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Abstract

In this paper we consider the complementarity problem NCP(f) with f(x) = Mx + ϕ(x), where
M ∈ Rn×n is a real matrix and ϕ is a so-called tridiagonal (nonlinear) mapping defined in the introduction
(see (11) and (12)). This problem occurs, for example, if certain classes of free boundary problems are
discretized. We compute error bounds for approximations x̂ to a solution x∗ of the discretized problems.
The error bounds are improved by an iterative method and can be made arbitrarily small. The ideas are
illustrated by numerical experiments.
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1 Introduction

Let f : Rn → Rn be a given mapping. A nonlinear complementarity problem, denoted by NCP(f), is to
find a vector x∗ such that

x∗ ≥ 0, f(x∗) ≥ 0, x∗T f(x∗) = 0. (1)

The inequalities are meant componentwise. NCP(f) has many real world applications, in engineering, for
example. We refer to [13] for source problems of it.

Assume that we have computed an approximation x̂ to a solution x∗ of (1) by some numerical algorithm
(see [11], e.g.). Then it is important to estimate the distance of x̂ to x∗. Without such an estimation the
approximation x̂ is of doubtful utility.

This distance is usually measured by some norm or may be defined componentwise. Error estimation in
this sense has been extensively studied up to now in the papers [8, 9, 12, 14, 15, 17] and the monograph
[11]. In the papers [1, 3] a verification method for the existence of a solution of NCP(f), defined in (1), was
given. If the method is successful, error bounds are delivered automatically.

In [6, 7] we studied the complementarity problem NCP(f) with the mapping f of the form

f(x) = Mx+ ϕ(x), (2)

where M ∈ Rn×n, and
ϕ(x) = (ϕi(xi)). (3)

ϕ is a so-called diagonal mapping. This problem comes, for example, by considering the following free
boundary problems.

∗The work of the second author was supported in part by a grant from the State of Baden-Württemberg and by grant-
10771099 from the National Natural Science Foundation of China. The second author would also like to appreciate Universität
Karlsruhe for the kind invitation.
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Example 1.1. Let g : [0, 1] × R → R be a given function, let α, β > 0 be given constants. We consider
finding a function u : [0, 1]→ R+ such that u′′(t) = g(t, u(t)) t ∈ D+,

u(0) = α,
u(1) = β,

(4)

where the set D+ := {t ∈ (0, 1) : u(t) > 0} is unknown.

We can approximate u(t) from Example 1.1 by a vector x∗ = (x∗i ) ∈ Rn, using the well-known second
order approximation of the second order derivative. This gives us an NCP(f) of the form (2) and (3), where

M =


2 −1

−1 2
. . .

. . . . . . −1
−1 2

 (5)

and where ϕ(x) = (ϕi(xi)) with

ϕi(xi) = h2g(ti, xi), i = 1, 2, . . . , n,
x0 = α, xn+1 = β.

Here h =
1

n+ 1
is the stepsize, ti = ih, i = 1, . . . , n, and u(ti) ≈ x∗i .

However, using the so-called Mehrstellenverfahren (see [10], Table III, p.538, second to the last line) we
can approximate the free boundary problem from Example 1.1 by (1), where

f(x) = Mx+ ϕ(x). (6)

M is the same matrix as in (5). The mapping ϕ : Rn → Rn is now a so-called tridiagonal (nonlinear)
function

ϕ(x) = (ϕi(xi−1, xi, xi+1)) (7)

with

ϕi(xi−1, xi, xi+1) =
h2

12
(g(ti−1, xi−1) + 10g(ti, xi) + g(ti+1, xi+1)), (8)

i = 1, 2, . . . , n, where again x0 = α and xn+1 = β.

Example 1.2. Let g : [0, 1]×R×R→ R be a given function, let α, β > 0 be given constants. We consider
finding a function u : [0, 1]→ R+ such that u′′(t) = g(t, u(t), u′(t)) t ∈ D+,

u(0) = α,
u(1) = β,

(9)

where the set D+ := {t ∈ (0, 1) : u(t) > 0} is unknown.

This is also a free boundary problem. However, in contrast to Example 1.1, also the first order derivative
occurs in the differential equation. We can approximate u(t) from Example 1.2 by a vector x∗ = (x∗i ) ∈ Rn

using the well known second order approximations of the first and second order derivatives. This gives us
an NCP(f), defined by (6), where M is defined by (5) and ϕ(x) is again a tridagonal (nonlinear) function
ϕ(x) = (ϕi(xi−1, xi, xi+1)), with

ϕi(xi−1, xi, xi+1) = h2g(ti, xi,
xi+1 − xi−1

2h
), (10)

i = 1, 2 . . . , n. In ϕ1 we have to set x0 = α and correspondingly xn+1 = β in ϕn.
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In the present article we prove some general results on the existence of solutions and error bounds of
NCP(f) with

f(x) = Mx+ ϕ(x) (11)

where M ∈ Rn×n is a given matrix and where

ϕ(x) = (ϕi(xi−1, xi, xi+1)) (12)

is a tridiagonal (nonlinear) function. We focus on conditions on g from Example 1.1 and 1.2.

The paper is organized as follows. In Section 2 we introduce the notations and some frequently used
results. In Section 3 we compute under certain conditions on the matrix M and the tridiagonal nonlinear
function ϕ error bounds for an approximate solution of NCP(f) defined by (11). In Section 4 we introduce
and investigate an iterative method, which allows to improve the error bounds systematically. Finally, we
present results from numerical experiments in Section 5.

2 Preliminaries

Let us make some theoretical preparation for the presentation of the results of this paper. Denote by Rn
+

the nonnegative orthant of Rn. Denote by “≤” the natural (or componentwise) partial ordering in Rn. For
any x, y ∈ Rn we denote by max{x, y} and min{x, y} the componentwise maximum and minimum of the
two vectors, respectively.

Subsequently some basic facts from interval analysis are used. Let A = (aij), A = (aij) ∈ Rn×n with
aij ≤ aij , i = 1, . . . , n, j = 1, . . . , n. We denote by [A] = [A,A] an n× n interval matrix, which is a set

[A] := {A = (aij) ∈ Rn×n : aij ≤ aij ≤ aij}.

We denote by IRn×n the set of all n × n real interval matrices. The (i, j)-th element of [A] is denoted by
[aij ]. Let x, x ∈ Rn with x ≤ x. We denote by [x] = [x, x] an interval vector, which is an n× 1 real interval
matrix. We denote by IRn the set of all real interval vectors with n components. The i-th component of [x]
is denoted by [xi]. For an interval vector [x] = [x, x] we denote the midpoint and the radius by m([x]) and
r([x]), respectively. They are defined by

m([x]) :=
1
2

(x+ x), r([x]) :=
1
2

(x− x). (13)

Let [x], [y] ∈ IRn be given, it can be verified that

r([x] + [y]) = r([x]) + r([y]), (14)

and if the intersection [x] ∩ [y] is not empty

r([x] ∩ [y]) ≤ min{r([x]), r([y])} (15)

We define the interval operator max{0, [x]} for an interval vector [x] = [x, x] by

max{0, [x]} = [max{0, x},max{0, x}].

Notice that the operator is inclusion monotonic, i.e.,

[x] ⊆ [y]⇒ max{0, [x]} ⊆ max{0, [y]}.

Furthermore,
r(max{0, [x]}) ≤ r([x]). (16)

For an interval matrix [A] ∈ IRn×n we define the absolute value |[A]| ∈ Rn×n by

|[A]| := (max{|aij |, |aij |}).
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For more details on interval analysis and computation we refer to [2] or [16], for example.

Let A ∈ Rn×n, denote by Λ and −B the diagonal and off-diagonal part of A, respectively. A is called a
Z-matrix if B ≥ 0, that is each off-diagonal element of A is non-positive. A is called an M-matrix if it is a
Z-matrix and has a nonnegative inverse, that is each element of A−1 is nonnegative. The diagonal elements
of an M-matrix are positive. If A is an M-matrix and ∆ is a nonnegative diagonal matrix, then A + ∆ is
also an M-matrix. A is called an H-matrix if the so-called comparison matrix

< A >:= |Λ| − |B|

is an M-matrix. The diagonal elements of an H-matrix are different from zero.

Let f : Rn → Rn be given, let x̂ ∈ Rn be arbitrary but fixed. A slope of f with respect to x̂ and x ∈ Rn,
denoted by δf(x̂, x), is an n× n matrix such that

f(x)− f(x̂) = δf(x̂, x)(x− x̂).

We denote the i-th row of δf(x̂, x) by δfi(x̂, x). Let [x] ∈ IRn be given, let x̂ ∈ [x] be fixed. An interval
extension of the slope δf(x̂, x) over [x], denoted by δf(x̂, [x]), is an n× n interval matrix such that for any
x ∈ [x]

f(x)− f(x̂) ∈ δf(x̂, [x])([x]− x̂).

For slopes, its interval extension and their properties we refer to [2, 16], for example.

3 Error bounds for an approximate solution

In this section we study bounding a solution of NCP(f) defined by (11), where ϕ(x) is a tridiagonal nonlinear
function. At first we give the following existence theorem, which holds for (1).

Theorem 3.1. Let [x] = ([xi]) ∈ IRn be given and let x̂ = (x̂i) ∈ [x] be chosen fixed. Let D = diag(di) ∈
Rn×n be a given diagonal matrix with di > 0, i = 1, . . . , n. Denote by δf(x̂, [x]) ∈ IRn×n an interval
extension of the slope of f over the interval [x]. Define

Γ(x̂, [x], D) := max{0, x̂−D f(x̂) + (I −D δf(x̂, [x]))([x]− x̂)}. (17)

(a) If
Γ(x̂, [x], D) ⊆ [x], (18)

then NCP(f) has a solution x∗ ∈ Γ(x̂, [x], D).
(b) If NCP(f) has a solution x∗ ∈ [x], then x∗ ∈ Γ(x̂, [x], D).

Proof The proof is omitted since it is very similar to that for Theorem 2.1 in [5].

We use Theorem 3.1 to construct an interval [x] containing a solution of NCP(f), defined by (11) and
(12), that is, f(x) = Mx+ϕ(x), where M ∈ Rn×n is a given matrix, and ϕ(x) is a given tridiagonal function.
In the remainder of this paper we impose the following assumptions on the matrix M and the tridiagonal
function ϕ.

Assumptions 3.2. Let [z] be a given interval vector and let x̂ = (x̂i) ∈ [z] be arbitrary but fixed. Assume
that

• there exist nonnegative constants γi,i−1, i = 2, . . . , n, such that for x = (xi) ∈ [z]

|ϕi(xi−1, xi, xi+1)− ϕi(x̂i−1, xi, xi+1)| ≤ γi,i−1|xi−1 − x̂i−1|; (19)

• there exist nonnegative constants γi,i+1, i = 1, . . . , n− 1, such that for x = (xi) ∈ [z]

|ϕi(x̂i−1, xi, xi+1)− ϕi(x̂i−1, xi, x̂i+1)| ≤ γi,i+1|xi+1 − x̂i+1|; (20)
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• there exist nonnegative constants γii, i = 1, . . . , n, such that for x = (xi) ∈ [z] with xi 6= x̂i, i = 1, . . . , n

ϕi(x̂i−1, xi, x̂i+1)− ϕi(x̂i−1, x̂i, x̂i+1)
xi − x̂i

≥ γii; (21)

• the matrix M̃ = (m̃ij) ∈ Rn×n is an M-matrix, where m̃ij is defined using M = (mij) ∈ Rn×n by

m̃ij =


−γi,i+1 − |mi,i+1| if j = i+ 1,

γii + mii if j = i,
−γi,i−1 − |mi,i−1| if j = i− 1,

− |mij | otherwise,

(22)

i = 1, . . . , n.

• there exist nonnegative constants γ′ii, i = 1, . . . , n, such that for x = (xi) ∈ [z] with xi 6= x̂i, i = 1, . . . , n

ϕi(x̂i−1, xi, x̂i+1)− ϕi(x̂i−1, x̂i, x̂i+1)
xi − x̂i

≤ γ′ii. (23)

Now we are going to find an interval vector [x] such that the inclusion (18) holds, and as a result of
Theorem 3.1, this interval vector [x] contains a solution of the complementarity problem NCP(f) defined by
(11) with a tridiagonal nonlinear function.

Theorem 3.3. Let Assumptions 3.2 be fulfilled for an interval vector [z], let M̃ = (m̃ij) ∈ Rn×n, be defined
by (22). Let x̂ = (x̂i) ∈ [z] be a given vector with x̂ ≥ 0. Let r = M̃−1|Mx̂ + ϕ(x̂)| and suppose that
[x]0 = [x̂ − r, x̂ + r] ⊆ [z]. Then NCP(f), defined by (11) with the tridiagonal nonlinear function ϕ, has a
solution x∗ ∈ [x]0.

Remark 3.4. Since in Assumptions 3.2 it is assumed that the matrix M̃ is an M-matrix, we have M̃−1 ≥ 0,
and therefore r = M̃−1|Mx̂+ ϕ(x̂)| ≥ 0, and the interval vector [x]0 in Theorem 3.3 is well defined.

Proof. We write

ϕi(xi−1, xi, xi+1)− ϕi(x̂i−1, x̂i, x̂i+1) = ϕi(xi−1, xi, xi+1)− ϕi(x̂i−1, xi, xi+1)
+ ϕi(x̂i−1, xi, xi+1)− ϕi(x̂i−1, xi, x̂i+1)
+ ϕi(x̂i−1, xi, x̂i+1)− ϕi(x̂i−1, x̂i, x̂i+1).

Assumptions 3.2 give an interval extension of the slope δϕ(x̂, x) of ϕ(x) over [x]0:

[δϕ1(x̂, [x]0)]j =

 [γ11, γ
′
11] if j = 1,

[−γ12, γ12] if j = 2,
0 if j > 2;

[δϕi(x̂, [x]0)]j =


[−γi,i−1, γi,i−1] if j = i− 1,
[γii, γ

′
ii] if j = i,

[−γi,i+1, γi,i+1] if j = i+ 1,
0 otherwise,

where i = 2, . . . , n− 1;

[δϕn(x̂, [x]0)]j =

 0 if j < n− 1,
[−γn,n−1, γn,n−1] if j = n− 1,
[γnn, γ

′
nn] if j = n.

¿From this we obtain an interval extension δf(x̂, [x]0) of the slope of f(x) over [x]0:

[δf1(x̂, [x]0)]j =

 m11 + [γ11, γ
′
11] if j = 1,

m12 + [−γ12, γ12] if j = 2,
m1j otherwise,
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[δfi(x̂, [x]0)]j =


mi,i−1 + [−γi,i−1, γi,i−1] if j = i− 1,
mii + [γii, γ

′
ii]) if j = i,

mi,i+1 + [−γi,i+1, γi,i+1] if j = i+ 1,
mij otherwise,

for i = 2, . . . n− 1;

[δfn(x̂, [x]0)]j =

 mn,n−1 + [−γn,n−1, γn,n−1] if j = n− 1,
mnn + [γnn, γ

′
nn] if j = n,

mnj otherwise.

For later use we set
[∆]0 = [∆0,∆0] = δf(x̂, [x]0). (24)

Set D = diag((mii + γ′ii)
−1), i = 1, . . . , n. Then we have

|I −D δf(x̂, [x]0)|1j =

 1− d1(m11 + γ11) if j = 1,
d1(|m12|+ γ12) if j = 2,
d1|m1j | otherwise;

|I −D δf(x̂, [x]0)|ij =


di(|mi,i−1|+ γi,i−1) if j = i− 1,
1− di(mii + γii) if j = i,
di(|mi,i+1|+ γi,i+1) if j = i+ 1,
di|mij | otherwise,

for i = 2, . . . , n− 1;

|I −D δf(x̂, [x]0)|nj =

 dn(|mn,n−1|+ γn,n−1) if j = n− 1,
1− dn(mnn + γnn) if j = n,
di|mnj | otherwise.

Now we have
|I −D δf(x̂, [x]0)| = |I −D < δf(x̂, [x]0) > |.

¿From (22) we know that < δf(x̂, [x]0) >= M̃ , where δf(x̂, [x]0) denotes the lower bound of the interval
matrix δf(x̂, [x]0). Therefore we have

|I −D δf(x̂, [x]0)| = |I −DM̃ | = D(D−1 − M̃).

We use this relation to verify the inclusion (18). Let

Γ(x̂, [x]0, D) = [Γ(x̂, [x]0, D),Γ(x̂, [x]0, D)]

for (17). Then we have

Γ(x̂, [x]0, D) = max{0, x̂−D(Mx̂+ ϕ(x̂))− |I −Dδf(x̂, [x]0)|r}
= max{0, x̂−D(Mx̂+ ϕ(x̂))−D(D−1 − M̃)r},

Γ(x̂, [x]0, D) = max{0, x̂−D(Mx̂+ ϕ(x̂)) + |I −Dδf(x̂, [x]0)|r}
= max{0, x̂−D(Mx̂+ ϕ(x̂)) +D(D−1 − M̃)r}.

¿From r = M̃−1|Mx̂+ ϕ(x̂)|, we obtain M̃r = |Mx̂+ ϕ(x̂)|, so M̃r ≥Mx̂+ ϕ(x̂), and so

−D(Mx̂+ ϕ(x̂))−D(D−1 − M̃)r ≥ −r.

¿From this we achieve
x̂−D(Mx̂+ ϕ(x̂))−D(D−1 − M̃)r ≥ x̂− r,

therefore
Γ(x̂, [x]0, D) = max{0, x̂−D(Mx̂+ ϕ(x̂))−D(D−1 − M̃)r}

≥ x̂−D(Mx̂+ ϕ(x̂))−D(D−1 − M̃)r
≥ x̂− r.
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In a similar way we can show that

x̂−D(Mx̂+ ϕ(x̂)) +D(D−1 − M̃)r ≤ x̂+ r,

which, together with the fact that x̂+ r ≥ 0, yields

Γ(x̂, [x]0, D) = max{0, x̂−D(Mx̂+ ϕ(x̂)) +D(D−1 − M̃)r}
≤ x̂+ r.

Therefore Γ(x̂, [x]0, D) ⊆ [x]0 = [x̂ − r, x̂ + r]. From Theorem 3.1 it follows that NCP(f) has a solution x∗

in [x]0.

Remark 3.5. For the linear complementarity problem, that is, for the problem NCP(f), where f(x) =
Mx+ q, M ∈ Rn×n and q ∈ Rn is a constant vector, Assumptions 3.2 are fulfilled if M is an H-matrix with
positive diagonal elements. Hence, Theorem 3.3 delivers for this problem the error estimation

|x̂− x∗| ≤ < M >−1 |Mx̂+ q|. (25)

In [9] Chen and Xiang gave an error bound for this linear complementarity problem

‖x̂− x∗‖p ≤ ‖max{I,D} < M >−1 ‖p‖min{x̂,Mx̂+ q}‖p. (26)

It is not easy to compare these bounds theoretically. On the other hand, it is clear that the right hand side
of (26) approaches zero if x̂ approaches x∗, which is not the case for (25). However, note that (25) is a
componentwise error bound, whereas in (26) the norm of x̂− x∗ is bounded.

4 Improving the error bound

In this section we give an iterative method for improving the enclosure of x∗ given by [x]0 of Theorem 3.3.

Algorithm 4.1. Let f be defined by (11). Let x̂ ≥ 0 be given. Let Assumptions 3.2 be fulfilled. Let M̃ be
defined by (22). Let [x]0 ∈ IRn be given by

[x]0 := [x̂− r, x̂+ r] with r = M̃−1|Mx̂+ ϕ(x̂)|.

Let [∆]0 = [∆0,∆0] be defined by (24) for the interval vector [x]0, and set k := 0. Denote by m([x]k) the
midpoint of the interval vector [x]k, k = 0, . . . (see (13)).

Step 1 Let [∆]k = [∆k,∆k] be defined analogously to (24) for the interval vector [x]k;

Step 2 Set Dk := diag(
1

∆k
11

,
1

∆k
22

, . . . ,
1

∆k
nn

);

Step 3 Generate a sequence {[x]k}∞k=0 of interval vectors by the method

[x]k+1 := Γ(m([x]k), [x]k, Dk) ∩ [x]k, (27)

where δf(m([x]k), [x]k)) = [∆k,∆k] and Γ(m([x]k), [x]k, Dk) is defined by (17);

Step 4 Set k := k + 1 and go to Step 1.

Remark 4.2. Since the matrix M̃ , defined by (22) is assumed to be an M-matrix, its diagonal elements are
positive. Therefore also the diagonal elements of ∆k are positive, and Step 2 of Algorithm 4.1 is well defined.

Remark 4.3. Since [x]0 contains a solution x∗ of NCP(f), from Theorem 3.1 it follows

[x]k+1 = Γ(m([x]k), [x]k, Dk) ∩ [x]k 6= ∅.
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Theorem 4.4. Let the assumptions of Theorem 3.3 be fulfilled. Let {[x]k}∞k=0 be the sequence generated by
Algorithm 4.1. Assume that for the interval matrix [∆]k from Step 1 it holds

[∆]k ⊆ [Ω] := [Ω,Ω], k = 1, 2 . . . , (28)

and assume that Ω and Ω are H-matrices, whose diagonal elements are all positive. Then
(a) the problem NCP(f) has a solution x∗ which is contained in each [x]k, k = 0, 1, . . . ;
(b) {[x]k}∞k=0 is nested, that is [x]0 ⊇ [x]1 ⊇ · · · ⊇ [x]k ⊇ · · · ;
(c) {[x]k}∞k=0 → x∗;
(d) for each [x]k, we have for the approximate solution xk := m([x]k) the error bound

|xk − x∗| ≤ r([x]k).

Remark 4.5. The relation (28) can be fulfilled if f ′ has an interval arithmetic evaluation over [x]0.

Proof. (a): Theorem 3.3 guarantees that the problem NCP(f) has a solution x∗ in [x]0. From (b) of Theorem
3.1 it follows that for each k = 0, 1, . . . , we have x∗ ∈ [x]k.
(b): The result follows directly from the iterative formula (27) given in Algorithm 4.1.
(c): Denote by r([x]k) the radius of the interval vector [x]k (see (13)). From (14), (15), (16) and (17) we
have

r([x]k+1) = r(Γ(m([x]k), [x]k, Dk) ∩ [x]k)
≤ r(Γ(m([x]k), [x]k, Dk))
= r((I −Dkδf(m([x]k), [x]k))([x]k −m([x]k)))
= r((I −Dk[∆k,∆k])([x]k −m([x]k)))
≤ |I −Dk[∆k,∆k]|r([x]k),

where δf(m([x]k), [x]k) = [∆k,∆k], Dk is the inverse of the diagonal part of ∆k. From the assumptions of
the theorem we have:

[∆]k ⊆ [Ω] := [Ω,Ω].

Denote by [D̃] = diag([Ω
−1

ii ,Ω
−1
ii ]). From the choice of Dk, we know Dk ∈ [D̃]. We obtain the relation

I −Dk[∆k,∆k] ⊆ I − [D̃][Ω].

Therefore we have the further estimation of the radius r([x]k+1):

r([x]k+1) ≤ |I −Dk[∆k,∆k]|r([x]k)
≤ |I − [D̃][Ω]|r([x]k).

¿From the assumptions of this theorem we know that each matrix in [Ω] is an H-matrix whose diagonal
elements are positive. Hence, we have ρ(|I − [D̃][Ω]|) < 1 (see [4]).
(d): The result is straightforward.

5 Application and numerical experiments

In this section we move on to application of Algorithm 4.1 to the complementarity problems NCP(f), where
f(x) = Mx + ϕ(x), M is defined by (5), and ϕ(x) is defined by (8) or by (10), respectively. This problem
arises from approximating the solution of the free boundary problem given in Example 1.1 and Example 1.2,
respectively.

5.1 Study of Example 1.1

For the free boundary problem formulated in Example 1.1 we make the following assumptions.

Assumptions 5.1. Assume that ∂g2(t, s) is continuous with respect to s, and assume that there exist
nonnegative constants γ and γ such that

0 ≤ γ ≤ ∂2g(t, s) ≤ γ for all (t, s) ∈ [0, 1]×R,

where ∂g2(t, s) means the partial derivative with respect to the second variable.
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Let the tridiagonal mapping ϕ(x) = (ϕi(xi−1, xi, xi+1)) be defined by (8). From the mean value theorem
and Assumption 5.1 we know that

• there are ξi−1 ∈ (min{x̂i−1, xi−1},max{x̂i−1, xi−1}), such that

|ϕi(xi−1, xi, xi+1)− ϕi(x̂i−1, xi, xi+1)|

=
1
12
h2|g(ti−1, xi−1)− g(ti−1, x̂i−1)|

=
1
12
h2|∂g2(ti−1, ξi−1)||xi−1 − x̂i−1| ≤

1
12
γh2|xi−1 − x̂i−1|;

• there are ζi+1 ∈ (min{x̂i+1, xi+1},max{x̂i+1, xi+1}), such that

|ϕi(x̂i−1, xi, xi+1)− ϕi(x̂i−1, xi, x̂i+1)|

=
1
12
h2|g(ti+1, xi+1)− g(ti+1, x̂i+1)|

=
1
12
h2|∂g2(ti+1, ζi+1)||xi+1 − x̂i+1| ≤

1
12
γh2|xi+1 − x̂i+1|;

• there are ςi ∈ (min{x̂i, xi},max{x̂i, xi}), such that

ϕi(x̂i−1, xi, x̂i+1)− ϕi(x̂i−1, x̂i, x̂i+1)
xi − x̂i

=
1
12
h2 10g(ti, xi)− 10g(ti, x̂i)

xi − x̂i
=

5
6
h2∂g2(ti, ςi) ≥

5
6
γh2;

• and
ϕi(x̂i−1, xi, x̂i+1)− ϕi(x̂i−1, x̂i, x̂i+1)

xi − x̂i
=

5
6
h2∂g2(ti, ςi) ≤

5
6
γh2.

That is, (19), (20), (21) and (23) are fulfilled with

γi,i−1 =
1
12
h2γ, i = 2, . . . , n

γi,i+1 =
1
12
h2γ, i = 1, . . . , n− 1

γii =
5
6
h2γ i = 1, . . . , n

γ′ii =
5
6
h2γ i = 1, . . . , n.

Furthermore, the elements m̃ij of the matrix M̃ = (m̃ij) ∈ Rn×n, defined by (22) have the following form

m̃ij =



− 1
12
h2γ − 1 if j = i+ 1,

5
6
h2γ + 2 if j = i,

− 1
12
h2γ − 1 if j = i− 1,

0 otherwise,

9



i = 1, . . . , n. M̃ is a symmetric Z-matrix, therefore it is a Stieltjes matrix if it is positive definite. See
Definition 3.4 in [19]. By Corollary 3. in Section 3.5 of [19] it then is an M-matrix. By Theorem 1.7 in [19],
M̃ is positive definite if

5γ ≥ γ. (29)

Therefore, Assumptions 3.2 hold under Assumptions 5.1 and under the conditions (29). Consequently, under
Assumptions 5.1 and under the conditions (29), we can apply Algorithm 4.1 to problem NCP(f), defined by
(6), (7) and (8), which comes from the free boundary problem (4). We illustrate this by the following problem.

Consider finding a function u(t) : [0, 1]→ R+ such that
u′′(t) =

1
2

+
3

t+ 2
+ arctan(u(t)) + 2u(t) t ∈ D+,

u(0) = 0.35,
u(1) = 0.15,

where the set D+ := {t ∈ (0, 1) : u(t) > 0} is unknown.

It is clear that Assumptions 5.1 hold with γ = 2 and γ = 3. We choose n = 99, and so the condition (29)
is fulfilled:

5γ = 10 > 3 = γ.

We can apply Theorem 3.3 and Algorithm 4.1 to the nonlinear complementarity problem NCP(f), where
f(x) = Mx+ ϕ(x), M ∈ R99×99 is defined by (5), and ϕ(x) = (ϕi(xi−1, xi, xi+1)) is defined by

ϕi(xi−1, xi, xi+1) =
1
12
h2{(1

2
+

3
ti−1 + 2

+ arctan(xi−1) + 2xi−1)

+ 10(
1
2

+
3

ti + 2
+ arctan(xi) + 2xi)

+ (
1
2

+
3

ti+1 + 2
+ arctan(xi+1) + 2xi+1)}

i = 1, . . . , 99, with x0 = 0.35, x100 = 0.15, ti = ih. We code Algorithm 4.1 with Intlab 5.3 (see [18]) and

terminate the algorithm when

‖r([x]k+1)‖∞ ≤ ε‖r([x]k)‖∞ for ε = 10−5. (30)

We take the midpoint of [x]k+1 as numerical approximation to x∗ and plot it in Figure 1.

Figure 1

¿From Figure 1 we conclude that D+ := {t ∈ (0, 1) : u(t) > 0} ≈ (0, 0.35]∪ [0.7, 1). (Note, however, that
we have not taken into account the discretization error.)

5.2 Study of Example 1.2

For the free boundary problem formulated in Example 1.2 we make the following assumptions.

Assumptions 5.2. Assume that ∂g2(t, s, ν) is continuous with respect to s, and that there exist nonnegative
constants γ and τ such that

∂2g(t, s, ν) ≥ γ
|∂3g(t, s, ν)| ≤ τ

}
for all (t, s, ν) ∈ [0, 1]×R×R,

where ∂g2(t, s, ν) and ∂g3(t, s, ν) mean the partial derivatives with respect to the second and the third
variable, respectively.
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Let the tridiagonal mapping ϕ(x) = (ϕi(xi−1, xi, xi+1)) be defined by (10). From the mean value theorem
and Assumptions 5.2 we know that:

• there are ξi−1 ∈ (min{x̂i−1, xi−1},max{x̂i−1, xi−1}), such that

|ϕi(xi−1, xi, xi+1)− ϕi(x̂i−1, xi, xi+1)|

= |h2g(ti, xi,
xi+1 − xi−1

2h
)− h2g(ti, xi,

xi+1 − x̂i−1

2h
)|

=
h

2
|∂g3(ti, xi,

xi+1 − ξi−1

2h
)||xi−1 − x̂i−1|

≤ h

2
τ |xi−1 − x̂i−1|;

• there are ζi+1 ∈ (min{x̂i+1, xi+1},max{x̂i+1, xi+1}), such that

|ϕi(x̂i−1, xi, xi+1)− ϕi(x̂i−1, xi, x̂i+1)|

= |h2g(ti, xi,
xi+1 − x̂i−1

2h
)− h2g(ti, xi,

x̂i+1 − x̂i−1

2h
)|

=
h

2
|∂g3(ti, xi,

ζi+1 − x̂i−1

2h
)||xi+1 − x̂i+1|

≤ h

2
τ |xi+1 − x̂i+1|;

• and there are ςi ∈ (min{x̂i, xi},max{x̂i, xi}), such that

ϕi(x̂i−1, xi, x̂i+1)− ϕi(x̂i−1, x̂i, x̂i+1)
xi − x̂i

= h2
g(ti, xi,

x̂i+1 − x̂i−1

2h
)− g(ti, x̂i,

x̂i+1 − x̂i−1

2h
)

xi − x̂i

= h2∂g2(ti, ςi,
x̂i+1 − x̂i−1

2h
)

≥ h2γ.

That is, (19), (20) and (21) are fulfilled with

γi,i−1 =
1
2
hτ, i = 2, . . . , n

γi,i+1 =
1
2
hτ, i = 1, . . . , n− 1

γii = h2γ i = 1, . . . , n.

In order to fulfill (23), we proceed as follows: we compute the vector r = M̃−1|Mx̂ + ϕ(x̂)|, and [x]0 =
[x̂ − r, x̂ + r] from Theorem 3.3. Then we set [z] = [x]0. Since ∂g2(t, s, ν) is bounded by some nonnegative
constant, say γ on a compact set, we obtain

ϕi(x̂i−1, xi, x̂i+1)− ϕi(x̂i−1, x̂i, x̂i+1)
xi − x̂i

= h2∂g2(ti, ςi,
x̂i+1 − x̂i−1

2h
) ≤ h2γ.

11



Therefore we define γ′ii = h2γ, i = 1, . . . , n, for this example and (23) holds.

Furthermore, the elements m̃ij of the matrix M̃ = (m̃ij) ∈ Rn×n, defined by (22) have the following
form

m̃ij =



−1
2
hτ − 1 if j = i+ 1,

h2γ + 2 if j = i,

−1
2
hτ − 1 if j = i− 1,

0 otherwise,

i = 1, . . . , n. Again, if
τ

γ
≤ h =

1
n+ 1

, (31)

then M̃ is an M-matrix. We apply Theorem 3.3 and Algorithm 4.1 to problem NCP(f), defined by (6), (7)
and (10), which comes from the free boundary problem (9).

Remark 5.3. The stepsize limitation (31) is dependent on the constants τ and γ. In the limiting case that
the right hand side of the differential equation in Example 1.2 is independent on the derivative u′, there is
no limitation with respect to h. Otherwise the lower bound for h is given by the relation of τ and γ.

To be specific, we consider finding a function u(t) : [0, 1]→ R+ such that
u′′(t) =

1
2

+
3

t+ 2
+

1
2
u(t)3 + 100u(t) +

1
10
u′(t) t ∈ D+,

u(0) = 0.3,
u(1) = 0.6,

where the set D+ := {t ∈ (0, 1) : u(t) > 0} is unknown.

It is clear that Assumptions 5.2 hold with γ = 100 and τ = 0.1. We choose n = 99, and so h satisfies the
restrictions (31):

10−3 =
τ

γ
< h =

1
n+ 1

=
1

100
.

We apply Algorithm 4.1 to the nonlinear complementarity problem NCP(f), where f(x) = Mx + ϕ(x),
M ∈ R99×99 is defined by (5), and ϕ(x) = (ϕi(xi−1, xi, xi+1)) is defined by

ϕi(xi−1, xi, xi+1) =
1
2
h2 +

3
ti + 2

h2 +
1
2
h2x3

i + 100h2xi +
1
20
h(xi+1 − xi−1),

i = 1, . . . , 99, with x0 = 0.3, x100 = 0.6, ti = ih. We terminate the algorithm by criteria (30). We take the

midpoint of [x]k+1 as numerical approximation to x∗ and plot it in Figure 2.

Figure 2

¿From Figure 2 we conclude that D+ := {t ∈ (0, 1) : u(t) > 0} ≈ (0, 0.32] ∪ [0.6, 1).
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6 Final remarks

The iterative method (27) may be considered to be a kind of Jacobi-method. It is also possible to use the
idea of the so-called Gauss-Seidel-method. We omit the necessary details for the modification of Algorithm
4.1 and mention without proof that Theorem 4.4 holds also for the Gauss-Seidel modification (see [20] for
the case of linear complementarity problems). From practical experience we can conclude that in general it
delivers much tighter enclosures than the Jacobi-method if both are started with the same enclosure [x]0. In
our examples we had to perform approximately 50% steps less, compared with the total step method, if the
same stopping criterion was used.
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Nr. 07/07 Götz Alefeld, Günter Mayer: New criteria for the feasibility of the Cholesky method
with interval data

Nr. 07/08 Marco Schnurr: Computing Slope Enclosures by Exploiting a Unique Point of Inflec-
tion

Nr. 07/09 Marco Schnurr: The Automatic Computation of Second-Order Slope Tuples for So-
me Nonsmooth Functions

Nr. 07/10 Marco Schnurr: A Second-Order Pruning Step for Verified Global Optimization
Nr. 08/01 Patrizio Neff, Antje Sydow, Christian Wieners: Numerical approximation of incre-

mental infinitesimal gradient plasticity
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