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Abstract

Gap solitons near a band edge of a spatially periodic nonlinear PDE can be formally approximated

by solutions of Coupled Mode Equations (CMEs). Here we study this approximation for the case of

the 2D Periodic Nonlinear Schrödinger / Gross-Pitaevskii Equation with a non-separable potential

of finite contrast. We show that unlike in the case of separable potentials [T. Dohnal, D. Pelinovsky,

and G. Schneider, J. Nonlin. Sci. (2008), online] the CME derivation has to be carried out in Bloch

rather than physical coordinates. Using the Lyapunov-Schmidt reduction we then give a rigorous

justification of the CMEs as an asymptotic model for reversible non-degenerate gap solitons and

provide Hs estimates for this approximation. The results are confirmed by numerical examples

including some new families of CMEs and gap solitons absent for separable potentials.

1 Introduction

Coherent structures, like gap solitons, in nonlinear periodic wave propagation problems are important

both theoretically and in applications. Typical examples include optical waves in photonic crystals

and matter waves in Bose-Einstein condensates loaded onto optical lattices. A standard model in

these contexts is the Nonlinear Schrödinger/Gross-Pitaevskii equation with a periodic potential, which

applies in Kerr-nonlinear photonic crystals [32, 14, 20] as well as in Bose-Einstein condensates loaded

onto an optical lattice [17, 25]. Here we consider the case of two spatial dimensions and without loss

of generality take the potential 2π–periodic in both directions and, hence, consider

iEt = −∆E + V (x)E + σ|E|2E = 0, V (x1+2π, x2) = V (x1, x2+2π) = V (x), x ∈ R
2, t ∈ R, (1.1)

with E = E(x, t) ∈ C, σ = ±1 and V ∈ L2([0, 2π]2).
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We are interested in stationary gap solitons (GSs) E(x, t) = φ(x)e−iωt. Thus φ solves

(−∆ + V (x) − ω)φ+ σ|φ|2φ = 0, (1.2)

where soliton is understood in the sense of a solitary wave, which means that |φ(x)| → 0 exponentially as

|x| → 0. Necessarily, then ω has to lie in a gap of the essential spectrum of the operator L := −∆+V (x),

hence the name “gap soliton.” The essential spectrum of L is given by the so called band structure.

We are interested in GSs in the vicinity of gap edges of L, so that ω = ω∗ + ε2Ω, 0 < ε ≪ 1,

where ω∗ is an edge of a band gap and Ω has a sign chosen so that ω lies inside the gap. Using a

multiple scales expansion one may formally derive coupled mode equations (CMEs) to approximate

envelopes of the gap solitons near gap edges. CMEs are a constant coefficient problem formulated in

slowly varying variables. They are, therefore, typically more amiable to analysis and also cheaper for

numerical approximations compared to the original system (1.2). The multiple scales approach has

been used both for the Gross-Pitaevskii and Maxwell equations with infinitesimal, i.e. O(ε), contrast in

the periodicity V (x) [2, 6, 29, 3, 5, 11] as well as with finite contrast [10, 28, 12]. The main difference in

the asymptotic approximation of the two cases is that for infinitesimal contrasts the expansion modes

are Fourier waves while for finite contrast they are Bloch waves. However, in dimension two and higher

sufficiently large (finite) contrast is necessary to generate band gaps due to overlapping of bands in the

corresponding homogeneous medium. The only exception is the semi-infinite gap of the band structure

of L of the Gross-Pitaevskii equation. As a result, gap solitons in finite gaps of the Gross-Pitaevskii

equation and in any gap of Maxwell systems in dimensions two and higher can only exist for finite

contrast structures.

Localized solutions of CMEs formally yield gap solitons of the original system. However, the formal

derivation of the CMEs, discarding some error at higher order in ε, does not imply that all localized

solutions of the CMEs yield gap solitons. For this we need to estimate the error in some function

space and to show the persistence of the CME solitons under perturbation of the CMEs. A famous

result concerning non–persistence is the non-existence of breathers in perturbations of the sine–Gordon

equation, e.g., [9]. On the other hand, GSs are known to exist in every band gap of L, see, e.g. [31, 22].

The proofs, however, are based on variational methods and do not relate GSs to solutions of the CMEs.

A rigorous justification of the CMEs has been given for (1.2) in 1D in [23], and in 2D in [12], but

only for the case of a separable potential

V (x1, x2) = W1(x1) +W2(x2).

Here we transfer this result to not necessarily separable potentials. As an example we choose

V (x1, x2) = 1+(η−1)W (x1)W (x2), W (s) =
1

2

[
tanh

(
7

(
s−

2π

5

))
+ tanh

(
7

(
8π

5
− s

))]
, (1.3)

which represents a square geometry with smoothed-out edges. The smoothing has been chosen over
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Figure 1: The periodic potential V in (1.3) over the Wigner-Seitz cell.

the step-function type geometry solely due to a better convergence of the band structure computations.

However, all the presented methods and theorems apply to V ∈ L2([0, 2π]2). We choose the contrast

η so that two finite gaps appear in the band structure of the corresponding linear eigenvalue problem.

One main difference between the separable and non-separable case lies in the fact that for the non-

separable case band edges may be attained at wavenumbers not within the set of vertices of the first

irreducible Brillouin zone. Then the CME derivation and justification is impossible to carry out in

physical variables and has to be performed in Bloch variables. This case occurs at at least one band

edge of the potential (1.3), and the presented CMEs corresponding to this edge have, to our knowledge,

not been studied before. Similarly, the GSs which we show to bifurcate from this edge are new.

In §2 we discuss in detail the band structure for (1.3) and the associated Bloch eigenfunctions,

together with their symmetries. Then in §3 we first give the formal derivation of the CME in physical

space, reporting a failure in one case where the band edge is attained simultaneously at four wave

numbers outside the set of vertices of the first Brillouin zone, and present a general CME derivation in

Bloch variables. The existence of gap solitons is proved in §4 based on the existence of special (namely

reversible and non-degenerate, see below) localized solutions of the CMEs, in the following sense.

We show that if the CMEs have reversible non-degenerate localized solutions A = (A1, . . . , AN ) ∈

[Hs(R2)]N for any s > 1, then there exists a GS φGS ∈ Hs(R2) for (1.2), and can be approximated by

εφ(0) = ε
N∑

j=1

Aj(εx)unj
(k(j);x), ω = ω∗ + ε2Ω (1.4)

where ε2 sufficiently small is the distance of ω from the band edge ω∗ and unj
(k(j);x) ∈ C∞(R2) are

the pertinent Bloch waves, j = 1, . . . , N . In detail, we prove

‖φGS − εφ(0)‖Hs(R2) ≤ Cε1/5, (1.5)
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where the estimate can be improved in special cases, see below. Note that ‖εφ(0)‖L∞(R2) = O(ε) but

‖εφ(0)‖L2(R2) = O(1) such that the error in (1.5) is indeed smaller than the approximation. The proof

is based on a Lyapunov–Schmidt reduction and analysis of suitable extended CMEs. In §5 we give

some numerical illustrations and verify convergence of the asymptotic coupled mode approximation.

Remark 1.1 The lack of an estimate ‖φGS − εφ(0)‖L∞(R2) ≤ Cε1+β with β > 0 is a disadvantage of

our analysis. It is due to the fact that we work in L2–spaces in Fourier resp. Bloch variables, while an

optimal L∞ estimate in physical variables would require working in L1–spaces in Fourier resp. Bloch

variables. This is not possible due to a technical obstacle, see [12, §8]. On the other hand, Hilbert

spaces L2 are also more natural spaces to work in since they allow direct transition from physical

to Bloch variables and back. Note also that based on the formal asymptotics, instead of ε1/5 one

can expect the convergence rate ε1 in (1.5) which is the approximate rate observed in our numerical

examples. ⌋

Remark 1.2 Time-dependent CMEs have been justified in 1D for infinitesimal [27] and finite [7]

contrast, and in 2D for finite cotrast under the condition of a separable potential in [12, §7]. Here

justification means that non–stationary solutions of (1.1) can be approximated by CME dynamics over

long but finite intervals. Given the analysis below, this result of [12] can be immediately transfered to

our non–separable case. ⌋

2 Band structure and Bloch functions

Let ωn(k), n ∈ N, denote the spectral bands and un(k;x) the corresponding Bloch functions of the

operator L := −∆ + V (x), where k runs through the first Brillouin zone T2 = (−1/2, 1/2]2 . This

means that (ωn(k), un(k;x)) is an eigenpair of the quasiperiodic eigenvalue problem

Lun(k;x) = ωn(k)un(k;x), x ∈ P
2 := [0, 2π)2,

un(k; (2π, x2)) = ei2πk1un(k; (0, x2)), un(k; (x1, 2π)) = ei2πk2un(k; (x1, 0)).
(2.1)

The Bloch functions un(k;x) can be rewritten as

un(k;x) = eik·xpn(k;x), where pn is 2π-periodic in both x1 and x2, and fulfills (2.2)

L̃(k;x)pn(k;x) := [(i∂x1−k1)
2 + (i∂x2−k2)

2 + V (x)]pn(k;x) = ωn(k)pn(k;x). (2.3)

For each k ∈ T2 the operator L̃(k; ·) is elliptic and self adjoint in L2(P2), which immediately yields the

existence of infinitely many real eigenvalues ωn(k), n ∈ N with ωn(k) → ∞ as n → ∞. The spectrum

of L equals
⋃
n∈N,k∈T2 ωn(k), see Theorem 6.5.1 in [13]. Moreover, via symmetries the ωn(k) can be

recovered from their values in the irreducible Brillouin zone B0, see Fig. 2. From (2.2) we also note
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that for x ∈ P2 and n ∈ Z2 we have

un(k; (x1 + 2n1π, x2 + 2n2π)) = e2πin·kun(k;x). (2.4)

B0

X ′
k2

k1Γ

X

M
1
2

1
2

Figure 2: The first irreducible Brillouin zone B0 for the two-dimensional potential V .

Gaps in the spectrum of L have to be confined by extrema of bands. Unlike in the case of the

separable potential V (x1, x2) = W1(x1) +W2(x2) the extrema of ωn within B0 do not have to occur

only at k = Γ,X and M but may occur anywhere throughout B0. Thus we need to solve (2.1) for all

k ∈ B0.
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Figure 3: (a) Band structure of L with η = 5.35 along ∂B0. Red dots label band extrema at gap edges
s1, . . . , s5. (b) Detail in the second finite gap. (c) Detail near the edge s3 showing that ω2 is not flat
for k between X and M .

We choose the contrast η of the periodic structure (1.3) so that two finite band gaps are open. Our

computations show that this happens, for instance, at η = 5.35, which we select. The band structure of
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Figure 4: Band structure of L with η = 5.35. On the right a detail of ω5 and ω6 near the second finite
gap.

L is computed in a 4th order centered finite-difference discretization. For reasons of tradition we plot

in Fig. 3 the band structure along ∂B0. In Fig. 4 we plot the first few bands over B. Though not true

in general [18], in our case the extrema of the first 6 bands fall on ∂B0. The dots in Figs. 3 and 4 label

those band edge extrema which also mark gap edges. One of these extrema in Fig. 3 (corresponding

to 4 extrema in Fig. 4) falls out of the vertex set {Γ,X,M}. We also label in Fig. 3 the first 7 bands

ω1, . . . , ω7 and the gap edges s1, s2, . . . , s5. The edge values with six converged decimal places are

s1 ≈ 1.502064, s2 ≈ 1.702299, s3 ≈ 2.034433, s4 ≈ 3.807113, and s5 ≈ 3.832442.

For any corresponding value of k each gap edge eigenvalue of (2.1) is simple because none of the

edge-defining extrema belongs to more than one band. We now combine this with symmetries of the

problem to find symmetries of the Bloch functions, which will be needed in the derivation of the CME.

In the rest of this section we assume ‖un(k; ·)‖L2(P2) = 1, where we are, of course, still free to multiply

any mode un by a phase factor eia, a ∈ R, see also Remark 2.1.
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First, due to evenness of V (x) in both variables we have

un((−k1, k2); (x1, x2)) = eia1un((k1, k2); (2π − x1, x2)),

un((k1,−k2); (x1, x2)) = eia2un((k1, k2); (x1, 2π − x2)),

ωn(−k1, k2) = ωn(k1,−k2) = ωn(k).

(2.5)

for some a1, a2 ∈ R. Note that when (−k1, k2)
.
= (k1, k2), where k

.
= l reads “k congruent to l” and

means k = l+m for some m ∈ Z2, a renormalization of the phase cannot be used in general to obtain

a1 = 0 because un((k1, k2); (π, x2)) = 0 ∀x2 ∈ P is possible. Similarly, when (k1,−k2)
.
= (k1, k2), a2 = 0

does not hold in general because un((k1, k2); (x1, π)) = 0 ∀x1 ∈ P is possible.

Next, the symmetry V (x1, x2) = V (x2, x1) implies

un((k1, k2); (x1, x2)) = eiaun((k2, k1); (x2, x1)), ωn(k1, k2) = ωn(k2, k1). (2.6)

for some a ∈ R. Similarly to the case of symmetry (2.5), when k1
.
= k2, one cannot, in general, apply

renormalization to achieve a = 0 because un((k1, k1); (x1, x1)) = 0 ∀x1 ∈ P is possible.

Finally, since L is real, un(k;x) satisfies (2.1) with the factors in the boundary conditions replaced

by e−i2πk1 and e−i2πk2 . Thus

un(−k;x) = un(k;x), ωn(−k) = ωn(k). (2.7)

Note that unlike in (2.5) and (2.6) no exponential factor appears in (2.7). This is because for the

conjugation symmetry 2.7 such a factor eia can be easily removed via multiplication by e−ia/2.

Remark 2.1 If, e.g., (−k1, k2) is not congruent to (k1, k2), we can, for instance, multiply un((−k1, k2); ·)

by eia1 and obtain un((−k1, k2); (x1, x2)) = un(k; (2π − x1, x2)). However, one will generally not be

able to simultaneously ensure also un((k1, k2); (x1, x2)) = un((k2, k1); (x2, x1)) in (2.6) and therefore

we stick to the factors in (2.5) and (2.6). ⌋

Let us consider implications of the above three symmetries (2.5), (2.6) and (2.7) for our example

(1.3) and plot the gap edge Bloch functions in Fig. 5. Each edge s1, s2 and s4 is attained only at a

single extremum within B, namely at k = Γ,M and M respectively. The corresponding Bloch func-

tions are u1((0, 0);x), u1((1/2, 1/2);x) and u5((0, 0);x) respectively, which are all real due to (2.7).

The edge s3 is attained by extrema at k = X and X ′ with the Bloch functions u2((1/2, 0);x) and

u2((0, 1/2);x). Referring to (2.6) only u2((1/2, 0); (x1 , x2)) is plotted, which is again real due to (2.7).

Finally, the edge s5 is attained by 4 extrema, namely at k = (kc, kc), (−kc, kc), (−kc,−kc) and (kc,−kc),

where the numerically computed value, converged to 6 decimal places, is kc ≈ 0.439028. The corre-

sponding Bloch functions are u6((kc, kc);x), u6((−kc, kc);x), u6((−kc,−kc);x) and u6((kc,−kc);x).

Due to (2.5) and (2.7) and because kc /∈ {0, 1/2}, we can normalize the Bloch functions so that

u6((−kc, kc); (x1, x2)) = u6((kc, kc); (2π − x1, x2)), u6((kc,−kc); (x1, x2)) = u6((kc, kc); (x1, 2π − x2)),
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u6((−kc,−kc); (x1, x2)) = u6((kc, kc); (2π−x1, 2π−x2)) = u6((kc, kc); (x1, x2)). Thus it suffices to plot

only u6((kc, kc); (x1, x2)). In addition, (2.6) and the fact that u6((kc, kc); (x1, x1)) is not identically zero

imply u6((kc, kc); (x1, x2)) = u6((kc, kc); (x2, x1)). The Bloch waves u6((kc, kc);x) and u6((−kc,−kc);x)

are, therefore, symmetric about the diagonal x1 = x2.

Figure 5: Bloch functions at gap edges s1, s2 . . . , s5.

Fig. 5 shows that all the Bloch functions at s1, s2, . . . , s4 are either even or odd in each variable.

This actually follows from (2.5) and the fact that these gap edges occur at k ∈ S = {Γ,X,X ′,M}. As

each coordinate of any k ∈ S is either 0 or 1
2 , the eigenvalue problem (2.1) is real and we can choose

a1, a2 ∈ {0, π} in (2.5). The choice a1 = a2 = 0 is, however, in general impossible as explained after

(2.5). Taking, for instance, k1 = 1
2 , we have

un((1/2, k2);x) = ±un((−1/2, k2); (2π − x1, x2)) = ±un((1/2, k2); (2π − x1, x2))

= ±ei2π
1
2un((1/2, k2); (−x1, x2)) = ∓un((1/2, k2); (−x1, x2)),

where the second equality follows from 1−periodicity of un in each k−coordinate and the third equal-

ity from the quasi-periodic boundary conditions in (2.1). Similarly, we get un((0, k2); (x1, x2)) =

±un((0, k2); (−x1, x2)). Therefore, we have the following

8



Lemma 2.2 Suppose V (x) is even in the variable xj for some j ∈ {1, 2}. If kj ∈ {0, 1/2} and ωn(k),

as an eigenvalue of (2.1) has geometric multiplicity 1, then un(k;x) is either even or odd in xj .

3 Formal asymptotic derivation of Coupled Mode Equations

Gap solitons in the vicinity of a given band edge are expected to be approximated by the Bloch waves

at the band edge modulated by slowly varying spatially localized envelopes. The governing equations

for the envelopes, called Coupled Mode Equations (CMEs), can be derived by a formal asymptotic

procedure. Here we are interested in gap solitons E(x, t) = φ(x)e−iωt with ω = ω∗ + ε2Ω, 0 < ε ≪ 1,

where ω∗ is an edge of a given band gap of a fixed (O(1)) width, and Ω has a sign chosen so that ω lies

inside the gap. The leading order term in the asymptotic expansion of the spatial profile φ is expected

to be

φ(x) ∼ ε

N∑

j=1

Aj(εx)unj
(k(j);x), (3.1)

where
{
unj

(k(j);x)
}N
j=1

are the Bloch waves at ω = ω∗ and (2.4) is used for x 6∈ P2. We assume:

Assumption A.1 The band structure defined by (2.1) has a gap with an edge (lower/upper) defined

by 0 < N <∞ extrema (maxima/minima) of the bands ωn(k). The extrema occur for bands ωnj
(k), j =

1, . . . N at the corresponding points k(j) ∈ B.

Assumption A.2 At least one of the values ∂2
k1
ωnj

(k(j)), ∂2
k2
ωnj

(k(j)) or ∂k1∂k2ωnj
(k(j)) is nonzero for

each j ∈ {1, . . . , N}.

Remark 3.1 Assumptions A.1 and A.2 are satisfied by the potential (1.3) with η = 5.35 at all the

gap edges s1, . . . , s5. ⌋

Remark 3.2 The nonzero second derivatives in A.2 ensure that the resulting CMEs are of second

order. The assumption that the extrema are maxima or minima implies that (∂k1∂k2ωnj
(k(j)))2 ≤

∂2
k1
ωnj

(k(j))∂2
k2
ωnj

(k(j)). Unlike in the separable case [12] it is possible that ∂k1∂k2ωnj
(k(j)) 6= 0, which

then leads to CMEs with mixed second order derivatives. ⌋

Remark 3.3 The Bloch waves unj
(k(j); ·), j=1, . . . ,N defined by the extrema are called “resonant”.⌋

Remark 3.4 The approximation (3.1) with the same ε-scaling applies also to gap solitons in an O(ε2)-

wide gap which closes at ω = ω∗ as ε→ 0 in such a way that the plane ω = ω∗ at ε = 0 is not intersected

by any band but is tangent to bands at N extremal points. un1 , . . . , unN
are then the resonant Bloch

waves at ω = ω∗ at ε = 0. Such a case was studied in [12] for a separable periodic potential.

The above discussion is not limited to the case of the Gross-Pitaevskii equation but applies to

general differential equations with periodic coefficients as it depends only on the band structure. A

typical example are Maxwell’s equations with spatially periodic coefficients. ⌋
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We now give the derivation of CMEs under the assumptions A.1 and A.2. For the example (1.3)

with η = 5.35 we first review the derivation in physical variables φ(x) near ω = s3, then comment on

an obstacle for this calculus near ω = s5, and therefore present a derivation in the general case in the

so called Bloch variables which avoids this obstacle. Finally we apply this general procedure to all the

five gap edges of the example (1.3).

3.1 CME derivation in Physical Variables φ(x)

The ansatz in physical variables is

φ(x) = ε
N∑

j=1

Aj(y)unj
(k(j);x) + ε2φ(1) + ε3φ(2) + O(ε4)

ω = ω∗ + ε2Ω, y = εx, 0 < ε≪ 1.

(3.2)

To review the derivation of the CMEs we choose ω∗ = s3 for the example (1.3) with η = 5.35.

3.1.1 CMEs near the gap edge ω = s3

At the edge s3 we have N = 2, n1 = n2 = 2, k(1) = X and k(2) = X ′, i.e. the two resonant Bloch

waves are v1(x) := u2(X;x) and v2(x) := u2(X
′;x). Using (2.4), Lemma 2.2 and (2.7), we have that

v1 is odd and 2π−antiperiodic in x1 and even and 2π−periodic in x2. Opposite symmetries hold for

v2. Moreover, (2.7) implies that v1 and v2 are real. We normalize the Bloch functions v1,2 over their

common period [−2π, 2π]2 so that ‖vj‖L2([−2π,2π]2) = 1, j = 1, 2.

Substituting (3.2) in (1.2) leads to a hierarchy of problems at distinct powers of ε, each of which

we try to solve within the space of functions 4π-periodic in both x1 and x2, invoking the Fredholm

alternative (see e.g. chapter 3.4 of [30]) where necessary. At O(ε) we have the linear eigenvalue problem

[L− s3]vj(x) = 0, j = 1, 2. At O(ε2) we have

[L− s3]φ
(1) = 2 (∂y1A1∂x1v1 + ∂y1A2∂x1v2 + ∂y2A1∂x2v1 + ∂y2A2∂x2v2) .

By differentiating the eigenvalue problem (2.1) with respect to kj , j ∈ {1, 2} and evaluating at n =

2, k = X = (1/2, 0), we find that

[L− s3]v
(xj)
1 (x) = 2∂xj

v1, (3.3)

and similarly [L− s3]v
(xj)
2 (x) = 2∂xj

v2, where

v
(xj)
1 (x) = −i(∂kj

p2(X;x))eiX·x and v
(xj)
2 (x) = −i(∂kj

p2(X
′;x))eiX

′·x

are called generalized Bloch functions [24]. Thus φ(1) = ∂y1A1v
(x1)
1 +∂y1A2v

(x1)
2 +∂y2A1v

(x2)
1 +∂y2A2v

(x2)
2 .

(3.3) implies that v
(j)
n (x) is odd/even in xj if vn(x) is even/odd in xj respectively.
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At O(ε3) we obtain the CMEs. We have

[L− s3]φ
(2) = Ω(A1v1 +A2v2) + ∆y1,y2A1v1 + ∆y1,y2A2v2

+2
[
∂2
y1A1∂x1v

(x1)
1 + ∂2

y1A2∂x1v
(x1)
2 + ∂2

y2A1∂x2v
(x2)
1 + ∂2

y2A2∂x2v
(x2)
2

+∂y1∂y2A1∂x1v
(x2)
1 + ∂y1∂y2A2∂x1v

(x2)
2 + ∂y1∂y2A1∂x2v

(x1)
1 + ∂y1∂y2A2∂x2v

(x1)
2

]

−σ
[∑2

j=1 |Aj |
2Ajv

3
j + 2|A1|

2A2v
2
1v2 + 2|A2|

2A1v
2
2v1 +A2

1Ā2v
2
1v2 +A2

2Ā1v
2
2v1

]
,

and the Fredholm alternative requires the right hand side to be L2(−2π, 2π]2-orthogonal to v1 and v2,

the two generators of Ker(L∗−s3). Taking the inner product, we see that the terms 〈v1, v2〉 and 〈v2, v1〉

in the inner product vanish due to orthogonality of Bloch waves. Many additional terms vanish due to

odd or 2π-antiperiodic integrands (in at least one variable). Namely, in the inner product of the right

hand side with v1 the integrals 〈∂x1v
(x1)
2 , v1〉, 〈∂x2v

(x2)
2 , v1〉, 〈∂x1v

(x2)
1 , v1〉 and 〈∂x2v

(x1)
1 , v1〉 vanish due

to odd integrands and the integrals 〈v3
2 , v1〉, 〈v

2
1v2, v1〉, 〈v

2
1v2, v1〉 〈∂x1v

(x2)
2 , v1〉 and 〈∂x2v

(x1)
2 , v1〉 due to

2π−antiperiodic integrands. An analogous discussion applies for the orthogonality with the respect to

v2. The remaining terms have to be set to zero, which leads to the CMEs for the envelopes A1 and A2:

ΩA1 + α1∂
2
y1A1 + α2∂

2
y2A1 − σ

[
γ1|A1|

2A1 + γ2(2|A2|
2A1 +A2

2Ā1)
]

=0,

ΩA2 + α2∂
2
y1A2 + α1∂

2
y2A2 − σ

[
γ1|A2|

2A2 + γ2(2|A1|
2A2 +A2

1Ā2)
]

=0,
(3.4)

α1 = 1 + 2

∫ 2π

−2π

∫ 2π

−2π
v1∂x1v

(x1)
1 dx, α2 = 1 + 2

∫ 2π

−2π

∫ 2π

−2π
v1∂x2v

(x2)
1 dx,

γ1 =

∫ 2π

−2π

∫ 2π

−2π
v4
1dx and γ2 =

∫ 2π

−2π

∫ 2π

−2π
v2
1v

2
2dx.

3.1.2 CMEs near the gap edge s5

At ω∗ = s5 we have N = 4. The resonant Bloch waves are v1 := u6((kc, kc);x), v2 := u6((−kc, kc);x),

v3 := u6((−kc,−kc);x) and v4 := u6((kc,−kc);x). Analogously to §3.1.1 the asymptotic expansion

needs to be carried out in the space of functions periodic over the common period of v1, . . . , v4. The

Bloch functions are then pairwise orthogonal over this domain. However, if kc is not rational then

the Bloch waves are not periodic but only quasi-periodic. Therefore, unlike in the case of a separable

V (x) [12], where always kc ∈ {0, 1/2}, in the non-separable case in general the derivation in physical

variables is impossible.

3.2 CME Derivation in Bloch Variables φ̃(k; x)

An alternative to the derivation in §3.1 is to transform the problem to Bloch variables. The advantage

is that the linear eigenfunctions are then all 2π−periodic in each x−coordinate. The orthogonalization

domain is, therefore, always P2.
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3.2.1 General Case

The Bloch transform T is formally defined by

φ̃(k;x) = (T φ)(k;x) =
∑

m∈Z2

eim·xφ̂(k +m), φ(x) = (T −1φ̃)(x) =

∫

T2

eik·xφ̃(k;x)dk, (3.5)

where φ̂(k) denotes the Fourier transform

φ̂(k) =
1

2π

∫

R2

φ(x)e−ik·xdx, φ(x) =
1

2π

∫

R2

φ̂(k)eik·xdk. (3.6)

T is an isomorphism from Hs(R2,C) to L2(T2,Hs(P2,C)), ‖φ̃‖2
L2(T2,Hs(P2,C)) =

∫
T2 ‖φ̃(k; ·)‖2

Hs(P2)dk,

cf., e.g.,[26]. For later reference we also note that Fourier transform is an isomorphism from Hs(R2) to

L2
s(R

2) := {φ̂ ∈ L2(R2) : ‖φ̂‖L2
s

:= ‖(1 + |k|)sφ̂‖L2 <∞}, i.e. C1‖φ̂‖L2
s
≤ ‖φ‖Hs ≤ C2‖φ̂‖L2

s
, (3.7)

such that Hs(R2) := F−1L2
s(R

2) can be used as definition for 0 < s ∈ R.

By construction we have

φ̃(k; (x1 + 2π, x2)) = φ̃(k; (x1, x2 + 2π)) = φ̃(k;x), (3.8)

φ̃((k1 + 1, k2);x) = e−ix1φ̃(k;x), φ̃((k1, k2 + 1);x) = e−ix2φ̃(k;x). (3.9)

Multiplication in physical space corresponds to convolution in Bloch space, i.e.,

(T (φψ))(k;x) =

∫

T2

φ̃(k − l;x)φ̃(l;x)dl =: (φ̃ ∗B ψ̃)(k;x), (3.10)

where (3.9) is used if k− l /∈ T2. However, if g is 2π−periodic in both x1 and x2, then (T (gu))(k;x) =

g(x)(T u)(k;x).

Applying T to (1.2) yields

[
L̃− ω

]
φ̃+ σ φ̃ ∗B

˜̄φ ∗B φ̃ = 0, (3.11)

on (k;x) ∈ T2 × P2, where we recall from (2.3) that L̃(k;x) = (i∂x1−k1)
2 + (i∂x2−k2)

2 + V (x). Corre-

sponding to (3.2), the asymptotic ansatz we use in the φ̃ variables reads

φ̃(k;x) =
1

ε
ψ̃(0)(k;x) + ψ̃(1)(k;x) + εψ̃(2)(k;x) + O(ε2),

ψ̃(0)(k;x) =

N∑

j=1

χDj
(k)Âj

(
k−k(j)

ε

)
pnj

(k(j);x), ω = ω∗ + Ωε2, 0 < ε≪ 1,
(3.12)

where pnj
is defined in (2.2), χDj

(k) is the characteristic function of the set Dj, and Dj is a disk with

12



radius εr

1

3
< r <

1

2
(3.13)

centered at k(j), and mapped periodically on T2 if {k ∈ R2 : |k−k(j)| < εr} overlaps with the exterior

of T2. We denote this as

Dj := {k ∈ R
2 : |k−k(j)| < εr modulo

.
=} (3.14)

where
.
= means equal modulo 1 in each component, see Fig. 6 for an example. The reason for (3.13)

will be explained in §4.2.

++

+

+

Γ XX

X ′

X ′

D1D1

D2

D2

ǫr

k1

k2

Figure 6: Decomposition of the k-space for the
example (1.3) with η = 5.35 at ω∗ = s3.

The periodic part pnj
(k;x) of the Bloch functions is normalized so that ‖pnj

(k; ·)‖L2(P2) = 1. The

idea of the ansatz (3.12) is as follows. A direct calculation shows that

(
T (εAj(y)unj

(k(j);x))
)

(k;x) =
1

ε
Ãj

(
k−k(j)

ε
;x

)
pnj

(k(j);x).

However, it turns out to be more convenient to approximate the function Ãj

(
k−k(j)

ε ;x
)
, which satisfies

the periodicities

Ãj

(
(k1 + 1, k2)−k

(j)

ε
;x

)
= Ãj

(
(k1, k2)−k

(j)

ε
;x

)
= Ãj

(
(k1, k2 + 1)−k(j)

ε
;x

)
,

by the function χDj
(k)Âj

(
k−k(j)

ε

)
, where Â is the Fourier transform of A. We have

T −1

[
1

ε
χDj

(k)Âj

(
k−k(j)

ε

)]
(x) = εA(εx)eik(j) ·x − εh(x; ε), (3.15)
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where h(x; ε) :=
∫
|p|≥εr−1 Âj(p)e

iεp·x dp. For Âj ∈ L
2
s(R

2), s > 1 we have, e.g.,

|h(x)| =

∣∣∣∣
∫

|p|≥εr−1

Âj(p)e
iεp·x dp

∣∣∣∣ ≤ ‖Â‖L2
s

(∫

|p|≥εr−1

1

1 + |p|2s
dp

)1/2

≤ C‖Â‖L2
s
ε(1−r)(s−1),

and similar estimates for other relevant norms of h(·; ε). At this point we merely need 0 < r < 1. In

this sense ε−1ψ(0)(x) is an approximation of εφ(0)(x) in (1.4) (see also (3.2)).

Letting p(j) := k−k(j)

ε we have

L̃(k;x) = L̃(k(j) + εp(j);x) = L̃(k(j);x) − 2ε
[
(i∂x1−k

(j)
1 )p

(j)
1 + (i∂x2−k

(j)
2 )p

(j)
2

]
+ ε2

[
p
(j)2

1 + p
(j)2

2

]
.

(3.16)

Now substituting (3.12) in (3.11) and using (3.16), we again obtain a hierarchy of equations:

O(ε−1) : Âj(p
(j))
[
L̃(k(j);x) − ω∗

]
pnj

(k(j);x) = 0 for k ∈ Dj , j ∈ {1, . . . ,N},

which holds by definition of ω∗ = ωnj
(k(j)). There is no contribution to O(ε−1) for k ∈ T2 \ ∪jDj .

O(1) :
[
L̃(k(j);x) − ω∗

]
ψ̃(1)(k;x) = 2Âj(p

(j))
[
p
(j)
1 (i∂x1−k

(j)
1 ) + p

(j)
2 (i∂x2−k

(j)
2 )
]
pnj

(k(j);x)

for k ∈ Dj , j ∈ {1, . . . , N}. To solve this we note that by differentiating [L̃(k;x)− ωnj
(k)]pnj

(k;x) = 0

with respect to km,m ∈ {1, 2} and evaluating at k = k(j), we obtain

[
L̃(k(j);x) − ω∗

]
∂km

pnj
(k(j);x) = 2(i∂xm−k(j)

m )pnj
(k(j);x). (3.17)

Therefore, ψ̃(1)(k;x) =
∑2

m=1 p
(j)
m Âj(p

(j))∂km
pnj

(k(j);x) for k ∈ Dj, j ∈ {1, . . . ,N}.

For k ∈ T2 \ ∪jDj we get
[
L̃(k(j);x) − ω∗

]
ψ̃(1)(k;x) = 0, which has no nontrivial solution (on

k ∈ T2 \ ∪jDj). Thus, ψ̃(1)(k;x) ≡ 0 on k ∈ T2 \ ∪jDj and we may write

ψ̃(1)(k;x) =
N∑

j=1

χDj
(k)

2∑

m=1

p(j)
m Âj(p

(j))∂km
pnj

(k(j);x). (3.18)

O(ε) :

[
L̃(k(j);x)−ω∗

]
ψ̃(2)(k;x) =ΩÂj(p

(j))pnj
(k(j);x) + 2

[
p
(j)
1 (i∂x1−k

(j)
1 ) + p

(j)
2 (i∂x2−k

(j)
2 )
]
ψ̃(1)(k;x)

−
(
p
(j)2

1 + p
(j)2

2

)
Âj(p

(j))pnj
(k(j);x)

− σχDj
(k)

1

ε4
(ψ̃(0) ∗B ψ̃

(0) ∗B
˜̄ψ(0))(k;x)
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for k ∈ Dj , j ∈ {1, . . . , N}. Substituting ψ̃(1) from (3.18), we get

[
L̃(k(j);x) − ω∗

]
ψ̃(2)(k;x) = ΩÂj(p)pnj

(k(j);x)

−
[
pnj

(k(j);x) − 2(i∂x1−k
(j)
1 )∂k1pnj

(k(j);x)
]
p2
1Âj(p)

−
[
pnj

(k(j);x) − 2(i∂x2−k
(j)
2 )∂k2pnj

(k(j);x)
]
p2
2Âj(p)

+ 2
[
(i∂x1−k

(j)
1 )∂k2pnj

(k(j);x) + (i∂x2−k
(j)
2 )∂k1pnj

(k(j);x)
]
p1p2Âj(p)

− σχDj
(k)

1

ε4
(ψ̃(0) ∗B ψ̃

(0) ∗B
˜̄ψ(0))(k;x),

(3.19)

where we dropped the superscript (j) of p since the meaning of p as argument of Âj is clear. We rewrite

the nonlinear term as

G :=
σ

ε4
χDj

(k)(ψ̃(0) ∗B ψ̃
(0) ∗B

˜̄ψ(0)) =
σ

ε4
χDj

(k)




N∑

l=1

vl ∗B vl ∗B v
c
l + 2

N∑

l,m=1
l 6=m

vl ∗B vm ∗B v
c
l

+

N∑

l,m=1
l 6=m

vl ∗B vl ∗B v
c
m +

N∑

l,m=1
l 6=m,l 6=n,m6=n

vl ∗B vm ∗B v
c
n


 ,

(3.20)

where vl = vl(k;x) := χDl
(k)Âl

(
k−k(l)

ε

)
pnl

(k(l);x) and vcl = vcl (k;x) := χ−Dl
(k) ˆ̄Al

(
k+k(l)

ε

)
pnl

(k(l);x).

The last sum or the three last sums in (3.20) are absent if N = 2 or N = 1 respectively.

A transformation in the integral leads to

vl ∗B vm ∗B v
c
n = ε4pl(k

(l);x)pm(k(m);x)pn(k
(n);x)

∫

D2εr−1

∫

D
εr−1

χD
εr−1

(
k − (k(l) + k(m)−k(n))

ε
− η

)

Âl

(
k − (k(l) + k(m)−k(n))

ε
− η

)
χD

εr−1 (η − τ)Âm(η − τ)χD
εr−1 (τ)

ˆ̄An(τ)dτdη

(3.21)

for any l,m, n ∈ {1, . . . , N}, where Dεr−1 = {p ∈ R2 : |p| < εr−1}. This formula also shows that

G = O(1) as required for a consistent asymptotic expansion. For ε → 0 the integrals in (3.21)

approximate the Fourier transform of AlAmĀn, namely

(vl ∗B vm ∗B v
c
n)(k) = ε4pl(k

(l);x)pm(k(m);x)pn(k
(n);x) ̂AlAmĀn

(
k − (k(l) + k(m)−k(n))

ε

)
+ h̃(k, x; ε)

where, similarly to (3.15), for Âl, Âm, Ân ∈ L2
s(R

2) we have ‖h̃(·, ·; ε)‖L2(T2,Hs(P2,C)) = O(ε1−r).

It is straightforward to check that the function χDj
(k) in G annihilates all terms in the sum except
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such terms vl ∗B vm ∗B v
c
n for which k(l) +k(m)−k(n) .

= k(j), where we recall that
.
= means equal modulo

1 in each component. Obvious examples (for N ≥ 2) of not annihilated terms are vj ∗B vj ∗B v
c
j and

vl ∗B vj ∗B v
c
l ∀j, l ∈ {1, . . . , N} appearing in the first two sums in G.

We return now to equation (3.19) for ψ̃(2). Its solvability condition is L2(P2)-orthogonality to

Ker(L̃(k(j);x) − ω∗) = span{pnj
(k(j);x), j = 1, . . . ,N}. This yields the CMEs in Fourier variables

ΩÂj −

(
1

2
∂2
k1ωnj

(k(j))p2
1 +

1

2
∂2
k2ωnj

(k(j))p2
2 + ∂k1∂k2ωnj

(k(j))p1p2

)
Âj − N̂j = 0, (3.22)

j ∈ {1, . . . , N}, where N̂j = 〈G(k; ·), pnj
(k(j); ·)〉L2(P2). Inverse Fourier transform yields

ΩAj +

(
1

2
∂2
k1ωnj

(k(j))∂2
y1 +

1

2
∂2
k2ωnj

(k(j))∂2
y2 + ∂k1∂k2ωnj

(k(j))∂y1∂y2

)
Aj −Nj = 0, (3.23)

where the structure and coefficients in Nj for our example (1.3) will be explained in §3.2.2. The

appearance of second derivativces of the bands ωnj
in (3.22) is due to the following

Lemma 3.5 For any l,m ∈ {1, 2}

∂kl
∂km

ωnj
(k(j)) = 2δlm − 2〈(i∂xm−k(j)

m )∂kl
pnj

(k(j); ·) + (i∂xl
−k

(j)
l )∂km

pnj
(k(j); ·), pnj

(k(j); ·)〉L2(P2),

where δlm is the Kronecker delta.

Proof. This follows from differentiation of [L̃(k;x) − ωnj
(k)]pnj

(k;x) = 0 w.r.t. k. �

As the next lemma shows, the mixed derivatives of ωnj
are zero whenever the extremal point k(j)

coincides with one of the vertices of the first irreducible Brillouin zone or of its reflection.

Lemma 3.6 ∂k1∂k2ωnj
(k(j)) = ∂k2∂k1ωnj

(k(j)) = 0 if k(j) ∈ S = {Γ,X,X ′,M}.

Proof. Take l,m ∈ {1, 2}, l 6= m. As i∂xm−k
(j)
m is self-adjoint, we have

〈(i∂xm−k(j)
m )∂kl

pnj
(k(j); ·), pnj

(k(j); ·)〉L2(P2) = 〈∂kl
pnj

(k(j); ·), (i∂xm−k(j)
m )pnj

(k(j); ·)〉L2(P2). (3.24)

Based on (2.2) we have (i∂xm−k
(j)
m )pnj

(k(j);x) = −ie−ik(j)·x∂xmunj
(k(j);x). Next, ∂kl

pnj
(k(j);x) =

ie−ik(j)·xv(xl)
nj (k(j);x), where v

(xl)
nj (k(j);x) is the generalized Bloch function [24] solving

[L− ω∗]u = 2∂xl
unj

(k(j);x), u(2π, x2) = ei2πk
(j)
1 u(0, x2), u(x1, 2π) = ei2πk

(j)
2 u(x1, 0), (3.25)

analogously to (3.3). The inner product in (3.24) thus becomes 〈−v
(xl)
nj (k(j); ·), ∂xmunj

(k(j); ·)〉L2(P2).

Because k(j) ∈ S, unj
is even or odd in xl (Lemma 2.2). From (3.25) it is clear that v

(xl)
nj (k(j);x) has the

opposite symmetry (odd or even respectively) in xl. Thus, the integrand is odd in xl and the integral

vanishes upon shifting the integration domain to [−π, π]2. �
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3.2.2 CMEs for the Example (1.3)

We now calculate the explicit form of the CMEs (3.23) in the vicinity of the five gap edges in the

example (1.3) with η = 5.35. It turns out that only few terms are nonzero in the nonlinearity Nj for

this case. Of special importance is the edge ω∗ = s5, where k(j) /∈ S and, indeed, ∂k1∂k2ωnj
(k(j)) 6= 0.

In order to numerically evaluate the coefficients ∂kl
∂km

ωnj
(k(j)) given in Lemma 3.5, the functions

∂kl
pnj

(k(j);x) have to be computed. They are solutions of the singular system (3.17) but as the right-

hand side is orthogonal to the kernel of L̃(k(j);x)−ω∗, the BiCG algorithm can be used as long as the

initial guess is orthogonal to the kernel. We work in a 4th order finite difference discretization and use

an incomplete LU preconditioning for BiCG.

CMEs near ω∗ = s1: Only one extremum defines the edge ω∗ = s1, namely the minimum of the

band ω1 at k = Γ. Therefore, N = 1, n1 = 1 and k(1) = Γ. Thus

[
Ω + α(∂2

y1 + ∂2
y2)
]
A− σγ|A|2A = 0, (3.26)

where α = 1
2∂

2
k1
ω1(Γ) = 1

2∂
2
k2
ω1(Γ) and γ = 〈p1(Γ; ·)2, p1(Γ; ·)2〉L2(P2) = ‖p1(Γ; ·)‖4

L4(P2). The identity

in α holds due to (2.6). The numerically obtained values are α ≈ 0.62272 and γ ≈ 0.048029.

CMEs near ω∗ = s2: Here the linear problem is characterized by N = 1, n1 = 1 and k(1) = M . Thus

we again have (3.26), now with α = 1
2∂

2
k1
ω1(M) = 1

2∂
2
k2
ω1(M) and γ = 〈p1(M ; ·)2, p1(M ; ·)2〉L2(P2) =

‖p1(M ; ·)‖4
L4(P2). Numerically: α ≈ −1.971217 and γ ≈ 0.076442.

CMEs near ω∗ = s3: Here N = 2, n1 = n2 = 2, k(1) = X and k(2) = X ′. Because 2k(1)−k(2) =

(1,−1/2)
.
= k(2), the term v1 ∗B v1 ∗B v

c
2 appears in the equation for k ∈ D2. Similarly, as 2k(2)−k(1) .

=

k(1), the term v2 ∗B v2 ∗B v
c
1 appears in the equation for k ∈ D1. The resulting CMEs are

[
Ω + α1∂

2
y1 + α2∂

2
y2

]
A1 − σ

[
γ1|A1|

2A1 + 2γ2|A2|
2A1 + γ3A

2
2Ā1

]
=0,

[
Ω + α2∂

2
y1 + α1∂

2
y2

]
A2 − σ

[
γ1|A2|

2A2 + 2γ2|A1|
2A2 + γ3A

2
1Ā2

]
=0,

(3.27)

where

α1 = 1
2∂

2
k1
ω2(X) = 1

2∂
2
k2
ω2(X

′), α2 = 1
2∂

2
k2
ω2(X) = 1

2∂
2
k1
ω2(X

′),

γ1 = 〈p2(X; ·)2, p2(X; ·)2〉L2(P2) = 〈p2(X
′; ·)2, p2(X

′; ·)2〉L2(P2) = ‖p2(X; ·)‖4
L4(P2) = ‖p2(X

′; ·)‖4
L4(P2),

γ2 = 〈|p2(X
′; ·)|2, |p2(X; ·)|2〉L2(P2), and

γ3 = 〈p2(X
′; ·)2, p2(X; ·)2〉L2(P2) = 〈p2(X; ·)2, p2(X

′; ·)2〉L2(P2).
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The identities in α1, α2 and γ1 hold due to (2.6). The equality in γ3 yields γ3 ∈ R. It follows from the

symmetries (2.7), (2.6) and from (3.9). Indeed, using these properties, we arrive at

γ3 =

∫

P2

p2(X; (x2, x1))
2p2(X; (x1, x2))

2e2ix1dx1dx2,

γ̄3 =

∫

P2

p2(X; (x1, x2))
2p2(X; (x2, x1))

2e2ix2dx1dx2.

The equality γ̄3 = γ3 follows by interchanging integration in one of the integrals. Numerically,

α1 ≈ 2.599391, α2 ≈ 0.040561, γ1 ≈ 0.090082, γ2 ≈ 0.003032, and γ3 ≈ 0.000154.

CMEs near ω∗ = s4: Here N = 1, n1 = 5 and k(1) = M . The governing equation is (3.26) with

α = 1
2∂

2
k1
ω5(M) = 1

2∂
2
k2
ω5(M) ≈ −0.300655 and γ = 〈p5(M ; ·)2, p5(M ; ·)2〉L2(P2) = ‖p5(M ; ·)‖4

L4(P2) ≈

0.039755.

CMEs near ω∗ = s5: Here N = 4, n1 = n2 = n3 = n4 = 6, k(1) = (kc, kc), k
(2) = (−kc, kc), k

(3) =

(−kc,−kc) and k(4) = (kc,−kc), where kc ≈ 0.439028. This is an important case in our example because

k(j) /∈ S here.

We start with the last two sums of G (see (3.20)). Terms of the type vl ∗B vl ∗B v
c
m (the third sum in

G) do not contribute to the CMEs because 2k(l) − k(m) is not congruent to any k(j), j ∈ {1, . . . , 4} for

any choice of l,m ∈ {1, . . . , 4}, l 6= m. For example, 2k(1) − k(2) = (3kc, kc), which is not congruent to

any k(j) since kc /∈ {0, 1/2}. Only four terms of the type vl ∗B vm ∗B v
c
n (the last sum in G) contribute

to the CMEs, namely v2 ∗B v4 ∗B v
c
3 to the equation for k ∈ D1, v1 ∗B v3 ∗B v

c
4 to the equation for k ∈ D2,

v2 ∗B v4 ∗B v
c
1 to the equation for k ∈ D3 and v1 ∗B v3 ∗B v

c
2 to the equation for k ∈ D4. This is because

k(2) + k(4) − k(3) = k(1), k(1) + k(3) − k(4) = k(2), k(2) + k(4) − k(1) = k(3) and k(1) + k(3) − k(2) = k(4).

The other terms in the last sum in G do not contribute. As an example, k(1) + k(2) − k(3) = (kc, 3kc).

Another consequence of k(j) /∈ S is that Lemma 3.6 does not apply and mixed derivatives of Aj
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may appear. The system of CMEs thus becomes

0 =
[
Ω + α1(∂

2
y1+∂

2
y2) + α2∂y1∂y2

]
A1

− σ

[
γ1|A1|

2A1 + 2
(
γ2

(
|A2|

2 + |A4|
2
)
A1 + γ̃1|A3|

2A1 + γ̃2A2A4Ā3

)]
,

0 =
[
Ω + α1(∂

2
y1+∂

2
y2) − α2∂y1∂y2

]
A2

− σ

[
γ1|A2|

2A2 + 2
(
γ2

(
|A1|

2 + |A3|
2
)
A2 + γ̃1|A4|

2A2 + ¯̃γ2A1A3Ā4

)]
,

0 =
[
Ω + α1(∂

2
y1+∂

2
y2) + α2∂y1∂y2

]
A3

− σ

[
γ1|A3|

2A3 + 2
(
γ2

(
|A2|

2 + |A4|
2
)
A3 + γ̃1|A1|

2A3 + γ̃2A2A4Ā1

)]
,

0 =
[
Ω + α1(∂

2
y1+∂

2
y2) − α2∂y1∂y2

]
A4

− σ

[
γ1|A4|

2A4 + 2
(
γ2

(
|A1|

2 + |A3|
2
)
A4 + γ̃1|A2|

2A4 + ¯̃γ2A1A3Ā2

)]
,

(3.28)

where

α1 = 1
2∂

2
k1
ω6(kc((−1)m, (−1)n)) = 1

2∂
2
k2
ω6(kc((−1)p, (−1)q)) for any m,n, p, q ∈ {0, 1},

α2 = ∂k1∂k2ω6(kc, kc) = ∂k1∂k2ω6(−kc,−kc) = −∂k1∂k2ω6(−kc, kc) = −∂k1∂k2ω6(kc,−kc),

γ1 = 〈|p6(kc((−1)m, (−1)n); ·)|2, |p6((kc((−1)m, (−1)n); ·)|2〉L2(P2) = ‖p6((kc, kc); ·)‖
4
L4(P2)

for any m,n ∈ {0, 1},

γ2 = 〈|p6((−kc, kc); ·)|
2, |p6((kc, kc); ·)|

2〉L2(P2) = 〈|p6((kc,−kc); ·)|
2, |p6((kc, kc); ·)|

2〉L2(P2)

= 〈|p6((−kc,−kc); ·)|
2, |p6((−kc, kc); ·)|

2〉L2(P2) = 〈|p6((kc,−kc); ·)|
2, |p6((−kc,−kc); ·)|

2〉L2(P2),

γ̃1 = 〈|p6((−kc,−kc); ·)|
2, |p6((kc, kc); ·)|

2〉L2(P2) = 〈|p6((kc,−kc); ·)|
2, |p6((−kc, kc); ·)|

2〉L2(P2),

γ̃2 = 〈p6((−kc, kc); ·)p6((kc,−kc); ·), p6((−kc,−kc); ·)p6((kc, kc); ·)〉L2(P2).

The identities in α1, α2 and γ1 are due to (2.5) and the identities in γ2 due to (2.5) and (2.6).

Moreover, γ1 = γ̃1 and γ2 = γ̃2 due to (2.7). This also implies γ̃2 = ¯̃γ2. Using these identities, we

arrive at the system

[
Ω + α1(∂

2
y1+∂

2
y2) + α2∂y1∂y2

]
A1 − σ

[
γ1

(
|A1|

2+2|A3|
2
)
A1 + 2γ2

(
(|A2|

2+|A4|
2)A1 +A2A4Ā3

)]
=0,

[
Ω + α1(∂

2
y1+∂

2
y2) − α2∂y1∂y2

]
A2 − σ

[
γ1

(
|A2|

2+2|A4|
2
)
A2 + 2γ2

(
(|A1|

2+|A3|
2)A2 +A1A3Ā4

)]
=0,

[
Ω + α1(∂

2
y1+∂

2
y2) + α2∂y1∂y2

]
A3 − σ

[
γ1

(
|A3|

2+2|A1|
2
)
A3 + 2γ2

(
(|A2|

2+|A4|
2)A3 +A2A4Ā1

)]
=0,

[
Ω + α1(∂

2
y1+∂

2
y2) − α2∂y1∂y2

]
A4 − σ

[
γ1

(
|A4|

2+2|A2|
2
)
A4 + 2γ2

(
(|A1|

2+|A3|
2)A4 +A1A3Ā2

)]
=0.

(3.29)
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The numerical values of the coefficients are α1 ≈ 6.051248, α2 ≈ 0.096394, γ1 ≈ 0.039118 and

γ2 ≈ 0.029926.

4 Justification of the Coupled Mode Equations

If ω = ω∗ + ε2Ω is in the band gap, then families of solitons, i.e., of smooth exponentially localized

solitary wave solutions, are known for many classes of CMEs [28]. However, as already noted in the

introduction, the formal derivation of the CMEs in §3, discarding some error at higher order in ε, does

not imply that localized solutions of the CMEs yield gap solitons of (1.2). For this we need to estimate

the error in some function space and show persistence of the CME solitons under perturbation of the

CME including the error. We proceed similarly to [12]. However, as function space we choose Hs(R2)

with s ≥ 2, in contrast to F−1L1
s(R

2) in [12]. The latter is possible in the separable case but there is

the technical obstacle of the extension of [12, (3.7)] to the nonseparable case. On one hand, L1
s(R

2) in

Fourier space gives a direct pointwise estimates in physical space via ‖φ‖Cs−1 ≤ C‖φ̂‖L1
s
. On the other

hand, working in Hilbert spaces L2 is conceptually simpler since it allows to go back and forth between

physical space (for the nonlinearity) and Bloch space (for the linear part).

4.1 Preliminaries

We have the asymptotic distribution

C1n ≤ ωn(k) ≤ C2n ∀n ∈ N,∀k ∈ T
2 (4.1)

of bands ωn(k), with some constants C1, C2 independent of k and n. This follows from the asymptotic

“density of states”(see p. 55 of [19]) N(λ; k) = aλ+O(λ
1
2 ) as λ→ ∞, where N(λ; k) is the number of

eigenvalues ωn(k) smaller than or equal to λ.

We introduce the diagonalization operator

D(k)k∈T2 : φ̃(k;x)→
~̃
φ(k),

~̃
φn(k) =

〈
φ̃(k; ·), pn(k; ·)

〉
L2(P2)

.

Based on (4.1) we may estimate D. Similarly to [7, Lemma 3.3] we find that D(k) for all k is an

isomorphism between Hs(P2) and ℓ2s where s > 0 and

ℓ2s := {
~̃
φ : ‖

~̃
φ‖ℓ2s :=

∑

j∈N

|
~̃
φj|

2(1 + j)s <∞}.

Moreover, ‖D(k)‖, ‖D(k)−1‖ ≤ C independent of k. Thus, φ̃ 7→
~̃
φ is an isomorphism between

L2(T2,Hs(P2)) and L2(T2, ℓ2s) and therefore we have
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Lemma 4.1 The map φ 7→
~̃
φ = DT φ is an isomorphism between Hs(R2) and X s := L2(T2, ℓ2s) for

s > 0, i.e., we have the equivalence of norms

C1‖φ‖Hs ≤ ‖
~̃
φ‖X s ≤ C2‖φ‖Hs . (4.2)

Lemma 4.2 Let s > 1 and
~̃
φ,
~̃
ψ ∈ X s. Then

~̃
φψ ∈ X s, φ ∈ Ckb (R2) for k < s − 1, and φ(x) → 0 as

|x| → ∞.

Proof. The first two statements follow directly from the Sobolev imbedding Hs(R2) →֒ Ckb (R
2) for

k < s − 1, see, e.g., [4, Theorem 2.12], and the equivalence of the Hs(R2) and X s norms. The last

statement follows by Lebesgue dominated convergence. �

To justify Taylor expansions of the spectral bands and the Bloch function we use the following

lemma, which is proved in [33].

Lemma 4.3 Let V (x) ∈ L2(P2), then for each n ∈ N the band ωn(k) and the Bloch function un(k;x)

are analytic in k on k ∈ T2 \ Zn, where Zn is the set, where the algebraic multiplicity of ωn(k) as an

eigenvalue of (2.1) is higher than one.

4.2 Justification Step I: The extended Coupled Mode Equations

To justify the general stationary CMEs (3.22) as an asymptotic model for stationary gap solitons near

an edge ω = ω∗, we again consider (3.11), i.e.

[
L̃(k;x) − ω∗ − ε2Ω

]
φ̃(k;x) = −σ

(
φ̃ ∗B

˜̄φ ∗B φ̃
)

(k;x). (4.3)

In contrast to the formal derivation of the CME in §3 we now want to keep track of higher order remain-

ders. We first apply the diagonalization operator D : φ̃(k;x) → ~̃
φ(k), φ̃n(k) = 〈φ̃(k; ·), pn(k, ·)〉L2(P2)

to get

[
ωn(k) − ω∗ − ε2Ω

]
φ̃n(k) = −σg̃n(k) (4.4)

with g̃n(k) = 〈(φ̃ ∗B
˜̄φ ∗B φ̃)(k; ·), pn(k; ·)〉L2(P2).

Lemma 4.2 allows us to consider (4.4) in the space X s, s > 1. The multiplication operator ωn(k)−ω∗
vanishes at N points (n, k) = (n1, k

(1)), . . . , (nN , k
(N)), thus it is not invertible. We therefore use a

Lyapunov-Schmidt decomposition of the solution
~̃
φ, i.e.,

~̃
φ(k) = ε−1

N∑

j=1

B̂j

(
k − k(j)

ε

)
enj

+
~̃
ψ(k), (4.5)

where enj
is the unit vector in the nj direction in RN and supp B̂j ⊂ Dεr−1 = {p ∈ R2 : |p| ≤ εr−1}.

The part ψ̃nj
(k) is set to zero on the critical set k ∈ Kc := ∪{Dl : l ∈ {1, . . . ,N}, nl = nj}, where
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Dj = {k ∈ R2 : |k − k(j)| < εr} mapped periodically on T2, 1/3 < r < 1/2, cf.(3.13) and Fig. 6. We

obtain

1

ε
(ωnj

(k) − ω∗ − ε2Ω)B̂j

(
k − k(j)

ε

)
= −σχDj

(k)g̃nj
(k), j = 1, . . . ,N, (4.6)

(ωn(k) − ω∗ − ε2Ω)ψ̃n(k) = −σ(1 −
N∑

j=1

χDj
(k)δn,nj

)g̃n(k), n ∈ N, (4.7)

and the goal is to solve (4.7) for the correction ~̃ψ as a function of B̂ = (B̂j)
N
j=1 ∈ L2(Dεr−1 ,CN ) and

plug this into (4.6). It turns out that the right norm for B̂j is ‖B̂j‖L2
s(D

εr−1 ), where we recall

‖B̂j‖L2
s(D

εr−1 ) = ‖(1 + |p|)sB̂j‖L2(D
εr−1 ).

Note that L2(Dεr−1) = L2
s(Dεr−1) as spaces for any s ≥ 0, but below we need the estimate ‖Bj‖Hs ≤

C‖B̂j‖L2
s(D

εr−1 ) with C independent of ε, cf. (3.7). Then, for B̂ bounded in L2
s(Dεr−1) we have,

‖~̃g‖2
X s ≤ C

(
ε
( N∑

j=1

‖B̂j‖L2
s(D

εr−1 )

)3
+ε2

( N∑

j=1

‖B̂j‖L2
s(D

εr−1 )

)2
‖ ~̃ψ‖X s+ε

( N∑

j=1

‖B̂j‖L2
s(D

εr−1 )

)
‖ ~̃ψ‖2

X s+‖ ~̃ψ‖3
X s

)
.

(4.8)

This can best be seen in physical space. With

φ(x) = T −1D−1~̃φ(x) = ε
N∑

j=1

Bj(εx)unj
(k(j);x) + ψ = εφ(0) + ψ

and g = |φ|2φ = |εφ(0) + ψ|2(εφ(0) + ψ) we have, e.g.,

‖g‖L2 ≤ C


ε2

( N∑

j=1

‖Bj‖L∞

)2
‖εφ0‖L2 + ε2

( N∑

j=1

‖Bj‖L∞

)2
‖ψ‖L2

+ε
( N∑

j=1

‖Bj‖L∞

)
‖ψ‖L∞‖ψ‖L2 + ‖ψ‖2

L∞‖ψ‖L2


 .

For s > 1 we have ‖Bj(ε·)‖L∞ = ‖Bj(·)‖L∞ ≤ C‖Bj(·)‖Hs ≤ C‖B̂j‖L2
s(D

εr−1 ) and ‖ψ‖L∞ ≤ C‖ψ‖Hs ,

and using Lemma 4.1 and ∂xBj(εx) = ε∂yBj(y), y = εx, we obtain (4.8).

Next, for ε sufficiently small we have

min
k∈supp(

~̃
ψ)

n∈N

|ωn(k) − ω∗| ≥ Cε2r (4.9)
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due to ∂k1ωnj
(k(j)) = ∂k2ωnj

(k(j)) = 0. Thus we may invert ωn(k) − ω∗ on supp
~̃
ψ and from (4.8) and

(4.1) we find that for ‖B̂j‖L2
s(D

εr−1 ) ≤ C, j = 1, . . . ,N we may solve (4.7) for
~̃
ψ with

‖ ~̃ψ‖X s ≤ Cε1−2r
N∑

j=1

‖B̂j‖L2
s(D

εr−1). (4.10)

We now turn to (4.6). The first sum in the ansatz (4.5) corresponds to ψ̃0 in the ansatz (3.12) used

in the formal derivation of the CME. Therefore, plugging (4.5) into (4.4), truncating over k ∈ Dj and

mapping k ∈ Dj to p ∈ Dεr−1 via p = ε−1(k − k(j)) yields the so called extended CMEs (eCMEs) in

the form

ΩB̂j −

(
1

2
∂2
k1ωnj

(k(j))p2
1 +

1

2
∂2
k2ωnj

(k(j))p2
2 + ∂k1∂k2ωnj

(k(j))p1p2

)
B̂j − Q̂j = εr̃R̂j(p), (4.11)

j = 1, . . . , N . Here Q̂j denote the nonlinear terms N̂j in (3.22) truncated on p ∈ Dεr−1, εr̃R̂j(p) denotes

the remainder, and we set r̃ = min(3r − 1, 1 − 2r). The contribution of
~̃
ψ to εr̃R̂j(p) is estimated via

(4.10) to be O(ε1−2r), which requires r < 1/2 to obtain small εr̃R̂j(p). The next contributions come

from third order derivatives of the bands ωnj
and are of the form ε2∂km1

∂km2
∂km3

ωnj
(k(j))pm1pm2pm3B̂j ,

m1,2,3 ∈ {1, 2}, and therefore bounded by

Cε2‖|p|3B̂j‖L2
s(D

εr−1 ) ≤ Cε3r−1‖B̂j‖L2
s(D

εr−1 ),

enforcing r > 1/3.

From this we obtain our first main result:

Theorem 4.4 Let s > 1 and 1
3 < r < 1

2 . There exist ε0, C1, C2 > 0 such that for all 0 < ε < ε0 the

following holds. Assume that there exists a solution (B̂j)
N
j=1 ∈ L2(Dεr−1) of the extended CMEs (4.11)

with ‖B̂j‖L2
s(D

εr−1 ) ≤ C1. Then (1.2) has a solution φ ∈ Hs(R2) with

‖φ(·) − ε

N∑

j=1

Bj(ε·)unj
(k(j); ·)‖Hs(R2) ≤ C2ε

1−2r, (4.12)

where unj
(k(j);x) are the resonant Bloch waves and Bj = F−1B̂j .

Proof. By construction, a solution (B̂j)
N
j=1 of (4.11) yields via (4.5) a solution

~̃
φ(k) of (4.3). The norm

equivalence in Lemma 4.1 and (4.10) then yield (4.12). �

4.3 Justification Step II: Persistence

The remaining step is to make a connection between solitary waves of CMEs (3.22) and eCMEs (4.11).

To obtain existence of solutions to the eCMEs (4.11) we show a persistence result of special so called
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reversible CME solitons to the eCME. This is quite similar to [12, §5] but in order to deal with the

case kj 6∈ S our notion of reversibility is somewhat more restrictive. Therefore we again repeat the

main steps.

The eCMEs (4.11) differ from the CMEs (3.22) in three ways: the B̂j(p) are supported on Dεr−1,

the convolutions are truncated on Dεr−1, and the remainder εr̃R̂j(p) is included. The idea is to handle

these differences as perturbations and thus seek a solution B̂ = (B̂j)j=1,...,N of the eCMEs near a given

solution Â = (Âj)j=1,...,N of the CMEs. Note that the Âj are not supported on Dεr−1 and thus first

must be truncated.

We start with a formal discussion. We write the CME in abstract form as F̂(Â) = 0 and the eCME

as

χD
εr−1 F̂(B̂) = εr̃R̂(B̂), (4.13)

assume a solution Â ∈ [L2
s(R

2)]N for any s ∈ N of the CME, and look for solutions B̂ ∈ [L2
s(Dεr−1)]N

of the eCME in the form B̂ = Âε + b̂ with Âε = χD
εr−1Â and supp b̂ ⊂ Dεr−1. This yields

Ĵb̂ = N̂(b̂), p ∈ Dεr−1 with

Ĵ = χD
εr−1DÂ

F̂(Â) and N̂(b̂) = εr̃R̂(Âε + b̂) − (χD
εr−1 F̂(Âε + b̂) − Ĵb̂).

(4.14)

Note that in (4.14) we may replace N̂(b̂) by χD
εr−1N̂(b̂) to display explicitly that p ∈ Dεr−1.

We have F̂(Âε+ b̂)− Ĵb̂ = F̂(Âε)+(D
Â
F̂(Âε)− Ĵ)b̂+Ĝ(b̂) with Ĝ(b̂) quadratic in b̂. Moreover,

F̂(Âε) = LCME χD
εr−1Â− χD

εr−1 N̂ (Â) − (N̂ (Âε) − χD
εr−1 N̂ (Â)) = −(N̂ (Âε) − χD

εr−1 N̂ (Â)),

where LCME denotes the linear part of the operator in (3.22) and N̂ denotes the N−dimensional vector

of the nonlinear terms in (3.22). χD
εr−1 N̂ (Â)(p) is a sum of convolutions Âj1 ∗ Âj2 ∗

ˆ̄Aj3 , and hence in

N̂ (Âε) − χD
εr−1 N̂ (Â) this yields terms of the form

∫

p1

∫

|p2|≥εr−1

χD
εr−1 (p− p1)χD

εr−1 (p1 − p2)Âj1(p− p1)Âj2(p1 − p2)
¯̂
Aj3(p2) dp1 dp2

which can be bounded by Cεq for any q > 0 in L2
s(Dεr−1) due to the fast decay of Â. Therefore,

‖F̂(Âε)‖L2
s
≤ Cεq, and ‖(D

Â
F̂(Âε) − Ĵ)b̂‖L2

s
≤ Cεq‖b̂‖L2

s
(4.15)

by a similar estimate.

Thus ‖N̂(b̂)‖L2
s
≤ C(εr̃+εq+εq‖b̂‖L2

s
+‖b̂‖2

L2
s
), and this suggests to apply the contraction mapping

theorem to (4.14) in the form

b̂ = Ĵ−1N̂(b̂). (4.16)
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To discuss Ĵ−1 we start with J : Hs(R2) → Hs−2(R2). The continuous spectrum σc(J) of J equals that

of LCME. Thus, if ω = ω∗+ε2Ω is in a gap, then Ω and the quadratic forms defined by 1
2∂

2
k1
ωnj

(k(j))p2
1+

1
2∂

2
k2
ωnj

(k(j)p2
2 + ∂k1∂k2ωnj

(k(j))p1p2, j=1, . . .,N have opposite signs such that σc(J) is bounded away

from zero. However, the problem is that J has a nontrivial kernel since Ker J contains at least

∂y1A, ∂y2A and iA which follows from the translational and phase invariances of the CME. For Ĵ−1 :

L2
s(Dεr−1) → L2

s+2(Dεr−1) (if it exists) this implies that it cannot be bounded independently of ε.

The solution is to consider (4.16) in a subspace Xrev ⊂ L2(Dεr−1) where Ĵ−1 is bounded, and where

b̂ ∈ Xrev implies N̂(b̂) ∈ Xrev. This can be achieved by symmetries of the problem (1.2) if we assume

that J on Hs(R2) has only ∂y1A, ∂y2A and iA in its kernel.

The original problem (1.2) is equivariant under the symmetries

φ(x1, x2) = s1φ̄(−x1, x2) = s2φ̄(x1,−x2) (4.17)

where s1, s2 = ±1, i.e., (s1, s2) = (1, 1) or (s1, s2) = (1,−1) or (s1, s2) = (−1, 1) or (s1, s2) = (−1,−1),

and similarly

φ(x1, x2) = s1φ̄(x2, x1) = s2φ̄(−x2,−x1), (4.18)

where again s1, s2 = ±1.

Definition 4.5 A solution A of (3.23) is called reversible if it fulfills one of the symmetries (4.17),(4.18),

and if the corresponding lowest order approximation φ(0) fulfills the same symmetry. A is called non-

degenerate if Ker J = {∂y1A, ∂y2A, iA}.

Remark 4.6 If all k(j) ∈ S = {Γ,X,M,X ′}, then the second condition in the definition of reversibility

follows from the first by the fact that the Bloch functions are real and either even or odd in both

variables. We expect that the second condition is typically satisfied even if some k(j) /∈ S but we

refrain from a proof. Instead, in §5 we verify this for our specific examples. ⌋

A given symmetry, say S, is then inherited by the Lyapunov Schmidt reduction, see Prop. 3.3 in

[15], i.e.,

χD
εr−1 F̂(ŜB̂) = ŜχD

εr−1F(B̂) = Ŝεr̃R̂(B̂) = εr̃R̂(ŜB̂), (4.19)

and therefore

ŜN̂(b̂) = N̂(Ŝb̂). (4.20)

Finally, let Ker J = {∂y1A, ∂y2A, iA}. If SA = A then ∂y1A, ∂y2A and iA cannot fulfill the same

symmetry and Ĵ has an O(1) bounded inverse on Xrev = {Â ∈ L2
s(Dεr−1) : ŜÂ = Â}, i.e., with bound

independent of ε. Using (4.20) we may thus seek b̂ in Xrev and obtain the following
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Theorem 4.7 There exists an ε0 > 0 such that for all 0 < ε < ε0 the following holds. Let ω = ω∗+ε2Ω

be in a band gap, let A be a reversible non-degenerate solution of the CME (3.23) with Â ∈ L2
s(R

2) for

all s ≥ 0, and let 1/3 < r < 1/2. Then there exists a C > 0 and a solution B̂ of the eCME such that

‖B̂ − Âε‖L2
s(D

εr−1 ) ≤ Cεr̃ r̃ = min(3r − 1, 1 − 2r). (4.21)

Corollary 4.8 The solution φ constructed in Theorems 4.4 and 4.7 is a reversible localized solution

for (1.2), with, ∀s > 1,

‖φ− ε

N∑

j=1

Aj(ε·)unj
(k(j); ·)‖Hs(R2) ≤ Cǫr̃. (4.22)

Proof. φ is reversible as ψ in (4.7) inherits the reversibility symmetry. The estimate (4.22) follows from

the triangle inequality. �

Remark 4.9 The optimal value of r̃ is r̃ = 1/5 attained at r = 2/5. When all third derivatives of ωnj

vanish at k(j), like for separable potentials [12], the optimal value is r̃ = 1/3 attained at r = 1/3. It

is, however, unclear which non-separable potentials result in vanishing third derivatives of the bands

at gap edge extrema. ⌋

Remark 4.10 While the estimate (4.22) guarantees convergence of the CME approximation, it is not

sharp. Based on the formal asymptotic expansion in (3.12), we see that ψ̃(1) (just like ψ̃(0)) consists

of terms of the type F̂
(
k−k(j)

ε

)
q(k(j);x), where F is an envelope and q a periodic carrier wave. ψ(1),

therefore, consists of terms ε2F (εx)q(k(j);x)ei2πk
(j)·x and ‖ψ(1)‖Hs(R2) = O(ε). As a result the formal

asymptotics predict ε1 convergence. ⌋

5 Numerical Results on Reversible Gap Solitons

We numerically compute some representative cases of gap solitons and their asymptotic envelope ap-

proximations εφ(0)(x) = ε
∑N

j=1Aj(εx)unj
(k(j);x). Namely, we select GSs bifurcating from the edges

s2 and s5. The latter case is of particular interest as it features a situation impossible to occur for

separable potentials V (x). To our knowledge this case has not been studied before and the presented

GSs are novel. We also check the reversibility and non-degeneracy conditions which are sufficient for

persistence, see §4.3. In addition, we compute the convergence rate in ε of the error ‖φnum
GS − εφ(0)‖H2 .

A 4th order centered finite difference discretization is used for (1.2). The computational domain is

a square x ∈ [−DGS/2,DGS/2]
2 selected large enough so that the asymptotic approximation εφ(0)(x)

of the GS is well-decayed at the boundary and zero Dirichlet boundary conditions are then used.

The stationary equation (1.2) is then solved via Newton’s iteration using εφ(0) as the initial guess.

The computational domain is in practice reduced to its quarter using the corresponding reversibility

symmetry.

26



5.1 Gap Solitons near ω = s2

Near the edge ω = s2 we limit our attention to real, even GSs and to symmetric vortices of charge

1. As the coupled mode system near ω = s2 is a scalar nonlinear Schrödinger equation, see §3.2.2,

one can search for solutions of the form A(y) = R(r)eimθ, where r = 1√
α

√
y2
1 + y2

2, θ = arg(y1 + iy2),

and m ∈ N. We choose R > 0 and m = 0 corresponding to the so called Townes soliton, and m = 1

corresponding to a vortex of charge 1. The function R(r) satisfies the ODE

R′′ +
1

r
R′ + ΩR−

m2

r2
R− σγR3 = 0, (5.1)

where R(0) > 0, R′(0) = 0 for m = 0 and R(0) = 0, R′(0) > 0 for m = 1. For m 6= 0 the initial-value

problem for the ODE (5.1) is ill-posed but can be turned into a well-posed one via the transformation

Q = r−mR(r) leading to

Q′′ +
2m+ 1

r
Q′ + ΩQ− σγr2mQ3 = 0 (5.2)

with Q(0) > 0, such that R(r) ∼ r|m| as r → 0. We solve equation (5.2) numerically via a shooting

method searching for Q(r) vanishing as r → ∞.

For m = 0 we have the reversibility A(−y1, y2) = A(y1,−y2) = A(y), which is the same as (4.17)

with s1 = s2 = 1 since A is real. Because u1(M ;x) is also even in both x1 and x2 and real, the

same reversibility property holds for εφ(0)(x) = εA(εx)u1(M ;x). The non-degeneracy condition on J

in Theorem 4.7 is known to be satisfied by the positive ground state A [21, 8] and conditions of this

theorem are, therefore, satisfied.

Figure 7 shows the profiles of the envelope A, of the asymptotic approximation εφ(0)(x) and of

the GS φ(x) computed via Newton’s iteration on (1.2). A GS deep inside the gap (s2, s3) obtained

via a homotopy continuation in ω from the φ(x) in Fig. 7 is plotted in Fig. 8(a), while (b) shows the

ε-convergence of the approximation error. Here the ε1.46 convergence rate is better than the estimate

proved in 4.8 and even better than the rate ε1 predicted by formal asymptotics in Rem. 4.10.

For m = 1 the solution is complex and we have the reversibility A(−y1, y2) = −A(y1,−y2) = −Ā(y),

which is (4.17) with s1 = −s2 = −1, and due to the even symmetries of the real Bloch functions

u1(M ;x) we have the same for φ(0). Figure 9 shows the modulus and phase of the envelope A, of the

asymptotic approximation εφ(0)(x) = εA(εx)u1(M ;x) and of the computed GS. The non-degeneracy

of the envelope is illustrated in Fig. 10(a), which plots the 4 smallest eigenvalues (in modulus) of the

Jacobian operator J of the CMEs evaluated at the vortex A: 3 eigenvalues converge to zero as the

computational domain size grows while the fourth one stays bounded away from zero. Figure 10(b)

presents the ε-convergence of the approximation error ‖φ− εφ(0)‖H2(R2). The resulting convergence is

very close to ε1, which is the prediction based on formal asymptotics.
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Figure 7: Profiles of the even real GS at ω = s2 + ε2Ω, ε = 0.1,Ω = 1 . (a) A(y); (b) the corresponding
leading-order GS approximation εA(y)u1(M ;x); (c) the numerically computed GS at ω = s2 + ε2Ω.

(a) (b)

Figure 8: (a) Profile of a GS corresponding to the even real family that bifurcates from ω = s2 in
Fig. 7. The plotted GS is deep inside the gap (s2, s3) at ω ≈ 1.78 (corresponding to ε ≈ 0.28). (b)
ǫ-convergence of the error ‖φ− εφ(0)‖H2(R2).

5.2 Gap Solitons near ω = s5

We limit our attention here to gap solitons with real positive envelopes satisfying the symmetries

A1 = A3, A2 = A4 and A1(−y1, y2) = A1(y1,−y2) = A1(−y2, y1) = A2(y1, y2), which is (4.18) with

s1 = s2 = 1 for each Aj . Such solutions of the CME system (3.29) can be found by first setting

α2 = 0 and computing radially symmetric positive solutions A1 = A2 = A3 = A4 = R(r), where

r = 1√
α1

√
y2
1 + y2

2 , via a shooting method and then performing a homotopy continuation in α2 on

the system of the first two equations in (3.29) employing the symmetry A1 = A3, A2 = A4 up to the

original value α2 = 0.096394.

We normalize the Bloch functions v1(x) := u6((kc, kc);x), v2(x) := u6((−kc, kc);x), v3(x) :=
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Figure 9: Profiles of the vortex GS at ω = s2 + ε2Ω, ε = 0.09,Ω = 1 . (a) and (b) modulus and phase
of A(y) resp.; (c) and (d) modulus and phase of the corresponding leading-order GS approximation
εA(y)u1(M ;x) resp.; (e) and (f) modulus and phase of the numerically computed GS at ω = s2 + ε2Ω
resp.

u6((−kc,−kc);x) and v4(x) := u6((kc,−kc);x) so that

v2(−x1, x2) = v1(x1, x2), v3(x1,−x2) = v2(x1, x2) and v4(−x1, x2) = v3(x1, x2) (see §2). (5.3)

Using (5.3) and the fact

v1,3(x2, x1) = v1,3(x1, x2) (see §2), (5.4)

we obtain

v2(x2, x1) = v4(x1, x2). (5.5)

Due to (5.4) and (5.5) the asymptotic approximation εφ(0)(x) = ε
∑4

j=1Aj(εx)vj(x) also satisfies (4.18)
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Figure 10: (a) The four smallest eigenvalues of the Jacobian J in Theorem 4.7 at the solution A in Fig. 9
(a-d) for a range of sizes of the computational domain. (b) ǫ-convergence of the error ‖φ−εφ(0)‖H2(R2).

with s1 = s2 = 1. For instance,

φ(0)(x2, x1) = A1(y2, y1)(v1(x2, x1) + v3(x2, x1)) +A2(y2, y1)(v2(x2, x1) + v4(x2, x1))

= A1(y)(v1(x) + v3(x)) +A2(y)(v4(x) + v2(x)) = φ(0)(x1, x2).

The solution A is thus reversible according to Def. 4.5. Moreover, the normalization (5.3) also implies

that εφ(0)(x) is real and even in both variables, i.e. it satisfies (4.17) with s1 = s2 = 1. These symmetries

are used to reduce the computational domain to one quadrant and restrict to the real arithmetic.

Figure 11 shows the envelope A1(y), the GS approximation εφ(0) and the computed GS φ. The

envelope A1(y) in Fig. 11 is not radially symmetric due to the mixed derivative ∂y1∂y2 in (3.29), but

only looks radially symmetric because the coefficient α2 is relatively small (α2 ≈ 0.0964). Profiles of

A2, . . . , A4 are not plotted as they can be obtained from A1 via the above mentioned symmetries.

A closer look at the structure of φ near the origin, an illustration of the non-degeneracy of A, and

the ε-convergence of the approximation error are provided in Fig. 12. The obtained rate is about ε0.94,

which is once again close to the rate ε1 predicted by the formal asymptotics.

6 Conclusions

We have derived systems of Coupled Mode Equations (CME) which approximate stationary gap solitons

(GSs) of the 2D periodic Nonlinear Schrödinger Equation/Gross Pitaevskii equation near a band edge.

In contrast to [12] we make no assumption on the form of the periodic potential V (x). While in the

case of a separable V (x) [12] the derivation is possible in physical variables, here in general it has to

be performed in Bloch variables. We have rigorously proved via the Lyapunov-Schmidt reduction that

reversible non-degenerate solitary waves of the CME yield GSs of the Gross-Pitaevskii equation. We
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Figure 11: Profiles of the even, real GS at ω = s5 + ε2Ω, ε = 0.1,Ω = −1 . (a) A1(y); (b) the
corresponding leading-order GS approximation ε

∑4
j=1Aj(y)vj(x); (c) the numerically computed GS

at ω = s5 + ε2Ω.

(a) (b) (c)

20 25 30 35 40

10
−12

10
−10

10
−8

10
−6

10
−4

D

|λ
|

 

 

λ
1

λ
2

λ
3

λ
4

Figure 12: (a) Detail of the profile in Fig. 11 (c). (b) the non-degeneracy of A. (c) ǫ-convergence of
the error ‖φ− εφ(0)‖H2(R2).

have also provided an Hs(R2), s > 1 estimate on the approximation error shwoing that it is O(ε1/5)

for GSs with the spectral parameter O(ε2) close to the band edge. The analysis has been corroborated

by numerical examples including one which features novel GSs bifurcating from a band edge Bloch

wave located outside the set of vertices of the first Brillouin zone, which is impossible in the case of

separable potentials.
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