

MODEL-DRIVEN DEVELOPMENT OF
ACCESS CONTROL POLICIES FOR WEB SERVICES

Christian Emig1, Sebastian Kreuzer1, Sebastian Abeck1, Jürgen Biermann2, Heiko Klarl2

1Research Group Cooperation & Management, Universität Karlsruhe, Germany
2iC Consult GmbH, Keltenring 14, 82041 Oberhaching, Germany

{ emig | kreuzer | abeck } @ cm-tm.uka.de, { biermann | klarl } @ ic-consult.de

ABSTRACT
Web service-oriented architecture (WSOA) is a promising
paradigm for future software development. Necessary
identity management (IdM) architectures for WSOA are
just being prepared to enable fine-grained access control.
With the loose coupling of Web services with cross-
cutting identity services the question arises how to
develop access control policies for Web services. In this
paper we present a model-driven approach defining
access control policies which are independent from the
IdM architecture to which they are later applied.
Therefore we develop a platform-independent access
control model for WSOA and derive a platform-specific
model from a given IdM product. We show how to map
both models to a concrete language. Access control
policies are then defined using our platform-independent
language and transformed to platform-specific policies
using explicitly defined transformation rules. We present
a case study that applies our approach.

KEY WORDS
Access Control, Service-Oriented Architecture, Model-
Driven Development

1. Introduction

Currently, most enterprises try to align their business
processes with the supporting IT by migrating towards
Web service-oriented architecture (WSOA) [1]. Besides
the development of WSOA’s core concerns (cf. to
separation of concerns [2]) there are cross-cutting
concerns that have to be addressed before being able to go
productive with WSOA, a central one is enabling security,
especially access control [3]. Access control consists of
authentication and authorization verification.
Authorization verifications are made by the IdM
architecture, typically at a component called policy
decision point (PDP) and are enforced by a component
called policy enforcement point (PEP). We presented an
architectural blueprint of a WSOA-aware IdM
architecture in [4].

In this paper we build upon our conceptual access control
metamodel for WSOA presented in [5] and develop a
domain-specific language called Web Services Access

Control Markup Language (WSACML). While our
conceptual access control metamodel defines the sets and
relations necessary for the decision on authorization
verification requests, WSACML defines an appurtenant
language for the expression of such policies. WSACML
defines the platform-independent model (PIM) in the
context of OMG’s model-driven architecture (MDA) [6]
considering the IdM product as the exchangeable
platform. The goal is that during Web service
development its security aspects can be defined in
parallel. Policies can then be modeled independently from
the IdM architecture that will be used at service runtime.
When deploying the Web service, its policy is
transformed conforming to the policy metamodel of the
given IdM product and deployed there. This allows Web
service developers to reduce dependencies towards an
IdM product and to incorporate IdM as a loosely-coupled
infrastructural service.

Service-Oriented Architecture

Web Services

Service
Composition

IdM
Architecture

Platform-
Independent

Access Control
Policies

Platform-
Specific

AC-PoliciesBusiness
Component

Transfor-
mation

Figure 1. Transformation of Access Control Policies

The contributions of this paper are:

1. We define a policy model for Web service-oriented
architecture that is platform-independent from a given
IdM product and we present a concrete language which
applies this model called Web Services Access Control
Markup Language (WSACML).

2. We show how to derive a platform-specific policy
model of an existing IdM product and how to link these
two models using explicitly defined transformation
rules. This allows for a model-driven development
starting with platform-independent policies.

632-069 165

debbie
New Stamp

The paper is organized as follows: section 2 gives the
background on access control and model-driven
development and discusses related work. In section 3 we
present WSACML as a platform-independent access
control policy language for Web services. In section 4 we
show how to derive a platform-specific policy metamodel
of a state-of-the-art IdM product and how to couple it
with the platform-independent one. In section 5 our
approach is applied practically in a case study. A
conclusion and an outlook on our future work in this area
close the body of the paper.

2. Background and Related Work

2.1 Access Control Models

The purpose of access control models is to define sets and
relations for the definition of authorization statements
which are used to make access control decisions. The core
of access control models is about the definition of the so-
called subject/object-relation [7] which formally models
an active subject for getting access to a protected object.
Role-based access control (RBAC) [8] introduces the role
element as an indirection between subjects and objects.
Subjects are assigned to (business) roles and authorization
is not granted to individuals but to roles which eases
administration.

An enhancement of RBAC for Web services is introduced
in [9] featuring attribute-based access control (ABAC). It
allows for complete decoupling of subjects and objects.
Both are characterized by attributes, e.g. their metadata.
Policies very abstractly define general authorization
statements. While this approach offers much flexibility,
the problems not solved yet are about a concrete policy
language which needs to be very precise to handle this
independence in the subject/object-relation. The
decoupling of policies from the objects to be protected
adds complexity as policy matching algorithms are
needed which are not introduced in [9]. A policy decision
point that is able to handle this flexibility has not been
presented in this work either.

The OASIS standard eXtensible Access Control Markup
Language (XACML) [10] allows for modeling of
platform-independent access control policies. XACML
does not focus on the Web service domain but is a general
policy language. It features the decoupling of access
control policies from concrete objects using policy
matching algorithms and a generalized way of
characterizing subjects and objects using attributes.
Focusing on WSOA, the object to be protected is the Web
service operation defined by its signature in WSDL. Due
to the granularity of a Web service operation it is not
enough to only take care of its static aspects but the
operation’s parameters that are sent during invocation
must also be considered. XACML-compliant policy
artifacts are voluminous due to XACML’s notable
syntactical overhead, which hinders its usage for business

process designers. IdM products setting up on generalized
XACML-based access control policies are rather seldom
at present. These characteristics do not favor XACML to
be a suitable policy language handling platform-
independent analysis and design during Web service
development. Considering model-driven development (cf.
following section) it is to be positioned at PSM/PSC level.

2.2 Model-Driven Policy Development

Model-driven development is an approach to software
development that focuses on models and their
transformations as primary engineering artifacts. OMG
did a specification of this general approach called model-
driven architecture (MDA) [6]. The core elements are
platform-independent models (PIM) and platform-specific
models (PSM). The link between such two models is
drawn by transformation rules, specified between
elements of the respective metamodels.

The early treatment of security and especially access
control has evolved to be a critical factor in software
development projects. The integration of specifying
access control in Web service development processes still
lacks a standardized approach. Thinking of model-driven
development of access control policies for the Web
services domain, a domain-specific but platform-
independent policy language is a necessary prerequisite.
Well-established security infrastructures are already in
use for protecting traditional Web applications, so it is
reasonable to integrate them into the Web services world.
Compliance requirements and therefore the explicit
definition of security aspects are drivers for refactoring
existing platform-specific policies to platform-
independent ones making them understandable in a better
way for business analysts.

A contribution to model-driven security is given in [11].
To integrate access control aspects into the Web services
development process the authors defined an OCL-like
grammar [12] for modeling authorization knowledge and
developed a transformation tool which accepts this
grammar for the generation of platform-independent
XACML-compliant policies. They suggest attaching the
authorization knowledge during software design phase to
interface models. Proceeding to implementation phases
they transform this knowledge into XACML-compliant
policies. They suggest employing XACML as target
platform but neglect the integration of existing security
infrastructures. To be effectively applicable, a further
transformation step into a given IdM product is missing.

A further approach to model-driven security is given by
[13]. The authors suggest a development process that
combines platform-independent models based on OMG
MOF [14], one for system design with another one
concerning security aspects. Additionally, a tool is
presented to transform the platform-independent
authorization models into a platform-specific

166

representation for JEE and .NET components. They
discuss a generic methodology for integrating security
aspects into software development processes, but an
employable instantiation of this approach for use in the
Web service domain is not presented neither for the
system design metamodel nor the security design
language. Moreover, MOF-based metamodeling is a
heavyweight extension of UML in the sense that it
requires superior competences from security architects
and lacks tool support. Furthermore, it is complicated to
enhance the policy model towards Web service domain,
especially to consider Web service invocation parameters.
Additionally, the transformation rules presented are very
specific to the integrated security models of JEE and
.NET platform. A transformation to a loosely-coupled
IdM product is somewhat more complicated as policy
models are very different - a fact that is not addressed.

3. Web Services Access Control Markup
 Language (WSACML)

In this section we present Web Services Access Control
Markup Language (WSACML), an XML-based language
for the definition of access control policies for Web
services. WSACML policies are independent from the
IdM product which is used later, so they relate to the
platform-independent model (PIM) of MDA. They build
the first step for model-driven policy development. Using
platform-independent policies allows for an abstraction of
the highly technical representation inside the conrecte
IdM products. WSACML extends our domain-specific
conceptual access control metamodel for Web service-
oriented architecture as defined in [5] towards a concrete
language. First we give an overview of the relevant sets
and relations for access control policies in Web service-
oriented architecture.

The objects to be protected in WSOA are Web service
operations provided by atomic Web services or
compositions. As their interfaces are technically the same,
their access control policies can be handled similarly.
Following the WSOA paradigm, a mapping from business
processes towards Web services covering the IT-
supported parts takes place. Taking access control for
Web services into consideration, we focus on so-called
usage contexts of a Web service. From a business
perspective a usage context directly relates to the
invocation of a Web service during a concrete business
process. A usage context describes which subjects (users
or user agents) should have access to specific objects to
accomplish their tasks or to meet other business
requirements.

A subject, e.g. a human user or a self-acting service, is
defined by a collection of various subject attributes
forming its digital identity. Considering just the subject’s
business role does not scale with a constantly growing
number of fine-grained Web services as argued in [9].
Furthermore, role-based access control is currently one of

the most relevant concepts in enterprise level access
control systems and it is strongly related to business
process modeling. As practical experience shows, the
mapping of business roles to system roles is always
cumbersome. Our approach allows a business role to be
represented either by a specific subject attribute carrying
the role or it can be mapped to a role-specific set of
subject attributes.

The signature of a Web service operation aggregates
several parameters, input parameters as well as output
parameters. Constraining input parameters in
dependency to a usage context enables fine-grained
access control. This allows for instance the comparison
between input parameters and attributes of the calling
subject. An example for the checking of input parameters
is given in the case study. Besides subject attributes and
input parameters, constraints on environment attributes
like time or location are also relevant to describe usage
contexts and to make access control decisions.

Figure 2. Abstract Syntax of WSACML

In figure 2 the abstract syntax of WSACML is depicted as
an UML class diagram. The top-level element Policy is
identified by its attribute Name and bound to an object by
its attribute ServiceOperationBinding referencing a Web
service operation as listed in the service registry.
Furthermore, it defines a RuleSelectionAlgorithm
describing what is done if more than one Rule is
applicable. Deny-overrides implies that explicit
prohibitions (deny-rules) have precedence over
permissions (permit-rules). First-applicable is another
algorithm which determines the first matching Rule of a
Policy to define the result of an access control decision.

A Policy is an ordered list of Rules (cf. to
RuleSeclectionAlgorithm) which themselves have an
identifying Name and an Effect. The Effect describes what
happens if a Rule is applicable. Most common Effects are

167

Permit and Deny. A Rule aggregates several Assertions
and is applicable if all of its Assertions evaluate to true.
An Assertion is a predicate that requires two arguments. It
combines two variables or a variable and a constant value
using an AssertionFunction like equal, unequal, greater-
than-equal etc. To reflect the different entities that
participate in an access context, variables are divided into
four categories SubjectAttributes, ObjectAttributes,
InputParameters and EnvironmentAttributes. WSACML
allows that two variables are treated as arguments of
Assertions. This enables for instance comparing an
InputParameter of a service invocation with
SubjectAttributes of the calling subject. A Rule’s Effect is
only enforced if the Rule is applicable, which means that
all of its Assertions are evaluated to true. If a Rule is not
applicable, it implies that the Web service’s usage context
does not match and that the subject is not authorized.

Since a WSACML Policy is simply a pointer to concrete
Rules, the administrative advantage of re-using Rules
within Policies of other Web services is featured. If
another Web service is deployed which is used in similar
usage contexts, its Policy can be built from existing Rules.
Additionally, a Policy of an existing Web service that is
required to be accessed in another usage context is just
extended by an additional Rule which covers the new
Assertions. If the access requirements of an existing usage
context change, only the appropriate Rule needs to be
updated to adapt the Policies of all Web service
operations associated with that usage context. The Policy
of a Web service composition needs to include all
Policies of the Web services operations it does invoke by
all means. This allows for a pre-checking as the first step
in a Web service composition and may reduce the need
for roll-back operations.

We use XML as the concrete syntax for WSACML, so
the abstract syntax depicted in figure 2 has to be
transformed to XML Schema (XSD). [15] describes a
general way of mapping. The transformation maps UML
classes to XSD complex types, UML attributes to XSD
attributes and UML aggregations to XSD sequences.
Policy and Rule classes were stereotyped with <<root>>
to generate XSD top-level elements. Namespaces were
retightened manually, as well as constraints like the
restricted occurrence of variables and constants as child
nodes of an assertion.

It is important to recognize that WSACML only gives the
structure of the language but does not give the vocabulary
in the sense of the concrete names of the attributes of
subjects, objects, parameters and environment that are
available to set up access control policies. The vocabulary
depends on the given business and IT environment and
needs to be created in advance. It contains the information
about all relevant business objects and can be enhanced at
anytime. In our case study in section 5 we present a
snapshot of an exemplary vocabulary.

4. Deriving Platform-Specific Policy Meta
 models

After having defined a platform-independent policy
model, we show in this section how a policy metamodel
for an existing security infrastructure can be refactored
exemplarily treating CA eTrust SiteMinder [16] being a
state-of-the-art IdM suite. Subsequently we show how a
model-to-model transformation is utilized to generate
platform-specific policies from WSACML ones.

4.1 CA eTrust SiteMinder as a specific IdM Platform

SiteMinder is an enterprise-level policy-based Web access
management platform. Web agents are hooked into
distributed Web servers and application servers and act as
policy enforcement points. They intercept access requests,
forward them to the centralized policy decision point and
enforce access decisions. Policies can be authored via a
Web-based administration applet or using a given Java-
based policy API. Policies are maintained in an LDAP-
based policy store, which was the starting point for
obtaining the subset of SiteMinder’s policy model
relevant for authorization. Figure 3 depicts the platform-
specific abstract SiteMinder policy syntax. As there is
neither an explicit definition nor a specification of
SiteMinder’s backend policy model, we derived the
semantics of objects and attributes by reverse engineering
using the policy API and the policy design guide.

Figure 3. Abstract Syntax of SiteMinder Policy Model

Figure 3 shows the relevant SiteMinder’s object classes
that are used to formulate authorization statements. In the
SiteMinder model authorization is bound to resources by
the attribute ResourceFilter which is part of the object
SmRealm. SmRealm corresponds to a subset of an URL.
The PolicyLink links a realm to a policy, called SmPolicy.
SmPolicy allows for time- and location-based restrictions
and directly links towards user filters, called
SmUserPolicy. Authorized users are determined via
SmUserPolicy objects which allow the definition of
LDAP-based user filters. SmRule is the third element of
the PolicyLink and determines whether an authorization

168

statement permits or denies access. Other attributes
owned by the related object classes that are not shown
here mainly contain configuration settings, e.g. for each
SmUserPolicy a specific connection between a policy
server and different user directories can be defined.

To be usable for policy transformation, the SiteMinder
UML diagram has to be transformed to an XSD schema
as well by applying the same transformation as we did for
the PIM described in the previous section. We ensured
that classes and attributes are directly related to their
policy API counterparts. When proceeding to deployment
a policy import tool only needs to parse the XML-based
SiteMinder policy and settings files and generate the
appropriate SiteMinder objects forming the platform-
specific code (PSC).

4.2 Defining PIM to PSM Transformation

After defining the platform-independent and the platform-
specific model, these need to be linked via explicit
transformation rules. Development of transformation rules
between both policy models primarily consists of three
steps:

1. Provide abstract syntax trees for both input models and
output models

Since XSLT is selected as the transformation language,
source and target trees are provided as XML schema
(XSD). The abstract syntax for the source tree is provided
by WSACML XSD (generated from figure 2) and the
abstract syntax for the target tree is provided by
SiteMinder XSD (generated from figure 3).

2. Formulate conceptual transformation rules

In this step concepts of PIM are to be mapped towards
PSM. As both models can substantially differ the actual
linking should be assisted by an expert of the PSM
environment as this model is usually substantially more
complicated to understand. First the transformation rules
which are to be formalized in the next step are to be
formulated on a conceptual basis. Mapping can be
initiated by identifying semantically equivalent sub trees
in both models which can be started at the root node.

Table 1. Conceptual Transformation Rules
Source:

WSACML
Transformation Target:

SiteMinder
Policy SmRealm
Rule/

@Effect
Permit true
Deny false

SmRule/
@AllowAccess

Assertion
/Subject-
Attribute

/@Name=
role

 ‘cn =’+ @Value +
‘, ou = roles, dc =

com’
organizationalUnit

5
0

smUserPolicy/
@FilterPath
@FilterClass
@PolicyRes.
@PolicyFlags

It is useful to work with rule patterns e.g. direct mapping,
mapping with type cast, or restructuring rules. Examples
of the three kinds of rules are shown in table 1. The first
entry is a direct mapping of WSACML Policy elements to
SiteMinder’s SmRealm. If semantics and structure are
equivalent but types and names differ, transformation
involves type casting and renaming. An example for type
casting is the second rule in table 1. It does a mapping of
String-typed attribute Effect of a WSACML Rule to the
attribute AllowAccess of Boolean type owned by
SiteMinder SmRule.

The third example in table 1 is about a complex
restructuring rule. SiteMinder does not explicitly support
WSACML’s concept of Assertions. Required attribute
statements are distributed over several LDAP objects
combined to a SiteMinder policy. The example shows
how to map an assertion concerning a concrete subject
attribute from WSACML’s model to SiteMinder’s model.
It takes the value of the subject attribute “role” and
converts it to a LDAP search expression. This affects the
four attributes of SiteMinder’s smUserPolicy: FilterPath
accepts an LDAP search expression, which is
concatenated from “cn=” in case of
SubjectAttribute/@Name=role and a literal derived from
Constant/@Value and the remainder “ou=roles, dc=com”.
FilterClass defines the object class of the directory object
specified by FilterPath, here an LDAP object of type
“organizationUnit”. PolicyResolution describes the
relation between the directory object and the subject. In
the actual case “5” indicates that the subject’s
distinguished name is a member of the directory object
(organizationalUnit). PolicyFlags’s value of “0” indicates
that neither exclusion nor recursion due to nested groups
is required by the policy.

3. Formalize rules by mapping them to concrete
transformation technology

SiteMinder’s view on policy and rule elements is different
from the view presented by WSACML, i.e. SiteMinder
policies are user centric whereas WSACML policies are
resource-centric. So a WSACML Policy is mapped to
SmRealm and a Rule is mapped to both SmRule and
SmPolicy which are linked together by PolicyLink.

In figure 4 we show an exemplary excerpt of the
formalization of the conceptual transformation rules using
XSLT. It shows how to map the WSACML Rules to
SiteMinder’s policy model. The XSLT-based
transformation is applied when the XPath expression
assigned to the attribute “match” is matched by a node or
node set of the source tree. The transformation involves
type casting from String-valued WSACML Rule/@Effect
to Boolean-valued SiteMinder SmRule/@AllowAccess.
The instruction <xsl:apply-templates> causes the XSLT
processor to search for applicable transformation rules at
this point.

169

<xsl:template match=„Rule">
<PolicyLink>

<SmRule>
<xsl:attribute name=„Name">
<xsl:value-of select='@Name'/>

</xsl:attribute>
<xsl:attribute name=„AllowAccess">
<xsl:value-of select="@Effect = 'permit'"/>

</xsl:attribute>
</SmRule>
<SmPolicy>
<xsl:attribute name=„Name">
<xsl:value-of select='@Name'/>

</xsl:attribute>
<xsl:apply-templates/>

</SmPolicy>
</PolicyLink>

</xsl:template>
Figure 4. Exemplary XSLT Transformation Rule

5. Case Study

An integration project at our university applies a WSOA-
based approach to encapsulate functionality of existing
heterogeneous software systems at reusable Web services.
These services are then to be composed following
specified business processes. These processes are
designed with UML use case and activity diagrams and
are mapped to component and service diagrams [17].

student

counselor

ToRService

createToR

«usageContext»
StudentConsultation

«usageContext»
StudentConsultation

«usageContext»
StudentSelfService

«usageContext»
StudentSelfService

student

counselor

ToRService

createToR

«usageContext»
StudentConsultation

«usageContext»
StudentConsultation

«usageContext»
StudentSelfService

«usageContext»
StudentSelfService

Figure 5. Associating Objects with Usage Contexts

UML use case diagrams which abstractly describe the
functional requirements build the starting point of a Web
service development project. Access control aspects as
non-functional requirements are integrated into such
analysis models by enhancing the model semantics using
stereotypes. In figure 5, we show our enhancement adding
so-called “usage contexts”. The given example addresses
a service providing a transcript of records (ToR). It is
offered by a Web service called ToRService at the
operation “createToR”. This functionality can be accessed
by different roles in different usage contexts. A student
may get access for self-service and is then allowed to get
his ToR only. In contrast a counselor is allowed to access
the ToR of all students.

Before being able to specify these usage contexts as
WSACML Rules that build the WSACML Policy for the
“createToR” Web service operation, the concrete
vocabulary has to be defined. According to our
metamodel depicted in section 3, four areas have to be
covered: attributes of subjects are to be derived from the
user repository, object attributes are an aggregation of
existing metadata, input parameters are to be derived from
the existing Web service interfaces and environment

attributes are to be specified according to the project’s
needs. This vocabulary is not fixed but can be flexibly
extended by new attributes as this does not affect existing
WSACML Rules. The attributes provide the vocabulary
for the access control language WSACML. Figure 6
exemplarily depicts a reduced view of our WSACML
vocabulary.

Figure 6. Exemplary WSACML Vocabulary

From the enhanced use case diagram, a WSACML Policy
is generated for each use case corresponding to a Web
service operation. While the aggregation of all usage
contexts defines the overall WSACML Policy of a Web
service operation, each usage context maps to an
individual WSACML Rule. This Rule puts together all
necessary Assertions that must hold for the Rule to be
applicable. It sets up on the vocabulary of attributes as
defined before.

<Policy Name=„createToR_policy"

ServiceOperationBinding=„ToRService/createToR“
RuleSelectionAlgorithm=„first-applicable “>
<RuleRef>StudentSelfService</RuleRef>
<RuleRef>StudentConsultation</RuleRef>

</Policy>

<Rule Name=„StudentSelfService“ Effect=„permit“>
<Assertion AssertionFunction="equal">

<SubjectAttribute Name="role" />
<Constant Value="student" />

</Assertion>
<Assertion AssertionFunction="equal">

<SubjectAttribute Name=„identifier“ />
<InputParameter Name="matriculation" />

</Assertion>
</Rule>

<Rule Name=„StudentConsultation“ Effect=„permit“>
<Assertion AssertionFunction="equal">

<SubjectAttribute Name="role" />
<Constant Value="counselor" />

</Assertion>
</Rule>

Figure 7. Exemplary WSACML Policy / Rules

In figure 7 an exemplary WSACML Policy and
corresponding Rules are depicted. The Policy has the
name “createToR_policy” and is bound to the Web
service operation “ToRService/createToR” as specified
during service design. From the two usage contexts
StudentSelfService and StudentConsultation as depicted in
the enhanced UML use case diagram, two WSACML
Rules with the corresponding names are derived. Using

170

“first-applicable” as RuleSelectionAlgorithm implies the
first matching rule defines the Effect of the Policy.
StudentSelfService contains two Assertions that need to be
evaluated to true so that the Rule can be applied. First, the
attribute “role” of the calling subject needs to be
“student”, second the subject’s attribute “identifier” has to
be identical to the input parameter with the name
“matriculation” of the service invocation. To match the
usage context of a student consultation process, the
calling subject needs to have the attribute “role” with a
value of “counselor”. In case of an access control request,
the rule StudentSelfService is checked first. If the subject
attribute role does not match, this Rule’s assertions do not
evaluate to true so the Rule is not applicable. The next
Rule is evaluated until one is applicable. Then this Rule’s
Effect defines the overall access decision. Keep in mind
that this WSACML Policy consisting of two Rules is
completely independent from a concrete IdM product
which we will consider in the next section.

<SmRealm Name=‘createToR_policy’
ResourceFilter=‘ToRService/createToR’>

<PolicyLink>
<SmRule Name=‘StudentConsultation’
AllowAccess=‘true’ />

<SmPolicy Name=‘StudentConsultation’>
<SmUserPolicy
FilterPath=‘cn=counselor, ou=roles, dc=com’
FilterClass=‘organizationalUnit’
PolicyResoultion=‘5’
PolicyFlags=‘0’ />

</SmPolicy>
</PolicyLink>

</SmRealm>
Figure 8. Exemplary SiteMinder Policy (PSM)

At present we use SiteMinder as the policy decision point
in our IdM architecture. By using WSACML for policy
specification and transformations to SiteMinder, we are
not limited to this product. When deploying a Web
service, its WSACML Rules according to its Policy are
collected and the transformation is applied. We use the
XSLT processor of Oracle JDeveloper. Figure 8 shows a
SiteMinder policy that has been transformed from the
WSACML policy in figure 7 using the transformation
depicted in figure 4. With the PSM policies then
conforming in a structural and syntactical way to
SiteMinder’s policy model we developed a Java-based
policy import tool which uses SiteMinder’s policy API for
the final import to its policy store.

6. Conclusion and Further Work

In this paper we presented Web Services Access Control
Markup Language (WSACML) which allows modeling of
access control policies for Web services at design time. It
is platform-independent related to the IdM product that is
applied at runtime. We designed both an access control
model and a concrete language and showed how to
refactor an appropriate model of an existing IdM product
exemplarily considering CA eTrust SiteMinder. We

illustrated how to apply our approach in a case study in a
WSOA-based integration project.

Our next steps are further work on how access control
policies for Web service compositions relate to the
policies of the atomic ones. Additionally, we will focus
on policy lifecycle management.

References

[1] Christian Emig, Jochen Weisser, Sebastian Abeck:

Development of SOA-Based Software Systems – an
Evolutionary Programming Approach, IEEE Conference on
Internet and Web Applications and Services ICIW’06,
Guadeloupe, February 2006.

[2] Edsger Dijkstra. On the role of scientific thought. EWD
447, 30th August 1974, Neuen, The Netherlands. Appears
in: Edsger W. Dijkstra, Selected Writings on Computing: A
Personal Perspective, Springer-Verlag, 1982. ISBN 0–387–
90652–5, pp. 60–66.

[3] Nick Nikols: Directory Products evolve towards Identity
Services, Burton Group Identity and Privacy Strategies,
November 2004.

[4] Christian Emig, Frank Brandt, Sebastian Kreuzer,
Sebastian Abeck: Identity as a Service - Towards a Service-
Oriented Identity Management Architecture, 13th EUNICE
Open European Summer School and IFIP TC6.6 Workshop
on Dependable and Adaptable Networks and Services
(EUNICE 2007), Twente/Netherlands, July 2007.

[5] Christian Emig, Frank Brandt, Sebastian Abeck, Jürgen
Biermann, Heiko Klarl: An Access Control Metamodel for
Web Service-Oriented Architecture, IEEE Conference on
Software Engineering Advances ICSEA’07, Cap
Esterel/France, August 2007.

[6] Joaquin Miller, Jishnu Mukerji (Editors): MDA Guide 1.0.1
http://www.omg.org/docs/omg/03-06-01.pdf

[7] B.W. Lampson: Dynamic protection structures, AFIPS
conference proceedings, FJCC 1969, pp. 27-38.

[8] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman
Role-Based: Access Control Models, IEEE Computer
29(2): pp. 38-47, IEEE Press, 1996.

[9] Eric Yuan, Jin Tong: Attribute Based Access Control
(ABAC) for Web Services, IEEE International Conference
on Web Services (ICWS 2005), Orlando Florida, July
2005.

[10] OASIS eXtensible Access Control Markup Language
(XACML) Version 2.0, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

[11] Muhammad Alam, Ruth Breu, Michael Hafner: Modeling
permissions in a (U/X)ML world, IEEE First International
Conference on Availability, Reliability and Security
(ARES’06), 2006.

[12] Object Management Group: Object Constraint Language,
Version 2.0, Mai 2006.

[13] David Basin, Juergen Doser, Thorsten Lodderstedt: Model-
Driven Security: From UML Models to Access Control
Infrastructures, ACM Transactions on Software
Engineering and Methodology, Vol. 15, No. 1, pp. 39–91,
January 2006.

[14] Object Management Group: Meta Object Facility (MOF)
Specification, Juli 2005.

[15] Design XML schemas using UML, 01 Feb 2003.
http://www.ibm.com/developerworks/library/x-umlschem/

[16] CA eTrust SiteMinder, Product Homepage.
http://www.ca.com/us/internet-access-control.aspx

[17] Christian Emig, Karsten Krutz, Stefan Link, Christof
Momm, Sebastian Abeck: Model-Driven Development of
SOA Services, C&M Research Report, April 2007.

171

