
Universität Karlsruhe - Fakultät für Informatik - Bibliothek - Postfach 6980 - 76128 Karlsruhe

 ISSN 1432-7864

Flow-Sensitive, Context-Sensitive, and Object-
sensitive Information Flow Control Based on

Program Dependence Graphs

Christian Hammer, Gregor Snelting

Interner Bericht 2008-16

2

Christian Hammer · Gregor Snelting

Flow-Sensitive, Context-Sensitive, and Object-sensitive Information
Flow Control Based on Program Dependence Graphs

Abstract Information flow control (IFC) checks whether a
program can leak secret data to public ports, or whether crit-
ical computations can be influenced from outside. But many
IFC analyses are imprecise, as they are not flow-sensitive,
context-sensitive, or object-sensitive; resulting in false alarms.

We argue that IFC must better exploit modern program
analysis technology, and present an approach based on pro-
gram dependence graphs (PDG). PDGs have been developed
over the last 20 years as a standard device to represent infor-
mation flow in a program, and today can handle realistic pro-
grams. In particular, our PDG generator for full Java is used
as the basis for an IFC implementation which is more precise
and needs less annotations than traditional approaches.

We explain PDGs for sequential and multi-threaded pro-
grams, and explain precision gains due to flow-, context-,
and object-sensitivity. We then augment PDGs with a lat-
tice of security levels and introduce the flow equations for
IFC. We describe algorithms for flow computation in de-
tail and prove their correctness. We then extend flow equa-
tions to handle declassification, and prove that our algorithm
respects monotonicity of release. Finally, examples demon-
strate that our implementation can check realistic sequential
programs in full Java bytecode.

Keywords software security · noninterference · program
dependence graph · information flow control

This research was supported by Deutsche Forschungsgemeinschaft
(DFG grant Sn11/9-2). Preliminary versions of parts of this article ap-
peared in [25] and [24]

Christian Hammer
Universität Karlsruhe (TH), Germany
E-mail: hammer@ipd.info.uni-karlsruhe.de

Gregor Snelting
Universität Karlsruhe (TH), Germany
E-mail: snelting@ipd.info.uni-karlsruhe.de

1 Introduction

Information Flow Control (IFC) is an important technique
for discovering security leaks in software. IFC has two main
tasks:

– guarantee that confidential data cannot leak to public var-
iables (confidentiality);

– guarantee that critical computations cannot be manipu-
lated from outside (integrity).

Language-Based IFC analyzes the program source code to
discover security leaks. Language-based IFC can exploit a
long history of research on program analysis; for example,
type systems, abstract interpretation, dataflow analysis, pro-
gram slicing, etc. A correct language-based IFC will dis-
cover any security leaks caused by software alone (but typ-
ically does not consider physical side channels). Language-
based IFC analysis usually aims to establish noninterfer-
ence, that is by looking at the program text, it tries to prove
that the program obeys confidentiality and/or integrity.

In this article, we present a new approach to language-
based IFC, which heavily exploits modern program analy-
sis. In particular, it utilizes the program dependence graph
(PDG), which, after a long history of research, has become a
powerful structure capable of handling real programs. Using
PDGs results in an IFC which is more precise than previous
approaches and thus reduces false alarms. Our implemen-
tation can handle full Java bytecode, and we will not only
present the theoretical foundations of the method, but pre-
liminary experience as well.

1.1 Principles of Program Analysis

Before we present our method in detail, let us discuss some
general properties of IFC and program analysis methods. As
any program analysis, language-based IFC is subject to sev-
eral conflicting requirements:

– Correctness is a central property of any IFC analysis: if
a potential security leak is present in the source code, the
analysis must find it.

4 Christian Hammer, Gregor Snelting

– Precision means that there are no false alarms: any pro-
gram condemned by the IFC analysis must indeed con-
tain a security leak.

– Scalability demands that the analysis can handle realistic
programs (e.g. 100kLOC), written in realistic languages
(e.g. full Java bytecode).

– Practicability demands that an analysis is easy to use,
e.g. does not require many program annotations and de-
livers understandable descriptions of security leaks.

Unfortunately, due to decidability problems, total preci-
sion cannot be achieved while maintaining correctness. Hence
all correct language-based IFC algorithms are conservative
approximations: they may generate false alarms, but never
miss a potential security leak. And indeed, we can leave oc-
casional false alarms to manual inspection – as long as there
are not too many of them. Precision also influences scalabil-
ity: usually better precision means worse scalability, and fast
algorithms are not precise. In the field of program analysis a
large collection of techniques has been developed such that
the engineer can choose from a spectrum between cheap/im-
precise and precise/expensive analysis algorithms; depend-
ing on the purpose of the analysis. In particular, the engineer
can choose whether an analysis should be

– flow-sensitive, that is, order of statements is taken into
account, and for every statement a separate analysis in-
formation is computed; flow-insensitive analysis com-
putes only one global solution for the program.

– context-sensitive, that is, procedure calling context is tak-
en into account, and separate information is computed
for different calls of the same method; context-insensi-
tive analysis merges all call sites of a procedure.

– object-sensitive, that is, different “host” objects for the
same field (attribute) of an object are taken into account;
object-insensitive analysis merges the information for a
field over all objects of the same class.

Decades of research history in program analysis, including
a wealth of empirical studies, have shown that all kinds of
sensitivity dramatically improve precision in particular for
large programs or automatically generated programs. But of
course, the more sensitivity, the more expensive an analy-
sis is. Depending on the application, eventually scalability
limits the amount of sensitivity one can afford.

Note that some program analysts argue in favor of pre-
cise, scalable, but incorrect algorithms. If total correctness
is not a requirement, precision and scalability can improve
drastically. Such algorithms are usually used in testing and
bug-finding tools. But while finding (only) 80% of all bugs
at low cost can be quite helpful, for IFC we consider such
unsound approaches to be inadequate.

Thus sticking to the principle of correctness, we are con-
vinced that modern program analysis can and must be ex-
ploited to improve language-based IFC, in particular to im-
prove precision and scalability. But it seems that the IFC
community has not yet fully absorbed the power of modern
program analysis: in their overview article [54], Sabelfeld
and Myers survey contemporary IFC approaches based on

1 if (confidential ==1)
2 public = 42
3 else
4 public = 17;
5 ... // no output of public
6 public = 0;

Fig. 1 A secure program fragment

program analysis, and find that most approaches are based
on security type systems. Some authors proposed to use ab-
stract interpretation or model checking, but other very suc-
cessful approaches to program analysis, such as precise in-
terprocedural dataflow analysis, points-to analysis, or pro-
gram slicing seem not yet popular for IFC. Let us thus re-
view fundamental properties of security type systems.

1.2 Security Type Systems

Security type systems attach security levels – coded as types
– to variables, fields, expressions etc. and the typing rules
propagate security levels through the expressions and state-
ments of a program, guaranteeing to catch illegal flow of
information [58]. Thus such type systems are correct. Type
systems can handle sequential as well as concurrent pro-
grams, and can even discover timing leaks [2]. Type-based
IFC is efficient, correctness proofs are not too difficult, and
realistic implementations, e.g. the JIF system [42], exist. Thus
security type systems are a success story and can be seen as
a “door-opener” for the whole field of language-based IFC.

But type systems can be rather imprecise, as most se-
curity type systems are not flow-sensitive, context-sensitive,
nor object-sensitive. This leads to false alarms. For example,
the well-known program fragment in Figure 1 is considered
insecure by type-based IFC, as type-based IFC is not flow-
sensitive. It does not see that the potential illegal flow from
confidential to public in the if-statement (a so-called
implicit flow) is guaranteed to be killed1 by the following as-
signment, and thus declares the fragment to be untypeable.

Classical noninterference [20,21] however only demands
that two streams of public output of the same program must
be indistinguishable even if they differentiate on secret var-
iables, which is true for this program. Thus secret data in
a public variable is perfectly eligible as long as its content
does not flow to output. Note that the killing statement may
be far away from the supposed illegal flow.

Type-based IFC performs even worse in the presence
of unstructured control flow or exceptions. Therefore, type
systems overapproximate information flow control, result-
ing in too many secure programs rejected (false positives).
First steps towards flow-sensitive type systems have been
proposed, but are restricted to rudimentary languages like
While-languages [30], or languages with no support for un-
structured control flow [3].

1 an established term in dataflow analysis

Flow-Sensitive, Context-Sensitive, and Object-sensitive Information Flow Control Based on Program Dependence Graphs 5

1.3 PDGs and Overview

Fortunately, program analysis has much more to offer than
just sophisticated type systems. In particular, the program
dependence graph (PDG) [15] has become, after 20 years
of research, a standard data structure allowing various kinds
of powerful program analyses – in particular, efficient pro-
gram slicing [65]. Today, commercial PDG tools for full C
are available [4], which have been used in a large number of
real applications, and there are at least two PDG implemen-
tations for full Java [31,27]. One of them is used as the basis
for a new IFC algorithm, as described in this article.

The first IFC algorithm based on PDGs was presented by
Snelting in 1996 [59]. But more elaborate algorithms were
needed to make the approach work and scale for full C and
realistic programs [52, 60]. The latter article contains a the-
orem connecting PDGs to the classical noninterference cri-
terion (see also section 2). Later, Hammer et al. developed
a precise PDG for full Java [27], which is much more diffi-
cult than C due to the effects of inheritance and dynamic dis-
patch, and due to the concurrency caused by thread program-
ming. Krinke’s slicing algorithm [33] for multi-threaded pro-
grams has recently been integrated. Today, we can handle
realistic C and Java programs and thus have a powerful tool
for IFC available that is more precise than conventional ap-
proaches. In particular, it handles Java’s exceptions and un-
structured control flow precisely.

In this article, we first recapitulate foundations of PDGs,
and explain flow-, context-, and object-sensitivity. We then
augment PDGs with Denning-style security level lattices and
explain the equations which propagate security levels through
the program in details. We focus on precise interprocedural
analysis with declassification in called methods, a feature
that our previous work [25] could only handle in a conserva-
tive fashion. Finally, we present several examples and per-
formance data, and discuss future work.

2 Dependence Graphs and Noninterference

2.1 PDG Basics

Program dependence graphs are a standard tool to model
information flow through a program. Program statements
or expressions are the graph nodes. There are two kinds of
edges: data dependences and control dependences. A data
dependence edge x → y means that statement x assigns a
variable which is used in statement y, without being reas-
signed (“killed”) underway. A control dependence edge x→
y means that the mere execution of y depends on the value
of the expression x (which is typically a condition in an if-
or while-statement).

In a PDG G = (N,→), a path x→∗ y means that informa-
tion can flow from x to y; if there is no path, it is guaranteed
that there is no information flow [28,51,48,11,49,64]. Thus
PDGs are correct. Exploiting this fundamental property, all
statements possibly influencing y (the so-called backward

1 a = u();
2 while (n>0) {
3 x = v();
4 if (x>0)
5 b = a;
6 else
7 c = b;
8 }
9 z = c;

Start

1 2

3 4

5 7

9

Fig. 2 A small program and its dependence graph

slice) are easily computed as

BS(y) = {x | x→∗ y} (1)

where y is called the slicing criterion of the backward slice.
In particular, the Slicing Theorem [51] shows that for any
initial state on which the program terminates, the program
and its slice compute the same sequence of values for each
element of the slice.

As an example, consider the small program and its de-
pendence graph in Figure 2. There is a path from statement
1 to statement 9, indicating that input variable a may even-
tually influence output variable z. Since there is no path
(1)→∗ (4), there is definitely no influence from a to x. In
figure 1, the PDG contains edges 1→ 2 and 1→ 4, but not
(1)→∗ (6) and thus is considered safe as public does not
depend on confidential; no false alarm is generated.

The power of PDGs stems from the fact that they are
flow-sensitive and context-sensitive: the order of statements
does matter and is taken into account, as is the actual call-
ing context for procedures. As a result, the PDG never in-
dicates influences which are in fact impossible due to the
given statement execution order of the program; only so-
called “realizable” (that is, dynamically possible) paths are
considered. But this precision is not for free: PDG construc-
tion can have complexity O(|N|3) due to the transitive sum-
mary edges (see section 3). In practice, PDG use is limited
to programs of about 100kLOC [10].

Even the most precise PDG is still a conservative approx-
imation: it may contain too many edges (but never too few).
PDGs and slicing for realistic languages with procedures,
complex control flow, and data structures are much more
complex than the fundamental concept sketched above. For
the full C or Java language, the computation of precise de-
pendence graphs and slices is absolutely nontrivial; there
is ongoing research worldwide since many years. In-depth
descriptions of slicing techniques can be found in [62, 34];
some techniques are explained in chapter 3.

2.2 Noninterference and PDGs

As explained, a missing path from a to b in a PDG guaran-
tees that there is no information flow from a to b. This is
true for all information flow which is not caused by hidden

6 Christian Hammer, Gregor Snelting

physical side channels such as timing or termination leaks.
It is therefore not surprising that traditional technical defi-
nitions for secure information flow such as noninterference
are related to PDGs.

Noninterference was originally introduced in [20, 21].
Every statement a has a security level dom(a). Noninterfer-
ence between two security levels, written as d 6 e means
that no statement with security level d may influence a state-
ment of security level e. A system is thus considered secure
according to the original Goguen/Meseguer noninterference
criterion, if for all possible statement sequences x and all
final statements a

output(run(z0,x),a) = output(run(z0,purge(x,dom(a))),a)
(2)

Without discussing details of this formula, we observe: non-
interference requires that the final program output must be
unchanged if every statement is deleted which – according
to its security level – must not influence the final program
state. We see that the notion of security is based on observa-
tional behavior and not on the source code.

Today, the notion of noninterference is usually defined
in a more compact form. In its simplest variant – which as-
sumes only security levels Low and High – it reads

s∼=Low s′ =⇒ JcKs∼=Low JcKs′ (3)

where c is a statement or program, s,s′ are two initial pro-
gram states, and JcKs,JcKs′ are the corresponding final states
after executing c. s∼=Low s′ means that s and s′ are Low equiv-
alent: they must coincide on variables which have Low se-
curity, but not on variables with High security. Thus varia-
tion in the high input variables does not affect low output,
and hence confidentiality is assured. Note that various ex-
tensions of elementary noninterference have been defined,
such as possibilistic or probabilistic noninterference; some
of them based on PER relations [55].

The following theorem connects PDGs to the original
Goguen/Meseguer definition and demonstrates how PDGs
can be used to check for noninterference. Note that the same
theorem applies to the Low-equivalence based noninterfer-
ence definition, and we are preparing a machine-checked
proof for the latter version [64].

Theorem 1 If

s ∈ BS(a) =⇒ dom(s) dom(a) (4)

then the noninterference criterion is satisfied for a.
Proof. See [60]. ut

Thus if dom(s) 6 dom(a) (s and a have noninterfering
security levels), there must be no PDG path s→∗ a, other-
wise a security leak has been discovered.

The generality of the theorem stems from the fact that it
is independent of specific languages or slicing algorithms; it
just exploits a fundamental property of any correct slice. The
theorem is valid even for imprecise PDGs and slices, as long

as they are correct. Applying the theorem results in a linear-
time noninterference test for a, as all s ∈ BS(a) must be tra-
versed once. More precise slices result in less false alarms.
However, as we will see later, it is not possible to use de-
classification in a purely slicing based approach, thus later
we will present extended versions of Theorem 1.

2.3 Beyond PDGs

Ongoing research is making PDGs and slicing more precise
every year. But PDG precision can also be improved by non-
PDG means, as developed in program analysis.

As an example, consider the fragment
“if (h > h) then l = 0”

Naive slicing as well as security type systems will assume a
transitive dependence from h to l, even though the if body
is dead code. Thus, semantic consistency as postulated in
[56] is violated. This is not in discrepancy with Theorem 1,
but comes from analysis imprecision.

Fortunately, PDGs today come in a package with other
analyses originally developed for code optimization, such
as interprocedural constant propagation, static single assign-
ment form, symbolic evaluation, and dead code elimination.
These powerful analyses are performed before PDG con-
struction starts, and will eliminate a lot of spurious flow. The
easiest way to exploit such analyses is by constructing the
PDG from bytecode or intermediate code. For the above ex-
ample, any optimizing compiler will delete the whole state-
ment from machine code or bytecode, as it is dead code.
Note that the bytecode must be considered the ultimate defi-
nition of the program’s meaning, and remaining flows in the
bytecode – after all the sophisticated optimizations – must
be taken all the more seriously.

In addition, we proposed an even stronger mechanism on
top of PDGs, called path conditions [59,52,60,26]. Path con-
ditions are necessary and precise conditions for flow x→∗ y,
and reveal detailed circumstances of a flow in terms of con-
ditions on program variables. If a constraint solver can solve
a path condition for the program’s input variables, feeding
such a solution to the program makes the illegal flow visible
directly; this useful feature is called a witness. As an exam-
ple, consider the fragment

1 a[i+3] = x;
2 if (i>10)
3 y = a[2*j-42];

Here, a necessary condition for a flow x→∗ y is ∃i, j.(i >
10)∧ (i + 3 = 2 j− 42) ≡ false, proving that flow is impos-
sible even though the PDG indicates otherwise. Note that
path conditions are not described in this article; for the quite
complex details on generation, correctness, precision, and
scalability see [60].

Flow-Sensitive, Context-Sensitive, and Object-sensitive Information Flow Control Based on Program Dependence Graphs 7

1 secret = 1;
2 public = 2;
3 s = f(secret);
4 x = f(public);
5 p = x;

Fig. 3 Example for context-sensitivity

3 PDGs for Java

In the following, we assume some familiarity with slicing
technology, as presented for example in [62, 34]. Note that
the computation of precise dependence graphs and slices for
object-oriented languages is still an ongoing research topic.

Our Java PDG is based on bytecode rather than source
text for the following reasons:

– bytecode must be considered the ultimate definition of a
program’s meaning and potential flows

– the bytecode is much more stable than the source lan-
guage (see e.g. generics in Java 5, which did not change
the bytecode instructions)

– the bytecode is already optimized, and artifacts such as
dead code are removed and cannot generate spurious flow
(see the example in the last section).

3.1 Methods and Dynamic Dispatch

From bytecode, intraprocedural PDGs can easily be con-
structed for method bodies, using well-known algorithms
from literature. Concerning procedures, standard interpro-
cedural slicing relies on so-called system dependence graphs
(SDGs), which include dependences for calls as well as tran-
sitive dependences between parameters [29].2 We will show
example SDGs later, but would like to point out right now
that SDG-based slicing is context-sensitive. That is, differ-
ent calls to the same procedure or method are indeed distin-
guished. Context-sensitivity increases precision, as can be
seen in Figure 3. We assume that f does not have side ef-
fects and that the input parameter influences the result value.
Context-sensitive analysis will distinguish the calling con-
texts for the two f calls, and generate dependences 1→ 3
and 2→ 4→ 5 but not 1→ 4→ 5. Context-insensitive analy-
sis merges the calls and generates dependences 1→ 3,1→
4,2→ 3,4→ 5. Thus only context-sensitive analysis discov-
ers that p is not influenced by secret.

Dynamic dispatch and objects as method parameters make
SDG construction more difficult. In particular, in case a Java
program creates objects, any precise program analysis such
as PDG construction must run a points-to analysis first. Points-
to analysis determines for every object reference a set of ob-
jects it might (transitively) point to; this set is called a points-
to set. A number of correct points-to algorithms with varying

2 In the following, we will refer to SDGs when we are talking about
the complete system and we will refer to PDGs in the the sense of
procedure dependence graphs: they represent that part of a SDG that
corresponds to a single procedure or method.

1 class PasswordFile {
2 private String [] names;
3 /*P: confidential */
4 private String [] passwords;
5 /*P: secret */
6 // Pre:all strings are interned
7 public boolean check(String user ,
8 String password /*P: confidential */) {
9 boolean match = false;

10 try {
11 for (int i=0; i<names.length; i++) {
12 if (names[i]== user
13 && pass words[i]== password) {
14 match = true;
15 break;
16 }
17 }
18 }
19 catch (NullPointerException e) {}
20 catch (IndexOutOfBoundsException e) {};
21 return match; /*R: public */
22 }
23 }

Fig. 4 A Java password checker

precision and scalability are available, e.g. [53,35]. Without
points-to analysis, all Java program analysis is useless, as
objects and pointer assignments are so abundant.

Having computed the points-to sets, treatment of dynamic
dispatch is well known: possible targets of method calls are
approximated statically via the points-to sets, and for all pos-
sible target methods the standard interprocedural SDG con-
struction is done.

Method parameters are a more difficult issue. SDGs sup-
port call-by-value-result parameters, and use one SDG node
per in- resp. out-parameter. Java supports only call-by-value;
in particular, for reference types the content of the formal
variable holding the reference to the passed object is not
copied back on return. But field values stored in actual pa-
rameter objects may change during a method call. Such pos-
sible field changes have to be made visible in the SDG by
adding modified fields to the formal-out parameters; further-
more, static variables are represented as extra parameters.

To improve precision, we made the SDG object-sensitive
by representing nested parameter objects as trees. Unfold-
ing object trees stops once a fixed point with respect to the
points-to situation of the containing object is reached [27].

3.2 Exceptions

Figure 4 shows a fragment of a Java class for checking a
password (taken from [42]) which uses fields and excep-
tions. The P and R annotations will be explained in section 4.
The initial PDG for the check method is shown in Figure 5.
Solid lines represent control dependence and dashed lines
represent data dependence. Node 0 is the method entry with
its parameters in nodes 1 and 2 (we use “pw” and “pws” as
a shorthand for “password” and “passwords”). Nodes 3 – 6
represent the fields of the class, note that because the fields

8 Christian Hammer, Gregor Snelting

Fig. 5 PDG for check in Figure 4

are arrays, the reference and the elements are distinguished3.
Nodes 7 and 8 represent the initializations of the local var-
iables match and i in lines (9) and (11). All these nodes
are immediate control dependent on the method entry. The
other nodes represent the statements (nodes 12, 13, and 14)
and the predicates (nodes 9, 10, and 11).

This PDG is still incomplete, as it does not include ex-
ceptions. Dynamic runtime exceptions can alter the control
flow of a program and thus may lead to implicit flow, in case
the exception is caught by some handler on the call-stack, or
else represent a covert channel in case the exception is prop-
agated to the top of the stack yielding a program termination
with stack trace. This is why many type-based approaches
disallow (or even ignore) implicit exceptions. Our analysis
conservatively adds control flow edges from bytecode in-
structions which might throw unchecked exceptions to an
appropriate exception handler [12], or percolates the excep-
tion to the callee which in turn receives such a conservative
control flow edge. Thus, our analysis does not miss implicit
flow caused by these exceptions, hence even the covert chan-
nel of uncaught exceptions is checked. The resulting final
PDG is shown in Figure 6. (For better readability, the fol-
lowing examples will not show the effects of exceptions.)

3.3 Context-Sensitivity and Object-Sensitivity in Action

Figure 7 shows another small example program, and Fig-
ure 8 shows its SDG. For brevity we omitted the PDGs of
the set and get methods. The effects of method calls are
reflected by summary edges (shown as dashed edges in Fig-
ure 7) between actual-in and actual-out parameter nodes.
Summary edges as introduced by Horwitz et al. [29] rep-
resent a transitive dependence between the corresponding
formal-in and formal-out node pair. For example, the call
to o.set(sec) contains two summary edges, one from the
target object o and one from sec to the field x of o; rep-
resenting the side-effect that the value of sec is written to
the field x of the this-pointer in set. Summary edges en-

3 Precise PDGs for arrays are nontrivial, but are not described here.

Fig. 6 PDG with exceptions for Figure 4

1 class A {
2 int x;
3 void set() { x = 0; }
4 void set(int i) { x = i;}
5 int get() { return x; }
6 }
7 class B extends A {
8 void set() { x = 1; }
9 }

10 class InfFlow {
11 void main(String [] a){
12 //1. no information flow
13 int sec = 0 /*P:High*/;
14 int pub = 1 /*P:Low*/;
15 A o = new A();
16 o.set(sec);
17 o = new A();
18 o.set(pub);
19 System.out.println(

:::::::
o.get());

20 //2. dynamic dispatch
21 if (sec==0 && a[0]. equals("007"))
22 o = new B();
23 o.set();
24 System.out.println(

:::::::
o.get());

25 //3. instanceof
26 o.set (42);
27 System.out.println(

:
o

:::::::::::
instanceof

::
B);

28 }
29 }

Fig. 7 Another Java program

able context-sensitive slicing in SDGs in time linear to the
number of nodes [29].

In the program, the variable sec is assumed to contain a
secret value, which must not influence printed output. First
a new A object is created where field x is initialized to sec.
However, this object is no longer used afterward as the var-
iable is overwritten (“killed”) with a new object whose x
field is set to pub. Thus there is no SDG path (13)→∗ (19)
from the initialization of sec to the first print statement (i.e.

Flow-Sensitive, Context-Sensitive, and Object-sensitive Information Flow Control Based on Program Dependence Graphs 9

main

o o o

x

o o o

x

secure pub o = new B() o o

xo

secure = 0pub = 1 A o = new A() o.set(secure) o = new A() o.set(pub) println(o.get()) o.set() println(o.get())secure==0

o o

x

o.set(42) println(o instanceof B)

Fig. 8 SDG for the program in Figure 7

the leftmost println node). Instead, we have a path from
the initialization of pub to this output node. Hence the sec
variable does not influence the output. This example demon-
strates that the x fields in the two A objects are distinguished
(object-sensitivity), and flow-sensitivity kills any influence
from the sec variable to the first println.

The next statements show an illegal flow of information:
Line (21) checks whether sec is zero and creates an object
of class B in this case. The invocation of o.set is dynami-
cally dispatched: If the target object is an instance of A then
x is set to zero; if it has type B, x receives the value one. (21)
- (23) are analogous to the following implicit flow:

if (sec==0 && ...) o.x = 0 else o.x = 1;
In the PDG we have a path from sec to the predicate test-
ing sec to o.set() and its target object o. Following the
summary edge one reaches the x field and finally the second
output node. Thus the PDG discovers that the printed value
in line 24 depends on the value of sec. In the next chapter,
we will formally introduce security levels and demonstrate
that this example contains an illegal flow.

But even if the value of x was not dependent on sec (af-
ter statement 26) an attacker could exploit the runtime type
of o to gain information about the value of sec in line 27.
This implicit information flow is detected by our analysis as
well, since there is a PDG path (13)→∗ (27).

3.4 Concurrency

Let us finally say a few words about PDGs for multi-threaded
programs which are common in Java. Krinke [33] was the
first author to present a precise algorithm for slicing multi-
threaded programs. Based on additional dependences between
variables in different threads, Krinke’s algorithm ensures that
the sequence of statements in a PDG path does correspond to
a possible (“realizable”) execution order. Paths which con-
tain impossible execution orders (and thus would introduce
“time-traveling”, which can only happen when slicing con-
current programs) are filtered out. We integrated this algo-
rithm and improved it with ideas from Nanda [43]. Our im-
plementation can in principle handle any number of threads.
But note that precise slicing of multi-threaded programs is
very expensive (exponential in the number of threads), and
experiments indicate that prevention of time-traveling should
only be applied as a post-processing step [17].

4 Security levels

The noninterference criterion prevents illegal flow, but in
practice one wants more detailed information about secu-
rity levels of individual statements. Thus theoretical models
for IFC such as Bell-LaPadula [6] or Noninterference [21]
utilize a lattice L = (L;≤,t,u,⊥,>) of security levels, the
simplest consisting just of two security levels High and Low.
The programmer needs to specify a lattice, as well as annota-
tions defining the security level for some (or all) statements.
In practice, only input and output variables need such anno-
tations.

Arguing about security also requires an explicit attacker
model. For our approach, we assume:

– Attackers cannot control the execution of the JVM in-
cluding its security settings.

– The code generated from source (e.g. bytecode) is known
to the attacker (maybe through disassembling), but can-
not be altered (e.g. via code signing).

– Therefore, the content of variables (local as well as in
the heap) is not directly available to the attacker. Such
an assumption would allow to learn all secrets as soon as
they are stored.

– As a consequence, only input and output of the system
with a certain security level (e.g. assigned by the OS) can
be controlled (resp. observed).

4.1 Fundamental Flow equations

For a correct IFC, the actual security level of every state-
ment must be computed, and this computation must respect
the programmer-specified levels as well as propagation rules
along program constructs. The huge advantage of PDG-based
IFC is that the PDG already defines the edges between state-
ments or expressions, where a flow can happen; as explained,
explicit and implicit flow between unconnected PDG nodes
is impossible. Thus it suffices to provide propagation rules
along PDG edges. We begin with the intraprocedural case.

The security level of a statement resp. its PDG node x
is written S(x), where S : N → L.4 Confidentiality requires
that an information receiver x must have at least the security
level of any sender y [6]. In a PDG G, where pred and succ

4 Remember that N is the set of PDG nodes. Note that our S is called
dom in the original Goguen/Meseguer noninterference definition, but
we need dom for partial functions.

10 Christian Hammer, Gregor Snelting

are the predecessor and successor functions induced by→,
resp., this fundamental property is easily stated as

y→ x ∈ G =⇒ S(x)≥ S(y) (5)

and thus by the definition of a supremum

S(x)≥
⊔

y∈pred(x)

S(y) (6)

This fundamental constraint ensures S(y) S(x).5 Let us
point out once more that it is sufficient to consider flow along
PDG edges, as flow between unconnected PDG nodes is im-
possible.

Remember that confidentiality and integrity are dual to
each other [8], hence the dual condition for integrity is

S(x)≤
l

y∈pred(x)

S(y) (7)

In the following, we concentrate on confidentiality, as all
equations for integrity are obtained by duality.

Equation (6) assumes that every statement resp. node has
a security level specified, which is not realistic. In practi-
cal applications, one wants to specify security levels not for
all statements, but for certain selected statements only.6 The
provided security level specifies that a statement sends in-
formation with the provided security level, i.e. represents an
input channel. The required security level requires that only
information with a smaller or equal security level may reach
that statement,7 i.e. it represents an output channel of the
specified security level. From these values the actual secu-
rity levels can be computed.

Provided security levels are defined by a partial function
P : N 7→ L. The required security levels are defined similarly
as a partial function R : N 7→ L. Thus, P(s) specifies the secu-
rity level of the information generated at s (also called “the
security level of s”), and R(s) specifies the maximal allowed
security level of the information reaching s.

The actual security level S(x) for a statement x must thus
not only be greater than the levels of its predecessors, but
also greater than its own provided security level. Thus equa-
tion (6) refines to

S(x)≥

P(x)t

⊔
y∈pred(x)

S(y), if x ∈ dom(P)⊔
y∈pred(x)

S(y), otherwise (8)

Note that R does not occur in this constraint for S. We need
an additional constraint to specify that incoming levels must
not exceed a node’s required level:

∀x ∈ dom(R) : R(x)≥ S(x) (9)

We can now formally define confidentiality:
5 In fact, the Goguen/Meseguer notion S(y) S(x) is the same as

S(y)≤ S(x) in modern terminology.
6 For practicability of an analysis, it is important that the number of

such annotations is as small as possible.
7 The term “required” may be misleading here—it is actually more

like a limit or maximum

Definition 1 Let a program’s PDG be given. The program
maintains confidentiality, if for all PDG nodes equations (8)
and (9) are satisfied.

As mentioned earlier, we are preparing a machine-checked
proof [64] that Definition 1 implies noninterference as de-
fined in equation (3). For the time being, Definition 1 is
treated as an axiom, which however, as discussed above, is
well-founded in correctness properties of PDGs and classi-
cal definitions of confidentiality.

Later, we will provide an interprocedural generalization
of this definition (Definition 2 in section 5), which addition-
ally exploits the fact that it is sufficient to consider the back-
ward slices of all output ports instead of the whole PDG;
this observation again reduces spurious flow and the risk for
false alarms. For the time being, we demand (8) and (9) for
the whole PDG, which is still a correct (if slightly less pre-
cise) definition.

For simplicity in presentation, we extend P and R to total
functions P′ and R′ such that all statements have a provided
and required security level:

P′(x) =
{

P(x), if x ∈ dom(P)
⊥, otherwise (10)

R′(x) =
{

R(x), if x ∈ dom(R)
>, otherwise (11)

Note that⊥ is the neutral element for t, and> is the neutral
element for u. Now equation (8) simplifies to

S(x)≥ P′(x)t
⊔

y∈pred(x)

S(y) (12)

and equation (9) simplifies to

R′(x)≥ S(x) (13)

4.2 Solving Flow equations

Equation (12) is satisfied in the most precise way, and hence
the risk that equation (9) is violated minimized, if the in-
equality for S turns into equality:

S(x) = P′(x)t
⊔

y∈pred(x)

S(y) (14)

Of course (14) also satisfies (12), and can be read as an algo-
rithm which computes S(x) from P(x) and x’s predecessors
S values. Thus equation (14) defines a forward propagation:
it shows what happens if all the P values are propagated
through the PDG (while ignoring R).

We will now show that equation (14) corresponds to a
well-known concept in program analysis, namely a mono-
tone dataflow analysis framework [32], which allows effi-
cient fixpoint computation. Such frameworks start with a
lattice of abstract values, which in our case is L . For every

Flow-Sensitive, Context-Sensitive, and Object-sensitive Information Flow Control Based on Program Dependence Graphs 11

x ∈ N, a so-called transfer function fx : L→ L must be de-
fined, which typically has the form fx(l) = gxt (lu kx).8 In
our case, gx = P′(x) and kx =⊥, thus fx(l) = P′(x)t l. Fur-
thermore, for every x ∈ N, the framework defines out(x) =
fx(in(x)) and in(x) =

⊔
y∈pred(x) out(y). In our case,

out(x) = fx(in(x)) = P′(x)t
⊔

y∈pred(x)

S(y) = S(x)

The theory demands that all fx are monotone, which in
our case is trivial. The theory also states that if the fx are
distributive, the analysis is more precise. In our case fx(l1t
l2) = P′(x)t (l1t l2) = (P′(x)t l1)t (P′(x)t l2) = fx(l1)t
fx(l2), hence distributivity holds. The theory finally states
that the set of equations for S (resp out) always has a so-
lution in form of a minimal fixpoint, that this solution is
correct, and in case of distributive transfer functions it is pre-
cise. This is another reason why our IFC is more precise than
other approaches.9 Efficient algorithms to compute this fixed
point are well known. We will show examples for fixpoints
later; here it suffices to say that it defines values for S(x) ∈ L
which simultaneously satisfy equations (14) and thus (6) for
all x ∈ N.

Thus the computed fixpoint for S, together with equa-
tion (9), ensures confidentiality. If a fixpoint for S exists, but
the condition for R cannot be satisfied, then a confidential-
ity violation has been discovered: For any l = R(x) such that
l 6≥ S(x) we have a violation at x because S(x) 6 l (the se-
curity level of S(x) is not allowed to influence level l). Note
that it is 6≥ and not < because l and S(x) might not be com-
parable.

From a program analysis viewpoint, our transfer func-
tions fx are quite simple; in fact they are so simple that an
explicit solution for the fixpoint can be given which will be
exploited later:

Theorem 2 For all x ∈ N, let S(x) be the least fixpoint of
equation (14). Then

S(x) =
⊔

y∈BS(x)

P′(y) (15)

Proof. Let x ∈ N. (14) implies S(x) ≥ P′(x) and S(x) ≥
S(y) for all y ∈ pred(x). By induction, this implies for any
path y→∗ x ∈ BS(x): P′(y)≤ S(x). By definition of a supre-
mum, S(x)≥

⊔
y∈BS(x) P′(y).

On the other hand, (15) is a solution of (14):⊔
y∈BS(x)

P′(y) = P′(x)t
⊔

y∈pred(x)
z∈BS(y)

P′(z)

= P′(x)t
⊔

y∈pred(x)

⊔
z∈BS(y)

P′(z)

and since S is the least fixpoint we have S(x)≤
⊔

y∈BS(x) P′(y).
Thus equality, as stated in the theorem, follows. ut

8 where gx,kx ∈ L. kx denotes boolean complement, as many
dataflow methods run over a powerset L ; in our case we have just
a lattice but all we need is ⊥=>.

9 Note that we thus have total precision for the S solutions, but not
for the underlying PDG.

4.3 The PDG-Based Noninterference Test

We will now exploit this intermediate result to prove the cor-
rectness of our PDG-based confidentiality check. The fol-
lowing statement is a restatement of Theorem 1 in terms of
P and R:

Theorem 3 If

∀a ∈ dom(R) : ∀x ∈ BS(a)∩dom(P) : P(x)≤ R(a) (16)

then confidentiality is maintained for all x ∈ N.

That is, the backward slice from a node a with a required se-
curity level R(a) must not contain a node x that has a higher
security level P(x).
Proof. Let x ∈ N. We need to show that (8) and (9) are valid
for x. From the premise we know ∀x ∈ BS(a) : P′(x)≤ R(a),
as P′(x) ≤ P(x) if x ∈ dom(P). Thus R(a) ≥

⊔
x∈BS(a) P′(x),

hence R(a)≥ S(x) by theorem 2. Hence (9) is satisfied. Fur-
thermore, by definition of the fixpoint for S, S satisfies (14)
and thus (12) and (8). ut

The theorem can easily be transformed into an algorithm
that checks a program for confidentiality:
PDG-Based Confidentiality Check. For every node in the
dependence graph that has a required security level speci-
fied, compute the backward slice, and check that all nodes in
the slice have lower or equal provided security levels speci-
fied.

Once the PDG has been computed, each backward slice
and thus confidentiality check has worst case complexity
O(|N|). Usually, the number of nodes that have a specified
security level R(a) is bounded and not related to |N|; typi-
cally just a few output statements have R(a) defined. Thus
overall complexity can be expected to be O(|N|) as well.

Checking each node separately allows a simple yet pow-
erful diagnosis in the case of a security violation: If a node
x in the backward slice BS(a) has a provided security level
that is too large or incomparable (P(x) 6≤ R(a)), the respon-
sible nodes can be computed by a so-called chop CH(x,a) =
FS(x)∩BS(a).10 The chop computes all nodes that are on a
path from x to a, thus it contains all nodes that may be in-
volved in the propagation from x’s security level to a.

As an example, consider again the PDG for the password
program (Figure 5). We choose a three-level security lattice:
public, confidential, and secret where

public≤ confidential≤ secret (17)

The program contains P-annotations for input variables, and
an R-annotation for the result value. Thus the list of pass-
words is secret, i.e. P(3) = secret∧P(4) = secret. The list
of names and the parameter password is confidential, be-
cause they should never be visible to a user. Thus, P(1) =
confidential ∧ P(5) = confidential ∧ P(6) = confidential.

No confidential or secret information must flow out of
check, thus we require R(14) = public. Remember that the

10 FS, the forward slice is defined as FS(x) = {y | x→∗ y}.

12 Christian Hammer, Gregor Snelting

Fig. 9 PDG for Figure 4 with computed security levels

PDG has additional dependences for exceptions (see Fig-
ure 6). In order to prevent an implicit flow from check to
the calling method via uncaught exceptions, the node of the
calling method representing any uncaught exception, m, is
annotated with R(m) = public. Thus an implicit flow via an
uncaught exception, where the exception is dependent on a
secret variable, will be detected at m.

Starting with these specifications for R and P, the ac-
tual security levels S(x), as computed according to equation
(14), are depicted in Figure 9 (white for public, light gray
for confidential, and gray for secret11). Let us now apply
the PDG-based confidentiality check. It turns out that 3 ∈
BS(14) where R(14) = public,P(3) = secret. Thus the cri-
terion fails. Indeed a security violation is revealed: S(14) =
secret 6≤ public = R(14), thus equation (9) is violated. The
chop CH(3,14) contains all nodes contributing to the illegal
flow.

It is however unavoidable that match has to be computed
from secret information. Declassification was invented to
handle such situations, and will be discussed later.

5 Inter-procedural propagation of security levels

Let us now discuss interprocedural IFC. To understand the
problem of context-sensitivity, consider again Figure 3 and
its SDG in Figure 10. In this program fragment, P(secret)=
P(1) = High, P(public) = P(2) = Low, and R(p) = R(5) =
Low. Let us first assume that backward slices are computed
just as in the intraprocedural case, that is, all nodes which
have a path to the point of interest are in the slice. This naive
approach treats interprocedural SDG edges like data or con-
trol dependence edges, and as a result will ignore the call-
ing context. In the example, 3 ∈ BS(5) due to the SDG path
3→ 3i→ a→ b→ 4o→ 5 (where 3i is the actual parame-
ter of the first call, and 4o is the return value of the second
call). By equation (14), S(4o) = S(5) = S(p) = High, and
R(p) 6≥ S(p).

11 Ignore that node 14 is only half shaded for the moment.

f

a b

x

1 2 3 4 5

3i 3o 4i 4o

Fig. 10 SDG for Figure 3. The statement x computes the return value
b from the formal input parameter a.

5.1 Context-Sensitive Slicing

To avoid such false alarms, an approach based on context-
sensitive slicing must be used: not every SDG path is al-
lowed in a slice, but only realizable paths. Realizable paths
require that the actual parameter nodes to/from a function,
which are on the path, must belong to the same call state-
ment.12 The reason is that a parameter from a specific call
site cannot influence the result of a different call site, as
all side-effects are represented as parameters. This funda-
mental idea to obtain context-sensitivity was introduced in
[29, 50] and is called HRB slicing. In the example, the path
3→ 3i→ a→ b→ 4o→ 5 is not realizable and thus not
context-sensitive, as actual parameter 3i and return parame-
ter 4o do not belong to the same call site.

Interprocedural propagation of security levels is basically
identical to intraprocedural propagation, but is based on the
HRB backward slice which only includes realizable paths.
Equation (14) and Theorem 3 still hold.13

Equations (14) and (9) can again be interpreted as a data-
flow framework. But for reasons of efficiency, we will gen-
erate all instances of these equations simultaneously while
computing the HRB backward slice. This results in a set of
constraints for the S(x), which is solved by an offline fix-
point iteration; the latter being based on the same principles
as in dataflow frameworks.

The details of the HRB algorithm are shown in Algo-
rithm 1.14 Backward slice computation, and thus propaga-
tion of security levels is done in two phases:

1. The first phase ignores interprocedural edges from a call
site into the called procedure, and thus will only traverse
to callees of the slicing criterion (i.e. is only ascending
the call graph). Due to summary edges, which model
transitive dependence of parameters, all parameters that
might influence the outcome of a returned value are tra-
versed, as if the corresponding path(s) through the called
procedure were taken.

12 or more precisely, parameter-in/-out nodes must form a “matched
parenthesis” structure, since calls can be nested.

13 in fact they hold for the naive backward slice as well, because even
the naive interprocedural backward slice is correct; it is just so impre-
cise.

14 For the time being, replace the test “v 6∈ D” (line 32) by “true”, as
in this section D = ∅; D will be explained in section 6.

Flow-Sensitive, Context-Sensitive, and Object-sensitive Information Flow Control Based on Program Dependence Graphs 13

Algorithm 1 Algorithm for context-sensitive IFC, based on
the precise interprocedural HRB slicing algorithm

1 procedure MarkVerticesOfSlice(G,x)
2 input G : a system dependence graph
3 x : a slicing criterion node
4 output BS : the slice of x (sets of nodes in G)
5 C : the generated set of constraints
6 /∗ D, R, P are assumed to be global read only data ∗/
7 begin
8 C := ∅
9 /∗ Phase 1: slice without descending into called procedures ∗/

10 BS′ ←MarkReachingVertices(G,{x},{parameter-out})
11 /∗ Phase 2: slice called procedures
12 without ascending into call sites ∗/
13 BS←MarkReachingVertices(G,BS′,{parameter-in,call})
14 end
15

16 procedure MarkReachingVertices(G,V,Kinds)
17 input G : a system dependence graph
18 V : a set of nodes in G
19 Kinds : a set of kinds of edges
20 output M : a set of nodes in G which are marked by this phase
21 (part of the precise backward slice)
22 C : a set of constraints
23 begin
24 M := V
25 WorkList := V
26 while WorkList 6= ∅ do
27 select and remove node n from WorkList
28 M ∪= n
29 foreach w ∈ G such that w 6∈M and G contains an edge w→ v
30 whose kind is not in Kinds do
31 WorkList ∪= w
32 if v 6∈ D then
33 C ∪= {“S(w)≤ S(v)”} // cf. eq. (14) or (18)
34 if v ∈ dom(R) then
35 C ∪= {“S(v)≤ R(v)”} // cf. eq. (9) or (18)
36 if w ∈ dom(P) then
37 C ∪= {“P(w)≤ S(w)”} // cf. eq. (14) or (19)
38 else
39 C ∪= {“P(v)≤ S(v)”} // cf. eq. (21)
40 C ∪= {“S(w)≤ R(v)”} // cf. eq. (22)
41 fi
42 od
43 od
44 return M
45 end

2. In the second phase, starting from the edges omitted in
the first phase, the algorithms traverses all edges except
call and parameter-in edges (i.e. is only descending the
call graph.) As summary edges were traversed in the first
phase, there is no need to re-ascend. Again, summary
edges are used to account for transitive dependences of
parameters.

For propagation of security levels, Algorithm 1 generates
constraints involving S, P, and R. These constraints are de-
rived from equations (8) and (9). We will show later that a
solution to these constraints enforces confidentiality.

The summary edges have an essential effect, because
they ensure that security levels are propagated (based on the
generated constraints) as if they were propagated through the

called procedure. In the first phase, no security level is prop-
agated into called procedures and in the second phase, no
computed security level is propagated from the called pro-
cedure to the call site. Due to summary edges, no security
level is “lost” at ignored edges, i.e. they ensure that the se-
curity level is propagated along transitive dependences for
this calling context, but it cannot change the computed secu-
rity level at another call site.

We will now argue that Algorithm 1 generates correct
and sufficient constraints.

Definition 2 Let a program’s SDG be given. The program
maintains confidentiality, if for every a ∈ dom(R) and its
HRB backward slice BS(a), equations (8) and (9) are sat-
isfied.

Again we postpone the proof that this definition implies
noninterference (equation (3)), but point out that the defini-
tion – as Definition 1 –is solidly based on SDG correctness
properties and fundamental definitions for confidentiality.

The latter are expressed in equations (8) and (9). Re-
stricting these equations to the (context-sensitive) backward
slices of all points ∈ dom(R) avoids spurious flow, and is
sufficient as these slices contain all nodes affecting equation
(9). Thus Theorem 3 is still valid in the interprocedural case,
and the proof remains the same.15 Thus the PDG-based con-
fidentiality check also works on SDGs: for any a ∈ dom(R),
compute the HRB backward slice BS(a) and check whether
all y ∈ dom(P)∩BS(a) have P(y) ≤ R(x). Remember that
this check is valid for any correct backward slice – but the
more precise the slice, the less false alarm it generates.

Let us now argue that Algorithm 1 is correct.

Theorem 4 For every a∈ dom(R), Algorithm 1 (where D =
∅) generates a set of constraints which are correct and com-
plete, and thus enforce confidentiality according to Defini-
tion 2.

Proof. We may assume that the HRB algorithm itself
computes a correct (and precise) backward slice BS(a) for
any a ∈ dom(R).

1. For any w→ v∈BS(a), the algorithm generates a con-
straint S(w) ≤ S(v), which is necessary according to equa-
tion (14) and sufficient as edges outside BS(a) cannot influ-
ence a.

2. Furthermore for any w ∈ dom(P) ∩ BS(a), P(w) ≤
S(w) is generated which is necessary due to equation (14)
and sufficient as nodes outside BS(a) cannot influence a.
Note that line 36 tests for w ∈ dom(P) and not v ∈ dom(P),
as otherwise nodes ∈ dom(P) without predecessors would
not generate a P-constraint.

3. Finally, for any v ∈ dom(R)∩BS(a), R(v) ≥ S(v) is
generated which is necessary due to equation (9) and suffi-
cient as nodes outside BS(a) cannot influence a. Note that
line 34 tests for v ∈ dom(R) and not w ∈ dom(R), as other-
wise nodes ∈ dom(R) without successor would not generate
a R-constraint.

15 In fact we need a version of theorem 2 working on SDGs and back-
ward slices; which is left as an exercise to the reader.

14 Christian Hammer, Gregor Snelting

Constraints Minimal Fixpoint
S(1)≤ S(3i) S(1) = Low/High

S(2)≤ S(4i) S(2) = Low

S(3)≤ S(3i)∧S(3)≤ S(3o)∧S(3)≤ S(f) S(3) = Low/High

S(3i)≤ S(3o)∧S(3i)≤ S(a) S(3i) = Low/High

S(3o)≤> S(3o) = High

S(4)≤ S(4i)∧S(4)≤ S(4o)∧S(4)≤ S(f) S(4) = Low

S(4i)≤ S(4o)∧S(4i)≤ S(a) S(4i) = Low

S(4o)≤ S(5) S(4o) = Low

S(f)≤ S(a)∧S(f)≤ S(b) s(f) = Low

S(a)≤ S(x) S(a) = Low

S(x)≤ S(b) S(x) = Low

S(b)≤ S(3o)∧S(b)≤ S(4o) S(b) = Low

S(5)≤ R(5)∧R(5) = Low S(5) = Low

P(1)≤ S(1)∧P(1) = High

P(2)≤ S(2)∧P(2) = Low

Fig. 11 Constraint system for Figure 3 generated by Algorithm 1. Parts
in gray are only generated for context-insensitive analysis.

Thus Algorithm 1 generates exactly the constraints re-
quired by (9), and constraints exactly equivalent to (8). Hence
they have the same fixpoint, and fulfill the requirements of
Definition 2. ut

For pragmatic reasons, the fixpoint computation ignores
the constraints involving R; these are only incorporated in
the SDG-based confidentiality check after a solution for S
has been found. The reason is that otherwise illegal flows
will show up as an unsolvable constraint system – which is
correct, but prevents user-friendly diagnosis. If the R con-
straints are checked later and one (or more) will fail, chops
can be computed for diagnosis as described in section 4.3.

For the example above (Figure 3/Figure 10), Algorithm 1
computes BS(5) = {5,4o,4i,4} in the first phase and adds
{b,x,a} in the second phase, thus avoiding to add 3i or 1
to BS(5). This is context-sensitivity. The corresponding con-
straints are S(5)≤R(5),S(4o)≤ S(5),S(4i)≤ S(4o),S(4)≤
S(4i),S(4) ≤ S(4o),S(b) ≤ S(4o),S(x) ≤ S(b),s(a) ≤ S(x).
Constraints for BS(3) are computed similarly. Figure 11 pres-
ents the complete list of constraints. It also presents addi-
tional constraints which would be added by naive interpro-
cedural slicing (printed in gray). The fixpoint for S (without
P constraints) is presented in Figure 11 (right column; again
results based on naive slicing are shown in gray). The precise
solution correctly computes S(1) = High, and indeed P(1) =
High≤ S(1). The naive solution would compute S(1) = Low
and generates a false alarm due to P(1) 6≤ S(1).

5.2 Backward Flow Equations

Note that equation (14) in fact employs a forward propa-
gation approach: it shows how to compute S(x) if the S(y)

for the predecessors y of x are known. The HRB algorithm
essentially works just the other way, namely backwards. For
reasons of implementation efficiency, previous work has pre-
sented flow equations that follow this backward propagation
approach.

In this section, we will show how to transform equations
(14) and (9) into an equivalent form which mirrors this back-
ward propagation, while Theorem 3 still holds. This will
allow a more efficient implementation in connection with
the HRB algorithm. The equivalent backward form is based
on the following observation: equation (6) demands that for
every x ∈ N and y ∈ pred(x), S(x) ≥ S(y) and thus S(x) ≥⊔

y∈pred(x) S(y). The same set of constraints can be expressed
as follows: for every x ∈ N and y ∈ succ(x), S(x) ≤ S(y)
(equation (12)), and as a consequence,

S(x)≤ R′(x)u
l

y∈succ(x)

S(y) (18)

In analogy, for equation (9) (a ∈ dom(R), S(a)≤ R(a)), one
gets:

∀a ∈ dom(P) : P(a)≤ S(a) (19)

Theorem 5 For the same PDG resp. (intraprocedural) slice,
the collected instances of equations (12) and (9) generate
the same set of constraints as the collected instances of equa-
tions (18) and (19).

Proof (for full details see [22]). The individual constraints
in Algorithm 1 are equivalent due to the duality a ≤ b⇔
atb = b⇔ aub = a, which has been exploited in the con-
struction of equations (18) and (19). In forward propagation,
we are using a two-phase algorithm that initially ignores
constraints involving R in the fixpoint iteration and subse-
quently checks the omitted constraints with the computed
fixpoint of S. In backward propagation, the fixpoint for S
is determined without constraints involving P constraints,
which again are checked in a second phase. Therefore it is
obvious that the fixpoint for S in forward propagation differs
from the fixpoint in backward propagation, however, both
methods check that the whole set of constraints generated
on all paths between all nodes in dom(P) and all nodes in
dom(R) is satisfied and are thus equivalent. ut

Computing a minimal fixpoint for S(x) from constraints
involving S and R and subsequent checking constraints in-
volving P (backward propagation) is therefore equivalent to
computing S’s fixpoint from S and P with subsequent check-
ing of R-constraints (forward propagation).

6 Declassification

IFC as described so far is too simplistic because in some
situations one might accept that information with a higher
security level flows to a “lower” channel. For instance, infor-
mation may be published after statistical anonymization, se-
cret data may be transferred over the Internet using encryp-
tion, and in electronic commerce one needs to release se-
cret data after its purchase. Declassification allows to lower

Flow-Sensitive, Context-Sensitive, and Object-sensitive Information Flow Control Based on Program Dependence Graphs 15

the security level of incoming information as a means to re-
lax the security policy. The password checking method pre-
sented earlier is another example: as password tables are en-
crypted, it does not matter that information from the pass-
word table flows to the visible method result, and hence a
declassification to public at node 14 (where the illegal flow
was discovered, see section 4) is appropriate – a password-
based authentication mechanism necessarily reveals some
information about the secret password.16

When allowing such exceptions to the basic security pol-
icy, one major concern is that exceptions might introduce
unforeseen information release. Several approaches for a se-
mantics of declassification were proposed, each focusing on
certain aspects of “secure” declassification. The current state
of the art describes four dimensions to classify declassifica-
tion approaches according to where, who, when and what can
be declassified [56]. Apart from that, some basic principles
are presented that can serve as “sanity checks” for semantic
security policies allowing declassifications. These principles
are 1. semantic consistency, which is basically invariance
under semantics-preserving transformations; 2. conservativ-
ity, i.e. without declassification, security reduces to noninter-
ference; 3. monotonicity of release, which states that adding
declassification should not render a secure program inse-
cure; 4. non-occlusion which requires that declassification
operations cannot mask other covert information release.

6.1 Declassification in SDGs

We model declassification by specifying certain SDG nodes
to be declassification nodes. Let D⊆ N be the set of declas-
sification nodes. A declassification node x ∈ D must have a
required and a provided security level:

x ∈ D =⇒
(
x ∈ dom(P)∩dom(R)

)
∧
(
R(x)≥ P(x)

)
(20)

Information reaching x with a maximal security level R(x) is
lowered (declassified) down to P(x) (note that R(x) 6≥ P(x)
does not make any sense, as declassification should lower
a level, not heighten it). Now a path from node y to a with
P(y) > R(a) is not a violation, if there is a declassification
node x ∈ D on the path with P(y) ≤ R(x) and P(x) ≤ R(a)
(assuming that there is no other declassification node on
that path). The actual security level S(x) will be between
P(x) and R(x). In the password example, D = {14},R(14) =
secret,P(14) = public; and the illegal flow described earlier
disappears.

According to Sabelfeld and Sands [56], this policy for
expressing intentional information release is describing where
in the system information is released: The set D of declas-
sification nodes correspond to code locations—moreover, in
the implemented system the user has to specify the code lo-
cations, which are mapped to declassification nodes by the
system.

16 We all know that password crackers can exploit this approach in
case weak passwords are used, hence just adding a declassification
seems too naive. Additional techniques to protect the table are needed.

In terms of the propagation equations, a declassification
simply changes the computation of S. Equation (12) must be
extended as follows:

S(x)≥

{
P(x) if x ∈ D
P′(x)t

⊔
y∈pred(x)

S(y) otherwise (21)

Thus the incoming security levels are ignored and replaced
by the declassification security level.

Of course, equation (9) is still valid for non-declassifica-
tion nodes, but for x ∈ D it must be modified as S(x) is the
declassified value:

∀x∈ dom(R)\D : R(x)≥ S(x) ∧ ∀x∈D : R(x)≥
⊔

y∈pred(x)

S(y)

(22)

which expresses that normal flow of S is interrupted at x∈D.
The following definition resembles Definition 2, but in-

corporates the modified flow equations:

Definition 3 Let a program’s SDG be given. The program
maintains confidentiality, if for all a ∈ dom(R) equations
(21) and (22) are satisfied.

Theorem 6 For every a∈ dom(R), Algorithm 1 (where D 6=
∅) generates a set of constraints which are correct and com-
plete, and thus enforce confidentiality according to Defini-
tion 3.

Proof. We have already argued (proof for Theorem 4)
that for non-declassification nodes the generated constraints
correspond exactly to equations (9) and (8), and thus to the
non-declassification cases in equations (21) and (22). For
declassification nodes d ∈ D, Algorithm 1 does no longer
generate constraints S(w) ≤ S(d), which is indeed required
by (21), case x ∈ D. Instead it generates R(d) ≥ S(w) for
w ∈ pred(d), which is equivalent to the constraints required
in (22), case x ∈ D. Furthermore, it generates S(d) ≥ P(d)
which is exactly required by (21), case x ∈ D.

Thus Algorithm 1 generates exactly the constraints re-
quired by (21) and (22). Hence they have the same fixpoint,
and fulfill the requirements of Definition 3. ut

In case D = /0, Algorithm 1 by theorem 4 checks nonin-
terference without declassification. Thus we obtain for free
the

Corollary 1 (Conservativity of Declassification) Algorithm 1
is conservative, that is, without declassification reduces to
standard noninterference.

Let us finally point out a few special situations. It is ex-
plicitly allowed to have two or more declassification on one
specific path, e.g. x→∗ d1→∗ d2→∗ y. But this only makes
sense if P(d1) ≤ R(d2), as otherwise no legal flow is possi-
ble on the path, and P(d2)≤ P(d1), as otherwise the second
declassification is redundant.

16 Christian Hammer, Gregor Snelting

In case there are several declassifications on disjoint paths
from x to y, for example x→∗ d1→∗ y, x→∗ d2→∗ y, x→∗
d3 →∗ y, ..., it is possible to approximate all these declas-
sifications conservatively by introducing a new declassifica-
tion d where R(d) =

d
i R(di) and P(d) =

⊔
i P(di). Any flow

which is legal through d is also legal through (one of) the
di, hence the approximation will not introduce new (illegal)
flows. This observation seems unmotivated, but will be the
source for an more precise interprocedural IFC, as described
in section 7.

6.2 Monotonicity of Release

Another useful property is monotonicity of release, which
states that introduction of an additional declassification should
not make previously secure programs insecure (i.e. generate
additional illegal flow). Formally, this can be defined as fol-
lows:

Definition 4 Let a program satisfy confidentiality accord-
ing to Definition 3 and let d ∈ N where d 6∈ D∪ dom(R)∪
dom(P). Replace d by d′ ∈D where d′ has the same connect-
ing edges as d, but d′ is annotated with R and P. Recompute
the actual security levels according to (21), yielding S′(x) for
x ∈ N. Declassification d′ respects monotonicity of release,
if equation (22) still holds for all S′(x).

Theorem 7 If R(d′)≥
⊔

y∈pred(d′) S(y),
and P(d′)≤

⊔
y∈pred(d′) S(y), then for x ∈ N, S′(x)≤ S(x).

The first premise avoids that previously legal flow (where
R′(d′) = > as d′ 6∈ dom(R)) is now blocked by a too low
or arbitrary R(d′). Note that P(d′) ≤ R(d′) is required any-
way in equation (20). The above premise is more precise and
avoids that a declassification generates new illegal flows as
the outgoing declassification level is too high, or the incom-
ing limit too low. In practice, both requirements are easy to
check and do not restrict sensible declassification.

Proof. In the original PDG,
⊔

y∈pred(d′) S(y) ≤ S(d′) ≤d
y∈succ(d′) S(y), hence in the new PDG S′(d′) = P(d′) ≤

S(d′) =
⊔

y∈pred(d′) S(y) by assumption and equation 21. Fur-
thermore, S′(d)≤ S(d′)≤

d
y∈succ(d′) S(y)≤ S(y) for all y ∈

succ(d′). Hence S(y) ≥
d

z∈pred(y) S(y) ≥ S′(y) = S′(d′)t⊔
z6=d′∈pred(y) S(z). The same argument works for the succes-

sors of y. By induction17 S′(x)≤ S(x) follows for all x. ut

Corollary 2 Under the assumptions of theorem 7, declassi-
fication d′ respects monotonicity of release.

Proof. For the original PDG, (9) and (21) are valid for S. In
the new PDG, (21) is by construction valid for S′, and (9) is
valid for S′ since by the theorem S′(x)≤ S(x). ut

17 technically, a well-known fixpoint induction

1 int foo(int x) {
2 y = ... x ... // compute y from x
3 return y; /*D:confidential -> public */
4 }
5

6 int check () {
7 int secret = ... /*P:secret */
8 int high = ... /*P:confidential */
9 int x1, x2;

10 x1 = foo(secret);
11 x2 = foo(high);
12 return

::
x2; /*R:public */

13 }

Fig. 12 Example for declassification

6.3 Confidentiality check with declassification

The original PDG-based confidentiality criterion no longer
works with declassification, as information flow with declas-
sification is no longer transitive and slicing is based on tran-
sitive information flow. Thus a P(x) in BS(a) where P(x) 6≤
R(a) is not necessarily an illegal flow, as P(x) can be declas-
sified under way. Instead, the criterion must be modified as
follows:
Confidentiality Check With Declassification. For every
a ∈ dom(R) \D, compute S(x) for all x ∈ BS(a) by Algo-
rithm 1, and check the following property:

∀x ∈ dom(P)∩BS(a) : P(x)≤ S(x) (23)

Theorem 6 guarantees that the constraints generated by
Algorithm 1 and thus the S values (being their minimal fix-
point) are correct. Hence the criterion is satisfied iff Defini-
tion 3 is satisfied. If the criterion is not satisfied, equation
(21) is violated and an illegal flow has been detected. As de-
scribed in section 5.1, the S values are computed first, and
the criterion (23) is checked in a second phase; this allows
to generate diagnostics by computing chops.

Let us return to the example in Figures 4 and 9 and as-
sume R(14) = public. As described in section 4.3, the analy-
sis reveals an illegal flow 3→∗ 14. We thus introduce a de-
classification: 14 ∈ D, R(14) = secret, P(14) = public (rep-
resented as two colors). Now S(14) = secret≤ R(14), so the
confidentiality check will no longer reveal an illegal flow.
This may be desirable depending on the security policy, since
only a small amount of information leaks from password
checking.

As another example consider Figure 12. In line 3 a de-
classification D : confidential→ public is present. Hence 3∈
D, R(3) = confidential and P(3) = public. It seems that a
secret value can flow from line 10 to line 3, hence in line
3 an illegal flow seems possible (R(3) 6≥ S(3)) because in
line 3 we can declassify from confidential to public but not
from secret to public. But in fact the return value in line 3
is only copied to x1 at line 10, and x1 is dead (never used
afterwards and never output). Thus intuitively, the program
seems secure.

Flow-Sensitive, Context-Sensitive, and Object-sensitive Information Flow Control Based on Program Dependence Graphs 17

check

return x2callsec high
1

0

2
3

6

7

8

15

4
x x1

call

x x2

foo

return yy=. . .x

10

12

13

11

14

Fig. 13 System Dependence Graph for Figure 12

The SDG for this program is shown in Figure 13. By Al-
gorithm 1 x1 is not in the context-sensitive backward slice
for line 12, and thus the SDG-based confidentiality criterion
will not generate a false alarm, but determine that confiden-
tiality is guaranteed. This example demonstrates once more
how context-sensitive backward slices improve precision.

7 Improving Interprocedural Declassification

Algorithm 1 is correct, but in the presence of declassifica-
tions, its precision still needs to be improved. The reason
is that Algorithm 1 essentially ignores the effect of declas-
sifications in called procedures: summary edges represent a
transitive information flow between pairs of parameters, but
declassification is intransitive. Using them for computation
of the actual security level S(x) implies that every piece of
information flowing into a procedure with a given provided
security level l will be treated as if it flew back out with the
same level. If there is declassification on the path between
the corresponding formal parameters, this approach is overly
conservative and leads to many false alarms.

As an example, consider Figure 13 again: The required
security level for node 11 is Low as specified. Algorithm 1
computes S(2) = S(8) = S(10) = S(11) = Low due to the
summary edge. This will result in a false alarm because the
declassification at node 15 is ignored.

7.1 Summary Declassification Nodes

In order to respect declassifications in called procedures, and
achieve maximal precision, an extension of the notion of
a summary edge is needed. The fundamental idea is to in-
sert a new “summary” declassification node into the sum-
mary edge, which represents the effect of declassifications
on paths in the procedure body.

Thus x→ y, representing all paths from the correspond-
ing formal-in node x′ to the formal-out node y′, is split in two
edges, with a declassification node d ∈ D in between. This
new declassification node d represents the declassification
effects on all paths from x′ to y′.

The constraints on R(d) and P(d) are chosen such that
any legal flow throw the procedure body is also a legal flow
through x→ d→ y. In particular, if there is a declassification

check

return x2callsec high
1

0

2
3

5

6

7

8

9

15

4
x x1

call

x x2

hash

return yy=...x

10

12

13

11

14

Fig. 14 SDG for Figure 12 with summary declassification nodes

free path from x′ to y′, there must not be a summary declassi-
fication node, as information flow might be transitive in that
case. It is not trivial to determine R(d) and P(d) such that
precision is maximized and correctness is maintained, as we
will see later. However, once these values have been fixed,
Algorithm 1 proceeds as usual.

Figure 14 shows the SDG with summary declassifica-
tion nodes for the example in Figure 13. The actual-in nodes
4 and 8 are connected to their corresponding formal-in node
13 with parameter-in edges. The formal-out node 15 is con-
nected to corresponding actual-out nodes 6 and 10 with pa-
rameter-out edges. The call nodes 3 and 7 are connected to
the called procedure at its entry node 12 with a call edge. The
actual-in nodes 4 and 8 are connected via summary edges
and summary declassification nodes 5 and 9 to the actual-
out nodes 6 and 10. This Figure contains only one declassi-
fication at node 15 (R(15) = confidential, P(15) = public),
so for the path between node 13 and 15 the summary de-
classification nodes 5 and 9 will be set to R(5) = R(9) =
confidential and P(5) = P(9) = ⊥. (The algorithm for this
will be presented in the next section.)

Exploiting the summary declassification nodes, algorithm 1
will a) determine that node 1 is not in the backward slice of
node 11 and thus cannot influence node 11, and b) confidential =
P(8)≤ S(8)≤ S(8)≤ R(9) = confidential and ⊥= P(9)≤
S(9) ≤ S(10) ≤ R(11) = public, thus no security violation
is found in check. In the second slicing phase, there is no
violation either: S(13) ≤ S(14) ≤ R(15) = confidential and
public = P(15) ≤ S(10) ≤ R(11) = public. Note that the
constraint P(15) ≤ S(10) is checked in the second phase,
such that the trivial constraint P(9) = ⊥ is sufficient for as-
serting security, and R(5) = R(9) = confidential is exactly
the maximal possible value of S(13). This observation leads
to the following algorithm for computing P and R for sum-
mary declassification nodes.

18 Christian Hammer, Gregor Snelting

Algorithm 2 Computation of R(d) for Summary Declassifi-
cation (backward propagation)

1 procedure SummaryDeclassification(G,L,R)
2 input G: a system dependence graph
3 L: a security lattice
4 R: the required annotations
5 output: the set of summary declassification nodes (included in G)
6 begin
7 pathEdges = ∅ // set of transitive dependences already seen
8 foreach formal−out node o in G do
9 pathEdges∪= (o,o,¬(o ∈ D),>)

10 od
11 workList := pathEdges
12 while workList not empty do
13 remove (x,y, f , l) from workList
14 if x is an formal−in node then
15 addSummaries(x,y, f , l)
16 else
17 foreach edge w→ x ∈ G do
18 addToPathEdges(extendPathEdge((x,y, f , l),w))
19 od
20 fi
21 od
22 end
23

24 procedure addToPathEdges(x,y, f , l)
25 input (x,y, f , l): a path edge tuple
26 begin
27 if (x,y, f ′, l′) ∈ pathEdges where f ′ 6= f or l′ 6= l then
28 remove (x,y, f ′, l′) from pathEdges
29 fi
30 if (x,y, f , l) 6∈ pathEdges then
31 pathEdges∪= (x,y, f , l)
32 workList∪= (x,y, f , l)
33 fi
34 end

7.2 Computation of R(d) for Summary Declassification
Nodes

As summary declassification nodes represent the effect of
declassifications on paths in the procedure body, and these
can in turn call procedures (even recursively), a simple tran-
sitive closure between formal parameters does not yield a
correct solution for summary declassification nodes [29,50].
Instead, a specialized algorithm for summary edges must be
leveraged [50] where the computation of the security levels
for summary declassification nodes can be integrated. The
result can be seen in Algorithms 2 and 3, which incorporate
a backward IFC propagation into the algorithm described by
Reps et al. [50].

As an example, consider Figure 12 again. Here, Algo-
rithm 2 starts with adding node 15 as (15,15, false,>) into
pathEdge. Note that the third element of this tuple is false,
because 15 is a declassification node. When this tuple is re-
moved from the workList, all predecessors of 15 are pro-
cessed, in particular node 14. For this node, extendPathEdge
will not find a previous tuple in pathEdges and thus initial-
izes l′ and f ′ to the neutral elements for u, resp. ∨. As node
15 is in D, l′= l′uR(15) = R(15) and f ′= f ′∨ false = false,

Algorithm 3 Auxiliary procedures for Summary Declassifi-
cation Nodes

35 procedure extendPathEdge((x,y, f , l),w)
36 input: (x,y, f , l): a path edge tuple
37 w the extension node
38 output: a path edge extended by w
39 begin
40 if pathEdges contains a tuple (w,y, f ′, l′) then
41 retrieve (w,y, f ′, l′) from pathEdges
42 else
43 l′ =>, f ′ = f alse
44 fi
45 if x ∈ D then
46 l′ = l′uR(x)
47 else
48 l′ = l′u l
49 fi
50 f ′ = f ′∨ (w 6∈ D∧ f)
51 return (w,y, f ′, l′)
52 end
53

54 procedure addSummaries(x,y, p f , l)
55 input: (x,y, f , l): a path edge tuple
56 begin
57 foreach actual parameter pair (v,w) corresponding to (x,y)
58 if f then
59 add summary edge v→sum w to G
60 n := v
61 else
62 add summary declassification node d and edges v→sum d
63 and d→sum w where R(d) = l and P(d) =⊥
64 fi
65 foreach (w,z, f ′, l′) ∈ pathEdges do
66 addToPathEdges(extendPathEdge((w,z, f ′, l′),d))
67 od
68 od
69 end

which yields a pathEdge tuple (14,14, false,confidential).
For its predecessor 13, we get a pathEdge tuple (13,13, false,
confidential) and no other path leads to 13. Since 13 is a
formal-in node, addSummaries will add a summary declas-
sification node d where R(d) = confidential and P(d) = ⊥
between the corresponding actual parameters 4 and 6, and
8 and 10, exactly as we defined these nodes in the previous
section.

Theorem 8 IFC with Algorithm 1 and summary declassifi-
cation nodes determined according to Algorithms 2 and 3 is
sound and precise.

Proof (for full details see [22]). We want to show that Al-
gorithms 2 and 3 results in a superset of the constraints gen-
erated for all interprocedurally realizable paths. This guar-
antees soundness. To demonstrate precision, we show that
the additional constraints are trivially satisfied by choosing
P(d) =⊥ for all summary declassification nodes d, and thus
do not change the computed fixpoint. As these algorithms
are straightforward extensions of the algorithm presented
in [29, 50], we can assume that these algorithms traverse
all interprocedurally realizable paths between formal-in and

Flow-Sensitive, Context-Sensitive, and Object-sensitive Information Flow Control Based on Program Dependence Graphs 19

formal-out edges, including recursive calls. For soundness,
we need to show two subgoals:

1. If there is an interprocedurally realizable path between
a formal-in and a formal-out parameter of the same call-
site that does not contain a declassification node, then the
algorithm will only generate a traditional summary edge,
but no summary declassification node. Due to transitiv-
ity of information flow on that path, the summary in-
formation must conservatively obey transitivity as well.
Algorithm 3 adheres to this requirement using the flag f
in line 59. An induction over the length of the pathEdge
will show this property:
If the length of the pathEdge is 0 (x = y), line 9 asserts
that if x ∈ D then the flag f is false, else true. So let’s
assume f correctly represents the fact if the pathEdge
(x,y, f , l) contains no declassifications. Then line 50 as-
serts that f ′ in the extended pathEdge (w,y, f ′, l′) is true(i.e.
there is no declassification on the path w→ y), if w 6∈
D∧ f holds. Note that if there have been other paths be-
tween w and y previously explored (the condition in line
40 holds), we will only remember if there is any path
without declassification due to the disjunction in line 50.

2. Otherwise, if all paths between a formal-in and a formal-
out parameter of the same call-site contain a declassi-
fication, we need to show that for each interprocedu-
rally realizable path, the HRB algorithm with summary
declassification nodes computes a superset of the con-
straints generated for that path. As a consequence of not
traversing parameter-in edges, the constraint S(act-in)≤
S(form-in) is not directly generated by Algorithm 1, and
thus must be imposed by the summary declassification
node d. As the value of R(d) is determined by computing
S(form-in) with the same constraints as in Algorithm 1,
we only need to show that using S(form-out) = > we
get the same result as with the constraint S(form-out)≤
S(act-out), which is generated by the HRB algorithm.
But this follows from the independence of S(form-in)
and S(form-out), as each path in-between contains a de-
classification node which induces no constraint of the
form S(w) ≤ S(v) for an edge w→ v but only S(w) ≤
R(v). ut

8 Implementation and preliminary experience

We have implemented SDG-based IFC, including declassifi-
cation, as described in this paper. The prototype is an Eclipse
plugin, which allows interactive definition of security lat-
tices, automatic generation of SDG’s, annotation of security
levels to SDG nodes via source annotation and automatic se-
curity checks [18]. At the time of this writing, the Java slicer
and security levels are fully operational.

In this article, we will not explain details about the im-
plementation and its user interface; nor will we present em-
pirical studies about precision, scalability, and practicability.
All these results will be presented in a separate, forthcoming

article as well as in [22]. Right here, we present just a few
remarks about preliminary case studies.

Our largest object of study is the Purse applet from the
“Pacap” case study [9]. This program is written in JavaCard
and contains all JavaCard API PDGs and stubs for native
API methods. The program is 9835 lines long. The PDG
(including necessary API parts) consists of 135271 nodes
and 1002589 edges. The time for PDG construction was 145
seconds plus 742 seconds for generation of summary edges.

Next, 30332 backward slices were selected by choosing
a random node as a starting point. The average slice size is
86023 nodes, which is about 68% of the whole source code.
This is more than what is typical for backward slices, due to
the higher coupling of JavaCard in contrast to normal Java,
and illustrates why precise witnesses can only be achieved
via path conditions as described in [26, 25, 52].

As a case study for IFC we chose another JavaCard ap-
plet called Wallet18. It is only 252 lines long but with the
necessary API parts and stubs the PDG consists of 18858
nodes and 68259 edges. The time for PDG construction was
8 seconds plus 9 for summary edges.

The Wallet stores a balance that is at the user’s disposal.
Access to this balance is only granted after supplying the
correct PIN. We annotated all statement that update the bal-
ance with the provided security level High and inserted a
declassification to Low into the getBalance method. The
methods credit and debit may throw an exception if the
maximum balance would be exceeded or if there is insuffi-
cient credit, resp. In such cases JavaCard applets throw an
exception, and the exception is clearly dependent on the re-
sult of a condition involving balance. The exception is not
meant to be caught but percolates to the JavaCard terminal,
so we inserted declassifications for these exceptions, as well.
Besides this intended information flow, which is only possi-
ble upon user request and after verifying the PIN, our analy-
sis proved that no further information flow is possible from
the balance to the output of the JavaCard.

9 Related Work

9.1 PDGs and IFC

Several papers have been written about PDGs and slicers for
Java, but to our knowledge only the Indus slicer [31] is—
besides ours—fully implemented and can handle full Java.
Indus is customizable, embedded into Eclipse, and has a
very nice GUI, but is less precise than our slicer. In par-
ticular, it does not fully support context-sensitivity but only
k-limiting of contexts, and it allows time traveling for con-
current programs.

The work described in this paper improves our previous
algorithm [25], which was not able to handle declassifica-
tion in called procedures precisely. However, that work also
describes the generation and use of path conditions for Java

18 http://www.javaworld.com/javaworld/jw-07-1999/
jw-07-javacard.html

http://www.javaworld.com/javaworld/jw-07-1999/jw-07-javacard.html
http://www.javaworld.com/javaworld/jw-07-1999/jw-07-javacard.html

20 Christian Hammer, Gregor Snelting

PDGs (i.e. necessary conditions for an information flow be-
tween two nodes), which can uncover the precise circum-
stances under which a security violation can occur.

While a close connection between IFC and dataflow analy-
sis had been noticed very early [7], Abadi et al. [1] were
the first to connect slicing and noninterference, but only for
type system based slicing of a variant of λ -calculus. It is
amazing that our Theorem 4 from Section 2 (which holds
for imperative languages and their PDGs) was not discov-
ered earlier. Only Anderson et al. [4] presented an example
in which chopping can be used to show illegal information
flow between components which were supposedly indepen-
dent. They do not employ a security lattice, though.

Yokomori et al. [66] were probably the first to propose
and implement an IFC analysis based on program slicing
for a procedural language. It checks for traditional noninter-
ference, and supports the minimal lattice Low < High only.
Their analysis is flow-sensitive, but not context-sensitive nor
object-sensitive.

Hammer et al. combined static and dynamic PDG analy-
sis for detection of illegal information flow [23]. It allows
the a-posteriori analysis of programs showing unexpected
behavior and the computation of an exact witness for recon-
struction of the illegal information flow.

9.2 Security type systems

Volpano and Smith [63] presented the first security type sys-
tem for IFC. They extended traditional type systems in order
to check for pure noninterference in simple while-languages
with procedure calls. The procedures can be polymorphic
with respect to security classes allowing context-sensitive
analysis. They proof noninterference in case the system re-
ports no typing errors. An extension to multi-threaded lan-
guages is given in [58].

Myers [41] defines JFlow, an extension of the Java lan-
guage with a type system for information flow. The JIF com-
piler [42] implements this language. We already discussed
in Section 2 that type systems are less precise, but are more
efficient. JIF supports generic classes and the decentralized
label model [41]; labels and principals are first class objects.
Note that our PDG-based approach can be generalized to
utilize decentralized labels.

Barthe and Rezk [5] present a security type system for
strict noninterference without declassification, handling clas-
ses and objects. NullPointerException is the only ex-
ception type allowed. Only values annotated with Low may
throw exceptions. Constructors are ignored, instead objects
are initialized with default values. A proof showing the non-
interference property of the type system is given.

Strecker [61] formulated a non-deterministic type sys-
tem including the noninterference proof in Isabelle [44]. It
handles major concepts of MicroJava such as classes, fields
and method calls, but omits arrays and exceptions.

Mantel and Reinhard [39] defined the first type system
for a multi-threaded while language that controls the what

and the where dimension simultaneously. The type system
is based on a definition for the where dimension that su-
persedes their previous definition of intransitive noninterfer-
ence [40], and two variants of a definition for the what di-
mension similar to selective dependency [14]. However, they
do not show whether their approach is practically viable.

9.3 Verification and IFC

Amtoft et al. [3] present an interprocedural flow-sensitive
Hoare-like logic for information flow control in a rudimen-
tary object-oriented language. Casts, type tests, visibility mod-
ifiers other than public, and exception handling are not yet
considered. Only structured control flow is allowed.

The Pacap case study [9] verifies secure interaction of
multiple JavaCard applets on one smart card. They employ
model checking to ensure a sufficient condition for their se-
curity policy, which is based on a lattice similar to nonin-
terference without declassification. Implicit exceptions are
modeled, but such unstructured control flow may lead to la-
bel creep (cf. [54, Sect. II E]).

Genaim [16] defines an abstract interpretation of the CFG
looking for information leaks. It can handle all bytecode in-
structions of single-threaded Java and conservatively han-
dles implicit exceptions of bytecode instructions. The analy-
sis is flow- and context-sensitive but does not differentiate
fields of different objects. Instead, they propose an object-
insensitive solution folding all fields of a given class. In our
experience [27] object-insensitivity yields too many spuri-
ous dependences. The same is true for the approximation of
the call graph by CHA. In this setting, both will result in
many false alarms.

An area uncovered by our system is security policies,
defining under which circumstances declassification is al-
lowed. Li and Zdancewic [36] define a framework for down-
grading policies for a core language with conditionals and
fixed-points, yielding a formalized security guarantee with a
program equivalence proof.

9.4 Static analysis for security

Static analysis is often used for source code security analy-
sis [13]. For example, information flow control is closely re-
lated to tainted variable analysis. There are even approaches
like the one from Pistoia et al. [47] that use slicing for taint
analysis or the one from Livshits and Lam [38, 37] that uses
IPSSA, a representation very similar to dependence graphs.
However, these analyses only use a trivial security level (taint-
ed/untainted) with a trivial declassification (untaint) and could
greatly benefit from our approach. Scholz et al. [57] present
a static analysis that tracks user input on a data structure sim-
ilar to a dependence graph. Like our analysis, it is defined
as a dataflow analysis framework and reduce the constraint
system using properties of SSA form. Again, this analysis is
targeted to bug tracking and taint analysis.

Flow-Sensitive, Context-Sensitive, and Object-sensitive Information Flow Control Based on Program Dependence Graphs 21

Pistoia et al. [46] survey recent methods for static analy-
sis for software security problems. They focus on stack- and
role-based access control, information flow and API confor-
mance. A unified access-control and integrity checker for
information-based access control, an extension of Java’s stack-
based access control mechanism has been presented in [45].
They show that an implicit integrity policy can be extracted
from the access control policy, and that the access control
enforces that integrity policy.

10 Future Work

The reader will have noticed that this article focused on the-
oretical and algorithmic foundations of our IFC method. It
did not say much about practical aspects of our work. Nei-
ther did we describe the implementation and its GUI in de-
tail, nor did we present empirical data on precision and scal-
ability. Both aspects have been left out for lack of space,
but will be discussed in the forthcoming PhD thesis [22]. In
any case, more case studies are needed, and a more detailed
comparison with other IFC algorithms in terms of precision,
scalability and practicability is required.

Note that right now, we can handle only medium-sized
programs up to 100kLOC. Security kernels are usually not
really big; still, a better scale-up is an issue for future work.
Another well-known problem in Java is the API: even the
smallest programs loads hundreds of library classes, which
must be analyzed together with the client code. The bottle-
neck is always the points-to analysis, as precise points-to for
Java is notoriously difficult. But there has been tremendous
progress in scalability of program analyses such as points-
to, and we will be able to exploit this to improve scalability
and precision.

Another technical issue is compositionality: it must be
possible to analyze isolated methods or classes and combine
the results later – but as said, our analysis as well as today’s
PDG and points-to technology is a whole-program analysis
and requires the complete program.

From the information flow view, an important issue is
modeling of declassification. Even IFC experts feel some-
what uncomfortable with the declassification approach, as it
has an ad-hoc flavor. Uncontrolled declassification can intro-
duce several problems, loss of monotonicity of release being
one of them. Thus a lot of work on foundations of declassi-
fication is done in the IFC community (e.g. [39]). While we
can guarantee monotonicity of release (albeit under kind of
restricted context constraints), more research in declassifi-
cation concepts and their relation to PDGs is needed. One
could, for example, disallow multiple declassifications on
one PDG path or chop, and we suspect that this will sim-
plify matters considerably without damaging practicality.

Another approach is to use path conditions (as sketched
in section 2.3) in order to obtain more semantically con-
vincing characterizations and context constraints for sound
declassification. Our approach to declassification does cur-
rently not offer per-se checks of semantic properties as stipu-

lated by [56], but will rely on path conditions to provide pre-
cise necessary conditions for a declassification to take place.
This approach falls into the category “how” declassification
may occur, which has not yet been extensively researched.

Let us finally mention that we have used PDGs not only
to check for classical noninterference, but to implement pos-
sibilistic or probabilistic noninterference. For details, see [19].

11 Conclusion

We presented a system for information flow control in PDGs,
integrating method calls and declassification without losing
precision at call sites. Our approach is fully automatic, flow-
sensitive, context-sensitive, and object-sensitive. Thus it is
more precise than traditional IFC systems. In particular, un-
structured control flow and exceptions are handled precisely.

The presented approach has been implemented inside the
IDE Eclipse. The plugin allows definition of security lat-
tices, automatic generation of SDG’s, annotation of security
levels to SDG nodes via source annotation and automatic
security checks. We can handle full Java bytecode and can
analyze medium-sized programs, which are typical in a se-
curity setting with restricted environments like JavaCard.

Our preliminary results indicate that the number of false
alarms is reduced compared to type-based IFC systems, while
of course all potential security leaks are discovered. Future
case studies will apply our technique to a larger benchmark
of IFC problems, and provide quantitative comparisons con-
cerning performance and precision between our approach
and other IFC systems.

In any case, PDG-based IFC is more expensive than type-
based IFC. But a precise security analysis which costs min-
utes or even hours of CPU time is not too expensive com-
pared to possible costs of illegal information flow or many
false alarms.

Acknowledgements We thank Jens Krinke, who contributed to previ-
ous versions of this work, for ongoing discussions on IFC; and Frank
Nodes for implementing the Eclipse integration.

References

1. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A core cal-
culus of dependency. In: POPL ’99: Proceedings of the 26th
ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pp. 147–160. ACM, New York, NY, USA (1999).
DOI 10.1145/292540.292555

2. Agat, J.: Transforming out timing leaks. In: POPL ’00: Proceed-
ings of the 27th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pp. 40–53. ACM, New York, NY,
USA (2000). DOI 10.1145/325694.325702

3. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for informa-
tion flow in object-oriented programs. In: POPL ’06: Conference
record of the 33rd ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pp. 91–102. ACM, New York,
NY, USA (2006). DOI 10.1145/1111037.1111046

4. Anderson, P., Reps, T., Teitelbaum, T.: Design and implementation
of a fine-grained software inspection tool. IEEE Transactions on

http://doi.acm.org/10.1145/292540.292555
10.1145/292540.292555
http://doi.acm.org/10.1145/325694.325702
10.1145/325694.325702
http://doi.acm.org/10.1145/1111037.1111046
10.1145/1111037.1111046

22 Christian Hammer, Gregor Snelting

Software Engineering 29(8) (2003). DOI 10.1109/TSE.2003.
1223646

5. Barthe, G., Rezk, T.: Non-interference for a JVM-like language.
In: TLDI ’05: Proceedings of the 2005 ACM SIGPLAN inter-
national workshop on Types in languages design and implemen-
tation, pp. 103–112. ACM Press, New York, NY, USA (2005).
DOI 10.1145/1040294.1040304

6. Bell, D.E., LaPadula, L.J.: Secure computer systems: A mathe-
matical model, volume ii. Journal of Computer Security 4(2/3),
229–263 (1996). Based on MITRE Technical Report 2547, Vol-
ume II

7. Bergeretti, J.F., Carré, B.A.: Information-flow and data-flow
analysis of while-programs. ACM Trans. Program. Lang. Syst.
7(1), 37–61 (1985). DOI 10.1145/2363.2366

8. Biba, K.J.: Integrity considerations for secure computer systems.
Tech. Rep. MTR-3153, The Mitre Corporation (1977). DOI 100.
2/ADA039324

9. Bieber, P., Cazin, J., Marouani, A.E., Girard, P., Lanet, J.L., Wiels,
V., G.Zanon: The PACAP prototype: a tool for detecting Java Card
illegal flow. In: Proc. 1st International Workshop, Java Card 2000,
LNCS, vol. 2041, pp. 25–37. Springer, Cannes, France (2000).
DOI 10.1007/3-540-45165-X_3

10. Binkley, D., Harman, M., Krinke, J.: Empirical study of optimiza-
tion techniques for massive slicing. ACM Trans. Program. Lang.
Syst. 30(1), 3 (2007). DOI 10.1145/1290520.1290523

11. Binkley, D., Horwitz, S., Reps, T.: The multi-procedure equiv-
alence theorem. Tech. Rep. 890, Computer Sciences De-
partment, University of Wisconsin-Madison (1989). URL
http://www.cs.wisc.edu/techreports/viewreport.
php?report=890

12. Chambers, C., Pechtchanski, I., Sarkar, V., Serrano, M.J., Srini-
vasan, H.: Dependence analysis for java. In: Proceedings of the
12th International Workshop on Languages and Compilers for Par-
allel Computing, pp. 35–52. Springer-Verlag (1999). DOI 10.
1007/3-540-44905-1_3

13. Chess, B., McGraw, G.: Static analysis for security. IEEE Security
and Privacy 2(6), 76–79 (2004). DOI 10.1109/MSP.2004.111

14. Cohen, E.S.: Foundations of Secure Computation, chap. Informa-
tion Transmission in Sequential Programs, pp. 297–335. Aca-
demic Press, Inc., Orlando, FL, USA (1978). Paper presented at a
3 day workshop held at Georgia Inst. of Technology, Atlanta, Oct.
1977

15. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program depen-
dence graph and its use in optimization. ACM Trans. Program.
Lang. Syst. 9(3), 319–349 (1987). DOI 10.1145/24039.24041

16. Genaim, S., Spoto, F.: Information flow analysis for java bytecode.
In: 6th International Conference on Verification, Model Check-
ing, and Abstract Interpretation (VMCAI 2005), LNCS, vol. 3385,
pp. 346–362. Springer, Paris, France (2005). DOI 10.1007/
b105073

17. Giffhorn, D., Hammer, C.: An evaluation of precise slicing al-
gorithms for concurrent programs. In: SCAM’07: Seventh IEEE
International Working Conference on Source Code Analysis and
Manipulation, pp. 17–26. Paris, France (2007). DOI 10.1109/
SCAM.2007.9

18. Giffhorn, D., Hammer, C.: Precise analysis of java programs us-
ing joana (tool demonstration). In: Proc. 8th IEEE International
Working Conference on Source Code Analysis and Manipulation,
pp. 267–268 (2008). DOI 10.1109/SCAM.2008.17

19. Giffhorn, D., Lochbihler, A.: Information flow control for concur-
rent programs via program slicing. Submitted for publication

20. Goguen, J.A., Meseguer, J.: Security policies and security models.
In: Proc. Symposium on Security and Privacy, pp. 11–20. IEEE
(1982). DOI 10.1109/SP.1982.10014

21. Goguen, J.A., Meseguer, J.: Interference control and unwinding.
In: Proc. Symposium on Security and Privacy, pp. 75–86. IEEE
(1984). DOI 10.1109/SP.1984.10019

22. Hammer, C.: Information flow control for java. Ph.D. thesis, Uni-
versität Karlsruhe (TH) (2009). Forthcoming

23. Hammer, C., Grimme, M., Krinke, J.: Dynamic path conditions
in dependence graphs. In: PEPM ’06: Proceedings of the 2006

ACM SIGPLAN symposium on Partial evaluation and semantics-
based program manipulation, pp. 58–67. ACM Press, New York,
NY, USA (2006). DOI 10.1145/1111542.1111552

24. Hammer, C., Krinke, J., Nodes, F.: Intransitive noninterference in
dependence graphs. In: Proc. Second International Symposium
on Leveraging Application of Formal Methods, Verification and
Validation (ISoLA 2006), pp. 119–128. IEEE Computer Society,
Washington, DC, USA (2006). DOI 10.1109/ISoLA.2006.39

25. Hammer, C., Krinke, J., Snelting, G.: Information flow control for
java based on path conditions in dependence graphs. In: Proc.
IEEE International Symposium on Secure Software Engineering
(ISSSE’06), pp. 87–96 (2006)

26. Hammer, C., Schaade, R., Snelting, G.: Static path conditions for
java. In: PLAS ’08: Proceedings of the third ACM SIGPLAN
workshop on Programming languages and analysis for security,
pp. 57–66. ACM, New York, NY, USA (2008). DOI 10.1145/
1375696.1375704

27. Hammer, C., Snelting, G.: An improved slicer for java. In: PASTE
’04: Proceedings of the 5th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering, pp. 17–
22. ACM Press, New York, NY, USA (2004). DOI 10.1145/
996821.996830

28. Horwitz, S., Prins, J., Reps, T.: On the adequacy of program de-
pendence graphs for representing programs. In: POPL ’88: Pro-
ceedings of the 15th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 146–157. ACM, New
York, NY, USA (1988). DOI 10.1145/73560.73573

29. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using
dependence graphs. ACM Trans. Program. Lang. Syst. 12(1), 26–
60 (1990). DOI 10.1145/77606.77608

30. Hunt, S., Sands, D.: On flow-sensitive security types. In: POPL
’06: Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pp. 79–
90. ACM Press, New York, NY, USA (2006). DOI 10.1145/
1111037.1111045

31. Jayaraman, G., Ranganath, V.P., Hatcliff, J.: Kaveri: Delivering the
indus java program slicer to eclipse. In: Proc. Fundamental Ap-
proaches to Software Engineering (FASE’05), LNCS, vol. 3442,
pp. 269–272. Springer (2005). DOI 10.1007/b107062

32. Kam, J.B., Ullman, J.D.: Monotone data flow analysis frame-
works. Acta Informatica 7(3), 305–317 (1977). DOI 10.1007/
BF00290339

33. Krinke, J.: Context-sensitive slicing of concurrent programs. In:
ESEC/FSE-11: Proceedings of the 9th European software engi-
neering conference held jointly with 11th ACM SIGSOFT inter-
national symposium on Foundations of software engineering, pp.
178–187. ACM, New York, NY, USA (2003). DOI 10.1145/
940071.940096

34. Krinke, J.: Program slicing. In: Handbook of Software Engineer-
ing and Knowledge Engineering, vol. 3: Recent Advances. World
Scientific Publishing (2005)

35. Lhoták, O., Hendren, L.: Scaling Java points-to using Spark.
In: Proc. 12th International Conference on Compiler Construc-
tion„ LNCS, vol. 2622, pp. 153–169 (2003). DOI 10.1007/
3-540-36579-6_12

36. Li, P., Zdancewic, S.: Downgrading policies and relaxed non-
interference. In: POPL ’05: Proceedings of the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 158–170. ACM Press, New York, NY, USA (2005).
DOI 10.1145/1040305.1040319

37. Livshits, B., Lam, M.S.: Finding security vulnerabilities in
Java applications with static analysis. In: Proceedings of the
Usenix Security Symposium, pp. 271–286. Baltimore, Maryland
(2005). URL http://portal.acm.org/citation.cfm?id=
1251416

38. Livshits, V.B., Lam, M.S.: Tracking pointers with path and context
sensitivity for bug detection in c programs. In: ESEC/FSE-11:
Proceedings of the 9th European software engineering conference
held jointly with 11th ACM SIGSOFT international symposium
on Foundations of software engineering, pp. 317–326. ACM, New
York, NY, USA (2003). DOI 10.1145/940071.940114

http://dx.doi.org/10.1109/TSE.2003.1223646
10.1109/TSE.2003.1223646
http://dx.doi.org/10.1109/TSE.2003.1223646
10.1109/TSE.2003.1223646
http://doi.acm.org/10.1145/1040294.1040304
10.1145/1040294.1040304
http://doi.acm.org/10.1145/2363.2366
10.1145/2363.2366
http://dx.doi.org/100.2/ADA039324
100.2/ADA039324
http://dx.doi.org/100.2/ADA039324
100.2/ADA039324
http://dx.doi.org/10.1007/3-540-45165-X_3
10.1007/3-540-45165-X_3
http://doi.acm.org/10.1145/1290520.1290523
10.1145/1290520.1290523
http://www.cs.wisc.edu/techreports/viewreport.php?report=890
http://www.cs.wisc.edu/techreports/viewreport.php?report=890
http://dx.doi.org/10.1007/3-540-44905-1_3
10.1007/3-540-44905-1_3
http://dx.doi.org/10.1007/3-540-44905-1_3
10.1007/3-540-44905-1_3
http://dx.doi.org/10.1109/MSP.2004.111
10.1109/MSP.2004.111
http://doi.acm.org/10.1145/24039.24041
10.1145/24039.24041
http://dx.doi.org/10.1007/b105073
10.1007/b105073
http://dx.doi.org/10.1007/b105073
10.1007/b105073
http://dx.doi.org/10.1109/SCAM.2007.9
10.1109/SCAM.2007.9
http://dx.doi.org/10.1109/SCAM.2007.9
10.1109/SCAM.2007.9
http://dx.doi.org/10.1109/SCAM.2008.17
http://dx.doi.org/10.1109/SP.1982.10014
10.1109/SP.1982.10014
http://dx.doi.org/10.1109/SP.1984.10019
10.1109/SP.1984.10019
http://doi.acm.org/10.1145/1111542.1111552
10.1145/1111542.1111552
http://dx.doi.org/10.1109/ISoLA.2006.39
10.1109/ISoLA.2006.39
http://doi.acm.org/10.1145/1375696.1375704
10.1145/1375696.1375704
http://doi.acm.org/10.1145/1375696.1375704
10.1145/1375696.1375704
http://doi.acm.org/10.1145/996821.996830
10.1145/996821.996830
http://doi.acm.org/10.1145/996821.996830
10.1145/996821.996830
http://doi.acm.org/10.1145/73560.73573
10.1145/73560.73573
http://doi.acm.org/10.1145/77606.77608
10.1145/77606.77608
http://doi.acm.org/10.1145/1111037.1111045
10.1145/1111037.1111045
http://doi.acm.org/10.1145/1111037.1111045
10.1145/1111037.1111045
http://dx.doi.org/10.1007/b107062
10.1007/b107062
http://dx.doi.org/10.1007/BF00290339
10.1007/BF00290339
http://dx.doi.org/10.1007/BF00290339
10.1007/BF00290339
http://doi.acm.org/10.1145/940071.940096
10.1145/940071.940096
http://doi.acm.org/10.1145/940071.940096
10.1145/940071.940096
http://dx.doi.org/10.1007/3-540-36579-6_12
10.1007/3-540-36579-6_12
http://dx.doi.org/10.1007/3-540-36579-6_12
10.1007/3-540-36579-6_12
http://doi.acm.org/10.1145/1040305.1040319
10.1145/1040305.1040319
http://portal.acm.org/citation.cfm?id=1251416
http://portal.acm.org/citation.cfm?id=1251416
http://doi.acm.org/10.1145/940071.940114
10.1145/940071.940114

Flow-Sensitive, Context-Sensitive, and Object-sensitive Information Flow Control Based on Program Dependence Graphs 23

39. Mantel, H., Reinhard, A.: Controlling the what and where of de-
classification in language-based security. In: ESOP ’07: Pro-
ceedings of the European Symposium on Programming, LNCS,
vol. 4421, pp. 141–156. Springer (2007). DOI 10.1007/
978-3-540-71316-6

40. Mantel, H., Sands, D.: Controlled declassification based on intran-
sitive noninterference. In: Proceedings of the 2nd Asian Sym-
posium on Programming Languages and Systems, APLAS 2004,
LNCS, vol. 3302, pp. 129–145. Springer, Taipei, Taiwan (2004).
DOI 10.1007/b102225

41. Myers, A.C.: JFlow: practical mostly-static information flow con-
trol. In: POPL ’99: Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages,
pp. 228–241. ACM Press, New York, NY, USA (1999). DOI 10.
1145/292540.292561

42. Myers, A.C., Chong, S., Nystrom, N., Zheng, L., Zdancewic, S.:
Jif: Java information flow. URL http://www.cs.cornell.
edu/jif/

43. Nanda, M.G., Ramesh, S.: Interprocedural slicing of multi-
threaded programs with applications to java. ACM Trans. Pro-
gram. Lang. Syst. 28(6), 1088–1144 (2006). DOI 10.1145/
1186632.1186636

44. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, LNCS, vol. 2283. Springer
(2002). URL http://www4.informatik.tu-muenchen.de/
~nipkow/LNCS2283/

45. Pistoia, M., Banerjee, A., Naumann, D.A.: Beyond stack in-
spection: A unified access-control and information-flow security
model. In: SP ’07: Proceedings of the 2007 IEEE Symposium
on Security and Privacy, pp. 149–163. IEEE Computer Society,
Washington, DC, USA (2007). DOI 10.1109/SP.2007.10

46. Pistoia, M., Chandra, S., Fink, S.J., Yahav, E.: A survey of static
analysis methods for identifying security vulnerabilities in soft-
ware systems. IBM Syst. J. 46(2), 265–288 (2007). DOI 10.
1147/sj.462.0265

47. Pistoia, M., Flynn, R.J., Koved, L., Sreedhar, V.C.: Interprocedural
analysis for privileged code placement and tainted variable detec-
tion. In: Proceedings of the 9th European Conference on Object-
Oriented Programming, LNCS, vol. 3586, pp. 362–386. Springer
(2005). DOI 10.1007/11531142_16

48. Podgurski, A., Clarke, L.A.: A formal model of program depen-
dences and its implications for software testing, debugging, and
maintenance. IEEE Trans. Softw. Eng. 16(9), 965–979 (1990).
DOI 10.1109/32.58784

49. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer,
M.B.: A new foundation for control dependence and slicing for
modern program structures. ACM Trans. Program. Lang. Syst.
29(5), 27 (2007). DOI 10.1145/1275497.1275502

50. Reps, T., Horwitz, S., Sagiv, M., Rosay, G.: Speeding up slicing.
In: SIGSOFT ’94: Proceedings of the 2nd ACM SIGSOFT sym-
posium on Foundations of software engineering, pp. 11–20. ACM,
New York, NY, USA (1994). DOI 10.1145/193173.195287

51. Reps, T., Yang, W.: The semantics of program slicing.
Tech. Rep. 777, Computer Sciences Department, University of
Wisconsin-Madison (1988). URL http://www.cs.wisc.edu/
techreports/viewreport.php?report=777

52. Robschink, T., Snelting, G.: Efficient path conditions in depen-
dence graphs. In: ICSE ’02: Proceedings of the 24th International
Conference on Software Engineering, pp. 478–488. ACM Press,
New York, NY, USA (2002). DOI 10.1145/581339.581398

53. Rountev, A., Milanova, A., Ryder, B.G.: Points-to analysis for java
using annotated constraints. In: OOPSLA ’01: Proceedings of the
16th ACM SIGPLAN conference on Object oriented program-
ming, systems, languages, and applications, pp. 43–55. ACM,
New York, NY, USA (2001). DOI 10.1145/504282.504286

54. Sabelfeld, A., Myers, A.: Language-based information-flow secu-
rity. IEEE Journal on Selected Areas in Communications 21(1),
5–19 (2003). DOI 10.1109/JSAC.2002.806121

55. Sabelfeld, A., Sands, D.: A per model of secure information flow
in sequential programs. Higher Order Symbol. Comput. 14(1),
59–91 (2001). DOI 10.1023/A:1011553200337

56. Sabelfeld, A., Sands, D.: Dimensions and principles of declassi-
fication. In: CSFW ’05: Proceedings of the 18th IEEE workshop
on Computer Security Foundations, pp. 255–269. IEEE Computer
Society, Washington, DC, USA (2005). DOI 10.1109/CSFW.
2005.15

57. Scholz, B., Zhang, C., Cifuentes, C.: User-input dependence
analysis via graph reachability. In: Proc. Eighth IEEE Interna-
tional Working Conference on Source Code Analysis and Manip-
ulation, pp. 25–34 (2008). DOI 10.1109/SCAM.2008.22

58. Smith, G., Volpano, D.: Secure information flow in a multi-
threaded imperative language. In: POPL ’98: Proceedings of the
25th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pp. 355–364. ACM (1998). DOI 10.1145/
268946.268975

59. Snelting, G.: Combining slicing and constraint solving for val-
idation of measurement software. In: SAS ’96: Proceedings
of the Third International Symposium on Static Analysis, pp.
332–348. Springer-Verlag, London, UK (1996). DOI 10.1007/
3-540-61739-6_51

60. Snelting, G., Robschink, T., Krinke, J.: Efficient path conditions
in dependence graphs for software safety analysis. ACM Trans.
Softw. Eng. Methodol. 15(4), 410–457 (2006). DOI 10.1145/
1178625.1178628

61. Strecker, M.: Formal analysis of an information flow type system
for MicroJava (extended version). Tech. rep., Technische Univer-
sität München (2003)

62. Tip, F.: A survey of program slicing techniques. Journal of Pro-
gramming Languages 3(3), 121–189 (1995)

63. Volpano, D.M., Smith, G.: A type-based approach to program
security. In: TAPSOFT ’97: Proceedings of the 7th Interna-
tional Joint Conference CAAP/FASE on Theory and Practice of
Software Development, LNCS, vol. 1214, pp. 607–621. Springer-
Verlag, London, UK (1997). DOI 10.1007/BFb0030629

64. Wasserrab, D.: Towards certified slicing. In: G. Klein, T. Nip-
kow, L. Paulson (eds.) The Archive of Formal Proofs (2008).
URL http://afp.sf.net/entries/Slicing.shtml. For-
mal proof development

65. Weiser, M.: Program slicing. IEEE Trans. Software Eng. 10(4),
352–357 (1984)

66. Yokomori, R., Ohata, F., Takata, Y., Seki, H., Inoue, K.: An
information-leak analysis system based on program slicing. In-
formation and Software Technology 44(15), 903–910 (2002).
DOI 10.1016/S0950-5849(02)00127-1

http://dx.doi.org/10.1007/978-3-540-71316-6
10.1007/978-3-540-71316-6
http://dx.doi.org/10.1007/978-3-540-71316-6
10.1007/978-3-540-71316-6
http://dx.doi.org/10.1007/b102225
10.1007/b102225
http://doi.acm.org/10.1145/292540.292561
10.1145/292540.292561
http://doi.acm.org/10.1145/292540.292561
10.1145/292540.292561
http://www.cs.cornell.edu/jif/
http://www.cs.cornell.edu/jif/
http://doi.acm.org/10.1145/1186632.1186636
10.1145/1186632.1186636
http://doi.acm.org/10.1145/1186632.1186636
10.1145/1186632.1186636
http://www4.informatik.tu-muenchen.de/~nipkow/LNCS2283/
http://www4.informatik.tu-muenchen.de/~nipkow/LNCS2283/
http://dx.doi.org/10.1109/SP.2007.10
10.1109/SP.2007.10
http://dx.doi.org/10.1147/sj.462.0265
10.1147/sj.462.0265
http://dx.doi.org/10.1147/sj.462.0265
10.1147/sj.462.0265
http://dx.doi.org/10.1007/11531142_16
10.1007/11531142_16
http://dx.doi.org/10.1109/32.58784
10.1109/32.58784
http://doi.acm.org/10.1145/1275497.1275502
10.1145/1275497.1275502
http://doi.acm.org/10.1145/193173.195287
10.1145/193173.195287
http://www.cs.wisc.edu/techreports/viewreport.php?report=777
http://www.cs.wisc.edu/techreports/viewreport.php?report=777
http://doi.acm.org/10.1145/581339.581398
10.1145/581339.581398
http://doi.acm.org/10.1145/504282.504286
10.1145/504282.504286
http://dx.doi.org/10.1109/JSAC.2002.806121
10.1109/JSAC.2002.806121
http://dx.doi.org/10.1023/A:1011553200337
10.1023/A:1011553200337
http://dx.doi.org/10.1109/CSFW.2005.15
10.1109/CSFW.2005.15
http://dx.doi.org/10.1109/CSFW.2005.15
10.1109/CSFW.2005.15
http://dx.doi.org/10.1109/SCAM.2008.22
10.1109/SCAM.2008.22
http://doi.acm.org/10.1145/268946.268975
10.1145/268946.268975
http://doi.acm.org/10.1145/268946.268975
10.1145/268946.268975
http://dx.doi.org/10.1007/3-540-61739-6_51
10.1007/3-540-61739-6_51
http://dx.doi.org/10.1007/3-540-61739-6_51
10.1007/3-540-61739-6_51
http://doi.acm.org/10.1145/1178625.1178628
10.1145/1178625.1178628
http://doi.acm.org/10.1145/1178625.1178628
10.1145/1178625.1178628
http://dx.doi.org/10.1007/BFb0030629
10.1007/BFb0030629
http://afp.sf.net/entries/Slicing.shtml
http://dx.doi.org/10.1016/S0950-5849(02)00127-1
10.1016/S0950-5849(02)00127-1

	Introduction
	Dependence Graphs and Noninterference
	PDGs for Java
	Security levels
	Inter-procedural propagation of security levels
	Declassification
	Improving Interprocedural Declassification
	Implementation and preliminary experience
	Related Work
	Future Work
	Conclusion

