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Chapter 1

Introduction

The fractionalization of quantum numbers, where the excitations of a strongly-
correlated system carry only a fraction of the quantum numbers of the con-
stituents, is currently of great interest in condensed matter physics. In partic-
ular, as it is hard to address this physics by mean field theories, a significant
body of recent work has focused on finding solvable theoretical models in
which this phenomenon occurs [10, 93, 94, 96, 97]. In addition to its intrin-
sic interest, the phenomenon of fractionalization may well have a bearing
on one of the most vexing problems in condensed matter theory, should the
long-standing suggestion of a link between fractionalization and high-TC su-
perconductivity [4, 83] be established. In particular, it has been shown [65]
that the topological degeneracy in these systems might be used to protect
quantum bits and be applicable to the emerging field of quantum computing.

Fractional statistics, as a generalization of the idea of quantum statistics
based on Berry’s phase [130], is a sensible idea only in one or two dimensions,
where one can define a winding number. In one dimension, the behavior is
known to occur in spin-1/2 antiferromagnets [58], where exactly solvable
models exhibiting this behavior exist [57,59,60,114]. One milestone towards
the understanding of fractional quantization in one dimension is the 1/r2

model independently introduced by Haldane [57] and Shastry [114] in 1988.
The model describes a spin 1/2 chain with a Heisenberg interaction which
falls off as one over the square of the distance between the sites. The exact
ground state is provided by a trial wave function proposed by Gutzwiller [51]
as early as in 1963. The Haldane–Shastry Model (HSM) offers the opportu-
nity of studying spinons, i.e., the elementary excitations of one-dimensional
spin chains, on the level of explicit and analytical expressions for one and
two-spinon wave functions [14], which are at least at present not available
for any other model. Kuramoto and Yokoyama [87] generalized the model to
allow for mobile holes (i.e., empty lattice sites) with a hopping parameter
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that also falls off with 1/r2 as a function of the distance. The Kuramoto–
Yokoyama Model (KYM) hence contains spin and charge degrees of freedom,
and accordingly supports spinon and holon excitations, which carry spin 1

2

but no charge and charge +e but no spin, respectively. It allows for the exact
study of the decoupling of a fermionic (hole) degree of freedom into a spinon
and a holon, i.e., spin charge separation. This is also a key feature of the
Luttinger liquid, which is the effective low energy model of one-dimensional
spin chains [55].

Fractionalization of statistics is also known to occur in two dimensions,
in the presence of a magnetic field that violates the discrete symmetries of
parity (P) and time-reversal (T); this situation is realized in the fractional
quantum Hall effect [7, 22, 23, 63, 88, 117] (FQHE). The field started about a
quarter of a century ago with the discovery of the fractional quantum Hall
effect, which was explained by Laughlin [88] in terms of an incompressible
quantum liquid supporting fractionally charged (vortex or) quasiparticle ex-
citations. When formulating a hierarchy of quantized Hall states [44, 56, 63]
to explain the observation of quantized Hall states at other filling fractions,
Halperin [63] noted that these excitations obey fractional statistics [130], and
are hence conceptually similar to the charge-flux tube composites introduced
by Wilczek two years earlier [129].

The interest was renewed a few years later, when Anderson [4] proposed
that hole-doped Mott insulators, and in particular those described by the t–J
model universally believed to describe the CuO planes in high Tc supercon-
ductors, can be described in terms of a spin liquid (i.e., a state with strong,
local antiferromagnetic correlations but without long range order), which
would likewise support fractionally quantized excitations. In this proposal,
the excitations are spinons and holons, which carry spin 1/2 and no charge
or no spin and charge +e, respectively. The fractional quantum number of
the spinon is the spin, which is half integer while the Hilbert space (for the
undoped system) is built up of spin flips, which carry spin one.

One of the earliest proposals for a spin liquid supporting deconfined
spinon and holon excitations is the (abelian) chiral spin liquid (CSL). Follow-
ing up on an idea by D.H. Lee, Kalmeyer and Laughlin [70] proposed in 1987
that a quantized Hall wave function for bosons could be used to describe
the amplitudes for spin-flips on a lattice. The excitations of the liquid—
spinons, which carry spin 1/2 but no charge, and holons, which carry charge
but no spin—obey fractional statistics. Again, the spinons exhibit quantum-
number fractionalization and carry only half the spin of the excitations in
conventional magnetically-ordered systems, which carry spin 1. Whereas
the spinon is supposed to be the fundamental field describing excitations in
two-dimensional antiferromagnetic S = 1/2 systems in general, the spinon
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substructure of the magnons carrying spin 1 is generally suppressed, which
makes it a less established concept of description for two dimensions than for
one dimension. This can be seen in analogy to quantum chromodynamics,
where the quarks constitute the substructure of the nucleons, but cannot be
observed as free particles.

In the chiral spin liquid, however, the spinons are deconfined, which thus
represents a suitable trial state to study fractional quantization of spinons
in two dimensions. Unfortunately, for nearly two decades since its emer-
gence, the chiral spin liquid lacked a microscopic model where it is real-
ized. From today’s point of view, the CSL state did not turn out to be
relevant to CuO superconductivity, but remains one of very few examples
of two-dimensional spin liquids with fractional quantization. The other es-
tablished examples are the resonating valance bond (RVB) phases of the
Rokhsar-Kivelson model [83] on the triangular lattice identified by Moessner
and Sondhi [94] and of the Kitaev model [81]. While the explicit detection
of spinons in two dimensions still remains an unsolved experimental task,
the fractional statistics of the quasiparticle excitations in the FQHE has
been observed experimentally very recently [22, 23]. In contrast to the one-
dimensional case, however, there has been no definite evidence as to whether
fractional statistics occurs in the absence of an external field breaking these
symmetries explicitly, which would dictate a path to endeavor fractional ex-
citations in generic spin models where the symmetry is generally preserved.

The present renaissance of interest in fractional quantization is also due
to possible applications of states supporting excitations with non-abelian
statistics to the rapidly evolving field of quantum computation and cryptog-
raphy [82]. The paradigm for this universality class is the Pfaffian state intro-
duced by Moore and Read [95] in 1991. The state was proposed to be realized
at the experimentally observed fraction ν = 5/2 [131] (i.e., at ν = 1/2 in the
second Landau level), a proposal which recently received strong experimen-
tal support through the direct measurement of the quasiparticle charge [29].
Remarkable subsequent works further explored the underlying nature of the
Pfaffian state and non-Abelian statistics by using exact eigenstates of model
Hamiltonians [49] as well as by the study of effective Chern-Simons field
theories [35] and the deduction of the concise braiding properties of the Pfaf-
fian state [98]. It turned out that (effective) three-body interaction terms
appear to be essential to stabilize the Pfaffian state. A further step in un-
derstanding the Pfaffian state was done by Read and Green observing that
a p-wave BCS superconductor can be described by it where the excitations
are the half quantum vortices and their non-Abelian statistics results from a
zero-energy mode in the vortex core [103]. Therein, the non-abelian statis-
tics manifests itself in Majorana modes of zero energy in the vortex core.



16 Introduction

Effectively, two Majorana modes form one fermionic degree of freedom. The
internal Hilbert space whose configuration is changed upon braiding of the
half quantum vortices is given by the occupation numbers of these zero mode
fermions, which gives rise to a non-commutativity of the braiding and hence
to non-abelian statistics. This was made precise by Ivanov [67] in terms of
concrete unitary non-Abelian transformations governing the braiding of the
half quantum vortices and was further refined later by Stern, von Oppen,
and Mariani [116].

Quantum states with non-Abelian excitations (nonabelions) are of great
fundamental and potential practical interest. Non-Abelian statistics can be
viewed as a generalization of abelian anyonic statistics. For the latter, the
many-particle state acquires a non-trivial fractional phase as two anyonic
excitations (anyons) wind around each other. This realization of abelian
anyonic statistics can be interpreted as a one-dimensional representation of
the braid group [77, 130], which we also encounter for the spinons in the
CSL, thus being abelian anyonic excitations. Opposed to this, nonabelions
possess internal state degrees of freedom whose configuration is changed as
the nonabelions wind around each other, thus being a higher dimensional
representation of the braid group [33]. Concerning its potential application
to topological quantum computing [26, 82], a non-Abelian phase is highly
advocated compared to an anyonic phase. This is due to the fact that
whereas in the abelian anyonic phase one can only alter the phase of the
state by braiding quasiparticles, exchanging particles can also change the
internal space configurations of the particles for the non-Abelian case. This
gives such a huge variety of protected topological manipulations of the sys-
tem that any desired unitary transformation can be realized with arbitrary
accuracy [36]. Most importantly, however, the internal state vector is insen-
sitive to local perturbations—it can only be manipulated through braiding of
the non-abelian excitations. These properties together render non-abelions
preeminently suited for applications as protected qubits in quantum compu-
tation [26].

In this thesis, we start to approach the field of fractional excitations
by discussing the spinon and holon excitations of the Kuramoto–Yokoyama
model in Chapter 2. The Haldane–Shastry Model, i.e., the KYM at half
filling, offers the opportunity of studying spinons, i.e., the elementary exci-
tations of one-dimensional spin chains, on the level of explicit and analytical
expressions for one and two-spinon wave functions [14]. In similar ways, we
set up the technical apparatus for the discussion of holon excitations at the
same level of explicit wave functions. As the first main result of this thesis,
considering the two-holon eigenstates, we find that the holons obey half-
Fermi statistics, which manifests itself in fractional momentum shifts of the
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single holon momenta. Half-Fermi statistics in one dimenssion corresponds to
a statistical parameter of 1/2 in terms of the Haldane state counting princi-
ple [58]. In general, the statistical parameter for a certain type of excitations
is defined as g = p/q, where q denotes the number of excitations added to
the system and p the number of orbitals fully occupied due to this addition.
Accordingly, bosons have a statistical parameter gB = 0, since any orbital
can contain arbitrarily many bosons, whereas fermions have gF = 1, since one
orbital can only be occupied by one fermion due to Pauli principle. While
the half-Fermi statistics of spinons can be easily seen from the above reason-
ing [58], the situation is more subtle for the holons, which thus renders our
finding important to establish the view of holons being half-fermions.

This discussion is generalized to general SU(n) spin symmetry in Chap-
ter 3. We use a similar analytical approach which was set up in the previous
Chapter 2. Again, the technical problems associated with the treatment of
the holon states are the operators by which the Hilbert space of the fractional
excitations is constructed – whereas one makes use of bosonic spin flip opera-
tors for the spinons, one needs fermionic creation and annihilation operators
for the holons. The question how the statement on the fractional statistics
of the holons now generalizes for the KYM with enlarged spin symmetry
group to SU(n) [76] is answered in this chapter. We start from the SU(3)
KYM chain and develop the exact one-holon and two-holon wave functions.
We again find a manifestation of fractional statistics in the fractional shifts
of the single holon momenta, and observe that the SU(3) holons obey third
Fermi statistics. In particular, we explicitly show that the general SU(n)
holon excitations obey a statistical parameter of gho = 1/n, as it was shown
in previous works that the SU(n) spinons obey a statistical parameter of
gsp = n − 1/n in terms of the Haldane state counting principle [58]. This
provides an interesting view on spin charge separation in SU(n) spin chains,
which is the next major result of the thesis. We see that the decay of a
fermionic excitation into a holon and spinon emerges as a conservation of
statistical parameters: The sum of the spinon and holon parameter yields 1,
i.e., the fermionic parameter, for general SU(n) spin symmetry.

In Chapter 4, we extend our discussion to spinon excitations in two dimen-
sions, and start by considering the Chiral Spin Liquid (CSL) state. We first
discuss the general properties of this paradigmatic state for two-dimensional
spinons and, as a main result of the thesis, develop a microscopic model
whose unique and exact ground state is the CSL. This demands a rather
technical analytical approach involving tensor decompositions of operators
and a development of a numerical method to treat many-body spin Hamilto-
nians efficiently with exact diagonalization methods, which we call the Kernel
sweeping method. We finally discuss the spectrum of the model and find that
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this model is highly suited for the first rigorous study of two-dimensional
spinons in order to achieve a similar level of understanding for spinons in
two dimensions as it is the case in one dimension for the spinons in the
Haldane–Shastry model.

For Chapter 5, the preceeding chapter can be viewed as a prelude for
the results described therein. As probably the major result of our work on
low-dimensional spin liquids, we propose a novel chiral spin liquid state for
an S = 1 antiferromagnet. Most importantly, the spinon and holon excita-
tions of this state are deconfined, possess fractionalized quantum numbers
(i.e., spin 1/2 for the spinons), and obey non-abelian statistics, with the
braiding governed by Majorana fermion states. This new kind of excitations,
non-Abelian spinons, will be discussed in further detail. The non-Abelian
chiral spin liquid state violates time reversal (T) and parity (P), is a spin
singlet, can be formulated on any lattice type, and fully respects all the lat-
tice symmetries. The state possesses a 3-fold topological degeneracy on the
torus geometry. We provide numerical evidence that the state can be sta-
bilized on the triangular lattice by a local Hamiltonian involving three-spin
interactions. This demands a development of a new numerical method to
find an optimized Hamiltonian which stabilizes a given wave function as its
ground state, which we call Hamiltonian Finder. Finally, we hypothesize that
spinons in spin liquids with spin larger than 1/2 generically obey non-abelian
statistics, but are only deconfined in the chiral spin liquids we introduce and
study here.

In Chapter 6, we provide a short survey of developments in experimental
realizations of fractional excitations in general, commenting on spinons and
holons in one-dimensional spin chains, abelian and non-abelian excitations
in the Quantum Hall effect and the Kitaev model, and recent work on two-
dimensional spinons in S = 1/2 lattice materials. In particular, we try to
point out directions of experiments which may promise observation of the
analytical findings we present in this thesis.

Finally, we finish the thesis with a conclusion. The main theoretical
results are, firstly, a general understanding of fractional statistics of holon
excitations in spin chains, secondly, the development of an exact model for
the two-dimensional chiral spin liquid, and thirdly, the introduction of a spin
liquid with non-Abelian spinon excitations. The main technical accomplish-
ments are a Tensor decomposition scheme to construct exact Hamiltonians,
the development of the Kernel sweeping method, and the Hamiltonian Finder
method. Beyond ongoing projects, we have also omitted the presentation of
our work on orbital currents in cuprate superconductors [48, 122] as well as
entanglement entropy of critical SU(n) spin chains [38], in order to focus the
thesis on our results for low-dimensional spin liquids.



Chapter 2

Holon excitations in
antiferromagnetic spin chains

2.1 Introduction

In this chapter, we study the fractional character of holon excitations in an-
tiferromagnetic spin chains. To address this issue at the level of explicit wave
functions, we constrain our attention to the Kuramoto–Yokoyama model [87],
which is a generalization of the Haldane–Shastry model [57,114] to allow for
mobile holes, i.e., empty lattice sites, with a hopping parameter that also
falls off with 1/r2 as a function of the distance. The Kuramoto–Yokoyama
Model (KYM) hence contains spin and charge degrees of freedom, and ac-
cordingly supports spinon and holon excitations, which carry spin 1/2 but
no charge and charge +1 but no spin, respectively. In principle, the KYM
allows for a similarly explicit construction of holon wave functions, which so
far have only been obtained for states involving a single holon. The reason
for this deficit has been of technical nature, related to the commutation re-
lations of the operators used to build the Hilbert space of these fractionally
quantized excitations. Whereas for the spinons one can use bosonic spin-flip
operators, one needs fermionic creation and annihilation operators for the
holons. We address and overcome this technical problem as we construct the
explicit wave functions for two-holon excitations of the KYM. In Section 2.2
we review the KYM and its properties. In Section 2.3 and 2.4, we briefly
discuss the ground state at half filling and the spinon excitations. We further
review the analytic results so far known for the one-holon excitations in Sec-
tion 2.5 as a preliminary for the construction of the explicit two-holon wave
functions to be done in Section 2.6. Therein we derive the exact energies
and individual holon momenta, which turn out to be quantized according to
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|ηα−ηβ|

Figure 2.1: Lattice of the Kuramoto–Yokoyama model.

half-Fermi statistics of the holons. The main body of work presented in this
chapter is published in

R. Thomale, D. Schuricht, and M. Greiter, Exact two-holon wave func-
tions in the Kuramoto–Yokoyama model. Phys. Rev. B 74, 024423 (2006).

2.2 Kuramoto–Yokoyama model

The Kuramoto–Yokoyama model [87] is most conveniently formulated by
embedding the one-dimensional chain with periodic boundary conditions into
the complex plane by mapping it onto the unit circle with the sites located
at complex positions ηα = exp

(
i2π

N
α
)
, where N denotes the number of sites

and α = 1, . . . , N (see Fig. 2.1). The sites can be either singly occupied by
an up or down-spin electron or empty. The Hamiltonian is given by

HKY = −2π2

N2

N∑

α,β=1
α6=β

Pαβ

|ηα − ηβ|2
, (2.1)

where Pαβ exchanges the configurations on the sites ηα and ηβ including a
minus sign if both are fermionic. Rewriting (2.1) in terms of spin and electron
creation and annihilation operators yields

HKY =
2π2

N2

N∑

α6=β

1

|ηα − ηβ|2

PG

[

−1

2

∑

σ=↑↓

(

c†ασcβσ + c†βσcασ

)

+ ~Sα · ~Sβ − nαnβ

4
+ nα − 1

2

]

PG,
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Figure 2.2: N -electron Slater determinant state.

(2.2)

where the Gutzwiller projector PG =
∏

α(1 − c†α↑c
†
α↓cα↓cα↑) enforces at most

single occupancy on all sites. The charge occupation and spin operators
are given by nα = c†α↑cα↑ + c†α↓cα↓ and Sa

α = 1
2

∑

σ,σ′ c†αστ
a
σσ′ cασ′ , where τa,

a = x, y, z, denote the Pauli matrices.

The interaction strength in (2.1) is an analytic function of the lattice sites
by use of

1

|ηα − ηβ |2
= − ηαηβ

(ηα − ηβ)2
. (2.3)

The KYM is supersymmetric, i.e., the Hamiltonian (2.1) commutes with
the operators Jab =

∑

α a
†
αaaαb, where aαa denotes the annihilation operator

of a particle of species a (a runs over up- and down-spin as well as empty site)
at site ηα. The traceless parts of the operators Jab generate the Lie superal-
gebra su(1|2), which includes in particular the total spin ~S =

∑N
α=1

~Sα. In
addition, the KYM possesses a super-Yangian symmetry [54], which causes
its amenability to rather explicit solution.

2.3 Vacuum state

We first review the ground state at half filling, which is the state contain-
ing no excitations (neither spinons nor holons). For N even, this vacuum
state is constructed by the Gutzwiller projection of a filled band (or Slater
determinant (SD) state) containing a total of N electrons (see Fig. 2.2):

|Ψ0〉 = PG

∏

|q|<qF

c†q↑c
†
q↓ |0〉 ≡ PG

∣
∣ΨN

SD

〉
. (2.4)
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Taking the fully polarized state |0↓〉 =
∏

α c
†
α↓ |0〉 as reference state, we

can rewrite the vacuum state as

|Ψ0〉 =
∑

{zi}
Ψ0(z1, . . . , zM)S+

z1
. . . S+

zM
|0↓〉 , (2.5)

where M = N/2 and the zi’s denote the up-spin coordinates. The sum in
(2.5) extends over all possible ways to distribute the coordinates zi’s over the
lattice sites ηα. The wave function is given by [57, 114]

Ψ0(z1, . . . , zM) =
M∏

i<j

(zi − zj)
2

M∏

i=1

zi, (2.6)

its energy is

E0 = − π2

4N
. (2.7)

The total momentum of a state is eval-
uated by considering the operator T, which
translates all arguments of the wave function
counterclockwise by one site. T is related to
the momentum operator P via

T = exp(iP). (2.8)

T

This yields the momentum of |Ψ0〉 to equal zero if N is divisible by four
and π otherwise. Note that (2.6) represents the ground state of (2.1) only at
half filling, i.e., when all sites are occupied. As was shown by Kuramoto and
Yokoyama [87], the ground state away from half-filling can be constructed
by Gutzwiller projection similar to (2.4).

2.4 Spinon excitations

Let N be odd and M = (N − 1)/2. A localized spinon at site ”ηγ” is
constructed by the Gutzwiller projection of an electron inserted in a Slater
determinant state of N + 1 electrons:

∣
∣Ψsp

γ

〉
= PG cγ↓

∣
∣ΨN+1

SD

〉
. (2.9)

The annihilation of the electron causes an inhomogeneity in the spin and
charge degree of freedom. After the projection, however, only the inhomo-
geneity in the spin survives. The spinon hence possesses spin one-half but
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Figure 2.3: One-spinon dispersion relation. The allowed momenta fill the
interval [−π/2, π/2] for M = (N − 1)/2 even and [π/2, 3π/2] for M odd.

no charge. The wave function of a localized spinon is given by [59]

Ψsp
γ (z1, . . . , zM) =

M∏

i=1

(ηγ − zi) Ψ0(z1, . . . , zM), (2.10)

where Ψ0 is defined in (2.5). Fourier transformation yields the momentum
eigenstates

|Ψsp
m〉 =

N∑

α=1

(η̄γ)
m
∣
∣Ψsp

γ

〉
, (2.11)

which vanish identically unless 0 ≤ m ≤ M . In particular, this implies
that the localized one-spinon states (2.9) form an overcomplete set. It is
hence not possible to interpret the “coordinate” ηγ literally as the position of
the spinon. The momentum eigenstates (2.11) are found to be exact energy
eigenstates of the KYM, with its energies given by [59]

Esp
m =

2π2

N2

(
N − 1

2
−m

)

m. (2.12)

From there, we can define the one-spinon dispersion relation (see Fig. 2.3)

ǫ(p) =







1

2

(
π2

4
− p2

)

+
π2

8N2
, for M even,

1

2

(
π2

4
− (p− π)2

)

+
π2

8N2
, for M odd,

(2.13)

which is linear in p at low energies with velocity v = π/2. The allowed
momenta fill only the inner or outer half of the Brillouin zone, depending on
whether N−1 is divisible by four or not. This loss of states is reflected in the
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dynamical spin correlations obtained exactly by Haldane and Zirnbauer [62]
and measured in inelastic neutron scattering experiments [27, 119, 120]. The
spinons obey half-Fermi statistics, which was first found by the investigation
of their state counting rules [58]. The exclusion statistics of spin-polarized
spinons can be read off as follows. Consider a chain with N = 2M + 1 sites
and a single down-spin spinon. If we create the spinon by annihilation of an
up-spin electron from a Slater determinant state containing N + 1 electrons
(2.9), there are according to (2.12) as many single-particle orbitals available
to the spinon as there are up-spin electrons in the Slater determinant state,
that is, M + 1. If we now were to create two additional down-spin spinons,
the Slater determinant state would have to contain two more electrons, one of
each spin. This implies that there would be one additional orbital, while the
two additional spinons would occupy two orbitals, meaning that the number
of orbitals available for our original spinon would be reduced by one. The
statistical parameter is hence given by g = 1/2 [58]. The fractional statistics
manifests itself also in the spinon-spinon scattering matrix calculated with
the asymptotic Bethe Ansatz. Later it became apparent that the fractional
statistics of the spinons manifests itself in the quantization rules for the
individual spinon momenta as well [46].

2.5 One-Holon excitations

The charged elementary excitations of the model are holons, the concept of
which must be invoked whenever holes and thereby charge carries are doped
into the chain. A localized holon at lattice site ηξ is constructed as

∣
∣Ψho

ξ

〉
= cξ↓PG c

†
ξ↓
∣
∣ΨN−1

SD

〉
. (2.14)

(Alternatively we could use the operators cξ↑ and c†ξ↑.) Compared to the
spinon we eliminate the inhomogeneity in spin while creating an inhomogene-
ity in the charge distribution after Gutzwiller projection. Thus the holon has
no spin but charge e > 0 (as the electron charge at site ηξ is removed). Note
that the holon is strictly localized at the holon coordinate ξ, as holon states
on neighboring coordinates are orthogonal. In total, there are N independent
one-holon states (2.14).

Momentum eigenstates are constructed from (2.14) by Fourier transfor-
mation. It turns out that only (N +3)/2 of them are energy eigenstates [15].
We will restrict ourselves to this subset in the following. These states are
readily described in terms of their wave functions. We take |0↓〉 as reference
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state, and write the one-holon energy eigenstates as [15]

∣
∣Ψho

m

〉
=
∑

{zi;h}
Ψho

m (z1, . . . , zM ; h) ch↓ S
+
z1
. . . S+

zM
|0↓〉 , (2.15)

where the sum extends over all possible ways to distribute the up-spin co-
ordinates zi and the holon coordinate h over the lattice sites ηα subject to
the restriction zi 6= h. The integer m is restricted to 0 ≤ m ≤M + 1, where
M = (N − 1)/2 is the number of up-spin coordinates. The one-holon wave
function is given by

Ψho
m (z1, . . . , zM ; h) = hm

M∏

i=1

(h− zi) Ψ0(z1, . . . , zM), (2.16)

where Ψ0 is given by (2.6). Note that as a sum over the coordinates h is
included in (2.15), no such sum is required in (2.16). It can be shown that the
wave function (2.16) represents an exact energy eigenstate with energy [15]

Em =
2π2

N2

(

m− N + 1

2

)

m. (2.17)

The one-holon momentum is derived in analogy to the vacuum state to be

pho
m =

π

2
N +

2π

N

(

m− 1

4

)

mod 2π. (2.18)

If we introduce the one-holon dispersion

ǫho(p) = −1

2

(
π2

4
− p2

)

− π2

8N2
, −π

2
≤ p ≤ π

2
, (2.19)

we can rewrite (2.17) with the vacuum energy (2.7) as

Em = E0 + ǫho(pho
m ). (2.20)

Opposed to the spinon case, it is less for obvious that the holons obey frac-
tional statistics. While the state counting argument still applies since the
Brillouin zone of allowed holon momenta is halved similar to the spinon case,
there is no intuitive plausibilization as for the spinon, which was given pre-
viously. It is thus even more important to study the fractional character
directly by consideration of many-holon states, which we do in the following.
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2.6 Two-Holon excitations

2.6.1 Momentum eigenstates

Let N be even andM = (N−2)/2. The two-holon state with holons localized
at ηξ1 and ηξ2 is constructed in analogy to (2.14) as

∣
∣Ψho

ξ1ξ2

〉
= cξ1↓cξ2↓PG c

†
ξ1↓c

†
ξ2↓
∣
∣ΨN−2

SD

〉
. (2.21)

In analogy to (2.16), a momentum basis for the two-holon eigenstates is
provided by the wave functions

Ψho
mn(z1, . . . , zM ; h1, h2) = (h1 − h2)(h

m
1 h

n
2 + hn

1h
m
2 )

M∏

i=1

(h1 − zi)(h2 − zi)Ψ0(z1, . . . , zM), (2.22)

where Ψ0 is again given by (2.6), h1,2 denote the holon coordinates, and the
integers m and n satisfy

0 ≤ n ≤ m ≤M + 1. (2.23)

The corresponding state is then given by

∣
∣Ψho

mn

〉
=

∑

{zi;h1,h2}
Ψho

mn(z1, . . . , zM ; h1, h2) ch1↓ ch2↓ S
+
z1
. . . S+

zM
|0↓〉 , (2.24)

where the sum extends over all possible ways to distribute the up-spin coor-
dinates zi and the holon coordinates h1,2 over the lattice sites ηα subject to
the restriction zi 6= h1 6= h2. The momentum of the states (2.24) is easily
found to be

pho
mn =

π

2
N +

2π

N

(
m+ n

)
mod 2π. (2.25)

It can further be shown that the states (2.24) are spin singlets, i.e., they are
annihilated by S± as well as Sz.

2.6.2 Energy eigenstates

Due to the trigonal structure of the Hamiltonian when acting on the Ψho
mn’s

we can derive the energy eigenstates using the Ansatz

∣
∣Φho

mn

〉
=

[ m−n
2

]
∑

l=0

amn
l

∣
∣Ψho

m−l n+l

〉
, (2.26)
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which yields the recursion relation

amn
l = − 1

2l(l − 1
2

+ n−m)

l−1∑

k=0

amn
k (m− n− 2k), amn

0 = 1. (2.27)

This defines the two-holon energy eigenstates (2.26). The energies are given
by

Eho
mn = E0 +

2π2

N2

[(

m− N

2

)

m+

(

n− N

2

)

n+
m− n

2

]

, (2.28)

where the momentum quantum numbers satisfy

0 ≤ n ≤ m ≤ N

2
, (2.29)

and the total momentum is given by (2.25).
For the lowest energy state, (2.28) simplifies (up to an additive constant

π2/12N) to the ground-state energy of the chain doped with two holes, which
is a special case of the result by Kuramoto and Yokoyama [87] for the ground
state at general filling fraction.

2.7 Statistical parameter

Fractional statistics in one-dimensional systems was originally introduced by
Haldane [58] in the context of non-trivial state counting rules. Recently, it
was realized by Greiter and Schuricht [46] that the fractional statistics of
spinons in the HSM manifests itself also in specific quantization rules for the
individual spinon momenta. We will now apply this line of argument to the
holon excitations in the KYM.

In this context, we rewrite the two-holon energy (2.28) as

Eho
mn = E0 + ǫho(pm) + ǫho(pn), (2.30)

where we have used the one-holon dispersion (2.19) and introduced the single-
holon momenta in (2.30) according to

pm = −π
2

+
2π

N

(

m+
1

4

)

, pn = −π
2

+
2π

N

(

n− 1

4

)

. (2.31)

The difference in the individual holon momenta is hence given by

pm − pn =
2π

N

(
1

2
+ integer

)

. (2.32)



28 Chapter 2 Holon excitations in antiferromagnetic spin chains

This result is a direct manifestation of the half-Fermi statistics of the holons,
as (2.32) is the obvious generalization of the familiar cases of bosons and
fermions. Indications of the half-Fermi statistics of the holons have previously
been observed in thermodynamic quantities [73, 86] of the KYM as well as
the electron addition spectrum [5, 6].

Let us now elaborate on the general implications of this result for holons
excitations in antiferromagnetic spin chains. The wave functions we have ob-
tained above are of course eigenstates of the KYM only, which is as idealized
as integrable and exactly soluble models tend to be. The quantization rules
for the single particle momenta we have obtained for this model, however,
have a much broader validity. As mentioned above, the unique feature of
the KYM is that the holons are free in the sense that they only interact
through their fractional statistics. The single particle momenta of the holons
are hence good quantum numbers, which assume fractionally spaced values.
For two holons, these are given by (2.29). The crucial observation in this
context is that the statistics of the holons is a quantum invariant and as
such independent of the details of the model. This implies directly that the
fractional spacings are of universal validity as well. If we were to supplement
the model we have studied by a potential interaction between the holons,
say a Coulomb potential, this interaction would introduce scattering matrix
elements between the exact eigenstates we obtained and labeled according
to their fractionally spaced single particle momenta. These momenta would
hence no longer constitute good quantum numbers. The new eigenstates
would be superpositions of states with different single particle momenta,
which individually, however, would still possess the fractionally shifted val-
ues. In other words, looking at the quantization condition (2.32), the “1/2”
on the left of the equation will still be a good quantum number, while the
“integer” will turn into a “superposition of integers” in the presence of an
interaction between the holons. This line of argument only applies if the
quantum numbers describing the holon excitations remain the same, which
is why we constrain this argument to antiferromagnetic spin chains [43]. For
the XX chain, for example, which can be directly mapped to a free fermion
model, no fractionalization occurs and the elementary excitation quantum
numbers are fermionic.

2.8 Summary and Outlook

In this chapter, we have studied the two-holon states of the Kuramoto–
Yokoyama model. We constructed the explicit two-holon wave functions
and derived their momenta and energies. The results display the half-Fermi
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statistics of the holons, which manifests itself in a shift of 1
2

2π
N

in the differ-
ence of the individual holon momenta, which appears to be valid beyond the
KYM point, given that the quantum numbers of the excitations remain the
same in the sense of spin charge separation into spinon and holon degrees
of freedom. The crucial task is to provide a measure to observe these state-
ments in experiments, which will be further elaborated on in the following
chapters. Additionally, two directions appear promising to us. The first is
to use the Kuramoto–Yokoyama model to study the real time evolution of
spin charge separation on an analytical footing. In principle, one can start
off with the matrix elements of a fermionic annihilation operator acting on
the ground state to the one-spinon one-holon eigenstates, and compute local
time–dependent quantities like Sz

i or 1 − ni, which would relate to a recent
approach recently used for describing a sudden change of interaction param-
eters for the Falicov-Kimball model [32]. A second direction of consideration
of us is the explicit computation of a momentum distribution function for
fractional excitations. From this perspective, the Haldane–Shastry model,
i.e., the KYM at half filling, can be viewed as the free spinon gas, where the
spinon only interact through their statistics. By computing this distribution
function, it may be possible to constitute a path for identifying experimen-
tally accessible evidence of non-fermionic deviations that can be traced back
to the fractional character of the excitations. There, we can make use of a
previous work by Greiter and Schuricht [47], where they introduced a Young
Tableaux basis of the HSM in terms of many spinon states.





Chapter 3

Holon excitations in SU(n) spin
chains

3.1 Introduction

In the previous chapter, we set up an analytical approach for the Haldane–
Shastry chain doped with holes, i.e., the Kuramoto–Yokoyama model [87],
which also allowed to treat the two-holon excitations, i.e., the elementary
charge excitations of a one-dimensional spin chain, at the level of explicit
wave functions, which leads to a new understanding of fractional statis-
tics in one dimension in terms of the momentum difference of the frac-
tional excitations extending beyond the exact model where it is solved. The
technical problems associated with the treatment of the two-holon states
are the operators by which the Hilbert space of the fractional excitations
is constructed – whereas one makes use of bosonic spin flip operators for
the spinons, one needs fermionic creation and annihilation operators for
the holons [123]. Subsequently after the discovery of the HSM in 1988,
Kawakami [74] generalized it from SU(2) spins to SU(n), a model in which
the spinon excitations obey fractional statistics with statistical parameter
(1 − 1/n) [19, 73, 86, 108,112,132,133]. The question how this statement for
the holons now generalizes for the KYM with enlarged spin symmetry group
SU(n) [76] is answered in this chapter. For this, however, no previous work
exist on any treatment of holon excitations on an analytical footing.

We analyze the one-holon and two-holon excitations of the SU(n) KYM
at the level of explicit wave functions. In Section 3.2 we discuss the SU(3)
KYM. We first present the basic properties of the model and review its ground
state at half filling where it maps on to the SU(3) HSM, as well as the spinon
excitations (colorons). Then we derive the one-holon and two-holon wave
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functions as well as its exact energies and individual holon momenta. In
Section 3.3 we generalize the results to the case of SU(n) and, after review-
ing basic properties of the ground state and the SU(n) spinon excitations,
derive the one-holon and two-holon wave functions including its energies and
holon momenta. This analytical work all condenses into the statements in
Section 3.4 where we prove that the holons in the SU(n) KYM obey frac-
tional statistics with statistical parameter g = 1/n, which is associated with
the non-fermionic spacing difference of the individual holon momenta for the
two-holon state. In Section 3.5 we finally discuss the holon excitations and
its statistics in the framework of spin-charge separation. The main body of
work presented in this chapter is published in

R. Thomale, D. Schuricht, and M. Greiter, Charge excitations in SU(n)
spin chains: Exact results for the 1/r2 model. Phys. Rev. B 75, 024405
(2007).

3.2 SU(3) Kuramoto–Yokoyama model

As before, the Kuramoto–Yokoyama model (KYM) [87] is most conveniently
formulated by embedding the one-dimensional chain with periodic boundary
conditions into the complex plane by mapping it onto the unit circle with
the sites located at the complex positions ηα = exp

(
i2π

N
α
)
, where N denotes

the number of sites and α = 1, . . . , N . For the SU(3) case, the sites can be
either singly occupied by an SU(3) fermion or empty.

The SU(3) particles transform according to the representation 3 (see
Fig. 3.1), in analogy to the familiar color SU(3) from quantum chromody-
namics we label the particle types by the colors blue (b), red (r), and green
(g). In Sec. 3.2.2 we will see that the elementary spin excitations of the
model called colorons transform according to the non-equivalent representa-
tion 3̄, i.e., they possess the complementary colors yellow (y), cyan (c), and
magenta (m).

The SU(3) generators at each lattice site are

Ja
α =

1

2

3∑

σ,τ=1

c†ασλ
a
στ cατ , a = 1, . . . , 8, (3.1)

where the λa are the Gell-Mann matrices. The operator c†ασ (cασ) creates
(annihilates) a fermion with color σ at lattice site ηα. The operators (3.1)
satisfy the commutation relations

[
Ja

α, J
b
β

]
= δαβ f

abcJc
α, a, b, c = 1, . . . , 8, (3.2)
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Figure 3.1: Weight diagrams of the three-dimensional representations of
SU(3). J3 and J8 are the diagonal generators.

(we use the Einstein summation convention) with fabc the structure constants
of SU(3), i.e., spin operators on different sites commute.

The Hamiltonian is given by

HKY = −2π2

N2

N∑

α,β=1
α6=β

Pαβ

|ηα − ηβ|2
, (3.3)

where Pαβ exchanges the configurations on the sites ηα and ηβ including a
minus sign if both are fermionic. Rewriting (3.3) in terms of spin and fermion
creation and annihilation operators yields

HKY =
2π2

N2

N∑

α6=β

1

|ηα − ηβ|2

PG

[

−1

2

∑

σ=b,r,g

(

c†ασcβσ + c†βσcασ

)

+ Jα · Jβ − nαnβ

3
+ nα − 1

2

]

PG,

(3.4)

where we for convenience label the SU(3) spin or color index σ to be either
blue (b), red (r), or green (g). The Gutzwiller projector which enforces at
most single occupancy on all sites is given by

PG =

N∏

α=1

(
nα − 2

)(
nα − 3

)
, nα ≡ c†αbcαb + c†αrcαr + c†αgcαg, (3.5)

where nα denotes the charge occupation operator. Jα = 1
2

∑

στ c
†
ασλστ cατ is

the eight-dimensional SU(3) spin vector, λ a vector consisting of the eight
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Gell-Mann matrices, and σ and τ are again SU(3) color indices. For all
practical purposes, it is convenient to express the spin operator part of (3.4)
in terms of color flip operators eστ

α ≡ c†ασcατ :

HKY =
2π2

N2

N∑

α6=β

1

|ηα − ηβ |2

PG

[

−1

2

3∑

σ

(

c†ασcβσ + c†βσcασ

)

+
1

2

3∑

στ

eστ
α eτσ

β − nαnβ

2
+ nα − 1

2

]

PG,

(3.6)

where the color double sum includes terms with σ = τ .

The KYM is supersymmetric, i.e., the Hamiltonian (3.3) commutes with
the operators Jab =

∑

α a
†
αaaαb, where aαa denotes the annihilation operator

of a particle of species a (a runs over color indices as well as empty site) at site
ηα. The traceless parts of the operators Jab generate the Lie super-algebra
su(1|3), which includes in particular the total spin operators J =

∑N
α=1 Jα.

In addition, the KYM possesses a super-Yangian symmetry [53, 54], which
causes its amenability to rather explicit solution.

3.2.1 Vacuum state

We first review the state containing no excitations, i.e., neither spinons nor
holons, which is the ground state at half filling where the SU(3) Kuramoto–
Yokoyama model reduces to the SU(3) Haldane–Shastry model [111]. The
ground state of HKY for N = 3M (M integer) is most easily formulated
by Gutzwiller projection of a filled band (or Slater determinant (SD) state)
containing a total of N SU(3) particles obeying Fermi statistics

|Ψ0〉 = PG

∏

|q|≤qF

c†qb c
†
qr c

†
qg |0〉 ≡ PG

∣
∣ΨN

SD

〉
. (3.7)

As
∣
∣ΨN

SD

〉
is an SU(3) singlet by construction and PG commutes with SU(3)

rotations, |Ψ0〉 is an SU(3) singlet as well.

If one interprets the state |0g〉 ≡
∏N

α=1 c
†
αg | 0 〉 as a reference state and the

color flip operators ebg and erg as “particle creation operators”, the ground
state (3.7) can be rewritten as [52, 75]

|Ψ0〉 =
∑

{zi,wk}
Ψ0[zi;wk] e

bg
z1
. . . ebg

zM1
ergw1

. . . ergwM2
|0g〉, (3.8)
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Figure 3.2: a) Total antisymmetric N -particle state. b) Typical configuration
in |Ψ0〉.

where the sum extends over all possible ways to distribute the positions of
the blue particles z1, . . . , zM1 and red particles w1, . . . , wM2 over the N sites.
The ground state wave function is given by

Ψ0[zi;wk] ≡
M1∏

i<j

(zi − zj)
2

M2∏

k<l

(wk − wl)
2

M1∏

i=1

M2∏

k=1

(zi − wk)
M1∏

i=1

zi

M2∏

k=1

wk (3.9)

with M1 = M2 = M . The ground state energy is

E0 = −π
2

36

(

N +
15

N

)

. (3.10)

The total momentum, as defined through eip = Ψ0[η1zi, η1wk]/Ψ0[zi, wk] with
η1 = exp(i2π

N
), is p = 0 regardless of M . For further purposes, it is important

to note that the ground state wave function can be equally expressed by any
two sets of color variables, as shown in Appendix A.5.

3.2.2 Coloron excitations

Assume N = 3M+1. It is shown in [111] that the elementary spin excitations
called colorons obey the adjoint representation of the SU(3) lattice spins.
Accordingly, a localized coloron at site ”ηγ” is constructed by Gutzwiller
projection of a fermion annihilation operator of color σ acting on a Slater
determinant state of N + 1 fermions:

∣
∣Ψc

γσ̄

〉
= PGcγσ

∣
∣ΨN+1

SD

〉
, (3.11)

where σ̄ shall denote the adjoint or complementary color of the excitation.
The annihilation of the electron causes an inhomogeneity in the spin and
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Figure 3.3: One-coloron dispersion relation. The colorons are constrained to
one third of the Brillouin zone.

charge degree of freedom. After the projection, however, only the inhomo-
geneity in the spin survives, the coloron thus possesses a (complementary)
color but no charge. The wave function of a localized, e.g. anti-blue or
yellow, coloron is given by [111]

Ψc
γ[zi;wk] =

M1∏

i=1

(ηγ − zi)Ψ0[zi;wk], (3.12)

with Ψ0 given by (3.9). Fourier transformation yields the momentum eigen-
states

|Ψc
n〉 =

1

N

N∑

γ=1

(η̄γ)
n
∣
∣Ψc

γ

〉
, (3.13)

which identically vanish unless 0 ≤ n ≤M1. The momentum of (3.13) is

pn =
4π

3
− 2π

N

(

n+
1

3

)

, 0 ≤ n ≤ M1. (3.14)

It thus yields that the localized one-coloron states (3.11) form an over-
complete set, by which it follows that the interpretation of ”ηγ” as the po-
sition of the coloron does not exactly fit. The momentum eigenstates (3.13)
are found to be exact energy eigenstates of the KYM, its energies are given
by [111]

Ec = E0 +
2

9

π2

N2
+ ǫc(pn), (3.15)

where the coloron dispersion is given by

ǫc(pn) =
3

4

(
π2

9
− (pn − π)2

)

. (3.16)
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The colorons obey fractional statistics with the statistical parameter 2/3,
which from the first view is obvious from state counting rules originally for-
mulated for the SU(2) case [58]. Furthermore, the fractional statistics of
the colorons show up in the quantization rules for the individual coloron
momenta [46].

As stated before, the elementary coloron excitations are constructed by
annihilation of a particle of color σ from an overall color singlet

∣
∣ΨN+1

SD

〉
be-

fore Gutzwiller projection. Hence (as hole-like excitations) they transform
according to the representation 3̄ conjugate to the fundamental representa-
tion 3 of the original particles on the sites of the chain. This can also be seen
by acting with the total SU(3) spin generators on the wave function (3.12).
This is consistent with results on the spectrum of the SU(3)1 Wess–Zumino–
Witten model obtained by Bouwknegt and Schoutens [18, 108].

It is straightforward to read off the exclusion statistics [58] of color-
polarized colorons. Consider a chain with N = 3M − 1 sites and a single
yellow coloron. According to (3.11) and (3.13) there are as many single-
particle orbitals available to the coloron as there are blue particles in the
Slater determinant state, that is, M . If we now were to create three addi-
tional yellow colorons, the Slater determinant state would have to contain
three more particles, one of each color. This implies that there would be one
additional orbital, while the three additional colorons would occupy three
orbitals, meaning that the number of orbitals available for our original col-
oron would be reduced by two. The statistical parameter is hence given by
g = 2/3. The fractional statistics manifests itself further in the exponents
of the algebraic decay of the dynamical structure factor [132, 133], in the
thermodynamics of the model [73, 86], as well as the coloron-coloron scat-
tering matrix calculated with the asymptotic Bethe Ansatz [118]. A similar
exclusion statistics exists in the conformal field theory spectrum of Wess–
Zumino–Witten models [19, 108].

3.2.3 One-Holon excitations

Let N be N = 3M+1. Doping the SU(3) fermion chain with holes causes the
appearance of holons, i.e., the elementary charge excitations of the system.
Opposed to the case of the spinons, setting up the construction scheme for the
SU(3) chain is unambiguous and built up in a straight forward way starting
from the case of SU(2) [123]. A localized holon state at lattice site ”ηξ” is
constructed as

∣
∣Ψho

ξ

〉
= cξσPGc

†
ξσ

∣
∣ΨN−1

SD

〉
, (3.17)
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where the color index σ can be chosen arbitrarily. Opposed to the coloron we
eliminate the inhomogeneity in color, which exists after Gutzwiller projec-
tion, but instead create an inhomogeneity in the charge distribution. There-
fore, the state has no color but charge e > 0, as the electron charge at site
”ηξ” is annihilated. It should be stressed that there is a difference between
the quantum-like ”quasi”-coordinate γ of the localized one-coloron wave func-
tions (3.12) and the holon coordinate ξ being a real coordinate of the system.
In particular, there exist N independent states (3.17) in total.

Momentum eigenstates are constructed from (3.17) by Fourier transfor-
mation. It will be shown in the following that only a subset of them are
energy eigenstates, thus being holon excitations, which are most easily de-
scribed in terms of their wave functions. As for the ground state, we again
take |0g〉 ≡

∏N
α=1 cαg |0〉 as a reference state and the color flip operators ebg

and erg as ”particle creation operators”
∣
∣Ψho

m

〉
=
∑

zi,wk;h

Ψho
m [zi;wk; h]chge

bg
z1
. . . ebg

zM1
ergw1

. . . ergwM2
|0g〉 , (3.18)

where the sum extends over all possible ways to distribute the positions of
the blue particles z1, . . . , zM1 , the red particles w1, . . . , wM2, and the holon
coordinate h over the N sites under the restriction h 6= zi, wk. The one-holon
wave function is given by

Ψho
m [zi;wk; h] = hm

M1∏

i=1

(h− zi)
M2∏

k=1

(h− ωk)Ψ0[zi;wk], (3.19)

where M1 denotes the number of blue and M2 the number of red fermions as
above (to increase clarity of the terms appearing the upcoming calculations,
we at most stages of the paper keep this difference, though we always set
M1, M2 and M3, i.e., the number of green fermions to be equal to M at the
end since any excitation which we discuss contains equally many blue, red,
and green particles). The integer m is restricted to

0 ≤ m ≤M + 1, (3.20)

as will be verified. Note that the localized states (3.17) taken as a basis
of (3.18) yield holon excitations only when energy eigenstates are constructed
and cannot strictly be interpreted as space-localized holon states. When we
take a Fourier transform of the energy eigenstates to localize the holons,
the fact there are only M+2 allowed momentum values while there are N
sites implies that we will not be able to localize the holons such that they
reside exactly on lattice sites, and hence that the true holon states are non-
orthogonal in position space.
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The momentum of (3.18) is

pho
m =

2π

3
+

2π

N

(

m− 1

3

)

, (3.21)

with m restricted to (3.20). The energy yields

Eho
m = E0 + ǫho(pho

m ), (3.22)

with the SU(3) chain holon dispersion given by

ǫho(pho
m ) = −3

4

(
π2

9
− (pho

m − π)2

)

− 2

9

π2

N2
,

2π

3
≤ pho

m ≤ 4π

3
. (3.23)

The SU(3) holons thus occupy one third of the Brioullin zone. We now prove
that the states (3.18) restricted to (3.20) are the energy eigenstates of the
SU(3) Kuramoto–Yokoyama Hamiltonian (3.4) with the energy (3.22).

3.2.4 Two-Holon excitations

Momentum eigenstates

Let N be N = 3M + 2 and M again denote the number of variables of one
spin color. In analogy to (3.17), the two-holon state localized at ηξ1 and ηξ2

is constructed as
∣
∣Ψho

ξ1ξ2

〉
= cξ1↓cξ2↓PGc

†
ξ1↓c

†
ξ2↓
∣
∣ΨN−2

SD

〉
. (3.24)

The momentum eigenstates which are subject to our further consideration
are most easily described by their wave functions. Related to (3.19), the
two-holon momentum eigenstates are represented by

Ψho
mn[zi;wk; h1, h2] = (h1 − h2)(h

m
1 h

n
2 + hn

1h
m
2 )

M1∏

i=1

(h1 − zi)(h2 − zi)

M2∏

k=1

(h1 − wk)(h2 − wk)Ψ0[zi;wk],

(3.25)

where Ψ0 is given by (3.9), h1,2 denote the holon coordinates, and the integers
m and n satisfy

0 ≤ n ≤ m ≤M + 1, (3.26)

as will be shown in the following. The state which is represented by (3.25)
is given by
∣
∣Ψho

mn

〉
=

∑

zi,wk;h1,h2

Ψho
mn[zi;wk; h1, h2]ch1gch2g

ebg
z1
. . . ebg

zM1
ergw1

. . . ergwM2
|0g〉 ,

(3.27)
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where the sum extends over all possible ways to distribute the positions of
the blue particles z1, . . . , zM1 , the red particles w1, . . . , wM2, and the holon
coordinates h1,2 over the N sites under the restriction h1,2 6= zi, wk. Again
note that the states (3.24) taken as a basis of (3.27) cannot be interpret
as true localized two-holon excitations. As we only get (M + 1)2 distinct
momentum eigenstates which are associated with energy eigenstates thus
being interpreted as true holon states, we cannot define true two-holon states
which are strictly localized in position, as already explained for the one-holon
case.

The total momentum of the states (3.27) is found to be

pho
mn =

4π

3
+

2π

N

(

m+ n− 1

3

)

mod 2π. (3.28)

Furthermore, as the Gutzwiller projector commutes with all generators of
SU(3), it can be shown that the states (3.27) are spin singlets, i.e., they are
annihilated by all components of the SU(3) vector operator J ≡∑α Jα.

We thus obtain

HKYΨho
mn[zi;wk; h1, h2]

=
3π2

N2

[(

m− N + 1

3

)

m

(

n− N + 1

3

)

n+
m− n

3

]

+
2π2

N2
(m− n)

⌊m−n
2

⌋
∑

l=1

Ψho
m−l,n+l −

π2

36

(

N +
3

N
+

4

N2

)

, (3.29)

where in (3.29) we used x+y
x−y

(xmyn − xnym) = 2
∑m−n

l=0 xm−lyn+l − (xmyn +

xnym) and ⌊ ⌋ denotes the floor function, i.e., ⌊x⌋ is the largest integer
l ≤ x. First, note that the action of the Hamiltonian on Ψho

mn is trigonal, i.e.,
the “scattering” in the last line is only to lower values of m − n. Second,
(3.29) shows that the states Ψho

mn form a non-orthogonal set out of which we
construct an orthogonal basis of eigenfunctions as it is shown in the following.

Energy eigenstates

As the Hamiltonian matrix is trigonal, it is easy to diagonalize. Using the
Ansatz

∣
∣Φho

mn

〉
=

⌊m−n
2

⌋
∑

l=0

amn
l

∣
∣Ψho

m−l n+l

〉
, (3.30)

we obtain the recursion relation

amn
p = − 1

3p(p+m− n− 1
3
)

p−1
∑

k=0

(n−m− 2k)amn
k , amn

0 = 1, (3.31)
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which defines the two-holon energy eigenstates (3.30). The corresponding
energies are given by

Eho
mn = −π

2

36

(

N +
3

N
+

4

N2

)

+
3π2

N2

[(

m− N + 1

3

)

m

(

n− N + 1

3

)

n+
m− n

3

]

, (3.32)

where the momentum quantum numbers satisfy

0 ≤ n ≤ m ≤ N + 1

3
, (3.33)

in correspondence to (3.20), and the total momentum is given by (3.28).

3.3 Generalization to SU(n)

The expressions derived for the SU(3) model directly generalize to the SU(n)
case. Beyond the bare results, only some short remarks about the calculation
are made since the decisive methods were already discussed for the SU(3)
case.

3.3.1 Hamiltonian

Consider an under-doped chain with at most one particle per lattice site
carrying an internal SU(n) quantum number which transforms according
to the fundamental representation n of SU(n). Starting from (3.3), the
Hamiltonian can be rewritten by

H
SU(n)
KY =

(
2π

N

)2 N∑

α<β

1

|ηα − ηβ |2

PG

{

J
n
α · Jn

β − 1

2

∑

σ

(

c†ασcβσ + c†βσcασ

)

− n− 1

2n
nαnβ + nα − 1

2

}

PG,

(3.34)

where the summation index σ runs over all spin indices and J
n
α denotes the

(n2 − 1)-dimensional SU(n) spin vector. (3.34) commutes with the operators
Jab =

∑

α a
†
αaaαb, where aαa denotes the annihilation operator of a particle of

species a (a takes values 0, 1, . . . , n, i.e., it runs over the hole and all n spin
indices) at site ηα, the traceless parts of the operators Jab generate the Lie
super-algebra su(1|n), and still possesses a super-Yangian symmetry [54].
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3.3.2 Vacuum state

Consider the state containing no excitations. If we use a polarized state of
particles of flavor n as reference state and label the coordinates of the particles
of flavor σ, 1 ≤ σ ≤ n− 1, by zσ

i , 1 ≤ i ≤Mσ, the wave functions [75]

Ψ0[z
σ
i ] =

n−1∏

σ=1

Mσ∏

i<j

(zσ
i − zσ

j )2
n−1∏

σ<τ

Mσ∏

i=1

Mτ∏

j=1

(zσ
i − zτ

j )
n−1∏

σ=1

Mσ∏

i=1

zσ
i (3.35)

constitute exact eigenstates [52] of the Hamiltonian (3.34). For N = nM ,
Mσ = M , (3.35) is the ground state of (3.34) with energy

En
0 = −π

2

12

(
n− 2

n
N +

2n− 1

N

)

. (3.36)

The total momentum of this ground state is p = (n − 1)πM mod 2π. Note
that p = 0 only for n odd, otherwise p = 0 or π.

3.3.3 Spinon excitations

Localized SU(n) spinons are given by [111]

Ψγ[z
σ
i ] =

M1∏

i=1

(ηγ − z1
i ) Ψ0[z

σ
i ] (3.37)

for N = nM − 1, M1 = M − 1, and M2 = . . . = Mn−1 = M , out of which
the momentum eigenstates are constructed via Fourier transformation. They
transform according to the representation n̄. The spinon momenta are given
by

p =
n− 1

n
πN − 2π

N

(

m+
n− 1

2n

)

mod 2π, (3.38)

which fill the interval [−π
n
, π

n
] for n even and M odd, or the interval [π −

π
n
, π + π

n
] otherwise (either n odd or M even or both). The energy spectrum

is given by

Esp
n (p) = En

0 +
n2 − 1

12n

π2

N2
+ ǫspn (p), (3.39)

with

ǫspn (p) =







n

4

(
π2

n2
− p2

)

, if n even and M odd,

n

4

(
π2

n2
− (p− π)2

)

, otherwise.

(3.40)
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3.3.4 One-Holon excitations

For all practical purposes in order to generalize the approach for the SU(3)
presented previously, we again rewrite (3.34) in terms of spin flip operators,
eliminate the spin diagonal contribution of one spin index and thus get

H
SU(n)
KY =

(
2π

N

)2 N∑

α<β

1

|ηα − ηβ|2
PG

{
n∑

σ=1

cασc
†
βσ + hα

n−1∑

σ=1

eσσ
β −

n−1∑

σ=1

eσσ
α

+

n−1∑

σ=1

eσσ
α eσσ

β +

n−1∑

σ<τ

eσσ
α eττ

β +

n∑

σ<τ

eστ
α eτσ

β +
1

2
− hα

}

PG , (3.41)

where the h’s again denote hole operators. It yields that the one-holon mo-
mentum eigenstates are represented by the wave function

Ψho
l [zσ; h] = hl

n−1∏

σ=1

Mσ∏

k=1

(h− zσ
k )Ψ0[z

σ], (3.42)

with Ψ0 given by (3.35) and the restriction of the momentum integer quantum
number l to be

0 ≤ l ≤ N + n− 1

n
. (3.43)

For momentum eigenvalues pho
l of (3.42), it yields

pho
l =

{
n− 1

n
πN +

2π

N

(

l − n− 1

2n

)}

mod 2π, (3.44)

which fill the interval [−π
n
, π

n
] for n even andM odd, or the interval [π− π

n
, π+

π
n
] otherwise (either n odd or M even or both), see Fig. 3.4. The energy is

Eho
n (pho

l ) = En
0 − n2 − 1

12n

π2

N2
+ ǫho

n (pho
l ), (3.45)

with

ǫho
n (pho

l ) =







−n
4

(
π2

n2
− (pho

l )2

)

, if n even and M odd,

−n
4

(
π2

n2
− (pho

l − π)2

)

, otherwise.

(3.46)
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a) n even

0
2π p

ǫ(p)

b) n odd

0
2π
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ǫ(p)

Figure 3.4: SU(n) holon dispersion relations. a) n even. The allowed mo-
menta fill the interval [π − π

n
, π + π

n
] for M even and [−π

n
, π

n
] for M odd. b)

n odd. The allowed momenta fill the interval [π − π
n
, π + π

n
].

3.3.5 Two-Holon excitations

The two-holon momentum eigenstates are represented by the wave function

Ψho
lm[zσ; h1, h2] = (h1 − h2)(h

l
1h

m
2 + hm

1 h
l
2)

n−1∏

σ=1

Mσ∏

k=1

(h1 − zσ
k )(h2 − zσ

k )Ψ0[zi;wk],

(3.47)
where the momentum quantum numbers l and m are restricted to

0 ≤ m ≤ l ≤ N + n− 2

n
. (3.48)

The momentum is given by

q
SU(n)
l,m =

{
n− 1

n
πN +

2π

N

(

l +m+
2 − n

n

)}

mod 2π. (3.49)

The momentum eigenstates build an over-complete set out which one con-
structs the energy eigenstates by the Ansatz

Ψlm =

⌊ l−m
2

⌋
∑

p=1

alm
p Ψho

l−p,m+p , (3.50)
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where the recursion relation for the alm
p ’s is found to be

alm
p =

1

np(m− l + p− 1
n
)

p−1
∑

k=0

alm
k (l −m− 2k), alm

0 = 1. (3.51)

The energy spectrum in terms of the momentum quantum numbers l and m
yields

Eho
lm = −π

2

12

n− 2

n
N − π2

12

2n2 − 13n+ 24

Nn
+

π2

3nN2
(n2 − 6n + 8)

+n
π2

N2

[

l

(

l − N + n− 2

n

)

+m

(

m− N + n− 2

n

)

+
l −m

n

]

.

(3.52)

3.4 Fractional Statistics of holons in SU(n)

spin chains

We have seen previously that the fractional statistics of spinons in the Hal-
dane Shastry model manifests itself in specific quantization rules for the
individual spinon momenta and was generalized to the statement that SU(n)
spinons have a statistical parameter g = (n−1)/n, i.e., obey (n−1)/n-fermi
statistics [112]. Furthermore, we used this line of argument to show the half-
fermi statistics of the holon excitations in the SU(2) Kuramoto–Yokoyama
model [123], which motivates a general formulation of fractional statistics in
one dimension in terms of the differences of the individual particle momenta.
In the following we apply this interpretation to the holon excitations of the
SU(n) KYM [124].

First, consider the case of SU(3). For that we rewrite the energy (3.32)
in the form

Eho
mn = E0 + ǫho(pm) + ǫho(pn), (3.53)

where we have used the one-holon dispersion (3.22), and we have introduced
the single-holon momenta in (3.53) according to

pm =
2π

3
+

2π

N
m, pn =

2π

3
+

2π

N

(

n− 1

3

)

. (3.54)

Hence, the difference in the individual holon momenta reads

pm − pn =
2π

N

(
1

3
+ integer

)

. (3.55)
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Accordingly, we interpret this result as a manifestation of the 1/3-Fermi
statistics of the holons, as seen in (3.55). This result is similar to the mo-
mentum shifts for the spinon excitations in the HSM [112] as well as the holon
excitations in the SU(2) KYM [123], as shown in Chapter 2. The fractional
statistics of the holons have also been observed in thermodynamic quanti-
ties [73, 86] of the KYM as well as exact results for the electron addition
spectrum [5, 6].

Finally, consider the case of SU(n). All statements identically generalize:
Using the one-holon dispersion (3.46), we can rewrite the SU(n) two-holon
energy (3.52) as

Eho
lm = E0 + ǫho

n (pl) + ǫho
n (pm), (3.56)

where the relative momentum yields

pl − pm =
2π

N

(
1

n
+ integer

)

. (3.57)

It thus follows that holons in the SU(n) KYM obey 1/n-fermi statistics, i.e.,
have a statistical parameter of g = 1/n.

Let us sum up the properties for the KYM approaching the limit n→ ∞.
As the model is exactly solvable, no aspect of calculation simplifies as we
approach the Large-n limit. Second, according to the spinon case, the interval
of allowed holon momenta shrinks to zero. Still, this does not mean that the
number of holon orbitals vanishes, as in the Large-n limit the number of
lattice sites has to grow and hence the momentum spacing tends to zero as
well. Third, we find g → 0 as n → ∞, meaning that the holon statistics
becomes bosonic in this limit. However, as the holon momenta fill only a
small interval and retain the fermionic on-site character, holons still cannot
be interpreted as bosons in this limit.

3.5 Spin-charge Separation of SU(n) Fermions

From the considerations of the statistical parameters of spinons and holons
for an SU(n) spin symmetry, it emerges the important observation that the
sum of both yields the fermionic parameter one

gsp + gho = (n− 1)/n+ 1/n = 1. (3.58)

This result is very intuitive from the viewpoint of spin-charge separation
which is responsible for the emergence of spinons and holons. Since we create
a one-spinon one-holon state by taking out one fermion of parameter g = 1,
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this just means that within the process of spin-charge separation, the statis-
tical parameter of the fermion excitation is conserved and just distributed
over the spinon and the holon. Compared to general creation and annihila-
tion processes or decays of excitations, this is a peculiar conservation law. It
stresses the difference between a decay of particles and a decoupling process
as observed for spin-charge separation in one-dimensional fermion chains.
Imagine we take out one fermion at site a and one at site b. Interchanging a
and b should thus yield a phase of π. As the fermion excitation decouples to
a spinon and a holon, this relation should still hold once one interchanges the
spinon-holon pairs which originated from the respective fermions, which thus
yields that the statistics of spinons and holon should in total be fermionic,
i.e., gsp + gho = 1.

A further interesting perspective is the phase space of the fermion chain.
Let us compare the hypothetical phase space of a fermion excitation opposed
to holon excitations. For the first, the allowed fermion momenta would cover
the complete Brillouin zone and the momentum spacings are at least 2π/L.
For the SU(n) chain, the spinons and holons fill only one nth of the Brillouin,
i.e., in this analogy, the quasi-fermi momentum pho

max also shrinks to one nth of
the fermi momentum pF for the fermion excitation. However, as the process
from the fermion to the holon and spinon is just a separation of different
degrees of freedom, the number of states realized in the phase space should
be conserved. It is thus clear that interpreting spin charge separation as
a decoupling of degrees of freedom, it is plausible that the number of spin
and charge associated orbitals remains the same. From this perspective,
this is captured by the reduction of the momentum spacing between holons
to be at least 2π/nL, i.e., as the momentum space volume is decreased by
1/n, the momentum density is increased by n. This once more stresses the
fundamental characteristic of the spacing shifts of the fractional excitations
alluded to above.

3.6 Summary and Outlook

In conclusion, we have derived the wave functions of the one-holon and two-
holon excitations of the SU(n) KYM and derived its energies and momenta.
We have shown by explicit calculation that the holon excitations of the SU(n)
KYM obey 1/n-fermi statistics, which manifests itself in the difference of the
individual holon momenta as pl − pm = 2π

N

(
1
n

+ integer
)
. We further set it

into context of spin-charge separation. As it was the case for SU(2) spin
chains, one crucial line of investigation is to realize SU(3) systems experi-
mentally. There are already promising attempts for the realization of SU(3)
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spin chains in systems of ultra cold atoms [1, 105], and hence a possibility
of observing SU(3) holon excitations. Additionally, it appears worthwhile to
take the SU(3) KYM as a starting point to study spin-charge separation in
SU(3) spin chains in more detail, for which the exact findings in the SU(3)
KYM serve as a complementary result for numerical approaches, such as
density matrix renormalization group (DMRG) studies. For example, one
can discuss the notion of SU(3) color charge separation numerically for the
generic SU(3) Hubbard model (repulsive U) and unify it with the above ana-
lytical description for the SU(3) KYM being a special t-J model descendant
of it.



Chapter 4

Microscopic model for the
Chiral Spin Liquid

4.1 Introduction

Fractionalization of statistics is known to occur in two dimensions, in general
in the presence of a magnetic field that violates the discrete symmetries of
parity (P) and time-reversal (T); this situation is realized in the fractional
quantum Hall effect [7, 22, 23, 63, 88, 117] (FQHE). In contrast to the one-
dimensional case, however, there has been no definite evidence as to whether
fractional statistics occurs in the absence of an external field breaking these
symmetries. The paradigmatic state for a spin liquid is the chiral spin liquid
introduced by Kalmeyer and Laughlin [70,71], which is constructed to sponta-
neously violate the symmetries P and T; this violation is generally associated
with fractional statistics. The excitations of the liquid—spinons, which carry
spin 1/2 but no charge, and holons, which carry charge but no spin—obey
fractional statistics. In addition, the spinons exhibit quantum-number frac-
tionalization and carry only half the spin of the excitations in conventional
magnetically-ordered systems, which are spin-1. Whereas the spinon may
be the fundamental field describing excitations in two-dimensional S = 1/2
systems in general, the confinement force is generically so strong that the
spinon substructure is often suppressed, in some analogy to quantum chro-
modynamics where the quark substructure of the nucleons is suppressed at
low energy scales. In the chiral spin liquid, however, the spinons are de-
confined, which thus represents a suitable spin model to study fractional
quantization of spinons in two dimensions. For nearly two decades, however,
the chiral spin liquid lacked a microscopic model where it is realized.

In this chapter, we present a spin Hamiltonian for which the chiral spin liq-
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uid (CSL) is the exact ground state [109]. In many respects, the Hamiltonian
is a generalization of the Haldane-Shastry model [57, 114] (HSM) to two di-
mensions, and provides an exact spin model in which fractional quantization
can be studied. We show that the model has an exact two-fold topologically
degenerate CSL ground state for any number of lattice sites N , which is an
important difference to systems like the Rokhsar-Kivelson model [83], where
the degeneracy is only obtained in the thermodynamic limit [66]. We develop
an analytical method to construct a parent Hamiltonian for the CSL in ex-
plicit detail. Therein, the singlet property of the CSL is used as a key feature,
which allows for a spherical Tensor decomposition of the destruction operator
we introduce. From there, we construct two different parent Hamiltonians.
Both contain 6-body spin operator terms. The next key issue is whether the
CSL is the only ground state of the models. To address this question we per-
form exact diagonalization studies of both models for a 16 site square lattice.
We introduce an adapted Kernel sweeping method to implement these many
body Hamiltonians efficiently. We find that one model has the CSL as its
unique ground state, whereas finite size studies indicate that the CSL is not
the unique ground state for the other. After providing a construction scheme
starting from the one-dimensional Haldane–Shastry model in Section 4.2.1,
we continue in Section 4.2 by introducing the chiral spin liquid ground state
and the basic properties of spinon and holon excitations. After outlining the
general construction of CSL Hamiltonians in Section 4.3, we compose a de-
struction operator for the CSL state in Section 4.4, where we exploit the spin
rotational invariance of the CSL state to decompose the destruction opera-
tor into different spherical tensor components which annihilate the CSL state
individually. While we previously started with an asserted property of the
destruction operator, this assertion is proven in Section 4.5. In Section 4.6,
we introduce a Kernel sweeping method to compute the CSL Hamiltonians,
where the data is shown and discussed in Section 4.7. The main body of this
work is presented in

D. F. Schroeter, E. Kapit, R. Thomale, and M. Greiter, Spin Hamiltonian
for which the Chiral Spin Liquid is the Exact Ground state. Phys. Rev. Lett.
99, 097202 (2007).

E. Kapit, R. Thomale, D. F. Schroeter, and M. Greiter, Parent Hamilto-
nians for the Chiral Spin Liquid. Submitted to Phys. Rev. B.
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4.2 Chiral Spin Liquid state

4.2.1 From the Haldane–Shastry chain to the Chiral
Spin Liquid

The chiral spin liquid [70, 71, 90, 126, 137] may be viewed as a brute-force
generalization of the Haldane-Shastry wave function to two space dimen-
sions, though the idea for the Chiral Spin Liquid was first composed in 1986
by Dung-Hai Lee, i.e., before the discovery of the Haldane Shastry model
in 1988. Consider a periodic one-dimensional lattice on the real axis of a
complex plane, with lattice points at integer values:

N (=0)0 N–11 2

s cc ss cc ss

Filled and empty circles represent even and odd integers, with gauge factors
G(z) = −1 and G(z) = +1, respectively. The Haldane-Shastry wave func-
tions is already known from previous Chapter 2 as the Kuramoto–Yokoyama
vacuum state at half filling in (2.6), and takes the form

ψHS

0 (z1, . . . , zM) =

M∏

j=1

G(zj)

M∏

j<k

sin
( π

N
(zj − zk)

)2

, (4.1)

where we took advantage of the fact that now the coordinates zj are real
opposed to the previous implementation.

The chiral spin liquid is obtained by extending the lattice from a circle to
a cylinder, or from a segment of the real axis to a strip in the two-dimensional
complex plane [45]:

Lx(=0)0
s cc ss cc ss

s cc ss cc ss

c cc cc cc cc

s cc ss cc ss

c cc cc cc cc

where G(z) = (−1)(x+1)(y+1) for lattice site z = x + iy. The wave function
for a chiral spin liquid on this cylinder is given by (4.1) multiplied by an
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exponential factor, which effects that the density of spin flips is 1
2

for −Ly/2 <
y < Ly/2, i.e., up to the boundaries of the liquid:

ψCSL(z1, . . . , zM) =
M∏

j=1

G(zj)
M∏

j<k

sin

(
π

Lx

(zj − zk)

)2 M∏

j=1

e−π|yj |2 . (4.2)

4.2.2 Chiral spin liquid wave function on the torus

The chiral spin liquid takes a more familiar form if we consider open boundary
conditions. The wave function for a circular droplet of fluid is simply given
by [70, 71]

〈z1 · · · zM |ψ〉 =
M∏

j<k

(zj − zk)
2

M∏

j=1

G(zj) e
−π

2
|zj |2 . (4.3)

The z’s in the above expression are the complex positions of the up-spins on
the lattice: z = x+ iy, with x and y integer. G(z) = (−1)(x+1)(y+1) is a gauge
factor, which ensures that (4.3) is a spin singlet. Lattice sites not occupied
by z’s correspond to down-spins. Note that the exponential in (4.2) or (4.3)
corresponds to a (fictitious) magnetic field of strength 2π/plaquet.

Figure 4.1: The model is defined on a square lattice, length L on a side,
with a number of sites N = L2. The image shows the lattice for N = 16.
The shaded circles (including the origin) indicate those lattice sites for which
G(z) = −1 and the open circles those sites for which G(z) = +1. The sites on
which G(z) = −1 define a sub-lattice with twice the original lattice spacing;
the doubled unit-cell is shown as the shaded region in the figure surrounding
the origin.

For our purposes, it is propitious to choose periodic boundary conditions
(PBCs) with equal periods L1 = L2 = L, L even, and with N = L2 sites.
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Following Haldane and Rezayi [61], the wave function for the CSL then takes
the form

〈z1 · · · zM |ψ〉 =

2∏

ν=1

ϑ1

(π

L
[Z − Zν ]

) M∏

j<k

ϑ1

(π

L
[zj − zk]

)2

·
M∏

j=1

G(zj) e
π
2
(z2

j −|zj |2), (4.4)

where M = N/2 and ϑ1(w) = −ϑ1(−w) ≡ ϑ1(w|e−π) is the odd Jacobi theta
function [2], which is also defined in Appendix B.6. The zeros for the center-
of-mass coordinate Z =

∑

j zj must lie in the principal region 0 ≤ Re(Z1) <
L, 0 ≤ Im(Z1) < L and satisfy Z1 + Z2 = L + iL; the freedom to choose
Z1 reflects the topological degeneracy and yields two linearly independent
ground states for the CSL. These states are spin singlets, are invariant under
lattice translations, and are strictly periodic with regard to the PBCs.

4.2.3 Spinon wave functions

It is rather easy to formulate spinon excitations for the chiral spin liquid. In
analogy to both the quasiholes in fractionally quantized Hall liquids and the
previously discussed spinons (2.10) for the Haldane-Shastry model, we write
the wave function for a spinon localized at η is given by

ψCSL

η↓ (z1, . . . , zM) =
M∏

j=1

(ηα − zj)
M∏

j=1

G(zj)
M∏

j<k

(zj − zk)
2

M∏

j=1

e−
π
2
|zj |2. (4.5)

The spinons obey half-fermi statistics, both in the sense of Haldane’s exclu-
sion principle as well as in the sense of the Berry’s phases where we adia-
batically exchange particles by moving them counterclockwise around each
other [130]. This phase is given by eiθ, where θ is the statistical parameter.

'$

r r? |ψ〉 → eiθ |ψ〉

For θ = π we have fermions, for θ = 0 bosons, and for both θ = π
2

and
θ = −π

2
half-fermions. The choice of sign for θ is physically meaningful, as

the allowed values for the relative angular momentum l depend on it:

l =
θ

π
+ 2n where n integer. (4.6)
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Clearly either choice of sign for half-fermions violates parity (P) and time
reversal (T). For the spinons in the chiral spin liquid, this result can be found
using the adiabatic transport argument of Arovas, Schrieffer, and Wilczek [7].
We obtain π/2 for (4.5) and −π/2 for its complex conjugate.

4.2.4 Generation from filled Landau levels

The chiral spin liquid can be generated through projection from the wave
functions of a filled lowest Landau level (LLL). If we choose an auxiliary
magnetic field with a strength of one half of a Dirac flux quanta per lattice
site, the wave function for a circular droplet of M = N

2
fermions filling the

LLL is given by

φ[zi] =

M∏

i<j

(zi − zj)

M∏

i=1

e−
π
4
|zi|2. (4.7)

The chiral spin liquid state corresponding to (4.3), where the “particles” zi

describe spin flips S+
α acting on a “vacuum” state with all the spins ↓, and

G(ηα) is as above, can be generated by Gutzwiller projection of the LLL (4.7)
filled once with ↑ and once with ↓ spin fermions [45, 90]:

|ψCSL

0 〉 =
∑

{z,w}
φ[zi]φ[wj] c

†
z1↑ . . . c

†
zM↑ c

†
w1↓ . . . c

†
wM↓ | 0 〉 , (4.8)

where the sum extends over all partitions of the lattice sites into z’s and w’s
and the c†’s are fermion creation operators. This functional equivalence is
shown in Appendix B.9. It is often convenient to write (4.8) as

|ψCSL〉 = PGW

∣
∣ψN

SD

〉
(4.9)

where the Gutzwiller projector

PGW ≡
N∏

i=1

(
1 − c†i↑ci↑ c

†
i↓ci↓

)
(4.10)

eliminates doubly occupied sites and
∣
∣ψN

SD

〉
is the Slater determinant wave

function for the lowest Landau level filled once with M = N
2
↑-spin and once

with M ↓-spin electrons. The construction is now evidently analogous to
the Haldane-Shastry chain in one dimension, which again stresses the strong
relation between these states in different dimensions.

The spin singlet property of the chiral spin liquid mentioned above is
now evident. Clearly the Slater determinant

∣
∣ψN

SD

〉
is a singlet. Since the

Gutzwiller projector commutes with the spin operator on each site,

[PGW,Si] = 0, (4.11)
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|ψCSL〉 must be a singlet as well. The chiral spin liquid, when formulated as a
Gutzwiller projection of filled Landau levels, is directly seen to be invariant
under lattice transformations. This allows us to define the chiral spin liquid
for any lattice of interest like square, but also triangular lattices.

4.2.5 Holon excitations

The Gutzwiller form (4.9) also allows a rather elegant formulation of the
spinon excitations. For example, a state with L ↓-spin spinons at sites
η1, . . . , ηL is given by

∣
∣ψCSL

η1↓...ηL↓
〉

= PGW cη1↑ . . . cηL↑
∣
∣ψN+L

SD

〉
, (4.12)

where N + L = 2M must be an even integer. This form nicely illustrates
the (fractional) spin 1

2
of the spinon. The electron annihilation operators

create inhomogeneities in spin and charge before projection. The projector
enforces one particle per site and hence restores the homogeneity in the charge
distribution, but commutes with spin. We are left with a neutral object of
spin 1

2
.

Holon excitations, which carry a positive unit charge and no spin, are
constructed from spinon excitations by annihilation of an electron at the
spinon site, which must now coincide with a lattice point. For example, a
chiral spin liquid with L holons at sites η1, . . . , ηL is given by

∣
∣ψCSL

η1◦...ηL◦
〉

= cη1↓ . . . cηL↓ PGW cη1↑ . . . cηL↑
∣
∣ψN+L

SD

〉
, (4.13)

where N +L = 2M must again be an even integer. In the following sections
when we develop a microscopic model for the chiral spin liquid, we constrain
our attention to half filling and do not consider the holon excitations any
further. Still, however, there is much reason to suppose that the functional
structure will probably resemble the excitations of the Kuramoto–Yokoyama
model which we encountered for the one-dimensional case.

4.3 Construction of a Parent Hamiltonian

In order to construct a parent Hamiltonian for the chiral spin liquid, one first
derives the destruction operators for the ground state. In our formulation,
the destruction operators are constructed from a set of operators ωj where
j = 1, . . . ,N indexes the lattice sites. The operators ωj, to be introduced
in Section 4.4 below, are not themselves destruction operators but have the
property that, acting on the ground state, they produce a result independent
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of the site index j: ωi |ψ〉 = ωj |ψ〉. Therefore, once the above result is
established in Section 4.5, it follows that the difference of any two of the
operators is a destruction operator for the ground state: dij = ωi − ωj .

In order to construct a sensible parent Hamiltonian, one must minimally
demand that it be a translationally-invariant scalar operator. In order to put
the Hamiltonian in this form, it is shown in Appendix B.2 that the operators
may be written as ωj = Ω0

j + 0
0
j where Ωj and 0j are vector and third-rank

spherical tensor operators respectively and where the 0 superscript indicates
the component in spherical notation. The operators Ωj and 0j are given
explicitly in terms of spin operators in Sections 4.4.1 and 4.4.2.

As is discussed in detail in Section 4.4, the Wigner-Eckhart theorem
guarantees that all components of the operators Dij = Ωi − Ωj as well
as Dij = 0i −0j are destruction operators for the chiral spin liquid ground
state so long as the reducible tensor operator dij is. One can then construct
Hamiltonians based on either set of operators:

H =
∑

〈i j〉
D†

ij · Dij (4.14)

for the vector destruction operators or

H =
∑

〈i j〉

3∑

ν=−3

(
Dν

ij

)† Dν
ij (4.15)

for the rank-3 spherical tensor operators. Either Hamiltonian is a scalar
and is translationally invariant, both of these properties guaranteed by the
construction. Additionally, since the Hamiltonians are positive semi-definite,
the chiral spin liquid is a ground state of the model. It should be noted that
these models are not themselves unique as one could include any coefficients
Jij into the sums of Eqs. 4.14 and 4.15 and remove the restriction that only
nearest-neighbor sites are summed over. These two models do, however,
represent the simplest models from each class.

In Section 4.6, a numerical method is developed for performing the exact
diagonalization of these Hamiltonians that can handle the large number of
interactions efficiently. This method is used in Section 4.7 to show that the
model given by (4.14) has exactly two ground states, as expected due to the
topological degeneracy of the chiral spin liquid on a torus, and that these
states are precisely the chiral spin liquid ground states given in Section 4.2
above. Adopting the same procedure, the Hamiltonian given in (4.15) is
shown to have a larger ground-state manifold which is not exhausted by the
chiral spin liquid ground states.



4.4 Destruction operators 57

4.4 Destruction operators

The Hamiltonian which stabilizes the chiral spin liquid is generated by first
finding a set of operators ωi, where i is a site index. These operators are not
themselves destruction operators, but the bond operators ωi − ωj, where i
and j are any two distinct sites, will be shown to destroy the CSL ground
state. The operators may be written as ωj = ω+

j − ω−
j where ω+

j = Tj + Vj

and

Tj =
1

2

′∑

i k 6=j

Kijk S
+
j S

−
k

(
1

2
+ Sz

i

)

(4.16)

Vj =
∑

i6=j

Uij

(
1

2
+ Sz

i

)(
1

2
+ Sz

j

)

. (4.17)

The two sets of coefficients Uij and Kijk are defined in Section 4.4.3 below
and the prime on the sum indicates that one must exclude the coincidences
of i and k.

The operator ω−
j is related to ω+

j by a π/2 rotation about the x-axis that
maps Sz and Sy into −Sz and −Sy. This means that the entire operator ωj

is given by

ωj =

′∑

i k 6=j

Kijk

[
1

2 i
(Sj × Sk)

z +(Sj · Sk) S
z
i − Si Sj S

z
k

]

+
∑

i6=j

Uij S
z
i .

(4.18)

In writing down (4.18), the fact that
∑

i6=j Uij = 0, has been employed.
This will be demonstrated in Section 4.4.3 below. While the operators ωi

are not themselves destruction operators for the CSL ground state, it will
be shown in Section 4.5 that dij = ωi − ωj is a destruction operator for the
ground state for any choice of i and j.

The operators ωj are reducible and can be decomposed into irreducible
tensor operators, in this case of ranks 1 and 3. From (4.18) it is clear that
every term except for the Sz

i S
z
j S

z
k term is the 0 (or z) component of a rank-1

(vector) operator. This final term can be decomposed into rank-3 and vector
components.

It is straightforward to show that if an operator d is a destruction operator
for the CSL ground state, then each of its irreducible components are as well.
This is because the Wigner-Eckhart theorem tells us that acting with an
operator T j

m on a state |n q mq〉 with angular momentum q and z-component
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mq gives

T j
m |n qmq〉 =

∑

j′ m′

Cm
j

mq

q
m′

j′ |n′ j′m′〉 , (4.19)

where n and n′ are any quantum numbers other than angular momentum.
Since the CSL is a spin singlet: q = mq = 0, it follows that there is only a
single non-zero term in the above sum corresponding to j′ = j and m′ = m.
This means that by decomposing the destruction operator for the ground
state d into its tensor components, which may be written d =

∑

j aj T
j
0 ,

acting on the ground state to obtain

0 = d |ψ〉 =
∑

j

aj |n′ j 0〉 , (4.20)

and noting that states with different values of j are necessarily orthogonal,
it immediately follows that each of the states in the sum are themselves zero
and hence the operators T j are destruction operators for the ground state.
In Sections 4.4.1 and 4.4.2 we give two classes of operators that are obtained
from the reducible tensor operator ωj in (4.18).

4.4.1 Vector destruction operator

As shown in Appendix B.2, the operator Sz
i S

z
j S

z
k may be written as the

sum of the 0-components of a vector and a third-rank tensor. The vector
component is given by

1

5

[
(Si · Sj) S

z
k +(Sj · Sk) S

z
i +(Sk · Si) S

z
j

]
(4.21)

and, working from (4.18), the vector operator Ωj is given by

Ωj =
′∑

i,k 6=j

Kijk

[ 1

2 i
(Sj × Sk) +

4

5
(Sj · Sk) Si −

1

5
(Sk · Si) Sj

−1

5
(Si · Sj) Sk

]

+
∑

i6=j

Uij Si . (4.22)

Since Ωi−Ωj is a destruction operator for the ground state, it immediately
follows that one may construct a Hamiltonian for which the chiral spin liquid
is the exact ground state as

H =
∑

〈i j〉
(Ωi − Ωj)

† ·(Ωi −Ωj) , (4.23)
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where the sum runs over all nearest-neighbors on the lattice. By construction,
the Hamiltonian is a scalar operator and translationally invariant.

However, note that there is nothing restricting possible models to run
only over next-nearest neighbors. Rather one can consider any combination
of bond-operators (including arbitrary coefficients so long as one maintains
positive semi-definiteness in H) in constructing a parent Hamiltonian for the
CSL.

4.4.2 Tensor destruction operator

It is also possible to create a set of third-rank tensor destruction operators.
As shown in Appendix B.2, the operator Sz

i S
z
j S

z
k may be fully decomposed

into the 0-components of a vector operator (given in (4.21)) and a third-rank
tensor operator, which is necessarily just the difference between Sz

i S
z
j S

z
k and

the operator in (4.21). This gives a destruction operator whose 0-component
is

0
0
j = − 1√

10

′∑

i,k 6=j

Kijk

[

(Si · Sj) S
z
k +(Sj · Sk) S

z
i +(Sk · Si) S

z
j

−5Sz
i S

z
j S

z
k

]

. (4.24)

The other components are straightforward to obtain (see Appendix B.2)
and one may again use these operators to form a Hamiltonian for the chiral
spin liquid according to

H =
∑

〈i j〉

3∑

ν=−3

(
0

ν
i − 0

ν
j

)†(
0

ν
i − 0

ν
j

)
. (4.25)

The Hamiltonian in (4.25) has two significant advantages over the model in
(4.23): it depends only on one set of coefficients (Kijk but not Uij) and,
because the operator in the sum in (4.24) is symmetric under interchange
of i and k, one may replace Kijk by Aijk = (Kijk +Kkji) /2 where the new
coefficients are manifestly symmetric in interchange of the first and third
indices. From a general perspective, this model has additional features which
make it both more and less attractive for further study, as will be discussed
in detail in Section 4.7.
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4.4.3 Coefficients

The coefficients appearing in (4.18) are functions of the distance between the
sites of the form Kijk = K(zk − zj , zi − zj) where

K(x, y) =
1

N/2 − 1
lim

R→∞

∑

0≤z0≤R

P (x− z0, y)

x− z0
, (4.26)

and the sum over z0 is a sum over all lattice translations: z0 =(m+ i n) L for
m and n integer. This sum guarantees that the function K(x, y) is periodic
in its first argument.

The coefficients Uij = π U(π [zj − zi] /L) L are given by

π

L
U
(π

L
z
)

=
π

L
W
(π

L
z
)

+
1

N − 2

[ d

dx
P (x,−z)

∣
∣
∣
∣
0

+ lim
R→0

∑

0<|z0|≤R

P (z0,−z)
z0

]

, (4.27)

where W (z) is the periodic extension of 1/z to the torus [89] and also
related to the logarithmic derivatives of the theta functions:

π

L
W
(π

L
z
)

=
d

dz
lnϑ
(π

L
z
)

+
π

L

z − z∗

2L
. (4.28)

The function P (x, y) is given by

P (x, y) = lim
R→∞

∑

0≤|z0−y|≤R

Co
(

π
2 L

[z0 − y]
)

Co
(

π
2 L

[z −(y − z0)]
)
e−

π

L2 |z0−y|2

n(y)
, (4.29)

where Co(x) = cosx + cosh x and where n(y) is a normalization factor
chosen such that P (0, y) = 1 which entails the choice

n(z) = ϑ3

( π

L
Re [z]

∣
∣
∣ i
)

ϑ3

( π

L
Im[z]

∣
∣
∣ i
)

. (4.30)

While the form of the coefficients as given by Eqs. 4.26–4.28 are essential for
forming a Hamiltonian that stabilizes the CSL, there is significant freedom
in how one chooses the function P (x, y). The only requirements are that it
be a periodic function of y, fall off faster than 1/x with increasing x, and be
analytic apart from 1st order poles that occur at the coincidence of the two
arguments: x = y. It is straightforward to show that U(z) is an odd function;
this in turn guarantees that

∑

i Uij = 0 and lets this sum be dropped, as was
done in writing down (4.18).
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4.5 Proof

In order to prove that either of the Hamiltonians given in Eqs. 4.14 and 4.15
are true parent Hamiltonians for the chiral spin liquid, we must demonstrate
that ωj |ψ〉 = ωi |ψ〉 which we will demonstrate by first showing that

〈z1 · · · zM |ωj |ψ〉 = f(Z) 〈z1 · · · zM〉ψ , (4.31)

where f(Z) is a function only of the center of mass: Z =
∑M

i=1 zi. This
identity in turn follows from the fact that

〈z1 · · · zM |ω+
j |ψ〉

〈z1 · · · zM〉ψ =

{
f(Z) zj ∈ {z1 · · · zM}
0 otherwise ,

(4.32)

and the result that the function f(Z) is both odd and periodic. To see this,
recall that one can write ω−

j = U ω+
j U

† where U performs the π/2 rotation
about the x-axis as discussed in Section 4.4 above. The CSL ground state is
invariant under such a rotation so that

〈z1 · · · zM |ω+
j |ψ〉 = 〈z1 · · · zM |U †ω−

j U |ψ〉
= 〈w1 · · ·wM |ω−

j |ψ〉 , (4.33)

where {wi}, the locations of the down spins on the lattice, is the complement
of {zi}. It then follows from (4.32) that

〈z1 · · · zM |ω−
j |ψ〉

〈z1 · · · zM〉ψ =

{
0 zj ∈ {z1 · · · zM}
f(W) otherwise .

(4.34)

Assuming that the origin of the lattice is chosen such that the sites occupy
positions zi =(ℓ+ im) for ℓ and m integer, it is straightforward to show that

Z + W =
L (L− 1)

2
(1 + i) L, (4.35)

and since L is even it follows that the sum of Z and W is equivalent to a
translation of the lattice z0. Because the function f(Z) is periodic and odd,
both properties will be shown below, it immediately follows that f(W) =
f(z0 −Z) = −f(Z). Combining this fact with (4.34) completes the proof
that (4.32) entails (4.31).

4.6 Kernel Sweeping Method

To implement the Hamiltonians given in (4.23) and (4.25), one has to take
into account that 6-body terms appear in the Hamiltonians. If a Hamiltonian
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of that kind is taken as a whole to act on a basis for a given spin lattice,
this turn out to be technically impracticable. Instead, we apply an adapted
form of a Kernel sweeping method. Consider for simplicity translationally
invariant Hamiltonians of the form

H =

N∑

i=1

Hi, (4.36)

with periodic boundary conditions (PBC’s) and Hi being the contribution
acting on lattice site i. As an example, we consider some two-body interaction

Hi =

N∑

j=1
j 6=i

aij J ij , (4.37)

where J ij be a quadratic operator term and aij is its amplitude (or weight).
For the translational invariant system we may rewrite aij as ai−j.

The main idea of the kernel sweeping method is that the Hamiltonian
kernel (e.g. J ij in (4.37)) is the same for all possible configurations {i, j}
and therefore should only be stored once and be applied to all lattice config-
urations by sweeping with the kernel over the whole lattice basis. The kernel
is a matrix of dimension µn for a system with a µ-dimensional local basis and
n–body interaction. In general, we thus consider an n-site Hamiltonian ver-
sion of (4.37), where as before J j1j2j3···jn denotes the n-site operator acting
on the sites j1j2j3 · · · jn and aj1j2j3···jn

is the associated weight.
For demonstration, we constrain our attention to the vector Hamilton

operator (4.23). Setting Ωij = Ωi −Ωj , we split up the Hamiltonian into

H =
∑

〈ij〉
Ωz,†

ij Ωz
ij +

1

2

(

Ω+,†
ij Ω+

ij + Ω−,†
ij Ω−

ij

)

, (4.38)

where the z-component as well as the ladder components of the vector
operators can be written out in terms of spin operators Sz, S+ = Sx + iSy,
and S− = Sx − iSy. As the treatment is very similar, we constrain our
attention to the contribution

∑

〈ij〉 Ω
+,†
ij Ω+

ij , where for clarity we again write
out the + ladder operator explicitly:

Ω+
j =

′∑

i,k 6=j

Kijk

[ 1

4 i
(Sz

jS
+
k − S+

j S
z
k) +

4

5
(Sj · Sk) S

+
i − 1

5
(Sk · Si) S

+
j

−1

5
(Si · Sj) S

+
k

]

+
∑

i6=j

Uij S
+
i . (4.39)
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We apply the previously defined notation

Ω+
j =

∑

i
i6=j






∑

k
k 6=i,j

Kijk J ijk,+
k + UijJ i,+

u




 , (4.40)

where J ijk,+
k and J i,+

u are the first and second line operators of (4.39),
respectively. We create one action list for each kernel, where the weights Kijk

and Uij are computed according to the formulae (4.26) and (4.27). Then for
each lattice basis state, the three-site and the one-site kernel sweep over the
lattice and generate the matrix element contributions. The implementation
of the Tensor Hamilton operator (4.25) is completely analogous.

4.7 Numerics

Figure 4.2: A plot of the symmetry points in the first Brillouin zone. The
arrows show the path taken in plotting the energy spectra in Figure 4.3,
starting from the origin at Γ =(0, 0).

We discuss a 4 by 4 square lattice and PBCs. As the models (4.23)
and (4.25) conserve Sz

tot, the Hamiltonian matrix splits up into subspaces
for Sz

tot = 0,±1,±2, . . . , where for ground state considerations the Sz
tot = 0

subspace is our predominant interest. The lattice basis thus corresponds
to Sz

tot = 0 at half filling, i.e., 8 up and 8 down spins, which can be further
reduced by a 4-fold translational symmetry in x and y direction. Accordingly
we can address a path of non-equivalent points in the Brillouin zone shown
in Fig. 4.2.

We start with the consideration of the Vector Hamiltonian (4.23). The
spectrum is depicted in Fig 4.3.
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0

1

2

Γ ∆ X K M Σ

Figure 4.3: Low energy spectrum of the Hamiltonian (4.23), scaled down to
order of unity. There are two E = 0 eigenvalues at the Γ point.

We find the spectrum to be positive semi-definite, with a doubly degener-
ate 0 eigenvalue at the Γ point. The rest of the spectrum is well separated by
a gap, which is substantial and not due to finite size effects as it exceeds the
finite size level splitting of the spectrum by a factor of ∼ 15. This fits well in
the interpretation of a Hamiltonian having the CSL as its ground state: The
elementary excitations should be spinons and as such should have an excita-
tion gap, in the case of the Sz = 0 sub-block a gap between the ground state
and a two spinon excitation state. It is a promising task to explicitly discuss
the spinon excitations of this model, which is an important question that will
be addressed in future work. We now discuss the two orthogonal 0 eigenvalue
eigenstates which are supposed to be the CSL state of two-fold topological
degeneracy. For comparison, we construct the CSL state (4.4) explicitly. For
the torus geometry of PBCs, we indeed find a two-dimensional subspace of
functions with the center of mass variable being treated as an external pa-
rameter. We compute the overlap of the Hamiltonian ground state subspace
and the CSL subspace. We find that they match perfectly. This thus shows
that the doubly degenerate ground state of the Hamiltonian is indeed the
topologically two-fold degenerate CSL state. Additionally, we have only two
0 eigenvalues, by which follows that the CSL state is the only ground state of
the model, a statement which previously could not be achieved analytically.

For the Tensor Hamiltonian, however, we find that the 0 energy subspace
is largely degenerate, which of course contains the CSL, but also many ad-
ditional states. While the restriction to small system sizes prevents us from
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studying the thermodynamic limit precisely, our numerical findings indicate
that the Hamiltonian (4.25) does not stabilize the CSL state as the unique
ground state, which thus singles out the model (4.23) to be subject of further
study.

4.8 Summary and Outlook

In this work we have shown a method for constructing parent Hamiltonians
for the chiral spin liquid. We have computed the spectra of the Hamiltonians
by use of a Kernel sweeping method in exact diagonalization. There, for
the Hamiltonian operator composed of the spherical vector component of the
CSL destruction operator, we observe that the CSL states are the only ground
states of the model. We suggest that this model is a promising candidate to
also study the elementary excitations of the model, i.e., spinons, and many
other question in the field of two-dimensional fractionalization of quantum
numbers in spin systems. As a concrete perspective, it is important to discuss
the spinon excitations numerically, where there is some indication that the
elementary one-spinon or even two-spinon wave function correspond to exact
eigenstates of the model, which can be addressed by exact diagonalization.
As a further step, it is worthwhile studying systems away from half filling
where the holon excitations appear, for which the model described above
gives a promising starting point. Additionally, one may be interested in
making the relation to the Haldane–Shastry model more explicit. This could
be accomplished by a thin torus expansion of the model described above,
which should yield the Haldane–Shastry Hamiltonian to leading order. This
approach has already been successfully applied to address various questions
in the Quantum Hall effect [13]. As in the one-dimensional case, it would
be desirable to use this potentially analytically accessible model to derive
statements on the spinon momentum distribution function, which may be
linked to experiments.





Chapter 5

Non-Abelian Chiral Spin Liquid

5.1 Introduction

Starting from the Chiral Spin Liquid discussed in the previous chapter, we
now introduce a new spin liquid state for a spin 1 and higher spin lattices.
So far, we have only dealt with spinons possessing abelian fractional statis-
tics in the sense that the wave function acquires a non-trivial phase when
spinons are braided around each other. The present renaissance of interest in
fractional quantization, however, is due to possible applications of states sup-
porting excitations with non-abelian statistics to the rapidly evolving field of
quantum computation and cryptography [82]. The paradigm for this univer-
sality class is the Pfaffian state introduced by Moore and Read [95] in 1991.
The state was proposed to be realized at the experimentally observed frac-
tion ν = 5/2 [131] (i.e., at ν = 1/2 in the second Landau level) by Greiter,
Wen, and Wilczek [49], a proposal which recently received strong experimen-
tal support through the direct measurement of the quasiparticle charge [29].
Pfaffian-type states are further conjectured to be realized for one-dimensional
bosons with three-body hard core interactions in general [100]. The Moore–
Read state possesses p+ip wave pairing correlations. The flux quantum of the
vortices is one half of the Dirac quantum, which implies a quasiparticle charge
of e/4. Like the vortices in a p-wave superfluid, these quasiparticles possess
Majorana-fermion states [103] at zero energy (i.e., one fermion state per pair
of vortices, which can be occupied or unoccupied). A Pfaffian state with 2L
spatially separated quasiparticle excitations is hence 2L fold degenerate, in
accordance with the dimension of the internal space spanned by the zero en-
ergy states. While adiabatic interchanges of quasiparticles yield only overall
phases in abelian quantized Hall states, braiding of half vortices of the Pfaf-
fian state will in general yield non-trivial changes in the occupations of the
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zero energy states [67,116], which render the interchanges non-commutative
or non-abelian. Most importantly, however, the internal state vector is insen-
sitive to local perturbations—it can only be manipulated through braiding
of the vortices. These properties together render non-abelions preeminently
suited for applications as protected qubits in quantum computation [26].
Non-abelian anyons further appear in certain other quantum Hall states de-
scribed by Jack polynomials [16,115] including the Read-Rezayi states [104],
in the non-abelian phase of the Kitaev model [81], and in the Yao-Kivelson
model [30, 107, 134].

In this chapter, we propose a novel chiral spin liquid state for an S = 1 an-
tiferromagnet. The spinon and holon excitations of this state are deconfined
and obey non-abelian statistics, with the braiding governed by Majorana
fermion states. The state violates time reversal (T) and parity (P), is a spin
singlet, can be formulated on any lattice type, and fully respects all the lat-
tice symmetries. The state possesses a 3-fold topological degeneracy on the
torus geometry. We provide numerical evidence that the state can be sta-
bilized on the triangular lattice by a local Hamiltonian involving three-spin
interactions. Finally, we hypothesize that spinons in spin liquids with spin
larger than 1/2 generically obey non-abelian statistics, but are only decon-
fined in the chiral spin liquids we introduce and study here. The main body
of this work is presented in a further upcoming publication and

M. Greiter and R. Thomale, Non-Abelian Statistics in a Quantum Anti-
ferromagnet, submitted to Phys. Rev. Lett.

5.2 Non-abelian chiral spin liquid state

The state we propose is most easily written down for a circular droplet with
open boundary conditions occupying N sites of a triangular or square lattice
S = 1 antiferromagnet. The wave function for re-normalized spin flips,

ψ0[zi] = Pf

(
1

zj − zk

) N∏

i<j

(zi − zj)

N∏

i=1

G(zi) e
−π

2
|zi|2 (5.1)

is simply given by a bosonic Pfaffian state in the complex coordinates z ≡
x + iy supplemented by a gauge phase G(ηα). The Pfaffian is given by the
fully antisymmetrized sum over all possible pairings of the N coordinates,

Pf

(
1

zi − zj

)

≡ A
{

1

z1 − z2
· . . . · 1

zN−1 − zN

}

. (5.2)
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The “particles” zi represent re-normalized spin flips acting on a vacuum with
all spins in the Sz = −1 state,

|ψ0〉 =
∑

{z1,...,zN}
ψ0(z1, . . . , zN) S̃+

z1
. . . S̃+

zN
|−1〉N , (5.3)

where the sum extends over all possibilities of distributing the N “particles”
over the N lattice sites allowing for double occupation, and

S̃+
α ≡ Sz

α + 1

2
S+

α , |−1〉N ≡ ⊗N
α=1 |1,−1〉α . (5.4)

The lattice may be anisotropic; we have chosen the lattice constants such
that the area of the unit cell spanned by the primitive lattice vectors is set
to unity. For a triangular or square lattice with lattice positions given by
ηn,m = na+mb, where a and b are the primitive lattice vectors in the complex
plane, G(ηn,m) = (−1)(n+1)(m+1) [70, 137]. In comparison to the chiral spin
liquid state discussed in Chapter 4, some similarities are observed. The first
is the general functional form of the wave function, being a Jastrow factor
to second power for the CSL and a single power Pfaffian and Jastrow form
for the non-abelian CSL. However, as seen from (5.4), the construction of
the Hilbert space already contains subtleties not present for the spin 1/2
CSL. We will encounter further similarities, but also strong differences in the
following.

5.2.1 Singlet property

While the topological properties, and in particular the non-abelian statis-
tics of the fractionalized excitations of (5.2), are highly suggestive to those
familiar with Pfaffian states, the invariance under spin rotation and lattice
symmetries is less so. We content ourselves here with a direct proof of the
singlet property, which at the same time serves to motivate the necessity for
the re-normalization of the spin-flip operators (5.4).

Since Sz
tot |ψ0〉 = 0 by construction, it is sufficient to show S−

tot |ψ0〉 = 0.
Note first that when we substitute (5.1) with (5.2) into (5.3), we may omit
the antisymmetrization A in (5.2), as it is taken care automatically by the
commutativity of the bosonic operators S̃α. (Throughout this chapter, we
do not keep track of overall normalization factors.) Let ψ̃0 be ψ0 without
the operator A in (5.2). Since ψ̃0[zi] is still symmetric under interchange of
pairs, we may assume that a spin flip operator S−

α acting on |ψ̃0〉 will act on
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the pair (z1, z2):

S−
α

∣
∣ψ̃0

〉
=
∑

{z3,...,zN}

{
∑

z2(6=ηα)

ψ̃0(ηα, z2, z3, . . . )S
−
α S̃

+
α S̃

+
z2

+
∑

z1(6=ηα)

ψ̃0(z1, ηα, z3, . . . )S
−
α S̃

+
z1
S̃+

α

+ ψ̃0(ηα, ηα, z3, . . . )S
−
α (S̃+

α )2

}

S̃+
z3
. . . |−1〉N

=
∑

{z3,...,zN}

{
∑

z2

2ψ̃0(ηα, z2, z3, . . . ) S̃
+
z2

}

S̃+
z3
. . . |−1〉N

where we have used

S−
α (S̃+

α )n |1,−1〉α = n (S̃+
α )n−1 |1,−1〉α .

This implies S−
tot |ψ0〉 =

∑N
α=1 S

−
α |ψ0〉 = 0 if and only if

N∑

α=1

ψ̃(ηα, z2, z3, . . . ) = 0 ∀ z2, z3, . . . zN .

This, however, is just a special case of the Perelomov identity [101], which
holds for lattice sums of e−

π
2
|ηα|2G(ηα) times any analytic function of ηα. An

insightful proof of this sum rule is given in terms of Jacobi theta functions
in Appendix B.3.

5.2.2 Generation from filled Landau levels

We saw in the previous chapter that the spin 1/2 chiral spin liquid can be
written as

|ψCSL

0 〉 =
∑

{z,w}
φ[zi]φ[wj] c

†
z1↑ . . . c

†
zM↑ c

†
w1↓ . . . c

†
wM↓ | 0 〉 , (5.5)

where the sum extends over all partitions of the lattice sites into z’s and w’s,
the c†’s are fermion creation operators, and φ denote a Landau level filled
with one certain species of spins. Trivially, we can rewrite the CSL state
vector in terms of Schwinger bosons a† and b† (see Appendix B.8),

|ψCSL

0 〉 = ΨCSL
[
c†↑, c

†
↓
]
| 0 〉 = ΨCSL

[
a†, b†

]
| 0 〉 , (5.6)
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CSL1

CSL2

S

Figure 5.1: Schematic construction of the Pfaffian Liquid. Starting with two
CSL lattices (depicted CSL1 and CSL2 above), a spin 1 wave function is
constructed by symmetrization over the sites.

provided we define ΨCSL
0

[
c†↑, c

†
↓
]

such that the operators are ordered according
to a fixed labeling of the lattice sites. The non-abelian CSL state (5.1) is
then given by

|ψ0〉 =
(

ΨCSL
[
a†, b†

])2

| 0 〉 . (5.7)

To verify (5.7), use 1√
2
(a†)n(b†)(2−n) | 0 〉 = (S̃+)n | 0 〉 and

S
M∏

i<j,1

(zi − zj)
2

2M∏

i<j,M+1

(zi − zj)
2 = Pf

(
1

zi − zj

) 2M∏

i<j

(zi − zj), (5.8)

where S indicates symmetrization and (5.8) holds due to the Frobenius iden-
tity going back to 1882 [37]. Since the LLL states (4.7) are (on compact
surfaces) translationally and rotationally invariant modulo gauge transforma-
tions in the auxiliary magnetic field, and (4.8) is manifestly gauge covariant,
both the CSL states (4.3) from the previous chapter and (5.1) are invariant
under lattice transformations. Note that this projective construction also
implies the singlet property of the CSL states. It can be used to formulate
the CSL states on any lattice, and to generalize them to arbitrary spin:

∣
∣ψSpin S

0

〉
=
(

ΨCSL
[
a†, b†

])2S

| 0 〉 . (5.9)

Written in terms of (then differently) re-normalized spin flip “particles”, the
wave function generalizes from a bosonic Pfaffian state for S = 1 to bosonic
Read-Rezayi states [104] for S > 1. This is a very important result, which,
however, we do not elaborate on here in detail. It means that we can generate
not only Pfaffian-like non-abelian spinons, but spinons of any non-abelian
statistics type so far known in the Quantum Hall effect. Rephrased in other
words, we hence provide a representation of the complete Jack polynomial
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series on spin lattices recently developed by Bernevig and Haldane [16]. It is
important to observe that the single site dimensionality on the spin lattice
has to increase with higher Jack series terms, which supports the view that
the internal Hilbert space structure gets more complicated.

5.3 Non-abelian spinon and holon excitations

The spinon excitations of (5.1) are completely analogous to the half vortex
quasiparticles of the Moore-Read quantum Hall state [95]. For example, to
create 4 ↓ spin spinons at locations η1, η2, η3, and η4, we simply insert half
quantum vortices inside the Pfaffian (5.2), which then becomes

Pf

(
(zi − η1)(zj − η2)(zi − η3)(zj − η4) + (i↔ j)

zi − zj

)

. (5.10)

The braiding properties of the spinons are insensitive to the spinon spin, and
exactly those of the Moore-Read quasiparticles, which has been discussed in
explicit detail in the literature [67,103,116]. The proof of the singlet property
given above can be extended to show that a pair of ↓ spin spinons transforms
as an S = 1 triplet excitation, which implies that each spinon carries spin
S = 1

2
. With the implicit assumption that the S = 1 spins on each lattice

site consist of two electrons in triplet configurations, we can create holon
excitations by annihilating ↓ spin electrons on sites with ↓ spin spinons. The
braiding properties of the holons are equivalent to those of the spinons. The
braiding analogy to half quantum vortices, however, only accounts for the
subspace of spin polarized spinons. For the general case, however, we find
no analogous state in the FQHE, since the chirality of the vortices is fixed
therein due to the external magnetic field, which is not necessarily the case
for the spinons of the non abelian CSL state.

5.4 Microscopic model - Hamiltonian Finder

method

The first question with regard to possible applications of our state to quantum
computation is whether a state belonging to the universality class described
by (5.1) can be stabilized through a local Hamiltonian. While we are short of
a definite answer, we have done our best to address the question numerically.
To begin with, we have written out the state (5.1) for an isotropic, triangular
lattice with 16 sites and periodic boundary conditions, which imply a three-
fold topological degeneracy [50]. For given translational symmetries, the CSL
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Figure 5.2: The eleven interaction terms included in our trial Hamiltonian
with the numerically optimized coefficients (see text). Note that the coeffi-
cients fall off rapidly with the distance.

states are situated at the Γ point. Additionally, we have a two-fold spin reflec-
tion symmetry for the system, where the CSL states acquire no phase under
the symmetry operation. We then numerically optimized the coefficients of a
set of local spin interaction terms (see Fig. 5.2) such that the ground state of
our trial Hamiltonian is energetically closest to a suitable linear combination
of the three (in the thermodynamic limit degenerate) Pfaffian states, which
we then compare to the exact eigenstates. This is the key step performed by
the Hamiltonian Finder method. To outline the principal structure, it starts
with an overlap optimization of a collection of Hamiltonian terms without
any further constraint with respect to a given input state, which in our case
is the non-abelian CSL state. This problem can be solved by computation
of the scattering overlap of the states resulting from different Hamiltonian
terms acting on the input state. However, this just optimizes the overlap and
there is no control which spectral state is optimized a priori. Instead, what
we want to have in our problem is no adjustment to maximize some excited
state overlap with the input state, but exclusively the ground state, i.e., we
want the lowest energy state of the resulting spectrum to have the maxi-
mum overlap with the input state. What we do numerically is that for each
Hamiltonian term entering the optimization, we first identify where the input
state is situated in the spectrum of solely this term and how strongly it is
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Figure 5.3: (Color online) Spectral plot of our trial Hamiltonian in compari-
son with the energy expectations values for the three (in the infinite system
topologically degenerate) Pfaffian ground states states at the Γ point. The
inset shows the overlap of the Pfaffian states with the three lowest states of
our Hamiltonian.

scattered upon action of term, i.e., what is the self overlap of the input state
with respect to this Hamiltonian term. From there, we compute optimization
precondition weights to enter the overlap optimization commented on previ-
ously. In doing so, we can incorporate the information into the optimization
that is needed to push the input state down in the resulting spectrum, and,
upon iteration, finally to become ground state. Of course, one must keep
in mind that the Hamiltonian terms entering the optimization are educates
guesses from the structure of the input state, and the input for Hamiltonian
Finder method has to be chosen carefully for different input states. As shown
in Fig. 5.3, the three lowest energy eigenstates of our trial Hamiltonian have
a significant overlap with the Pfaffian states (i.e., 0.959, 0.964, and 0.934 in a
Hilbert space which contains 227,475 singlets), which suggests that the exact
states belong to the same universality class. (Our evidence is unfortunately
not conclusive as the three states are not separated by a large gap from the
remainder of the spectrum, which indicates that the system we can access
numerically is too small to settle the question unambiguously.)
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5.5 General scope of non-Abelian spinons

Efforts to understand high Tc superconductivity in terms of an RVB spin
liquid have revealed a general connection between d-wave superconductors
and S = 1

2
spin liquids on the square lattice [3, 68]. In particular, a wide

class of (undoped) S = 1
2

spin liquids can be obtained by Gutzwiller projec-
tion from the wave function of a d-wave superconductor with suitably chosen
parameters. This suggests a general connection between the (abelian) vor-
tices of the superconductor and the (abelian) spinons in the spin liquid. If
one Gutzwiller projects a d + id wave superconductor with suitably chosen
parameter on a square lattice, one obtains exactly the CSL state (4.3).

The p + ip pairing correlations in the non-abelian CSL state (5.1) in-
troduced above suggest a similar correspondence between the non-abelian
vortices of the superconductor and the non-abelian spinon excitations (5.10).
As in the abelian case S = 1

2
, the P and T violation of the state appears

to be necessary for the spinon to be deconfined, but does not seem essential
to the topological properties. We are hence led to conjecture that there is a
general connection between p-wave superfluids and S = 1 spin liquids, in that
the non-abelian braiding properties of the vortices of the superfluid are also
general properties of the spinons in S = 1 (and higher spin) antiferromag-
nets. True, the spinons will only be free under very special circumstances,
and the propensity to be confined will only increase with the spin S. Even
in an ordered antiferromagnet, however, spinons (and holons) are the fields
appropriate for describing the physics at sufficiently high energy scales, i.e.,
energies above the ordering temperature.

5.6 Summary and Outlook

In this chapter, we have constructed an S = 1 CSL and demonstrated that
its spinon and holon excitations obey non-abelian statistics. Our analysis
suggests that spinons in spin liquids with Spin S > 1 obey non-abelian
statistics in general. Of course, we have to multiply validate this statement
in the future. As an additional direction of research, it is obvious that we
have to analyze this new kind of excitations in more detail, which could first
be addressed again by exact diagonalization methods. Additionally, it may
be possible to consider further types of spin liquids that can be constructed
by the symmetrization procedure outline above. Already at this stage, we
can apply the Hamiltonian Finder method to deduce a microscopic model for
the Spin 1 chirality liquid introduced by Greiter in 2002 [45]. Finally, one can
go one step back and retell the whole construction scheme for one dimension,
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yielding a wave function in one dimension that has a Pfaffian structure.
Introducing already many directions of further research by itself, it has been
additionally recently accomplished by Greiter in a current ongoing work to
establish a class of Hamiltonians on Spin S chains for which the Spin S
chain states are the exact ground states [42], which we have already analyzed
numerically and will further investigate in the future.



Chapter 6

Experimental observation of
fractional excitations

6.1 Introduction

Experimental observation and analysis of fractional excitations has been the
main predominantly unresolved part of the field since its discovery in the
early 80’s [88, 128, 129]. Apparently many systems in which fractional exci-
tations could be studied analytically and in explicit detail were impossible
to realize experimentally, and for a long time it remained elusive to close
this gap. In the 90’s, significant progress was made in both the regime of
the quantum Hall effect [41] and of one-dimensional spin chains [79], which
will be further commented on below. In contrast, two-dimensional fractional
excitations in spin models could not be studied yet, whereas the theoretical
picture of anyons in two dimensions is generally much clearer than for one-
dimension [77, 130]. Only very recently, since the rise of ultra-cold atoms in
optical lattices [34] and new materials [20], it has become possible to study
anyonic spin excitations in more detail, and the field is evolving rapidly.
From this perspective, this chapter only intends to shortly comment on re-
cent developments in the field. Rather, the main intention is to support the
view that many questions associated with fractional excitations in one and
two dimensions may be possible to address experimentally in the very near
future.
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Figure 6.1: Two-spinon continuum, schematic plot taken from [40]. As
before, the individual spinons only occupy one half of the Brillouin zone.

6.2 Spinons and Holons in one dimension

6.2.1 State of the field

Very important measurements of the spinon-excitation continuum were first
performed using neutron scattering in KCuF3 [119]. KCuF3 provides a good
example of a quasi one-dimensional antiferromagnet. It is nearly tetragonal
and due to Jahn-Teller distortion, the fluorines are displaced such that it
effectively yields quasi-1D strongly coupled chains. The observations can be
explained up to a high precision by the exactly known spin structure factor in
the Haldane Shastry model [62], and can thus be explained as an excitation
continuum composed of two-spinon excitations (see Fig. 6.1). Beyond ob-
serving the spinon substructure yielding an excitation continuum, the results
also confirm that the spinon dispersion only occupies half of the Brillouin
zone. Concerning the exactly solvable model of spinons discussed previously,
this leads to the important observation that the elementary properties of
spinons found therein directly relate to generic and experimentally realized
S = 1/2 Heisenberg chains. Further detailed neutron scattering experiments
have been performed on quasi-1D Cs2CuCl4 [25]. In particular, the square
root singularity of the spin structure factor could be observed, which can
be attributed to the half-Fermi statistics of the spinons. A further semi-
nal step was taken by performing angel-resolved photoemission spectroscopy
(ARPES) on SrCuO2 [79]. In principle, SrCuO2 is a 1D antiferromagnetic
(Mott) insulator, being modelled by chains of atoms with one electron per
site, and doubly occupied sites are suppressed due to strong on-site Coulomb
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Figure 6.2: Analysis of the spectral function, plot taken from [78]. The raw
data (big dots) are fitted with two Gaussian peaks relating to spinon and
holon, respectively. The upper left inset shows the expected Bethe-Ansatz
result for the Hubbard model with infinite Coulomb interaction. The peaks
for the two separate holon and spinon excitations are thus observed explicitly.

repulsion. In ARPES, the electrons are excited above the vacuum level by
incident (monochromatic) photons, followed by the measurement of the en-
ergy and the emission angle of the emitted electrons by an analyzer. For
the one-dimensional structures given here, it is especially easy to deduce the
electron momentum inside the material from the emission angle, which al-
lows a detailed resolution of energy E versus quasi-momentum k along the
chain. By ARPES, it is thus explicitly studied how spin-charge separation
emerges: The photon takes out one fermionic degree of freedom, thus creat-
ing a spinon holon pair. The spectral results directly relate to this finding. It
is observed that the spectrum contains a region where a continuum is found,
which can only be explained in terms of a spinon-holon continuum. Sub-
sequent works also studied the temperature dependence of the spinon and
holon excitations [91]. The explicit two-peak structure, one corresponding
to the holon and one corresponding to the spinon peak, has been observed
recently by more refined ARPES measurements [78, 84] (see Fig. 6.2). A
third range of experiments concentrates on so-called ”particle-hole” probes,
such as optical spectroscopy, resonant inelastic x-ray scattering (RIXS), and
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electron energy-loss spectroscopy (EELS). In these experiments, no charge is
removed from the system. Instead, the scattering yields a move of an electron
to another site, inducing a doubly occupied site and an empty site. This, by
contrast to ARPES, decays into a spinon and an antiholon, which has been
studied in detail and set into theoretical context by analytical and numerical
analysis [12, 64, 80]. Recently, spin-charge separation has also been studied
by tunneling experiments between two wires in the ballistic regime [9].

6.2.2 Influence of fractional statistics

From the viewpoint of the theoretical results pointed out in Chapter 2, the
comments above show that certain properties of fractional spinon and holon
excitations have been measured experimentally, such as the spinon-spinon
and spinon-holon continuum, as well as the halfed Brillouin zone for the
spinons and holons and the square root divergency in the spin structure
factor. However, the direct testing of individual fractional excitations of spin
chains remains an open problem. In particular, it is unclear whether the
fractional half-fermionic spacing which we find for spinons and holons in the
Haldane-Shastry and Kuramoto–Yokoyama model leads to an effect which
can be observed experimentally. The first step to address this problem may
be a thermodynamic description of the Haldane–Shastry model in terms of
multiple spinon states, which is one of our ongoing considerations.

6.3 Fractional excitations in the Quantum Hall

effect

6.3.1 State of the field

Abelian excitations

The fractional quantum Hall effect is the first system where fractional excita-
tions emerged. Initiated by the fundamental work of Laughlin in 1983 [88], it
was soon realized that the phenomenology of certain Quantum Hall plateaus
at fractional filling can be suitably captured in the language of fractional
excitations, the Laughlin quasiholes and quasielectrons. Again, however, the
concise experimental measurement of the fractional quantum numbers and
fractional statistics remained an unsolved problem for more than a decade.
In 1995, Goldman and Su measured the fractional charge e/3 of the m = 3
Lauglin state at ν = 1/3 filling in resonant tunneling experiments in the
Quantum Hall regime [41]. However, the charges still could not be addressed
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individually, which was finally accomplished by shot noise experiments per-
formed by De-Picciotto et al. [102]. Still, there was a remaining ambiguity
whether the shot noise experiments at ν = 1/3 filling really measured the
charges themselves relating to e/3 or just the conductance relating to the
filling factor. This could be checked by performing the same shot noise
measurement for the Quantum Hall plateau at filling ν = 2/5, where the
fractional charge is supposed to be e/5. Reznikov et al. [106] showed that
it is indeed the charge which is measured. The subsequent question to be
addressed is how the fractional statistics of the excitations can be measured
explicitly. Opposed to one-dimension elaborated on previously, the winding
operation yielding non-fermionic phases upon interchange of abelian frac-
tional excitations can be unambiguously defined, suggesting quantum in-
teference measurements to dectect the effect of fractional statistics. Beyond
other proposals like combining the Aharonov Bohm effect with noise measur-
ments raised by Kane [72], Camino, Zhou, and Goldman recently suggested
a laughlin quasiparticle interferometer, which should enable the acquired
winding phase to be studied explicitly [22, 24] (see Fig. 6.3). They realized
an interferometer where an e/3 Laughlin quasiparticle executes a closed path
around an island of the 2/5 fractional quantum Hall fluid, from which they
can deduce the acquired phases.

Non-Abelian excitations: Pfaffian state

While many other proposals for non-Abelian fractional quantum Hall states
exist in theory, experimental efforts have nearly exclusively concentrated on
the Pfaffian state at ν = 5/2 filling, i.e., with the lowest Landau level filled
and the next level half filled. This is mainly due to the experimental ac-
cessibility, as it is by far the most clearly detectable and accessible state.
For this state, it is predicted by theory that the elementary excitations are
half quantum vortices of charge e/4, which obey non-trivial winding rules.
In particular, the winding of the vortices does not only induce a non-trivial
winding phase as is the case for abelian excitations, but changes the topology
of state, which render the winding non-commutative or non-abelian. The in-
terest in this state even increased further when Das Sarma, Freedman, and
Nayak supposed that a topologically protected qubit can be formed from
it [26]. One milestone has been achieved recently by Dolev et al. [29], by
considering statistical current fluctuations (shot noise) in the ν = 5/2 state,
as similar theoretical proposals existed before [11]. This gives a very strong
indication of non-Abelian statistics being realized in this state, since this
perspective correctly predicts the e/4 quasiparticle charge of the half quan-
tum vortices. In analogy to the evolution of experiments for the Abelian
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Figure 6.3: Laughlin quasiparticle interferometer, plot taken from [136]. Four
Au/Ti front gates define the central island in a) and b) separated from the
2D bulk by two wide constrictions. The electrons constrained to 2D are
depleted near the gates. a) shows the scenario for quantum Hall filling f = 1,
where the chiral edge channels follow equipotential lines. b) is the important
setting, which illustrates the f = 2/5 island surrounded by an f = 1/3
fractional quantum Hall fluid.

states, however, this is only a first step. In particular, explicitly measuring
the non-Abelian statistics of the quasiparticles will be a complicated task,
since a simple measurement of a winding phase will not be sufficient. This
is indicated in a recent theoretical proposal using interferometry [17].

6.4 Spinons in two dimensions

6.4.1 State of the field

Whereas we have seen above that the experimental progress in detecting frac-
tional excitations already started in the 90’s in the fractional quantum hall
effect, it took more time for the field to detect fractional spin excitations in
two dimensions by similar means. Several conceptual problems arise. Firstly,
until today, the basic notion of spinons in two-dimensional antiferromagnets
is a very contentious issue, and even for the Chiral Spin Liquid, the paradig-
matic state of spinons in two dimensions, a microscopic model was not found
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until recently by us, which would have allowed to endeavor the physical prop-
erties of spinons. Secondly, even for models like the Rokhsar-Kivelson dimer
model where the excitations can be interpreted as being half-fermionic spinon
excitations as well, the Hamiltonians did not allow for experimental realiza-
tion. In contrast, generic antiferromagnetic models like the two-dimensional
Heisenberg model, appear to be efficiently described by magnon excitations
carrying spin 1, meaning that opposed to the one-dimensional case, the con-
finement of the spinons too strong for the substructure to be resolved. In
analogy, for scattering energies lower than the quark confinement, it is impos-
sible to resolve the quark substructure of the nucleons in high energy physics.
Thirdly, no spin model in which non-Abelian excitations are supposed to
appear was known, not to speak of the non-Abelian spinons which are intro-
duced by us in the preceding Chapter 5. The cure for the first and partly the
third point was given by the seminal work of Kitaev in 2006 [81]. Therein,
he introduced a model which allows anyonic excitations to be established in
a very accessible manner. Experimentally, the important progress made by
Micheli et al. [92] establishes a way to engineer arbitary Hamiltonians by
use of polar molecules in optical lattices. The combination of microwave ex-
citations with dipole-dipole interactions and spin-rotation coupling enables
the construction of a complete toolbox for effective two-spin interactions, in
particular with designable range, spatial anisotropy, and coupling strengths
significantly larger than relevant decoherence rates. Additionally, Büchler et
al. have shown that polar molecules in optical lattices driven by microwave
fields naturally give rise to models with nearest-neighbor three body interac-
tions [21], which appears to be generally essential for non-Abelian statistics
to emerge, as cofirmed by our microscopic model for non-Abelian chiral spin
liquid involving three-spin interaction terms, as well as for the ν = 5/2
fractional quantum hall state. It is important to note that in the systems
considered by Büchler et al., the two-body interactions can still be tuned in-
dependently of the three-body interactions by use of external fields, which in
total makes it a formidable experimental ground to endeavor anyonic phases.

One recent development related to point two, which can be interpreted in
close analogy to the one-dimensional spinon case we have considered previ-
ously, is given by high-precision neutron scattering experiments on CsCoBr3

by Braun et al. [20]. The material CsCoBr3 can be interpreted as an an-
tiferromagnetic anisotropic spin 1/2 chain, being close to the Ising limit.
Along the dominant spin direction, the lowest excitations can be interpreted
as domain walls separating between regions of the two (different) degenerate
ground states. Quantum fluctuations due to the transverse coupling destroys
the high dengeneracy of the solitons which form a band, with two degenerate
soliton minima carrying different chirality quantum numbers, as left-right
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Figure 6.4: A piece of the triangle-honeycomb lattice taken from [31]. A unit
cell with lattice vector denoted by n1 and n2 contains 6 sites. The different
types of links are distinguished by light and dark shading.

symmetry (P) is still preserved by the system. Although the phenomenology
is slightly different to the spinons we have encountered in the Chiral spin liq-
uid, one may equally call these soliton excitations spinons in the sense that
they both carry fractional quantum numbers. Neutron scattering can only
induce the creation of pairs of solitons, which leads to a soliton excitation
continuum. Remarkably, Braun et al. managed to lift the P symmetry of
the model and detect the chirality quantum number of the solitons explicitly.
Analogously, the spinons in the Chiral Spin Liquid carry a chirality quantum
number. This work dictates the path to discuss spinons in two-dimensional
antiferromagnets in more detail.

6.4.2 Half-Fermi Excitations in the Kitaev model

Beyond other versions of topological models in [81], Kitaev proposed a two-
dimensional spin 1/2 system defined on a triangle-Honeycomb lattice, de-
scribed by

H = −
∑

α

[ ∑

α−links

Jασ
α
i σ

α
j +

∑

α′−links

J ′
ασ

α
i σ

α
j

]

, (6.1)



6.5 Summary and Outlook 85

where the σα
i ’s are the usual Pauli matrices at site i and α take on values x,

y, or z. Links of type x, y, z or x′, y′, z′ are illustrated in Fig. 6.4. The model
contains anyonic excitations with both abelian and non-abelian excitations,
depending on the parameter regime of the Jα’s. While the lattice is hard
to realize in natural magnetic materials, it is techniqually easily achievable
in optical lattices. Most importantly, the Hamiltonian terms themselves are
only of nearest neighbor two-body form, and thus again easy to engineer
experimentally in optical lattices. There are two experimental groups associ-
ated with Zoller and Das Sarma who have recently reported on fundamental
progress in establishing the Kitaev model in optical lattices [69, 135]. The
possible detection of anyons in the Kitaev model has been recently proposed
by Dusuel et al. [30] by explicit braiding of the vortices. The crucial bot-
tleneck for this operation is the potential creation of further uncontrolled
vortices while performing the braiding operation. Considering state of the
art technique in optical lattices [34, 125], a sufficient experimental scenario
may be created in the near future.

6.5 Summary and Outlook

We could only shortly discuss a small selection of recent developments in
the field of experimental observation of fractional excitations. To mention
some very recent proposals, there may also be a way to engineer quantum
entangled states out of equilibrium, which is proposed in the yet unpublished
works by Diehl et al. [28] and Kraus et al. [85] . In addition there is even a
recent proposal by Norman and Micklitz to detect spinon Fermi surfaces in
spin liquids by looking for oscillatory couplings between two ferromagnets via
a spin liquid spacer [99]. In the very near future, we expect that the strongest
progress in the field of experimental measurement of anyonic excitations in
spin models will be done for the Kitaev model, where many aspects have
already been accomplished. However, as fruitful as the discussion of anyons
in the Kitaev model may be, it does not bring us further to discuss abelian
and non-abelian spinons in spin 1/2 and spin 1 lattices experimentally. It
has to be investigated whether the microscopic models for these states shown
in the preceding chapters can be engineered in optical lattices, for example.
Additionally, it also of interest to think about quantities measurable by scat-
tering experiments that may enable us to detect the spinon substructure in
generic spin 1/2. Most importantly, the potentially present substructure of
spin 1 materials, as indicated by our results presented in Chapter 5, must be
addressed experimentally by deep inelastic neutron scattering, for example.





Chapter 7

Conclusion

In this thesis, we have discussed various new aspects of fractional quantiza-
tion and fractional statistics in one and two-dimensional spin systems.

In Chapter 2 we have studied the holon excitations of the Kuramoto–
Yokoyama model. For the standard case of SU(2) spin symmetry, we con-
structed the explicit two-holon wave functions not known previously and de-
rived their momenta and energies. The results display the half-Fermi statis-
tics of the holons, which manifests itself in a shift of 1

2
2π
N

in the difference of
the individual holon momenta. It is a main task to (if possible) discuss the
implications for experimental observations.

In Chapter 3, we generalize this view to spin chains of general SU(n)
symmetry and have derived the wave functions of the one-holon and two-
holon excitations of the SU(n) KYM as well as its energies and momenta.
We have shown by explicit calculation that the holon excitations of the SU(n)
KYM obey 1/n-fermi statistics, which manifests itself in the difference of the
individual holon momenta as pl − pm = 2π

N

(
1
n

+ integer
)
. We further set it

into the context of spin-charge separation. This result supports the view
that fractional statistics in one dimension manifests itself not only through
a fractional exclusion principle [58], but decisively in a fractional shift of the
individual holon momenta. This can be set into the general context of color
charge separation for SU(3) spin chains, which promises significance in future
experiments of ultra cold atoms in chains of optical lattices.

In Chapter 4, we turned to fractional spin excitations in two dimensions
and have shown a method for constructing parent Hamiltonians for the chiral
spin liquid. We have computed the spectra of the Hamiltonians by use of
a novel Kernel method in exact diagonalization, and applied a Tensor de-
composition technique to find the Hamiltonian. There, for the Hamiltonian
operator composed of the spherical vector component of the CSL destruction
operator, we observe that the CSL states are the only ground states of the
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model. We conclude that this model is a promising candidate to also study
the elementary excitations of the model, i.e., spinons, and many other ques-
tion in the field of two-dimensional fractionalization of quantum numbers in
spin systems.

In Chapter 5, we have constructed an S = 1 non-abelian chiral spin liquid
and demonstrated that its spinon and holon excitations obey non-abelian
statistics. Our analysis suggests that spinons in spin liquids with Spin S > 1
obey non-abelian statistics in general, which is a fundamental statement
that possibly can and must be considered experimentally and by further
theoretical study.

Finally, in Chapter 6, we review recent progress to detect aspects of frac-
tional quantization in various experimental systems, and outline certain di-
rections that may lead to a detection of theoretical findings presented in this
thesis.

In conclusion, we believe that the field of fractional excitations is on the
rise. Recent developments like quantum cryptography, quantum computa-
tion, topological phases and many other aspects from the theoretical side as
well as tremendous progress on the experimental side will render fractional
quantization as one of the most important fields in condensed matter physics
of strongly correlated systems in the very soon future.



Appendix A

Holons in the
Kuramoto–Yokoyama model

A.1 Two-Holon excitations in the SU(2) KYM

In the following we will construct the two-holon energy eigenstates starting
from (2.22). First, we introduce the auxiliary wave functions

ϕmn(z1, . . . , zM ; h1, h2) = hm
1 h

n
2

M∏

i=1

(h1 − zi)(h2 − zi) Ψ0(z1, . . . , zM). (A.1)

The action of the Hamiltonian on the states (2.22) will be obtained later via

Ψho
mn = ϕm+1,n + ϕn+1,m − ϕm,n+1 − ϕn,m+1. (A.2)

Second, we rewrite the Hamiltonian (2.2) in analogy to [15] as

HKY =
2π2

N2

(

Hex
S +H Is

S +HV +H↑
C +H↓

C

)

, (A.3)

where we separate the spin-exchange, spin-Ising, potential, ↑-charge kinetic
term, and ↓-charge kinetic terms. In the following we treat each term sepa-
rately. For the spin-exchange term we begin by observing that
[S+

α S
−
β ϕnm](z1, . . . , zM ; h1, h2) is identically zero unless one of the arguments

z1, ..., zM equals ηα. We have

[

Hex
S ϕmn

]

(z1, . . . , zM ; h1, h2) ≡
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ϕmn

]

(z1, . . . , zM ; h1, h2)

=

M∑

j=1
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|zj − ηβ|2
ϕnm(z1, . . . , zj−1, ηβ, zj+1, . . . , zM ; h1, h2)

ηβ
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where we have introduced the coefficients Al = −∑N−1
α=1 η

2
α(ηα−1)l−2. Evalu-

ation of the latter yields A0 = (N −1)(N −5)/12, A1 = −(N −3)/2, A2 = 1,
and Al = 0 for 2 < l ≤ N − 1 [14].

For the spin-Ising term we obtain

[

H Is
S ϕmn

]

(z1, . . . , zM ; h1, h2) ≡
[

N∑

α6=β

PGS
z
αS

z
βPG

|ηα − ηβ|2
ϕmn

]

(z1, . . . , zM ; h1, h2)

=

{
M∑

i6=j

1

|zi − zj |2
+

M∑

i=1

1

|zi − h1|2
+

M∑

i=1

1

|zi − h2|2
+

1/2

|h1 − h2|2

−N
N2 − 1

48

}

ϕmn. (A.5)

The potential term yields
[

HVϕmn

]

(z1, . . . , zM ; h1, h2)

≡
[

N∑

α6=β

PG

(
−1

4
nαnβ + nα − 1

2

)
PG

|ηα − ηβ |2
ϕmn

]

(z1, . . . , zM ; h1, h2)

=

{

−1

2

1

|h1 − h2|2
− N2 − 1

12
+
N

4

N2 − 1

12

}

ϕmn. (A.6)

The charge kinetic terms deserve particular care as new techniques are
required. For the ↑-charge kinetic term, we first observe that
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[cβ↑c
†
α↑ϕmn](z1, ..., zM ; h1, h2) is identically zero unless one of the arguments

z1, ..., zM equals ηα. We thus find

[

H↑
Cϕmn

]

(z1, . . . , zM ; h1, h2) ≡
[

N∑

α6=β

PGcβ↑c
†
α↑PG

|ηα − ηβ|2
ϕmn

]

(z1, . . . , zM ; h1, h2)

=
∑

α=h1,h2

N∑

β 6=α

1

|ηα − ηβ |2
ϕmn

=
N∑

β 6=h2

ϕmn(z1, . . . , zM ; h1, ηβ)

|h2 − ηβ|2
+

N∑

β 6=h1

ϕmn(z1, . . . , zM ; ηβ, h2)

|h1 − ηβ |2

=

M∑

l=0

N∑

β 6=h2

ηn
β (ηβ − h2)

l

l!|h2 − ηβ |2
∂l

∂ηl
β

(

ϕmn(z1, . . . , zM ; h1, ηβ)

ηn
β

)

ηβ=h2

+
M∑

l=0

N∑

β 6=h1

ηm
β (ηβ − h1)

l

l!|h1 − ηβ|2
∂l

∂ηl
β

(

ϕmn(z1, . . . , zM ; ηβ, h2)

ηm
β

)

ηβ=h1

=

M∑

l=0

Bm
l

∂l

∂h1

(
ϕmn

hm
1

)

+

M∑

l=0

Bn
l

∂l

∂h2

(
ϕmn

hn
2

)

=

{(
N2 − 1

6
+
m(m−N)

2
+
n(n−N)

2

)

hm
1 h

n
2

−
(
N − 1

2
−m

)

hm+1
1 hn

2

∂

∂h1

−
(
N − 1

2
− n

)

hm
1 h

n+1
2

∂

∂h2

+
1

2
hm+2

1 hn
2

∂2

∂h2
1

+
1

2
hm

1 h
n+2
2

∂2

∂h2
2

}
ϕmn(z1, . . . , zM ; h1, h2)

hm
1 h

n
2

, (A.7)

where we have introduced the coefficients Bn
l =

∑N
β 6=h η

n
β (ηβ −h)l/l!|h−ηβ|2,

which are evaluated in Appendix A.7. (A.7) is valid if and only if 0 ≤ n,m ≤
(N + 2)/2, which finally leads to the restriction (2.23) for the actual Ψho

mn’s.
For the treatment of the ↓-charge kinetic term we avail ourselves of the

fact that ϕmn can be equally expressed by the up-spin or down-spin variables,
as we show in Appendix A.2. If we denote the down-spin coordinates by wi,
we obtain

[

H↓
Cϕmn

]

(z1, . . . , zM ; h1, h2) ≡
[

N∑

α6=β

PGcβ↓c
†
α↓PG

|ηα − ηβ|2
ϕmn

]

(z1, . . . , zM ; h1, h2)

=

{(
N2 − 1

6
+
m(m−N)

2
+
n(n−N)

2

)

hm
1 h

n
2
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−
(
N − 1

2
−m

)

hm+1
1 hn

2

∂

∂h1
−
(
N − 1

2
− n

)

hm
1 h

n+1
2

∂

∂h2

+
1

2
hm+2

1 hn
2

∂2

∂h2
1

+
1

2
hm

1 h
n+2
2

∂2

∂h2
2

}
ϕmn(w1, . . . , wM ; h1, h2)

hm
1 h

n
2

. (A.8)

Using identities verified in Appendix A.2.1 for the derivatives with respect
to the zi’s and h1,2’s, the total charge-kinetic term becomes

[
N∑

α6=β

H↓
C +H↑

C

|ηα − ηβ|2
ϕmn

]

(z1, . . . , zM ; h1, h2)

=

{[
N2 − 1

3
+m(m−N) + n(n−N) − C2 − C2

1 +m

(

C1 −
1

2

)

+ n

(

C1 −
1

2

)

− h1 + h2

h1 − h2

(
m− n

2

)]

hm
1 h

n
2 + hm+2

1 hn
2

∂2

∂h2
1

+ hm
1 h

n+2
2

∂2

∂h2
2

+ hm
1 h

n+1
2

h2

(h1 − h2)

∂

∂h2
+ hm+1

1 hn
1

h1

h2 − h1

∂

∂h1

+ C1h
m+1
1 hn

2

∂

∂h1

+ C1h
m
1 h

n+1
2

∂

∂h2

+ hm
1 h

n
2

M∑

i

h2
2

(zi − h2)2

+ hm
1 h

n
2

M∑

i

h2
1

(zi − h1)2
+

h2
1 + h2

2

(h1 − h2)2

}

ϕmn(z1, . . . , zM ; h1, h2)

hm
1 h

n
2

,

(A.9)

with the constants C1 =
∑N−1

α=1 1/(1−ηα) = (N−1)/2 and C2 =
∑N−1

α=1 1/(1−
ηα)2 = (6N − 5 −N2)/12 introduced and evaluated in [14]. Summing up all
terms, we finally obtain the action of the Hamiltonian (2.2) on the auxiliary
wave functions ϕmn:

HKYϕmn =
2π2

N2

{
8 − 9N

8
+m(m−N) + n(n−N) +m

N − 2

2
+ n

N − 2

2

−1

2

h1 + h2

h1 − h2
(m− n) +

h2
1 + h2

2

(h1 − h2)2

}

ϕmn. (A.10)

With (A.2) this implies

HKYΨho
mn =

2π2

N2

[(

− 8 +N

8
+ 1 +

(

m− N

2

)

m+

(

n− N

2

)

n

)

Ψho
mn

+
m− n

2
(h1 − h2)

h1 + h2

h1 − h2

(hm
1 h

n
2 − hn

1h
m
2 )Ψ0

]
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E

Ψm+p,n−p

Ψmn

M+1n qm
0

Figure A.1: The scattering of Ψnm to lower energy states

=
2π2

N2

[

−N
8

+

(

m− N

2

)

m+

(

n− N

2

)

n +
m− n

2

]

Ψho
mn

+
2π2

N2
(m− n)

⌊m−n
2

⌋
∑

l=1

Ψho
m−l,n+l, (A.11)

where we have used x+y
x−y

(xmyn−xnym) = 2
∑m−n

l=0 xm−lyn+l− (xmyn +xnym).

The symbol ⌊ ⌋ denotes the floor function, i.e., ⌊x⌋ is the largest integer l ≤ x.
First, note that the action of the Hamiltonian on the Ψho

mn’s is trigonal, i.e.,
the “scattering” in the last line is only to lower values of m−n (see Fig. A.1).
Second, (A.11) shows that the states Ψho

mn form a non-orthogonal set.

A.2 SU(2) Wave function in ↑- and ↓-spin co-

ordinates

The wave functions Ψho
mn can be equally expressed either in up-spin (z) or

down-spin coordinates (w):

Ψho
mn(z1, ..., zM ; h1, h2)

hm
1 h

n
2 (h1 − h2)

= (−1)
1
2
M(M+1)

∏M
j (h1 − zj)(h2 − zj)zj

∏M
i6=j(zi − zj)

∏M
l,j(wl − zj)

∏M
l,j(wl − zj)

=
Ψho

mn(w1, ..., wM ; h1, h2)

hm
1 h

n
2 (h1 − h2)

. (A.12)



94 Chapter A Holons in the Kuramoto–Yokoyama model

This identity applies to the auxiliary wave functions ϕmn, as the prepolyno-
mial contains only the coordinates h1,2.

A.2.1 SU(2) derivative identity

The necessary relation for the ↓-charge kinetic term is

∑

i6=j

h2
2

(wi − h2)(wj − h2)

= −C2 + C2
1 + 2

∑

i

h2
2

(zi − h2)2
+
∑

i6=j

h2

zi − h2

h2

zj − h2

+ 2
h2

2

(h1 − h2)2

+2C1

∑

i

h2

zi − h2

+ 2C1
h2

h1 − h2

+ 2
h2

h1 − h2

∑

i

h2

zi − h2

, (A.13)

with C1 and C2 defined as above. (A.13) is also valid for h1 ↔ h2.

A.3 One-holon excitations in the SU(3) KYM

To evaluate the action of HKY on
∣
∣Ψho

m

〉
, we first replace egg

α e
gg
β by (1 − hα −

errα − ebb
α )(1− hβ − errβ − ebb

β ), where hα denotes the hole occupation operator
hα = 1 − nα, and rewrite the Hamiltonian in a way to easily treat terms
separately in the following:

HKY =
2π2

N2

N∑

α6=β

1

|ηα − ηβ|2
(

ebg
α e

gb
β + ergα e

gr
β + ebr

α e
rb
β

)

+
2π2

N2

N∑

α6=β

1

|ηα − ηβ|2
(
ebb

α e
bb
β + errα e

rr
β + ebb

α e
rr
β

)

−2π2

N2

N∑

α6=β

1

|ηα − ηβ |2
(
ebb

α + errα
)

+
2π2

N2

N∑

α6=β

1

|ηα − ηβ |2
(

nα − 1

2

)

+
2π2

N2

N∑

α6=β

1

|ηα − ηβ|2
(
errα + ebb

α

)
(1 − nβ)

+
2π2

N2

N∑

α6=β

1

|ηα − ηβ|2

[

1

2
(cαrc

†
βr + cαgc

†
βg) +

1

2
(cαbc

†
βb + cαrc

†
βr)

+
1

2
(cαbc

†
βb + cαgc

†
βg)

]

. (A.14)
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The first term [ebg
α e

gb
β Ψho

m ][zi;wk; h], which vanishes unless one of the zi’s is
equal to ηα, yields through Taylor expansion

[
N∑

α6=β

ebg
α e

gb
β

|ηα − ηβ|2
Ψho

m

]

[zi;wk; h]

=

M1∑

i=1

N∑

β 6=i

ηβ

|zi − ηβ|2
Ψho

m [. . . , zi−1, ηβ, zi+1, . . . ;wk; h]

ηβ

=

M1∑

i=1

N−1∑

m=0

Amz
m+1
i

m!

∂m

∂zm
i

Ψho
m

zi

=
M1

12
(N2 + 8M2

1 − 6M1(N + 1) + 3) Ψho
m (A.15)

−N − 3

2

M1∑

i=1

M2∑

k=1

zi

zi − wk
Ψho

m +

M1∑

i6=j

z2
i

(zi − zj)2
Ψho

m (A.16)

+2

M1∑

i6=j

M2∑

k=1

z2
i

(zi − zj)(zi − wk)
Ψho

m (A.17)

+
1

2

M1∑

i=1

M2∑

k 6=l

z2
i

(zi − wk)(zi − wl)
Ψho

m (A.18)

+

M1∑

i,j=1
i6=j

2z2
i

(zi − zj)(zi − h)
Ψho

m − N − 3

2

M1∑

i=1

zi

zi − h
Ψho

m (A.19)

+

M1∑

i=1

M2∑

k=1

z2
i

(zi − ωk)(zi − h)
Ψho

m , (A.20)

where we have used degzi
Ψho

m [zi;wk; h] = N − 1 and Am ≡ −∑N−1
α=1 η

2
α(ηα −

1)m−2. The evaluation of the latter yields A0 = (N − 1)(N − 5)/12, A1 =
−(N − 3)/2, A2 = 1, and Am = 0 for 2 < m ≤ N − 1, as previously used in
Sec. A.1. Furthermore, we have used

x2

(x− y)(x− z)
+

y2

(y − x)(y − z)
+

z2

(z − x)(z − y)
= 1, x, y, z ∈ C. (A.21)

The second term [ergα e
gr
β Ψho

m ][zi;wk] can be treated in the same way. It gener-
ates terms which together with the first term in (A.16) yield

−N − 3

2

M1∑

i=1

M2∑

k=1

zi

zi − wk

+
N − 3

2

M1∑

i=1

M2∑

k=1

wk

zi − wk

= −N − 3

2
M1M2,
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and with one part of (A.17) and (A.18)

M1∑

i,j=1
i6=j

M2∑

k=1

(
z2

i

(zi − zj)(zi − wk)
+

1

2

w2
k

(zi − wk)(zj − wk)

)

=
1

2
M1(M1 − 1)M2,

as well as similar expressions for zi ↔ wk.
For the third term of (A.14) we obtain

[
N∑

α6=β

ebr
α e

rb
β

|ηα − ηβ |2
Ψho

m

]

[zi;wk]

=

M1∑

i=1

M2∑

k=1

ziwk

(zi − wk)2

M1∏

j 6=i

(

1 +
zi − wk

zj − zi

) M2∏

l 6=k

(

1 − zi − wk

wl − wk

)

Ψho
m

=
M1∑

i=1

M2∑

k=1

ziwk

(zi − wk)2
Ψho

m −
M1∑

i6=j

M2∑

k=1

ziwk

(zi − zj)(zi − wk)
Ψho

m (A.22)

−
M1∑

i=1

M2∑

k 6=l

ziwk

(wk − zi)(wk − wl)
Ψho

m (A.23)

+

M1∑

i=1

M2∑

k=1

M1−1∑

m=2

1

m!

∑

{aj}

ziwk(zi − wk)
m−2

(za1 − zi) · · · (zam
− zi)

Ψho
m (A.24)

+

M1∑

i=1

M2∑

k=1

M2−1∑

n=2

(−1)n

n!

∑

{bl}

ziwk(zi − wk)
n−2

(wb1 − wk) · · · (wbn
− wk)

Ψho
m (A.25)

+

M1∑

i=1

M2∑

k=1

M1−1∑

m=1

M2−1∑

n=1

(−1)n

m!n!

×
∑

{aj}{bl}

ziwk(zi − wk)
m+n−2

(za1 − zi) · · · (zam
− zi)(wb1 − wk) · · · (wbn

− wk)
Ψho

m , (A.26)

where {aj} ({bl}) is a set of integers between 1 and M1 (M2). The summa-
tions run over all possible ways to distribute the zaj

(wbl
) over the blue (red)

coordinates, where zi (wk) is excluded. The two terms (A.24) and (A.25)
vanish due to

Theorem A.1 Let M ≥ 3, z ∈ C, and z1, . . . , zM ∈ C distinct. Then,

M∑

i=1

zi(zi − z)M−3

∏M
j 6=i(zj − zi)

= 0. (A.27)
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A proof of Theorem A.1 is given in [111]. The last term (A.26) can be
simplified using a theorem due to Ha and Haldane [52]:

Theorem A.2 Let {aj} be a set of distinct integers between 1 and M1, and
{bl} a set of distinct integers between 1 and M2. Then,

M1∑

i=1

M2∑

k=1

M1−1∑

m=1

M2−1∑

n=1

∑

{aj}{bl}

(−1)n

m!n!

ziwk(zi − wk)
m+n−2

(za1 − zi) · · · (zan
− zi)(wb1 − wk) · · · (wbm

− wk)

= −
min(M1,M2)∑

m=1

(M1 −m)(M2 −m).

Furthermore, the two terms in line (A.23), together with the remainder of
(A.17) and the corresponding expression from the second term of the Hamil-
tonian, can be simplified to yield M1M2(M1 +M2 − 2)Ψho

m /2. The diagonal
contributions, i.e., the 2nd and 3rd line of (A.14), yield

N∑

α,β=1
α6=β

ebb
α e

bb
β + errα e

rr
β + ebb

α e
rr
β − errα − ebb

β + nα − 1
2

|ηα − ηβ|2
Ψho

m [zi;wk; h]

=

(
1

2
M1(M1 − 1) +

1

2
M2(M2 − 1)

)

Ψho
m −

M1∑

i,j=1
i6=j

z2
i

(zi − zj)2
Ψho

m

−
M2∑

k,l=1
k 6=l

ω2
k

(ωk − ωl)2
Ψho

m −
M1∑

i=1

M2∑

k=1

ωkzi

(zi − ωk)2
Ψho

m

−N
2 − 1

12

(
N

2
+M1 +M2 − 1

)

Ψho
m , (A.28)

by which the remainder of (A.16) as well as (A.22) are cancelled. The re-
maining spin terms yield

N∑

α,β=1
α6=β

(
errα + ebb

α

)
(1 − nβ)

|ηα − ηβ|2
Ψho

m [zi;wk; h]

=

(
M1∑

i=1

1

|zi − h|2 +

M2∑

k=1

1

|wk − h|2

)

Ψho
m . (A.29)

We now turn to the treatment of the remaining charge kinetic term con-
tributions which are technically new compared to the calculation methods
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introduced in previous works for the colorons in the SU(3) HSM [111] and
holons in the SU(2) KYM [123].

Again we use a Taylor expansion technique in the way that derivative
operators act on the analytic extension of the wave function. In this case,
it is crucial that the fermion creation and annihilation operators appearing
in the expansion match with the variables of the holon wave function which
is analytically extended. As it is the case for the ground state, the one-
holon wave function (3.19) can be equally expressed by an arbitrary pair of
sets of color variables. In (A.14) we have thus written the charge terms in
a symmetric way that respectively puts two pairs of fermion creation and
annihilation operators together. For the first term we get
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α,β=1
α6=β

1

2

cαbc
†
βb + cαrc

†
βr

|ηα − ηβ|2







Ψho
m [zi;wk; h]

=

[
N∑

α6=β

cαvc
†
βv

|ηα − ηβ|2

]

Ψho
m [v1, . . . , vM1+M2; h]

=
N∑

β=1
β 6=h

ηm
β

|h− ηβ|2
Ψho

m [v1, . . . , vM1+M2; ηβ]

ηn
β

=

M1+M2∑

l=0

N∑
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β 6=h

ηn
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∂l

∂ηl
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Ψho
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=
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l
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∂l

∂hl
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Ψho
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hn
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=
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+
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− n
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hn+1 ∂
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+
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2
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2

∂h2

}
Ψho
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hn

= −
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2
− n
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i=1

h

h− zi
+

M2∑
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h
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]

Ψho
m

+
1

2

[
M1∑
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h2

(h− zi)(h− zj)
+ 2
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h
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h
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+
M2∑

k,l
k 6=l

h2

(h− ωk)(h− ωl)

]

Ψho
m +

(N2 − 1

12
+
n(n−N)

2

)

Ψho
m ,

(A.30)

where we introduced Bm
l = hn+l

∑N−1
β ηm+1

β (ηβ−1)l−2. The evaluation of the

latter is shown in Appendix A.7 and yields Bm
0 = (N2−1)/12+m(m−N)/2,

Bm
1 = m− (N −1)/2, Bm

2 = 1, and Bl = 0 for 3 ≤ l and 0 ≤ m ≤ (N +2)/3,
by which (3.20) follows.

For the other charge term contributions we expound the fact that the
holon wave function can be expressed by either pairs of sets of color vari-
ables as shown in Appendix A.5 and the same formalism is used as before.
The appearing terms involving the green color variables are rewritten in
terms of the blue and red variables, i.e., z’s and w’s, by identities given in
Appendix A.5.1. It thus yields







N∑

α,β=1
α6=β

1

2

cαbc
†
βb + cαgc

†
βg

|ηα − ηβ |2







Ψho
m [zi;wk; h]

=
(N2 − 1

12
+
n(n−N)

2

)

Ψho
m −

(N − 1

2
− n

)
[

C1 −
M2∑

k=1

h

h− ωk

]

Ψho
m

+
1

2

[

C2
1 − C2 − 2C1

M2∑

k=1

h

h− ωk

+ 2

M2∑

k=1

h2

(h− ωk)2

+

M2∑

k,l
k 6=l

h2

(h− ωk)(h− ωl)

]

Ψho
m , (A.31)

as well as






N∑

α,β=1
α6=β

1

2

cαrc
†
βr + cαgc

†
βg

|ηα − ηβ|2







Ψho
m [zi;wk; h]

=
(N2 − 1

12
+
n(n−N)

2

)

Ψho
m −

(N − 1

2
− n

)[

C1 −
M1∑

i=1

h

h− zi

]

Ψho
m

+
1

2

[

C2
1 − C2 − 2C1

M1∑

i=1

h

h− zi
+ 2

M1∑

i=1

h2

(h− zi)2
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+
M1∑

i,j
i6=j

h2

(h− zi)(h− zj)

]

Ψho
m , (A.32)

where we have defined the constants C1 =
∑N−1

α 1/(1−ηα) = (N −1)/2 and

C2 =
∑N−1

α 1/(1 − ηα)2 = (6N − 5 −N2)/12 as was derived in [14]. Due to

M1∑

i,j=1
i6=j

2z2
i

(zi − zj)(zi − h)
+

M1∑

i,j=1
i6=j

h2

(h− zi)(h− zj)
= M1(M1 − 1), (A.33)

which gives M2(M2 − 1) for the analogous contributions zi ↔ wk, and

M1∑

i=1

M2∑

k=1

z2
i

zi − ωk

1

zi − h
+

M1∑

i=1

M2∑

k=1

ω2
k

ωk − zi

1

ωk − h

+

M1∑

i=1

M2∑

k=1

h

h− zi

h

h− ωk
= M1M2, (A.34)

the remainders (A.19) and (A.20) are cancelled. Finally, (A.29) cancels the
last non-diagonal terms of (A.31) and (A.32), and summing up all terms, we
finally get

HKY

∣
∣Ψho

m

〉
= Em

∣
∣Ψho

m

〉
, (A.35)

Em =
2π2

N2

[

− 1

72
N3 − 3

72
N +

4

72
+

3

2
m(m−M − 1)

]

, (A.36)

by which the one-holon energy (3.22) follows.

A.4 Two Holon excitations in the SU(3) KYM

Now we will construct the two-holon energy eigenstates starting from (3.24).
The strategy is similar to the construction of the two-holon states in the
SU(2) model as presented in [123]. We define the auxiliary wave functions

ϕmn[zi;wk; h1, h2] = hm
1 h

n
2

M1∏

i=1

(h1 − zi)(h2 − zi)

M2∏

k=1

(h1 − wk)(h2 − wk)Ψ0[zi;wk]

= ψh1h2Ψ0[zi;wk]. (A.37)
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The action of the Hamiltonian (3.4) on the states (3.27) will be later obtained
by

Ψho
mn = ϕm+1,n + ϕn+1,m − ϕm,n+1 − ϕn,m+1. (A.38)

We rewrite the Hamiltonian as for the one-holon case (A.14) and treat each
term separately. As some terms of (A.14) only generate contributions familiar
from the one-holon calculation, we concentrate on the others. In all cases,
the basic Taylor expansion technique is applied identically.

The contributions of [ebg
α e

gb
β ϕ

ho
mn][zi;wk; h1, h2] split up into contributions

of the ground state polynomial which we are already familiar with from the
one-holon calculation and terms generated by the action on the prepolyno-
mial ψh1,h2:
[

N∑

α6=β

ebg
α e

gb
β

|ηα − ηβ|2
ϕho

mn

]

[zi;wk; h1, h2] =

M1∑

i=1

N−1∑

m=0

Amz
m+1
i

m!

∂m

∂zm
i

ϕho
mn

zi

=
M1

12
(N2 + 8M2

1 − 6M1(N + 1) + 3)ϕho
mn

−N − 3

2

M1∑

i=1

M2∑

k=1

zi

zi − wk
ϕho

mn +

M1∑

i6=j

z2
i

(zi − zj)2
ϕho

mn

+2

M1∑

i6=j

M2∑

k=1

z2
i

(zi − zj)(zi − wk)
Ψho

m +
1

2

M1∑

i=1

M2∑

k 6=l

z2
i

(zi − wk)(zi − wl)
ϕho

mn

+Ψ0

M1∑

i=1







1

2
z2

i

∂2

∂z2
i

+

M1∑

i,j=1
i6=j

2z2
i

zi − zj

∂

∂zi
− N − 3

2
zi
∂

∂zi






ψh1,h2 (A.39)

+Ψ0

M1∑

i=1

M2∑

k=1

z2
i

zi − wk

∂

∂zi

ψh1,h2, (A.40)

with notations as before. We explicitly write out (A.39) and (A.40) and thus
get

M1∑

i=1

(1 − h2
1

(h1 − h2)(h1 − zi)
− h2

2

(h2 − h1)(h2 − zi)
)ϕho

mn

+

M1∑

i,j=1
i6=j

(1 − h2
1

(h1 − zi)(h1 − zj)
)ϕho

mn +

M1∑

i,j=1
i6=j

(1 − h2
2

(h2 − zi)(h2 − zj)
)ϕho

mn

−N − 3

2

M1∑

i

(1 − h1

h1 − zi
)ϕho

mn − N − 3

2

M1∑

i

(1 − h2

h2 − zi
)ϕho

mn
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+
M1∑

i=1

M2∑

k=1

(1 − w2
k

(wk − zi)(wk − h1)
− h2

1

(h1 − zi)(h1 − wk)
)ϕho

mn

+
M1∑

i=1

M2∑

k=1

(1 − w2
k

(wk − zi)(wk − h2)
− h2

2

(h2 − zi)(h2 − wk)
)ϕho

mn, (A.41)

which identically holds for the term [ergα e
gr
β ϕ

ho
mn][zi;wk; h1, h2] by interchanging

wk and zi.
The spin term [ebr

α e
rb
β ϕ

ho
mn][zi;wk; h1, h2] yields the same contributions as

for the one-holon case and thus cancels the same non-diagonal terms as pre-
viously mentioned, so do the trivial spin-diagonal terms. Furthermore, we
have

N∑

α,β=1
α6=β

(
errα + ebb

α

)
(1 − nβ)

|ηα − ηβ |2
ϕho

mn

=

(
M1∑

i=1

1

|zi − h1|2
+

M2∑

k=1

1

|wk − h2|2
+ [h1 ↔ h2]

)

ϕho
mn. (A.42)

For the charge kinetic terms of the two-holon states, we combine the tech-
nique previously explained for the SU(3) one-holon with the calculation for
the SU(2) two-holon states:







N∑

α,β=1
α6=β

1

2

cαbc
†
βb + cαrc

†
βr

|ηα − ηβ|2
ϕho

mn







[zi;wk; h1, h2]

=







∑

α=h1,h2

N∑

β=1
α6=β

cαvc
†
βv

|ηα − ηβ |2
ϕho

mn







[v1, . . . , vM1+M2; h1, h2]

=

M1+M2∑

l=0

Bm
l

l!

∂l

∂hl
1

(
ϕho

mn

hm
1

)

+

M1+M2∑

l=0

Bn
l

l!

∂l

∂hl
2

(
ϕho

mn

hn
2

)

=

{
(N2 − 1

6
+
n(n−N)

2
+
m(m−N)

2

)

hn
1h

m
2

−
(N − 1

2
−m

)

hm+1
1 hn

2

∂

∂h1
−
(N − 1

2
− n
)

hm
1 h

n+1
2

∂

∂h2

+
1

2
hm

1 h
n+2
2

∂2

∂h2
2

+
1

2
hm+2

1 hn
2

∂2

∂h2
1

}

ϕho
mn

hm
1 h

n
2
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=

{
(N2 − 1

6
+
n(n−N)

2
+
m(m−N)

2

)

−

+
(N − 1

2
− n
)
(

M1∑

i=1

h1

h1 − zi
+

M2∑

k=1

h

h− wk

)

−
(N − 1

2
−m

)
(

M1∑

i

h2

h2 − zi
+

M2∑

k

h2

h2 − wk

)

+
1

2

[ M1∑

i,j
i6=j

h2
1

(h1 − zi)(h1 − zj)
+ 2

M1∑

i=1

M2∑

k=1

h1

h1 − zi

h1

h1 − wk

+

M2∑

k,l
k 6=l

h2
1

(h1 − wk)(h1 − wl)

]

+ [h1 ↔ h2]

}

ϕho
mn, (A.43)

where we again introduced Bm
l = hm+l

∑N−1
β ηm+1

β (ηβ − 1)l−2, which we
already used for the one-holon case. The evaluation of the latter again is
discussed in Appendix A.7 and, for the case of the two-holon states, yields
Bm

0 = (N2−1)/12+m(m−N)/2, Bm
1 = m−(N −1)/2, Bm

2 = 1, and Bl = 0
for 3 ≤ l and 0 ≤ m ≤ (N + 4)/3, by which (3.26) follows.

For the other charge term contributions, we expound the fact that the
two-holon wave function can be expressed by either pairs of sets of color
variables as shown in Appendix A.5. The appearing terms which involve the
green color variables are rewritten in terms of the blue and red variables, i.e.,
z’s and w’s, by identities given in Appendix A.5.1. Adding all three charge
kinetic terms, it finally yields







N∑

α,β=1
α6=β

∑

σ cσαc
†
σβ

|ηα − ηβ|2
ϕho

mn







[zi;wk; h1, h2]

=

{

N2 − 1

2
+

3

2
n(n−N) +

3

2
m(m−N) + (n+m)(N − 2) − 2C2

1 − 2C2

−(m− n)
h1 + h2

h1 − h2

+ [−N − 1

2

(
∑

i

h1

h1 − zi

+
∑

k

h1

h1 − wk

)

+
∑

k

h2
1

(h1 − wk)2
+

h1

h1 − h2

(
∑

i

h1

h1 − zi

+
∑

k

h1

h1 − wk

)
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+
∑

i

h2
1

(h1 − zi)2
+
∑

i6=j

h2
1

(h1 − zi)(h1 − zj)
+
∑

i,k

h2
1

(h1 − zi)(h1 − wk)

+
∑

k 6=l

h2
1

(h1 − wk)(h1 − wl)
+ 2

h2
1

(h1 − h2)2
+ [h1 ↔ h2]

}

ϕho
nm, (A.44)

with definitions as introduced before.
Most non-diagonal terms cancel by direct observation. Summing up all

contributions, we finally derive the action of HKY on the auxiliary wave
functions ϕho

mn to be

H
SU(3)
KY ϕho

mn =
2π2

N2

{

1

72
(−40 + 33N −N3) +

3

2
n(n−N) +

3

2
m(m−N)

+(n+m)(N − 2) + 2
h2

1 + h2
2

(h1 − h2)2
− (m− n)

h1 + h2

h1 − h2

}

ϕho
mn. (A.45)

Using (A.38) we thus obtain

HKYΨho
mn[zi;wk; h1, h2]

= +
3π2

N2

[(

m− N + 1

3

)

m

(

n− N + 1

3

)

n+
m− n

3

]

+
2π2

N2
(m− n)

⌊m−n
2

⌋
∑

l=1

Ψho
m−l,n+l −

π2

36

(

N +
3

N
+

4

N2

)

, (A.46)

where in (A.46) we again used x+y
x−y

(xmyn − xnym) = 2
∑m−n

l=0 xm−lyn+l −
(xmyn + xnym) and ⌊ ⌋ denotes the floor function, i.e., ⌊x⌋ is the largest
integer l ≤ x. First, note that the action of the Hamiltonian on Ψho

mn is
trigonal, i.e., the “scattering” in the last line is only to lower values of m−n.
Second, (A.46) shows that the states Ψho

mn form a non-orthogonal set out of
which we construct an orthogonal basis of eigenfunctions as it is shown in
Chapter 3.

A.5 SU(3) wave function transformations

It is used that the wave functions appearing in the calculation can, beyond an
irrelevant minus sign, be equally expressed by any two sets of color variables.
For the ground state wave function, this is proved by

Ψ0[z1, . . . , zM1;ω1, . . . , ωM2]
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= (−1)M1
M1−1

2

M1∏

i,j
i6=j

(zi − zj)
M2∏

k,l
k<l

(ωk − ωl)
2

M1∏

i=1

M2∏

k=1

(zi − ωk)
M1∏

i=1

zi

M2∏

k=1

ωk

(i)
= (−1)M1

M1−1
2 (−1)M1M2

∏M1

i=1 zi

∏M2

k=1 ωk

∏M2
k,l
k<l

(ωk − ωl)
2
∏M1

i=1
N
zi

∏M1

i=1

∏M3

m=1(um − zi)

= (−1)M1
M1−1

2 (−1)M1M2

∏M2

k=1 ωk

∏M2
k,l
k<l

(ωk − ωl)
2NM1

∏M1

i=1

∏M3

m=1(um − zi)
,

(A.47)

where (i) follows by (A.62). Accordingly, we find for the ground state wave
function, being expressed by the green (u) and red (w) variables:

Ψ0[u1, . . . , uM3;ω1, . . . , ωM2]

= (−1)M3
M3−1

2

M3∏

n,m
n 6=m

(un − um)
M2∏

k,l
k<l

(ωk − ωl)
2

M3∏

n=1

M2∏

k=1

(un − ωk)
M3∏

n=1

un

M2∏

k=1

ωk

(i)
= (−1)M3

M3−1
2 (−1)M3M2

∏M3

n=1 un

∏M2

k=1 ωk

∏M2
k,l
k<l

(ωk − ωl)
2
∏M3

n=1
N
un

∏M1

i=1

∏M3

m=1(um − zi)

= (−1)M3
M3−1

2 (−1)M3M2(−1)M1M3

∏M2

k=1 ωk

∏M2

k,l
k<l

(ωk − ωl)
2NM3

∏M1

i=1

∏M3

m=1(um − zi)
(ii)
= (−1)M2

Ψ
SU(3)
0 [z1, . . . , zM1;ω1, . . . , ωM2],

(A.48)

where (i) again follows by (A.62) and (ii) sets M1 = M2 = M3 = M , which
is the case for the ground state.

Using (A.62) yields the same line of argument for the one-holon and two-
holon wave functions. For the first, we have

Ψho
m [zi;wk; h] = hn

M1∏

i=1

(h− zi)

M2∏

k=1

(h− ωk)Ψ0[zi;wk]

= (−1)M1
M1−1

2 (−1)M1M2hn

∏M2

k=1(h− ωk)
∏M2

k=1 ωk

∏M2
k,l
k<l

(ωk − ωl)
2NM1

∏M1

i=1

∏M3

m=1(um − zi)
,
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(A.49)

whereas starting in the [u;w] representation, i.e., the green and red variables,
leads to

Ψho
m [un;wk] = hn

M3∏

n=1

(h− un)

M2∏

k=1

(h− ωk)

M3∏

n,m
n<m

(un − um)2
M2∏

k,l
k<l

(ωk − ωl)
2

M3∏

n=1

M2∏

k=1

(un − ωk)

M3∏

n=1

un

M2∏

k=1

ωk

= (−1)M3
M3−1

2
+M3M2+M1M3hn

∏M2

k=1(h− ωk)
∏M2

k=1 ωk

∏M2
k,l
k<l

(ωk − ωl)
2NM3

∏M1

i=1

∏M3

m=1(um − zi)

= (−1)M2

Ψho
n [z1, . . . , zM1;ω1, . . . , ωM2; h], (A.50)

by comparing the result with (A.49). The same argument applies for the
two-holon case yielding

Ψho
mn[zi;wk; h1, h2] = (−1)M2

Ψho
mn[ul;wk; h1, h2]. (A.51)

Thus the appearing holon wave functions can be equally re-expressed by two
sets of arbitrary color indices up to an irrelevant global minus sign if M is
odd. All statements trivially generalize to SU(n).

A.5.1 SU(3) derivative identities

We mention some identities to rewrite expressions in terms of the blue and
red spin variables used for the evaluation of the charge kinetic terms. Using

N − 1

2
=

N∑

α=1

1

1 − ηα
=

M1∑

i=1

h

h− zi
+

M2∑

k=1

h

h− ωk
+

M3∑

n=1

h

h− un
, (A.52)

for the one-holon case, one gets

M3∑

n,m
n 6=m

h2

(h− um)(h− un)
=

M3∑

n,m
n 6=m

h2

(h− um)(h− un)
−

M3∑

m

h2

(h− um)2



A.5 SU(3) wave function transformations 107

= C2
1 − C2 + 2

M1∑

i=1

(
h

h− zi

)2 + 2
M2∑

k=1

(
h

h− ωk

)2

−2C1

M1∑

i=1

h

h− zi

− 2C1

M2∑

k=1

h

h− ωk

+ 2
M1∑

i=1

h

h− zi

M2∑

k=1

h

h− ωk

+

M2∑

k,l
k 6=l

h2

(h− ωk)(h− ωl)
+

M1∑

i,j
i6=j

h2

(h− zi)(h− zj)
, (A.53)

with definitions of C1,2 as mentioned before. For the two-holon case, we apply
the identity

∑

l 6=m

h2
1

(h1 − ul)(h1 − um)
=
∑

l,m

h2
1

(h1 − ul)(h1 − um)
−
∑

m

h2
1

(h1 − um)2

= −C2 +
∑

i

h2
1

(h1 − zi)2
+
∑

k

h2
1

(h1 − wk)2
+

h2
1

(h1 − h2)2

+

(

C1 −
∑

i

h1

h1 − zi
−
∑

k

h1

h1 − wk
− h1

h1 − h2

)

·
(

C1 −
∑

j

h1

h1 − zj
−
∑

l

h1

h1 − wl
− h1

h1 − h2

)

= −C2 + C2
1 +

∑

i neqj

h2
1

(h1 − zi)(h1 − zj)
+
∑

k 6=l

h2
1

(h1 − wk)(h1 − wl)

+2
∑

i

h2
1

(h1 − zi)2
+ 2

∑

k

h2
1

(h1 − wk)2
+ 2

h2
1

(h1 − h2)2
− 2C1

h1

h1 − h2

+2
∑

i,k

h2
1

(h1 − wk)(h1 − zi)
− 2C1

∑

k

h1

h1 − wk
− 2C1

∑

i

h1

h1 − zi

+2
h1

h1 − h2

(
∑

j

h1

h1 − zj
+
∑

k

h1

h1 − wk

)

. (A.54)

For the case of SU(n), the above derivation easily generalizes. Starting with
the generalized formula of (A.52) for n spin indices, the identities follow by
straight forward calculation.
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A.6 Gell-Mann matrices

The Gell-Mann matrices are given by [39]

λ1 =





0 1 0
1 0 0
0 0 0



, λ2 =





0 −i 0
i 0 0
0 0 0



, λ3 =





1 0 0
0 −1 0
0 0 0



,

λ4 =





0 0 1
0 0 0
1 0 0



, λ5 =





0 0 −i
0 0 0
i 0 0



, λ6 =





0 0 0
0 0 1
0 1 0



,

λ7 =





0 0 0
0 0 −i
0 i 0



, λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



.

They are normalized as tr
(
λaλb

)
= 2δab and satisfy the commutation rela-

tions
[
λa, λb

]
= 2fabcλc. The structure constants fabc are totally antisym-

metric and obey Jacobi’s identity

fabcf cde + f bdcf cae + fdacf cbe = 0.

Explicitly, the non-vanishing structure constants are given by f 123 = i, f 147 =
f 246 = f 257 = f 345 = −f 156 = −f 367 = i/2, f 458 = f 678 = i

√
3/2, and 45

others obtained by permutations of the indices. The SU(3) spin operators
are expressed in terms of the color-flip operators by

Jα ·Jβ ≡
8∑

a=1

Ja
αJ

a
β =

1

2

3∑

στ

eστ
α eτσ

β − 1

6
+

1

6
(hα + hβ − hαhβ),

where hα denotes the hole occupation operator hα = 1 − nα.

A.7 B-series

Evaluation of the series

Bn
l =

N∑

β 6=h

ηn
β(ηβ − h)l

l!|h− ηβ|2

= −1

l!
hn+l

N−1∑

β=1

ηn+1
β (ηβ − 1)l−2, (A.55)
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with l restricted to 0 ≤ l ≤M = (N − 2)/2 yields

Bn
0 =

N2 − 1

12
+

(
n(n−N)

2

)

for 0 ≤ n ≤ N, (A.56)

Bn
1 =







n− N − 1

2
for 0 ≤ n < N,

−N − 1

2
for n = N,

(A.57)

Bn
2 =

{
1 for 0 ≤ n ≤ N − 2, n = N,
1 −N for n = N − 1,

(A.58)

Bn
l =







0 for l ≥ 3, 0 ≤ n ≤ N + 2

2
,

N

(
l − 2

N − n− 1

)

for l ≥ 3,
N + 2

2
< n ≤ N.

(A.59)

Proof: Bn
0 , Bn

1 , and Bn
2 are found by straight forward evaluation of the

respective sums. For (A.59) consider

Bn
l = −

N−1∑

α=1

ηn+1
α

l−2∑

k=0

(
l − 2

k

)

(−1)l−k−2ηk
α

=

l−2∑

k=0

(
l − 2

k

)

(−1)l−k−1
(

1 −
N∑

α=1

ηk+l+1
α

)

=







−
n∑

k=0

(
n

k

)

(−1)n−k = 0 for 3 ≤ l, 0 ≤ n ≤ (N + 2)/2,

l−2∑

k=0

(
l − 2

k

)

Nδk,N−1−n = N

(
l − 2

N − n− 1

)

otherwise.

For the last steps note that the the binomial coefficients of even and odd
sites equal each other. The B series appearing in the charge kinetic terms
is thus the point in the calculation which yields the restriction of the holon
momentum quantum number to one half (third) of the Brillouin zone for the
case of SU(2) (SU(3)). The above presentation can be easily generalized to
SU(n) yielding that the holon momenta occupy only one nth of the Brillouin
zone.

A.8 Useful formulas

Some of the results presented in this appendix can be found in [14] as well
as proven in [110,112,121].
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1.

ηN
α = 1,

N∑

α=1

ηm
α = N δ0m,

N∏

α=1

ηα = (−1)N−1. (A.60)

2.
N∏

α=1

(z − ηα) = zN − 1. (A.61)

3. Accordingly, it holds

∏

α
α6=β

(ηα − ηβ) = lim
η→ηβ

ηN − 1

η − ηβ

=
N

ηβ

. (A.62)

4.
N∑

α=1

ηα

z − ηα
=

N

zN − 1
. (A.63)

5. The previous statement implies

N∑

α=1

1

η − ηα

=
NηN−1

ηN − 1
. (A.64)

6.
N−1∑

α=1

ηm
α

ηα − 1
=
N + 1

2
−m, 1 ≤ m ≤ N. (A.65)

7.

N−1∑

α=1

ηm
α

|ηα − 1|2 =
N2 − 1

12
− m(N − 1)

2
+
m(m− 1)

2
, 0 ≤ m ≤ N.

(A.66)

8. For

Am = −
N−1∑

α=1

η2
α(ηα − 1)m−2 (A.67)

we have: A0 = (N − 1)(N − 5)/12 by (A.66), A1 = −(N − 3)/2 by
(A.65), and A2 = 1 by

∑N
α η

m
α = Nδm0. Furthermore,

Am = −
N−1∑

α=1

η2
α

m−2∑

k=0

(
m− 2

k

)

(−1)m−k−2ηk
α



A.8 Useful formulas 111

=
m−2∑

k=0

(
m− 2

k

)

(−1)m−k
(

1 −
N∑

α=1

ηk+2
α

)

=

n∑

k=0

(
n

k

)

(−1)n−k = 0, 2 < m ≤ N − 1.

as the sums of the binomial coefficients of even sites and odd sites equal
each other.





Appendix B

Chiral Spin Liquid

B.1 Operator action the Spin 1/2 CSL state

B.1.1 Action of Tj

In order to prove (4.32), we first consider the off-diagonal terms in the opera-
tor ω+

j which come from Tj defined in (4.16). We consider a general element
of the vector Tj |ψ〉:

〈z1 · · · zM |Tj |ψ〉 =
1

2

′∑

i,k 6=j

Kijk

〈

z1 · · · zM

∣
∣
∣
∣
S+

j S
−
k

(
1

2
+ Sz

i

)∣
∣
∣
∣
ψ

〉

. (B.1)

The element is clearly zero unless zj ∈ {z1 · · · zM}. When this is satisfied,
acting onto the bra on the right-hand side of the equation with the spin
operators wipes out the matrix element unless zi ∈ {z1 · · · zM} and replaces
zj with zk:

〈z1 · · · zM |Tj |ψ〉 =
1

2

M∑

i6=j

N∑

k 6=j

Kijk 〈z1 · · · zj−1 zk zj+1 · · · zM 〉ψ . (B.2)

The upper limit of M (rather than N ) on the sum on i indicates that zi

must be a member of the up-spins. Rewriting Kijk = K(zk − zj , zi − zj) and
defining z = zk − zj , this may be rewritten as

〈z1 · · · zM |Tj |ψ〉 =
1

2

M∑

i6=j

∑

z 6=0

K(z, zi − zj) 〈z1 · · · zj + z · · · zM〉ψ . (B.3)

Using the definition of the coefficient K from (4.26), this can be rewritten as
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〈z1 · · · zM |Tj |ψ〉 =
1

N − 2

M∑

i6=j

∑

z 6=0

(

lim
R→∞

∑

0≤z0<R

P (z − z0, zi − zj)

z − z0

)

〈z1 · · · zj + z · · · zM〉ψ . (B.4)

Since the wave function itself is periodic, the two sums over z and over z0
may be combined into a single sum that runs over the entire infinite lattice
for which we use the variable x = z − z0. However, since the point z = 0 is
missing from the original sum, all of its images in the infinite lattice will be
missing from the second sum and this must be subtracted off, giving

〈z1 · · · zM |Tj |ψ〉

=
1

N − 2

M∑

i6=j



 lim
R→∞

∑

0<|x|<R

P (x, zi − zj)

x
〈z1 · · · zj + x · · · zM〉ψ





− 1

N − 2

M∑

i6=j

∑

z0

P (−z0, zi − zj)

−z0
〈z1 · · · zM 〉ψ . (B.5)

Dividing both sides of the equation by 〈z1 · · · zM 〉ψ and rewriting the ratio
of elements in terms of the analytic function of x, A(x) given in Appendix B.4
gives

〈z1 · · · zM |Tj |ψ〉
〈z1 · · · zM〉ψ = − 1

N − 2

M∑

i6=j

lim
R→∞

∑

0<|x|<R

P (x, zi − zj)

x
A(x) G(x) e−

π
2
|x|2

− 1

N − 2

M∑

i6=j

∑

z0

P (z0, zi − zj)

z0
. (B.6)

Note that A(x) is an analytic function only of x, and not of the remaining
{zi} on which it also depends.

The first sum in (B.6) may be evaluated with the corollary to the Singlet
Sum Rule, Eq. B.36. A derivation of the sum rule and the necessary corollary
is given in Appendix B.3. The function P (x, y) falls off exponentially with

increasing x while the quantity A(x) G(x) e−
π
2
|x|2 is essentially constant due

to the periodicity of the wave function. This guarantees that the sum is
absolutely convergent and the sum rule may be applied. Additionally, the
product P (x, zi − zj) A(x) is itself an analytic function of x. As a function
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of x, the function P (x, zi − zj) necessarily has poles. However, these occur
when when x = zi − zj and the function A(x) has second-order zeroes at
these locations since this corresponds to a coincidence of up-spins. Since the
product is analytic and the sum is absolutely convergent, the Singlet Sum
Rule may be applied to give

〈z1 · · · zM |Tj |ψ〉
〈z1 · · · zM〉ψ = − 1

N − 2

M∑

i6=j

d

dx
[P (x, zi − zj) A(x)]

∣
∣
∣
∣
0

− 1

N − 2

M∑

i6=j

∑

z0

P (z0, zi − zj)

z0
. (B.7)

Using the fact that A(0) = P (0, zi − zj) = 1 and the relation for dA/dx given
in (B.45), this becomes

〈z1 · · · zM | Tj |ψ〉
〈z1 · · · zM〉ψ

= − 1

N − 2

M∑

i6=k,j

{
2∑

ν=1

π

L
W
(π

L
[Z − Zν ]

)

+ 2
M∑

ℓ 6=j

π

L
W
(π

L
[zj − zℓ]

)

+
d

dx
P (x, zi − zj)

∣
∣
∣
∣
0

}

− 1

N − 2

M∑

i6=j,k

∑

z0

P (z0, zi − zj)

z0
. (B.8)

The sum on i may be completed for the terms containing the W functions
(picking up a factor of M = N/2 − 1) and this gives, renaming ℓ as i,

〈z1 · · · zM | Tj |ψ〉
〈z1 · · · zM〉ψ = f(Z) −

M∑

i6=j

π

L
W
(π

L
[zj − zi]

)

− 1

N − 2

M∑

i6=j

[
∑

z0

P (z0, zi − zj)

z0
+

d

dx
P (x, zi − zj)

∣
∣
∣
∣
0

]

, (B.9)

where

f(Z) = −1

2

2∑

ν=1

π

L
W
(π

L
[Z − Zν ]

)

. (B.10)

The fact that f(Z) is both odd and periodic, required for the proof of (4.31)
above, follows from these same properties of the W function. Comparison
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with (4.27) shows that

〈z1 · · · zM |Tj |ψ〉
〈z1 · · · zM〉ψ = f(Z) −

M∑

i6=j

Uij (B.11)

if zj is an element of the up-spins and zero otherwise.

B.1.2 Action of Vj

The action of the operator Vj on the CSL ground state is straightforward to
compute. Proceeding in an analogous manner we have

〈z1 · · · zM |Vj |ψ〉 =
N∑

i6=j

Uij 〈z1 · · · zM |
(

1

2
+ Sz

i

)(
1

2
+ Sz

j

)

|ψ〉 . (B.12)

The matrix element vanishes unless both zi and zj are elements of {z1 · · · zM}.
Therefore, the diagonal contribution to the operator ωj gives

〈z1 · · · zM | Vj |ψ〉
〈z1 · · · zM〉ψ =

M∑

i6=j

Uij (B.13)

if zj ∈ {z1 · · · zM} and 0 otherwise. Combining Eqs. B.13 and B.11 proves
(4.32) and therefore proves that the chiral spin liquid is an exact ground state
of either of the Hamiltonians in Eqs. 4.23 or 4.25.

B.2 Tensor decomposition

The operators ωj introduced in Section 4.4 may be decomposed into irre-
ducible spherical tensors of ranks 1 and 3. We write these irreducible opera-
tors as T q

m; q and m correspond to angular momentum and its z component
respectively. We wish to write ω =

∑
cq T

q, where T q is the collection of
all operators which transform as a spherical tensor of rank q. Here we have
suppressed the site index on the operator ω.

The operator in (4.18) that is not manifestly the component of a vector
is Sz

i S
z
j S

z
k , which is a component of a third-rank Cartesian tensor. In order

to keep the notation manageable, we start by considering the direct product
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of two operators U and V with angular momentum j1 and j2 respectively.
An element in the direct product space of these operators may be written as

U j1
m1
V j2

m2
=

j1+j2∑

j12=|j2−j1|

j12∑

m12=−j12

Cm1
j1

m2
j2

m12
j12

T j12
m12

(B.14)

in terms of irreducible spherical tensors T j12
m12

carrying angular momentum j12
with z-component m12 = m1 +m2. Eq. B.14 may be inverted to give

T j12
m12

=

j1∑

m1=−j1

j2∑

m2=−j2

Cm1
j1

m2
j2

m12
j12

U j1
m1
V j2

m2
. (B.15)

Using these equations, one may construct corresponding expressions for
the product of three vector operators by applying (B.14) twice:

U j1
m1
V j2

m2
W j3

m3
=

j1+j2∑

j12=−|j1−j2|

j12∑

m12=−j12

Cm1
j1

m2
j2

m12
j12

T j12
m12

W j3
m3

=

j1+j2∑

j12=−|j1−j2|

j12∑

m12=−j12

Cm1
j1

m2
j2

m12
j12

j12+j3∑

j=|j12−j3|

j
∑

m=−j

Cm12
j12

m3
j3

m
j T

j(j12)
m .

(B.16)

The second superscript on the tensor T in the last line distinguishes between
the different tensors of the same rank that appear when combining three
vector operators; since 1 ⊗ 1 ⊗ 1 = 3 ⊕ 2 ⊕ 2 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0, there are two
rank-2 spherical tensors and three vector operators that can be formed. For
the case of interest m1 = m2 = m3 = 0 and j1 = j2 = j3 = 1, the expression
reduces to

Uz V z W z =
2∑

j12=0

j12+1
∑

j=|j12−1|
C0

1
0
1
0
j12
C0

j12
0
1
0
j T

j(j12)
0

= − 1√
3
T

1(0)
0 − 2√

15
T

1(2)
0 +

√

2

5
T 3

0 , (B.17)

which shows that the operator contains only vector and rank-3 tensor com-
ponents, but no scalar or rank-2 tensor components. Note that the second
index on the rank-3 tensor has been suppressed since the construction of this
object is unambiguous.
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Applying (B.15) twice, the rank-3 tensor component is

T 3
0 =

2∑

m12=−2

1∑

m3=−1

Cm12
2

m3
1

0
3 T

2
m12

W 1
m3

=
1∑

m1,m2,m3=−1

C−m3
2

m3
1

0
3C

m1
1

m2
1

−m3
2 U1

m1
V 1

m2
W 1

m3

=
5Uz V z W z −(U · V ) W z −(V · W ) Uz −(W · U) V z

√
10

,

(B.18)

where we have used the fact that the dot product is U·V =
∑

m(−1)m U1
m V

1
−m

in the spherical representation. A similar construction can be used to find
the vector operator or, one may note from Eqs. B.17 and B.18 that the vector
component is equivalent to

Uz V z W z −
√

2

5
T 3

0 =
(U · V ) W z +(V · W ) Uz +(W · U) V z

5
(B.19)

as used in writing down (4.22).

Construction of the remaining (x and y) components of the vector oper-
ator in (B.19) is straightforward since one merely replaces z with either x or
y. In order to construct the remaining six components of the rank-3 tensor
operator one simply applies (B.15) twice without specifying m = 0:

T 3
m =

1∑

m1,m2,m3=−1

Cm−m3
2

m3
1

m
3 C

m1
1

m2
1

m−m3
2 U1

m1
V 1

m2
W 1

m3
. (B.20)

The explicit form of these components are

T 3
1 = − 1

2
√

30

[

(5 V z W z − V · W ) U+ +(5Uz W z − U · W ) V +

+(5Uz V z − U · V ) W+
]

(B.21)

T 3
2 =

1

2
√

3

[
U+ V +W z + U+ V z W+ + Uz V +W+

]
(B.22)

T 3
3 = − 1

2
√

2
U+ V +W+ , (B.23)

with the remaining three components obtained from T q
−m =(−1)m (T q

m)†.
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B.3 Sum Rule

The sum rule used in Section 4.5, on which the proof that ω destroys the
ground state hinges, is given by

lim
R→∞

∑

0≤|z|<R

G(z) zn e−
π
2
|z|2 = 0 . (B.24)

The sum rule has been previously obtained by Laughlin [89]; in this appendix
we show how to obtain the sum rule by application of Liouville’s theorem.
We first consider the related sum

F (c) = lim
R→0

∑

0≤|z|<R

G(z) exp

[
1

2
c z − π

2
|z|2
]

. (B.25)

In order to prove the sum rule in (B.24), we will first show that F (c) = 0
for any value of the parameter c and then use this to prove (B.24) by taking
derivatives of the function F (c).

In order to show that F (c) = 0, we use the gauge function G(z) to write
(B.25) as two sums, one over the entire lattice and one over the points z′ on
the lattice for which G(z′) = −1. As shown in Figure 4.1, these sites defines
a sublattice with twice the original lattice spacing.

F (c) =
∑

z

e
1
2

c z−π
2
|z|2 − 2

∑

z′

e
1
2

c z′−π
2
|z′|2 . (B.26)

Setting z′ = 2 z we can write this as

F (c) =
∑

z

e
1
2

c z−π
2
|z|2 − 2

∑

z

ec z−2 π |z|2 , (B.27)

where both sums now run over the entire lattice. Writing z = x + i y this
function can be factored into four sums over the integers x and y:

F (c) =

(
∑

x

e
1
2(c x−π x2)

)(
∑

y

e
1
2(i c y−π y2)

)

−2

(
∑

x

ec x−2 π x2

)(
∑

y

ei c y−2 π y2

)

. (B.28)

In terms of the third Jacobi theta function [2]

θ3(z|τ) =
∞∑

n=−∞
ei π n2 τ e2 i n z , (B.29)
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this function may be recast as

F (c) = ϑ3

(

−i c
4

∣
∣
∣
i

2

)

ϑ3

(
c

4

∣
∣
∣
i

2

)

−2ϑ3

(

−i c
2

∣
∣
∣ 2 i
)

ϑ3

(c

2

∣
∣
∣ 2 i
)

. (B.30)

The fact that the two terms in this expression precisely cancel is a result
of Liouville’s theorem [2, 127],

θ3(z|τ) =
1√
−i τ e

z2/i π τ ϑ3

(

±z
τ

∣
∣
∣− 1

τ

)

, (B.31)

and the fact that the third Jacobi theta function is even. Application of this
identity to either product of theta functions in (B.30) shows that the two
terms precisely cancel, proving that F (c) = 0. This in turn proves the n = 0
case of (B.24) by simply setting c = 0. The other instances of the sum rule
are obtained by noting that

1

m!

dm

dcm
F (c) = lim

R→∞

∑

0≤|z|<R

G(z) zm ec z e−
π
2
|z|2 . (B.32)

Since F (c) is 0 for all values of c (within the radius of convergence), setting
c = 0 in the above expression gives the desired result in (B.24).

B.3.1 Corollary to Sum Rule

We now consider the case where we wish to evaluate a sum of the form

lim
R→∞

∑

0<|z|<R

1

z
A(z) G(z) e−

π
2
|z|2 (B.33)

where A(z) is an analytic function of z. Since it is analytic, we can expand
the function A(z) in a Taylor series:

A(z) =

∞∑

ℓ=0

1

ℓ!

dℓA

dzℓ

∣
∣
∣
∣
0

zℓ (B.34)

and, so long as the sum in (B.33) is absolutely convergent, we can interchange
the order of the two infinite sums to obtain

∑

ℓ

1

ℓ!

dℓA

dzℓ

∣
∣
∣
∣
0



 lim
R→∞

∑

0<|z|<R

zℓ−1 G(z) e−
π
2
|z|2



 . (B.35)
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All terms for which ℓ > 2 immediately vanish from the interior sum due to
the sum rule in (B.24). The term with ℓ = 0 also vanishes because in that
case the summand is an odd function summed over the entire lattice. Finally
the term with ℓ = 1 can be evaluated using the sum rule and is simply the
negative of the value of the summand at z = 0 (which is not included in this
sum but is included in (B.24)). Therefore, so long as A(z) is chosen so that
the sum itself is absolutely convergent,

lim
R→∞

∑

0<|z|<R

1

z
A(z) G(z) e−

π
2
|z|2 =

dA

dz

∣
∣
∣
∣
0

. (B.36)

B.4 The function A(z)

The ratio of wave function coefficients appearing in (B.5),

〈z1 · · · zj + x · · · zM〉ψ
〈z1 · · · zj · · · zM〉ψ , (B.37)

can be written in terms of the Gauge function G(x), the Gaussian e−
π
2
|x|2 ,

and an analytic function of x, A(x). To see this we note that this ratio may
be written explicitly as

2∏

ν=1

ϑ
(

π
L

[Z + x− Zν ]
)

ϑ
(

π
L

[Z − Zν ]
)

M∏

i6=j

ϑ2
(

π
L

[zj + x− zi]
)

ϑ2
(

π
L

[zj − zi]
)

G(zj + x)

G(zj) G(x)

e
π
2 [(zj+x)2−|zj+x|2]

e
π
2 [z2

j−|zj |2] e
π
2 [x2−|x|2]

G(x) e
π
2 (x2−|x|2) . (B.38)

This simplifies by noting that the exponential terms obey an addition
formula

e
π
2 [(zj+x)2−|zj+x|2]

e
π
2 [z2

j−|zj |2] e
π
2 [x2−|x|2]

= e
π
2 [(x−x∗) zj+x(zj−z∗j )], (B.39)

and the Gauge function obeys an addition formula given by

G(zj + x)

G(zj) G(x)
= −eπ

2 (z∗j x∗−zj x) . (B.40)

Since the terms involving x∗ cancel on multiplying the two expressions in
Eqs. B.39 and B.40, the ratio of coefficients is

〈z1 · · · zj + x · · · zM〉ψ
〈z1 · · · zj · · · zM〉ψ = −A(x) G(x) e−

π
2
|x|2 (B.41)
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where A(x) is an analytic function of x:

A(x) =

2∏

ν=1

ϑ
(

π
L

[Z + x− Zν ]
)

ϑ
(

π
L

[Z − Zν ]
)

M∏

i6=j

ϑ2
(

π
L

[zj + x− zi]
)

ϑ2
(

π
L

[zj − zi]
) e

π
2 [x2+x(zj−z∗j )] .

(B.42)

The derivative of this function is given by

dA

dx
=

{
2∑

ν=1

d

dx
lnϑ
(π

L
[Z + x− Zν ]

)

+ 2

M∑

i6=j

d

dx
lnϑ
(π

L
[zj − zi + x]

)

+
π

2

(
2 x+ zj − z∗j

)

}

A(x) . (B.43)

Evaluating this at x = 0 and noting that A(0) = 1 from (B.42) gives

dA

dx

∣
∣
∣
∣
0

=
2∑

ν=1

d

dZ lnϑ
(π

L
[Z − Zν ]

)

+ 2
M∑

i6=j

d

dzj

lnϑ
(π

L
[zj − zi]

)

+N
π

L

zj − z∗j
2L

. (B.44)

In terms of the function W (z) introduced in (4.28) this may be written as

dA

dx

∣
∣
∣
∣
0

=

2∑

ν=1

π

L
W
(π

L
[Z − Z1]

)

+ 2

M∑

i6=j

π

L
W
(π

L
[zj − zi]

)

. (B.45)

The final expression follows from the fact that the center of mass zeroes are
constrained to satisfy

∑

ν Zν = 0 as pointed out in Section 4.2.

B.5 Pfaffian function

Given an antisymmetric matrix Mij the Pfaffian of M is defined to be

Pf(M) ≡
∑

pairings

±
∏

pairs (ab)

Mab (B.46)

where the sign associated with each term is positive if the permutation needed
to bring the indices back to their original order is even, and negative if the
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required permutation is odd. Thus for example the Pfaffian of a 4×4 matrix
is

M12M34 −M13M24 +M14M23.

The most important fact about the Pfaffian used in our calculations is that
its square is equal to the determinant,

Pf(M)2 = det(M). (B.47)

B.6 Theta functions

The ϑ functions are used to rephrase the plane boundary wave functions to
the torus geometry of the PBCs. They are defined by

ϑ1(z, τ) =
+∞∑

n=−∞
eπi(n+ 1

2
)2τ e2πi(n+ 1

2
)(z+ 1

2
) (B.48)

where the other theta function follow out of (B.48) by

ϑ2(z, τ) = ϑ1(z +
1

2
, τ)

ϑ3(z, τ) = Mϑ1(z +
(1 + τ)

2
, τ)

ϑ4(z, τ) = Mϑ1(z +
τ

2
, τ), (B.49)

where M ≡ eiπτ/4eiπz. For our purposes the most important properties of
the ϑ functions are the periodicities

ϑ1(z + 1) = −ϑ1(z)

ϑ2(z + 1) = −ϑ2(z)

ϑ3(z + 1) = +ϑ3(z)

ϑ4(z + 1) = +ϑ4(z), (B.50)

ϑ1(z + τ) = −e−iπτe−i2πzϑ1(z)

ϑ2(z + τ) = +e−iπτe−i2πzϑ2(z)

ϑ3(z + τ) = +e−iπτe−i2πzϑ3(z)

ϑ4(z + τ) = −e−iπτe−i2πzϑ4(z) , (B.51)

the reflection relations

ϑ1(−z) = −ϑ1(z)
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ϑ2(−z) = ϑ2(z)

ϑ3(−z) = ϑ3(z)

ϑ4(−z) = ϑ4(z) , (B.52)

and the fact that ϑ1 is a holomorphic function whose only zeroes are simple
ones occurring at the lattice points m+ nτ , where m,n are integers.

B.7 Octopuzz theorem

B.7.1 Plane geometry

We start with the case of open boundaries. For the S = 1/2 lattice setup for
the CSL with z1, . . . zM denoting the positions of the up spins and M = N/2
with N being the number of sites, the following theorem holds asymptotically
for large N [71]:

N∏

α,ηα 6=zj

(zj − ηα) = G(zj)e
π
2
|zj |2

N∏

α=1

e
π

2N
|ηα|2 · const., (B.53)

where the first sum runs over all lattice sites except zj . This can be shown
by defining

hj(ζ) =
∏

α,ηα 6=zj

(ζ − ηα), (B.54)

with ζ being a continuous variable. Now, one considers the limit ζ → zj for

lnhj(ζ) =

N∑

α=1

ln |ζ − ηα| − ln |ζ − zj | + i arg[hj(ζ)], (B.55)

which can be interpreted as a two-dimensional Coulomb gas energy problem
with a lattice of unit charges and a test charge approaching the lattice point
zj . The singularities of the first and second term as ζ → zj cancel each
other, where to leading order the energy contribution from the test charge
with the average charge density background as well as sub-leading self energy
corrections of the lattice charges remain:

N∑

α=1

ln |ζ − ηα| − ln |ζ − zj | ∼
π

2
|ζ |2 +

N∑

α=1

π

2N
|ηα|2 + const. (B.56)

As generating an additional phase π by propagating from one site to a near-
est neighbor position in the average charge density background [71], the
third term of (B.55) can be shown to essentially give an alternating sign
by exponentiation, which is just the gauge factor G(zj). In total, it thus
yields (B.53).
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B.7.2 Torus geometry

For PBCs, one can find a theorem similar to (B.53). For simplicity, consider
a standard torus surface supercell with principal region given by unit length
1 and τ , where N denotes the number of sites and the site coordinates ηα

are parameterized by

ηα = lαa +mαb, (B.57)

with aL1 = 1, bL2 = τ , and L1L2 = N . In analogy to the Jastrow factors
in (B.53), we consider the function

P [zj ] =

N∏

α=1,ηα 6=zj

ϑ1(ηα − zj , τ), (B.58)

where we use the first theta function from (B.48) and from now on omit the
index one in this paragraph. We will now show that the following relation
holds:

P (lja+mjb)

P (0)
= (−1)L2lj+mje

πiτL1mj(1−
mj+1

L2
)

(B.59)

For this, we first consider

P (lja+mjb)

P (mjb)
=

P2(0) . . .P2(lj − 1)

P2(L1) . . .P2(L1 + lj − 1)
, (B.60)

where P2(l) is defined as the lth line contribution in τ direction to P (lja +
mjb):

P2(l) =

L2−1∏

m=0

ϑ((l − lj)a + (m−mj)b, τ). (B.61)

Due to the periodicity of the first theta function (B.48), we obtain

P2(l)/P2(L1 + l) = (−1)L1 , (B.62)

and thus find
P (lja +mjb)

P (mjb)
= (−1)L2lj . (B.63)

Similarly, we consider a shift in τ direction

P (mjb)

P (0)
=

P1(0) . . .P1(mj − 1)

P1(L2) . . .P2(L2 +mj − 1)
, (B.64)
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where P1(m) is defined as the mth line contribution in 1 direction to P (mjb),

i.e., P1(m) =
∏L1−1

l=0 ϑ((la + (m −mj)b, τ). Recalling the quasi-periodicity
relation (B.48) of ϑ(η, τ) in τ direction yields

P1(m)

P1(L2 +m)
= (−1)eπiτL1e

2πiτ
L1
L2

(m−ml), (B.65)

so that for (B.64) it holds

P (mjb)

P (0)
=

mj−1
∏

m=0

P1(m)

P1(L2 +m)

= (−1)mjeπiτL1mje
−πiτ

L1
L2

(mj+1)mj . (B.66)

Combining (B.63) and (B.66) thus yields (B.59).

B.8 Schwinger Bosons

Schwinger bosons [8,113] constitute a way to formulate spin-S representations
of an SU(2) algebra. The spin operators

Sx + iSy = S+ = a†b

Sx − iSy = S− = b†a

Sz = 1
2
(a†a− b†b)

(B.67)

are given in terms of boson creation and annihilation operators which obey
the usual commutation relations

[
a, a†

]
=
[
b, b†

]
= 1

[a, b] =
[
a, b†

]
=
[
a†, b

]
=
[
a†, b†

]
= 0.

(B.68)

It is readily verified with (B.68) that

[
Si, Sj

]
= iǫijkSk where i, j, k = x, y, or z. (B.69)

The spin quantum number S is given by half the number of bosons,

2S = a†a+ b†b, (B.70)

and the usual spin states (simultaneous eigenstates of S
2 and Sz) are given

by

|s,m〉 =
(a†)s+m

√

(s+m)!

(b†)s−m

√

(s−m)!
| 0 〉 . (B.71)
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In particular, the spin-1
2

states are given by

|↑〉 = a† | 0 〉 = c†↑ | 0 〉 |↓〉 = b† | 0 〉 = c†↓ | 0 〉 , (B.72)

i.e., a† and b† act just like the fermion creation operators c†↑ and c†↓ in this
case. The difference shows up only when two (or more) creation operators act
on the same site or orbital. The fermion operators create an antisymmetric
or singlet configuration (in accordance with the Pauli principle),

|0, 0〉 = c†↑c
†
↓ | 0 〉 , (B.73)

while the Schwinger bosons create a totally symmetric or triplet (or higher
spin if we create more than two bosons) configuration,

|1, 1〉 = 1√
2
(a†)2 | 0 〉

|1, 0〉 = a†b† | 0 〉 (B.74)

|1,−1〉 = 1√
2
(b†)2 | 0 〉 .

B.9 Z-W symmetry for Chiral Spin Liquid

B.9.1 Plane geometry

To begin with, we use M = N/2 to rewrite the CSL wave function as

ψCSL(z1, . . . , zM) =
M∏

j=1

(

G(zj) e
−Mπ

N
|zj |2

M∏

k=1
(k 6=j)

(zj − zk)

)

. (B.75)

Let wl with l = 1, 2, . . . , N − M be the lattice sites not occupied by the
zj ’s. The arguments (z1, . . . , zM) and (w1, . . . , wM) are from now on abbre-
viated by {z} and {w} in this paragraph. The previously derived octopuzz
theorem (B.53) implies

ψCSL({z}) =

M∏

j=1

(
M∏

l=1

1

zj − wl

)
M∏

j=1

e+
(N−M)π

2N
|zj |2

×
M∏

l=1

e+
Mπ
2N

|wl|2. (B.76)

Let

S[z, w] ≡ 〈 0 | cz1↓ . . . czM↓ cw1↓ . . . cwN−M↓
∣
∣ ↓↓ . . . . . . ↓
︸ ︷︷ ︸

all N spins ↓

〉
, (B.77)
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be the sign associated with ordering the z’s and w’s according to their lattice
positions. Then we can use

M∏

j<k

(zj − zk)
M∏

j=1

N−M∏

l=1

(zj − wl)
N−M∏

l<m

(wl − wm)

×
M∏

j=1

e−
π
2
|zj |2

N−M∏

l=1

e−
π
2
|wl|2 = S[z, w] · const. (B.78)

to rewrite (B.76) as

ψCSL({z}) = S[z, w] φ({z}) φ({w}) (B.79)

where

φ({z}) =

M∏

j<k

(zj − zk)

M∏

j=1

e−
Mπ
2N

|zj |2 (B.80)

is simply the wave function for a filled Landau level in a (fictitious) magnetic
field with flux 2πM

N
/plaquet. If we rewrite (B.75) in terms of (B.80) and

compare it to (B.79), we obtain the lattice particle-hole symmetry

M∏

j=1

G(zj) φ({z}) = S[z, w]φ({w}) · const., (B.81)

which holds for any M . The chiral spin liquid ground state, where M = N/2,
is according to (B.79) simply given by

|ψCSL〉 =
∑

{z1,...,zM ;w1,...,wM}
φ(z1, . . . , zM)φ(w1, . . . , wM)

× c†z1↑ . . . c
†
zM↑ c

†
w1↓ . . . c

†
wM↓ | 0 〉 , (B.82)

where the sum extends over all possible ways to distribute the coordinates
zj and wl on mutually distinct lattice sites.

B.9.2 Torus geometry

A similar particle-hole separation can be equivalently shown for the CSL wave
function with PBCs on the torus geometry. For simplicity consider again the
standard supercell primary region on the torus as in (B.57) with one lattice
point in the center. We reparametrize the lattice point in a symmetric form
as

ηα = (−L1 − 1

2
+ lα)a + (−L2 − 1

2
+mα)b, (B.83)



B.9 Z-W symmetry for Chiral Spin Liquid 129

with aL1 = 1, bL2 = τ , and (l/m)α = 0, . . . , L1/2 − 1. In its most convenient
form for our purposes, the CSL wave function on the torus is given by

ΨCSL({z}) = ϑ1(Z − Z1)ϑ1(Z + Z1)

M∏

i,j

ϑ1(zi − zj)
2

×
M∏

i

G(zi) exp(−π
2
|zi|2 +

π

2
z2

i ), (B.84)

where G is the gauge factor, M = N/2, Z is the center of mass Z =
∑M

i=1 zi,
and z denotes the position of the up spins as before. Again the index one at
the theta functions will be omitted in the following. There are two choices
of the parameter Z1 that give orthogonal wave functions so that the ground
state is doubly degenerate, i.e., the topological degeneracy of the CSL on the
torus. We define

φ({z}) = ϑ(Z − Z1)

M∏

i<j

ϑ(zi − zj)

M∏

i

e−
Mπ
2N

(|zi|2−z2
i ) (B.85)

with its complementary counterpart

φ({w}) = ϑ(W − Z1)

M∏

k<l

ϑ(wk − wl)

M∏

k

e−
(N−M)π

2N
(|wk|2−w2

k
), (B.86)

which is the wave function for a Landau band in symmetric gauge and a
magnetic field of 2π/plaquet. We now rewrite (B.86) in terms of up spin
variables z. First note that as one lattice site is a the origin, Z=−W and
thus

ϑ(W − Z1) = −ϑ(Z + Z1). (B.87)

Furthermore we rewrite the normalization by
∏N

α=1 exp(π(N−M)
2N

(|ηα|2−η2
α)) =

const. to get

∏

k

e−
π(N−M)

2
|wk|2 = const.

M∏

i

e−
Mπ
2N

(|zi|2−z2
i )

M∏

i

e
π
2
|zi|2−z2

i

= const.
M∏

i=1

(−1)limi

M∏

i=1

eπ b
a
(−mi(L2−1)+m2

i )

×
M∏

i

e−
Mπ
2N

(|zi|2−z2
i ). (B.88)
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As the next step, we use the previously defined Octopuzz theorem to rewrite
the theta functions. Using

∏N
α<β ϑ(ηα−ηβ) = const. we get (where c denotes

a constant)

M∏

k<l

ϑ(wk − wl) =
S[z, w]c

∏M
i<j ϑ(zi − zj)

M∏

i=1

N−M∏

k=1

1

ϑ(zi − wk)

= S[z, w]c
M∏

i<j

ϑ(zi − zj)
M∏

i=1

N∏

α=1

1

ϑ(zi − ηα)

= S[z, w]c
M∏

i<j

ϑ(zi − zj)

M∏

i=1

e−π b
a
(−mi(L2−1)+m2

i )(−1)li+mi+1, (B.89)

where the second line above cancels the last term in (B.88). Putting all
together, the particle hole symmetry for the CSL on the torus becomes man-
ifest:

ΨCSL({z}) = S[z, w]φ({z})φ({w}). (B.90)
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