.254/0xel —-=-—
100 near 705 251 274 CUDA 2.0, 2048*2048 px, Stepsize;p,’zs voxel ---6--
far 114 24.6 29.5 800
400 near| 245 99.8 103 3 250
far 515 90.9 109 e
> 200 -
TABLE V
COMPARISON OF RUNTIMES USING THENVIDIA Q UADROFX 5600 IN a2
SECONDS(CUDA 1.1vs. CUDA 2.0vs. OPENGL) WITH A PROJECTION A
S1ZE OF1024SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A 00
STEP SIZE OF0.250F THE VOXELSIZE

150 200 250 300 350 400
trilinear interpolations are much longer than for our other ProjectionCount

implementations using 3D textures (CUDA 2.0 or OpenGL). It _ o _

is therefore essential to use the hardware-acceleratetidog Fi9- 4. OpenGL and CUDA 2.0 comparison with similar exeautiime
. L . behavior for varying projection count and size.

of the GPU in order to optimize the execution performance
of our CT reconstruction applications. The constant exenut

time offset in each test case (approx. 12 seconds in OpenGL

and 4 seconds in CUDA 2.0 on the GeFoRS90 GTX) can giterence in initialization time between OpenGL and CUDA.
be explained with the copy process of the volume data o the expected, the increase in runtime is almost linear intie s
graphics memory along with some other |n|t|aI|zat|0n:~“,.hN|tSiZe and the number of projections. With increasing image

a QuadroFX5600 card we observed a significantly smallegizes' OpenGL and CUDA are able to dispatch the parallel

computations more efficiently to the multiprocessors of the
GPU up to a certain amount. This is the reason why the execu-

20482 pixels
#Proj. FoV ‘ CUDA11 CUDA20 OpenGL tion time increases remarkably slower and does not scake wit
1 near | 7.70 159 327 the number qf p|xel_s in an image. Merely2a48 x 2048 pixels
far ‘ 7.26 1.58 3.26 and an ROI including the complete data, there can be seen a
16 near| 377 15.8 177 strong increase in execution time. As a consequence, itseem
far ‘ 30.6 11.4 13.3 that projection images with024 x 1024 pixels are optimally
100 near| 208 954 08 suited for current GPUs generations. An implementation in
far ‘ 173 67.4 70.4 OpenGL requires more implementation efforts for non-etgper
400 near 841 392 397 because it was built as a graphics programming language for
far ‘ 864 284 290 real-time rendering of vertex-based 3D scenes. In contaast
TABLE VI ray casting in the C programming language can be more easily

COMPARISON OF RUNTIMES USING THENVIDIA Q UADROFX 5600 IN ported to CUDA, as it Only requires some adaptatlons for
SECONDS(CUDA 1.1vs. CUDA 2.0vs. OPENGL) wiTH A PROJECTION the parallelization strategy. However an OpenGL expert can
S1ZE OF2048SQUARED AND A DIFFERENT NUMBER OF PROJECTIONS AT A implement such an algorithm in equivalent time compared to

STEP SIZE OF0.250F THE VOXELSIZE .
a C-Programmer using CUDA.

29

Dependency on projection size (400 projections, stepsize: 0.25 voxel)

400 T T
OpenGL negy*——

350

300

250

200

150

processing time (sec)
processing time (sec)

100

50 Fe

400 600 800 1000 1200 1400

ProjectionSize

1600 1800 2000 2200

Fig. 7.
using CUDA 2.0.

Fig. 5. The projection size dependency on the Quadr6B30.

Dependency on step size (1024*1024 px, 400 projections)
600

T T
OpenGL near —+—

CUDA 1.1 near ---x---

CUDA 2.0 near ------

n OpenGL far &

CUDA 1.1 far ——m—

CUDA 2.0 far ---6--

(1]

500

400

% (2]

300

[3]

200 A >

\\\\\xx\] L . [4]

100 e SEE—

processing time (sec)

0.2 0.4 0.6 0.8 1

Stepsize

1.4

(3]

Fig. 6. The stepsize dependency on the QuadréBd0.

(6]

VI. CONCLUSION
[71
We have presented three highly optimized implementations
of volume ray casting usable i.e. as the forward-projeciiep
in iterative reconstruction. Our comparison of the exaxuti [8]
times shows that the performance of the recent CUDA version
is even slightly better than an implementation using OpenGlyg)
Older CUDA versions should not be used for ray casting due to
the lack of 3D texture support. CUDA unveils the processiq%]
power of graphics cards even for programmers that are not
specialists in computer graphics. The OpenGL implemeanati
required much more implementation time, however it can also
be used with no CUDA capable devices. On the other hand,
the Tesla series from NVIDIA can only be used together with
CUDA.
[11]
ACKNOWLEDGMENTS [12]
This work is being supported by Siemens Healthcare, CV,
Medical Electronics & Imaging Solutions. We wish to give
special thanks to Dr. Klaus Engel who supported us with h[lls3]
wide OpenGL API knowledge.

30

GeForce 8800 vs. Quadro FX 5600 comparison step size (1024*1024 px, 400 projections)
110

T T T
GeForce 8800 GTX near —+—
GeForce 8800 GTX far ---x---
Quadro FX 5600 near ---*---
Quadro FX 5600 far 2a)

100

90

80

70

60

50

40

30

20

10

0.2 0.4 0.6 0.8 1

Stepsize

12 1.4 1.6 18 2

GeForce8800 GTX to QuadroFX5600 comparison on step-size

REFERENCES

A. Andersen and A. Kak, “Simultaneous algebraic recorgdion tech-
nigue (sart): A superior implementation of the art algarithUItrasonic
Imaging, vol. 6, no. 1, pp. 81-94, January 1984.

K. Mueller and R. Yagel, “Rapid 3d cone-beam reconstanctwith
the algebraic reconstruction technique (art) by utiliziegture mapping
graphics hardware,Nuclear Science Symposium, 1998. Conference
Record. 1998 |EEE, vol. 3, pp. 1552-1559, 1998.

L. Feldkamp, L. Davis, and J. Kress, “Practical conerbeglgorithm,”
Journal of the Optical Society of America, vol. Al, no. 6, pp. 612—619,
1984.

H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, ‘Fa®U-Based
CT Reconstruction using the Common Unified Device Architeet
(CUDA),” in Nuclear Science Symposium, Medical Imaging Conference
2007, E. C. Frey, Ed., 2007, pp. 4464—4466.

F. Xu and K. Mueller, “A comparative study of popular inpelation
and integration methods for use in computed tomograpBiymedical
Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on,
pp. 1252-1255, April 2006.

A. Kubias, F. Deinzer, T. Feldmann, S. Paulus, D. PauBisSchreiber,
and T. Brunner, “2d/3d image registration on the gpu,Piroceedings
of the 7th Open German/Russian Workshop on Pattern Recognition and
Image Understanding (OGRW), FGAN-FOM, Ettlingen, 2007.

K. Mueller, F. Xu, and N. Neophytou, “Why do commodity gfics
hardware boards (GPUs) work so well for acceleration of aegh
tomography?” ifSPIE Electronic Imaging Conference, San Diego, 2007,
(Keynote, Computational Imaging V).

P. M. Joseph, “An improved algorithm for reprojectingsahrough pixel
images,”’|EEE Transactions on Medical Imaging, vol. MI-1, no. 3, pp.
192-196, 1982.

M. Churchill, “Hardware-accelerated cone-beam retsion on a
mobile C-arm,” inProceedings of SPIE, J. Hsieh and M. Flynn, Eds.,
vol. 6510, 2007, p. 65105S.

N. K. Strobel, B. Heigl, T. M. Brunner, O. Schuetz, M. M.itsthke,
K. Wiesent, and T. Mertelmeier, “Improving 3D image qualitlyx-ray
C-arm imaging systems by using properly designed poserdigtation
systems for calibrating the projection geometry,” Medical Imaging
2003: Physics of Medical Imaging. Edited by Yaffe, Martin J.; Antonuk,
Larry E. Proceedings of the SPIE, Volume 5030, pp. 943-954 (2003).,
ser. Presented at the Society of Photo-Optical Instrurtient&ngineers
(SPIE) Conference, M. J. Yaffe and L. E. Antonuk, Eds., vOB®, Jun.
2003, pp. 943-954.

D. H. R. Galigekere, K. Wiesent, “Cone-beam reprofattiusing
projection-matrices,”|EEE Transactions on Medical Imaging, vol. 22,
no. 10, pp. 1202-1213, 2003.

K. Miuller, “Fast and accurate three-dimensional restouction from
cone-beam projection data using algebraic methods,” RlidSertation,
Department of computer and information science, Ohio Sfaigersity,
Columbus, Ohio, USA, 1998.

N. Corp.,, “NVIDIA CUDA Compute
Architecture Programming Guide,” 2007.
http://www.nvidia.com/cuda

Unified
[Online].

Device
Availeb

RapidMind Stream Processing on the PlayStation S
for a 3D Chorin-based Navier-Stokes Solver

Vincent Heuveline Dimitar Lukarski and Jan-Philipp Weil3
Numerical Methods in High Performance Computing SRG New Frontiers in High Performance Computing
Steinbuch Centre for Computing Exploiting Multicore and Coprocessor Technology
Karlsruhe Institute of Technology, Germany Karlsruhe Institute of Technology, Germany
vincent.heuveline@kit.edu dimitar.lukarski@kit.edu, jan-philipp.weiss@Kkit.edu

Abstract—In Cell's heterogeneous multi-core configuration the for hardware-aware software development is required that
issues related to data management are not treated at the cannot always be handled by specialists from diverse stient

hardware level and have to be handled explicitly by the userad yiseinlines who have to rely on fast computations and résiab
its software environment. For dedicated applications the esulting . . .
numerical simulations.

performance gains are impressive and exemplified in the exiag T .)
literature. However, an extensive programming effort and ode The RapidMind Multi-core Development Platform is pro-
redesign are required to port applications to the Cell procssor. viding a promising approach for sticking with a single-
As a promising alternative, RapidMind’s stream processing threaded programming style and simultaneous full expioita

model provides an easy to use programming approach in single ¢ haralie| power of emerging multi-core platforms. Based o

threaded manner where all data transfers and scheduling are . S L .
handled implicitly. Our investigation shows that algorithms of a a stream processing model, RapidMind's S(_)quon is corazeiv
complex fluid dynamic application can be mapped to the Cell t0 overcome the management of the complicated data transfer
BE in an efficient way. But due to programming model- and to and from the cores. As a consequence, programmers and
problem-intrinsic restrictions with respect to temporal locality, algorithm designers can concentrate on the details of te al
main memory resources and memory bandwidth are the limiting rithm instead of coping with technical difficulties. Moresy

factors for a profitable deployment in that field of application. N : .
Index Terms—Cell BE, RapidMind, Navier-Stokes solver, RapidMind is offering a portable solution that may run on

bandwidth-bound algorithms, stencil operation the Cell processor, Graphics Processing units (GPUs) afd x8
multi-core CPUs.
|. INTRODUCTION AND OVERVIEW Our goal in this paper is to investigate the potential of

Technological limitations, strong desire for tremendoeas p RapidMind’s high level concept on the Cell BE for the solatio
formance and the market pressure to sell emerging produatsa highly compute time- and memory-demanding problem
have lead to the development of multi-core processors iascomputational fluid dynamics (CFD). As opposed to an
mainstream technology in multimedia and technical compuwpproach encompassing only measurements of BLAS 3 rou-
ing. However, currently only a limited number of applicaiso tines (like SGEMM or the LINPACK benchmark) or isolated
can benefit from the huge potential of these new hardwaapplication kernels, the main emphasis of this paper is put o
architectures. Extensive efforts are required to fill the gdhe usability and performance of the considered techndiogy
between hardware capability and software efficiency. A maja CFD problem which meets the needs of typical real world
challenge relies on the ability to design hardware-awadeso applications. We are investigating if RapidMind’s highdé
for fine-grained parallelism which should be as generic approach can leverage the parallel potential of the Cell BE
possible. This situation becomes especially pronounceéidein and if all necessary components are provided to map complex
context of the Cell Broadband Engine (BE) jointly developedumerical algorithms to Cell's multi-core architecture an
by Sony, Toshiba and IBM (STI). efficient manner with respect to both computational throaugh

Aiming at huge bandwidth and unrivaled performance, thmut and development time. As we will outline, the stream
designers of the Cell BE decided to refrain from the classicprocessing approach conflicts with concepts for increasing
approach of a hardware-controlled nested cache hierardbgnporal locality. Our investigation is mainly performed o
that automatically brings data closer to the cores and cafsny’s PlayStation 3, Cell's branch into the mass market.
for increasing temporal locality of frequently used datar F Some results are compared to those obtained on IBM Cell
Cell BE the users have to care at the software level f@dadeCenter QS21.
providing the data for the cores in time. As a consequence,This work is organized as follows. Section Il gives a short
programming models for Cell have become more complist of related work in the field of CFD, stream processing] an
cated and data management and organization is a crititaplementation work on Cell. In Section Il we are providing
issue. A common programming approach relies on multé description of the fluid dynamic problem under considera-
threading of applications. However, parallelization israet- tion: a three-dimensional incompressible Navier-Stokdges
consuming, difficult, and error-prone task. A specific exiger based on Chorin’s projection method and discretization on

31

staggered grids. Section IV is dedicated to a short overgiewscheme. The upper indéxis related to the definition of the
the architecture details of the STI Cell BE and its incoriora discrete timetk, and At := tkt1 —tk describes the uniform
into PlayStation 3 and the IBM Cell BladeCenter QS2%ime step size. The explicit character of this scheme leads t
In Section V we describe the RapidMind stream processistpbility constraints with respect to the time step size @g.
model. Section VI shows the expected performance bour[8% and references therein).
for the implementation of the considered fluid dynamic model For the spatial discretization we use finite-difference ap-
problem. In Section VII we present the performance resulisoximations on staggered MAC grids [6] with uniform grid
of our fluid dynamic solver on PlayStation 3 implementedize. The domain is discretized into small cubes with edge
in RapidMind. We conclude with a summary and outlook itength h = 1/n. The pressure values are associated with the
Section VIII. centers of the cubes whereas the three velocity components
in x-, y- and z direction are associated with the faces of
the cubes with normals in corresponding directions. For the
Investigations of modern numerical methods and applickaplacian operatoh we apply regular 7-point stencils. Central
tions on the Cell BE and other multi-core platforms emplgyindifferences are invoked for the divergence and the gradient
diverse programming models are subject of current reseawterator. The stencils for the non-linear term are obvipusl
activities. Performance results for a Lattice Boltzmanedoh more involved (see e.g. [7] for more details). A detailed
fluid dynamic solver on Cell BE can be found in [1]. Anothetescription of the discretization can be found in [8], [9].
parallel implementation of a similar fluid dynamic solver The most expensive part of the solution process in terms of
on an emerging hardware platform can be found in [2]. Tiwecessary operations is the projection step (2) where arline
the authors’ knowledge there are no performance results fystem of equation (LSE) has to be solved for the discrete
RapidMind implementations on the Cell BE available in thpressure. The other two steps are explicit. We consider the
literature. Our work is a first contribution. Related workthwi conjugate gradient (CG) method [10] for the solution of the
RapidMind on GPU for an application of bioinformatics can.SE. Several iteration steps have to be performed to compute
be found in [3]. an approximate solution.

Il. RELATED WORK

IIl. FLUID DYNAMIC MODEL PROBLEM IV. CELL BROADBAND ENGINE

Fluid dynamic problems are challenging problems in terms The Cell Broadband Engine (BE) is a processor architecture
of numerical modeling and algorithmic implementation. Theelying on innovative concepts for heterogeneous proegssi
model problem under consideration is three-dimensiomaé+t and memory management. In the STI approach specialized
dependent, and force-driven motion of a viscous fluid in a&culkores are added to a main unit motivated by increasing both
Q = [0,1]® subject to non-slip boundary conditions in the timgomputational power and memory bandwidth.
interval (0, T] described by the incompressible Navier-Stokes The main unit of the Cell BE is the Power Processing
equations Element (PPE) running at 3.2 GHz. The PPE mainly acts

. as controller for the eight Synergistic Processing Element
av+(v-Ov—vAv+Op =f inQx(0T], (SPE) which usually handle the computational workload. The
Ov =0 inQx(0,T], SPEs are SIMD processors with 256 KBytes local, software-

v =0 ondQx(0,T]. controlled memory called Local Store (LS). The LS does not

operate like a conventional CPU cache since it does not itonta

The unknowns are the scalar pressprend the vector-valued 5 qyare structures or protocols that predict which datg ma
fluid velocityv. The right hand side of the momentum equat'OBossibly be reused or loaded. The SPEs mainly perform

is the prescribed forck In our model scenario a circular forceg\ip instructions on 128-bit wide 128 entry register files.

is applied to a fluid subject to zero boundary conditions a%rthermore, they manage data transfers by Direct Memory

zero initial conditions for the velocity, i.ei(t=0)=01in Q. access (DMA). Each SPE reaches 25.6 GFlop/s performance

With Chorin's projection method [4], the time-dependent, qingle precision (SP) instructions. In the first versioh
equations can be solved by an iterative and explicit ti

. . PR MEell, double precision (DP) instructions are not fully giped
stepping scheme. Starting with inititial valwd, a sequence leading to modest performance of 1.8 GFlop/s per SPE. In

7, p VK k=1,... , is determined by its latest release PowerXCell 8i, DP performance reaches
kL _yk ‘ ‘ K ek 12.8 GFlop/s. The eight SPEs are connected via the Element
N (V- OV —vAvE =% in Q, (1) Interconnect Bus (EIB) delivering aggregate peak bandwidt

1 of 204 GByte/s. However, the data has to be accessed from
Apftt = ED'VKH in Q, (2) main memory connected via a Memory Interface Controller
kL gkl (MIC) to the EIB. Details on the Cell architecture can be fdun
= —Opftt in Q. (3) in[11].

In the present work two different test environments are
We refer to [5] for more details regarding the properties aridvestigated: Sony’s PlayStation 3 and IBM's BladeCenter
the adequate formulation of the boundary conditions fos thQS21. The PlayStation 3 (PS3) incorporates the Cell BE

32

processor at a low price. However, only six SPEs are availalsize of local memory and different instruction sets. Backen
under a Linux OS due to economic viability and maintenanspecific tuning options for optimization and different data
of the game OS. In PS3 there are only 256 MByte dayout are still necessary.
XDR DRAM main memory. Thereof only around 200 MByte In the stream processing approach, computation is applied
are accessible under Linux. The Cell BladeCenter QS21iis form of so-called kernels acting on data streams. In the
equipped with two Cell processors and each of them can accBspidMind framework data streams are tiles of arrays trans-
1 GByte of XDR DRAM main memory (2 GByte together)ferred to the SPEs. The kernels represent sets of instnsctio
Both of the processors on the BladeCenter are connectifining uniform operations in the sense of the Single Progra
by the Broadband Engine Interface protocol (BIF) providinilultiple Data (SPMD) execution model. A basic requirement
around 20 GByte/s bandwidth for data exchange. With ontg reach flexibility in coding is dynamic flow control by loops
one processor of QS21 running, BIF enables memory accesamtal branches within the kernels. However, no side effegs ar
the second XDR DRAM. The aggregate SP compute capabilaifowed due to undetermined order of execution on the data
of the SPEs of QS21 is 409.6 GFlop/s and 153.6 GFlop/s ohunks. This concept directly excludes data conflicts and ra
PS3. On PS3 theoretical peak main memory bandwidth is 2&@nditions but comes along with limitations with respect to
GByte/s. On QS21 both XDR DRAMSs can be accessed witligorithmic flexibility.
25.6 GFlop/s each. Effects of Non-uniform Memory Access The main disadvantages of stream processing models are the
(NUMA) have to be considered. model-intrinsic and design-specific limitations to datase

The main drawback of the Cell architecture is that the Loc8&lince the kernels are applied to tiles of large arrays, djrea
Store is usually not large enough for the entire applicatidoaded data cannot be kept for later reference. Moreover,
data. Therefore, data must be decomposed into pieces srima#irmediate write operations of processed data are pitetlib
enough to fit into local memory. These data pieces must Bs a consequence, concepts designed for temporal locality
replaced subsequently through the DMA without losing theannot be meaningfully applied. Data reuse within several
performance gain associated to the usage of multiple SPE®ps of complex algorithms cannot be exploited and some
Main memory bandwidth turns out to be the bottleneck fatata may have to be transferred several times.
many data-intensive applications. On Cell BE there is no RM comes along with its own data types simplifying data
full conformity with IEEE 754 norm [12] in SP concerningtransfers and vectorization on SIMD units. New data types
rounding modes, treatment of denormals and overflow. are values (short vectors), arrays (containers for valaas)

With respect to the software-controlled memory hierarchgrograms (kernels operating on arrays). The most efficiatat d
explicit data transfers, and different instruction setthefPPE structure for computations on Cell are 4-component vectors
and SPEs, a sophisticated programming model for the C@alue4f for floats) that fit in registers of the SIMD units
BE is required. A basic approach relies on the Software Den the SPEs. Inputs for kernels are either values or arrays
velopment Kit (SDK) [12] provided by IBM. With no attemptof values. For kernels with values as input, the optimal data
toward an exhaustive list, other solutions are CorePy [B]| transfer is managed by RM. For blocking the data transfars fo
MicroTask [14], Sequoia project from Stanford [15], IBM’salgorithmic purpose (e.g. for stencil computation), artisgss
Octopiler [16], Barcelona Supercomputing Center’'s CellS¥ prescribed size are transferred. In order to reach madxima
Superscalar [17], and the Mercury Multi-Core Frameworkandwidth, data should be fetched from main memory in 16
[18]. In our work we are focusing on RapidMind’s streanKByte chunks. In- and output arrays are limited to 16 KByte
processing approach (see Section V). size. This restriction can be bypassed by the definition of
several in- or output arrays. Data for the kernels can bé&éetc
via input arrays or into local arrays. Local arrays are sufgab

In this paper we consider the RapidMind Multi-core Develen Cell but not on GPUs due to the small size of local memory.
opment Platform for the implementation of our fluid dynamitnput and output arrays need to have the same size but may
model problem on the Cell BE. RapidMind (RM) is based onlaave different types. Input arrays are automatically deubl
stream processing model [19]. The RM platform is a colletticdbuffered for overlap of communication and computation. The
of libraries built on C++ with some language extensions aratcess to arrays can be controlled by array accessors.abever
its own predefined data types. Existing compilers can logtions are available to manipulate array access patteors.
used; only specific header files need to be included. The RMn-uniform operations on RM’s values, these short vectors
platform manages execution of RM programs on the targedn be rearranged via permutations (swizzling) or by write-
device (the SPEs on Cell). It handles all memory transfeds amasking. RM programs (kernels) are compiled dynamically by
load balancing. Programmers can implement their apptinati the RM platform to machine language on the target hardware
in a single-threaded manner with no explicit parallelisnd arspecified by included backends. Compilation is invoked the
no hardware knowledge. The major advantages are the efast time the kernels are used.
of programming and the portability of implementations.t® i As observed in our experiments, access times to RM arrays
current release RM is supporting Cell BE, GPUs from nVIDIlAare longer than accesses to pure C++-arrays. However, they a
and AMD/ATI, and x86 multi-core CPUs. Anyhow, directmandatory for data transfers. Rearrangements of shoronrgect
portability remains limited due to architectural diffecexs like (values) by swizzling is more costly on Cell compared to

V. RAPIDMIND STREAM PROCESSING

33

GPUs. A real disadvantage are repeated dynamical compitaay be reduced to application of fixed stencils preventing ma
tions of kernels if source code is spread on several files. trices to be transferred. Temporal blocking techniquesiiiop

All computations in this work are performed by using RMskewing and circular queue [24], [25], [26] give significant
Development Platform Version 2.1. In this version of RM therbenefits for stencil applications but are intrinsically é&d®on
is no double precision support. Further information abbaet t explicit solution schemes. It is however important to ndiat t
RM platform can be found in [20], [21], [22]. A differentin the case of numerical solution of time-dependent partial
and also promising stream processing approach is providtitferential equations, explicit schemes come along wetese

by CUDA from nVIDIA [23]. constraints with respect to the time step size which mayedanc
the achieved benefits.
VI. THEORETICAL AND EXPECTED PERFORMANCE In the following we investigate the algorithmic aspects enor

Th f f ical alaorith hard detailed. For our application on PS3, we consider a fluid in
e performance of numerical algorithms on hardware Is . o \yith edge length of size N = n. On the applied

mainly influenced by two components: data transfers betwe, ggered MAC grids the components of the velocity profile

a nested memory hierarchy and the compute cores, responding to a single fluid cell are gathered into 3eupl

(I;omrl)lutlatlodns, n(;fal_r:.ly pﬁrfOfoEdfOﬂ fijoe}tlng dpomtt operand§M vectors (Value3f). Scalar pressure values of four fluitsce
arallel codes additionally sutier from delays due 1o Ne&Bs .., ,q gathered into 4-tuple pencilszdirections (Value4f).
communication and synchronization between differentatise Data chunks of maximum 16 KByte size are built by 26 x

or read-write conflicts in the memory system. . 16 3-tuples (quarter cubes) for the velocity and the forad an
A lower bound for the total run-timdg of a numerical 16 x 16 x 4 4-tuples (full cubes) for the pressure.

application is given byfr > Tc +Tr, whereTc is the compute i, regpect to the stencil operation we consider the fol-
time andTr is the time for the data transfers. In the case ¢fing data layout. The order of the subcubes as well as the
asynchronous transfers and overlapping of communicatidn &, hes itself are organized in lexicographical orderre/ae
computation, the lower bound can be taken as fi@XIT}. i the unit stride direction. Within the subcubes two didfier

On a given platform an algorithm is compute-boundTer> yata Jayouts are considered. In the strict lexicographsoak

Tr and bandwidth-bound fofy > Tc. A simple performance ., jering data from neighboring subcubes have to be fetched
model can be derived by knowledge of the algorithm ang fagmented manner. To overcome this issue, data of the
hardwgre charactgrlstlcs. Lét.the number of floating point subcubes are reorganized by distinguishing interior nadels
operations (Flop) in the algorithm to be performed anthe e at the interfaces. For efficient memory access witfgin t
number of floating point words to be transferred from MeMOoiyacil kernel, the arrays for the subcubes start with thteso

to the cores and back (if necessary doubly counted). Then W&s siy interfaces and are followed by the interior nod,

get lower bound3t > 4w/B for 4 byte single precision words i, |exicographical order and grouped in 4-tuples. Due to the
where B (in GByte/s) is the maximal bandwidth between, o a, of the subcubes, the number of total data transfers |

memory and cores. Here, we have to consider the narmowgst grencil kernel is Z5N for our data layout (instead of\2
bottleneck of possibly several data paths like main memory §inaqut overlap)

on-chip/on-board memory or caches to the cores. FUrth&mor |, w6 advection step (1), a nonlinear stencil has to be ap-
we find Tc > f/P whereP (in GFlop/s) is the accumulated o 1o the three velocity components held in 3-tuple viscto
theoretical peak performance of the functional units. Ap&ID ¢ o artered subcubes. For the application of the nonlinear
bound for the effective performanégy; of the corresponding giencil thirteen 3-tuple vectors corresponding to neiginigp
implementation can hence be given by fluid cells are required. In order to access the components in
f f _ B a non-uniform way, 3-tuples vectors have to be reorganized
=T < max(Te,Tr} < mln{F’, 2 } by swizzling into temporary RM-tuples. Furthermore, an up-
date of the velocity components, computations of the 74poin
For unlimited bandwidthE very large) or compute-dominatedLaplace stencils for the velocity components, and inititiion
algorithms ¢ very large), the upper bound is basically thef the force profile representing the right hand side have
peak performanck. For unlimited compute capability’(very to be performed. Moreover, homogeneous Dirichlet boundary
large) effective performance is bounded By < fB/(4w). conditions apply to the intermediate velocity. The adwetcti
For the PS3 at least 24 Flop (32 Flop for one 8-SPE Ce#jep is the kernel with highest computational intensity thue
have to be performed per data transfer such that the algoritevaluation of the non-linear term in (1).
is not bandwidth-bound. This does not apply to all compasient In the projection step (2), Poisson equation with Neumann
of our simulation. Hence, the transfers dominate the tat& t boundary conditions has to be solved which results in smiuti
of computation. For specific problems dedicated stratefgies of a sparse and structured LSE where the matrix is represente
reduction of memory transfers may be developed in order by a regular 7-point stencil acting on scalar values for the
cope with this issue. pressure. The solution method considered in this papegsreli
Memory transfer reduction strategies include restricton on the conjugate gradient (CG) method [10]. In order to
single precision with a basic performance gain of a factor efmplify the analysis of the obtained performance resuits,
two on most architectures. Matrix operations on reguladgrido not include any kind of preconditioning method.

Pet

34

The CG method consists of several components. In e¢ Performance - memory test - PS3
iteration step of the CG method, a single stencil operati
corresponding to the matrix-vector multiplication, a secal 18-
product, a vector norm, and thregaxpy vector updates 16l Lo g |
[27] have to be performed. Due to the Neumann bounde -
conditions in the projection step (2), the computed presgir 147
defined only up to a constant value. Therefore, a normatizati 1
is required after application of the stencil and after evel,
vector update in order to ensure solvability of the LSE dt & 10f
to perturbations caused by SP rounding errors. ©

In Table | we illustrate the properties of the components |
a single CG iteration step. The first column shows the numt
of occurrences in a single step. The following columns prese

20 T T T T

-
L

the numberw of necessary words transferred, the numb —O—1 16 KByte
f of Flop, the computational intensity/w (in asymptotic ‘O 1 2x16 KByte |
value for largeN), and the theoretical performance boun ‘ ‘ ‘ O rw 16 KByte
for the complete operation. In the practical implementatic © 10 20 30 40 50 60 70
. . Size of the vector in MByte
some steps, e.g. stencil operation and scalar product, €an v
combined into a single kernel with associated reductions of Fig. 1. Main memory bandwidth on PS3.
transfers. Each component of the CG step consistO(d)
Function Oce. [#W‘(’)Vr ds) [#F‘Io | f/w P[‘érlf;lgoli?d single vectors are transferred. On every vector component
Vector norm 1 NT1 2N le >0 12’5 only a couple of computations can be performed. So the total
Scalar product| 1 2N+1 | 2N—-1 | 10 6.4 numberf of floating point operations in each kernel is also of
Vector update| 3 | 3N+1 2N | 07 4.2 orderO(N). Hence, computational intensity is asymptotically
Stencil 1 2.75N 8N 29 186 . . .
Normalization | 4 ON oN 10 6.4 constant with respect to problem size, i@(1). As a con-
TABLE | sequence, all kernels represent bandwidth-bound opesatio
COMPUTATIONAL INTENSITY AND PERFORMANCE BOUNDS FOR on Cell for largeN. Limiting factor is the still impressive
COMPONENTS OF ACG STER theoretical main memory bandwidth & = 25.6 GByte/s.

The outstanding peak performanee= 1536 GFlop/s on PS3
. cannot by far be fully utilized. In fact, as our experiments
operations orO(N) elements. The necessary number of Cgnow, effective bandwidth on PS3 is less than expected. By
steps depends on the condition number of the LSE which isdgnting the total number of transfers we find that a single CG
our case of ordeO(n?) = O(N??). The number of iterations step, of the projection step (2) is more than twice as expensiv

to reach a prescribed error tolerance resul(n) = O(NY/3). as compared to the advection step (1) and the velocity update
The total amount of operations to solve the pressure equatigep (3).

sums up toO(nN) = O(N%/3). Memory requirements for the
CG method are basically storage of four vectors. VI
In the velocity update step (3), a pressure gradient has to
be added to the velocity components. Due to the memory
organization, four data tiles for the velocity and a singd#ad As outlined in the previous sections, our Chorin-based
tile for the pressure have to be accessed in each subcubéNatier Stokes solver is a bandwidth-bound algorithm on the
size 16. Cell BE. On account of this, we start with an investigation of
The total memory requirements are abouN3Bytes (29- the main memory performance on PS3. Figure 1 shows that
4N for two velocity and force vectors with 3 componentskernels with 16 KByte in- and output arrays reach a bandwidth
2-4N for the pressure, 44N for CG). Here, we assumedof approximately 17.8 GByte/s. Bandwidth slightly increas
that data for the velocity, force, and pressure are keptetwiovhen only read operations are treated. A further increase
in lexicographical order for visualization and in block ilex can be observed for two input arrays of size 16 KByte. In
cographical order for computation. On PS3 we hav440 Figure 2 the same investigation is performed on 8 SPEs of
MBytes available, allowing fom = 112. On QS21 with 2 one Cell processor of the QS21 with disabled BIF-connection
GByte we can us@ = 272. to the second Cell processor and its main memory channel. By
Typical applications for stream processing should havedafault settings on QS21, the BIF connection is enablechgivi
computational intensity /w, defined as the ratio of performedhigher bandwidth as compared to 25.6 GByte/s by employing
Flop per memory transfer, that is polynomially increasing ithe second main memory channel. Peak performance is about
N. For all components of our applied fluid dynamic solver th20.5 GByte/s for read and write operations and about 24.3
numberw of data transfers is of ordé(N), i.e. in principle GByte/s considering only read operations of size 16 KByte.

. | MPLEMENTATION AND EXPERIMENTAL
PERFORMANCE RESULTS

35

Performance — memory test — IBM BladeCenter (8 SPEs) Performance - saxpy — PS3

GBytels

—— 6 SPEs
d qo-o o -0- O s e s =l g opEg
05 - 4 SPEs ||
—0—r 16 KByte ‘ . 3 SPEs
= = r 2x16 KByte % -0-2 SPEs
= O rw 16 KByte 4 1 SPE
] L L L T L L L Il T
0 50 100 150 200 250 0 10 20 30 40 50 60
Size of the vector in MByte Size of the vector in MByte
Fig. 2. Main memory bandwidth on QS21, 8 SPEs of one Cell, B$Bled. Fig. 3. Performance odaxpy vector update on PS3.

Performance - saxpy (IBM BladeCenter vs. PS3)
3.5 T T T T T

In the second step we investigate the performance of t
RapidMind implementation considering theaxpy vector
update operation. In- and output arrays for saxpy kernel 3
are one-dimensional arrays (multi-dimensional arraysnate
supported in RM on Cell) of 4-tuples related to cubes of siz 2.5
16x 16x 4 (16 KByte). Thesaxpy kernel is a bandwidth-
bound operation. Theoretically, there should be no notdéle
pendence on the number of SPEs performing the computati 2
assuming that each SPE is fed by utilizing maximal availab® 1.5
bandwidth. However, measurements of effective bandwid
show that each SPE can be fed with approximately 3 GByte 1| § 1
only. As depicted in Figure 3, this restriction directlyrnisates

op/s

to performance of thesaxpy kernel. For 6 SPEs we only 5 O~ Blade 8 SPEs ||
get a maximum performance of 2.8 GFlop/s for vectors ¢ ‘<0~ Blade 6 SPEs
size 52 MByte corresponding to a grid of size 34Chis ‘ ‘ ‘ , 10" PS36 SPEs
performance drop with respect to the deduced upper bound 0 10 2 o the vior in MB;‘t‘; 50 60
4.2 GFlop/s is attributed to the effective bandwidth of abou

17.5 GByte/s. Our result is in accordance with taxpy Fig. 4. Performance ofaxpy vector update on PS3 and QS21.

result on Cell in [28] where an effective bandwidth of 17.5

GBuyte/s is observed as well. Our examinationsafxpy on

QS21 shows a saturation effect. The full available bandwidare accumulated by a collective operator. The vector norm

(=~ 21.5 GByte/s) is already utilized for five SPEs and there akernel requires only a single input array amd memory

no performance benefits with six, seven or eight SPEs. In thiansfers. Measured bandwidth is .36GByte/s. A slightly

experiment we disabled communication with the second Célktter bandwidth can be achieved for the scalar producekern

processor of the blade via the BIF. A performance comparisaith 19.1 GByte/s for two input arrays andN2 memory

between PS3 and QS21 shows better results for QS21tiansfers. Maximum values for performance without coilexct

Figure 4. We observe huge performance drops when the vediperation (labeled with (1) in the legend of Figure 5) are

size is smaller than 20 MByte. On QS21 main memory i8.8 GFlop/s for the vector norm and 4.7 GFlop/s, matching

2x 1 GByte, hence larger vectors can be treated mitigatitige upper bounds with respect to effective bandwidth. With

the performance drop. collective operation performance drops to 6.1 GFlop/s§12.
A similar observation applies to the scalar product ar@Byte/s) and 4.0 GFlop/s (16.0 GByte/s).

the vector norms in Figure 5. We are transferring blocked For the stencil operation, data is blocked into 16 KByte

data of 16x 16 x 4 4-tuples and compute local partial sumschunks of size 16 16x 4 4-tuples. The interior nodes within a

Let Ng = (n/16)% the number of blocks. Both operationssubcube of size 14 14 x 2 4-tuples are treated first. Due to the

perform 2N — 4Ng Flop and yieldNg local 4-tuples, which smallness of the subcube onlyX568 Flop are performed per

36

Performance - Vector norm and Scalar product - PS3

8 T

GFlop/s
I

——Vvrv(1)

Sl VeV

~—PrQ() |

~0°PHQ

Il
30

Il
40

Il
50

Performance - 3D Laplace Stencil — PS3

=0~ Stencil on interior nodes of the subcubes
—il— Stencil on whole subcubes (2)
O Stencil on whole subcubes (1)

20 30 40 50

0 10 20 60 70 80 10 60
Size of the vector in MByte Size of the vector in MByte
Fig. 5. Performance of vector norms and scalar products & Pabel (1) Fig. 6. Performance of stencil operation on PS3.

refers to omitted collective operation.

_ S _ ~in our situation for two reasons. First, our stencil openati
inner subcube in this step instead of4B96 (38%). Effective js part of the CG iteration which prevents from executing
bandwidth of 17.5 GByte/s gives an upper performance bouggyeral steps in one go since intermediate computation of
of Peff <17.5/4-1568 8/2/4096 GFlop/s=6.65 GFlop/s. The scalar products and vector updates are required. Second,
measured value is.4 GFlop/s. Some overhead is attributethcal accumulation of data and temporary exchange of data
to the required swizzle operation with respect to the kernghntradicts the principles of stream processing.
application to short vectors (Value4f) mdirection (inx- and For the advection step (1), we couft= 108\ andw =
y- direction the stencil can be applied to full short vectorgz 4N. Due to the huge number of operations, we find a mea-
without reorganization). sured performance of 15.4 GFlop/s on PS3. For the velocity
For the treatment of the interfaces between the subcubgggdate step (3), we find = 9N and w = 10.4N. Measured
additional data have to be loaded. The upper bound becomgstormance is 2.6 GFlop/s. Comparably bad performance for
now Pe < 17.5/4-8/2.75 GFlop/s = 1Z GFlop/s. This poth kernels is attributed to data transfers and SIMDizatio
bound is not achieved in the experiment because of additioga 3-tuple short vectors (Value3f) instead of optimal 4tasp
fetches of small data chunks at the subcube interfaces, B a ot of necessary vector reorganization (swizzlingjte
non-regular treatment of several local arrays, accessB#Mto computation.
arrays, swizzling, index control, branches due to position |t s important to note that all computations with our
of the subcubes, and incorporation of Neumann boundag4pidMind version on Cell are restricted to single precisio
conditions. Performance results of the stencil operation ¢n practice however, one should mind the trade-off between

PS3 are presented in Figure 6. There, the label (1) refersp&formance and accuracy with respect to the quality of the
the block-lexicographical data layout. Label (2) refershie simulation results.

results for the data layout where the layers at the intesface
are grouped together. VIII. CONCLUSION
As a basic observation we find that maximum performanceNumerical treatment of large scale 3D flow problems is
on PS3 only applies to large vectors of size 2482 MByte) highly compute time- and memory-demanding and generally
or 272 (76 MByte). However, due to main memory limitationsnecessitates a methodology relying on high performance com
the full fluid simulation can run only with vectors of lengthputing. With the advent of new multi-core technologies, new
112 (5 MByte) on PS3. This fact results in a dramatic dropapabilities become available from the broad market. Rrctsp
in performance. of fine-grained parallelism are the key for steady perforcean
Note that the performance results of 21 GFlop/s in SP farcreases.
the stencil operations on Cell in [25] relate to problem#fitt ~ Our investigation of a CFD-solver implementation on Cell
entirely into the LS. Temporal blocking strategies are used shows that RapidMind’s stream processing model is progidin
[24] to overcome bandwidth limitations. The authors usetay a simple programming approach in single-threaded manner
instead of cubic blocks for spatial blocking. The strategy allowing to take advantage of the parallel capabilities haf t
to accumulate layers locally and exchange only single kyetell BE. The RapidMind Multi-core Development Platform
in each iteration. Temporal blocking techniques do notwappsimplifies the development of parallel applications, redgc

37

the cost and time lines of software development in compariso
to multi-threaded projects. Moreover, RapidMind’s appioa
is a step towards portability of implementations on heterog

method,” inICMMES’07: Proc. 4th Int. Conf. f. Mesoscopic Methods
in Engineering and Scienc®007, accepted.

[2] V. Heuveline and J.-P. Weil3, “Lattice Boltzmann methods the
Clearspeed Advance accelerator board, DBFD’07: Proc. 16th Conf.

neous platforms. With respect to the impressive compute ca- on Discrete Simulation in Fluid Dynamic007, accepted. .
pacity of the Cell BE and GPUs, stream processing models |ikg! W- B. Langdon and A. P. Harrison, "GP on SPMD parallel driap

nVIDIAs CUDA or RapidMind offer alternatives with great

potential for application areas typically involving sttured

data. Without necessary insights into hardware pecuéarit .
the programmer can concentrate on the essentials of the aldc}

hardware for mega Bioinformatics data minin§bft Comput.vol. 12,
no. 12, pp. 1169-1183, 2008.
[4] A. Chorin, “Numerical solution of the Navier-Stokes etdjons,” Math.
Comput, vol. 22, pp. 745-762, 1968.
J. Guermond, P. Minev, and J. Shen, “An overview of priget methods
for incompressible flows,Comput. Methods Appl. Mech. Engol. 195,

rithms and does not have to care for the memory transfers and no. 44-47, pp. 6011-6045, 2006.
further communication issues. No severe code rearrangsmeff] S-McKee, M. Tome, G. Ferreira, J. Cuminato, A. Casteldbéusa, and

are necessary. Only the compute-intensive parts are askign

N. Mangiavacchi, “The MAC method,Computers and Fluidsvol. 37,
no. 8, pp. 907-930, 2008.

the parallel processing units by invoking stream kernel®e T [7] A. Quarteroni and A. Valli,Numerical approximation of partial differ-

implementation efforts stay moderate and performancdtsesu
are convincing for kernels with high computational intéysi
where bandwidth limitations can be hidden. As for well-

ential equations2nd ed. Berlin: Springer, 1997.
P. Gresho and R. Sanincompressible flow and the finite element
method. Vol. 1: Advection-diffusion. Vol. 2: Isothermainiaar flow.
Chichester: Wiley, 2000.

known hardware technologies, memory organization and datd D. Lukarski, “Specific aspects of a parallel implemefuatof a 3D

structures remain an issue with huge impact on performance.

CFD solver on the Cell architecture,” Master’s thesis, Défth., Univ.
Karlsruhe, Germany, 2008.

A main drawback of the stream processing model is theo] V. Saad,lterative methods for sparse linear syster®sd ed. Philadel-

model-intrinsic absence of concepts to exploit temporal 19
cality and data reuse. Algorithmic flexibility of the numer
ical methods cannot be expressed in full coverage due to
the constraints of the underlying stream processing model,
The situation gets worse for problems involving irregulefrm]

phia: SIAM, 2003.

[11] Cell Broadband Engine architectur&er. 1.02, IBM, 2007.
T12] A. Arevalo, R. Matinata, M. Pandian, E. Peri, K. Ruby,Thomas, and
C. Almond, Programming the Cell Broadband Engine, Examples and

Best Practices|IBM Redbooks, 2008.
CorePy: Synthetic Programming
http://www.corepy.org/, 2008.

in Python Indiana Univ.,

data structures. For bandwidth-bound algorithms - typicgh] M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T. Nakat&iPI

algorithms in numerical simulation and treatment of partia

differential equations - limitations of the stream prognaimg

Microtask for programming the Cell Broadband Engine preoes|BM
Syst. J.vol. 45, no. 1, pp. 85-102, 2006.

[15] Sequoia Stanford Univ., http://sequoia.stanford.edu/, 2008.

model in combination with Cell become apparent. Limitation16] Compiler Technology for Scalable Architectures IBM Research,

on the Cell BE arise mainly due to the limited main mem-17
ory bandwidth (although superior compared to many oth[er]
devices). In our case, main memory limitations lead to short

http://www.research.ibm.com/cellcompiler/, 2008.

P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, IS2el a
programming model for the Cell BE architecture,”$C'06: Proc. 2006
ACM/IEEE Conf. on SupercomputingNew York: ACM, 2006, p. 86.

vectors to be transferred resulting in severe bandwidtipsiro[18] B. Bouzas, R. Cooper, J. Greene, M. Pepe, and M. Préli@) Mercury

Limited size of the Local Store of Cell's SPEs is no handicap

Computer Systems, http://www.mc.com/uploadedFiles/MEH-Conf-
Paper.pdf.

due to the the restriction on the size of in- and output arrapgs] M. D. McCool, “Scalable programming models for massiveulticore

within RapidMind. In- and output arrays for RM-kernels with

processors,Proc. |IEEE vol. 96, no. 5, pp. 816-831, 2008.
RapidMind Multi-Core Software Platform - User GuideRapidMind,

size larger than 16 KByte would increase the efficiency of ite” 2007,
stencil operation due to the fraction of interior nodes With [21] RapidMind Multi-Core Software Platform - APl Reference Mah

the subcubes. An essential part of the attained performafnce
. o - 122]
our solver is owed to the memory organization by block-wigé

lexicographical ordering plus reorganization of the ddttha
interfaces.

ACKNOWLEDGEMENTS

RapidMind, 2007.

RapidMind Developer Portal RapidMind,
https://developer.rapidmind.net, 2008.
[23] Compute Unified Device Architecture (CUDA) nVIDIA,

http://nvidia.com/cuda, 2008.

[24] K. Datta, S. Kamil, S. Wiliams, L. Oliker, J. Shalf, and. Yelick,

“Optimization and performance modeling of stencil comfiates on
modern microprocessorsSIAM Reviewto appear, 2008.

The Shared Research Group 16-1 received financial supgesf s. williams, J. Shalf, L. Oliker, S. Kamil, P. Husbandsd K. Yelick,

by the Concept for the Future of Karlsruhe Institute of Tech-
nology in the framework of the German Excellence Initiatin\ZG]

and the industrial collaboration partner Hewlett-Packditoe

QS21 BladeCenter is let by courtesy of SVA System Vertrieb
Alexander GmbH, Germany. All mentioned products angd,

brand names are trademarks or registered trademarks of thei
[28] T. J. Knight, J. Y. Park, M. Ren, M. Houston, M. Erez, K.t&alian,

respective owners.

REFERENCES

[1] M. Sturmer, J. Gotz, G. Richter, A. Dorfler, and U. RudFluid flow
simulation on the Cell Broadband Engine using the LatticétzZBmann

38

“Scientific Computing Kernels on the Cell Processdnt. J. Parallel
Program, vol. 35, no. 3, pp. 263-298, 2007.

S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and Yelick, “Im-
plicit and explicit optimizations for stencil computati&hin MSPC'06:
Proc. 2006 workshop on Memory System Performance and Goegs
New York: ACM, 2006, pp. 51-60.

] G. H. Golub and C. F. Van LoanMatrix computations 3rd ed.
Baltimore: Johns Hopkins Univ. Pr., 1996.

A. Aiken, W. J. Dally, and P. Hanrahan, “Compilation for exjly
managed memory hierarchies,” iPPoPP’07: Proc. 12th ACM SIG-
PLAN symposium on Principles and Practice of Parallel Peagming
New York: ACM, 2007, pp. 226-236.

OPTIMISING COMPONENT COMPOSITION USING INDEXED DEPENDENCE METADATA

Lee W. Howes, Anton Lokhmotov, Paul H. J. Kelly, A. J. Field

Department of Computing, Imperial College London
email: {lwhO1, anton, phjk, ajf} @doc.ic.ac.uk

ABSTRACT

This paper explores the use of dependence metadata for op-
timising composition in component-based parallel programs.
The idea is for each component to carry additional informa-
tion about how points in its iteration space map to memory
locations associated with its input and output data structures.
When two components are composed this information can
be used to implement optimisations that would otherwise
require expensive analysis of the components’ code at the
time of composition. This dependence metadata facilitates
a number of cross-component optimisations — in this paper
we focus on loop fusion and array contraction. We describe
a prototype framework, based on the CLooG loop generator
tool, that embodies these ideas and report experimental per-
formance results for three non-trivial parallel benchmarks.
Our results show execution time reductions of up to 50%
using the proposed framework on an 8§ core xeon.

1. INTRODUCTION

Component based programming consists of writing software
entities to fulfill specified interfaces. Component models al-
low multiple component implementations to satisfy the same
interface, offering flexibility on the choice of implementa-
tion for a particular problem or computing platform. How-
ever, treating components as black boxes described by their
interfaces can limit the scope for optimisation. In particu-
lar, whilst individual components can be statically optimised
when the component is defined, component compositions
can only be optimised at the point of use. This requires an
element of dynamic optimisation that exploits context infor-
mation.

Powerful but expensive inter-procedural compiler opti-
misations such as enabled by the polyhedral framework [1]
could be used once the composite component structure is
known. However, the cost of the analysis would have to be
paid each time the same components were composed in the
same way.

Adaptive components are explicitly programmed to make
use of context information, e.g. knowledge of the compo-
nents with which they are composed, in order to produce op-
timised execution schedules. In this paper we propose to im-

plement a form of adaptive behaviour through the use of sup-
plied component metadata and to use that metadata to iden-
tify dynamic optimisation opportunities at the time of com-
position. The fact that the metadata is supplied rather than
extracted at composition time, obviates the need to analyse
a component’s code each time it is used, in order to identify
whether cross-component optimisation opportunities exist.

The metadata we explore in this paper, which we refer to
as indexed dependence metadata, defines the set of memory
locations that a component may access at a particular point
in its iteration space. The relationship between these map-
pings in different components serves to define implicitly the
communication requirements of their compositions.

By examining the memory dependence metadata of the
components in a composition, we seek to expose opportuni-
ties for cross-component optimisation that are not possible
by optimising the individual components in isolation.

Specifically, in this paper we use the dependence meta-
data to determine whether two loops occurring separately in
the components of a composition can be aligned whilst re-
specting dependences, in which case the loops can be fused.
Fusion in turn may facilitate array contraction, reducing the
space requirements of the composition, and inter-processor
communication in the case where the components themselves
comprise parallel loops. We use CLooG [2, 3] to generate
the code for a fused loop using a scheduling matrix gener-
ated from an analysis of the components’ metadata and a
matrix representation of the iteration space generated from
the components’ source code.

The contributions of the paper are as follows:

e We introduce the idea of indexed dependence meta-
data, which defines the set of memory locations that
may be read from and written to by a component at
each point in its iteration space (Section 3).

e We show how the dependence metadata can be used
in conjunction with a representation of the compo-
nents’ iteration spaces to implement loop fusion and
array contraction across the component boundaries in
a composition (Section 5). In particular, we extend
this to parallel components, where the contraction re-
duces inter-processor communication.

39

e We describe a prototype software component frame-
work incorporating the above ideas, which has poten-
tial applications in multi-core software development
(Sections 2 and 4).

o We illustrate the power of the approach by showing
substantial performance improvements through fusion
of parallel components in linear algebra and image

processing benchmarks and a 3D multigrid solver (Sec-

tion 6). On an eight-core Intel Xeon system, maxi-
mum performance improvements on these examples
range from 12% to 50%.

<interface id="iContourfilter">
<input type="float" name="image_in"

format="array (in_x,in_y)" />
<output type="float" name="image_out"
format="array (out_x,out_y)" />
</interface>

<interface id="iConvolution">
<input type="float" name="image_in"

format="array (in_x, in_y)" />
<input type="float" name="filter_in"
format="array (filter_x, filter_y)" />
<output type="float" name="image_out"
format="array (out_x,out_y)" />
</interface>

Listing 1. Interface specifications for the contour filter and
convolution.

<component id="cf" >
<implements id="iContourfilter" />
<uses name="conv">
iConvolution (

image_in(in_x, in_y), filter_in(3, 3),
image_out (out_x, out_y) flow to F1)
</uses>

<constraint type="equality">
conv.in_x=in_x
</constraint>

</component>

Listing 2. Part of the contourfilter component specification.

2. ARCHITECTURE OVERVIEW

Our component programming system is designed to select
and generate code from a library of components. Compo-
nents carry metadata describing functional interfaces and
data dependence relationships. We identify three elements:
Component, Interface and Manager.

The application and individual components depend on
one or more interfaces. Components also implement inter-
faces, satisfying the contract defined by the interface. The
manager maintains the component dependence graph and
allocates component implementations to the interfaces as
necessary. If a component C'1 depends on an interface that

40

" Timage_in| fiter_in
(in_x, in_y) (3,3)

iConvolution

image_out | (out_x, out_y)
[T — H
image_in |, (in_x, in_y)

image_in |(in_x, inJ):,s':

image_out |, (out_x, out_y)

image_out

image2_in

image1_in
(in_x, in_y)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
iContourfilter 1
1
1
1
1
1
1
1
I (nxiny)
1
1
1
1

Fig. 1. A contour filter example showing dependencies, data
flows and size descriptions of inputs and outputs.

is implemented by a component C2, we say that C2 is a
subcomponent of C'l. We generate the dependency graph of
an application by recursively expanding the dependencies in
the component graph. The assignment of components to in-
terfaces is performed during a later graph pass.

Figure 1 shows the dependency relationships for an im-
age filtering example. We see a iContourfilter interface with
one input and one output, implemented by a component that
depends on iConvolution, iDilation and iDifference inter-
faces to perform its computation. Flow annotations F'/ and
F2 define data flow dependencies at the composition level.

Listing 1 shows the specification for two of the inter-
faces in Figure 1: iContourfilter and iConvolution. List-
ing 2 shows part of the component specification for the con-
tour filter (¢f), including its dependence on its convolution
subcomponent.! The c¢f component, which implements the
iContourfilter interface, depends on the iConvolution inter-
face. We name the dimensions of the input and output pa-
rameters, and specify a constant 3 x 3 size for the filter pa-
rameter. The flow fo keyword names a data flow as in Fig-
ure 1.

The implementation language for a given component is
flexible. We currently support C/C++, a high level polyhe-
dral representation of C, or pre-compiled binaries. In prin-
ciple the system can integrate components in any language,
given support in the component manager.

Note that our implementation currently uses XML to define interfaces,
component specifications and dependence metadata, although we envisage
the use of automated or GUI based tools in the future.

3. COMPONENT METADATA

In general, the input and output variables of components
need to interact with those in their subcomponents. For
example, variables in subcomponents can be configured to
share values of variables in the parent component, and hence
values can propagate through the component graph. Addi-
tional metadata can be attached to a component specification
in order to express these properties. For example, Listing 2
shows an equality constraint specifying that the value in_x in
the interface matches the in_x in the subcomponent named
conv.? Additionally, data can flow from one subcomponent
to another, and hence through various levels of the compo-
nent graph when combined with parent/child relationships.
In the example, the image_out value of iConvolution is con-
nected (flows to) the flow F1, which will be connected again
to an input variable in another dependency of the compo-
nent. Component graph data flows are defined in the meta-
data, to avoid composition-time component analysis.

It should be emphasised that the aim is to provide depen-
dence relationships on the component inputs and outputs at
composition time, without analysis of the component code;
indeed, this code might be in binary form, which could pre-
clude such analysis.

3.1. Indexed Dependence Metadata

Indexed dependence metadata defines a set of memory ad-
dresses that a component may access at a point in its iter-
ation space. By interpreting the metadata, the component
manager can map a given set of iterations onto a set of mem-
ory locations and, assuming predictable and reasonably sim-
ple patterns, can infer dependencies across sets of iterations.

In Figure 2 we see the region constraints of our convo-
lution filter from the running example, assuming a 3 X 3
filter. Listing 3 shows the generic component specification
for the convolution filter assuming an arbitrary-sized filter.
The specification includes various pieces of metadata that
the component manager can use to optimise the composition
to its context. Note that omitting some or all of the metadata
will not break the code; it will simply limit the scope for
optimisation.

The iteration space of the component corresponds to the
indices into the input image (image_in), as shown. For each
point in the iteration space a 3 x 3 rectangular region of im-
age_in, relative to the point, will be read. This corresponds
to a radius of size 1 in each dimension around the point.
Additionally, the whole of filter_in will be read and the cor-
responding point in image_out (i.e. aradius of size 0 in each
dimension) will be written. The filter input variables are de-

2To generalise this, we can specify inequalities rather than equalities
to constraints, and hence define the possible ranges for subcomponent pa-
rameters. Relaxing the requirements of a subcomponent can allow more
specific and efficient subcomponents to be selected.

Input Region of
image_in

Convolution computation
at (x,y) in iteration space

L |
o
filter y = 3' :H:

filter x =3
All of filter_in

Output Region of
image_out

1}

Fig. 2. Region dependencies at a point in the iteration space.

fined in the interface and their values propagated through the
component graph.

<component id="convolution">
<iteration_space
dimensions=" (image_in.width, image_in.height)"
/>
<constraint type="dependentregion"
shape="rectangle">
<constraintinput name="image_in"
placement="relative"
radius="((filter_in.w-1)/2, (filter_in.h-1)/2)"
/>
<constraintinput name="filter_in"
placement="absolute"
range=" (0->filter_in.w-1,0->filter_in.h-1)"

/>
<constraintoutput name="image_out"
radius="(0,0)" />
</constraint>
</component>

Listing 3. Constraints in the specification of a component.

3.2. Component relationships through metadata

Metadata directly affects the relationships between compo-
nents. If two components communicate either through a
functional dependence, or through a data flow, the metadata
will need to be propagated.

A component’s metadata must be combined with the meta-
data of other components to give a full specification of a
relationship. For example, in Listing 2 the contour filter re-
quires a 3 x 3 convolution operation, which defines an access
region on its input. The size of this access region depends on
the size of the filter. Therefore, to specify fully the convolu-
tion’s metadata we need to propagate the filter size specified
by the contour filter through the graph. This propagation
can be achieved by passing metadata bindings through par-
ent/child and data-flow relationships.

When the application requests an interface, values are
bound to the interface’s parameters. These values are com-
bined with constraints and dependence metadata throughout
the component graph to bind values to variables and define
component relationships as accurately as possible. Compo-
nent selection or composition uses the propagated informa-
tion to limit the binding of components to interfaces or to

41

Convolution . Dilation
Communicated data

Input data Output data

a)

C d

di

d2

d

.

d2

Fig. 3. The addition of region descriptors enables more effi-
cient parallelism.

define possible composition optimisation opportunities.

Figure 3 shows how the information provided by com-
bining region definitions with the size of the dataset can re-
duce the size of the required communication between two
components, in this case the convolution and dilation com-
ponents from Figure 1. Figure 3(a) is an example of a simple
component composition communicating via an intermediate
data set. If we parallelise the components with no knowl-
edge of the components’ internals, we do not know how
much of the data each thread will need and must commu-
nicate it all. In this case the individual components would
be parallel but not their composition, as illustrated in Fig-
ure 3(b).

With full region information we can minimise the com-
munication between parallel components. For example, if
the dilation component depends also on a 3 x 3 filter then
parallelisation of the component as shown in Figure 3(c) re-
quires only half the data set, plus an additional halo strip,
to be sent from each convolution thread to its corresponding
dilation thread. As a consequence, data can be kept in more
localised, faster, memory for longer and communication is
more predictable. If ¢; and d; both execute in the same mem-
ory region, only the halo strips would need to pass through
higher levels in the memory hierarchy.

3.3. Scalability

The component metadata in the examples are currently writ-
ten by hand. We envisage that in practice the information
will be, at least partially, obtained by component analysis
at construction time. Clearly, complicated components limit
the feasibility of analysis. By limiting the dependence infor-
mation to the input and output data structures of the compo-
nent, and assuming the contents are correct, we simplify the
run time workload, and improve scalability in that manner,
ensuring that the complexity of individual components does
not affect composition time scalability. Generation time anal-

42

ysis may not be possible for all components. However, the
discussed system localises analysis at construction time and,
as a result, increases the possibility of correct dependence
construction over fully general system-wide analysis of all
possible interactions.

4. CODE GENERATION

Our system supports components in various forms. In the
simplest case we use a pre-compiled binary, which is linked
at run time. Alternatively, we can compile and link a com-
ponent code at run time. Delaying compilation to run-time
offers scope for performance improvements as the compiler
may have more information about the code, or the system.

A further possibility is to generate code at run time, be-
fore compilation and linking. Earlier work such as Task-
graph [4] shows that run time code generation and compi-
lation can be effective. In this system we view both run
time code generation and compilation as a lowering from
one implementation level to another. For example, we can
lower from a high level source representation, to C++; then
through compilation of C++ to a binary. Each stage takes
a component as input, and generates a replacement com-
ponent as output, with correct lowered annotations. This
approach is flexible and conveniently supports component
caching.

We use the CLooG [2, 3] code generator to construct the
code for compilation. CLooG-based components are high-
level representations of iteration spaces, and are converted to
C++ components in the first stage of the lowering process.

COMPONENT_TARGET (difference)
{

POLYHEDRAL_LOOP (i) [1 < imagel_in.height () ;
i >=0; 1 {
POLYHEDRAL_LOOP (j) [j < imagel_in.width();
j>=0; 1 {
image_out (x,y) = imagel_in(x,y)-image2_in(x,Vy)

}

Listing 4. A simple polyhedral representation of the itera-
tion space of an image difference operation.

CLooG is based on the polyhedral model [1] which rep-
resents execution schedules as polyhedra in multi-dimensional
iteration spaces. CLooG’s input defines a polyhedral iter-
ation space using a set of affine half-spaces as individual
inequalities in the rows of a matrix. An example of the in-
put matrix can be seen in Figure 5(b). CLooG outputs the
code necessary for each statement to visit each integer point
within the polyhedron. CLooG does not perform depen-
dence analysis and so for ill-considered input will generate
incorrect output. As a result, our input to the code generator
must satisfy data dependencies.

a - Without skew b -Withskew() 1 2 forinti=0to2
forinti=0to 2 0 b(i) = ...;
0 1 2 pj-

Original end for
. 0 end for 1 forinti=0to 2
Original g g g forinti=0to 2 =b(i-1)+
1 .. =bi); 0 1 2 3 b(i+1);

end for 0 end for
Shifted
o forinti=0to2 1 b(0) =

forinti=1to2

Fused0/19 Q b(')_"' 0 1 2 3 b=
end1or Fused /1@ @ @ O e}id_fok)r(l_z)+b(l)
..=b(1) + b(3);

Fig. 4. A simplified one-dimensional loop fusion example.

We generate input to CLooG from a component imple-
mentation as in Listing 4. Full analysis of C code or a binary
representation of analysed dependencies as polyhedra would
work equally well but this syntax offers us a simple basis to
work with for experimentation. We specify the execution
polyhedron of the kernel using nesting to define dimensions
and lists of inequalities to define ranges for the variables.
This inequality syntax is converted into CLooG’s input ma-
trices during the process of lowering from CLooG input to
C++. CLooG is capable of generating hundreds or thou-
sands of lines of code to cover complicated iteration spaces
which would be extremely difficult to write by hand.

5. USING METADATA FOR OPTIMISATIONS

The presence of dependence metadata on components al-
lows the manager to perform component mapping decisions
and, in addition, cross-component optimisations. In this
work we illustrate the potential by applying loop fusion (and
the enabled array contraction) to a connected subgraph of
components.

5.1. Increasing temporal locality with loop fusion

Loop fusion [5] takes two or more consecutive loops and
merges the bodies together as illustrated in Figure 4(a). Fu-
sion reduces the number of control instructions, improves
the temporal locality of data and, when fusing parallel loops,
avoids unnecessary synchronisation (albeit with the risk of
harming cache performance or instruction scheduling).

Loop dependencies can complicate fusion. In Figure 4(b)
for example, statement 1 has a forward data dependence on
the output of statement 0. These two statements from the
same iteration number of the original loops cannot execute
in the same iteration of the fused loop. The dependence
can be resolved by shifting the iteration space of the sec-
ond loop. The shift allows each loop to perform its given set
of iterations with all dependencies satisfied before the data
is required. The result of this fusion and shift (sometimes
called “shift and peel” [6]) is a guarded or partially unrolled
loop nest as in Figure 4(b), with a necessary loss of paral-
lelism at the edges.

(a) A (b) (©)
: S1 & shifted S2

S S1&S2W|thoutsh|ft

606000 PP e M
0000 PPOPDD -
0000 PP

0000 PP '
60000 PP e ‘®
oo 00 eqitflijc | eqitflij c
@@ ®@®® S1:010-100 : S1:010-100
'YX X) 0010-10 : 0010-10
©® 0080 : 5010-100: S22010-10-1
eo0o0o0eo0 001010 001 0-1-1

Fig. 5. The scatter matrix can be used to schedule the loop
by changing the logical execution time of a given iteration.

Input and output regions defined in the metadata make
the data dependencies explicit. We know which data values
may be read or written at a given point in a component’s
iteration space, and hence can compute the shift necessary
to resolve data dependencies.

We use CLooG to generate code representing the fused
set of components. We supply the individual input matrices
that define the iteration space. We also provide a mapping
of points in the iteration space to a logical execution time,
known as the scatter matrix. As demonstrated in Figure 5,
we can specify that a point (, j) in the iteration space (a) of
a component can be mapped to (¢;,¢;) in time, where either
t; =dandt; = j(b),ort; =i+ 1landt; = j+ 1 (o),
shifting the schedule.

The amount of shift required depends on the dependence
relationship between two components. These relationships
are computed from the access region metadata. For exam-
ple, a 3 x 3 region as input to the second component requires
a shift of 1 in the iteration space of the second component
so that the output of the first is ready when it is needed. In
the general case, we need to compute the last iteration in
the source component that may generate data needed by the
matching iteration in the target component. If the depen-
dence distance is constant, we can compute a static schedule
correction. We parameterise the scatter matrix by a set of
shift values computed from the dependence relationships to
shift the logical time of the component and therefore of its
statements. With a correct scheduling defined in the scatter
matrix, CLooG will generate a series of loops that respects
the inter-component data dependencies.

Component selection for fusion depends on the flow of
data between components. Unrelated components are easy
to fuse, but unlikely to benefit from fusion. Components
that share inputs, or communicate using a intermediate data
structure, are more likely to benefit. Having analysed the
data flow in the parent component at construction time, we
can fuse the children at composition time. Calls to the sub-

43

Contour filter with SSE

—*—1 thread
9000H ~ * -1 thread fused and contracted
—©—4 threads

l| -©-4 threads fused and contracted
8000 —£A— g threads
|| -A- 8 threads fused and contracted

Execution Time (ms)

20 30 40 50 60
Size of dataset (MPix)

Fig. 6. Execution time of the contour filter example.

components can be replaced with calls to stub functions that
merely prepare data structures. The execution of the fused
component can be delayed until the last subcomponent call.
As a result, the parent component itself need not change.

5.2. Reducing storage through contraction

Loop fusion reduces the period between generation and use
of intermediate data values, often leading to more efficient
use of the cache and improved performance. Array contrac-
tion offers further scope for improvements and can be a key
enabler of high performance in large parallel fused loops [7].
Rather than storing entire intermediate arrays, we reduce the
intermediate storage to the minimum required to satisfy data
flow requirements, reducing the use of memory bandwidth
due to cache displacement.

6. EXPERIMENTAL RESULTS

We implement three examples using our component frame-
work to demonstrate its capabilities and how we can im-
prove the performance of an application. These examples
possess different data flow situations and hence show varied
performance.

To enable fusion, all subcomponents are implemented in
a high-level polyhedral representation, as in Listing 4, and
have appropriate dependent region and data flow metadata
attached to describe the relationships between component
inputs and outputs.

We compile using Intel C/C++ 10.1 or GCC 4.2 (whichever

performs better) on an eight core, dual-socket Intel Xeon
based machine running a 64-bit Linux 2.6 kernel and paral-
lelise using OpenMP. The single threaded code is the unpar-
allelised, sequential version.

44

Biconjugate gradient
300 : ‘

%1 thread
—%—1 thread MKL
=% -1 thread fused S
2501 e~ 4 thread MKL "
-© -4 thread fused ‘
—A—8 thread MKL
H - A -8 thread fused

n
o
o

150

o
o
T

Execution time [s]

O

50

== A
_a--h

2000 3000 4000 5000
Size of matrix dimension

0 1000

Fig. 7. Comparing MKL, with custom version of biconju-
gate gradient for 1, 4 and 8 threads (custom without fusion
shown only for 1 thread).

6.1. Image processing

The contour filter (Figure 1) operates on four-component
(RGBA) data and is vectorised using SSE instructions.

The dilation subcomponent selects a maximum value in
a region of the output of the convolution subcomponent. To
allow for this dependence, the fused execution space must
shift. The execution of the elements of both the dilation and
difference are delayed by the radius of the region.

Figure 6 shows performance results for the contour fil-
ter with SSE. There is a substantial reduction in execution
time for fusion combined with contraction. Execution time
is reduced by 21% for a single thread, 35% for four threads
and 48% for eight threads. While not plotted on the graphs,
fusion alone offers 4%, 11% and 20% respectively. The im-
provement from fusion alone is slightly erratic, but tends to
decrease with data set size as the larger range of visited ad-
dresses increases the chance of an individual element being
removed from the cache. A similar effect is not seen with
the contracted data sets where the accessed address range is
reduced to a circular buffer of a few image rows in size.

6.2. Linear Algebra

Our linear algebra example is a biconjugate gradient solver
from the Iterative Template Library [8], with components
defining various aspects of the computation flow. We al-
low fusion to occur between a standard matrix/vector mul-
tiplication, and a transposed matrix/vector multiplication.
Note that in this benchmark we share input matrices between
components, rather than having data flow from one compo-
nent to another. A result of this lack of data flow is that
there is no communicated array to contract and hence this
example supports fusion only.

In this example we use 1 x 1 access regions because the
execution maps a single iteration space point to a single data

3D Multigrid

IN
o
S

—A— 1 thread

-A -1 thread fused
[| =©—4 threads

-© -4 threads fused
[| —*—8 threads

- % - 8 threads fused

w
a
o

W
o
o

n

a

o
T

u
o
T

Execution Time (ms)
n
o
o

o
(=)
T

501

4 5
x 10°

2 3
Size of dataset

Fig. 8. Execution time for single and four and eight threaded
3D multigrid solver kernel.

element from each input. As the input and output vectors
are present in a single dimension only, the mapping is a pro-
jection onto that dimension.

Figure 7 graphs performance results for the fused ver-
sions of the biconjugate gradient solver as well as results for
Intel’s Math Kernel Library (MKL) [9] as a baseline with a
comparison with the original version on a single thread. We
can see that while there is an improvement in performance
over MKL for all numbers of threads, this improvement is
more pronounced for 4 and 8 threads where memory con-
tention between cores is reduced by fusion.

6.3. 3D Multigrid

Multigrid solves differential equations using a hierarchy of
discretisation levels. We adapted this example from the NAS
Parallel benchmarks suite [10] using fixed boundary con-
ditions.> We created a sequence of dependent components
based on the core functions that iterate on the data: Data
initialisation, Interpolation from a lower resolution compu-
tation stage, Computation of residuals and Application of a
smoother to the data.

The four components are related by region and data flow
dependencies describing how a value in the iteration space
of one component relates to a value in the iteration space of
the next in sequence. We require 3 x 3 x 3 regions around
the input to the interpolation, residual and smoother appli-
cations. We make the kernel more efficient by absorbing the
inner dimension of the loop nest, allowing hand tuning of
the inner loop. Given such a kernel, our access region speci-
fies an entire row of the data set in one dimension and a 3 x 3
region in the other two. Note that the component manager

3In the original code the computation is complicated by a cyclic depen-
dency due to a wrap-around boundary condition. While fusion is still pos-
sible with the cyclic dependency, performance benefits are lost due to the
increased loop shift necessary to support wrapping on all three dimensions.

need not know that our tuned kernel has a carefully written
inner loop, only that it needs to access an entire row of the
data set to perform its work.

Figure 8 offers performance results for 1, 4 and 8 threads.
The improvement from fusion peaks at 4 threads where we
see a mean reduction in execution time of 12% over the
range shown. For larger data sets the performance of fusion
falls off as the amount of data maintained by the 3D com-
putation skew creates stress on the cache and other shared
data structures of the CPU. The peak at 4 threads is simi-
larly explained because the L2 cache is shared between pairs
of cores, reducing the effective cache size per core when 8
threads are used.

7. RELATED WORK

Adaptive component models have been widely studied, for
example in embedded systems (e.g. see [11]), as well as
more generally in distributed systems (e.g. [12]). Dowling
and Cahill [13] offer a useful framework, emphasising the
importance of separating adaptational from computational
code. Recent work on the Common Component Architec-
ture (CCA) looks at composing, substituting and reconfigur-
ing components during application execution [14].

Our component composition builds on work on Archi-
tecture Description Languages (ADLs) such as Darwin [15]
and xADL [16], and is similar to Think [17]. Our work dif-
fers from other ADLs in its support for indexed dependence
metadata, that denotes dependence relationships for individ-
ual iteration space points.

CLo00G arises from Bastoul’s work [3] and builds on ear-
lier work on code generation in the polyhedral model by
Griebl and Wetzel [1]. Griebl [18] applies the polyhedral
model to parallelisation of loop nests while recent work by
Pop et al. [19] looks at integrating polyhedron based analy-
sis into GCC.

This paper is an attempt to realise the THEMIS [20] pro-
posal and is part of a larger body of work including the Task-
graph [4] library, related work from Cornwall [7] and active
libraries in linear algebra from Russell [21].

ZPL [22] (a precursor of Chapel [23]) and KeLP [24]
(which led to Chombo [25]) had explicit regions - in fact
a “region calculus”. However their regions represent parti-
tions of iteration and data spaces - whereas in this work we
represent the mapping between points in the iteration space
and memory locations.

Languages like StreamIt [26] use the concept of sequences
of data items, called streams, which are operated on by pure
functions, called filters. Clear (and often static) data-flow re-
lationships between filters enable cross-component optimi-
sations. In contrast, our framework enables cross-component
optimisations for general programs operating on arbitrary
data sets.

45

We

8. CONCLUSIONS AND FUTURE WORK

have shown how interfaces with indexed dependence

metadata can be used to improve the performance of com-
ponent compositions. Our experimental results show that
metadata can be used to perform aggressive component fu-
sion, generating hundreds of lines of code (200-300 in the
contour filter and over 1500 for the multigrid example) that
would be challenging to implement by hand. We have also
confirmed that loop fusion can substantially reduce execu-
tion time through improvements in temporal locality of data.

The THEMIS proposal discusses more possibilities for

metadata than we have been able to implement to date. In
the future we hope to proceed further with this investigation,
particularly in the area of applying cross-component optimi-
sation techniques to data layout by adding metadata annota-
tions describing the access patterns for data. More varied
access descriptors and tighter integration into the program-
ming language using C++ pragmas or compiler support for
iterator classes are other targets.

The multigrid example shows that in some cases fusion

gives only a small benefit. In these cases we plan to use
adaptive component mapping to use the original components
rather than fused sets when a fusion attempt reduces perfor-
mance. Optimal combinations may include calls to vendor
libraries wrapped in components, as used in the MKL com-
parison for the linear algebra example.

Novel architectures such as heterogeneous multicore plat-

forms require novel optimisation strategies. Hand coding
is often impractical. We envisage that adaptive, metadata-
driven optimisation techniques will be of increasing rele-
vance as technology develops.

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

46

9. REFERENCES

M. Griebl, C. Lengauer, and S. Wetzel, Code generation in
the polytope model, Proc. PACT, IEEE Comp. Soc., 1998.

CLooG, http://www.cloog.org/.

C. Bastoul, Code generation in the polyhedral model is easier
than you think, Proc. PACT, IEEE Comp. Soc., 2004.

O. Beckmann, A. Houghton, P. H. J. Kelly, and M. Mel-
lor, Run-time code generation in C++ as a foundation for
domain-specific optimisation, Proc. Domain-Specific Pro-
gram Generation International Seminar, 2003.

K. Kennedy and K. S. McKinley, Maximizing loop paral-
lelism and improving data locality via loop fusion and dis-
tribution, Proc. LCPC, Springer, 1994.

N. Manjikian and T. S. Abdelrahman, Fusion of loops for
parallelism and locality, IEEE Trans. Parallel Distrib. Sys.

J. L. T. Cornwall, P. H. J. Kelly, P. Parsonage, and B. Nico-
letti, Explicit dependence metadata in an active visual effects
library, Proc. LCPC, Springer, 2007.

A. Lumsdaine, L.-Q. Lee, and J. Siek. [Iterative template
library, http://www.osl.iu.edu/research/itl/, 2001.

(9]
(10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Intel. Math Kernel Library, 2008

B. L. Chamberlain, S. J. Deitz, and L. Snyder, A comparative
study of the NAS MG benchmark across parallel languages
and architectures, Proc. SC, IEEE Comp. Soc., 2000.

H. Ma, L.-L. Yen, F. Bastani, and K. Cooper, Composition
analysis of QoS properties for adaptive integration of embed-
ded software components, Proc. ISSRE, 2003.

L. Baresi, S. Guinea, and G. Tamburrelli, Towards decentral-
ized self-adaptive component-based systems, Proc. SEAMS,
ACM, 2008.

J. Dowling and V. Cahill, The k-component architecture
meta-model for self-adaptive software, Proc. of the Third In-
ternational Conference on Metalevel Architectures and Sepa-
ration of Crosscutting Concerns, Springer, 2001.

L. C. Mclnnes et al, Computational quality of service for
scientific CCA applications: Composition, substitution, and
reconfiguration, Argonne Nat. Lab., Tech. Rep. 2006

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, Specifying
distributed software architectures, Proc. European Software
Engineering Conference, Springer, 1995.

E. Dashofy, A. van der Hoek, and R. Taylor, A highly-
extensible, XML-based architecture description language,
Software Architecture, 2001.

A. E. Ozcan, O. Layaida, and J.-B. Stefani, A component-
based approach for MPSoC SW design: Experience with OS
customization for H.264 decoding, ESTImedia, IEEE Comp.
Soc., 2005.

M. Griebl, Automatic Parallelization of Loop Programs for
Distributed Memory Architectures, Habilitation Thesis, Uni-
versity of Passau, 2004

S. Pop, G.-A. Silber, A. Cohen, C. Bastoul, S. Girbal, and
N. Vasilache, GRAPHITE: Polyhedral analyses and opti-
mizations for GCC, Proc. GCC Summit, 2006.

P. Kelly, O. Beckmann, A. J. Field, and S. Baden,
THEMIS: Component dependence metadata in adaptive
parallel computations, Parallel Processing Letters, 2001

F. P. Russell, M. R. Mellor, P. H. J. Kelly, and O. Beckmann,
An active linear algebra library using delayed evaluation and
runtime code generation, Proc. LCSD, 2006.

B. L. Chamberlain, E. C. Lewis, C. Lin, and L. Snyder,
Regions: an abstraction for expressing array computation,
SIGAPL APL Quote Quad, 1998.

B. Chamberlain, D. Callahan, and H. Zima, Parallel pro-
grammability and the chapel language, Int. J. High Perf.
Comp. Appl., 1997.

S. J. Fink, S. B. Baden, and S. R. Kohn, Efficient run-time
support for irregular block-structured applications, J. Paral-
lel Distrib. Comp., 1998

P. Colella et al. Performance and scaling of locally-structured
grid methods for partial differential equations, SciDAC 2007
Annual Meeting.

W. Thies, M. Karczmarek, and S. Amarasinghe, Streamlt: A
Language for Streaming Applications, Proc. Compiler Con-
struction, Springer, 2002.

Accelerating Stencil-Based Computations by Increased Temporal
Locality on Modern Multi- and Many-Core Architectures*

Olaf Schenk!
olaf.schenk@unibas.ch

Matthias Christen!
m.christen@unibas.ch

Abstract—Stencil computations arise in a wide range of appli-
cations of computational sciences. This paper focuses on stencil
computations arising in the context of a biomedical simulation.
Compute-intensive bio-medical simulations represent an attrac-
tive application for the Cell Broadband Engine Architecture
(CBEA) and for graphics processing units (GPUs) as hardware
accelerators. Due to the low arithmetic intensity of stencil com-
putations and bandwidth limitations of the compute hardware,
the performance is usually only a fraction of peak performance.
We detail an implementation of parallel stencil computations on
the CBEA and GPUs, which improves performance by exploiting
temporal locality. We report on performance improvements over
CPU implementations.

Index Terms—Stencil computation, Cell processor, GPGPU,
parallel programming, performance measurement, biomedical
simulation

1. INTRODUCTION

Stencil computations arise in a wide range of applications
of computational sciences. A main application of stencil-based
computations are numerical PDE solvers that use a finite
difference or multigrid method [7], where stencil computa-
tions are typically performed in the smoothing step. Image
processing is another field in which stencils play a major
role. In stencil-based computations, each node in a multi-
dimensional grid is updated with weighted values contributed
by neighboring nodes.

Novel microarchitectures such as the the Cell Broadband
Engine Architecture and alternative hardware, such as GPUs,
have become of interest to the scientific computing commu-
nity. While commodity GPUs are available at very low prices,
they nevertheless deliver amazing computational power. Both
the Cell BE and GPUs outperform commodity desktop CPUs
by an order of magnitude. Both architectures are inherently
parallel.

In this paper a specific stencil type is considered, arising
in a biomedical simulation for hyperthermia cancer treatment.
The simulation is ported to the Cell BE, a GPU system, and
a CPU cluster. On the cluster MPI is used for parallelization.
In an ongoing work, the code is also used to parallelize for

* This work was supported by the Swiss National Science Foundation under
grant 200021 —117745/1 and by an IBM Faculty Award on “Modeling,
Simulation and Optimization in Hyperthermia Cancer Treatment Plan-
ning”

1 High Performance and Web Computing Group, Dept. Computer Science,
University of Basel, Switzerland

2 Tech-X Corporation, Boulder CO, USA

3 IT’IS Foundation, ETH Zurich, Switzerland

Peter Messmer? Esra Neufeld?
messmer@txcorp.com

Helmar Burkhart!

neufeld@itis.ethz.ch helmar.burkhart@unibas.ch

a Cell BE cluster. Algorithms are discussed that are used to
boost performance.

In [5] and [17], optimizations for stencil computations are
discussed and benchmarks of the code running on state-of-
the-art microprocessors including the Cell BE processor are
presented. In this work, in contrast to [S] and [17], a more
versatile stencil stemming from a real-world application is
considered, which entails additional challenges. In particular,
a lot more data has to be transferred per calculation. Also, this
work adds a GPU version of the stencil computation, and the
code could be run on a CPU or Cell BE cluster using MPI for
parallelization.

II. STENCIL AND APPLICATION

The stencil considered in this paper is a 7-point stencil of
the form

n n 2 n 2
ug Wy (uf))” +@ epull) +© eyt
(4)Cijkugi)1,j,k +® Cijkugﬁ)l,j,kJr
Ocigulyy o+ cigruly) o+ W
®epud o +@ el
(n=0,1,2,...)
with coefficients (Z)c,;jk,ﬁ =1,2,...,9, which are constant

in time, but not constant in space. The upper indices (n),
(n+1) indicate the time step, while i, j, k are the spatial grid
coordinates.
This type of stencil arises in the Finite Volume discretization
of Penne’s “Bioheat” equation [11], the parabolic PDE
aT
pCp ot
used to model the temperature distribution 7" within (a part of)
the human body. The simulation based on this equation is an
essential part of hyperthermia cancer treatment planning [10].
In this treatment, the tumor is heated up to approximately
41°C, which makes it more susceptible to both radio and
chemo therapies. In fact, heat is the most powerful sensi-
tizer known to date [16]. Therefore, it is usually used as a
complementary therapy. The heating process is done using
non-ionizing radiation (microwaves). The aim is to create a
constructive interference at the tumor location while avoiding
hot-spots in the healthy tissue to minimize tissue damage. In
equation (2), E models the electric field, p, Cp, k, w, o stand
for physical material properties, the index b denotes a blood

property.

=V (kVT) = posnCol(T ~ Th) + S [EIP - @)

47

III. HARDWARE ARCHITECTURES

The stencil code has been implemented on different archi-
tectures, which are briefly described in this section before
detailing some of the algorithms that have been applied to
improve performance.

A. The STI Cell BE Processor

The Cell BE was designed in a joint effort of Sony, Toshiba,
and IBM. The novel processor is the core of Sony’s Playstation
3, but it is also used as a high performance computing solution
in IBM’s Cell BE Blades.

The Cell BE’s approach to achieving the high performance
with a theoretical peak at 230 single precision GFlop/s is,
contrary to the approach of recent CPUs, to provide eight
specialized compute workhorses (“Synergistic Processing El-
ements”, SPEs) that are controlled by a PowerPC processor,
the PPE. The SPEs are composed of a “Synergistic Processing
Unit” (SPU), which is a simple dual-issue, statically scheduled
SIMD core, a local memory (“local store”), and the memory
flow controller (MFC).

Both the PPE and the SPEs are simple processors in the
sense that they are in-order RISC processors with a fixed-width
instruction format. Forgoing branch prediction and out-of-
order logic means freeing silicon space in favor of transistors
dedicated to computation.

Each SPE contains 128 SIMD registers of 128 bits width.
This means that a register could contain four single precision
floating point data elements or two double precision data
elements. Operands are always 128 bit words. Operations are
therefore carried out in SIMD fashion. Depending on the
datatype the SPEs perform 2-way, 4-way or 8-way SIMD
operations.

Running at 3.2 GHz and supporting a fused multiply-
add operation, the SPE’s theoretical single precision peak
performance is 4 units - 2 Ops/unit - 3.2 GHz = 25.6 GFlop/s
or 12.8 GFlop/s for double precision. (Note that the first
generation of Cell BE chips only reached 1.8 GFlop/s double
precision performance because the corresponding operations
requiring 13 cycles would stall the 7-stage pipelined SPE for
6 cycles.)

While the PPE features a conventional cache hierarchy, there
aren’t any caches on the SPEs, and each SPUs can only access
the data residing within its 256 KB of local memory, i.e. it
is not possible to access main memory directly from an SPE.
The memory flow controller provides coherent data transfers
between the main memory and the local memories, or between
the local stores of the individual SPEs. Memory accesses
have to be done by explicit DMA commands. The DMA
transfers work asynchronously. Thus the access latencies can
(and should) be hidden by computation. In fact, each SPE has
two instruction pipelines for calculation and I/O commands,
respectively.

On chip, the data is transferred over the “element inter-
connect bus”, which provides high communication bandwidth
with a peak of 204.8 GB/s. The bus is organized in a
ring structure; it consists of 4 data rings, 2 rings running

48

clockwise, and 2 rings running counterclockwise. The element
interconnect bus is the network connecting the SPEs and also
the interface to main memory providing a bandwidth of 25.6
GB/s.

B. NVIDIA’s GeForce 8800/Tesla Computing Solution

With the G80 series, NVIDIA has launched a product
line of GPUs that could be easily used for general purpose
computation (GPGPU). The Tesla S870 computing system
used for our benchmarks consists of four GeForce 8800 GTX
GPUs and is endowed with 6 GB of DDR3 RAM (1.5 GB
on-board per GPU).

The GeForce 8800 GTX GPUs feature 8 texture processor
clusters, each containing 2 so-called “streaming multiproces-
sors”, which are in fact 8-way SIMD units. In other words,
there are 128 scalar arithmetic units. Each multi-processor is
endowed with a small amount of on-chip local memory, which,
with a size of 16 KB, is even smaller than the local store of the
Cell BE. However, there is a large register file containing 8192
registers for each multi-processor. The bandwidth to the on-
board DRAM is as high as 86 GB/s, while the access latencies
are in the range of hundreds of cycles. To hide the latencies,
the GPU is designed to potentially run millions of threads. In
contrast to CPU threads, GPU threads are very lightweight,
and context switching is virtually free.

The GPUs run at a clock speed of 1.35 GHz. A
fused multiply-add operation is supported, thus the theo-
retical single-precision peak performance of the Tesla sys-
tem is 4 GPUs - 128 ALUs/GPU - 2 Ops/ALU - 1.35 GHz =
1382.4 GFlop/s. (Note that the system supports only single
precision operations. However, with the new Tesla C1060 and
Tesla S1070 models, NVIDIA has made 64-bit precision GPU
systems available.)

In parallel to the hardware, a language, CUDA [9], or
rather a programming model and API, has been developed
by NVIDIA that abstracts the graphics hardware. Its purpose
it to serve as a general purpose programming language for
GPUs. As a language, CUDA is a slight extension of ANSI
C. The GPU is invoked by executing a “kernel” function that
is run by potentially thousands of GPU threads in parallel.

IV. ALGORITHMIC CONSIDERATIONS FOR THE CELL BE

An essential prerequisite for maximizing performance is
to avoid stalls of the computation units that are caused by
waiting for input data on which the computation is executed.
Ideally, the data movement would occur concurrently with
the computation, i.e. data transfer latencies are hidden with
computation.

On an architecture with explicitly managed memory such as
the Cell BE, double or multibuffering is a common technique
to achieve this [1]. Conceptually, two or more data buffers are
used; one set of buffers is receiving data while on another set
the computation is performed.

Unfortunately, for stencil codes, if implemented in the ob-
vious manner, the arithmetic intensity (i.e. the Flop per trans-
ferred byte ratio) is so low that double buffering alone does not

result in a well-performing code. Clearly, the performance of
such a code is bandwidth-limited. In order to increase the Flop
per byte ratio the structure of the algorithm has to be modified.
We use blocking in the temporal dimension, i.e. the data is kept
in local memory as long as possible for re-use. This is done in
an explicit manner (as opposed to a cache-oblivious method
[6]), since the amount of available memory is known and no
further data structure is needed for bookkeeping.

To calculate an upper bound for the performance if no
time blocking is used, we could assume that the entire grid
of solution values is loaded simultaneously into the local
memory. This means that per grid point we have to load one
solution value, while the neighbor solution values are assumed
to be readily available, and 9 coefficients for the stencil
considered here. After the computation, one data element is
written back to main memory. The stencil considered carries
out 16 floating point operations per grid point. As the Cell BE
could provide 25.6 GB/s of bandwidth to main memory, for
single precision data we could expect at most

16 Flop

Paax < 25.6 GBfs - ———— 2P
POGBs g) 4B

= 9.31 GFlopf/s.

A. Spatial Blocking

The local stores of the SPUs are too small to hold all the
buffers required for real-world problems. Therefore, the data
must be partitioned into smaller chunks that fit into local
memory. The way of decomposing the data that allows for
maximum data reuse is depicted in Fig. 1. The data cube is
split into planes along the x axis. Each plane is subdivided
into panels along the y axis. As in [5], we decided not to split
the data in z direction, which is the unit stride direction. This
simplifies data transfers because contiguous chunks of data
could be loaded from main memory.

The algorithm proceeds panelwise in = direction before the
neighboring panel in y direction is selected. This allows to
reuse previously loaded input data: in order to compute the
stencil on the inner points of a panel, three input panels are
required, namely the current panel as well as the panels in
front of and behind the current panel are required. Therefore,
when proceeding to the next panel in x direction, two of the
panels could be reused while the data in the first of the three
panels is discarded. If the y direction were prioritized over the
x direction only one line of data could be reused.

Since we allow non-constant coefficients in space, panels
of coefficient data have also to be loaded. Note that, since
the result value ugy,j 1 depends on its nearest neighbors, each
panel of solution input data must contain two extra lines to
the left and to the right. However, the coefficients are required
only on the inner grid points.

Another advantage of this decomposition scheme is suitabil-
ity for parallelization. Domain decomposition cuts along the
x and y axis are straight forward to implement. Cutting along
the 2 axis is neglected. We have found that cutting only along
the x axis yields the best performance.

1 Plane

/}Ghost zone

Fig. 1. Spatial decomposition of the data for the Cell BE. The arrow indicates
the direction in which the data is processed.

B. SIMDization

In order to take full advantage of the Cell BE’s compu-
tational power, the code must be vectorized. The SPUs are
SIMD units that operate on 128 bit registers and therefore
could carry out 4 single precision or 2 double precision floating
point operations at once.

For the stencil code, this implies that four values in unit
stride direction, i.e. along the z axis, are calculated at once.
However, since SIMD operations are restricted to input data
elements that are a multiple of 128 bit apart, the data has to be
re-aligned so that the operation u; ; ; < au; j -1+ BUi jk+1
could be performed. The spu_shuffle intrinsic is used to do
that. It allows to arbitrarily “mix” two adjacent 128 bit vectors
byte by byte.

Since the use of the shuffle operation introduces a potential
computation bottleneck, it is only applied when absolutely
necessary: in non-unit stride directions it could be avoided
by adding paddings so that the number of grid nodes in y and
z direction becomes divisible by 4.

C. Double Buffering

The decomposition method and the choice to process the
panels in x direction in the inner loop, suggests a double
buffering scheme. Besides the three buffers of panel data that
are used for calculation, a fourth buffer is needed in which the
data for the following computation is preloaded. The handling
of the coefficients follow the regular double buffering scheme:
there are two sets of coefficient buffers, one being used for the
current calculation while the other set receives the data being
preloaded.

This could be viewed as a pipeline, which is depicted
in 2. The pipeline time proceeds along the horizontal axis.
The arrows indicate data dependencies. In the first step, the
coefficients used to calculate panel 1 are loaded (“1d c¢;”),
together with the input data on the panels 0, 1, and 2 (“1d
u(()o)”, “d u§°)”, “ld uéo)”). (The super-index (0) indicates
that the data concerned is the zero-th timestep of the current
iteration.)

In the next step the second coefficient set co and the third
panel of input data is preloaded into additional buffers because

49

[1d u@ {18\ [1d ug");;i\ 1d u®

ax u) Nax ul)

3

Nax Wit

iwr o)) Niiwr ol

(0)

%

Fig. 2. The double buffering pipeline. “Id

(1),

of the data in panel ¢ (“assess uy,),

), while “wr u;

c1 and the buffers used for uéo), uﬁ‘”, ugo)

are still in use
as indicated by the arrows ending at “ax ugl)”. This box
symbolizes that the first timestep of panel 1 is calculated,
which is done simultaneously while loading, i.e. computation
and I/O is overlapped.

In the third pipeline step the pipeline has reached its full
state. Data is loaded and computed as before. Additionally, the
data computed in the previous step could be written back to
main memory (“wr ugl) simultanously with the computation
of uél).

When the last panels in x direction are reached, the pipeline
again requires two steps to drain. Note that in the last step used
to write back the solution data of the last computed panel
the input and coefficient data for the next panel block in y
direction could already be preloaded.

D. Temporal Blocking

The pipeline described above could be extended so that in
each pipeline step multiple stencil timesteps are performed.
This allows to reuse computed data for a further stencil
iteration in the same pipeline step without having to write
the intermediate data back to main memory. This, of course,
is only feasible if none or not all of the intermediate results
are of interest. This method, referred to as “circular queue”
[5] dramatically reduces memory traffic. However, the local
memory requirements increase because data (computed data
and coefficients) have to be kept in local memory for several
pipeline steps.

Fig. 3 shows the filling phase of the pipeline. For clarity,
the loading of the coefficients has been omitted in the dia-
grams. The diagrams demonstrate 3-stage time blocking as an
example, i.e. per iteration 3 stencil applications are performed.

As in the double buffering case, 3 panels (along with the first
set of coefficients) need to be loaded until the first calculation
step could be performed, which could be overlapped with the
data transfer loading the fourth panel (and the second set of
coefficients). In the third step the calculation result uél) is
used to calculate the second timestep on the first panel ug2).

50

” means that the 0 timestep (i.e. the initial values) of panel ¢ is loaded, “ax u,,

(D= stands for the computation

denotes writing back of the result to main memory. The arrows indicate data dependencies.

[g w11
Id ul? i

[lau0 |

i [Id uf i

[1d ud i Id u®@ !
] ExuTpExT] \‘#axug)Haxu(zz)kaaxuﬂ\\‘
\

Fig. 3. The filling phase of the time blocking pipeline

The diagrams are “wirings” for PDEs with Dirichlet boundary
s cad (2) 1 _)

conditions. Hence, the required inputs for u;™ are ugy = uy "/,
MO

10, U

Note that the first write back occurs only in the 5" pipeline
step in Fig. 4, or in the (B + 2)™ step, respectively, if B is
the “time blocking factor”, the number of stencil applications
per iteration.

Also note that double buffering is in fact a special case of
the circular queue method for temporal blocking with B = 1.

For B-stage temporal blocking, 3(B+1) buffers are required
to hold the solution data as could be seen in a step of the
pipeline’s working phase:

« one buffer has to hold the panel preload data ug%,

« 3 buffers are required as input data to compute the first

timestep in the sequence, i.e. the first stencil application
© 0 (0

on the input data, u,”}, u; ~, Ui ys
o Each of the B — 1 following timesteps require one buffer
to which the result is written, ug?t+1,t =12,...,B—1,

as well as two buffers ugtjtfl, ugi)t needed to compute

the next timestep in the next pipeline step,

« In the last timestep only two buffers are required, one that
receives the data from the current calculation ufé 41 and
one for ugi)g

memory.

serving as source for the write-back to main

For the non-constant coefficient stencil in addition to the
solution buffers the coefficient buffers are required. Since the

© i1
Id ujs i

Id ui2)

X
£
X
c
NS
X
c
e

© 3
ld ui+4 iii
X

1 2 3 1 2 3 1 2 3
N e T Haxuﬁ.fk\ﬁe B Vet 0 N O T 0
7 X jl,\\\

4

N\

N N

Fig. 4. The working phase of the time blocking pipeline

Fig. 5. Panels holding solution data and number of lines per panel. The
trapezoid shape is caused by the data dependencies symbolized be the small
arrows to the left.

Fig. 6. The draining phase of the time blocking pipeline

computation of timestep ¢ lags behind in space by ¢ panels, B
sets of coefficients are required, and an additional one used to
preload the coefficients for the next pipeline step.

Note however, that, because of the data dependencies, the
panel sizes vary. The number of computable lines is reduced
by 2 per blocked timestep. Let m be the number of inner lines
in the last timestep B of a phase. Then the panels assigned
to timestep B — 1 must hold m + 2 lines, etc. m + 2B lines
are required for the coefficient panels. This is shown in Fig.
5. Hence,

B-1
A(m+2B)+3 > (m+2i)+2m +
i=1
+9(B+1)(m+2(B-1))
= 12(B+1)m+21B*+5B—18

lines are required to be stored simultaneously in the local store.

Let ng, ny, n, be the number of inner nodes in the
respective direction. If the maximum number of lines fitting
into the local store is C' (which, of course, is dependent on
the line length, C' = |Z/n.| if Z is the available local store
space), m is limited from above by

C—-21B?2-5B+18
= 12(B+1)

Note that the coefficients constitute a large part of the data.
If the coefficients are constant in space, as many as m <
% inner lines per panel could be used, i.e. 7/4 times
more than in the non-constant case.

The major drawback of the circular queue method is the
fact that redundant computation is performed, which increases
with increasing B (the “steps” at the panel boundaries in
Fig. 5 are computed several times). To minimize redundant
computation the number of lines m should be therefore as
large as possible. Specifically, 1(N, — 1)B(B + 1)nyn.
redundant stencil computations are performed per pipeline
step, where N, := [n,/m] is the number of panels along
the y axis. As opposed to this, n,n,n. B stencil computations
are actually required.

The arithmetic intensity is roughly =/ Flop/B since per
pipeline step B stencil applications are performed, each con-
tributing 16 Flops per grid node. At the same time (14 9) - 4
Bytes are loaded for solution data and coefficient and 4 Bytes

are written per grid node. So the performance is bounded by
16 B Flop

44 B
For B = 3, for which we achieved best performance, e.g.,
Prax < 27.9 GFlop/s. Note that this calculation doesn’t count

the redundant stencil computations. The real performance will
decrease with increasing number of redundant calculations.

16B

Prax <25.6 GB/s -

E. Loop Unrolling

Formulating equation (1) as a sequence of fused multiply-
adds (finas) results in a long and skinny arithmetic expression
tree, which means that the result of the previous computation
is required to proceed with the next computation. On the Cell
BE, fma has a 6 cycle latency, thus many stalls are incurred.

For the temporally blocked codes less bandwidth is required,
so it is essential to remove these stalls in order to get good
performance. This could be done with loop unrolling: several
of the arithmetic expression trees are interleaved so that
register loads and stores and arithmetic evaluations could occur
in parallel (the SPUs feature two instruction pipelines to allow
this; the “even” pipeline handles arithmetic operations, and the
“odd” pipeline I/O-specific instructions).

V. PARALLELIZING WITH MPI

In order to solve large-scale problems fast, we have par-
allelized the code with MPI. Essentially the same MPI code

51

could be used for both traditional CPU clusters and Cell Blade
clusters. Only the stencil kernel code has to be substituted for
the respective architecture.

Algorithm 1
1: for number of iterations do
{send boundaries}
for all neighbors do
MPI_Irecv (recv_buf)
copy boundaries to send_buf
MPI_Isend (send_buf)
end for
compute stencil
{process boundaries }
while (id = MPI_Waitany) # UNDEFINED do
for 7 on boundary do
12: result[¢] « result[z] + coeff[%, id] - recv_buf[:’]
13: end for
14: end while
15: end for

R A A e

—_ =
= o

The MPI code handles the domain decomposition and
boundary data communication. The latter is implemented in a
way that allows overlapping communication with computation
[15] as shown in Algorithm 1. This procedure is executed in
parallel by each of the MPI processes. The domain could be
decomposed along all of the three axes. Each MPI process is
assigned one of the subdomains.

In the first phase (lines 2 to 7) the boundary values are
prepared for sending. The values are copied to a special
send buffer because they will be modified in the second,
the compute phase. A non-blocking receive (MPI_Irecv) is
pre-posted that will receive the data transmitted by the non-
blocking MPI_TIsend command (of another process). After
the compute phase, the processes are synchronized by waiting
for the boundary data of any of the neighboring processes (line
10).

In order for the stencil code from the sequential CPU or the
Cell version to be used without modifications, each subdomain
must be endued with a layer of ghost nodes at the boundary
that is initialized with zero values. If a stencil is evaluated at
the subdomain boundary, the contribution in the direction of
the boundary is cut off. It is added in the boundary processing
phase in line 12. Note, however, that the temporally blocked
version requires extra handling of the boundaries.

VI. GPU IMPLEMENTATION

So far, the GPU version of the stencil code has been imple-
mented in a straight-forward manner without any algorithmic
optimizations. Nevertheless, quite satisfactory performance
results are obtained.

The domain is decomposed in z direction to share the
workload among the GPUs. All the data within a subdomain
are then copied to the respective GPU and kept there until
all required stencil iterations have been performed. Between
two iterations the subdomain boundary is exchanged similarly

52

as in the MPI case by copying it back to the CPU system
and distributing it to the neighboring GPUs (as there is no
possibility for inter-GPU data communication).

The stencil sweep itself is then computed by one thread
per grid point. To access the values on the neighboring grid
points, textures are used instead of accessing global memory
directly, because texture memory is cached. This is a major
performance benefit.

VII. EXPERIMENTAL PERFORMANCE RESULTS

The performance benchmarks have been carried out on an
IBM Blade Center QS22 operating two Cell BE chips (16
SPUs in total) and on an NVIDIA Tesla S870 GPU system.
Note that we only present single precision results here.

Additionally, for comparison, a “traditional” system has
also been used. For the MPI benchmarks, we used a cluster
powered by Intel Xeon X5355 Clovertown quad-core CPUs
running at 2.66 GHz and equipped with 2 x 4 MB of L2
cache. The fully buffered DIMM technology allows up to 21
GB/s of bandwidth. Some OpenMP-parallelized benchmarks
of the sequential reference implementation have been carried
out on the Intel Clovertown dual quad-core SMP machine for
comparison with the Cell BE. In Fig. 7 the theoretical peak
performances for single precision operations of the machines
used are listed. The bandwidth lists the bandwidth available
to the main memory, in case of the GPU to the CPU system,
which is limited by the data rate of the PClexpress bus. The
bandwidth to the 1.5 GB of on-card memory however is a lot
larger (86 GB/s).

All the codes have been compiled using the GNU C
compiler, except for the GPU codes, which require a special
compiler.

A. Cell BE vs. CPU Performance

As seen in Fig. 8, the stencil code running on a Cell BE
blade displays a linear speedup up to 4 SPUs. When using
more SPUs the bandwidth requirements exceed the available
bandwidth causing the SPUs to stall. The left figure shows the
performances of the non-time blocked version. Using 3-stage
time blocking, the performance could be roughly doubled,
while the scaling behavior is preserved as shown in the right
bar chart. Since in the current implementation, the domain
is not decomposed in z direction, the algorithm performs
better for for small z dimensions, because more panel lines
could fit into the local store and hence decrease redundant
computations. For problem sizes with small z dimension, an
absolute performance of 4.1 GFlop/s on 1 SPU and 20 GFlop/s
on 16 SPUs was observed.

The performance of the CPU version is shown in the top
left portion of Fig. 8. Note that this code, other than using
the —03 compiler flag, hasn’t been optimized. Datta et al.
have shown in [5] that for Intel processors (Itanium 2), for
the stencil with constant coefficients a speedup of ~ 1.7x
over the naive implementation could be obtained when using
time skewing, which is another method for temporal blocking.

Architecture Sockets / Cores Performance/core Performance/socket — Overall performance Bandwidth

Intel Clovertown X5355 1-4 18.66 GFlop/s 74.64 GFlop/s 74.64 GFlop/s 21 GB/s

IBM QS22 2-8 25.6 GFlop/s 204.8 GFlop/s 409.6 GFlop/s 52.2 GB/s

NVIDIA S870 4-128 2.7 GFlop/s 345.6 GFlop/s 1382.4 GFlop/s 16 GB/s
Fig. 7. Theoretical peak performances of the architectures used to perform the benchmarks

Stencil on Intel Clovertown CPU

25 77

GFlop/s

128x128x64 256x256x64 512x512x32

M lcore m2cores M4cores M8cores

Stencil Performance on the Tesla S870

GFlop/s
=
(%,

128x128x64

256x256x64 512x512x32 512x512x512

E1GPU m2GPUs m4GPUs

Stencil on Cell BE, no time blocking

GFlop/s

128x128x64

256x256x64

HM1SPU m2SPUs m4SPUs m8SPUs m16SPUs

Stencil on Cell BE with time blocking
25

207

20

15

114112111

GFlop/s

10 +

128x128x64

256x256x64 512x512x32

H1SPU m2SPUs m4SPUs m8SPUs m16SPUs

Fig. 8.

The number suggest that we have a per core speedup (1
CPU core — 1 SPU) of 3x and a per processor speedup (1
Cell BE processor — 1 Intel Clovertown X5355) of 6x.

B. GPU Performance

The performance achieved on the Tesla S870 GPU comput-
ing solution is shown in the top row to the right in Fig. 8. The
large problem (5122 grid points) displays a good performance
of 22 GFlop/s on 2 GPUs (there was not enough memory
to run the problem on a single GPU). This result has been
obtained without any algorithmic optimization. GPU-specific
code optimizations have been applied, though. The figure
shows almost linear speedup when going from 1 GPU to 2
GPUs. The transition from 2 to 4 GPUs results in a slowdown
due to limited bandwidth.

C. MPI Results

The MPI code has been run on a CPU cluster. The code
scales very well up to 128 processes on the CPU architec-
ture. The figure demonstrates perfect scaling with up to 32
processes, which is due to the fact that the machine has 32
nodes. For up to 32 processes, only one core per node was
used. For 64 and 128 processes, 2 and 4 cores per node were

Results of the performance benchmarks on the architectures used

Stencil MPI Cluster Benchmark

100

80

60

40 -
20 =
0 -

128x128x64 256x256x64 5123 10243

GFlop/s

H 1 core W2cores M4cores M8cores

W16 cores W32cores M64cores 1128 cores

Fig. 9. Performance benchmark results on the CPU cluster. Parallelization
was done using MPL

used, resulting in increased network traffic, incurring a relative
performance decrease.

VIII. RELATED WORK

Stencil performance on the Cell BE processor has been
benchmarked in [17] and [5]. Using temporal blocking, per-
formances of up to 65 GFlop/s for single precision stencil

53

computations are reported. The stencils considered are, how-
ever, somewhat simpler: the coefficients are kept constant both
in time and space, which allocates more of the bandwidth and
local store memory for the solution values.

Temporal blocking and tiling algorithms for stencil compu-
tations have been investigated and described in [6], [8], [12],
[13], [14], [7], [18].

In [4], [3] GPUs are explored as accelerators for a computa-
tional fluid dynamics simulation. The method used to compute
the simulation translate to stencil computations. Speedups of
29x (in 2D) and 16x (in 3D), respectively, over the Fortran
reference implementation running on an Intel Core 2 Duo 2.33
GHz CPU are reported.

IX. CONCLUSION AND FUTURE WORK

Stencil-based methods constitute an important class of nu-
merical methods [2]. Unfortunately, the low arithmetic inten-
sity for most stencil applications result in poor performance
that is far from the machine’s peak performance. On the Cell
BE, the available bandwidth is the limiting factor if the stencil
is implemented in the obvious way. Therefore, algorithmic
optimizations must be applied to exploit the Cell BE’s com-
putational power. The same holds true for GPUs, although the
high on-board bandwidth allows decent performance.

We have detailed a method of temporal blocking, to improve
performance by considering the data locality. Other methods
of temporal blocking have been proposed; the one chosen is
easily parallelizable and naturally extends the double buffering
scheme. So far, on a dual quad-core Intel Clovertown X5355
(8 cores) a performance of 2 GFlop/s was reached. On a Cell
blade (16 SPUs) 22 GFlop/s could be measured while a single
GeForce 8800GTX GPU provided 7.8 GFlop/s.

Adapting the MPI code to run on a Cell BE cluster is work
in progress. Other blocking methods for both the Cell BE and
GPUs will be investigated in the hope that a performance-
wise more efficient method will be found. It is also planned to
extend to prototypes to a framework supporting more general
stencils.

ACKNOWLEDGMENTS

The authors like to thank Hema Reddy from IBM, Austin,
for her support and the IBM Systems and Technology Group,
Poughkeepsie, New York for providing access to their Cell
BE cluster and for their support. The authors also acknowledge
Georgia Institute of Technology, its Sony-Toshiba-IBM Center
of Competence, and the National Science Foundation, for the
use of Cell Broadband Engine resources that have contributed
to this research. Finally, we would also like to thank Philip
Liischer, Master student at the Computer Science Department,
for porting the code to CUDA.

54

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

Abraham Arevalo, Ricardo M. Matinata, Maharaja Pandian, Eitan Peri,
Kurtis Ruby, Francois Thomas, and Chris Almond. Programming the
Cell Broadband EngineTM Architecture: Examples and Best Practices.
http://www.redbooks.ibm.com/redbooks/pdfs/sg247575.pdf, checked in
08/2008.

Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph J. Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William L. Plishker, John
Shalf, Samuel W. Williams, and Katherine A. Yelick. The landscape of
parallel computing research: a view from Berkeley. Technical Report
UCB/EECS-2006-183, Electrical Engineering and Computer Sciences,
University of California at Berkeley, December 2006.

Tobias Brandvik and Graham Pullan. Acceleration of a 3D Euler solver
using commodity graphics hardware. In In Proc. of 46th AIAA Aerospace
Sciences Meeting and Exhibit, 7-10 Jan 2008, Reno, Nevada, USA. In
Press.

Tobias Brandvik and Graham Pullan. Acceleration of a two-dimensional
Euler flow solver using commodity graphics hardware. Proceedings of
the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, 221(12):1745 — 1748, 2007.

Kaushik Datta, Shoabib Kamil, Samuel Williams, Leonid Oliker, John
Shalf, and Katherine Yelick. Optimization and Performance Modeling
of Stencil Computations on Modern Microprocessors. SIAM Review,
2008. To appear.

Matteo Frigo and Volker Strumpen. Cache oblivious stencil compu-
tations. In ICS '05: Proceedings of the 19th annual international
conference on Supercomputing, pages 361-366, New York, NY, USA,
2005. ACM.

Markus Kowarschik, Christian Wei3, Wolfgang Karl, and Ulrich Riide.
Cache-aware multigrid methods for solving Poisson’s equation in two
dimensions. Computing, 64(4):381-399, 2000.

Zhiyuan Li and Yonghong Song. Automatic tiling of iterative stencil
loops. ACM Trans. Program. Lang. Syst., 26(6):975-1028, 2004.
NVIDIA. NVIDIA CUDA Compute
fied Device Architecture - Programming
http://developer.download.nvidia.com/compute/cuda/2.0-
Beta2/docs/Programming_Guide_2.0beta2.pdf, Checked in 08/2008.

M. M. Paulides, J. F. Bakker, E. Neufeld, J. van der Zee, P. P. Jansen,
P. C. Levendag, and G. C. van Rhoon. The HYPERcollar: A novel
applicator for hyperthermia in the head and neck . International Journal
of Hyperthermia, 23:567 — 576, 2007.

Harry H. Pennes. Analysis of Tissue and Arterial Blood Temperatures
in the Resting Human Forearm. J Appl Physiol, 1(2):93-122, 1948.
Gabriel Rivera and Chau wen Tseng. Tiling optimizations for 3D
scientific computations. In In Proceedings of SC’00, 2000.

Sriram Sellappa and Siddhartha Chatterjee. Cache-Efficient Multigrid
Algorithms. Lecture Notes in Computer Science, 2073:107-116, 2001.
Yonghong Song and Zhiyuan Li. A compiler framework for tiling
imperfectly-nested loops. In In Proc. of 12th International Workshop
on Languages and Compilers for Parallel Computing, (LCPC99, pages
185-200. Springer-Verlag, 1999.

Volker Strumpen and Thomas L. Casavant. Exploiting communication
latency hiding for parallel network computing: Model and analysis. In
Proc. PDS’94, pages 622-627. IEEE, 1994.

J. van der Zee. Heating the patient: a promising approach? Ann Oncol,
13(8):1173-1184, 2002.

Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry
Husbands, and Katherine Yelick. Scientific computing Kernels on the
cell processor. Int. J. Parallel Program., 35(3):263-298, 2007.

David Wonnacott. Time skewing for parallel computers. In Proceedings
of the Twelfth Workshop on Languages and Compilers for Parallel
Computing, pages 477—480. Springer-Verlag, 1999.

Uni-
Guide.

Fast Cache Miss Estimation of Loop Nests using

Independent Cluster Sampling

Kamal Sharma, Sanjeev Aggarwal, Mainak Chaudhuri, Sumiig@hy
Computer Science and Engineering Department,
Indian Institute of Technology Kanpur, India
{kamals,ska,mainakc,sganguly}@iitk.ac.in

Abstract—We introduce independent cluster sampling, a cache miss estimates for extremely large datasets across a
compile-time sampling technique applied to the iteration pace of |arge number cache organizations differing in capacitychl
perfectly nested loops for estimating the number of cache mges size, and associativity. We compare our technique against f
experienced by the loop body. In this study, we squarely focion ") . .
dense array accesses in nested loops and present statistieeror previously proposed sampling techniques that draw SamP'eS
analysis of our approach and detailed experiments on a numpe from a full trace of cache accesses. The most attractive
of popular loop kernels drawn from dense linear algebra and he aspect of our technique is that it does not require the full
SPEC95 suite executing on a range of cache organizations dif access trace and can be easily integrated into a compilsr pas

fering in capacity, associativity, and block size. The expémental 15 gemonstrate the usefulness of this technique, we show
results show that in most cases we achieve much better cache '

miss estimates compared to other popular sampling technices that it can be successfully applied to identify the optimal

that work on full cache access traces. Since our technique ds Permutation of a loop nest (leading to subsequent generatio
not require full cache access tracing or profiling, it speedsip the the necessary unimodular transformation) and to deterthine
estimation process by more than a factor of hundred on comple tjle size of a tile-transformed loop as a part of the comjaitat
loops compared to full cache simulations. Further, we show dw process itself.

our cluster sampling technique, when integrated in a compér . . .
pass, can be directly applied to drive loop optimizations sch as In the next section, we discuss the related work. Section Il

loop permutation and tile size determination. presents some background terminology and formalizes some

: of the assumptions. Section Il outlines our independardter
Index Terms—Performance measurement, memory hierarchy,

cache miss estimation, iteration space sampling, loop optiza- S&MPpling approach. A mathematical analysis for our apgroac
tion. is given in Section IV, which identifies the key parameterd an

offers an estimation error bound of our approach. Section V
discusses detailed experimental results on several iguport
loop kernels drawn from linear algebra and the SPEC95 suite.

DRAM latency continues to be the most prominent botAe conclude in Section VI.
tleneck in server, desktop, and mobile computing systems. A
large number of memory hierarchy optimization techniques
has been proposed for loop nests. The analytical techr?iquoésRelated Work
like integer liner programming methods, linear Diophaatin There have been numerous techniques proposed for cache
equations and first order logic formulation for estimatihg t miss estimation. We broadly classify these into three cate-
number of cache misses in a loop nest. Full-scale profiliggpries, namely, analytical methods, sampling, and fullusim
and trace-driven cache simulation technigues are alsofosedlation.
optimizing large complex programs. However, this techeiqu Analytical methods: Prior research in this area deals with
often turns out to be ineffective for highly associative ltee the precision in calculating cache miss behavior. The qaince
either due to significant complexity of the logic formulas oof cache miss equations (CME) was introduced by Ghosh
due to time consuming nature to have a full profile run. et al. [9]. This technique used linear Diophantine equation

In this paper, we introduce a source-level independetot calculate the number of cache misses. First order logic
cluster sampling technique for fast estimation of the nunobe formulas in the form of Presburger arithmetic were used
cache misses. As a first step to demonstrate its effectigendry Chatterjee et al. [4] to count the exact number of cache
we focus on perfectly nested loops with dense array accesseisses in loop nests. Both these methods use affine refarence
The technique draws clusters of consecutive samples frem thr modeling cache misses. As the loop bounds and cache as-
dynamic iteration space of the loop. Each sample is an arsyciativity increase, these approaches become unusabi®du
access coming from the loop body. By sampling a clustéte complexity of the equations. These constraints aredadoi
of consecutive dynamic accesses our technique accountsifoour independent cluster sampling algorithm. Howeveg, th
spatial locality (if any) in the loop body. Multiple such splad cluster sampling scheme does not give the exact estimates of
clusters try to capture the temporal locality in the acce#ise number of cache misses.
stream. While speeding up the estimation process by morerhe proposal by Fraguela et al. [7] creates probabilistic
than two orders of magnitude compared to full cache traeguations based on the data reuse between the references.
profiling on complex loops, our technique offers excellethis scheme uses probability factor for affine references to

I. INTRODUCTION

55

approximate the misses. An added benefit that this work®ffend then approximate estimates are made for set-asseciativ
is to estimate the number of cache misses without knowing tbaches. However, the scheme tends to produce large errors as
base addresses of the data structures. However, the poblédme associativity increases beyond two.
of affine references and error range bound persist. These approaches are time-consuming. Our method offers
The systems proposed by Vera et al. [18] and Vera and Xsignificant advantage over these schemes in terms of the time
[17] use simple sampling techniques in conjunction withheac required to carry out the estimation process.
miss equations (CME) to estimate the number of cache misses
of Wholg programs. The complexity of generatilng numer.icall II. ASSUMPTIONS ANDBACKGROUND TERMINOLOGY
expressions for the data references still remains. Thisis i) })
contrast to the ease of using our scheme. However, in thidn this work, we consider perfectly nested loops with
work we focus on loop nests only, and leave the extension4§NS€ array accesses. The array sizes and the loop bounds
handle whole programs to future work. are as_sumed to be known in advan_ce. Further, _the |t_erat|o_n
Sampling: Most of the studies in this domain use memoryPace is assumed to be Ie>§|cograph|cally ascending with uni
access traces for estimating the cache miss ratios. All §fP (standard transformations are available for comgrti
the proposed schemes require full execution of the prografify @scending iteration space to have unit step). Each array
Collecting traces of large programs becomes a time-consgimi" @ Program is assumed to be allocated contiguously in
task. These techniques are normally used for architectuY¥fual memory (this is true for statically allocated arsay
studies. and often true for dynamically allocated arrays). We coersid
The concept of set sampling on memory traces was intr@nly virtually indexed caches in this work (this holds true

duced by Laha et al. [12]. The work used the sets wherd® the L1 caches in all high-end microprocessors today).
past access was present in a cluster of references. An LRU replacement policy is assumed throughout for cache

A theoretical bound on unknown references (first referenfgPlacement.
to a cache set) that are present in a cluster of references
was proposed by Wood et al. [20] The unknown refel’enCAS Array Reference Mappmg
were estimated as misses using the life time of the known ' . .
. For each array reference, we can define a mapping function
reference cache sets. To avoid errors, Kessler [11] prapo .
; ?ﬁat generates a <set value, wrap value> pair. The set value
to always use trace samples large enough to fill half the cache .
. - gdenotes the set number of the cache which the reference
sets. Our model ignores the unknown references and coasider

only full sets similar to the method introduced by Laha et jnaps o (notice that the generation of this value assumes the

! . ak'nowledge of the cache indexing function). The wrap value is
[12]. However, our scheme does not require entire progr .
. e number of times the array has wrapped around the cache
execution to collect sampled traces.

Another proposal by Fu and Patel [8] to avoid the unknowlﬁadmg to the current reference. In each program we assign

. some serial order of allocation to the arrays and assumeathat
references is to simulate certain percentage of instnstas

. asray starts at set 0 of wrap, where the previous array in the
cache warmup and use the rest of the references to predictine’ . g .
cache behavior. allocation order ends within wragp — 1. Notice that the <set

. . >
Techniques proposed by John W. Haskins and Skadron [i/ ue, wrap valu_e pair uniquely def'”‘?s an array r_eference
- “relative to a particular cache topology, given the startimgp
try to reduce the amount of warmup references. Choosing th
) . value of the array.
appropriate sample length is important for accuracy and i

. . As discussed in Parker [13], the mapping function can
depends on the kind of stream generated by the applicatiop. : .
) . ._choose row-major or column-major reference pattern based

Eeckhout et al. [6] try to solve this problem by determinin .

. : . n the programming language. We choose the former as C
the optimal sample length. However, it requires one coreple X o
programs are considered in this work.
pass over the benchmark.

To avoid storing the entire trace, checkpointing technique

over the trace are introduced by Wunderlich et al. [21]. TH&. Cache Miss Classification

proposal by Wenisch_et gl. [19] further optimizes the sterag |, this work, we adopt a simple approach of classifying
space of the checkpoint library by using a reduced set céStafe cache misses into two categories, namely, cold misses
in the simulation window. Nevertheless, storing the statés 4 interior misses. Cold misses occur when a cache set is

requires a large amount of storage. accessed for the first time (see Ghosh et al. [9]). Interigses
Other approaches use representative phases of the enfirg,; qye to conflicts and capacity limitations in cache (see
program to summarize the execution behavior. SimPoint, 'Bhatterjee et al. [4]). An access to an already occupiedecach

troduced by Perelman et al. [14], is one such tool, whicly regyits in an interior miss if the currently held blockian
partitions the program into phases based on basic blogk 5ccessed block are different.

behavior by profiling.

In contrast with all these techniques, our scheme does not
require any profiling of the application.

Full Simulation: Cascaval and Padua [3] developed a stack
histogram scheme for estimating the number of cache missesSampling is widely used to succinctly capture some property
An entire pass is made on the data for a fully associativeecadf a large population. However, cache miss estimation canno

IIl. I NDEPENDENTCLUSTER SAMPLING
ALGORITHM(ICS)

56

be directly transformed into a simple sampling problem b@receding segment (for the same cache §€t)y’] satisfies
cause the probability of a reference causing a cache missiis b’ < C. Let

inherently dependent on the past cache references whictedefi M — ZA ,

the current cache contents. To take into account this temhpor ¢~ - sC -

effect, we employ ICS for counting cache misses. In ICS, the)
samples are picked from a number of (temporally) localized'€ @Pove algorithm counts 0 for any segment whose pre-

regions in the population. cedm_g segment is at a distan_ce @for_ larger from it. The
Each array reference in the program gets translated intét\gorithm producesi¢ as the final estimate.

pair (s,e)wheres is the set number andis wrap value based

on the mapping function. A miss is generated in a diredB. Set Associative Cache Algorithm

mapped cache when two references have the same set value bgbnsider the sequence of accesses of all elements that

different wrap values. In the case of a K-way set-assoativnap to the same cache set. For a given memory address

cache, a cache miss occurs when the current wrap value is 91 RU-segment segment far is an interval[i, j] of the

present in the latest distinct K references to a particudahe sequence, such that the positioncorresponds taz being

set. loaded in the cache angl corresponds to an eviction of the
In our model, instead of looking at the whole streanf)€) jtem from the cache oy is the end of the sequence. Thus,

pairs, subsequences of this stream are sampled for couni{ing} represents one of the lifetimes ofin the cache.

misses. These subsequences will be referred to as clusters Property 1.Suppose positioni is occupied by address.

blocks (not to be confused with cache blocks). Then,i is the start of an.RU-segment iff the first: distinct oc-
currences of items prior to positiondo not includes. Define
A. Direct Mapped Cache Algorithm f(4) as follows. Supposeis occupied by:. Going backwards

The cache miss estimation algorithm takes as inputfr:Qm 1, look at the firstk distinct occurrences of addresses

sequencesTR of references of the fornts, ¢), where,s € S prior t.o_ positions. If a (_i(_)es not belong to thesleaddrgss_es,
is a cache set value andis a wrap value. The sef is the then, i is the start position of ahRU-segment andf(i) is

set of all cache set values. Each pairsmR is assigned a the address of théth distinct occurrence backwards froin
unique index in the temporal order of its appearance. T herwise. is not the start position of abRU-segment and

substreamsTR,, defined by a given set valugy € S is J(i) is undefined. L

the subsequence of references of the fdk «). A segment | the sequence of referencg(i), i] belongs to the sampled
of the substreansTR, is a maximal contiguous sequence 0f;luster, then,i is correctl.y d'ls.covered as the start of an
occurrences irsTR, all of which have the same-value. A LRU-segment and otherwise it is not.

segment is represented @sb], wherea is the starting index Leth Cf br? the_Ieng(;tg of a cluster block and be gif
of the segmentisTRandb is the final index of the segment in ength of the entire address sequence (trace) across &lécac

STR. The number of misses f@TR; is defined as the numberSEtS- Suppose Is the starting point of ahRU-segment. The

of segments insTR, and is denoted ad/,. Our goal is to probability thati is discovered as the start of &RU-segment
estimate 3 . is that the segmeritf (<), 4] lies wholly in the cluster, which

is,
M = ZMS = sum of misses over all cache sets. C—(i— f@i)+1)
cbses hich will be used to d he moorl
Let e a parameter which will be used to denote t S . .

. he probability is O if — 1).
cluster size. Assume that the length of the sequencef P lity is O IfC" < (i = /() +1)
references is known. Pick a random positionniformly from
from1,..., m. Consider the random subsequetitef length
! = min(C,m — u + 1) starting atu. Define the following
random variable, for each cache séh a direct-mapped cache.

a) Algorithm.: Choose a random starting positierbe-
tween 1 andn — C' + 1 with equal probability and consider
the cluster defined bys, s + C — 1]. For eachLRU-segment
[i, 7] such thatf (i) lies within the cluster, form the estimate

as follows.
m
X. = I m—C+1
’ . . 2 = C—(a—V) Y = 3 - o
[a,b] is a non-first segment fos in B, -~ C— (Z — f(L) + 1)
[a,b] preceded bya’,b']€ B, LRU—segmer{h,j]e cluster
f(i)€ecluster
The final estimate is Finally, form ¢ independent estimateg,,...,Y; and return
X = Z X, . their average (or median of averages).This is the final esém
cache-set for the cache misses.

Thus, X, considers each segmefit, b] that is not the first

segment corresponding to cache seh B,. If [a/,V/] is its C. Complete Algorithm

preceding segment iB,, a contribution ofﬁ isadded The above algorithm presented count the corresponding

towards|a, b]. misses for a given cluster of references. For a given stream,
For cache sets, denote byMé)C the number of seg- the miss distance between the sets may be too large. Thus, it

ments[a, b] in the substreansTR,, such that its immediately is more rational to count the hits and misses of sets rather

57

than counting only misses. The same algorithm is used toEach box represents a cluster of sizeThe starting position
count the hits. The final estimate of the misses is based oha cluster is randomly chosen. There arg such clusters

the corresponding proportion of hits/misses occurringhi@ t sampled from the stream. We count the misses in each cluster
cluster. Algorithm 1 presents the complete algorithm. using the technique discussed in the last section. The cache
state is reset before the start of each cluster. Finally, an
average is taken over the sampled clusters. Let us consiger t
following simple stream ofs,e) (2,1) (2,1) (2,1) (6,5) (7,8)
(5,4) (2,3) (2,3) While counting misses for set 2 in a direct-

Algorithm 1 ICS Algorithm
1: count_hit < 0, count_miss < 0
2: hit_bound <« 0 , miss_bound «— 0
3: for clusters from 1o n, do

mapped cachg2,1) is the first segment. Thus, for reference

4 for all reference <s,e> of clustedo o o . .

5 Update. cache(reference) (2,3), [@', V'] _TLL 3] and|a, b] = [7,8]. The miss for set 2 is

6: if reference is hitthen calculated asz7. . .

7: updateM, 4 For selecting the starting points of the clusters, one ntktho

8 cqunt_hit++ ‘ is to pick random pairs from the stream and then sort them

9 h;f_l;:“h@? <b_ hZZTbO?“dJF) by their temporal order. However, this would consume time

cneck_nit_bouna(rejerence H :

10: else if reference is missthen _equwalent to sorting. Instead, we employ the method ptesgen

11: update M, . in [2] to generate sorted random numbers on the fly. _

12: count_miss++ By looking at the above algorithm, one may get an im-

13 miss_bound < miss_bound+ pression that an entire pass over the program is necessary to
. check_miss_bound(re ference) collect the cache miss statistics. The uniqueness of ourodet

1‘51: engnfgrlf is that it avoids full tracing or profiling. We implement the

16: calculateML , M sampling technique in the compi_ler pass itself. Con_sider a

17: Reset_Cache() perfectly nested loop of deptli with the £*" loop having

18: en,d for /) lower and upper bounds df, and u;, respectively. Let all

L9 Mo,,, avg(M(;l,...7 Mc/nu) the array references be part of the inner-most loop body and

200 My, < avg(My,, ..., My,) let there bet statements in the loop body. Thé" statement

21: if count_hit> count_miss then tai distinct f tice that tw f

22 miss_estimate —m— M}, containsr; distinct array references (n_o ice that two references

23 else 7 to the same array are considered distinct if they accesrelift

24: miss_estimate — M¢,, elements of the array). We define the order of references

25: end if . within a statement to be from right to left. The compiler

26: ifhit_bound> 0.9*,,*C' then first generates a stream of <set value, wrap value> of length

27 miss_estimate «— Mg, d—T t—1 : ;

28 end if g [L=o(up — Ip) - = 7q» With each dynamic array reference

29: if miss_bound> 0.9*n,*C then representing one tuple. Next, clusters each of lengtg' are

30: miss_estimate —m—My, sampled from this stream. Finally, for each cluster, thenheac

31: end if miss count is estimated using the already discussed tagniq

32: return miss_estimate

Steps 3 to 18 perform the basic counting of the hits/misse

We show the cache miss estimation process with the help of

a C-like pseudocode for matrix-matrix multiplication.
S// C - Custer Size
/1 1 TER_PTS - nunber of clusters(ny) in the

for the clusters in the stream. Based on the proportion &fream

the hit/misses counted, appropriate miss estimation is protl = Random sorted(l TER_PTS, | TER_SPACE) ;

vided (lines 21 - 25). The miss estimate for the counted
hits is provided by subtracting the stream sizewith the

for(it =tl.next() ; it !'=-1; it =tl. next())

for(I =it ; I <= (it +C ; |++)

hits. Conditions in lines 26 - 31 are inserted to contain the {
upper bound errors as discussed in Lemma 2. The function yogate cache(reference.i.j, k)

check_(hit/miss)_bound returnslaif the corresponding dis-
tance between previous and current reference,iglse it

returnso.

D. Applying the Algorithm

rithm.

1

Fig. 1. Working of ICS

58

Map_iteration(l)->(i,j,k,reference)
}
Reset _cache();
}
| TER _SPACE refers to the entire stream of references
and t1 is the set of sampled clusters with each cluster
containing C' consecutive <set value, wrap value> pairs.

Figure 1 depicts a diagrammatic representation of the algdap_i t erati on(l) maps each pair back to the unique

array reference in the source loop, which is then used to
determine if this reference results in a miss by looking up a
simulated cache. Note that the simulated cache is invalilat
at the end of each cluster.

IV. M ATHEMATICAL VALIDATION

In this section, we analyze the mean and variance of the
random variableX defined in the last section and derive the

relative error in the estimate for a direct-mapped cache Th Proof: We will calculateE [XQ].
analysis for a set-associative cache is similar. ,

Lemma 1:E[X] = M/ —|S]. 9 m

Proof: SupposeR i [a,b] is a segment corresponding E [X] =k (Z Z C—(a— b/)y[“vb]>

to a cache set such thatR is not the first segment in the * [labledense.ac
global stream fos.Recall that.S| is the size of the cache set.The calculation ofG is exactly the above expectation. m
Define an indicator variablg,, which is 1 provided eitheR Let X', X2,..., X" denoter independent estimations of.
or some prefix ofw is not the first segment corresponding t€onsider the average estimatsr = %(X1 +...+X"). By
s in the random blockB and if the preceding segment &, Chebychev’s inequality, the error is the following
say R’ = [da/, V'], is at a distance of less tha®i. Define the

t of t Y i 8Ga.C 1/ 7
set of segments Pri|X — (M. —|S]) < , >3
r
densg ¢ = {[a,b] is a segment fog |

its preceding segment jg/, '] anda — b’ < C'} Thus, the error i((Ga.c/r)'/?).

Then, Ga.c < Z %(# segmentsay , b;]
X, = Z L/yw [a,b]ledense o a
[a,b]cdense. ¢ C—(a-t) sta; <aandb) >a—-C+1)

where,b’ is the closing index of the previous segmenfaf)] For a fixed segmenfa,b] € dense,c, the number of

of cache set. Thus, segmentgay,b1] S.t.a; < a andb] > a— C + 1 is at most
, C — 1. The upper bound is attained when each segment is of
E[XJ=) 1=|densec|=M,—1 size 1 in the intervak — C + 1 until a. Therefore,
[a,b]edense o

Ga,c < > %(C -1

where, the—1 appears since the algorithm always misses (5] € donse oc

counting the first segment. Adding over all this gives the

statement of the lemma. [<) ﬁ(c -1)

There are two parameters here, namely, the distance be- [a,b]€densg, o c '
tween successive segments for a cache set and the I€ngjth _m(C-1) ., ,
block size. Both are set 16. However, the length of successive T (1-a)C (Mac = I5]) < mMac/(1 = @) -
segments can be set tC, for some constantd o < 1,
say o = 0.75. The algorithm slightly changes as follows: if _ o 1 8G, o\ /2
b —a > aC, we count 0 instead of the scaled expression. In Relative error is given by = Y] (r’ >

this case, the expectation becomes

B smM/, o Jm
E[Xs] = Myc — 15| . (M —[5))2(1 - a) - M (1 —a)

Next, we compute the variance af. Define the statisti¢ Space requirement faraccuracy is
as follows. In the following, for any segmefat, b] € densg p, o
let ¥ denote the ending point of the immediately previous 9] <m7)> ., 0<a<l1.

segment for the same cache set M1 -
Coc=3" {m(C — (max(ay, az) — min(by, b3))) ‘ V. EXPERIMENTAL VALIDATION
(&N -
(€ = (a1 = b))(C — (az — 1)) In this section, we present detailed experimental resi#s t
[a1,b1] € densésy, aC) validate our cache miss estimation technique across a numbe
q
and[aq, b2] € denséss, aC) of cache organizations with varying capacity, associgtiand
o block size. We measure the relative error of our technique
and max(a1, az) — min(by, by) < C} against full cache simulation of a number of important micro

kernels and dominant loops drawn from dense linear algebra
Note that the sum is taken over segmets b1] and|az,b2] and the SPEC95 benchmark suite. In the following, we show
of arbitrary cache set pairg , s, such that (i) the end point the results for matrix-matrix multiplication, a five-poért sys-
b} of the predecessor segment|af, b;] is within a distance tem, 3-D stencil, the loop kernel 140001. t ontat v (from
of aC from a (and analogously for the end-poib§ of the SPEC95), and the nested loop of depth thre@%h NV sub-
predecessor segment ffy, bs]), and, (ii) C is large enough routine of 107. ngri d (from SPEC95). Since our technique
so that there exists a block of length to include) and relies on known loop bounds, ib07. ngri d we used 2000
ai, and, by and ae. The latter is equivalent to saying thatas the value oN, which is passed t®Sl NV as a parameter.
C' > max(aq, a2) — min(b}, b}). We have created our own cache measurement infrastrucutre to

Lemma 2:Var[X} < Gac - measure the cache misses. This was necessary to observe the

59

necessary behaviour of interior misses over arrays emg@loye The relative errors of ICS andalf warmupare around 0.1%
by our ICS method. to 1% for 16 KB cache. As cache size increases to 512 KB
Along with the relative error of our technique, we als@nd 1 MB, the ICS approach converges to less than 0.1% error
present the relative errors of four major sampling techesqufor cluster sizes abov&b000. A fact worth noting is that none
namely All References [5Primed Method [12]Half Warmup of the other techniques have such low error rates for higher
Method [8] and Stitch Method [1]have been proposed in thecache sizes.
past with the similar goal of reducing the time overhead of 4) Tomcatv: The estimation results for the selected loop of
the estimation process. All these four techniques first gaae t ontat v are shown in Figure 5. All the techniques tend to
a full cache access trace and then sample random clustebilize around 1% error rate as the cluster size is inetkas
from this trace. For more information, the readers shoulekrre 5) Mgrid: Figure 6 shows the relative error rates of dif-
to Uhlig and Mudge [15] and Yi et al. [22]. ferent estimation schemes for the selected loopyofi d.
We also show how our technique can be successfully appliedr all cache sizes th&ll referencesmethod delivers a 100%
to identify the optimal loop permutation in a loop nest (lead error rate. Sincargri d has a very large working set, this
to the generation of the corresponding unimodular transfer method ends up over-estimating due to scaled up cold misses.
tion) and to quickly determine the optimal tile size in a-tileFor Primed method, the situation is reverse, it underestimate
transformed loop. We close this section with a discussion trecause of lesser full sets. Our ICS method tends to stabiliz
the speedup achieved by our estimation technique compa#ésdund 1% error as we increase the cache Is&éwarmup
to full cache simulation. and Stitchalso offer similar error rates.

B. Effect of Associativity and Block Size

We start the discussion of the results by presenting theFigure 7 shows_the relative error rates_ o_f Qur_ICS tgchnique
relative errors of our estimation technique and the othar foon the 3-D stencil kernel as the associativity is varied from

methods discussed above for the different loop nests rgnnmrect-mapped to 8-way. The cache block size is kept fixed

on a 4-way set associative cache with block size of 32 byt€§. 32 bytes. The results rgveal that error rates seems to
We consider three cache sizes, namely, 16 KB, 512 K icrease as we move from direct-mapped to 8-way. However,

and 1 MB. In all the experiments, the number of sampleta,e convergence pattern remains the same due to the nature of

clusters) is kept fixed at 300. refﬁrences. ore the | . - he block
1) Matrix-matrix Multiplication: A matrix of size4096 x ext, we explore the impact of varying the cache bloc

4096 is chosen for this experiment. Figure 2 shows the relative®: Figure 8 shows the relative errors of our ICS technique

errors of our ICS method and the four previously proposéJd1 the matrlx-_rna_ltrlx multiplication kernel for a 512 KB 4-
Way set associative cache and on the selected loop kernel of

schemes. Each plot shows how the relative error varies wi .
P ontatv for a 512 KB direct-mapped cache as the cache

the cluster size for a particular cache size. For 16 KB cacrL X L) . S .
b ﬁock size is varied. We find that while increasing the block

all methods except therimedmethod deliver error rate below . s
1% for cluster size higher thar)00. Interestingly, as the cacheS'?€ _from 32. bytes_ tc.) 12.8 bytes onvers the estimation ermor fo
matrix-matrix multiplication, there is almost no effectldbck

size increases, only thBrimed method seems to perform’ . th timat in tv. Th duction i
better. However, with a significant increase in cluster ,sizg'Z(_e on the estimation error inontatv. the reduction in
relative error rate of ICS decreases to about 0.1%. A po|_§tlmat|0_n error with increasing block size fo_r regularriais
worth noting is that the ICS method tends to perform bett c r_natnx—n_watrlx multl_pllcatlon can be explained by thact
across all three cache sizes compared to any other sin gt increasing block size decreases the number of cache set
s a result, the number of cold misses decreases leading to

method. bett timati
2) Five-pointed Systentive-pointed systems are very pop- etter estimation.

ular in iterative solvers where a weighted average of the

neighbors of a point is taken as the new value of the poift Application to Loop Optimization

at the end of the current iteration. We show a representativein this section, we show that our ICS technique can be

five-pointed kernel below. We use 40 thousand as the valueapplied to two different kinds of loop optimization. In the

N in our measurements. first experiment, we use our technique to decide that the
The evaluation across different schemes is presentedi ikj permutation of the matrix-matrix multiplication loop nest

Figure 3. Our ICS technique offers error rates below 0.1%ffers the best cache performance. In the second experiment

and as already pointed out, the cluster sizes required iexach we show that our technique can correctly decide the optimal

this error rate increase significantly in large caches. Hewe tile size for a tile-transformed matrix-matrix multiplidan

for 1 MB Cache, all techniques except ICS have a significantkernel. Both the experiments are carried out 4696 x 4096

high error rate of about 100% even for larger cluster sizes.matrices on a 512 KB 4-way set associative cache with 32-
3) 3-D Stencil: 3-D stencils are often used in applicationdyte block size. Figure 9 presents these results. For the loo

like fluid dynamics, heat transfer, etc. This experiment igermutation experiment, we plot the number of cache misses

carried out on the loop structure described in Veldhuizéi.[1 estimated by our technique for each of the six permutations

We use N = 4000. Figure 4 shows the relative errors innormalized to the j k permutation as a function of the cluster

estimation. size. It is very encouraging to note that our technique ctisre

A. Relative Estimation Errors on Loop Kernels

60

100 100 T 100 T
Cluster Samping —=— Cluster Samping i Cluster Sampig *a
Half Warmup o Half Warmup @ Half Warmup &
Al References
T vPrmed v rimed
0 Stich -+ 0 0
2 8 2
g § 1 g 1
& & @ - -
g g E T
] k| T gy, K
i CR E
2 Ed 2
001 001 001
0001 0001 0.001
500 1000 1500 2000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000
Cluster Size Cluster Size Cluster Size

Fig. 2. Comparison of different estimation schemes fot086 x 4096 matrix-matrix multiplication on a 4-way set associativecloa with capacity (a)
16 KB, (b) 512 KB, (c) 1 MB.

100 10 100
G p—— Toeer Samping T [rp—
WA o A - AT -
Al ARt 2 ARt 2
e v e e e
o Sen T o U o S T
E3 k3 E
B 5 B
H H :
£ £ H
£, H R
g 3 4
oo o0t 001
000 000t 0001
200 a0 om o0 1w 2o w0 160 100 0 w000 150 200 250 000 300 a0 a0 Tooon zoom0 zioom om0 zaow0 200000
Cluser Size Cluster i Cluser Size

Fig. 3. Comparison of different estimation schemes for afiomted system running on a 4-way set associative cachepzoity (a) 16 KB, (b) 512 KB
(c) 1 MB.

100 T 100 100
NeTster Sanpiig v "Cluster Sampling —=— Cluster Sampling —=—
alf Warmup o i g HAWAIMUD 8 i g g HALWAMUD -8
Al References & G ‘o Al References * & e .. All References -
imed v TS Primed gy, SPrimeda.:
0 he 0 Stch -+ 1 Sich -+
] 8 2
g g 1 B 1
& & &
k- s k-
b o1 < o1
2 2 2
001 001 001
0.001 0.001 0.001
500 1000 1500 2000 30000 35000 40000 45000 25000 30000 35000 40000 45000

Cluster Size Cluster Size: Cluster Size

Fig. 4. Comparison of different estimation schemes for a &éhcil running on a 4-way set associative cache of capéajty6 KB, (b) 512 KB, (c) 1 MB.

100 100 100
Clusier Samping —— Clister Sampling —o— Cluster Samping ——
all Warmup Hall Warmup & Hall Warmup &
Al References & Al References 4 Al References 4
Primed - v = Primed - v d v
he v....
© Siich o Siich
8 ® B3
& & i
g 5 s
£ g, € <
E Ed 2
0.01 0.01 0.01
0001 0001 o001
200 400 600 80 1000 1200 1400 1600 1800 2000 4000 6000 8000 10000 12000 14000 16000 18000 5000 10000 15000 20000 25000 30000 35000
Cluster Size Cluster Size Cluster Size

Fig. 5. Comparison of different estimation schemes for tieplkernel 140 ot ontat v running on a 4-way set associative cache of capacity (a) 16 KB
(b) 512 KB, (c) 1 MB.

identifies thej ki andkj i permutations to be much worsethis optimal size. It is important to note that a full cache
than thei j k permutation. It also correctly ranks theé k simulation to decide the optimal tile size would take much
permutation to be worse than thg k permutation. In the longer compared to our sampling algorithm. It is not at all
figure,i kj andkij have a small factor of difference, withdifficult to envision a compiler pass that not only tiles agoo
former being better. Finallyi, kj permutation is best rankednest, but also runs our sampling algorithm to generate lie ti
amongst other permutations. For the tile size experimeet, Woop with the optimal tile size embedded.

show the estimated number of cache misses for tile sizes 4,

8, 16, 32, 128, and 256 normalized to no tiling. For the 9VeY Estimation Speedup

cache organization, one can verify that, indeed, the 8ile _ _ _ _
is the optimal one. Our ICS technique correctly identifies Finally, before closing this section, we present the sppedu
achieved by our estimation scheme compared to full cache

61

- wChuster. Sampling —*—
Half Warmup %8+
Al References —4

Cluster Sampiing —»— ‘Cluster Sampling —=—
o Half Warmup -8

. All References & Al References &
v rimed - v fimed - v Primed - -v-
Stich - o- Stich - Stich -«

Abs. Relative Error %
Abs. Relative Error %
Abs. Relative Error %

0.001

0.001

5000 10000 15000 20000
Cluster Size

0.001
500 1000 1500 2000 2500 3000 3500 4000 4500 500 1000 1500 2000 2500 3000 3500 4000 4500

Cluster Size Cluster Size

Fig. 6. Comparison of different estimation schemes for dwplkernel inPSI NV subroutine ofirgr i d running on a 4-way set associative cache of capacity
(a) 16 KB, (b) 512 KB, (c) 1 MB.

Abs. Relative Error %

Abs. Relative Error %
Abs. Relative Error %

0.001
40000 45000 25000 30000 35000 40000 45000

Cluster Size

0001
2000 4000 6000 8000 10000 12000 14000 30000 35000
Cluster Size

0.001

Cluster Size

Fig. 7. Effect of associativity on estimation error of ICS tbe 3-D stencil kernel with cache capacity of (a) 16 KB, (A2XKB, (c) 1 MB.

Abs. Relative Error %
Abs. Relative Error %

0.0
10000 15000 20000

Cluster Size:

01
5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 5000
Cluster Size

Fig. 8. Effect of cache block size on estimation error of IG5(a) matrix-matrix multiplication for a 512 KB 4-way set asmtive cache, (b) ontat v
for a 512 KB direct-mapped cache.

Normalized to ik
S
3
v
Normalized to No Tiling

4 8 16 E) 128 256
Blocking Factor

150000 160000 170000 180000 190000 200000 210000 220000 230000 240000
Cluster Size

Fig. 9. (a) Estimated number of cache misses in the matrixixnanultiplication kernel for all six loop permutations moalized to thei j k permutation.
(b) Estimated number of cache misses for different tilessirethe tiled matrix-matrix multiplication kernel normzdid to no tiling.

simulation. Figure 10 shows these speedup results for all #factors of more than hundred for all associativities. The
loop kernels that we have considered (except for the randepeedup on 3-D stencil was in the order of thousand. Firesly,
reference stream) running on a 512 KB cache with 32-by¢xpected, the speedup decreases with increasing asgbgiati
block size. We present the results for direct-mapped and setce to achieve an error rate of less than 5%, our sampling
associative caches with up to eight ways. In these expetsnetechnique needs to consider bigger cluster sizes (thisl tien
the cluster size was chosen such that the estimation erromieady discussed above). Overall, we found that our tecieni
less than 5%. All these experiments are run on a 3.4 Gldkvays produces results in minutes. These results clearly
Pentium 4 with 1 GB RAM. The results show that for complexnderscore the feasibility of integrating our ICS scheme in
nested loops (e.g., all the loops except five-pointed systedn a compiler pass for estimating cache misses of loop nests
matrix-vector multiplication) our algorithm achieves sdap with known bounds and known array sizes, and using this

62

estimation to compare the quality of different optimizago

[[B1-way m2-way D4-way D8-way |

500

;

450 e | e

400 e S| e

350 e |

300 e |

L | ==

Speedup

200 1

150 -

100 1| [l S| e

50 +-{ Ml | | S|

Matrix 5ptSystem 3d Stencil Tomcatv

Multiplication

Mgrid

Fig. 10. Speedup of ICS technique compared to full cachelation on a
512 KB cache with 32-byte block size and different assodtas.

VI. SUMMARY AND POSSIBLEEXTENSIONS

[2] Jon Louis Bentley and James B. Saxe. Generating sorsésl li

(3]

(4]

(5]
(6]

(7]

[8] JW.C. Fu and J.H. Patel.

(9]

This paper has introduced source-level independent cluste
sampling as an effective means to estimate the number of

cache misses in perfectly nested loops with dense ar

accesses. Across a number of cache organizations, this tech

nique offers excellent estimates for a number of populap logy 1]

kernels drawn from dense linear algebra and the SPEC95

suite. Although in some instances this technique is infedo [12]
some of the previously proposed cache access trace sampling

techniques, it offers less than 5% error with more than afact, 3
of hundred speedup in the estimation time compared to full

access tracing schemes. For some of the complex loops, the
speedup is in the range of thousand. This fast cache mis&l

estimation scheme naturally lends itself to compile-timepl

optimization techniques and we successfully demonsttate i
applicability to two such optimizations, namely, loop per-
mutation (a popular unimodular transformation) and titeesi [15]

(16]
The next natural step would be to integrate this algorithm '[517]
a full-fledged compiler pass and apply it to more optimizagio

determination (which is often determined by full executain
loop kernels).

related to memory hierarchy. One significant weakness of
this technique is that it fails to handle phase behaviors in a

loop kernel. Since the sampling technique is not guided

any information drawn from the loop’s structure, it would

of random numbersACM Trans. Math. Softw1980.

Calin Cascaval and David A. Padua. Estimating cache emiss
and locality using stack distances. Rroceedings of the 17th
annual international conference on SupercomputiNgw York,
NY, USA, 2003. ACM Press.

Siddhartha Chatterjee, Erin Parker, Philip J. Hanlomd a
Alvin R. Lebeck. Exact analysis of the cache behavior of
nested loops. IPLDI '01: Proceedings of the conference on
Programming language design and implementatidaw York,
NY, USA, 2001. ACM Press.

M.C. Easton. Computation of cold-start miss ratiotEEE
Transactions on ComputerMay 1978.

Lieven Eeckhout, Smail Niar, and Koen De Bosschere. roglti
sample length for efficient cache simulatiod. Syst. Archit.
2005.

Basilio B. Fraguela, Ramoén Doallo, and Emilio L. Zapata.
Probabilistic miss equations: Evaluating memory hieranoér-
formance.|EEE Trans. Comput.2003.

Trace driven simulation using
sampled tracesTwenty-Seventh Hawaii Internation Conference
on System Science$-7 Jan 1994,

Somnath Ghosh, Margaret Martonosi, and Sharad Malikch€a
miss equations: a compiler framework for analyzing andrtgni
memory behaviorACM Trans. Program. Lang. Sysfl999.

r[él(9] Jr. John W. Haskins and Kevin Skadron. Accelerated wgrm

for sampled microarchitecture simulatioACM Trans. Archit.
Code Optim. 2005.

Richard Eugene KessleAnalysis of multi-megabyte secondary
CPU cache memoriesPhD thesis, Madison, WI, USA, 1991.
S. Laha, J. H. Patel, and R. K. lyer. Accurate low-costhmods
for performance evaluation of cache memory systernisEE
Trans. Comput.1988.

Erin Parker. Analyzing the Behavior of Loop Nests in the
Memory Hierarchy: Methods, Tools, and Application$hD
thesis, North Carolina, USA, 2004.

Erez Perelman, Greg Hamerly, Michael Van Biesbroudky-T
othy Sherwood, and Brad Calder. Using simpoint for accurate
and efficient simulation. Irnnternational conference on Mea-
surement and modeling of computer systehew York, NY,
USA, 2003. ACM.

Richard A. Uhlig and Trevor N. Mudge. Trace-driven mesno
simulation: a surveyACM Comput. Sury.1997.

Todd Veldhuizen. Scientific computing: C++ vs. fortrabr.
Dobb’s Journaj 1997.

Xavier Vera and Jingling Xue. Let’s study whole-prograache
behaviour analytically. 18th International Symposium on High-
Performance Computer Architecturgpage 175, Washington,
DC, USA, 2002. IEEE Computer Society.

] Xavier Vera, Nerina Bermudo, Josep Llosa, and Antonio

not be surprising if the algorithm misses out on important

samples characterizing certain phases of execution. Hawey19]
it is encouraging to note that the compiler can offer a signif

icant amount of information and feedback about the dynamic

regions (i.e., regions in the iteration space) of the loognegh [20]

the sampling effort should be focused.

VIl. ACKNOWLEDGEMENTS

We would like to thank Nitin Gorde for participating in

discussions during the course of this research work.

REFERENCES
[1] Anant Agarwal, John Hennessy, and Mark Horowitz.

loads. ACM Trans. Comput. Syst1988.

(21]

(22]

Cache
performance of operating system and multiprogramming work

Gonzéalez. A fast and accurate framework to analyze and
optimize cache memory behavigkCM Trans. Program. Lang.
Syst, 2004.

T.F. Wenisch, R.E. Wunderlich, B. Falsafi, and J.C. H8en-
ulation sampling with live-pointsinternational Symposium on
Performance Analysis of Systems and Softwa8:21 March
2006.

David A. Wood, Mark D. Hill, and R. E. Kessler. A model
for estimating trace-sample miss rati®@GMETRICS Perform.
Eval. Rev. 1991.

R.E. Wunderlich, B. Wenisch, T.F.and Falsafi, and J.©GeH
Smarts: accelerating microarchitecture simulation vigonmous
statistical sampling.30th Annual International Symposium on
Computer Architecture9-11 June 2003.

Joshua J. Yi, Sreekumar V. Kodakara, Resit Sendag, Davi
Lilja, and Douglas M. Hawkins. Characterizing and compgrin
prevailing simulation techniques. [tlth International Sympo-
sium on High-Performance Computer Architectufdashington,
DC, USA, 2005. IEEE Computer Society.

63

64

List of Authors

AgEarwal, SANJEeV 55
Burkhart, HEIMAro e 47
Chaudhuri, Mainak e e e 55
Christen, MAatthiasttt e e e e e e 47
Faeld, AL J. 39
Fuetterling, Valentin ottt e e e e 17
Ganguly, SUMIEttt e e e et e e e e 55
Heuveline, VINCENLttt e e e e e e e e e 31
Hornegger, JOaChim e e 25
HoWes, e W .o e 39
Keck, Benjamin e 25
Kelly, Paul H. J. .o e 39
K, KOmi ..ottt 1
Kitamura, ToShiaKi o e 1
KoOstler, Harald e 9
Kowarschik, Markus e e 25
L0JewWsKi, CarStenttt ettt et ettt et e e et e e e e e e e e e 17
LoKhmoOtov, ANtONt e e e e e e e e e 39
LukarsKi, DIMItAr e e e e e e 31
MeESSIMET, Peter . ..o 47
Nakada, TaKashi e 1
Nakashima, YasuhiKo e 1
Neufeld, Esra 47

65

Ritter, Daniel 9

Riide, UIIICh ... e 9
Schenk, Odaf 47
Scherl, HOLger e 25
Sharma, Kamal 55
Shimada, Hajime 1
StUrmer, MarKuUs . ..o 9
Welnlich, ANAIeas e 25
WeiB, Jan-Philipp 31

66

Financial support

The Shared Research Group (SRG) 16-1 on New Frontiers in High Performance Computing Exploiting Multicore
and Coprocessor Technology is a joint initiative of Karlsruhe Institute of Technology and Hewlett-Packard. The
SRG receives grants by the Concept for the Future of Karlsruhe Institute of Technology in the framework of the
German Excellence Initiative and by the industrial collaboration partner Hewlett-Packard. The present proceedings
of the First International Workshop on New Frontiers in High-performance and Hardware-aware computing are

kindly sponsored by the SRG.

High-performance system architectures are increasingly exploiting
heterogeneity: multi- and manycore-based systems are complemented
by coprocessors, accelerators, and reconfigurable units, providing
huge computational power. However, applications of scientific inter-
est (e.g. in high-performance computing and numerical simulation)
are not yet ready to exploit the available high computing potential.
Different programming models, non-adjusted interfaces, and band-
width bottlenecks complicate holistic programming approaches for
heterogeneous architectures. In modern microprocessors, hierarchical
memory layouts and complex logics obscure predictability of memo-
ry transfers or performance estimations.

The HipHaC workshop aims at combining new aspects of parallel,
heterogeneous, and reconfigurable microprocessor technologies with
concepts of high-performance computing and, particularly, numeri-
cal solution methods. Compute- and memory-intensive applications
can only benefit from the full hardware potential if all features on all
levels are taken into account in a holistic approach.

ISBN: 978-3-86644-298-6

www.uvka.de

