
Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)

von der Fakultät für Wirtschaftswissenschaften
der Universität Fridericiana zu Karlsruhe

genehmigte Dissertation.

Improving Schema Mapping
by Exploiting Domain Knowledge

Dipl.-Inform. Christian Drumm

Tag der mündlichen Prüfung: 10.11.2008

Referent: Prof. Dr. Rudi Studer

Koreferent: Prof. Dr. Andreas Geyer-Schulz

Prüfer: Prof. Dr. Andreas Oberweis

2008 Karlsruhe

ii

Mailand oder Madrid - Hauptsache Italien!
Andreas Möller

iv

Abstract

This dissertation addresses the problem of semi-automatically creating schema
mappings. The need for developing schema mappings is a pervasive problem in
many integration scenarios. Although the problem is well-known and a large
body of work exists in the area, the development of schema mappings is today
largely performed manually in industrial integration scenarios.

In this thesis an approach for the semi-automatic creation of schema mappings
based on a central ontology is developed. The central ontology stores domain as
well as integration knowledge. Using this ontology as a basis, schema mappings
of high quality can be created automatically.

In particular, this thesis addressed the following questions:

• Which knowledge is necessary to create schema mappings? It is
obvious that schema information alone is not sufficient to create mapping
between complex schemas. The thesis analysis which types of background
knowledge are required in order to create a correct mapping between two
schemas. This analyses of required background knowledge is not particu-
larly focused towards the automatic creation of schema mappings but also
applies to the manual development of schema mappings.

• How can the necessary background knowledge be collected? The
background knowledge required to create schema mappings is usually not
easily accessible. As a result, two approaches for the collection of back-
ground knowledge are developed and evaluated in this thesis. A particular
focus is placed on enabling the non-intrusive collection of the background
knowledge to enable the application of the approaches in productive envi-
ronments.

• How can background knowledge be exploited by an automated
approach? In order to exploit background knowledge during the map-
ping creation, it needs to be available in a machine interpretable format.
The thesis shows an approach for the modeling of domain and integration
knowledge in an ontology and, based on this, develops a schema mapping
approach capable of exploiting the modeled knowledge during the automatic
schema mapping creation.

vi

• Can complex mappings be created automatically? Most exist-
ing approaches focus on the automatic identification of matches between
schemas, i.e. identifying corresponding schema elements. However, iden-
tifying matching elements is only the first step when creating a schema
mapping. The approach developed in this thesis is not only capable of
identifying matching schema elements but also able to identify the complex
expressions necessary to translate instances of the schemas.

• Can the mapping quality required for industrial applications be
achieved? Automatic schema mapping approaches will only be used in in-
dustrial integration tools if the mapping quality surpasses a certain thresh-
old. The approach developed in this thesis is therefore evaluated using
schemas originating from real integration projects in order to assess whether
if it is capable of creating mappings of the required quality.

In summary, the results of this thesis show that by exploiting background
knowledge automatic schema mapping can be developed to a level where it is
applicable in complex industrial scenarios. The novel knowledge collection ap-
proaches compliment the mapping approach by presenting non-intrusive methods
for collecting the required background knowledge from business users.

vii

I wish to thank ...

... my Supervisor

Rudi Studer

... the Reviewers

Raphael Volz

Anupriya Ankolekar

Andreas Abecker

Jens Lemcke

Kioumars Namiri

Gunther Stuhec

Harald Fuchs

Uwe Kubach

Matthias Born

Ingo Weber

... the Colleagues

Michael Altenhofen, Christian Brelage, Hong-Hai Do, Elmar Dorner, Andreas

Friesen, Gregor Hackenbroich, Philipp Kunfermann, Peter Lienhard, Daniel

Oberle, Ivan Markovic, Burkhard Neidecker-Lutz, Rainer Ruggaber, Thorsten

Sandfuchs, Daniel Scheibli, Kay-Uwe Schmidt, Matthias Schmitt, Irina

Selenski, Murray Spork, Axel Spriestersbach, York Sure, Orestis Terzidis,

Wolfgang Theilmann, Susan Thomas, Rüdiger Winter

... and last but not least all my friends & my family for their

support!

Christian Drumm

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Examples Scenarios & Requirements 5
1.3 Research Questions . 7
1.4 Contribution . 8
1.5 Overview . 9

I Foundations 11

2 Scenarios & Use Cases 13
2.1 Enterprise Application Integration 13
2.2 Data Migration . 16
2.3 Schema Mapping . 19
2.4 Summary . 22

3 Challenges for Integration 23
3.1 Running Example . 23
3.2 Heterogeneity Layers . 24
3.3 Types of Heterogeneity . 26

3.3.1 Types of Structural Heterogeneity 26
3.3.2 Types of Semantic Heterogeneity 29

3.4 Resulting Integration Challenges 32
3.4.1 Integration Challenges resulting from Semantic Hetero-

geneities . 33
3.4.2 Integration Challenges resulting from Structural Hetero-

geneities . 34
3.5 The Role of Ontologies in Integration 35
3.6 Summary . 38

4 Definitions 39
4.1 Schema . 39
4.2 XML and XML Schema . 39

x CONTENTS

4.3 Ontology . 44
4.4 Matching and Mapping . 46
4.5 Lifting . 48
4.6 Summary . 50

II Ontology-based Mapping 51

5 The Mapping Process 53
5.1 The Manual Mapping Process . 53
5.2 The Semi-Automatic Mapping Process 55
5.3 The Ontology-Based Mapping Approach 58

5.3.1 Related Work . 59
5.3.2 Information Capacity Considerations. 65

5.4 Summary . 65

6 The Role of Background Knowledge 67
6.1 Background Knowledge . 67

6.1.1 Domain Knowledge . 68
6.1.2 Integration Knowledge . 68
6.1.3 Relation of Background Knowledge and Heterogeneity

Problems . 74
6.2 Collecting Domain Knowledge . 75

6.2.1 Collection of Usage Characteristics 76
6.2.2 Example Data Injection 78

6.3 Modeling Domain and Integration Knowledge 80
6.3.1 Conceptual Modeling of the Domain 80
6.3.2 Modeling Integration Knowledge 81
6.3.3 Modeling Example Data 88

6.4 Summary . 88

7 Lifting 89
7.1 Overview . 89
7.2 Matching Algorithms . 93

7.2.1 Exploitable Schema and Ontology Features 93
7.2.2 Similarity Metrics . 98
7.2.3 Matching Algorithm Details 102

7.3 Aggregation . 106
7.3.1 Similarity Matrix Aggregation 107
7.3.2 Lifting Extraction . 108

7.4 Summary . 111

CONTENTS xi

8 Mapping Extraction 113
8.1 Overview . 113
8.2 Mapping Categories . 115

8.2.1 Mapping Category Details 117
8.2.2 Generation of Mapping Code 122

8.3 Mapping Extraction Algorithm 125
8.3.1 Inferring Matching Schema Entities 125
8.3.2 Identification of Mapping Categories 130

8.4 Summary . 133

III Implementation and Evaluation 135

9 Implementation 137
9.1 The OBM Framework . 137

9.1.1 Schema and Ontology Representation 139
9.1.2 Lifting Representation . 139
9.1.3 Mapping Representation 139
9.1.4 Implementation Considerations & Optimizations 140

9.2 The Evaluation Toolkit Evanto 142
9.3 Summary . 144

10 Evaluation 145
10.1 Industrial State of the Art . 145

10.1.1 Tools supporting B2B Integration 145
10.1.2 Data Migration Tools . 148
10.1.3 Documentation Tools . 149

10.2 Evaluation Approach . 150
10.2.1 Evaluation Scenarios . 151
10.2.2 Master Mappings . 155
10.2.3 Evaluation Ontology . 155
10.2.4 Quality Metrics . 157

10.3 Experiments . 158
10.3.1 Schema Reduction . 158
10.3.2 Example Data Injection 159
10.3.3 Automatic Schema Mapping 160
10.3.4 Requirements Revisited . 166

10.4 Summary . 168

IV Summary and Outlook 169

11 Summary & Future Work 171

xii CONTENTS

11.1 Future Work . 171
11.1.1 Knowledge Collection . 171
11.1.2 Automatic Mapping Calculation 173
11.1.3 Review, Correction & Testing 175
11.1.4 Iteration & Finalization 176

11.2 Application of the OBM Approach to semantic Web services . . . 176
11.3 Industrial Applications . 178

11.3.1 The SAP NetWeaver Composition Environment 178
11.3.2 The SAP Migration Workbench 179
11.3.3 SAP CCTS Modeller Warp 10 180

12 Conclusion 183

V Appendix 187

A Questionnaire to Collect Usage Characteristics 189

B Implementation Details of the OBM Framework 197
B.1 The Lifting Package. 198
B.2 The Mapping Package. 198
B.3 The Repository Package. 199
B.4 Used Libraries . 199
B.5 Public API . 200

C Evanto Details 203

List of Figures

1.1 The scope of different types of Enterprise Application Integration. 2

2.1 A simple B2B interaction. 14
2.2 Excerpt of the XML schema of a SAP IDOC for exchanging pur-

chase orders. 21

3.1 Running example showing two schemas for representing customer
data including example instance values. 24

3.2 Heterogeneity layers including some examples of heterogeneity oc-
curring at each layer. 25

4.1 The XML schema representation of the BusinessPartner schema
in the running example. 42

4.2 An example instance of the BusinessPartner schema. 43
4.3 Example ontology describing the domain of business partners. . . 45
4.4 Example of a lifting from a source schema to an ontology. 49

5.1 Manual mapping process supported by current tools. 54
5.2 The proposed generic process for the semi-automatic creation of

schema mappings. 56
5.3 The steps in the generic semi-automatic mapping process this the-

sis focuses on. 58
5.4 Schematic overview of the ontology-based schema mapping ap-

proach and its alignment to the generic automatic schema mapping
process. 59

6.1 A classification of the different types of background knowledge
required for the development of correct schema mappings. 68

6.2 Running example including the knowledge necessary to identify
matching schema elements. 69

6.3 Alignment of the knowledge collection approaches and the semi-
automatic mapping process. 76

6.4 Example of a schema reduction based on usage characteristics col-
lected using a questionnaire. 77

xiv LIST OF FIGURES

6.5 The idea of Example Data Injection. Example data is manually
entered into the business system and exported using the system
specific data format. 79

6.6 Example ontology for the domain of business partners. 81
6.7 Example of the approach for the modeling of technical names. . . 83
6.8 Example of the approach for the modeling of default values. . . . 85
6.9 Example of the approach for the modeling of internal or global

identifiers. 86
6.10 An example of adding code-list information to the domain ontology. 87
6.11 Example instances of the concept of the example ontology. 88

7.1 Overview of the conceptual architecture of the schema lifting com-
ponent. 90

7.2 Example of a lifting from a source schema to an ontology. 92
7.3 The aggregation of the matcher results. 107
7.4 Example showing the idea underlying the domain-ontology-based

lifting extraction. 109

8.1 Overview of the mapping extraction approach. 114
8.2 The running example including the mapping categories associated

to the correspondences. 115
8.3 Example of liftings related through a sub-class relation. 128
8.4 Example of liftings related through inheritance. 129

9.1 Architecture of the OBM Framework. 138
9.2 Excerpt of the serialization format used to store liftings. 140
9.3 Excerpt of the serialization format used to store mappings. 141
9.4 Example of an Evanto script. 143

10.1 The design time tool of the SAP Exchange Infrastructure showing
two messages. 147

10.2 Creation of schema mappings in the SAP Migration Workbench. . 149
10.3 A list of possible errors in a schema mapping generated by the

invocation of a migration interface in test mode. 150
10.4 Partial graphical representation of the structure and naming of the

BusinessPartner schema. 153
10.5 Partial graphical representation of the structure and naming of the

DEBMAS schema. 154
10.6 The results achieved by the OBM Framework using the Technical

Names matcher. 162
10.7 The results achieved by the OBM Framework using the combina-

tion of the Instance Equality and the Instance Split/Concat matcher.163
10.8 The results achieved by the OBM Framework using the combina-

tion of Technical Names and example data based matchers. 164

LIST OF FIGURES xv

10.9 The results achieved by the OBM Framework by reusing integra-
tion knowledge from related integration scenarios. 166

11.1 Steps of the ontology mapping process discussed in the future work.171
11.2 The Galaxy Workbench showing a simple process and a schema

mapping. 179
11.3 High-level architecture of the CCTS Modeller Warp 10. 181

B.1 Overview of the packages comprising the OBM Framework imple-
mentation. 198

C.1 Example of an Evanto script. 204

xvi LIST OF FIGURES

List of Tables

3.1 Overview of the classification of schematic heterogeneities (based
on [SvH05, Wac03]. 27

3.2 Overview of the classification of semantic heterogeneities (based
on [SvH05, Wac03]. 30

3.3 Different types of heterogeneities and how they can be addressed
by ontologies. 38

6.1 Types of integration knowledge suitable for an integration into a
domain ontology as well as the process step in which they are
exploited. 70

6.2 Different types of heterogeneities and the background knowledge
required for solving them. 74

7.1 The list of exploitable schema features together with a short ex-
planation of each feature. 94

7.2 The list of exploitable ontology features. 96

8.1 Overview of the identified mapping categories together with a short
explanation. 118

8.2 Absolute number of occurrences and occurrence frequency of the
different mapping categories in the evaluation scenarios (cf. Sec-
tion 10.2.1). 122

8.3 Generation of mapping expressions for the different mapping cat-
egories. 123

8.4 Required background knowledge for the identification of the dif-
ferent mapping categories. The required type of knowledge is in-
dicated by a !in the table, not required knowledge by a #. . . . 131

10.1 The four evaluation scenarios. 152
10.2 Complexity of the schemas used for evaluation in the data migra-

tion scenario. 155
10.3 The size of the master mappings in the different evaluation scenarios.156
10.4 Complexity of the target schema after the reduction 159
10.5 Excerpt of the example data for a customer. 160

xviii LIST OF TABLES

Chapter 1

Introduction

This thesis develops automatic schema mapping to a new level where it can be
applied in industrial settings. In order to achieve the mapping quality required
in an industrial setting, domain knowledge needs to be exploited. The automatic
schema mapping approach developed in this thesis exploits domain knowledge
during the preprocessing as well as the automatic mapping process and thereby
improves the quality of the automatically generated mappings. By using an ontol-
ogy as a central knowledge base encapsulating the domain knowledge throughout
the automatic mapping process, the developed approach is capable of identifying
even complex mappings common in industrial scenarios.

1.1 Motivation

In dynamic business environments enterprises are faced with numerous types of
integration ranging from organizational integration to application integration.
Changing markets and short term business opportunities require enterprises to
perform the different types of integration frequently in order to adapt to the
evolving business environment. This thesis focuses on the integration challenges
at the technical level where schema mapping plays a central role. More precisely,
the focus of this thesis is on the two use cases application integration and data
migration.

Application Integration. Bussler [Bus03] identifies three main types of ap-
plication integration:

1. Application-to-Application (A2A) integration

2. Business-to-Business (B2B) integration

3. Application Service Provider (ASP) integration.

2 Chapter 1: Introduction

Scope of Integration

Le
ve

l o
f I

nt
eg

ra
tio

n

Intra-Enterprise Inter-Enterprise

Ap
pl

ic
at

io
n

P
ro

ce
ss

Intra-Enterprise

A2A ASP

B2B

Figure 1.1: The scope of different types of Enterprise Application Integration.

In the context of enterprise applications these types of integration are usually
referred to as Enterprise Application Integration.

As depicted in Figure 1.1 A2A integration is concerned with the integration of
business application within one enterprise whereas B2B integration is concerned
with the integration of business applications and business processes across enter-
prises. Application service provider integration is similar to B2B integration but
especially focuses on the integration of applications hosted by a service provider
with existing business applications.

Recently the Service Oriented Architecture paradigm [KBS06] together with
the Web services technology stack [Wor06a] as the implementation technology
has become the standard architecture for Enterprise Application Integration. In
this paradigm application functionality is encapsulated using Web services which
are described using a Web Services Description Language (WSDL) [Wor01a] de-
scription and additional specifications (cf. [The07]). For this thesis it is sufficient
to understand that a WSDL definition of a Web service interface includes the
specification of a set of operations, messages and data types. The data types
used by a service to send and receive information are described as XML Schemas
(XSD) [Wor01b] building on top of one another. A message can be divided into
parts. Each part is defined by a data type. A general WSDL operation consists
of two messages: an input and an output message.1

The different Web service specifications only facilitate the technical integra-
tion of different Web services. As the Web services used to encapsulate the
functionality of different applications are in the general case developed indepen-

1We abstract from more details of WSDL e.g. the binding and possible behavioral axioms on
the operations, since it is irrelevant to what we explain in the following section. The interested
reader may refer to the referenced background material.

1.1 Motivation 3

dently, the input and output message of different services most likely differ in e.g.
naming of elements, size, and structure. As the creation of novel applications or
functionality based on existing services requires the integration of numerous dif-
ferent services, the heterogeneity of input and output messages results in the
need for mappings between them. The need for these mappings also remains in
the B2B case when existing B2B message standards (like e.g. EDIFACT [Uni],
RosettaNet [Ros07], CIDX [CID] or PIDX [Ame07]) are used as a basis for the
message exchange between the partners. Since a large number of B2B message
standards and pseudo-standards exist, not all of them are supported by a given
business system resulting in the need for message mappings.

Data Migration. Similar problems occur in the area of Data Migration . Data
Migration is the task of migrating data from one or many data sources to a tar-
get application or system. As an example consider the migration of data from an
existing legacy application into a new one. Migration of legacy data also requires
mappings between the schemas used by the legacy application to represent data
and the ones used by the new application. As in the case of Enterprise Appli-
cation Integration the schema mappings necessary in a data migration project
account for a significant amount of the involved development costs. However,
in contrast to the Enterprise Application Integration case, these costs cannot
be amortized through cost savings during operation. The reason is that Data
Migration is typically only performed once. After that the developed mappings
are no longer necessary. An additional difference between the scenarios in the
area of Data Migration and Enterprise Application Integration is the nature of
the involved data. In the Enterprise Application Integration case, data that is
especially geared towards data exchange (e.g. a purchase order message) needs
to be transmitted. Data Migration requires the exchange of master data (e.g.
data concerning customers, suppliers or products) and transactional data (e.g.
the production orders related to a certain sales order). The import and export
interfaces for these types of data are usually not geared towards interoperability
resulting in additional challenges.

Schema Mapping. Today the mappings necessary in different scenarios in the
areas of Enterprise Application Integration and Data Migration are largely devel-
oped manually using either specialized tools or standard programming languages.
However, even the specialized tools only offer rudimentary support for the (semi-
) automatic creation of mappings e.g. the automatic creation of a mapping for
identical schemas. Additionally, current tools do not capture the knowledge nec-
essary to create mappings between message schemas. This knowledge includes:

Semantics of schema elements: The schemas used for Enterprise Application
Integration or Data Migration are very complex. In order to create a map-
ping between two of them, a developer must know which real-world entities

4 Chapter 1: Introduction

are represented by which schema entities and how the entities of the two
schemas are related.

Used communication subset: Although Enterprise Application Integration
or Data Migration schemas are very complex, usually only a subset of them
is used in a certain project. The reason is that the schemas are an expanded
representation of all data that possibly needs to be transmitted in the B2B
integration case [Stu07] or stored in the case of standard software. Each
integration project only requires a subset of this data. Therefore, only the
mapping for the subset used needs to be created. Consequently, a mapping
developer needs to understand which subset of the schemas is relevant in
the given context.

Customization of standards: In contrast to the fact that usually only a subset
of a schema is used, existing standard schemas are usually customized.
These customizations include the development of extensions to the standard
and also the nonstandard usage of certain parts or elements. An example
of such a nonstandard usage of an element would be to store the email
address of a contact in an element intended for the storage of free form
notes. Consequently, a developer needs to know about these customizations
and misuses in order to create correct mappings.

Implementation Details: In the area of Enterprise Application Integration
most standard schemas are slightly underspecified, i.e. certain details im-
portant for an implementation of the standard are deliberately omitted.
As an example consider a schema element that contains the unambiguous
identifier of a business partner. Usually an Enterprise Application Integra-
tion messaging standard does not enforce the usage of a certain standard
for such a element. In the given example this would enable the usage of
either the DUNS2 number, the EIN3 number or a custom code to identify
business partners. A developer needs to know these implementation details
in order to create the correct mapping.

The knowledge necessary to create mappings is not integrated and often not
available in a machine processable format. Instead it is usually scattered across
different documents or only available to a few specialists.

Automating the creation of the mappings necessary both in Enterprise Appli-
cation Integration and Data Migration would simplify both types of integration
by reducing the necessary development efforts. The reduction of the development
efforts achieved by an automation of the mapping creation ultimately leads to

2The Data Universal Numbering System. See http://www.dnb.com/US/duns_update/
index.html for details.

3The Employer Identification Number. See http://www.irs.gov/businesses/small/
article/0,,id=98350,00.html for details.

http://www.dnb.com/US/duns_update/index.html
http://www.dnb.com/US/duns_update/index.html
http://www.irs.gov/businesses/small/article/0,,id=98350,00.html
http://www.irs.gov/businesses/small/article/0,,id=98350,00.html

1.2 Examples Scenarios & Requirements 5

improved flexibility as necessary Enterprise Application Integration or Data Mi-
gration tasks can be performed more easily. Consequently companies would be
able to adopt to changing market requirements more quickly by integrating new
business partners or replacing legacy applications. Furthermore, schema map-
pings help to save existing investments in the Enterprise Application Integration
case. The reason is that by using mappings legacy applications can be integrated
with novel ones in order to provide new functionality.

1.2 Examples Scenarios & Requirements

In order to illustrate the abstract discussion of Enterprise Application Integration
and Data Migration provided above, one real world example scenario for each of
the two areas is briefly discussed below.

Automation of an Ordering Process between SAP R/3 and non-SAP
Systems. The automation of an ordering process is a typical example for a
process requiring B2B integration. In order to enable this integration between
SAP R/3 and non-SAP systems, mappings between the involved B2B messages
need to be created. In the context of SAP R/3 the standard used for B2B
integration is SAP IDoc, an SAP specific format for B2B messages. Non-SAP
systems typically do not support SAP IDoc but rather use different industry
standards for B2B communication. Consequently, mappings between the SAP
IDoc message schemas and the ones used by the non-SAP systems need to be
developed in a given B2B integration project.

The complexity of B2B messages becomes obvious if a SAP IDoc messages is
examined in detail. A purchase order in the SAP IDoc format consists of several
hundred elements. Additionally, SAP IDoc messages are rather flat whereas
other B2B messaging standards are deeply structured. It is obvious that the
development of the necessary mapping requires significant effort.

Data Migration from legacy Systems to SAP Business ByDesign. SAP
Business ByDesign4 is a novel SAP solution for small and medium size enterprises.
In order to enable these small and medium size enterprises to use the new solu-
tion, a simple approach to the migration of legacy data is required. The main
reason is that small and medium enterprises can not afford the cost and time
necessary for complex data migration projects. Unfortunately, in the light of this
cost requirement the data schemas for master data, e.g. business partner infor-
mation, are very complex. For example, the schema for storing business partner
information in SAP Busines ByDesign consists of over 4500 elements.

4http://www.sap.com/solutions/sme/businessbydesign/index.epx

http://www.sap.com/solutions/sme/businessbydesign/index.epx

6 Chapter 1: Introduction

As a large variety of possible legacy systems exist, the migration approaches
need to be able to cope with previously unknown source systems. Consequently,
the migration approach needs to enable a user to i) quickly collect the required
integration knowledge and ii) to easily reuse integration knowledge from previ-
ous migration projects. In addition, it is quite common that only parts of the
functionality offered by SAP Busines ByDesign is supported by the legacy sys-
tem. Consequently, only mappings for parts of the complex schemas need to be
created.

Requirements. The previous examples and discussion highlight the following
list of six requirements necessary for an automatic schema mapping approach in
an industrial setting.

R1 (Quality): The quality of the resulting mappings is the most important is-
sue for any automatic mapping approach. As schema mapping is a central
task in B2B integration and Data Migration, an automatic schema mapping
approach will only be applicable in any industrial scenarios if it leads to
a significant reduction of the required integration efforts. This significant
reduction can only be achieved if both a high accuracy and a high level of
completeness are achieved. Consequently, the accuracy and the complete-
ness are used to measure the quality of automatically created mappings.

R2 (Identification of Mappings): In industrial settings an automatic ap-
proach not only needs to identify correspondences between schemas, but
also must be capable of creating mappings between them. The reason is
that creating a correct mapping on the basis of correspondences between
schemas still requires significant effort. Consequently, complete mappings
need to be proposed by the developed approach. However, creating the
complete mapping automatically is not possible in the general case. As
a result, the developed approach needs to be able to at least propose an
initial template in the cases where the complete mapping rule can not be
identified. This initial template can then later on be completed by a user
in order to finalize the mapping.

R3 (Complex Mapping Expressions): Although simple direct mappings be-
tween schema elements are common, a complete approach needs to be able
to create complex mapping rules between schema elements. As a fully au-
tomatic creation of the complex mapping rules is also not possible in the
general case, at least templates of complex mapping expressions that can
easily be completed by a user need to be created.

R4 (Capture and Reuse of Integration Knowledge): Capturing the inte-
gration knowledge necessary to create a mapping is essential to the scenar-
ios described earlier. On the one hand it enables developers to query the

1.3 Research Questions 7

available integration knowledge, on the other hand this knowledge can be
used by the automatic schema mapping approach to increase the quality of
the mappings.

R5 (Flexible Execution): As different tools are used to execute mappings in
different B2B integration and Data Migration scenarios, the created map-
ping rules must not be tied to a specific execution environment. Instead,
an abstract mapping representation is needed. This abstract representation
should be automatically translatable into a concrete syntax for mappings
required by the available execution environment.

R6 (Performance): Performance is always an important issue when investigat-
ing automatic approaches. Since schema mapping in B2B integration and
Data Migration scenarios is a design time or development time task, the re-
quired performance is not tightly restricted. However, in order to be usable
when integrated into a development tool, the automatic mapping approach
should be executable in the area of several minutes on typical mapping
problems. The reason is that longer execution times are not suitable for in-
teractive development tools. Generally, quality should be emphasized over
performance.

In the remainder of the thesis these requirements are used to direct the develop-
ment of the automatic mapping approach and also to analyze the applicability of
the developed approach in different real-world scenarios.

1.3 Research Questions

In order to develop an automatic mapping approach capable of achieving the
requirements mentioned above, the following research questions need to be ad-
dressed in this thesis:

Which knowledge is necessary to create schema mappings? It is obvi-
ous that schema information alone is not sufficient to create mappings be-
tween complex schemas. The thesis analyzes which types of background
knowledge are required in order to create a correct mapping between two
schemas. This analysis of required background knowledge is not particu-
larly focused towards the automatic creation of schema mappings but also
applies to the manual development of schema mappings.

How can the necessary background knowledge be collected? The back-
ground knowledge required to create schema mappings is usually not eas-
ily accessible. Therefore, two approaches for the collection of background
knowledge are developed and evaluated in this thesis. A particular focus is

8 Chapter 1: Introduction

placed on enabling the non-intrusive collection of the background knowledge
to enable the application of the approaches in productive environments.

How can background knowledge be exploited? In order to exploit back-
ground knowledge during the mapping creation it needs to be available in a
machine interpretable format. The thesis shows an approach for the model-
ing of domain and integration knowledge in an ontology and, based on this,
develops a schema mapping approach capable of exploiting the modeled
knowledge during the automatic schema mapping creation.

Can complex mappings be created automatically? Most existing ap-
proaches focus on the automatic identification of matches between
schemas, i.e. identifying corresponding schema elements. However,
identifying matching elements is only the first step when creating a schema
mapping. The approach developed in this thesis is not only capable of
identifying matching schema elements but is also able to identify the
complex expressions necessary to translate instances of the schemas.

Can the quality required for industrial applications be achieved?
Automatic schema mapping approaches will only be used in industrial
integration tools if the mapping quality surpasses a certain threshold. The
approach developed in this thesis is therefore evaluated using schemas
originating from real integration projects in order to asses if it is capable
of creating mappings of the required quality.

1.4 Contribution

A central feature necessary for the development of an automatic mapping ap-
proach capable of coping with the requirements presented above is the exploita-
tion of domain knowledge. Achieving automatic mapping results of high quality
is only possible if even complex mapping rules can be created automatically. The
prerequisite for generating mappings containing complex mapping rules is a de-
tailed knowledge of different facets of the domain. The schema mapping approach
developed in this thesis focuses on the exploitation of domain knowledge. The
domain knowledge required is usually not easily accessible, therefore methods for
the capturing of the required knowledge also need to be developed. The following
paragraph summarizes the contributions of this thesis.

1.5 Overview 9

1. The main contribution of the thesis is an ontology-based schema
mapping approach. By exploiting existing domain knowledge
of integration experts, which is encapsulated in an ontology,
this approach is capable of automatically creating high qual-
ity schema mappings. Furthermore, the mapping algorithms
developed in this thesis will be tailored towards the exploita-
tion of integration knowledge modeled in the domain ontology.
Consequently the developed approach can easily be adapted to
different scenarios by exchanging the used domain ontology.

2. The second contribution is a set of novel approaches for the
capturing of existing user knowledge, which is required for the
creation of schema mappings. These approaches are especially
tailored towards embedding them into the process of creating
schema mappings and therefore only require a minimal manual
effort.

1.5 Overview

The remainder of this thesis is organized as follows: Part I provides the foun-
dations of the thesis. In Chapter 2 the integration scenarios, namely Enterprise
Application Integration and Data Migration, that are the basis of this thesis, are
analyzed in detail. After that, the central task in these scenarios, namely schema
mapping, is discussed. The discussion of the schema mapping task focuses on
the common requirements of both integration scenarios and abstracts from their
specific details. Following this the challenges faced in integration are analyzed
and categorized in Chapter 3. In addition, Chapter 3 discusses why ontologies are
a suitable tool for solving these integration challenges. Part I closes by providing
definitions of the important terms used in the remainder of the thesis.

Parts II and III represent the main contribution of the thesis. In Part II
the ontology-based schema mapping approach is developed while in Part III the
implementation and the evaluation of the approach is described.

Part II starts by introducing a generic schema matching process as seen from
the users point of view in Chapter 5 and by introducing the ontology-based
mapping approach. This chapter also provides a detailed overview of the re-
search related to the ontology-based mapping approach. Following this, the role
of background knowledge for the development of schema mapping is studied in
Chapter 6. In the Chapters 7 and 8 the details of the ontology-based mapping
approach are developed.

After this Part III describes the implementation details of the ontology-based
mapping approach in Chapter 9, while Chapter 10 provides a detailed evaluation

10 Chapter 1: Introduction

of the schema mapping approach. The performed evaluation is based on real-
world Data Migration scenarios encountered during the work at SAP Research.

The thesis closes with Part IV by providing an outlook on future work in the
area of schema mapping in Chapter 11. Following this, possible industrial appli-
cations of the schema mapping approach developed in this thesis are presented.
Finally, Chapter 12 summarizes the presented work.

Some parts of this thesis are based on the following contributions that have
previously been published in different journals, books and conference or workshop
proceedings: [Dru04], [DK05], [DLN06], [DSDR07], [Dru07], [DLO07], [WMD07]
and [WMD08].

Part I

Foundations

Chapter 2

Scenarios & Use Cases

This chapter investigates different industrial scenarios in the two areas Enterprise
Application Integration and Data Migration in more detail. For the scenarios in
each of the two areas the currently available solutions as well as the problems and
limitations of these solutions are described. In addition, possible improvements
over the current state of the art are identified.1

Based on the analysis of the different scenarios it becomes obvious that the
task of developing schema mappings is in the center of solving the integration
problem in the different scenarios. The common properties of the introduced sce-
narios in the two areas of Enterprise Application Integration and B2B integration
are used throughout the thesis to guide the development of an approach capable
of solving the schema mapping task semi-automatically. In Part III of the thesis
the scenarios introduced in this chapter are revisited again as they are the basis
for evaluating the developed approach.

2.1 Enterprise Application Integration

The goal of Enterprise Application Integration is automating the execution of
business processes across the boundaries of different applications. As an exam-
ple of a typical business process requiring Enterprise Application Integration,
consider the procurement process depicted in Figure 2.1. In this process the
company A wants to buy certain goods from company B. The overall process
necessary to complete this transaction consists of several process steps involving
both partners. First a “Request for Quotation” message is sent from company A
to company B. Company B processes this message internally, possibly also in-
volving different business systems, and replies with a “Quote Response” message.
If A accepts the quotation of B it sends a “Purchase Order” message in the next
step and the process continues. As the two systems involved in the process were

1Note that this discussion in not tied to specific implementation technologies. It rather
abstracts from implementation details in order to identify the essential underlying problems.

14 Chapter 2: Scenarios & Use Cases

Company A Company B

Request for
Quotation

Quote
Response

Purchase
Order

Purchase Order
Response

...

Figure 2.1: A simple B2B interaction.

most likely developed independently, they most certainly use different schemas
to describe the sent messages. Consequently mappings between theses schemas
are necessary to enable the integration of the systems.

Using this simple example as a basis the main difference between the three
types of Enterprise Application Integration, namely

• Application-to-Application (A2A) integration

• Business-to-Business (B2B) integration

• Application Service Provider integration

identified by Bussler [Bus03] can easily be shown. In the case of Application-
to-Application (A2A) integration there would only be one company owning both
systems. Consequently, the integration does not require creating mappings but
would theoretically also be possible by changing one of the two systems in order
to enable interoperability.2 In the context of B2B or Application Service Provider
integration changing the involved systems is usually not an option as they are
not controlled by one partner. Therefore, the creation of schema mappings is
necessary to enable interoperability in these cases.

Integration Challenges. Common to each of the three types of Enterprise Ap-
plication Integration is that they have to cope with heterogeneities on different
levels ranging from heterogeneities in the supported communication technologies

2However, in real A2A integration projects usually the involved systems are also not changed
and, therefore, schema mappings are required in order to enable interoperability.

2.1 Enterprise Application Integration 15

to heterogeneities on the semantic level3. However, solving the heterogeneities on
the different levels becomes much more difficult across company boundaries as a
consensus needs to be reached on each level of heterogeneity. This thesis focuses
on Enterprise Application Integration across company boundaries. In these cases
the integration problems have to be solved at the mapping level as changing ei-
ther of the involved systems is usually not possible. If the two types of Enterprise
Application Integration that cross company boundaries, namely B2B integration
and Application Service Provider integration, are examined in more detail their
main difference becomes obvious. While Application Service Provider integration
aims at integrating single applications, B2B integration aims at the integration of
whole business processes. It is common that complex business processes already
cross the boundaries of several applications inside one company. This feature
possibly adds another layer of complexity to B2B integration since also the sys-
tems within one company are usually already heterogeneous. Consequently, only
scenarios in the area of B2B integration are considered in the following as they
expose all integration problems related to the more general area of Enterprise
Application Integration. As an example of a concrete B2B integration scenario
consider the automation of the purchasing process between a SAP and an Oracle
system or the automation of the invoicing process between a legacy system and
a SAP system.

In order to overcome the heterogeneity problems related to B2B integration
numerous B2B messaging standards (e.g. RosettaNet [Ros07], CIDX [CID] or
PIDX [Ame07]) have been developed. However, a large number of B2B mes-
saging standards and pseudo-standards exist and these standards themselves are
rather heterogeneous. Therefore, B2B integration on the basis of B2B messaging
standards requires solving the same problems as in the more general case.

The Service Oriented Architecture paradigm [KBS06] together with the Web
services technology stack [Wor06a] as the implementation technology has become
the standard architecture for Enterprise Application Integration and in particular
for B2B integration. Note that in general most scenarios in the area of B2B inte-
gration which are implemented using the Service Oriented Architecture paradigm
not only require a mapping between the message schemas used by different Web
services but also between the operations offered by them. This aspect of B2B
integration is usually referred to as process mediation [CDS+04]. However, since
this thesis focuses on automatic schema mapping, the process mediation aspect
of B2B integration will not be further discussed.

Opportunities. Today the mappings necessary for B2B integration are de-
veloped manually using either specialized tools or standard programming lan-

3For a detailed discussion of the different levels of heterogeneity and their related problems
see Chapter 3.

16 Chapter 2: Scenarios & Use Cases

guages.4 Due to the complexity of typical B2B messages the manual develop-
ment of mappings requires significant development efforts. Consequently, current
approaches to B2B integration are not flexible enough to enable B2B integra-
tion even in short-term business relationships. The required flexibility could
be achieved by the (semi-)automatic creation of the required message mapping.
Creating message mappings (semi-)automatically would significantly reduce the
necessary development effort for each mapping. However, such an automatic
schema mapping would need to create mappings of a high quality. If an auto-
matic approach creates too many wrong mapping rules, removing or fixing these
wrong parts quickly becomes more effort than creating the mapping from scratch
and renders an automatic approach useless (cf. requirements R1, R2 and R3).

Also, an integrated representation of the knowledge necessary to create a
message mapping in a machine processable format would be beneficial (cf. re-
quirement R4). Instead of browsing through a large number of documents or
data bases in order to find the information necessary to create a mapping, such
a knowledge base would enable the integrated querying of the available integra-
tion knowledge. In addition to supporting a developer when creating message
mappings, this integration knowledge base could be exploited by a automatic
mapping approach to create high quality mappings.

2.2 Data Migration

A different problem area where schema mappings play a central role is Data
Migration. The goal of Data Migration is to migrate data between one or many
data sources and a target application or system. An example of a characteristic
scenario in the area of Data Migration is the introduction of SAP Enterprise
Resource Planning (ERP) software in order to replace several existing legacy
applications. As the legacy applications and the new one most likely use different
schemas to store data a mapping between these different schemas is necessary.

Similar scenarios in the area of Data Migration aiming at replacing existing
legacy applications are quite common in industry. Especially the recent focus
of large enterprise software companies on small and medium enterprises requires
solutions for these Data Migration scenarios. As small and medium enterprises
typically already have some kind of business software in place, existing data needs
to be migrated whenever new applications are introduced.

As mentioned above the common goal in the different scenarios in the area
of Data Migration is to migrate data between different data sources. The data
sources in the migration scenario can be divided into two categories: data sources
providing the data that is migrated and data source receiving this data. After

4A comprehensive review of tools currently available commercially for to support B2B inte-
gration is presented in Section 10.1.

2.2 Data Migration 17

the migration is performed the data sources that provided the data are usually
no longer used.

Integration Challenges. The key differentiator between scenarios in the area
of Data Migration compared to B2B integration is the nature of the data that
is exchanged. While in a B2B integration usually only transactional data is
exchanged, three types of data need to be migrated in a typical Data Migration
scenario:

1. Basic Master Data. This type of master data does not depend on the
existence of other data. It can therefore be migrated without taking other
data into account. Examples of this type of master data are product data
and business partner data.

2. Dependent Master Data. This type of master data does depend on
other master data. Therefore it can only be migrated as soon as all the
master data it depends on hast been migrated. An example of dependent
master data is the bill of materials that requires among other the existence
of product master data.

3. Transactional Data. Transactional data, like e.g. previously received
purchase orders or already sent invoice notifications, has to be treated spe-
cially during the migration. First, it depends on the existence of the master
data and, second, creating transactional data in the system usually triggers
a business process. However, this is usually not wanted during Data Migra-
tion. As an example, consider entering a purchase order into the system.
In certain industries this might automatically create a production order
to start the production of the ordered goods. When migrating existing
purchase orders, creating a new production order is certainly unwanted as
this would result in a duplicate production order for one single purchase
order. Therefore transactional data has to be specially treated during Data
Migration.

In comparison to B2B integration, the import and export interfaces for these
types of data are usually not geared towards fostering the interoperability of
systems. Consequently, the schemas describing the export formats are typically
very close to the technical implementation of the system. They usually only
contain technical names and are undocumented, making an understanding of the
formats difficult even for a human. Furthermore, in order to enable the migration
of dependent master data and transactional data special migration services are
necessary. These migration services need to be offered by the target system to
enable the creation of dependent master data and transactional data without
causing unwanted side effects.

18 Chapter 2: Scenarios & Use Cases

Besides this, two additional major differences exist between scenarios in the
areas of B2B integration and Data Migration. First, it is quite common in Data
Migration projects that implementation details of the target system are known
in detail while only very limited knowledge of the source system exists. There are
different reasons for this situation. In the case of legacy system migration, the
knowledge is usually not available due to lacking documentation and expertise.
In the case of competitor system migration, legal constraints prevent software
vendors from gaining detailed knowledge about implementation details of the
competitor systems. However, this information is necessary in order to be able
to migrate the necessary data. Second, a Data Migration project usually requires
the creation of mappings for several similar schemas. As an example consider
basic master data like customers, suppliers and employees. It is very likely that
the schemas describing this data in one system contain large similar parts (e.g.
address data and banking information).

Opportunities. The development of the necessary schema mappings accounts
for a significant amount of the involved development efforts. In contrast to the
B2B integration case these costs cannot be amortized in the Data Migration case
through cost savings during operation. The reason is that Data Migration is only
performed once. After all data in the legacy system has been migrated the legacy
systems will no longer be operated. Therefore reducing the development efforts
associated to schema mapping is beneficial also in Data Migration scenarios.

Again automating the creation of the necessary mappings could significantly
reduce the costs related to Data Migration (cf. requirements R1, R2, R3). In
addition, an integrated representation of the knowledge necessary to create the
mappings involved in a Data Migration project would also be beneficial in order
to support reuse of this knowledge in future migration projects (cf.. requirement
R4). Although Data Migration for one particular legacy system is only performed
once, three types of future migration projects are possible:

• Migration projects inside one company aiming at the migration of similar
legacy systems to one specific target system.

• Migration projects inside one company aiming at the migration of similar
legacy systems to one type of target system.

• Migration projects in different companies aiming at the migration of differ-
ent legacy systems to one type of target system.

While the first two types of future projects might be common in big companies
with a large number of business systems, the third type is of special interest for
service providers supporting the Data Migration for different clients. In each of
the three cases, an integrated representation of the available knowledge would
simplify future projects by i) allowing users to query this knowledge and by ii)

2.3 Schema Mapping 19

allowing software tools to exploit this knowledge. Additionally, the special prop-
erties of the Data Migration scenarios should be taken into account. The in-depth
knowledge of the target schemas need to be exploited in order to compensate for
the lack of knowledge about the source schemas. Furthermore, the property of
the Data Migration scenarios that numerous mappings between similar schemas
need to be created also need to be exploited by supporting the reuse of previously
created mappings.

2.3 Schema Mapping

From the discussion in the previous sections it is obvious that the central task
required in B2B integration and Data Migration is the development of a schema
mapping. The goal of this task is, given two schemas, a source and a target
schema, to create the mapping rules necessary to transform an instance of the
source schema into an instance of the target schema.

Generally, the task of developing a schema mapping involves two steps:

1. Identifying correspondences between the source and the target schema

2. Creating the mapping rules for the correspondences identified in the first
step.

Identifying Correspondences. In order to enable an identification of corre-
sponding schema entities a developer needs to understand the semantics of the
schema entities, i.e. which real-world entities are represented by which schema
entities. In addition to this, a developer also needs knowledge regarding the used
communication subset and possible customizations of the schemas. Knowledge
regarding the used communication subset is important since in a particular in-
tegration project usually only a subset of the supported complexity of a schema
is required. Therefore, a mapping only needs to be created for the used subset
which leads to a complexity reduction for the resulting mapping. Customizations
of schemas include the extension of them as well as the nonstandard usage of
certain schema entities. Consequently, this knowledge is important to correctly
identify corresponding entities.

Creating Mapping Rules. After corresponding entities have been identified
a mapping rule needs to be created for each correspondence in order to create a
final schema mapping. An example of such a mapping rule is the move of the
contents of the source to the target entity. While this simple type of mapping rule
occurs in about 36% of the cases, more complex mapping rules are required for
about 64% of the correspondences.5 Consequently, the creation of the mapping

5A detailed analysis of the occurrence frequency of different types of mapping rules is given
in Section 8.

20 Chapter 2: Scenarios & Use Cases

rules accounts for a significant part of the effort necessary in the development
of schema mapping. In order to create the mapping rules, detailed knowledge
regarding implementation details is necessary. The required knowledge includes,
for example, which code lists are used to represent the values of certain schema
elements and how to translate between them.

Note that the mapping rules, and consequently also the schema mappings,
are in the general case uni-directional. Therefore, a different schema mapping is
necessary to translate schema A into schema B than to translate schema B into
schema A. The reason is that some mapping rules (e.g. the calculation of a sum)
are not reversible.

Manual Mapping Development. The manual development of the schema
mappings required in B2B integration or Data Migration is a tedious and error-
prone task due to the complexity of the schemas in industrial integration scenar-
ios. Features of these schemas are:

Complexity: The schemas usually consist of several hundred up to several thou-
sand message elements. Furthermore, flexible constraints at the schema
entity level allow for a very large number of possible implementations of
given schemas.

Structure: The structuring of the schemas ranges from very flat structures to
deeply nested ones.

Element Naming: Schema entity names range from verbose names over tech-
nical names to cryptic abbreviations.

Data Types: The data types of the schema elements range from the usage of
very specific data types to the usage of generic data types like string for
the elements.

Specification: Usually standard schemas (i.e. schemas defined by B2B mes-
saging standards) are underspecified allowing different incompatible imple-
mentations of the standard.

As an example, consider the excerpt of the B2B message schema depicted in
Figure 2.2. The figure shows a short excerpt of a schema used in SAP systems for
exchanging purchase orders. The root element of this schema is the element with
the name ORDER05. The structure of the root element is defined by a sequence
of complex elements. An example of such a complex element is the element with
the name IDOC. The IDOC element contains, for example, the optional element
MANDT. Note that in the case of the MANDT element no short documentation text is
attached. Furthermore, the possible values of the MANDT element are restricted to
strings of length three. Already this short excerpt exhibits most of the features
mentioned above.

2.3 Schema Mapping 21

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema" >
<xsd:element name = "ORDERS05" >
<xsd:annotation>
<xsd:documentation> Purchasing/Sales </xsd:documentation>

</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name = "IDOC" >
<xsd:complexType>
<xsd:sequence>
<xsd:element name = "EDI DC40" >
<xsd:annotation>
<xsd:documentation>
IDoc Control Record

</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name = "TABNAM" type = "xsd:string"
fixed = "EDI DC40" >
<xsd:annotation>
<xsd:documentation>
Name of table structure

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name = "MANDT" minOccurs = "0" >
<xsd:annotation>
</xsd:documentation>

</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base = "xsd:string" >
<xsd:maxLength value = "3" />

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name = "DOCNUM" minOccurs = "0" >

...
</xsd:complexType>

</xsd:element>
</xsd:schema>

Figure 2.2: Excerpt of the XML schema of a SAP IDOC for exchanging purchase
orders.

22 Chapter 2: Scenarios & Use Cases

Furthermore, current tools used to develop schema mapping in B2B inte-
gration and data migration projects only provide basic support for the reuse of
existing mappings or fragments of them. Reuse in current integration solutions is
usually restricted to a template based approach, enabling a user to create map-
ping templates for recurring schema fragments manually. Automatic support for
a reuse of existing mappings and existing mapping fragments is normally not
available. However, the reuse of existing mappings as well as fragments of them
is seen as a very promising approach, especially in the context of B2B messages
[RB01].

2.4 Summary

This chapter presented different use cases in the areas of B2B integration and
Data Migration. The central task in all presented use cases is the development
of schema mappings. This task consists of two complex steps. First matching
schema entities need to be identified in the source and the target schema, second
mapping rules need to be created for the identified correspondences. Conse-
quently, performing the development of schema mappings manually requires high
development efforts and is error prone.

Chapter 3

Challenges for Integration

This section introduces and classifies the challenges faced when integrating het-
erogeneous systems. The chapter first introduces a running example (Section 3.1).
Next, the different heterogeneity layers existing in different integration scenarios
are introduced (Section 3.2). On this basis the types of heterogeneities existing in
these layers (Section 3.3) as well as the integration challenges resulting from these
types of heterogeneities (Section 3.4) are discussed. The chapter closes by pre-
senting how ontologies can be applied to solve the different integration challenges
(Section 3.5).

3.1 Running Example

This section introduces an example that is used in subsequent sections to illus-
trate different types of heterogeneities and the resulting integration challenges.
Furthermore, this example is used as a running example throughout the remain-
der of the thesis.

The running example originates from the area of Data Migration and is pre-
sented in Figure 3.1. The DEBMAS schema depicted in the Figure 3.1 describes
the data format used by a legacy system to represent a customer. The struc-
ture of this example schema, as well as the element names, are inspired by the
schemas used in SAP R/3. In contrast to this, the BusinessPartner schema
describes the data format used by a target system to describe business partners.
The structure and naming of the BusinessPartner schema has been inspired by
the one used in SAP Business ByDesign. The set of business partners described
by the BusinessPartner schema includes customers, suppliers and employees.
The values in parentheses show example element values for one customer in-
stance. Furthermore, the dotted lines indicate corresponding elements in the two
schemas. For example, the ANRED element in the source schema corresponds to
the FormOfAddressCode element in the target schema as they contain the same
semantic information, namely the form of address. However, it is obvious that

24 Chapter 3: Challenges for Integration

KUNNR : string
(K00123)

ANRED : string
(Company)

NAME1 : string
(ACME)

BusinessPartner

Name

FormOfAddressCode : token
(01)

FirstLineName : string
(ACME)

AddressInfromation

StreetName : string
(5th Avenue)

HouseID : token
(1)

Source Schema:
(similar to SAP R/3)

Target Schema:
(similar to SAP BYD)

DEBMAS

STRAS : string
(1, 5th Avenue)

LAND1 : string
(US)

InternalID : token
(ABC456)

CountryCode : code
(US)

BusinessPartnerRoleCode: token
(02)

KNURL : string
(http://acme.com)

Web

URI : anyURI
(http://acme.com)

Figure 3.1: Running example showing two schemas for representing customer
data including example instance values.

detecting this correspondence and determining a mapping rule to transform val-
ues of the ANRED element to those of the FormOfAddressCode element remains a
challenge as the former uses a textual representation whereas the latter utilizes
specific codes. Another example of a correspondence between the two schemas
is the complex correspondence between the source element STRAS and the target
elements StreetName and HouseID. In this case, the value of the former element
needs to be split in order to form valid entries of the latter two elements.

3.2 Heterogeneity Layers

Approaches aiming to integrate heterogeneous systems usually have to deal with
heterogeneities on different levels. Sheth et al. [SK93, KS00, NVS+06] identified
four layers on which heterogeneities can occur. These layers are depicted in
Figure 3.2 together with some examples of the kind of heterogeneities occurring
on the respective layers.

System Heterogeneities: The system heterogeneities constitute the lowest
layer of possible heterogeneities. They consist of differences in the underly-
ing hardware platform, the used operation system, the supported commu-

3.2 Heterogeneity Layers 25

Semantics

Structure

Syntax

System
Operating System

Communication Protocols

...

XML

TXT

...

Synonyms, Homonyms

ER Model, OO Model

Vocabulary

Context

Terminology

Figure 3.2: Heterogeneity layers including some examples of heterogeneity occur-
ring at each layer.

nication protocols, the used database system management system and so
on.

Syntactic Heterogeneities: The second layer of heterogeneity is formed by the
syntactic heterogeneities. Heterogeneities on this layer are caused by the
usage of different representation formats to store data. Examples of such
representation formats are plain text files or XML files.

Structural Heterogeneities: The third layer consists of the structural hetero-
geneities. Structural heterogeneities occur when different data models are
used for representing the data. Additionally, in the cases when the same
data model is used, structural heterogeneities occur because the same data
usually can be modeled differently in the data model.

Semantic Heterogeneities: The topmost layer of heterogeneities consists of
the semantic heterogeneities. They are caused by interpreting the available
information differently in different contexts or by the usage of different vo-
cabularies and taxonomies. As a simple example of semantic heterogeneities
consider the string “DE”. In different contexts this string could either be
interpreted as an abbreviation for “Deutschland” or as an abbreviation for
“Delaware”.

In the different scenarios introduced in Chapter 2 XML is the standard syn-
tax for exchanging data. The main advantage of XML in these scenarios is that
heterogeneities on the system and syntax level are automatically resolved. As
a result, this thesis focuses on heterogeneities on the structural and semantic

26 Chapter 3: Challenges for Integration

layers, respectively. In order to understand the challenges arising from the het-
erogeneities on these levels, the following subsections introduce a classification of
possible heterogeneities on the structural and semantic level.

Note that the classification presented above does not take inconsistent and
redundant [Wac03] data into account. Inconsistent and redundant data occurs
whenever two data sources contain information about the same real-world enti-
ties, e.g. the same customer with different identifiers [SPR07]. As these problems
cannot be solved by a schema mapping approach but rather require an indepen-
dent data cleansing step, the integration challenges originating from inconsistent
and redundant data are not further discussed in this chapter.

3.3 Types of Heterogeneity

Wache [Wac03] presents a comprehensive classification of structural and seman-
tic heterogeneities. The following section uses this classification as a basis to
investigate structural and semantic heterogeneities in more detail. Based on the
classification introduced by Wache, examples of the described heterogeneities re-
lated to the areas of B2B integration and Data Migration are presented. Note
that the investigation of structural and semantic heterogeneities in the following
is based on the assumption that two information sources need to be integrated. In
the use cases introduced in the previous section these two sources are either two
message schemas or a message schema and an ontology. However, the following
discussion is not limited to these kind of data but is e.g. also valid in the context
of database schema integration.

3.3.1 Types of Structural Heterogeneity

According to the classification introduced by Wache [Wac03] the structural
heterogeneities can be divided into two classes, data model heterogeneity and
schematic heterogeneity.

Data Model Heterogeneity

Data model heterogeneities are caused by the usage of different data models,
e.g. a relational data model versus an object-oriented one. In the running ex-
ample the effects of data model heterogeneities are visible at the level of the
schema structures. The rather flat structure of the DEBMAS schema originates
from the underlying relational data model whereas the deeply nested structure of
the BusinessPartner schema originates from the underlying XML Schema data
model.

3.3 Types of Heterogeneity 27

Table 3.1: Overview of the classification of schematic heterogeneities (based on
[SvH05, Wac03].

Nr. Heterogeneity Type Characteristic

H1 - Schematic Bilateral Heterogeneities
H1.1 Bilateral Naming Usage of different names for schema entities.
H1.2 Bilateral Data Type Usage of different data types for schema en-

tities.
H1.3 Bilateral Integrity Assignment of different integrity constraints

to schema entities.
H2 - Schematic Multilateral Heterogeneities

H2.1 Multilateral Property Representation of real-world entities using
different sets of properties.

H2.2 Multilateral Entity Representation of real-world entities as dif-
ferent sets of schema entities.

H2.3 Missing Information Information is present in one schema and
missing in the other.

H3 - Schematic Meta-level Heterogeneities
H3.1 Data-Attribute Usage of different modeling primitives to rep-

resent the same information.
H3.2 Data-Entity Usage of different modeling primitives to rep-

resent the same information.
H3.3 Attribute-Entity Usage of different modeling primitives to rep-

resent the same information.

Schematic Heterogeneity

Even if the same data model is used, information can still be represented differ-
ently resulting in schematic heterogeneities. An example of such a heterogeneity
in the object-oriented data model is the modeling of an address as a set of at-
tributes or as an independent class.

The schematic heterogeneities can be further divided into three categories: i)
the bilateral heterogeneities, ii) the multilateral heterogeneities and iii) the meta-
level heterogeneities. This classification is presented in Table 3.1. The table
shows the three categories of schematic heterogeneities and how these classes can
be further divided into subcategories. For each category its main characteristic
is highlighted in the table.

Bilateral Heterogeneities. The bilateral heterogeneities are heterogeneities
that occur directly between two schema entities. As shown by Table 3.1 they
can be further divided into naming heterogeneities, data type heterogeneities and
integrity constraint heterogeneities.

28 Chapter 3: Challenges for Integration

Naming heterogeneities occur due to the usage of synonyms or homonyms as
the names of schema entities. The usage of synonyms results in different names for
related schema entities whereas homonyms result in the usage of the same name
for unrelated schema entities. In addition to this, the usage of technical names
and the usage of different languages also lead to naming heterogeneities. As an
example of a complex naming heterogeneity, consider the schema entity named
KUNNR in the short running example in Figure 3.1. KUNNR is an abbreviation for
the word “Kundennummer”, the German translation of “customer code”. In the
running example the entity KUNNR corresponds to the entity InternalID, since
in the target system the customer code is used as an internal identifier for a
particular customer.

Data type heterogeneities occur when directly related schema entities use
different data types to encode the data. Such a heterogeneity exists in the running
example between the schema entities LAND1 and CountryCode. While the former
uses the data type string to represent the country in which an address is located,
the latter uses the data type code.

Finally, the integrity constraint heterogeneities refer to the usage of different
integrity constraints for schema entities. The integrity constraint heterogeneities
include the usages of different default values for schema entities as well as the
presence of conflicting integrity constraints related to schema entities. Note that
some schema languages as e.g. XML Schema only allow to express some types of
integrity constraint directly (e.g. occurrence restrictions) and rather use the data
type system in order to express others. Therefore these types of heterogeneities
might in some cases be hidden inside the data type heterogeneities introduced
before. As an example, consider a schema entity with possible values 00, 01 and
02. This restriction is in XML Schema specified as a restriction on a data type
rather than as a constraint of the element.

According to Wache [Wac03] integrity constraint heterogeneities are usually
closely related to semantic heterogeneities (cf. Section 3.3.2). The Employee
Number is an example of such a situation. While the integrity constraint in one
schema could be that this must be a nine digit integer number, the integrity
constraint in another schema could be a letter followed by a 6 digit number. The
underlying reason for this constraint heterogeneity is a semantic representation
heterogeneity. While in the first schema the Social Security Number 1 of a person
is used as a unique identifier, the second schema expects the usage of a custom
numbering schema. Consequently the need for solving constraint heterogeneities
usually also involves the need for solving semantic heterogeneities. Furthermore,
Wache [Wac03] states that if the data integrity constraints cannot be resolved,
usually also the related semantic heterogeneities cannot be resolved.

1A 9-digit number used in the US for taxation purposes (cf. http://en.wikipedia.org/
wiki/Social_Security_number).

http://en.wikipedia.org/wiki/Social_Security_number
http://en.wikipedia.org/wiki/Social_Security_number

3.3 Types of Heterogeneity 29

Multilateral Heterogeneities. In contrast to the bilateral heterogeneities the
multilateral heterogeneities occur when multiple entities of one information source
are related to multiple entities in an other information source. The multilateral
heterogeneities can again be further divided into multilateral property correspon-
dences, multilateral entity correspondences and missing value heterogeneities.

Multilateral property correspondences refer to a situation where a real world
entity is represented in one information source using a different set of properties
as in the other. In principle one to many (1 : n), many to one (m : 1) and many to
many (m : n) correspondences between properties are possible. As an example of
an 1 : n property correspondence consider the schema entities STRAS, StreetName
and HouseID in the running example. In the source schema the STRAS schema
entity represents the street name and the house number as one string whereas
this information is split across the StreetName and HouseID entities in the target
schema.

Multilateral entity correspondences differ from the previously mentioned ones
because they refer to a situation where a set of real world entities is modeled as
two sets of entities with different cardinality in two information sources. As in
the case of multilateral property correspondences, 1 : n, m : 1 and m : n entity
correspondences exist. As an example of an 1 : n entity correspondence consider
the situation where one system is only capable of storing different telephone
numbers while another system differentiates between landline telephone numbers
and mobile phone numbers.

Finally, missing value heterogeneities refer to the situation where information
contained in one information source is simply missing in the other one.

Meta-level Heterogeneities. Finally, the metal-level heterogeneities are
caused by the usage of different modeling primitives in the same data model
to represent the same information. Wache [Wac03] further divides the meta-level
heterogeneities into data-attribute correspondences, data-entity correspondences
and attribute-entity correspondences. This categorization is based on the basic
modeling primitives data, attributes and entities which are in some form present
in all data modeling formalisms. Data-attribute correspondences are concerned
with the situation where information is modeled as data in one information source
and as an attribute in an other information source. Similarly data-entity and
attribute-entity correspondences are defined.

3.3.2 Types of Semantic Heterogeneity

The top layer of the heterogeneities introduced in Section 3.2 are the semantic
heterogeneities. Even when the structural heterogeneities between two informa-
tion sources have been eliminated, there could still exist semantic heterogeneities.
According to the classification introduced by Wache they can be divided into two

30 Chapter 3: Challenges for Integration

Table 3.2: Overview of the classification of semantic heterogeneities (based on
[SvH05, Wac03].

Nr. Heterogeneity Type Characteristic

H4 - Semantic Data Heterogeneities
H4.1 Scaling & Value Range Different scales or abstractions are used.
H4.2 Representation Different symbols to represent semantically

equivalent information, and vice versa.
H4.3 Surjective Mapping No bijective mapping exists between differ-

ent value sets.
H5 - Semantic Domain Heterogeneities

H5.1 Subsumption A class in one conceptualization subsumes all
classes of another conceptualization.

H5.2 Overlap The classes in different conceptualizations
only partially overlap.

H5.3 Aggregation Two conceptualizations use different levels of
abstraction.

H5.5 Incompatibility The classes in two conceptualizations are in-
compatible.

classes, the data heterogeneities and the domain heterogeneities (see Table 3.2).
This subsection will investigate the semantic heterogeneities in more detail.

Semantic Data Heterogeneities

Semantic data heterogeneities originate from the usage of different encodings
for the data stored in the information sources. They consist of the scaling and
value range heterogeneities, the representation heterogeneities and the surjective
mappings.

Scaling & Value Range Heterogeneities. This type of semantic hetero-
geneities originates from the usage of different scales to represent the same prop-
erties. Popular examples of scaling heterogeneities are the encoding of a length
using either “centimeter” or “inch” as the basic unit, or the encoding of weight
using either “gram” or “ounce” as a basic unit. Value range heterogeneities occur
when different abstractions of the same underlying scale are used.

Representation Heterogeneities. In contrast to the previous heterogeneity,
representation heterogeneity occurs when different symbols are used to represent
semantically equivalent information or vice versa. As an example for the first
case consider different date representation standards. According to ISO 8601

3.3 Types of Heterogeneity 31

[Intb] January 2nd 2007 is represented as 2007-01-02 whereas the same date is
commonly represented as 01/02/2007 in the US.

Surjective Mappings. In contrast to the previous two heterogeneities where a
bijective mapping between the different data values exists the surjective mapping
heterogeneity occurs when a value set needs to be mapped to a different one
of smaller cardinality. In this case no bijective mapping of the data values is
possible and information is lost during the mapping. As an example of a surjective
mapping heterogeneity, consider an approval code of a purchase order. While
this code in the first system can take the values “Approval Not Necessary”,
“Approved”, “Rejected” and “In Revision” the second system only supports the
values “Approved” and “Rejected.” Consequently, a surjective mapping between
the different values is required. Note that an injective mapping would not pose
any problems as no information is lost by this mapping.

Semantic Domain Heterogeneities

In contrast to the semantic data heterogeneities the semantic domain hetero-
geneities are caused by a different abstraction of the real world entities in the
conceptualization used by different information sources. Consequently they oc-
cur between classes of objects in a conceptualization and not between attributes
of these classes. The types of semantic domain heterogeneities are therefore
classified according to the relation of the real world entities represented by the
classes in the used conceptualization. In [Wac03] Wache identifies four types of
semantic domain heterogeneities: i) domain subsumption, ii) domain overlap, iii)
aggregation and iv) domain inconsistency.

Subsumption. A domain subsumption heterogeneity occurs when the in-
stances of a class in the conceptualization used by one information source includes
all the instances of a class in the conceptualization used by the other informa-
tion source. This type of heterogeneity occurs in the running example. While
the DEBMAS schema is only capable of representing information regarding entities
of the class “customer”, the BusinessPartner schema is capable of represent-
ing information regarding entities of the class of “business partners”. The class
“business partner” subsumes the classes like e.g. “customer”, “vendor” or “em-
ployee” as all instances of the later three classes are also instances of the class
“business partner”.

Overlap. In contrast to the domain subsumption heterogeneity, a domain over-
lap heterogeneity occurs when the classes from two conceptualizations only par-
tially overlap. This situation is equivalent to the one that some instances of one
class are also instances of an other class while some are not. An example of

32 Chapter 3: Challenges for Integration

such an overlap can be found when investigating the classes of “Customers” and
“Employees”. Most likely there are some customers that are also employees, but
there will also be customers that are not employees and vice versa.

Aggregation. Closely related to the two types of semantic domain hetero-
geneities mentioned before is the domain aggregation heterogeneity. Domain
aggregation heterogeneities occur when the conceptualizations used by differ-
ent data sources represent data using different levels of abstractions. This in
turn leads to different aggregation of the data. According to [SvH05] domain
aggregation heterogeneities are in many cases related to domain subsumption
heterogeneities.

Incompatibility. In contrast to the previously mentioned heterogeneities in-
compatibility is not concerned with related but with unrelated classes of objects.
A domain inconsistency heterogeneity occurs when two classes originating from
two different conceptualization do not share any instances. This information is
very useful as it allows to exclude certain incorrect relationships between different
data sources.

Note the difference between incompatibility heterogeneities (H5.5) and miss-
ing information heterogeneities (H2.3). While the former refers to a situation
where two classes do not share any instances, the latter refers to a situation
where only properties are missing in one class that are available in the other.
The two classes can in the latter case still share common instances.

3.4 Resulting Integration Challenges

As already identified in Section 2 the common task in the two use cases is the
creation of schema mappings. These mappings are used to translate data corre-
sponding to a source schema into data corresponding to a target schema. It is
obvious from the discussions in the previous sections that, even though the use
cases in this thesis are only concerned with heterogeneities on the schematic and
semantic layer, still many types of heterogeneity exist. These heterogeneities ob-
viously result in challenges closely related to the two steps comprising the creation
of schema mappings:

• The identification of related schema entities

• The creation of correct mappings functions.

Furthermore, the multilateral and meta-level heterogeneities are responsible for
increasing the complexity of the creation of mappings as they enlarge the search
space for mappings significantly.

3.4 Resulting Integration Challenges 33

Besides that it is important to note that the heterogeneities described in the
previous section often occur in combination. For example it is common that
a naming and a data type (cf. schema entities KUNNR and InternalID in the
running example) or a naming and different multi-lateral heterogeneities occur
together (cf. schema entities STRAS, StreetName and HouseID in the running
example). This situation results in further challenges when creating schema map-
pings.

This sections investigates the integration challenges originating from the dif-
ferent heterogeneities in detail and relates them to the steps in the schema map-
ping task.

3.4.1 Integration Challenges resulting from Semantic
Heterogeneities

The main integration challenge resulting from semantic domain heterogeneities
is the identification of related classes in the conceptualization used by differ-
ent information sources. As usually no direct correspondence between classes in
the conceptualization and schemas used in B2B communication exist, semantic
heterogeneities result in a need to identify related schemas and/or schemas frag-
ments. Depending on the type of semantic domain heterogeneity present in a
given situation different cases are possible. A subsumption relation between the
classes in two different information sources for example can lead to a mapping
between several schemas of one information source and one schema of the other.
The reason is that in the case of a subsumption heterogeneity one information
source might use several schemas to represent information that is in the other
information source represented using one schema.2 In order to detect this corre-
spondence background knowledge regarding the relation of the different classes
in the conceptualization is required.

In contrast to this, the integration challenges resulting from semantic data
heterogeneities (H4) are not related to the identification of related schemas or
fragments of them but rather to the creation of mapping rules. In the context of
scaling and value range heterogeneities (H4.1) the main problem is the identifica-
tion of the correct function capable of translating between the data represented in
different scales. For most commonly used scales (e.g. inches and meters to repre-
sent length) the required functions exist and only need to be identified. However,
in some cases necessary translation function might need to be created first. An
example of such a case is the usage of Social Security Numbers versus a custom
numbering schema to unambiguously identify employees. In this case no standard
function capable of the translation exists, and, therefore, a new translation func-

2As an example of this situation consider an information source representing customers,
vendors and employees as separate schemas whereas a second information source represents
them in one business partner schema.

34 Chapter 3: Challenges for Integration

tion needs to be created. The same is true for the representation heterogeneities
(H4.2). In the case of surjective mappings a custom translation function almost
always needs to be developed.

In all cases described above detailed domain and implementation knowledge
is necessary to identify or create the required translation functions as usually the
information on used scales, value ranges or data representations is not part of the
schema information. Most B2B messaging standards, for example, deliberately
do not require the usage of certain scales or representations to enable more flexible
usage. Instead the schemas described in some B2B messaging standards contain
entities to store information regarding the used scales, value ranges or data rep-
resentation. However, not all standards offer such schema entities. Consequently
the used scales, value ranges and representations can in general only be deter-
mined using additional background knowledge, instance data or a combination
of both.

3.4.2 Integration Challenges resulting from Structural
Heterogeneities

Focusing on the bilateral naming heterogeneities (H1.1) first, it is obvious that
they result in challenges for identifying related schema entities. The usage of
different languages, abbreviations, technical names and domain or context spe-
cific terminology hinders the identification of related schema entities. Again,
additional knowledge like dictionaries, descriptions of the used naming rules or
documentation is necessary to cope with this problem. The data type and in-
tegrity constraint heterogeneities (H1.3) result in challenges for the creation of
correct mapping rules. In the case of simple data type heterogeneities (H1.2),
e.g. the usage of a string data type versus the usage of an integer data type,
usually no additional mapping functions are required. However, in the case of
conflicting integrity constraints usually complex mapping functions are necessary.
The reason for this is that integrity constraint heterogeneities (H1.3) are often
closely related to semantic heterogeneities (cf. sec. 3.3.1).

The multilateral heterogeneities (H2) result in problems for the identification
of related schema entities as well as in problem for the creation of the necessary
mapping rules. Due to the multilateral heterogeneities not only single schema
entities but sets of schema entities can be related. Firstly, these sets of related
schema entities from the two schemas need to be identified. As multilateral
heterogeneities usually occur in combination with bilateral heterogeneities, the
schema entities part of the sets are named differently, have different data types
and different associated integrity constraints, the identification of related sets
of elements is not straightforward. Once related elements have been identified,
the creation of the mapping function again is difficult. As an example consider
a simple case where the content of the elements Street and HouseNumber in

3.5 The Role of Ontologies in Integration 35

one schema needs to be concatenated and mapped onto the element Street of a
second schema. In order to create the correct mapping function it is necessary
to know “What is the required delimiter between the values?”, “Which element
needs to be the first one, which the second one?”.3 Without additional back-
ground knowledge it is not possible to generate the correct mapping functions

In contrast to the previous heterogeneities that occur between the schema en-
tities of the same type (e.g. attributes) the meta-level heterogeneities (H3) occur
between different types of schema entities. Consequently it is not sufficient to
compare schema entities of the same type to identify correspondences. Besides
this, the meta-level heterogeneities often occur in combination with bilateral het-
erogeneities (H1).

3.5 The Role of Ontologies in Integration

As the simple examples given in the previous section show, the presented inte-
gration challenges can only be solved by exploiting domain specific background
knowledge in addition to the information contained in the schemas. In the scenar-
ios presented in Chapter 2 the domain specific background knowledge is either not
documented or only available in human readable format and distributed across
different documents and or systems. As no integrated representation of the back-
ground knowledge exists, it is difficult to exploit the knowledge in an automatic
schema mapping approach.

Ontologies enable representing knowledge in a machine and human under-
standable format. Therefore ontologies have become a popular research topic in
areas like information integration and retrieval or knowledge management. Ac-
cording to the definition given by Studer et al. in [SBF98] an ontology is a formal,
explicit specification of a shared conceptualization.4 The different properties re-
quired for an ontology by this definition are:

• formal: an ontology should be specified in an machine readable language

• explicit: the used concepts and the restrictions on them should be explic-
itly defined

• shared: the knowledge captured in an ontology should be shared, i.e. con-
sensual knowledge of more than one individual

• conceptualization: an ontology provides an abstract model of some frag-
ment of the real world.

3In the USA the house number usually precedes the street name while in Germany the
correct order is the other way around.

4This definition of ontology is an extension of the one provided by Gruber [Gru93]. Gruber
defined an ontology as an explicit specification of a conceptualization.

36 Chapter 3: Challenges for Integration

These properties of ontologies enable the usage of ontologies for a number of
different purposes in the context of the integration use cases investigated in this
thesis. First, ontologies can be used to integrate the available background knowl-
edge from different sources and store it in a machine interpretable format. Sec-
ond, ontologies can help to cope with semantic heterogeneities. Third, ontologies
can provide a conceptualization of the domain that is easily understandable by
humans.

Ontologies in Information Integration. As the integration challenges pre-
sented in the previous section show, additional background knowledge is necessary
to create mappings between different schemas. Today this knowledge is either
distributed across different documents and systems, or not even documented. In
the second case the knowledge necessary to create the mappings can only be ob-
tained by detailed system analysis on the source code level or by interviewing the
developers of the system. As a result the knowledge is not accessible to support
the semi-automatic creation of schema mappings. Therefore current approaches
rely heavily on general purpose dictionaries and thesauri like e.g. WordNet [Fel98]
to cope with the integration challenges posed by the different structural and se-
mantic heterogeneities. However, the usage of general purpose dictionaries and
thesauri is bound to fail as already the simple example given in Section 3.3.1 for
bilateral naming heterogeneities show.

Integrating the knowledge currently distributed across different documents
into one (or possibly a set of connected) ontologies would enable the exploita-
tion of this knowledge in automatic schema mapping algorithms. In contrast
to general purpose dictionaries, ontologies integrating domain specific knowledge
provide information specially tailored toward the current integration problem.
When an integration problem in a different domain (e.g. B2B integration in the
chemical industry instead of the automotive industry) needs to be solved, the
ontology used in the integration process is changed. The result will be that the
schema mapping algorithms exploiting this knowledge are automatically exploit-
ing knowledge suitable for the current situation without manual tuning.

A nice additional advantage of integrating the necessary integration knowledge
in one ontology is that this ontology can also be used to provide an integrated
documentation to human users. Instead of having to browse through different
documents to find the required information, a user uses the ontology as a single
integrated information source for the integration knowledge. In addition, the
integration ontology can then be augmented by additional information like e.g.
example instances for important concepts to facilitate human understanding.

Schematic & Semantic heterogeneities. In addition to the information in-
tegration aspect mentioned in the previous section ontologies can also help to
cope with schematic and semantic heterogeneities. Instead of relying on general

3.5 The Role of Ontologies in Integration 37

purpose thesauri or dictionaries to identify semantic heterogeneities, the con-
ceptual model of the domain includes the taxonomic information necessary to
identify semantic heterogeneities. As an example consider the concepts business
partners and employees again. A general purpose thesaurus might suggest, that
these two classes are overlapping. However, if the ontology states, that in the
given domain an employee is a subclass of business partner, all employees are
subsumed by the class business partner.

An overview of the types of heterogeneities that can be addressed by inte-
grating the suitable knowledge in an ontology is given in Table 3.3. The table is
divided into schematic and semantic heterogeneities. A detailed description on
how different types of knowledge are modeled in an ontology in order to enable
to cope with different types of heterogeneity is given in Part II. In the subse-
quent paragraphs a high level overview of how the different heterogeneities can
be addressed is given.

Bilateral naming heterogeneities can be addressed in an ontology by modeling
the different naming used for elements in different contexts. To illustrate this
idea consider the form of address in the running example. In the source system
this element is named ANRED while it is named FormOfAddressCode in the target
system. In order to address this heterogeneity in an ontology both names together
with the context, e.g. source and target system, in which they are valid need to
be modelled in the ontology. Bilateral data type heterogeneities can also be
addressed by an ontology. By modeling the compatibility of different data types
it is possible to identify compatible schema elements. In contrast to the previous
two types, solving heterogeneities of integrity constraints can only partially be
facilitated by an ontology. If is, for example, possible to model default values
for certain schema elements in the ontology to enable the solving conflicting
default values. In contrast integrity constraint heterogeneities resulting from
different value ranges for schema elements need to be solved by mapping rules.
Multilateral property and entity heterogeneities can again be addressed. While
solving the former can be facilitated by providing different modeling alternatives
in the ontology, solving the latter can be facilitated by modeling the relations of
concepts in the ontology. The modeling of possible default values, i.e. possible
values of schema elements if the corresponding information is missing in the
source, enables solving the missing information heterogeneities. Finally, also the
meta-level heterogeneities can be addressed e.g. providing information regarding
code lists which provide a translation between entities and values in the ontology.

Semantic data heterogeneities can only partially be solved using domain
knowledge in an ontology. While e.g. semantic representation heterogeneities
can be solved by providing different modeling alternatives in the ontology, scal-
ing and value range heterogeneities need to be solved through dedicated mapping
functions. In contrast to that, domain knowledge modeled in an ontology facili-
tates identifying and solving semantic domain heterogeneities.

38 Chapter 3: Challenges for Integration

Table 3.3: Different types of heterogeneities and how they can be addressed by
ontologies.

Nr. Heterogeneity Address-
able?

Approach

Schematic Heterogeneities
H1.1 Bilateral Naming yes Modeling the different naming of

schema elements in different con-
texts

H1.2 Bilateral Data Type yes Modeling of compatibility of dif-
ferent data types

H1.3 Bilateral Integrity partially Integrity constraints partially
need to be handled outside the
ontology

H2.1 Multilateral Property yes Providing different modeling al-
ternatives

H2.2 Multilateral Entity yes Different types of relations (e.g.
subclass) of concepts in the do-
main

H2.3 Missing Information yes Modeling of possible default val-
ues

H3 Meta-level yes Modeling of domain knowledge
like e.g. code list

Semantic Heterogeneities
H4 Data Heterogeneity partially Providing different modeling al-

ternatives
H5 Domain Heterogeneity yes Different types of relations (e.g.

subclass or disjunction) of con-
cepts in the domain

3.6 Summary

This chapter discussed the integration challenges arising from different types of
heterogeneities. First, a running example that will be used throughout this thesis
was introduced. After that the different layers on which heterogeneity can occur
were introduced. The following discussion focused on the structural and semantic
layers as they are the relevant ones for the use cases presented in Chapter 2. The
different types of heterogeneities existing on the structural and semantic layer
were classified and further detailed in subsequent sections. Finally, the role of
ontologies for solving the schematic and semantic heterogeneities was discussed.

Chapter 4

Definitions

Some of the essential terms necessary for the understanding of this thesis have al-
ready been informally introduced and used in the previous chapters. This chapter
now aims at providing formal definitions for all important terms used through-
out the remainder of the thesis. In order to foster a thorough understanding of
these terms not only the abstract definition but also concrete examples will be
presented.

4.1 Schema

In computer science a schema is a formal description of the structure of data. A
schema describes how data is stored, accessed and interpreted by applications.
For different domains, numerous different schema languages have been developed.
For the purpose of this thesis, a schema S is defined as follows:

Definition 4.1.1 (Schema). A schema S is defined as a structure consisting of

• one or several sets of named entities and

• one or several sets of relations defined upon these entities.

This rather general definition of a schema is further restricted in the following
sections to define special types of schemas.

4.2 XML and XML Schema

XML [Wor03] is currently the predominant format for exchanging data on the
web. XML documents are usually modeled as node-labelled trees. Furthermore,
the structure of a valid XML document can be specified by a schema. For XML
a number of schema languages with different properties exist. Examples of pro-
posed XML schema languages are XML Schema [Wor01b], RELAX NG [The02]

40 Chapter 4: Definitions

and DTD [Wor06b]. However, XML Schema (XSD) is by far the most prominent
of these schema languages.

In order to develop an approach that is independent from the peculiarities
of the different schema languages, we will use the following formal definition of
XML and XML schema. The definitions presented below are derived from the
ones presented in [MLM01, MLMK05].

Definition 4.2.1 (XML Schema). A XML schema is defined as a structure

S := (N, T, St, π)

where N is a finite set of non-terminal symbols, T is a set of terminal symbols
consisting of the set T̄ of terminal names, i.e. element and attribute names,
and the set τ̄ of atomic data types, St is a set of start symbols with St ⊂ N .
Furthermore, π is a set of production rules of the form X → aRE, with X ∈ N ,
a ∈ T and RE is a regular expression of the form

RE := ε|τ |n|(RE)|RE,RE|RE?|RE+|RE∗

where ε denotes the empty expression, τ ∈ τ̄ and n ∈ N .

Note that the set τ̄ of atomic data types contains the set of primitive XML
data types as defined in [Wor04b]. Furthermore the notation “,” denotes con-
catenation, “a?” zero or one occurrence, “a∗” zero to unlimited occurrence of the
terminal symbol a. Additionally “a+” denotes “a, a∗”.

In order to simplify the later discussion the root entities of a XML schema as
well as the auxiliary function doc need to be defined. The set of root entities Ro of
a XML schema is defined as the set Ro =

{
r ∈ T̄ | ∃ X → rRE, X ∈ St

}
. This

means that the set Ro contains all the terminal symbols r for which a production
rule X → r RE exists in π with X ∈ St. The auxiliary function doc(t), t ∈ T is
a function that returns the optional short text annotation of a schema entity or
∅ if no short text annotation is defined for an entity.

Furthermore it is important to note that a terminal symbol a ∈ T does not
unambiguously identify an entity in an XML schema. As any a ∈ T can occur in
multiple production rules, a schema entity can only be identified unambiguously
by a sequence of (a1, . . . , an) of terminal symbols for which production rules

X1 → a1 RE1

...

Xn → an REn

exist in π with X1 ∈ St and REi contains Xi+1. To simplify the future discussion
the set E of all sequences of terminal symbols possible based on π is defined for
each XML Schema. The set E is in the following referred to as the set of all
schema entities.

4.2 XML and XML Schema 41

Example. The following example shows how the BusinessPartner schema in
the running example can be represented using the previous definition. Figure 4.1
contains a listing of the BusinessPartner schema in XML schema notation.
Using the definition above, this schema can be encoded as S := (N, T, St, π)
where:1

N = {bp, bpt, bprc, iid, name, add, nt, foac, fln, ait, sn, hid, cc,web, ut,

tdt, sdt, cdt, udt}
T = {BusinessPartner,BusinessPartnerRoleCode, InternalID,Name,

AddressInformation,FromOfAddressCode,FirstLineName, StreetName,

HouseID,CountryCode,Web,URI, token, string, code, anyURI}
St = {bp}
π = {bp→ BusinessPartner(bpt), bpt→ (bprc, iid, name, add),

bprc→ BusinessPartnerRoleCode(tdt), iid→ InternalID(tdt),

name→ Name(nt), add→ AddressInformation(ait), nt→ (foac, fln),

foac→ FormOfAddressCode(tdt), fln→ FirstLineName(sdt),

ait→ (sn, hid, cc,web), sn→ StreetName(sdt), hid→ HouseID(tdt),

cc→ CountryCode(cdt),web→Web(ut), ut→ URI(udt),

tdt→ token(ε), sdt→ string(ε), cdr→ code(ε),

udt→ anyURI(ε)}

Next, the term XML document is defined based on the definition of XML
schema given before.

Definition 4.2.2 (XML Document). A XML Document D is a structure

D := (E,<, r, λ)

where E is a set of nodes, < a child relation between nodes, r ∈ E a root node
and λ : E → T a labeling function.

Using these definitions of XML schema and XML documents it is now possible
to define validity of a XML document against a XML schema. A XML document
D is valid instance of a XML schema S iff an Interpretation I against the XML
schema S exists such that:

• ∀e ∈ E : I(e) ∈ N

• ∀e ∈ E with children e0, e1, . . . , en there exists a production rule X → aRE
in π such that

– I(e) = X

1Note further that T = {T̄ , τ̄} with τ̄ = {token, string, code, anyURI}

42 Chapter 4: Definitions

<schema xmlns = "http://www.w3.org/2001/XMLSchema" >
<element name = "BusinessPartner" type = "BusinessPartType" />

<complexType name = "BusinessPartType" >
<sequence>
<element name = "BusinessPartnerRoleCode" type = "token" />
<element name = "InternalID" type = "token" />
<element name = "Name" type = "NameType" />
<element name = "AddressInformation" type = "AddInfoType" />

</sequence>
</complexType>

<complexType name = "NameType" >
<sequence>
<element name = "FormOfAddressCode" type = "token" />
<element name = "FirstLineName" type = "string" />

</sequence>
</complexType>

<complexType name = "AddInfoType" >
<sequence>
<element name = "StreetName" type = "string" />
<element name = "HouseID" type = "token" />
<element name = "CountryCode" type = "code" />
<element name = "Web" type = "WebType" />

</sequence>
</complexType>

<complexType name = "WebType" >
<sequence>
<element name = "URI" type = "anyURI" />

</sequence>
</complexType>

</schema>

Figure 4.1: The XML schema representation of the BusinessPartner schema in
the running example.

4.2 XML and XML Schema 43

– λ(e) = a

– I (e0) , I (e1) , . . . , I (en) matches RE

Example. This example shows how parts of an instance of the
BusinessPartner schema in the running example are represented using
the previous definition. The running example in Figure 3.1 contains some
instance values in parenthesis. The XML representation of these instance values,
excluding the AddressInformation part, is shown in the listing in Figure 4.2.

<BusinessPartner>
<BusinessPartnerRoleCode> 02 </BusinessPartnerRoleCode>
<InternalID> ABC456 </InternalID>

<Name >
<FormOfAddressCode> 01 </FormOfAddressCode >
<FirstLineName> ACME </FirstLineName >

</Name >
...

</BusinessPartner>

Figure 4.2: An example instance of the BusinessPartner schema.

The XML document shown in Figure 4.2 can be represented as D = (E,<
, r, λ, η) where:

E = {BusinessPartner,BusinessPartnerRoleCode, InternalID,Name,

FormOfAddressCode,FirstLineName, 02,ABC456, 01,ACME}
< = {(BusinessPartner,BusinessPartnerRoleCode), (BusinessPartner,

InternalID), (BusinessPartner,Name), (Name,FormOfAddressCode),

(Name,FirstLineName), (BusinessPartnerRoleCode, 02), (InternalID,

ABC456), (FormOfAddressCode, 01), (FirstLineName,ACME)}
r = BusinessPartner

λ = {{BusinessPartner,BusinessPartnerRoleCode, InternalID,Name,

FormOfAddressCode,FirstLineName} → id, {02,ABC456, 01} →
token, {ACME} → string}

44 Chapter 4: Definitions

Using the following interpretation I it is obvious that D is a valid instance of
the schema S presented in the previous example.

I = {(BusinessPartner, bp), (BusinessPartnerRoleCode, bprc), (InternalID, iid)

(Name, name), (FormOfAddressCode, foac), (FirstLineName, fln), (02, tdt),

(ABC456, tdt), (01, tdt), (ACME, sdt)}

4.3 Ontology

In Section 3.5 we defined an ontology according to [SBF98] as a formal, ex-
plicit specification of a shared conceptualization. This section now introduces a
formal definition of the term ontology. The definition given below extends the
definition by Stumme et al. [SEH+04] and is a versatile algebraic notion of on-
tologies that abstracts from individual languages such as W3C’s OWL [Wor04a],
F-Logic [KLW95]. Furthermore, the UML notation introduced by Brockmans
in [BHHS06], will be used in the following to visualize ontologies in the presented
notation.

Definition 4.3.1 (Ontology). An ontology O is a structure

O := (C,R,A, T, I, V, α,≤C , σR, σA, σα, iC , iR, ia)

where C is a set of concepts aligned in a hierarchy ≤C, R is a set of relations, A
is a set of attributes, T is a set of data types, I is the set of all instances, V is the
set of all data values, α is the set of annotation relations, σR : R→ C ×C is the
signature of R, σA : A→ C×T is the signature of A and σα : α→ (C∪R∪A)×I is
the signature of α. Furthermore, the function iC : C → P(I) defines the instances
of concepts, iR : R→ P(I × I) the instances of relations and iA : A→ P(I × V)
the instances of attributes.

In addition the domain and range of a relation r ∈ R are defined as dom(r) :=
π1(σR(r)) and range(r) := π2(σR(r)) respectively.

This definition of ontology formalizes the intentional aspect of a domain, i.e.
the assertions on concepts, relations, attributes, data types and how they are re-
lated as well as the extensional aspect of a domain, i.e. assertion on instances of
concepts and relations. Furthermore, it is important to note that the annotation
relations α present in the ontology definition are more than simple string anno-
tations. Instead the annotation relations in α enable linking concepts, relations
and attributes to instances making it possible to create complex annotations for
all the entities in an ontology. The annotation relations α are in a later part of
the thesis (cf. Chapter 6) used to link integration knowledge to the conceptual
model of a domain.

4.3 Ontology 45

Business Partner

isInternallyIdentifiedBy : string

Organisation Name

isAddressedBy : string
hasNameValue : string

hasName

TN1 : Technical Name

value : “KUNNR”

Domain Ontology

Role

hasRoleName : string
playsRole

hasTechnicalName

ACME Corp. : Business Partner

isInternallyIdentifiedBy : “ABC456”

ACME Name : Organisation Name

isAddressedBy : “Company”
hasNameValue : “ACME”

hasName

Customer Role : Role

hasRoleName : “Customer”
playsRole

Customer

isInternallyIdentifiedBy : string

Figure 4.3: Example ontology describing the domain of business partners.

Example. In order to show how an ontology is represented using the previous
definition, again the running example introduced in Section 3.1 is used. Figure 4.3
shows a small example ontology in UML notation. The ontology describes the
domain of business partners as presented in the running example. The example
ontology contains a number of concepts, like e.g. BusinessParner, Customer and
Role, which are aligned in a hierarchy. In this case the concept Customer is a
subconcept of BusinessPartner. Additionally it contains a number of relations,
e.g. hasName, and a number of attributes, e.g. isAddressedBy and hasNameValue.
Besides these intentional aspects, i.e. assertions regarding concepts, relations and
attributes, the ontology also contains extension aspects, i.e. assertions regarding
instances and data values. Examples of instances in Figure 4.3 are ACME Corp.
and ACME Name, examples of data values ABC456 and ACME. Furthermore the
example ontology also contains one annotation relation called hasTechnicalName.
This annotation relation links the concept Customer to the instance TN1. The
idea underlying the hasTechnicalName annotation relation is to link information
how a concept is represented in a schema to the ontology. The details of this idea
are described in Section 6.3.

Using the previous definition, this ontology can be represented as O :=
(C,R,A, T, I, V, α,≤C , σR, σA, σα, iC , iR, ia) with:

C = {BusinessPartner,Customer,OrganisationName,Role,TechnicalName}
R = {hasName, playsRole}

46 Chapter 4: Definitions

A = {isInternallyIdentifiedBy, isAddressedBy, hasNameValue, ...}
T = {string}
I = {ACME Corp.,ACME Name,Customer Role,TN1}
V = {ABC456,Company,ACME,Customer,KUNNR}
α = {hasTechnicalName}
≤C = {(Customer,BusinessPartner)}
σR = {hasName→ (BusinessPartner,OrganisationName),

playsRole→ (BusinessPartner,Role), ...}
σA = {isInternallyIdentifiedBy→ (BusinessPartner, string),

hasNameValue→ (OrganisationName, string), ...}
σα = {hasTechnicalName→ (isInternallyIdentifiedBy,TN1)}
iC = {Customer→ {ACME Corp.},OrganisationName→ {ACME Name}, ...}
iR = {hasName→ {(ACME Corp.,ACME Name)}, playsRole→ {(ACME Corp.,

Customer Role)}}
iA = {isInternallyIdentifiedBy→ {(ACME Corp.,ABC456)}, ...}

4.4 Matching and Mapping

As mentioned in Chapter 2, solving different integration scenarios requires solv-
ing two independent tasks. First, corresponding elements in the involved schemas
need to be identified. The process of identifying these correspondences is called
Matching. Second, the necessary mapping rules for the translation of data in-
stances need to be created based on the identified correspondences. In this sec-
tion, the terms related to these two tasks are formally defined based on the
definitions provided above.

Definition 4.4.1 (Matching). Matching is the process of identifying correspond-
ing elements in two schemas, the source schema SS and the target schema
ST . The result of this process, which can either be executed manually, semi-
automatically or fully automatic, is a set Mat of matches mati between the two
structures. Each match mati contains the corresponding entities of the source
structure eSS ,k, . . . , eSS ,l and the target structure eST ,q, . . . , eST ,r.

MatSS→ST
:= {mat1, . . . ,matn}

mati := (eSS ,k, . . . , eSS ,l, eST ,q, . . . , eST ,r)

Note that this definition does not restrict the type of the involved structures.
Matching can for example be performed between two XML schemas, two ontolo-
gies or a XML schema and an ontology. Furthermore the definition does not

4.4 Matching and Mapping 47

restrict the number of involved source or target schema entities. Consequently
it allows 1 : n, m : 1 and m : n relations between entities of the source and the
target schema.2

Example. Again the running example is used to illustrate this definition. The
matching schema elements in the running (represented by dotted lines in Fig-
ure 3.1) can be represented as:

MatSS→ST
= {(DEBMAS,BusinessPartner,BusinessPartnerRoleCode),

(KUNNR, InternalID), (ANRED,FormOfAddressCode),

(NAME1,FirstLineName), (STRAS, StreetName,HouseID),

(LAND1,CountryCode), (KNURL,URI)}

Definition 4.4.2 (Mapping). A mapping M between two schemas SS and ST
is an extension of a matching. It is defined as a set of mapping elements m.
Each mapping element relates entities of the source structure eSS ,k, . . . , eSS ,l to
entities of the target structure eST ,q, . . . , eST ,r using a mapping rule mapexp. The
mapping rule specifies how the involved entities are related.

MSS→ST
:= {m1, . . . ,mm}

mj := (eSS ,k, . . . , eSS ,l, eST ,q, . . . , eST ,r,mapexpj)

:= (matj,mapexp) with matj ∈MatSS→ST

Note that the type of mapping rules used to define a mapping is not further
restricted in the previous definition for two reasons. First, the mapping rules
depend on the involved structures. In the case of an ontology mapping different
mapping expressions are necessary than in the case of a XML Schema mapping.
Second, the mapping rules depend on the execution environment responsible for
executing the mapping during runtime.

One consequence of not restricting the mapping rules is that a mapping is uni-
directional. This is indicated by the arrow form S to T in the definition above.
The definition of a mapping between two schemas as being unidirectional is cho-
sen deliberately as real mappings occurring in the different integration scenarios
presented in Chapter 2 often contain mapping rules like the calculation of sums
for which no inverse mapping rule exists. Furthermore, the definition of a map-
ping given above does not restrict the relation between entities of the source and
the target schema to be 1 : 1, but rather allows for m : n relations. Restricting
mappings to 1 : 1 mappings between entities of the source and target structure
simplifies the mapping elements to mj = (eS,k, eT,l,mapexpj).

2Note that a match mati does not define how the source entities eSS ,k, . . . , eSS ,l correspond
to the target entities eSS ,l, eST ,q. The mapping expression (cf. subsequent definition) defining
the relation of the entities in detail is not part of a match mati.

48 Chapter 4: Definitions

Example. The following example illustrate the definition of a mapping. In-
stead of concrete mapping rules this example uses so called mapping categories.
This mapping categories are introduced in Section 8.2. For the purpose of this
example it is sufficient to understand, that mapping categories (e.g. Move, Split
or Code-Value-Mapping) are abstractions of concrete mapping rules. For exam-
ple, the mapping category Split which is associated to the matching element
(STRAS, StreetName,HouseID) states that the string value of the source schema
element STRAS needs to be split into the target schema elements StreetName
and HouseID without further detailing the concrete algorithm.

MSS→ST
= {(DEBMAS,BusinessPartner, Create-Instance)

(DEBMAS,BusinessPartnerRoleCode, Default),

(KUNNR, InternalID, Internal-ID),

(ANRED,FormOfAddressCode, Code-Value-Mapping),

(NAME1,FirstLineName, Move),

(STRAS, StreetName,HouseID, Split),

(LAND1,CountryCode, Move), (KNURL,URI, Move)}
The general definition of mapping given above can now be further restricted

to define for example the term XML schema mapping as follows.

Definition 4.4.3 (XML Schema Mapping). A mapping between two XML
schemas SS and ST is as set of mapping elements mj = (eS,k, eT,l,mapexpj)
as defined in Definition 4.4.2 where each mapping element relates entities of the
source XML schema SS to entities of the target XML schema ST

MSS→ST
:= {(eSS ,i, . . . , eSS ,j, eST ,m, . . . , eST ,n,mapexpj)}

eSS ,x ∈ SS

eST ,y ∈ ST

4.5 Lifting

A special kind of matching that will be frequently used throughout the thesis is
the matching between a schema and an ontology. This special kind of matching
is denoted with the term lifting in the remainder of the thesis. Based on the
previous definitions, a lifting can be defined as:

Definition 4.5.1 (Lifting). A lifting LS→O from a schema S to an ontology O
is a matching with:

LS→O = {(eS,i, . . . , eS,j, eO,m)}
eS,i, . . . , eS,j ∈ S

eO,m ∈ C ∪R ∪ A

4.5 Lifting 49

Business Partner

hasIdentifier : string
hasRoleCode : string

Address

hasStreet : string
hasHouseNumber : string
hasCountry : string

hasAddress

Web Address

hasURL : string

hasWebAddress

BusinessPartner

AddressInformation

StreetName : string

InternalID : token

CountryCode : code

BusinessPartnerRoleCode: token

Web

URI : anyURI

Source Schema: Domain Ontology:

HouseID : token

Figure 4.4: Example of a lifting from a source schema to an ontology.

Note that the given definition of lifting restricts the target entities in a match
mati = (eS,i, . . . , eS,j, eO,m) to one ontology entity, namely eO,m. The reason for
this restriction is that in the mapping approach introduced in this thesis3 it is
assumed that each schema entity corresponds to exactly one ontology entity.

discusses the notion of information capacity and the relation to the presented
approach in detail.

Example. To illustrate the definition of lifting given above the schema and
domain ontology depicted in Figure 4.5 are used as an example. The lifting
between the schema and the domain ontology is depicted by dotted lines in the
figure. Using the above definition this lifting can be represented as:

LS→O = {(BusinessPartner,Business Partner)

(BusinessPartnerRoleCode, hasRoleCode),

(InternalID, hasIdentifier), (AddressInformation, hasAddress),

(StreetName, hasStreet), (HouseID, hasHouseNumber),

(CountryCode, hasCountry), (Web, hasWebAddress),

(URI, hasURL)}

Again, this definition can be specialized to define, for example, the term XML
schema lifting.

3See Section 5.3 for a detailed description of the Ontology-based Mapping Approach intro-
duced in this thesis.

50 Chapter 4: Definitions

Definition 4.5.2 (XML Schema Lifting). A XML schema lifting LS→O from a
XML schema S to an ontology O is a matching with:

LS→O := {l1, . . . , ln}
li := (eS,i, . . . , eS,j, eO,n)

eS,i, . . . , eS,j ∈ TS

eO,m ∈ C ∪R ∪ A

4.6 Summary

This section introduced formal definitions of the relevant term used throughout
the remainder of this thesis. Based on the definitions of the terms schema, XML
schema and ontology, the terms matching and mapping were defined. In addition,
the term lifting which is a special matching between a schema and an ontology
was introduced.

Part II

Ontology-based Mapping

Chapter 5

The Mapping Process

This chapter now focuses on the process of developing schema mappings. First a
generic schema mapping process for the manual development of schema mappings
is introduced (Section 5.1). On its basis a novel process for the semi-automatic
development of mappings is defined (Section 5.2). The process presented below
takes a user-centric view of the automatic schema mapping process. In particular
the process steps of the overall process in which domain knowledge plays an
important role are identified and analyzed in detail. Additionally, this chapter
highlights which parts of the presented process are addressed by this thesis. As
well, this chapter provides a high-level overview of the proposed schema mapping
approach (Section 5.3) together with a detailed analysis of related research.

5.1 The Manual Mapping Process

The process supported by state of the art industrial solutions (like e.g. the
SAP Exchange Infrastructure [SO05])1 for the manual development of schema
mappings is depicted in Figure 5.1. From a user point of view this process
consists of 5 main steps.

Step 1 (Preprocessing): The first step is a preprocessing step. In this step
the schemas as well as possibly instance data is prepared for the usage in
a given mapping tool. Depending on the capabilities of the mapping tool
and the integration task at hand this step could consist of establishing a
connection to a database, exporting XML schemas and instance data from a
certain system or even include the reverse engineering of database schemas.

Step 2 (Import): The second step is the import of the prepared schemas and
instance data into the mapping tool.

1See Section 10.1 for a detailed review of state of the art industrial solutions.

54 Chapter 5: The Mapping Process

Pre-
processing Import

Manual
Mapping

Development

Testing &
Review Finalisation

Iteration

Figure 5.1: Manual mapping process supported by current tools.

Step 3 (Mapping Development): The third step is the development of the
mapping. Using the interface provided by the given mapping tool, a user
analyses the two schemas, identifies corresponding elements in the source
and the target schema and creates the required mapping rules manually.
Depending on the mapping tool, the mapping rules are either developed
using a graphical metaphor or using a programming language.

Step 4 (Testing and Review): After the creation of the mapping it is usually
tested using example data. Depending on the results of the test a revision of
the mapping might become necessary. In this case an iteration of the third
and fourth step is performed until the test results indicate the correctness
of the mapping.

Step 5 (Finalization): The last step is the finalization of the created mapping.
After this step, the mapping is available for future execution.

Note that the complexity of the preprocessing step varies largely depending
on the type of integration project at hand. In a B2B integration project the
schemas of the sent and received messages are usually available beforehand. In
contrast to that extracting data schemas from legacy applications in the case of
a data migration project might already require significant efforts. The reason
is that the legacy application often do not offer an interface for exporting the
schemas used to store data. Therefore manual work is required to extract the
schemas.

Furthermore, it is important to note that not all process steps need to be
executed by the same person. For example, the preprocessing and import of
the schemas could be performed by a different person than the one performing
the actual schema mapping development. However, some integration knowledge
gained in the preprocessing step is also necessary for the mapping development.
Consequently there is a need for knowledge sharing between the different steps
of the manual schema mapping process.

Tasks requiring background knowledge. The manual mapping process in-
troduced above requires detailed background knowledge from a user in order to

5.2 The Semi-Automatic Mapping Process 55

allow the completion of the three main steps, namely the Preprocessing, the Map-
ping Development and the Testing and Review. During preprocessing, detailed
technical knowledge regarding the systems involved in the integration project is
necessary. Only if this knowledge is available the user is capable of exporting the
legacy system schemas in a Data Migration project or identify the relevant parts
of a given B2B message in a B2B integration project. The mapping development
step also requires detailed knowledge regarding the involved schemas, e.g. which
real world entities are represented by which schema entities, as well as knowl-
edge regarding implementation details, e.g. encoding schemas used for certain
schema entities.2 Finally, the testing and review of the developed mappings re-
quires detailed domain knowledge. Although it is possible to automatically test
parts of a mapping using example data, a final soundness check of a mapping
can only be performed by a user. Even if a mapping is technically correct, i.e. a
source schema instance is transformed into a valid target schema instance by the
proposed mapping, the mapping could still be incorrect. In the running example
introduced in Section 3.1, the NAME1 element could be mapped to the StreetName
element and the STRAS element to the FirstLineName element without violating
any integrity constraints. Still this mapping is obviously not correct.

As the discussion above shows, background knowledge is central to the task of
developing schema mappings. Nevertheless this knowledge is currently not cap-
tured by the available tools. Consequently, the available background knowledge
can neither be accessed centrally by a user nor can it be exploited to automate
parts of the mapping development. In the following section the manual map-
ping development process is extended in order to support an automation of the
mapping development.

5.2 The Semi-Automatic Mapping Process

The mapping process proposed in this thesis to allow the semi-automatic develop-
ment of schema mappings is depicted in Figure 5.2. It extends the one presented
in the previous section by adding an additional step for collecting knowledge from
the user and by replacing the manual mapping development with an automated
step. The processes steps forming the semi-automatic mapping process are:

Step 1 (Knowledge Collection): In contrast to the manual mapping process,
the first step is a knowledge collection step. The purpose of this step is
to non-intrusively collect as much information about the involved system
as possible prior to starting the schema mapping in order to effectively
support the automatic mapping step later on. Examples of the collected
information could include meta data about the involved systems, like e.g.

2A detailed list of the different types of background knowledge necessary to develop a schema
mapping is given in Chapter 6.

56 Chapter 5: The Mapping Process

Knowledge
Collection

Pre-
processing Import

Automatic
Mapping

Calculation

Review,
Correction

&
Testing

Iteration

Finalisation

Figure 5.2: The proposed generic process for the semi-automatic creation of
schema mappings.

information regarding its vendor or its version, or usage characteristics of
these systems.

Step 2 (Preprocessing): The second step is the preprocessing of the data to
prepare it for the usage in the given mapping tool. This step is identical to
the preprocessing step in the manual mapping development process.

Step 3 (Import): As in the manual mapping process, the step following the
preprocessing is the import of the data into the semi-automatic mapping
tool.

Step 4 (Automatic Mapping Calculation): After the required data has
been imported into the mapping tool, a first mapping is calculated by the
mapping tool using the automatic mapping algorithms. This algorithm
exploits the available information, like e.g. schema information or back-
ground knowledge, and suggests a mapping between the source and the
target schema on the basis of this information. Details concerning the auto-
matic mapping algorithms including the exploited information are provided
in the subsequent sections.

Step 5 (Review, Correction & Testing): The mapping created in the pre-
vious step is reviewed, corrected and tested by a user. Depending on the
review and test results an iteration of the automatic mapping calculation
and the review phase is possible.

Step 6 (Finalization): Again, the last step is the finalization of the created
mapping. After this step the mapping is available for future execution.

The development of the semi-automatic mapping process presented above is
driven by two observations. Firstly, the integration of human knowledge about
i) the systems involved into the mapping process and ii) peculiarities of a given
integration task improves the results achieved by automatic mapping algorithms
significantly (cf. [Do06, Ehr06]). Therefore, the mapping approaches proposed
by Do [Do06] and Ehrig [Ehr06] require, for example, the selection of features
used for similarity computation or the configuration of matching algorithms in

5.2 The Semi-Automatic Mapping Process 57

order to adjust the approaches to the integration task at hand. The focus of the
Knowledge Collection step in the presented process is to non-intrusively collect
the necessary information for tuning the automatic mapping calculation without
requiring detailed knowledge about the underlying mapping algorithms. A de-
tailed description of possible approaches for collecting domain knowledge from
users is provided in Section 6.2.

Secondly, it is obvious that in production environments the results of auto-
matic schema mapping algorithms will not immediately be deployed. Instead,
the mapping created by automatic approaches has to be carefully examined,
completed and tested by a user. This part of the process might involve an it-
erative execution of the mapping algorithms on parts or the complete schema.
Consequently the process enables an iteration of the Automatic Mapping Cal-
culation after the Review, Correction and Testing step. Note that in case of
an iteration over these two steps decisions taken in the review and correction
step should influence the next execution of the automatic mapping calculation.
For example, it is intuitively obvious that user declined matches should not be
proposed again in the next run whereas user verified matches should have higher
significance than automatically created ones. Furthermore, decisions taken in the
Review and Correction step could also help to improve future mappings in the
same domain. However, possible approaches to optimize the iteration between
the Review and Correction step and the Automatic Mapping Calculation step as
well as knowledge collection from decisions taken in the Review and Correction
step are not investigated in this thesis.

Note, that the process presented above is agnostic regarding the method used
for automatically calculating schema mappings in Step 4 of the process. Espe-
cially, the process does not require the availability of machine processable domain
knowledge. Existing schema matching systems could easily be adopted to support
this generic process. The ontology-based mapping approach which is developed
in this thesis nevertheless fits nicely into the proposed process steps.

The remainder of this thesis focuses on the the first and the fourth step in the
proposed generic process for the semi-automatic generation of schema mappings
(cf. Figure 5.3). The reason is that these two steps are the main steps influencing
the quality of an automatically generated schema mapping. Furthermore, these
two steps are independent from the used integration tools. In contrast to that
the preprocessing, import and finalization steps are tool specific and have no
influence on the quality of the generated schema mappings. The step of reviewing,
correcting and testing schema mappings is already well supported in commercially
available integration tools and is consequently not in the focus of this thesis.3

3For an example of a commercially available tool supporting the Reviewing, Correcting and
Testing step see Section 10.1.2.

58 Chapter 5: The Mapping Process

Knowledge
Collection

Pre-
processing Import

Automatic
Mapping

Calculation

Review,
Correction

&
Testing

Iteration

Finalisation

Figure 5.3: The steps in the generic semi-automatic mapping process this thesis
focuses on.

5.3 The Ontology-Based Mapping Approach

This section provides a high-level overview of the Ontology-Based Mapping
(OBM) approach pursued in this thesis. The OBM approach introduced be-
low is one possible implementation of the automatic mapping calculation in the
fourth step of the mapping process. Detailed descriptions of the individual steps
compromising the overall approach are presented in subsequent chapters.

Figure 5.4 depicts a schematic overview of the proposed ontology-based map-
ping approach. For each of the individual steps the inputs and outputs are
shown. The idea underlying this approach is that lifting the source and the
target schema to the domain ontology exploiting the encapsulated knowledge is
easier than creating a mapping between the two schemas directly. This idea gives
rise to essentially three steps:

Step 1: Lifting the source schema S1 to the domain ontology

Step 2: Lifting the target schema S2 to the domain ontology

Step 3: Extracting the schema mapping MS1→S2 based on the two liftings LS1→O
and LS2→O and on the domain ontology O.

The proposed approach divides the problem of developing a schema mapping
for two schemas S1 and S2 into two sub-problems: i) the lifting of the two schemas
to a domain ontology and ii) the extraction of a schema mapping based on two
liftings and a domain ontology. Details on how the lifting of schemas is performed
are given in Chapter 7 while details on the extraction of mappings are given in
Chapter 8.

Note that the lifting of the target schema might not be necessary in all sce-
narios requiring schema mapping. As an example, consider a Data Migration sce-
nario as described in Section 2.2. It is quite common in Data Migration projects
that multiple source systems containing similar data are migrated into one target
system. In this case the target schema is fixed for a certain set of mappings and
only the source schema changes. Consequently, the lifting of the target system
only needs to be performed once and can be reused afterwards.

5.3 The Ontology-Based Mapping Approach 59

Knowledge
Collection

Pre-
processing Import

Automatic
Mapping

Calculation

Review,
Correction

&
Testing

Iteration

Finalisation

Schema
+ Example Instances

S 1

Domain Ontology O

Schema
+ Example Instances

S 2

Lifting LS 1O

Lifting LS 2O

Mapping M S1 S 2

Schema
Lifting

Schema
Lifting

Mapping
 Extraction

Figure 5.4: Schematic overview of the ontology-based schema mapping approach
and its alignment to the generic automatic schema mapping process.

Furthermore, it is important to note that this thesis does not focus on the
creation of a domain ontology. Instead, only how additional integration knowl-
edge can be added to an existing domain ontology in a non-intrusive fashion is
discussed in Section 6.3. As a basis for adding integration knowledge this thesis
assumes the availability of a domain ontology containing a conceptual model of
the domain. This is a valid assumption as more and more companies investigate
possible applications of semantic Web technologies and numerous projects focus
on the creation of domain ontologies for business domains.

5.3.1 Related Work

This subsection reviews the research in different areas that is related to the OBM
approach. Related research mainly originates from two areas, namely i) research
in the area of automatic schema matching and mapping and ii) research in the
area of ontology matching and merging. In addition to that, existing work in the

60 Chapter 5: The Mapping Process

area of conceptual re-engineering is also related to the OBM approach. Conse-
quently, a brief overview over existing work in this area is also presented.

Schema Matching & Mapping

The recent book by Euzenat and Shvaiko [ES07] provides a comprehensive
overview of current schema matching and mapping systems. Among the large
body of work in the schema mapping area only those approaches that are the
closest to OBM are mentioned here. To date, only a few matching approaches
address the task of finding not only matches between schemas but also mappings.
Each of the known approaches that support the creation of mappings is briefly
discussed below. For each approach the main difference to the OBM approach is
highlighted.

DIKE. DIKE [PTU00] is a system aiming to support the creation of collabora-
tive information systems. Based on a set of data bases the DIKE system creates a
central global schema enabling integrated access to the set of data bases. During
the matching step DIKE is able to detect semantic relationships, like synonymy
and homonymy, between schema entities using WordNet [Fel98]. Furthermore,
DIKE is also capable of detecting similarities between sub-schemas and schema
fragments.

The main difference between DIKE and the OBM approach is, that DIKE
does not detect complex mappings between schemas but rather only the semantic
relationships between terms based on the relationship4 information available in
WordNet [Fel98].

iMap. The iMap [DLD+04] system uses machine learning to infer complex map-
pings between two data bases based on a set of matchers. The matchers imple-
mented in iMap mainly exploit instance information in order to infer complex
relations between different attributes of the data bases. In addition to instance
information iMap exploits some domain knowledge in the form of constraints
which originate either from the data base schemas or are supplied by the user.
As well, past mapping results and so-called overlapping data is exploited. The
idea underlying overlapping data is to identify shared instances in the source and
target data base in order to create mappings of higher quality.

In addition to the schema mapping part iMap also provides an explanation
component. The goal of this component is to explain to a user why iMap suggested
a particular mapping and thereby enables a user to adjust the iMap system to a
particular mapping problem as well as to correct wrong mappings more quickly.

4For each term WordNet contains information regarding e.g. synonyms or hyponyms of the
term.

5.3 The Ontology-Based Mapping Approach 61

The main difference between iMap and the OBM approach is that the OBM
approach does not try to identify a complex schema mapping on the basis of
unrelated instance data but rather uses specific example data instances. In ad-
dition, the OBM approach exploits an ontology during schema mapping. This
ontology combines domain knowledge with integration knowledge and therefore
enables the OBM approach to identify complex mapping expressions that cannot
be identified by iMap.

Mapping System by Xu and Embley. In [XE03] Xu and Embley present
a system capable of discovering complex mappings between schemas. In order
to identify complex mappings their system exploits three types of information.
First, WordNet is used to identify terminological relationships between schema
entities. Second, data value characteristics calculated on the basis of unrelated
instance data are used to identify matches between schema entities. Third, simple
domain ontologies are used in order to suggest complex matches between schema
entities. The set of complex mapping operations the system is able to identify
is restricted to i) split and concatenations operations on strings, ii) union and
selection operations on sets of related elements and iii) one particular type of
structural heterogeneity, namely data-entity correspondences (cf. Section 3.3.1).

Again, a major difference between the OBM approach and the system devel-
oped by Xu and Embley is that the OBM approach uses specific example data
in order to identify complex mappings. The usage of this example data together
with the domain ontology enables OBM to identify much more complex mapping
expressions between schema entities.

Although Xu and Embley also apply ontologies to the mapping problem their
usage of ontologies differs significantly form the one in the OBM approach. In
their systems only very small ontologies are used to model a particular sub-
domain, like e.g. the different types of phone numbers. This small ontologies are
then only used to identify a particular kind of relation between the concepts by
directly associating matchers to concepts in the ontology.

Clio & HepToX. The two systems Clio [HHH+05] and HepToX [BCL+05]
have similar goals. Starting from a set of correspondences provided by either the
user or a (semi-)automatic matching component, Clio and HepToX try to infer
query mappings in order to enable a querying of the integrated schemas as well as
a transformation of instances of one schema to instances of the other. While Clio
is a generic tool capable of supporting different data sources and query languages,
HepToX is specially tailored towards XML and the XQuery language.

Unlike these prototypes, OBM exploits domain knowledge to identify mapping
expressions and complex matches. Example instance data combined with domain
knowledge enable the detection of complex matches between two schemas which
can not be identified using Clio and HepToX approaches.

62 Chapter 5: The Mapping Process

COMA & COMA++. COMA [DR02] and its further development
COMA++ are systems enabling the flexible combination of different schema
matching approaches. In contrast to the systems discussed above, COMA++ is
not capable of identifying complex mappings between schemas but rather focuses
on identifying matches between schemas. Nevertheless, COMA++ is mentioned
here as its conceptual architecture, which enables the flexible combination of dif-
ferent matching algorithms, inspired the design of many other schema mapping
and ontology mapping approaches.

COMA++ provides a set of structure-based and string-similarity-based
matching algorithms which can be executed independently on the input schemas.
In addition previous match results can be reused using a specific reuse-oriented
matcher. The results of the individual matchers are combined using different
strategies like e.g. maximum, weighted average or minimum. COMA++ also
features a sophisticated graphical user interface that enables users to interact
with the tool and also features rich functionality for an evaluation of matching
results.

The basic architecture of the OBM approach is based on the one suggested by
Do and Rahm for COMA++. However the main differences between the OBM
approach and COMA++ are that i) COMA++ is not able to identify complex
mappings between schemas, ii) does not exploit instance information and iii) does
not exploit domain and integration knowledge.

QuickMig. The work most closely related to the OBM approach is our previous
work QuickMig [DSDR07]. QuickMig introduces an approach for non-intrusively
collecting domain knowledge during a data migration project based on a question-
naire and specialized example data instances. Based on the specialized example
instances, dedicated matchers capable of identifying matches and the correspond-
ing complex mapping categories with high quality are available.

While we utilize the QuickMig architecture for OBM, OBM extends QuickMig
significantly in several areas. First, OBM exploits not only schema and instance
information but also integration knowledge modeled in an ontology during match-
ing. Second, by exploiting the integration knowledge OBM is capable of identi-
fying complex mapping expressions the instance based matchers of QuickMig are
not able to identify. Third, OBM uses a two-step approach for creating the final
mapping instead of directly mapping two schemas. This enables an integrated
reuse of integration knowledge collected in previous integration projects.

Ontology Matching & Merging

The recent report on the results of the Ontology Alignment Evaluation Initiative
2007 [EIM+07] provides a comprehensive overview of the performance of different
ontology matching systems on a predefined set of ontology matching tasks. Again,

5.3 The Ontology-Based Mapping Approach 63

only those approaches among the existing work in the ontology mapping area that
are the closest to OBM are mentioned below.

MapOnto. MapOnto [ABM05]uses a similar approach as Clio and HepToX.
Based on a set of simple matches between a schema and an ontology, MapOnto
tries to create the mapping expressions. The simple matches can either be pro-
vided manually by a user or they are created using other schema matching ap-
proaches. The result of the MapOnto system is a set of complex formulas in a
subset of first-order logic describing the mapping from the schema to the ontology

As the MapOnto approach is similar to Clio and HepToX also the main dif-
ferenced between MapOnto and the OBM approach are quite similar. Unlike
MapOnto the OBM approach exploits domain knowledge to identify complex
matches and the corresponding mapping expressions. Furthermore, the OBM ap-
proach does not require an initial set of matches between the schemas as MapOnto
does. In addition to that the OBM approach also exploits example instance data
combined with domain knowledge which enables the detection of complex map-
pings between two schemas which can not be identified using MapOnto.

NOM and QOM. NOM (Naive Ontology Mapping) and QOM (Quick On-
tology Mapping) are two approaches to ontology mapping which are part of
the FOAM framework [Ehr06]. Similar to COMA++ the NOM tool enables
the combination of different matching algorithms exploiting linguistic, structural
and instance-based features to identify matches between two ontologies. In ad-
dition to COMA++ the NOM tool also exploits ontological knowledge like e.g.
inheritance relationships between concepts and attributes.

QOM extends NOM in order to enable an efficient matching between two
ontologies. QOM restricts the matching algorithms provided by NOM in order
to improve efficiency on the expense of matching quality.

The major difference between the OBM approach and QOM is the ability
of the OBM approach to identify complex mappings between schemas. NOM
and QOM only try to identify matches between ontologies. In contrast to NOM
and QOM which only exploit knowledge contained in the matched ontologies, the
OBM approach explicitly exploits background knowledge in the form of a domain
ontology augmented with integration knowledge. Finally, the OBM approach
exploits specific example data and not just unrelated instances.

Falcon-AO. Falcon-AO [JHCQ05] is a system for matching of OWL ontologies.
It sequentially applies linguistic and structural matching algorithms in order to
calculate a matching between the input ontologies. The linguistic matching uses
a TF-IDF-based similarity metric [CRF03] in order to calculate the similarity of
entities based on their names and annotations. If the linguistic matching identifies

64 Chapter 5: The Mapping Process

matches with high confidence, these matches are directly returned. Otherwise the
structural matcher tries to identify further matches.

Again the major difference between Falcon-AO and the OBM approach is the
capability to identify complex mappings between schemas. As well, Falcon-AO
neither exploits background knowledge nor instance data.

Conceptual Re-engineering

Conceptual re-engineering subsumes existing work on the extraction of concep-
tual models from existing development artifacts as well as on mapping between
different representation formats. As the OBM approach lifts existing schemas to
an existing ontology, these approaches are also related to the OBM approach.

Examples of the first type of conceptual re-engineering are the work by Hain-
aut on extracting entity relationship models from existing databases [Hai91] or
work on the migration of relational data bases to object-oriented ones by Behm
et al. [BGD97]. In both cases a fixed set of patterns and tight user interaction
is used to extract the conceptual models. This is similar to the lifting step in
the OBM approach where a set of matchers is used to infer matches between
different models, namely the input schemas and the ontology. However, the main
difference is that in the OBM approach the ontology is given and the relation
between the ontology and the schemas needs to be inferred while in the work
described previously, the models are created on the basis of existing artifacts. In
addition, no user interaction is required in the lifting step of the OBM approach.

Similar work has been performed in the Semantic Web community. The goal
of this work has been to match various different data formats such as XML
schemas and instances to different Semantic Web ontology-formats. The main
idea underlying this effort was to bootstrap the Semantic Web by enabling the
automatic transformation of existing data. Battle [Bat04] describes an approach
enabling a round tripping between XML and RDF. Based on an XML Schema a
fixed set of transformations is used to create RDF for XML instance data. Other
authors [BA05, FZT04] focus on the creation of OWL ontologies based on XML
schemas. However, all these approaches are based on fixed transformations. In
contrast to them the OBM approach does not aim at creating ad-hoc ontolo-
gies based on XML schemas. Instead the OBM approach links different existing
schemas to an existing domain ontology in order to create a mapping between
the schemas.

The Harmonise framework presented in [DFRW02] uses manually created
mappings between XML schemas and a domain ontology to enable runtime in-
teroperability of systems. In contrast to this the OBM approach uses the domain
ontology only during design-time for mapping creation without focussing on a
particular runtime architecture. The mappings generated using the OBM ap-
proach can be executed afterwards using existing integration middleware.

5.4 Summary 65

5.3.2 Information Capacity Considerations.

As the OBM approach relies on a central ontology containing the domain and
integration knowledge some considerations regarding the required information ca-
pacity of this ontology are necessary. Miller et al. [MIR93] define the information
capacity of a schema S as the set of possible instances Î(S)of the schema. Based
on this definition of information capacity they define the notion of information
capacity preserving mappings. Given two schemas S1 and S2 and the set of all
valid instances of these schemas Î(S1) and Î(S2) Miller et al. define that an in-
formation capacity preserving mapping between the instances of the two schemas
S1 and S2 is a total, injective function m : Î(S1) → Î(S2). This means that an
information capacity preserving mapping translates any instance of a schema S1

in a valid instance of schema S2 without losing information. As a counterexam-
ple of a information capacity preserving mapping, consider a mapping in which a
particular source schema entity is not mapped to any target schema entity. Such
a mapping would relate different source schema instances5 to the same target
schema instance. Consequently, this mapping would not be information capacity
preserving. Furthermore, Miller et al. define that if m is an information capacity
preserving mapping, then S2 dominates S1 via m which is denoted by S1 � S2.

Based on these definitions Miller et al. observe that integration approaches
relying on a global schema SG need to satisfy the following property: The global
schema SG must dominate the union of the schemas S1, ..., Sj that need to be
integrated, i.e. S1 ∪ ... ∪ Sj � SG.

This statement is also true in case of the ontology-based mapping approach
introduced above. In order to allow this approach to achieve results of high
quality, the domain ontology used in a particular integration scenario needs to
dominate the schemas in this scenario regarding their information capacity. Con-
sequently the further discussions in this thesis assume that the ontology used as
a central part of the proposed approach dominates the schemas with respect to
its information capacity.

5.4 Summary

In this section the generic mapping process supported by current integration
tools was described. Based on this analysis an extension of the generic process
supporting the semi-automatic calculation of schema mappings was introduced.
On the basis of the semi-automatic mapping process, a high-level overview of
the proposed ontology-based mapping approach was given. Finally, the relevant
related work in the areas schema matching and mapping as well as in the area

5Namely those instances of the source schema that only differ in the not mapped schema
entity.)

66 Chapter 5: The Mapping Process

of ontology matching and merging was reviewed. In the following chapters the
individual steps compromising the OBM approach are described in more detail.

Chapter 6

The Role of Background
Knowledge

This chapter investigates the role of background knowledge in more detail. First,
Section 6.1 introduces and classifies different types of available background knowl-
edge and investigates their relation to the different types of heterogeneities in-
troduced in Section 3.3. Next, two novel approaches for the collection of domain
knowledge are presented. The unique feature of these approaches is that they can
be used as an integrated part of a mapping process. Finally, Section 6.3 presents
the approach developed in this thesis for augmenting a domain ontology with
additional background knowledge.

6.1 Background Knowledge

In this section different types of background knowledge are introduced. They
are useful or necessary to develop the schema mapping required in complex in-
tegration scenarios like B2B integration or Data Migration. Some of the domain
knowledge is closely related to solving the different types of heterogeneities pre-
sented in Chapter 3. Consequently, this section also revisits these heterogeneities
and shows which types of domain knowledge are required or helpful in solving
certain types of heterogeneities.

Figure 6.1 shows a high level classification of the background knowledge re-
quired for the development of schema mappings. The available background knowl-
edge necessary to create a correct mapping in an integration project can in general
be divided into two types:

• domain knowledge

• integration knowledge.

68 Chapter 6: The Role of Background Knowledge

Domain Knowledge

Background Knowledge

Integration Knowledge

Implementation Details

Customisations & Extensions

Modelling Alternatives

Usage Characteristics

Figure 6.1: A classification of the different types of background knowledge re-
quired for the development of correct schema mappings.

While the domain knowledge consists of the relevant entities in the domain, their
relations and attributes, the integration knowledge is related to details of the
systems or messaging standards that need to be integrated in a given project.

6.1.1 Domain Knowledge

The first step in the creation of a mapping is the identification of matching schema
entities. Identifying matching schema entities requires an understanding of the
relation of the real world entities represented by certain schemas or schema en-
tities. The domain knowledge contains exactly this type of information. As an
example consider the two schemas in our running example. Figure 6.2 shows
an excerpt of the two schemas together with the knowledge necessary to iden-
tify corresponding schema elements. The source schema in the running example
represents a customer while the target schema represents a business partner.
Without the domain knowledge that, in this particular context, a customer is a
kind of business partner, it is not possible to identify that the schema element
DEBMAS and BusinessPartner match. Details on how domain knowledge can be
captured and exploited during the mapping process is presented in subsequent
chapters.

6.1.2 Integration Knowledge

The domain knowledge only represents one part of the knowledge necessary to
create schema mappings in B2B integration or data migration projects. A large
part of the necessary information, namely the integration knowledge, is still miss-
ing. The necessary integration knowledge to create correct schema mappings can
be divided into four groups (cf. Figure 6.1) of knowledge:

• implementation details of a certain system or messaging standard

• customizations and extensions applied to a certain system or messaging
standard

6.1 Background Knowledge 69

KUNNR

ANRED

NAME1

BusinessPartner

Name

FormOfAddressCode

FirstLineName

Source Schema: Target Schema:

DEBMAS

InternalID

BusinessPartnerRoleCode

DEBMAS → Customer
BusinessPartner → Business Partner
Customer is a Business Partner

BusinessPartnerRoleCode →
distinguishes different types of
Business Partners

KUNNR → Internal identifier
InternalID → Internal identifier

ANRED → Form of address as a
string
FormOfAddressCode → Form of
address as a code value

NAME1 → First part of customer
name
FirstLineName → First part of
BusinessPartner name

Required Knowledge

Figure 6.2: Running example including the knowledge necessary to identify
matching schema elements.

• usage characteristics of a system or messaging standard

• common modeling alternatives for certain types of information.

This integration knowledge is today usually only captured in the documentation
of business systems or even not captured at all. Consequently, it is not available
in a machine processable format to support the semi-automatic development of
schema mappings.

Note that not all types of integration knowledge presented above are suitable
for being integrated into a domain ontology. Table 6.1 provides an overview of
which types of knowledge are suitable for this integration. As well, the table
shows in which process step the knowledge can beneficially be exploited.

Knowledge about implementation details, customizations, extensions and
common modeling alternatives can be exploited beneficially during the process
of creating a mapping. The knowledge regarding implementation details, cus-
tomizations and extensions should be integrated into the domain ontology as
this knowledge depends on the domain and the current context. In contrast

70 Chapter 6: The Role of Background Knowledge

Table 6.1: Types of integration knowledge suitable for an integration into a do-
main ontology as well as the process step in which they are exploited.

Type of Knowledge Integrated Exploited during
into Ontology

Implementation Details Yes Mapping Creation
Customizations & Extensions Yes Mapping Creation
Common Modeling Alternatives No Mapping Creation
Usage Characteristics No Preprocessing

to this knowledge regarding well-known modeling alternatives can be used to de-
velop specific matching algorithms (cf. [DSDR07]). Consequently, this knowledge
should not be part of the domain ontology. Knowledge regarding usage charac-
teristics should also not be integrated into the domain ontology. Instead, this
knowledge can be used to reduce the complexity of the mapping problem during
the preprocessing step of the semi-automatic schema mapping process.

A detailed description of how the different types of integration knowledge can
be exploited during the different steps of an automatic schema mapping approach
is presented in Chapters 7 and 8. In the following subsections, the different types
of integration knowledge will be discussed in more detail.

Implementation Details

Implementation details are an important part of the background knowledge nec-
essary to create mappings in integration scenarios. Implementation details of a
system are usually known to developers responsible for the development, main-
tenance or extensions of a system. In the context of B2B integration information
similar to implementation details of systems is available in the documentation
related to certain B2B messaging standards. However, usually the information
regarding implementation details is not captured in a machine processable for-
mat. In addition, this information is usually not available in an integrated set of
documents but rather split across several unrelated documents.

The implementation details relevant for the creation of message mappings can
be divided into the four categories listed below.

• Naming of schema elements and applied naming conventions

• Encoding scheme used to encode certain values

• Required element set and possible default values

• Data type and integrity constraints.

In the following paragraphs each of these categories is briefly described.

6.1 Background Knowledge 71

Naming & Naming Conventions. Understanding the naming conventions
used in a schema and which real world entities are designated using a certain
name is the basic knowledge necessary to identify matching schema entities. As
an example consider the ANRED element in the running example introduced in
Section 3.1. Without the knowledge that in this particular case the element
name ANRED is an abbreviated form of the German noun “Anrede” which can
have the meaning of “form of address” in the English language, it is not possible
to identify a match between the schema entities ANRED and FormOfAddressCode.

The level of detail of the knowledge required to identify related schema el-
ements largely depends on the involved schemas. While some common B2B
messaging standards like e.g. RosettaNet1 or CIDX2 use verbose element names
which provide first hints regarding matching schema entities, others like SAP
IDOC use cryptical names which makes the identification of matching entities
much more complex.

Used encoding scheme. The knowledge of the used encoding scheme is nec-
essary to create the correct mapping rule for matching elements. As an example
consider again the schema elements ANRED and FormOfAddressCode. Creating a
correct mapping rule requires the knowledge of how the different possible values
of the ANRED element are translated to allowed values for the FormOfAddressCode
element.

Depending on the system at hand, encoding of data values can either be based
on standardized code lists, like e.g. the ISO standard for country codes [Inta],
and standardized data formats, e.g. the ISO standard for representing date in-
formation [Intb] or depend on the implementation of the system. Furthermore,
a mapping rule can only be created if an algorithm for the conversion between
different encoding schemes exists.

Mandatory schema elements and default values. Large B2B messaging
standards as well as database schemas usually are built up from a small set of
mandatory elements and a large set of optional elements. In the running example
the element BusinessPartnerRoleCode is a mandatory one. This element de-
scribes the role (i.e. supplier, customer or employee) of a business partner. The
schema element specifying the role of a business partner is required for any valid
instance of a business partner. In contrast to this, the elements KNURL and URI

are optional. The rationale is that there might be some business partners where
this kind of information is not available. Consequently, the information is not
mandatory for a valid instance of a business partner.

1Details concerning the RosettaNet standard are given online at http://www.rosettanet.
org.

2Details concerning the CIDX standard can be found online at http://www.cidx.org.

http://www.rosettanet.org
http://www.rosettanet.org
http://www.cidx.org

72 Chapter 6: The Role of Background Knowledge

Closely related to information on mandatory and optional elements is infor-
mation concerning possible default values. In some cases default values exist for
mandatory elements. As an example, consider the FormOfAddress element in the
running example. This is a mandatory element but can also be defaulted to a
special value, e.g. 00 in the example. The meaning of the default value is that an
unspecific form of address will be used when communicating with this business
partner.

The knowledge of mandatory elements and possible default values for certain
elements is essential when developing mappings between different schemas. The
reason is that all mandatory elements of a target schema either need to be part of
a mapping expression or need to be created and initialized with suitable default
values in order to create a valid mapping.

Data type and integrity constraints. Finally, data type and integrity con-
straints are knowledge required to create valid schema mappings. Although these
types of constraints can be specified on the schema level, concrete implementa-
tions of a certain messaging standard or system might require further restric-
tions. In the running example this could, for example, be true in the case of the
InternalID. The BusinessPartner schema only requires this element to be of
type token. However, in one implementation using this schema to store business
partner information, a valid identification number for a business partner might
consist of two upper case letters followed by four numbers while in another imple-
mentation a valid identification number might consist of 6 arbitrary characters.
In order to create a valid mapping, this information regarding these underlying
implementation details must be available to the user.

Customizations & Extensions

Closely related to implementation details is the knowledge concerning customiza-
tions and extensions applied to a system or messaging standard. Customizations
and extensions are usually necessary to allow the usage of a system or messaging
standard in a context with special requirements which are not covered by the ex-
isting versions of the system or messaging standard. As an example, consider the
email address of a business partner. Using the schemas in the running example
this information can not be stored. Consequently, a customization of the schema
is required to enable the storing of email addresses for business partners. This
customization can be performed using two approaches: either by using extension
mechanisms which are provided by most currently available messaging standards
and business software systems, or by misusing unused parts of a schema or sys-
tem (cf. previous subsection). An example of a misuse would be storing the
email address in an unused schema element, e.g. an element allowing to add free
form text. While the usage of dedicated customization and extension mechanisms
allows for adaptation while retaining compatibility with the standard, misusing

6.1 Background Knowledge 73

unused parts of a schema or systems might result in in-compatibilities between
two independent implementations of the same system or messaging standard.

In both cases, a developer creating a schema mapping needs to know about
performed customizations and extensions in order to be able to create a valid
mapping.

Usage Characteristics

The schemas used in industrial integration projects are very large. This complex-
ity partially originates from the fact that B2B messaging standards and standard
software aims to support a large number of possible usage scenarios resulting in a
large number of possibly necessary data [Stu07]. However, the complete complex-
ity of these schemas or messaging standards is usually not exploited in a given
implementation. Consequently, it is only necessary to create mapping rules for
the used schema entities in a given integration project. In the context of data mi-
gration projects the legacy systems typically do not support the same complexity
as the target system. Therefore, mappings are only necessary for certain parts
of the schemas describing the data. Similar situations occur in the context of
B2B integration. Usually only a subset of the information supported by a given
B2B messaging standard is required or available in a certain integration scenario.
As a result only a mapping for parts of the involved messaging standards are
necessary.

Note that in the OBM approach, the information regarding usage character-
istics is not exploited during the semi-automatic creation of schema mappings.
Instead, it will be exploited during the preparation step of the schema mapping
process in order to reduce the complexity of the schema mapping problem. De-
tails on how this complexity reduction based on known usage characteristics is
performed are presented in Section 6.2.1.

Well-known Modeling Alternatives

For some types of data a set of well-known modeling alternatives exist. As an
example, consider the modeling of the street address in the running example.
The DEBMAS schema stores the street address, consisting of the street name and
the house number, as one string in the element STRAS. As well, the STRAS ele-
ment uses a representation of a street address in which the house number pre-
cedes the street name. This representation is common in the USA while in Ger-
many the street name usually preceds the house number. In contrast to this, the
BusinessPartner schema stores the same information in two separate elements,
namely the elements StreetName and HouseID. Other examples of data with
well-known modeling alternatives are date and time information and telephone
numbers.

74 Chapter 6: The Role of Background Knowledge

Table 6.2: Different types of heterogeneities and the background knowledge re-
quired for solving them.

Heterogeneity Background Knowledge

Schematic Heterogeneities
Bilateral Naming Naming of schema elements and applied naming

conventions.
Bilateral Data Type Data types used in schemas.
Bilateral Integrity Integrity constraints related to schema elements.
Multilateral Property Detailed domain knowledge.
& Entity Correspondence
Missing Information Usage characteristics.
Meta-level Detailed domain and integration knowledge.

Semantic Heterogeneities
Domain Detailed domain knowledge
Data Used encoding schemas, possible default values,

used data types and integrity constraints.

Information regarding well known modeling alternatives for certain types of
data is valuable information for the identification of matching schema entities as
well as for the creation of correct mapping rules.

6.1.3 Relation of Background Knowledge and Hetero-
geneity Problems

It is obvious that some types of the domain knowledge introduced above are
directly related to certain types of heterogeneity. An overview of how the different
types of heterogeneities are related to different types of background knowledge
is given in Table 6.2. The following paragraphs describe this relation in more
detail.

Schematic Heterogeneities. The relation between the bilateral schematic
heterogeneities and different types of background knowledge is straight forward.
In order to solve bilateral naming heterogeneities knowledge regarding the nam-
ing of schema elements and the naming conventions applied in the source and the
target schema are necessary. The same direct relation exists in the case of bilat-
eral data type heterogeneities. In order to solve these heterogeneities knowledge
regarding the data types used in the two schemas is required. Solving bilateral in-
tegrity heterogeneities requires knowledge about the integrity constraints related
to certain elements in the source and target schema.

Solving multilateral schematic heterogeneities is more complex than solving
the bilateral ones. While the knowledge about usage characteristics of the source

6.2 Collecting Domain Knowledge 75

and the target schemas is useful information for solving the missing information
heterogeneities, solving multilateral schematic heterogeneities usually requires de-
tailed domain knowledge. As an example consider again the multilateral entity
heterogeneity where one system represents “Customers” and “Suppliers” as dif-
ferent schemas and the other system as one “BusinessPartner” schema. To solve
this heterogeneity the domain knowledge that “Customers” and “Suppliers” are
different types of “BusinessPartners” is required.

In order to solve meta-level heterogeneities detailed domain and integration
knowledge is required. For example, in the case of data-attribute and data-entity
correspondences, information regarding possible data instances and how this data
can be represented as attributes or entities is required. To illustrate a data-entity
correspondence, consider again a system using one “BusinessPartner” schema to
represent customer and supplier information and an other one using two inde-
pendent schemas. In this case the “BusinessPartner” schema contains a “Busi-
nessPartnerRole” element that takes different values whenever an instance of the
“BusinessPartner” schema represents a customer of a supplier. In order to solve
this heterogeneity, knowledge about which values of the “BusinessPartnerRole”
element represent a customer and which represent a supplier is required.

Semantic Heterogeneities. As presented in Section 3.2 the semantic hetero-
geneities can be divided into the semantic domain and the semantic data het-
erogeneities. Solving semantic domain heterogeneities requires detailed domain
knowledge captured in the domain ontology. Integration knowledge is not helpful
for solving this type of heterogeneity. In contrast to this, the integration knowl-
edge is essential for solving the semantic data heterogeneities. The scaling and
value range, the representation as well as the surjective mapping heterogeneities
require knowledge regarding used encoding scheme for data values, possible de-
fault values and data type and integrity constraints. This is exactly the type of
knowledge provided by the information regarding implementation details.

6.2 Collecting Domain Knowledge

Even though the different types of background knowledge introduced in the pre-
vious sections are necessary to create valid schema mappings, background knowl-
edge is often not easily accessible. The reasons for this are manifold and mostly
related to system evolution and outdated documentation. Business software usu-
ally evolves over time. New functionality is added and existing functionality is
modified. As documentation needs to be updated manually, the documentation
is often not up to date with the system functionality. In addition developers in-
volved in the design of a particular system and with detailed knowledge of certain
functionality of the system may no longer be available.

76 Chapter 6: The Role of Background Knowledge

Knowledge
Collection

Pre-
processing Import

Automatic
Mapping

Calculation

Review,
Correction

&
Testing

Iteration

Finalisation

Figure 6.3: Alignment of the knowledge collection approaches and the semi-
automatic mapping process.

Consequently, two challenges arise for semi-automatic mapping approaches
trying to exploit background knowledge in a mapping process. First, the neces-
sary domain knowledge needs to be collected and second, it has to be exploited
during the mapping step. In the following subsections, two novel approaches
are introduced for the collection of integration knowledge during the knowledge
collection step (cf. Figure 6.3) in the semi-automatic mapping process. The ap-
proaches are:

• Collection of usage characteristics

• Example data injection.

Both approaches were first introduced in [DSDR07]. Each of them is explained in
detail in the following subsections. However, before detailing the two approaches,
it is important to note that they are not mutually exclusive. Instead, they focus
on different aspects of background knowledge. While the approach to the col-
lection of usage characteristics aims at identifying unused parts of schemas ,the
example data injection aims at collecting information regarding implementation
details, customizations and modeling alternatives.

Common to both approaches is that they do not rely on detailed user knowl-
edge regarding implementation details, usage characteristics or customizations.
Instead, the approaches aim at deducting valuable background knowledge from
the knowledge necessary to use a given system. Consequently, these approaches
enable to partially overcome the problems posed by a lack of detailed knowledge
about the systems involved in an integration project.

6.2.1 Collection of Usage Characteristics

The goal behind the collection of usage characteristics is a complexity reduction of
the mapping problem. Detailed knowledge regarding which parts of a schema are
relevant in the current integration scenario reduces the complexity of the mapping
problem as no mapping rules need to be created for unused schema entities.
Thus the collection of usage characteristics is beneficial for both manual and
semi-automatic mapping creation. While a complexity reduction of the mapping

6.2 Collecting Domain Knowledge 77

BusinessPartner

AddressInfromation (1:n)

StreetName (1:1)

HouseID (1:1)

InternalID (1:1)

CountryCode (1:1)

BusinessPartnerRoleCode (1:1)

BankDetails (1:n)

BankAccountID (1:1)

BankAccountTypeID (1:1)

BankAccountHolderName (1:1)

Shall bank details
be stored?

Answer: No!

Shall multiple
addresses
be stored?

Answer: No!

Initial Schema Reduced Schema

BusinessPartner

AddressInfromation (1:1)

StreetName (1:1)

HouseID (1:1)

InternalID (1:1)

BusinessPartnerRoleCode (1:1)

CountryCode (1:1)

ValidityPeriod (1:1)

EndData (1:1)

StartData (1:1)

Figure 6.4: Example of a schema reduction based on usage characteristics col-
lected using a questionnaire.

problem leads to reduced development efforts in the case of manual mapping
development, the benefits are twofold in the semi-automatic case. First, the
complexity reduction reduces the possibility for the suggestion of wrong mappings
and consequently improves the quality of automatic approaches. Second, the
effort for the manual review of the proposed mapping is also reduced.

The proposed approach to collect usage characteristics of a given schema is
based on an (electronic) questionnaire. The questionnaire consists of questions
that a business user of a system can answer easily. Each question in the question-
naire is related to a specific capability of a system or messaging standard. As an
example, consider a system that stores customer data. This specific system is ca-
pable of storing banking information as well as multiple addresses (e.g. different
billing and delivery addresses or time-dependent address information) for each
customer. A questionnaire to identify usage characteristics would for example
contain questions like: “Shall bank account data be stored for a customer?” or
“Shall multiple addresses be stored for each customer?”. Such types of questions
can easily be answered by business users as they know if, e.g., bank account data
needs to be stored for each customer.

Based on the answers to the questionnaire, relevant parts of the source and
target schema respectively can be identified. If for example the questions used in
the example above are answered with “no”, the BankDetails sub-structure of the
target schema can be removed and the Address sub-structure can be simplified.
The complexity reduction that can already be achieved in this basic example is
depicted in Figure 6.4

One important feature of this approach is that the mapping between the
reduced schema and the original schema can be generated automatically. As

78 Chapter 6: The Role of Background Knowledge

both the original schema and the questionnaire including all possible answers, are
known in advance, the schema reduction and the mappings between the original
and the reduced schema resulting from certain answers to the questionnaire can be
created in advance and stored together with the questionnaire. As development
of the mappings is performed during the development of the questionnaire no
additional matching effort arises from the schema reduction in a given integration
project.

Note that a given questionnaire is only applicable to collect the usage charac-
teristics for a specific schema or for a specific set of related schemas. Therefore,
the creation of a specific questionnaire requires additional development effort.
As a result, the creation of such questionnaires only makes sense if they can
be reused across several integration projects. In the context of data migration
scenarios, this reuse can easily be achieved. If the company developing a new
business software provides questionnaires related to the schemas required in the
majority of migration projects, these questionnaires can be reused in numerous
migration projects. In the context of B2B integration, questionnaires will have
to be developed by the creators of B2B messaging standards in order to enable
the reuse across different integration projects.

6.2.2 Example Data Injection

The second approach developed to infer background knowledge from user knowl-
edge is the injection of example data. As an example of the underlying idea
consider the user of a legacy application for managing customer data. Even
though this user has no idea of how customer data is stored in the underlying
data base the user is still capable of creating, updating and deleting customer
data using the (graphical) user interface of the system. The goal of the Example
Data Injection approach is to use this knowledge to gain precise information of
which schema entities are used to store which kind of information.

The main idea underlying the Example Data Injection is depicted in Fig-
ure 6.5. The approach consists of three steps. First, a specific example data
instance is provided to a user in a human understandable format e.g. plain text.
In the second step, a business user enters the provided information into the sys-
tem using the well-known user interface. An instance with well known instance
values is thereby created inside the legacy system. Note that creating the exam-
ple instance in these legacy systems can be done quickly by business users, since
entering this kind of information into the system is their day to day business.
Finally, the newly created example instance is exported from the system and can
later on be exploited during the semi-automatic mapping process. Note that the
export of the example instance might require an expert knowing at least some
technical details of the involved system. However, as the ability to access or
export data from existing systems is a prerequisite to enabling integration, this
requirement is no limitation of the Example Data Injection.

6.2 Collecting Domain Knowledge 79

KUNNR : ABC123
ANRED : Company
NAME1 : ACME

DEBMAS

STRAS : 1, 5th Avenue
LAND1 : US

KNURL : http://acme.com

Example Instance:
(According to a schema of the
business system)

Example Data:
(in human readable format)

Example Customer:
● Identification Number: ABC123
● Name: ACME
● Type: Privately owned company
● Address:

● Street name: 5th Avenue
● House number: 1

● Country: USA
● Webaddress: http://acme.com

Business System X Export of
Example
Instance

Manual entry
of Example
Data

Figure 6.5: The idea of Example Data Injection. Example data is manually
entered into the business system and exported using the system specific data
format.

In the case of B2B integration example data needs to be injected in both,
the source and the target system. In contrast to this, specific example instances
aiming to support the Data Migration can already be delivered as part of a
specialized integration tool (cf. Section 10.1.2). Therefore, the corresponding
example data instance only needs to be created in the source system.

As the simple example in Figure 6.5 already shows, the Example Data In-
jection can be used to easily collect integration knowledge. While the meaning
of the schema element KUNNR might not have been known before, by using the
exported example instance it becomes clear that this element stores the identi-
fication number of the customer. However, the example also shows some of the
problems related to the approach of Example Data Injection. Some elements of
the resulting example instance might contain a concatenation of several values
like in the case of the STRAS element in the figure. Furthermore, some of the
instance data might be represented using a specific code value. An example for
this case is the LAND1 element in the figure. It contains the code value “US” to
represent the country in which the address is related. In general all the types
of heterogeneities introduces in Chapter 3 can occur in the example instances
resulting from the Example Data Injection approach.

Various previous schema matching approaches also make use of instance data
[BM02, DLD+04, DDH01, DMDH02, HHH+05, LC00, NHT+02]. However, they
mostly apply sophisticated statistical or machine learning approaches to unre-
lated instances available in source and target systems in order to identify match-

80 Chapter 6: The Role of Background Knowledge

ing elements. Unfortunately, similar instances, such as phone and fax numbers
typically result in wrong matches, e.g. between customer and supplier phone and
fax numbers as reported in [DDH01].

In contrast to these approaches the injection of example data results in one
specific instance being available in the format specified by the source and the tar-
get schema. Instead of comparing unrelated instances, the matching algorithms
can exploit instances based on the same data to identify related schema elements.

The evaluation of the presented approach to the collection of usage char-
acteristics and the Example Data Injection in Chapter 10 shows that both
approaches enable a significant improvement of the quality achieved by semi-
automatic schema matching approaches. Furthermore, the evaluation shows that
the example data should consist of unique values as this improves the accuracy
of the semi-automatic schema matching approaches.

6.3 Modeling Domain and Integration Knowl-

edge

One of the requirements of the different integration scenarios presented in Sec-
tion 2 is the capturing and reuse of integration knowledge. The format in which
the knowledge is captured should enable the usages of this knowledge by both,
humans and machines. This sharing of knowledge is one of the feature offered by
ontologies [Hep07]. Consequently, ontologies where chosen as the central compo-
nent for storing integration knowledge in the OBM approach.

This section focuses on describing the approach used in this thesis for the
modeling of domain and integration knowledge in order to support the require-
ments of the different integration scenarios. Based on a brief introduction on the
conceptual modeling of a domain this section shows how additional integration
knowledge can be added to the domain ontology.

6.3.1 Conceptual Modeling of the Domain

According to the definition of an ontology in [SBF98] an ontology is a formal,
explicit specification of a shared conceptualization. This definition already states
that one main goal of an ontology is to provide a conceptual model of a domain.
In order to achieve this goal it is important that the ontology encapsulating the
domain knowledge is not modeled according to the technical details of a certain
system but rather according to the human understanding of the entities in a
domain.

As an example of a conceptual model consider the small excerpt of an ontology
depicted in Figure 6.6. This ontology models the domain of business partners,
the domain the running example is located in. The ontology consists of the set
of concepts Business Partner, Supplier, Customer, Address, Name and Web

6.3 Modeling Domain and Integration Knowledge 81

Business Partner
hasIdentifier : string
hasRoleCode: string

Address
hasStreet : string
hasHouseNumber : string
hasCountry: string

Name
isAddressedBy : string
name : stringSupplierCustomer

hasAddress

isNamedBy

Web Address
hasURL:string

hasWebAddress

Figure 6.6: Example ontology for the domain of business partners.

Address. Supplier and Customer are sub-concepts of Business Partner. The
relations hasAddress and isNamedBy link the concept Business Partner to the
concepts Address and Name respectively. In addition, several attributes of the dif-
ferent concepts, like e.g. the hasIdentifier attribute of the concept Business

Partner, are shown. The conceptualization used in this ontology conveys, for
example, the information that two types of business partners exist, namely cus-
tomers and suppliers, and that both share some common properties.

The difference between a conceptual model and modeling the technical details
of a certain system becomes obvious when revisiting the schemas of the running
example in Section 3.1. The DEBMAS schema is a very flat structure. Modeling
this schema in an ontology would result in one concept with a large number
of attributes. Furthermore, it would not become obvious how this schema is
related to others schemas in the legacy system. Similar problems occur if the
BusinessPartner schema is modeled. Even though this schema contains more
structural information, modeling it as an ontology would result in a concept
Business Partner with an attribute hasBusinessPartnerRole. Depending on
the values of this attribute instances of the concept would represent customers
or suppliers. This again is different from the conceptualization used by humans.

Even though a conceptual domain model, as captured by an ontology, already
provides valuable knowledge for the creation of schema mappings, large parts of
the required background knowledge, namely the integration knowledge, is still
missing (cf. Section 6.1.3). The next subsection introduces an approach for
modeling the missing integration knowledge.

6.3.2 Modeling Integration Knowledge

In order to allow the automatic creation of high quality schema mappings based on
a central ontology as proposed by the OBM approach it is necessary to augment

82 Chapter 6: The Role of Background Knowledge

the domain ontology with additional integration knowledge. This section focuses
on the approach developed in this thesis to augment conceptual models with
integration knowledge.

The goal of the presented approach for modeling domain knowledge is to:

1. Relate integration knowledge to the conceptual domain model without clut-
tering the domain model and

2. To link the integration knowledge to a context in which it is valid.

The importance of these two goals is illustrated by the following example.
First consider the ontology presented in Figure 6.6. One possibility to express
that the concept Business Partner is represented by the schema element named
DEBMAS would be the following. An additional relation named hasTechnicalName

is added to the concept Business Partner. Using this relation the concept
Business Partner is linked to some concept named DEBMAS. The major draw-
back of this approach is that it is no longer clear which attributes belong to the
conceptual model and which are used to augment it with additional integration
knowledge. Consequently, the model would be hard to understand for humans as
integration and domain knowledge are interwoven. Furthermore, an exploitation
of the integration knowledge during automatic schema mapping would also be
more difficult. As a result, the goal of an approach to the modeling of integration
knowledge should be to keep the integration knowledge separated from the con-
ceptual model. Nevertheless, the integration knowledge should still be connected
to the domain model in order to facilitate a usage of this knowledge by humans.

As a second example consider the InternalID element in our running exam-
ple. Besides representing the system internal identifier of a business partner, the
element name InternalID could also be used to represent internal identifiers of
addresses or pieces of material. In order to disambiguate such cases contextual
information is necessary. Examples of possible context information include the
vendor, type and version of a system in which a particular implementation detail
is present or the country or industry in which the system is used.

The following subsections show how the complex annotation available in the
used notion of ontology (cf. Section 4.3) enable the augmentation of a conceptual
domain model with additional integration knowledge while achieving the two
goals described above. To illustrate the modeling of different types of integration
knowledge the example ontology introduced in Figure 6.6 is used as a basis. This
ontology represents the conceptual model of the running example. For each of
the different types of integration knowledge a small excerpt of this ontology is
used to provide an example for the modeling.

Modeling Technical Names

This section shows how the knowledge regarding technical names used in given
systems can be modeled using the annotation relations. The approach is depicted

6.3 Modeling Domain and Integration Knowledge 83

Business Partner

hasIdentifier : string

Address

hasStreet : string
hasHouseNumber : string
hasCountry: string

hasAddress

TechnicalName1 : Technical Name

value : “BusinessPartner”

Context1 : Context

...
isValidIn

hasTechnicalName

Figure 6.7: Example of the approach for the modeling of technical names.

in Figure 6.7. In order to model technical names a new concept named Technical

Name and a new annotation relation named hasTechnicalName are defined in the
OBM approach. The concept Technical Name consists of one attribute named
value that is of type string and one relation named isValidIn that relates a
technical name to the context in which it is valid. In order to associate the
information regarding a particular technical name to an entity in the ontology,
an instance of the concept Technical Name is created and linked to the ontology
entity using the hasTechnicalName annotation relation.

In Figure 6.7 this approach is shown for the concept Business Partner in
the example ontology. The instance TechnicalName1 of the concept Technical

Name is linked to the concept Business Partner using the annotation relation
hasTechnicalName. The value of the value attribute is “BusinessPartner”,
which is the technical name used in a particular system to represent business
partner data. Furthermore, the validity of the TechnicalName1 is restricted to
a particular context through linking it to an instance of the concept Context.
Using the definition introduced in Section 4.3 this example can be represented as
O := (C,R,A, T, I, V, α,≤C , σR, σA, σα, iC , iR, ia) with:

C = {Business Partner,Address,Technical Name,Context}
R = {hasAddress, isValidIn}
A = {hasIdentifier, hasStreet, hasHouseNumber, hasCountry,

value}
T = {string}
I = {TechnicalName1,Context1}
V = {BusinessPartner}
α = {hasTechnicalName}
≤C = {}
σR = {hasAddress→ (Business Partner,Address),

isValidIn→ (Technical Name,Context)}

84 Chapter 6: The Role of Background Knowledge

σA = {hasIdentifier→ (BusinessPartner, string),

value→ (Technical Name, string), ...}
σα = {hasTechnicalName→ (Business Partner,TechnicalName1)}
iC = {Technical Name→ {TechnicalName1},Context→ {Context1}}
iR = {isValidIn→ {(TechnicalName1,Context1)}}
iA = {value→ {(TechnicalName1,BusinessParter)}, ...}

In the above example the concepts, relations and attributes introduced by the
OBM approach to enable the modeling of technical names are printed in bold
font.

As shown in this example, annotation relations allow to link concepts, re-
lations and attributes to instances of concepts. Thus the usage of annotation
properties allows the creation of complex assertions about concepts, relation and
attributes in the ontology. These complex annotation relations can be used to
achieve the two goals mentioned above when augmenting a domain model with
integration knowledge. Through the usage of annotation relations the differen-
tiation between the conceptual domain model and the information knowledge
is made explicit. The domain model consists of the concepts, relations and at-
tributes while the integration knowledge is part of the annotations. Note that
some additional concepts need to be created in the domain ontology to use the
instances of these concepts in the complex annotations. However, these con-
cepts can easily be separated from the domain knowledge by e.g. using a special
concept as a super-concept of all of them.

Note that by using the approach introduced above, each ontology entity can
be associated with an unlimited number of technical names. However, only one
additional instance of the concept Context is needed when technical names for
a previously unknown system are added. Note further that details concerning
the modeling of the concept Context are deliberately omitted here as numerous
different approaches exist for the modeling of context (cf. e.g. [WSC+07]).

Modeling Default Values

Recall from Section 6.1.2 that default values are used to provide values for manda-
tory schema elements if no mapping exists. Possible default values are modeled
similar to the way technical names are modeled.

In order to model default values the OBM approach introduces a new concept
named Default Value and a new annotation property named hasDefaultValue.
Note that the attribute value of the concept Default Value is of type string.
The generic data type string is used as it enables the representation of any
possibly required value. An example of modeling default value information is
given in Figure 6.8. It shows how the default value for the role code of a

6.3 Modeling Domain and Integration Knowledge 85

Business Partner

Customer

hasRoleCode : string

DefaultValue1 : Default Value

Value : “02”

Context1 : Context

...

isValidInhasDefaultValue

Default Value

value : string

Figure 6.8: Example of the approach for the modeling of default values.

customer is modeled using the DefaultValue1 instance as well as an instance
of the concept Context. More formally this example can be represented as
O := (C,R,A, T, I, V, α,≤C , σR, σA, σα, iC , iR, ia) with:

C = {Business Partner,Customer,Default Value,Context}
R = {isValidIn}
A = {hasRoleCode,value}
T = {string}
I = {DefaultValue1,Context1}
V = {02}
α = {hasDefaultValue}
≤C = {(Business Partner,Customer)}
σR = {isValidIn→ (Default Value,Context)}
σA = {hasRoleCode→ (Customer, string),

value→ (Default Value, string), ...}
σα = {hasDefaultValue→ (hasRoleCode,DefaultValue1)}
iC = {Default Value→ {DefaultValue1},Context→ {Context1}, ...}
iR = {isValidIn→ {(DefaultValue1,Context1)}}
iA = {value→ {(DefaultValue1, 02)}, ...}

Again the concepts, relations and attributes introduced by the OBM approach
for modeling default values are printed in bold font.

86 Chapter 6: The Role of Background Knowledge

Business Partner

isInternallyIdentifiedBy : string

Identifier1 : Internal Identifier

Context1 : Context

...

isValidInisOfIdentifierType

Figure 6.9: Example of the approach for the modeling of internal or global iden-
tifiers.

Internal & Global Identifiers

Information concerning internal and global identifiers is modeled similar to the
previous types of knowledge. The OBM approach introduces the two concepts
Internal Identifier and Global Identifier in order to model this knowl-
edge. Using instances of these concepts which are linked using the annotation
relation isOfIdentifierType and the annotation relation isOfIdentifierType

respectively, the attributes representing special identifiers can be marked. An
example of this approach is depicted in Figure 6.9. The formal representation of
this example is omitted since it is very similar to the one presented above.

Modeling Code List Information

Information concerning code lists used to represent the data of certain elements
can also be modeled similarly to the previous types of integration knowledge.
However, when modeling code lists, additional information like the agency that
manages the code-list and possible code-list values also need to be represented.

Figure 6.10 shows an example of how the code-list information for the
hasRoleCode attribute of the concept customer in the example ontology can
be modeled. Again, an instance of the concept Code List is linked to the con-
cept Customer using the annotation property usesCodeList and the instance is
linked to the context in which it is valid. In addition to that two new concepts,
namely Agency and Code are introduced. The concept Agency is used to model
the agency which is responsible for a certain code list, while the concept Code is
used to represent mappings between code values and the information represented
by a given code value. In the example a proprietary SAP code list for represent-
ing the roles of business partners is modeled together with some example code
values. The example shows how the correspondence between the code values 01

and 02 and the information they represent (Supplier and Customer) is modeled
using the proposed approach. This example can be represented as an ontology

6.3 Modeling Domain and Integration Knowledge 87

Customer

hasRoleCode : string

CodeList1 : Code List

hasName : “SAP 10248”

Context1 : Context

...

isValidIn

usesCodeList

SchemaAgency1 : Agency

hasName : “SAP”

isManagedBy

Code1 : Code

hasCodeValue : “01”
hasValue: “Supplier”

Code2 : Code

hasCodeValue : “02”
hasValue: “Customer”

hasCode

hasCode

Figure 6.10: An example of adding code-list information to the domain ontology.

O := (C,R,A, T, I, V, α,≤C , σR, σA, σα, iC , iR, ia) with:

C = {Customer,Code List,Schema Agency,Code,Context}
R = {isManagedBy, isValidIn,hasCode}
A = {hasRoleCode,hasName, hasCodeValue,hasValue}
T = {string}
I = {CodeList1,Context1, SchemaAgency1,Code1,Code2}
V = {SAP 10248, SAP, 01, Supplier, 02,Customer}
α = {usesCodeList}
≤C = {}
σR = {isManagedBy→ (Code List,Agency),

isValidIn→ (Code List,Context),

hasCode→ (Code List,Code)}
σA = {hasRoleCode→ (Customer, string),

hasName→ (CodeList, string), ...}
σα = {usesCodeList→ (Customer,CodeList1)}
iC = {Code List→ {CodeList1},Context→ {Context1},

Agency→ {SchemaAgency1},Code→ {Code1}, ...}
iR = {isValidIn→ {(TechnicalName1,Context1)},

isManagedBy→ {(CodeList1, SchemaAgency1)}, ...}
iA = {value→ {(TechnicalName1,BusinessParter)},

hasCodeValue→ {(Code1, 01)},
hasValue→ {(Code1, Supplier)}, ...}

88 Chapter 6: The Role of Background Knowledge

ExampleAddress : Address
hasStreet : “5th Avenue”
hasHouseNumber : “1”
hasCountry: “US”

ExampleName : Name
isAddressedBy : “Company”

name : “ACME”

ExampleCustomer : Customer
hasIdentifier : “0002”
hasRoleCode : “02”

hasAddress

isNamedBy

ExampleWeb : Web Address
hasURL:”http://acme.com”

hasWebAddress

Customer
hasIdentifier : string
hasRoleCode : string

Figure 6.11: Example instances of the concept of the example ontology.

6.3.3 Modeling Example Data

In contrast to the previously described integration knowledge, example data is
modeled as part of the domain ontology. The reason is that the availability of
an example instance for the concepts modeled in an ontology facilitates under-
standing of these concepts. In contrast to the integration knowledge, which adds
concepts, relations and attributes, an example instance shows possible values for
the concepts, relations and attributes in the domain knowledge. This information
can help a human user to understand the intended meaning of the elements of
the conceptual model. Consequently, it does not need to be separated from the
domain model.

In the ontology example data is represented by simply creating instances of the
concepts. Figure 6.11 shows example instances for the concepts in the example
ontology.

6.4 Summary

In this section the role of background knowledge for the development of schema
mappings was investigated in detail. First, a classification of the available back-
ground knowledge, namely domain knowledge and integration knowledge, was
presented. Next, the relation of the different types of background knowledge
to the different types of heterogeneity introduces in Section 3.3 was discussed.
Finally, the approach used in this thesis for augmenting an domain model with
additional integration knowledge was presented.

Chapter 7

Lifting

The first and second step of the Ontology-Based Mapping (OBM) approach (cf.
Figure 5.4) require the lifting of schema entities to entities of the domain ontol-
ogy. First, this chapter gives an overview of the overall lifting approach. Next,
different methods for calculating the similarity of schema and ontology entities
(Section 7.2) as well as options for their combination (Section 7.3) are discussed.
In this discussion a focus is set on how the background knowledge modeled in the
domain ontology can be exploited during the lifting process.

7.1 Overview

In this section the different building blocks comprising the lifting approach are
further detailed. The conceptual architecture of the lifting component together
with its alignment to the overall Ontology-Based Mapping approach is depicted
in Figure 7.1. The architecture is based on the general approach for compos-
ite matchers introduced in [DR02]. This architecture, which is the basis of the
COMA system, introduces the idea of independently executing matching algo-
rithms, storing their results in a similarity matrix, and aggregating these results
in order to extract a mapping. This generic approach is adapted to the problem
of creating a lifting from a schema to an ontology resulting in the following three
steps:

1. First the input data, i.e. the set of input schemas {S1, ..., Sk} possibly to-
gether with corresponding example instance data and the domain ontology
O are parsed into an internal representation.

2. In the second step the three-dimensional similarity matrix msim is calcu-
lated for each schema Si in the set of input schemas using different matching
algorithms. The resulting similarity matrix is of dimension m×n×p where
m is the number of schema entities in the schema Si ∈, n the number of

90 Chapter 7: Lifting

Schema
+ Example Instances

S 1

Domain Ontology O

Schema
+ Example Instances

S 2

Lifting LS 1O

Lifting LS 2O

Mapping M S1 S 2

Schema
Lifting

Schema
Lifting

Mapping
 Extraction

Matching Algorithm 1

Matching Algorithm p

Matching Algorithm 2

...
Aggregation

msim

Lifting

Figure 7.1: Overview of the conceptual architecture of the schema lifting compo-
nent.

entities in the ontology O and p the number of different matching algo-
rithms. After this step the similarity matrix msim contains for each pair of
schema entity sk ∈ Si and ontology entity oj ∈ O the p similarity values
generated by the p different matching algorithms. A detailed description of
the available matching algorithms is given in Section 7.2.

3. After the similarity matrix msim has been calculated, an aggregation algo-
rithm is used to calculate the lifting LSi→O based on the similarity matrix
msim. The aggregation algorithm again exploits the domain ontology as
an additional information source. Details on how the aggregation of the
similarity matrix is performed are given in Section 7.3.

The result of the proposed approach is a set of liftings {LS1→O, ..., LSk→O} from
a schema Si to the ontology O.

The composite matcher architecture was chosen for the OBM approach as in
different integration scenarios different matching algorithms exploiting different
schema and ontology features need to be combined to achieve high quality results.
The reason is that in different integration scenarios usually different types of in-
formation are available for the automatic mapping creation. Depending on the
available background knowledge (cf. Chapter 6) and the type of schema differ-

7.1 Overview 91

ent matching algorithms exploiting the available background knowledge and the
available schema features need to be combined to automatically create the cor-
rect lifting. If, for example, no background knowledge regarding technical element
names is available in the ontology, matching algorithms that exploit the similarly
of schema element and ontology entity names might be used instead of algorithms
that depend on the background knowledge regarding technical element names.
Consequently, a composite matcher architecture was chosen for the lifting com-
ponent based on the observations in the survey of Rahm and Bernstein [RB01].
Their analysis showed that composite matchers are the most flexible ones as they
enable the flexible combination of different basic matching algorithms. While
a basic matcher exploiting a certain schema feature, e.g. the schema element
name, might perform well on one type of schema it might not perform well on
other types of schemas. Therefore, composite matchers allow one to combine the
results achieved by a set of independently executed, basic matching algorithms
in order to calculate the final matching.1

However, even for a composite matcher it is important to select the appropri-
ate matching algorithms for particular scenarios. While a set of different matching
algorithms is presented in subsequent sections of this chapter, the evaluation in
Chapter 10 provides a detailed analysis of which matchers perform well in the
evaluation scenarios selected in this thesis.

Note that although the conceptual architecture of the lifting component is
based on the COMA architecture introduced in [DR02] it differs significantly
from the COMA architecture. The major differences between the presented
architecture and the one of COMA is that the lifting component exploits the
background knowledge modeled in the domain ontology during the aggregation
step. In contrast to this, COMA does not exploit any background knowledge
during the aggregation step. As it is shown later (cf. Section 7.3), background
knowledge can be used during the aggregation step to enable more advanced
aggregation strategies of similarity values in the similarity matrix msim. The
goal of these advanced strategies is to eliminate wrong matches. Furthermore,
the matching algorithms available in the OBM approach are specifically tailored
towards exploiting the background knowledge in the ontology. In contrast to
this, the matching algorithms in COMA only focus on the exploitation of schema
information.

Example. Figure 7.2 shows an example for the lifting of the BusinessParnter

schema to a small example ontology.2 This example is used throughout the
remainder of this chapter to explain the different algorithms. In Figure 7.2 the
correct lifting from a schema entity to an ontology entity is represented by a

1Different approaches exist for the combination of the results of individual matching algo-
rithms exist. See [Do06] and [Ehr06] for a discussions of different possible approaches.

2The schema as well as the ontology originate from the running example introduced earlier.

92 Chapter 7: Lifting

Business Partner

hasIdentifier : string
hasRoleCode : string

Address

hasStreet : string
hasHouseNumber : string
hasCountry : string

hasAddress

Web Address

hasURL : string

hasWebAddress

BusinessPartner

AddressInformation

StreetName : string

InternalID : token

CountryCode : code

BusinessPartnerRoleCode: token

Web

URI : anyURI

Source Schema: Domain Ontology:

HouseID : token

Figure 7.2: Example of a lifting from a source schema to an ontology.

dotted line. For example, the figure shows that the root element of the schema
named BusinessPartner is lifted to the ontology concept Business Partner.
In contrast to this the element named BusinessPartnerRoleCode is lifted to the
attribute hasRoleCode and the element Address to the relation hasAddress.

This example already highlights some important features of a correct lifting.
The root entity of the schema (i.e. the element named BusinessPartner in
the example) is lifted onto a concept in the domain ontology. Other schema
entities are lifted to relations and attributes that in the domain ontology are
connected to the concept to which the root entity was initially lifted. Consider,
for example, the schema entities AddressInformation or Web. They are lifted
to the relation hasAddress and hasWebAddress respectively. The reason is that
lifting a complex entity of a schema to a relation or attribute preserves some
relationship information. As an example of this, consider a large B2B schema
representing an order which contains numerous addresses, e.g. the shipping and
the invoicing address, as complex sub-entities. If these sub-entities are lifted onto
the Address concept of the ontology, it is impossible to distinguish between the
shipping address entity and the invoicing address entity based on the lifting only.
It is only possible to extract the information that each of them is an address and
that they are related e.g. to the Order concept, but the information about which
one is the shipping and which is the invoicing address is lost. If in contrast to
that the schema entity representing the shipping address is lifted to a relation
named hasShippingAddress and the entity representing the invoicing address
to a relation named hasInvoicingAddress, the two can be differentiated. As a
consequence of this observation the lifting approach needs to be able to lift schema

7.2 Matching Algorithms 93

entities to concepts, relations and attributes in order to capture this additional
information.

7.2 Matching Algorithms

In this section the different methods available in the OBM approach for com-
puting the similarity of schema and ontology entities are presented. First the
available schema and ontology features for calculating the similarity of entities
are discussed. Then the basic similarity metrics for calculating the similarity
of strings, trees and sets of elements are presented. Based on these basic simi-
larity metrics more advanced algorithms including algorithms especially tailored
towards the exploitation of domain and integration knowledge modeled in the
domain ontology are developed.

7.2.1 Exploitable Schema and Ontology Features

Before developing a set of similarity metrics for the lifting of schema entities to
ontologies in the subsequent sections, this subsection identifies the different fea-
tures available in schemas and ontologies that can be exploited during lifting. The
analysis of the different available features is used to develop suitable similarity
metrics exploiting these features.

Exploitable Schema Features

Table 7.1 provides an overview of the different schema features that can be ex-
ploited during lifting. These features are organized into four categories, namely
linguistic features, structural features, features based on constraints and features
based on instance data. In the following paragraphs each of these features is
briefly introduced.

Entity Name. The entity name belongs to the category of linguistic features.
It is an elementary feature exploited by most existing schema matching ap-
proaches (cf. the surveys in [RB01] and [ES07]). However, it is important to note
that not the names of all schema entities can be exploited during lifting. Some
schema languages, for example, provide constructs to create reusable building
blocks. Depending on the schema language the names of these reusable build-
ing blocks might not be exploitable. As an example consider XML Schema. In
this case only the name of the terminal symbols, i.e. the elements in the set T ,
are useful during lifting. In contrast to this, the non-terminal symbols in the
set N are building blocks used together with the production rules in π to define
the structure of the schema. Consequently, the non-terminal symbols N are not
useful during lifting.

94 Chapter 7: Lifting

Table 7.1: The list of exploitable schema features together with a short explana-
tion of each feature.

No. Feature Description
Linguistic Features

1 Entity Name The name of a schema entity.
2 Entity Documentation The optional annotation containing a short

documentation of the entity.
Structural Features

3 Entity Path The path to the current entity starting from
the root.

4 Children The children of a schema entity.
5 Parents The parents of a schema entity.
6 Siblings The siblings of a schema entity.

Constraint-based Features
7 Data Type The data type associated with a schema en-

tity.
8 Cardinality The optional cardinality constraints for a

schema entity.
Instance-based Features

9 Example Instance A optional example instance provided for the
schema.

Entity Documentation. The entity documentation is also a linguistic fea-
ture. Some schema languages offer the possibility to add optional short free
text annotations to the schema entities. Especially when the schema entities use
cryptic names this short documentation text can contain additional information
that can beneficially be exploited during lifting. In contrast to the entity name
the entity documentation is expressed in whole sentences or fragments of them.
Consequently, simple string metrics are not suitable for exploiting this feature.

Entity Path. The path to the current entity belongs to the category of struc-
tural features. The path of an entity unambiguously identifies its location
in a large schema. As an example, consider the schema entity InternalID

in the running example introduced. The path that identifies this entity is
/BusinessPartner/InternalID.3 This feature is especially important in the case
of large schemas where similar basic buildings blocks, e.g. an address, occur fre-
quently in different positions of the same schema.

3This notation of the path of a schema element is based on the XPath [Wor99a] specification.
The XPath notation is used in the remainder of this thesis to represent schema entity paths.

7.2 Matching Algorithms 95

Children, Parents & Siblings. Like the entity path these features belong
to the category of structural features. The children, parents or siblings of a
schema entity contain additional structural information that can be exploited
during lifting. As an example of how the information regarding children of an
entity can be exploited, consider the URI element in the running example. This
entity is a leaf in the schema (i.e. it has no children entities). Consequently, a
lifting to an attribute of a concept (e.g. the attribute hasURL in the example)
should be preferred over a lifting to a concept or a relation. Of course these type
of features are only available in hierarchically structured schema languages like
e.g. XML Schema.

Data Type & Cardinality Constraints. The feature category of constraints
consists of the data type and cardinality constraint information related to schema
entities. While these features alone are not sufficient to calculate a lifting (cf. the
schemas in the running example) they can provide valuable additional informa-
tion.

Example Instance. In contrast to the previous features, example instances are
not a pure schema feature. Instead, an example instance of a schema is used as
additional information during lifting. For a discussion of how example data can
be collected in Data Migration and B2B integration projects and how example
data is related to the generic semi-automatic mapping process see Section 6.2.2.

Exploitable Ontology Features

Following the description of the schema features in the previous section this sec-
tion focuses on the ontology features exploitable during schema lifting. Table 7.2
provides an overview of these ontology features. Ontologies also contain linguistic,
structural and constraint-based features. In addition integration-knowledge-based
features are included in the ontology as annotations (cf. Section 6.3.2) or, in the
case of the example instance feature, as instances of concepts. As well, it is im-
portant to notice that not every type of integration knowledge listed in Table 7.2
is exploited in the lifting step of the OBM approach. Instead, some of the integra-
tion knowledge is only used to create the correct mapping between two schemas
in the mapping extraction step. For a detailed description of the mapping ex-
traction see Chapter 8. Nevertheless these features are listed in table 7.2 as they
are exploitable features of the domain ontology. In the following paragraphs each
ontology feature is briefly described.

Entity Name & Documentation. The entity name and optional entity doc-
umentation are the two linguistic ontology features that can be exploited. Similar
to the schema case only the names of a subset of the entities will be used. The

96 Chapter 7: Lifting

Table 7.2: The list of exploitable ontology features.

No. Feature Description
Linguistic Features

1 Entity Name The name of an ontology entity ei ∈ C∪R∪A
2 Entity Documentation An optional short text annotation containing

a short textual description of the ontology
entity ei ∈ C ∪R ∪ A.

Structural Features
3 Entity Hierarchy The hierarchy information related to the con-

cepts in the ontology, represented by leqC .
4 Relations The relations of a concept to other concepts,

represented by R and σR
5 Attributes The attributes of a concept entity in the on-

tology, represented by A and σA.
Constraint-based Features

6 Data Type The data type associated with an attribute
in the ontology, i.e. sigmaA.

Integration-Knowledge-based Features
7 Technical Names The technical name annotation of an ontol-

ogy entity (cf. Chapter 6).
8 Default Values The annotation regarding possible default

values for certain ontology entities (cf. Chap-
ter 6).

9 Identifiers The annotation regarding which entities in
the ontology possibly represent internal or
global identifiers (cf. Chapter 6).

10 Code Lists Possible code lists used for a certain ontology
attribute (cf. Chapter 6).

11 Example Instance Data An example instance of the concepts, re-
lations and attributes in the ontology
(cf. Chapter 6).

7.2 Matching Algorithms 97

entity names that will be exploited are the concept names, the relation names
and the attribute names (i.e. the names of the entities ei in the set C ∪R ∪A).4

It is important to note that the entity documentation differs from the complex
annotations introduced in Section 6.3.2. While these complex annotations are
used to model integration knowledge simple short text annotations are often
used in ontologies to provide a textual description of a certain concept, relation
or attribute.

Entity Hierarchy. The entity hierarchy is one of the structural features in
an ontology. Since concepts in an ontology are aligned in a hierarchy <C , this
information can be exploited during the lifting. As an example, consider the
lifting example in Figure 7.2. In this ontology the concept Customer is a sub-
concept of the concept Business Partner. If a customer schema is now lifted,
the knowledge that a Customer is also a Business Partner allows to also exploit
the relations and attributes of the super-concept Business Partner during the
lifting.

Relations & Attributes. The relations ri ∈ R are another type of structural
information available in the ontology. The relations contain the information how
different concepts in the ontology are related (represented by the signature of R,
i.e. σR). In the example above, the relations hasAddress connects the concept
Business Partner and Address. As the example shows, this feature also needs
to be exploited in order to lift a schema otherwise a lifting of some sub-elements
of the BusinessPartner schema would not be possible. The same is true for the
attributes ai ∈ A in an ontology.

Furthermore, it is important to note that the entity hierarchy as well as the
relation and attributes in the ontology have no directly corresponding schema
features.

Data Type. Each attribute in the ontology is associated with a data type spec-
ifying the allowed data values for this attribute (represented by σa). In the lifting
example, the data type of all attributes is string allowing any type of character
string as a value for the attributes. The data types available for restricting the
value range of attributes in the ontology depends on the ontology language. In
the following discussions the data types supported by XML Schema [Wor04b] are
also used in the ontology.

Technical Names. The first of the features belonging to the category of inte-
gration knowledge are the technical names. Section 6.3.2 describes how this type
of knowledge is modeled in the ontology. The background knowledge regarding

4See Section 4.3 for the definition of these sets.

98 Chapter 7: Lifting

technical names is especially useful to lift schemas that use cryptical names for
schema elements.

A detailed description how different types of integration knowledge are mod-
eled in the ontology is given in Chapter 6.

Default Values & Identifiers. The integration knowledge regarding possible
default values, internal and global identifiers is in the OBM approach only ex-
ploited during the mapping creation step. For details on how these features can
be exploited see Chapter 8.

Code Lists. The integration knowledge regarding code lists relates ontology
entities to the code lists used to represent certain information in a schema. This
feature can be exploited together with example data in order to identify matchers
between schema entities and certain entities in the ontology.

Example Instance Data. As in the case of the schema features example in-
stances of the concepts in the ontology can be used as additional information
during lifting. In contrast to the example schema instances that are created us-
ing the example data injection approach the example data in the ontology is not
created manually in each integration project. Instead the example instance in
the domain ontology only needs to be created once and can then be reused in
numerous integration projects.

7.2.2 Similarity Metrics

In this subsection different basic similarity metrics are introduced. The similar-
ity metrics presented were selected from the large number of existing similarity
metrics (cf. e.g. [ES07]) because the matching algorithms available in the OBM
approach are based on these metrics. The reasons for the usage of a particu-
lar similarity metric for the implementation of a certain matching algorithm is
described together with the matching algorithms available Section 7.2.3.

Before investigating the different similarity metrics in more detail, it is im-
portant to first define the notion of a similarity metric that is used as a basis in
the following discussion.

Definition 7.2.1 (Similarity Metric). A similarity metric sim over a set A is a
function

sim : A× A→ [0, 1]

7.2 Matching Algorithms 99

that maps pairs of elements in a set A to a real number in the interval [0, 1] such
that

∀e, f ∈ A : sim(e, f) ≥ 0 (non-negative)

∀e, f ∈ A : sim(e, f) = sim(f, e) (symmetric)

∀e, f, g ∈ A : sim(e, g) ≤ sim(e, f) + sim(f, g) (triangle inequality).

Furthermore, the similarity of identical elements in the set A is defined to be 1

∀e ∈ A : sim(e, e) = 1.

Using the generic definition of a similarity metric given above as a basis,
different specific similarity metrics can now be introduced.

Equality

The simplest similarity metric that can be defined is the equality similarity metric
which is based on the equality relation.

Definition 7.2.2 (Equality Similarity.). The equality similarity metric is defined
for any two objects e, f ∈ A as

simequal(e, f) :=

{
1 : if e = f
0 : otherwise

It is obvious that the definition of the equality similarity metric satisfies the
requirements of a similarity metric given above. To illustrate the equality simi-
larity metric consider the two strings Business Partner and BusinessPartner

from the lifting example. The similarity of these strings based on the equality
similarity metric is simequal(BusinessPartner,Business Partner) = 0.

Lexical Similarity

In contrast to the equality metric that can be used to compare objects of any
kind, the lexical similarity metric is a similarity metric for strings. It is based
on the Levenshtein distance or edit distance originally proposed by Levenshtein
in [Lev66]. The Levenshtein distance ld(s1, s2) of two strings s1 and s2 is given by
the minimal number of insertion, deletion or substitution operations necessary to
transform s1 into s2. For calculating the Levenshtein distance each string opera-
tion is weighted equally. Staab and Maedche [MS02] propose the lexical similarity
metric which is a normalized variant of the Levenshtein distance ld(s1, s2) of two
strings s1 and s2.

Definition 7.2.3 (Lexical Similarity.). The lexical similarity metric for two
strings is defined as

simlexical(s1, s2) := max

(
0,
min(|s1| , |s2|)− ld(s1, s2)

min(|s1| , |s2|)

)
.

100 Chapter 7: Lifting

In the definition above |si| denotes the length of a string si. To illustrate the
lexical similarity metric consider the two strings StreetName and hasStreet from
the lifting example presented above. The similarity of these strings based on the
lexical similarity metric is simlexical(StreetName, hasStreet) = max

(
0, 9−7

9

)
≈

0.22.

Soft-TF-IDF

Like the lexical similarity metric the Soft-TF-IDF similarity metric is a metric for
calculating the similarity of strings. It was developed by Cohen et al. [CRF03].
To calculate the simsofttfidf , the input strings are first tokenized into two sets
of tokens T1 and T2. In the next step the term frequency TF and the inverse
document frequency IDF for each token in the two sets of tokens is calculated.
The term frequency measures the occurrence of a certain term in a document
whereas the inverse document frequency measures the importance of a term over
a set of documents.

Definition 7.2.4 (Soft-TF-IDF Similarity.). On the basis of TF and IDF the
Soft-TF-IDF similarity metric simsofttfidf (s1, s2) is defined as:

simsofttfidf (s1, s2) :=
∑

ω∈close(θ,T1,T2)

V (ω, T1) · V (ω, T2) ·D(ω, T2)

with:

V (ω, T) :=
V ′(ω, T)√∑
ω′ V ′(ω′, T)2

V ′(ω, T) := log(TFω,T + 1)log(IDFω)

D(ω, T) := maxν∈T (sim(ω, ν))

In the definition above V (ω, T) is the normalized TF-IDF weight of a token
ω in a set of tokens T and D(ω, T) the maximal similarity sim(ω, ν) of a token ω
to all terms in a set T . The sim(ω, ν) is calculated using a basic similarity metric
for strings as e.g. the Lexical Similarity. As well, close(θ, T1, T2) is defined as the
set of tokens where ω ∈ T1, ν ∈ T2 and sim(ω, ν) ≥ θ.

Note that the Soft-TF-IDF similarity of two strings can vary depending on the
set of documents used to calculate the term frequency and the inverse document
frequency. In order to apply the Soft-TF-IDF similarity to calculate similarities
of schema and ontology entities, the set of all tokens of all schema entities names
can, for example, be used as a basis to calculate the term frequency and the
inverse document frequency of a token.

In order to illustrate the Soft-TF-IDF similarity the two strings StreetName

and hasStreet from the lifting example are used. The first string consists of the

7.2 Matching Algorithms 101

tokens T1 = {street, name}, the second one of the tokens T2 = {has, street}. The
term frequency and the inverse document frequency of these tokens are calculated
using the set of tokens in the example ontology. The term frequencies for the
different tokens in are: has = 8, address= 4, web= 2, street= 1, number= 1,
code= 1, country= 1, business= 1, role= 1, house= 1, partner= 1, URL= 1,
identifier= 1.

On the basis of these term frequencies the normalized TF-IDF weight V (ω, T)
of the tokens in the example strings are:

V (street, T1) =
1, 662

2, 350
≈ 0, 707

V (name, T1) =
1, 662

2, 350
≈ 0, 707

V (has, T2) =
0, 221

1, 677
≈ 0, 131

V (street, T2) =
1, 662

1, 677
≈ 0, 991

Using the Lexical Similarity and a threshold θ = 0.6 the set close(θ, T1, T2) =
{street}. Consequently, the Soft-TF-IDF similarity of the two strings StreetName
and hasStreet is calculated as:

simsofttfidf (StreetName, hasStreet) = V (street, T1) · V (street, T2) ·D(street, T2)

= 0, 707 · 0, 991 · 1
≈ 0, 7

Dice Coefficient

In contrast to the previous two similarity metrics the dice coefficient is a similarity
metric for calculating the similarity of sets. For two sets X and Y the dice
coefficient is defined as

simdice(X, Y) := 2
|X ∩ Y |
|X|+ |Y |

.

Relying on the definition of the dice coefficient different string distance metrics
can be defined. These string distance metrics are based on the comparison of sets
of N-Grams. As an example, consider the trigram (3-Gram) similarity metric. It
is defined as

simtrigram(s1, s2) := 2
ns1∩s2

ns1 + ns2

where ns1∩s2 is the number of trigrams that occur in both strings and
ns1 and ns2 the number of trigrams in the strings s1 and s2 respectively.

102 Chapter 7: Lifting

Again the strings StreetName and hasStreet will be used as an exam-
ples. The sets of trigrams that can be generated from the two strings are
{str, tre, ree, eet, etn, tna, nam, ame} and {has, ass, sst, str, tre, ree, eet}. Con-
sequently, the similarity of the two strings using the trigram similarity metric is
simtrigram = 2·4

8+7
≈ 0.53.

7.2.3 Matching Algorithm Details

Based on the basic similarity metrics introduced in the previous subsection differ-
ent matching algorithms are developed in this section. These matching algorithms
are used in the OBM approach to calculate the similarity of schema entities and
ontology entities in the first step of the lifting (cf. Figure 7.1) resulting in the
similarity matrix msim. The developed matching algorithms range from simple,
string-similarity-based algorithms to more advanced ones exploiting integration
knowledge.

String-Similarity-Based Algorithms

The first set of matching algorithms that are introduced are based on string
similarity metrics. Using the string similarity metrics different features of the
source schema and the domain ontology are compared in order to calculate the
similarity of entities.

It is obvious from the discussion of the running example in Chapter 3 that
matching algorithms exploiting only schema entity names are not suitable for use
cases addressed in this thesis. Consequently, only one simple matching algorithm,
the Name Matcher, is based solely on the comparison of schema and ontology
entity names. This matcher was included to allow a comparison of the more
advanced matching algorithms with a simple one commonly available in schema
and ontology matching approaches (cf. [ES07]). The Documentation Matcher was
included in the OBM approach to verify if the short documentation of schema
entities can beneficially be exploited.

Name Matcher. The Name Matcher uses the lexical similarity metric, to cal-
culate the similarity of schema and ontology entities. The schema as well as
the ontology feature used for the similarity computation is the entity name. Us-
ing XML Schema as an example the Name Matcher implements the following
similarity metric:

∀e ∈ S,∀o ∈ C ∪R ∪ A :

simname (e, o) := simlexical (name(e), name(o))

7.2 Matching Algorithms 103

where name(e) is a function returning the name of a schema or ontology entity
respectively.5

Documentation Matcher. In contrast to the Name Matcher, the Documen-
tation Matcher uses the short documentation of entities optionally available in
some schema languages as the schema feature. Documentation matchers are also
quite common in existing schema matching approaches. Depending on the config-
uration this feature is either matched against the documentation of an ontology
entity or its name. The similarity metric applied in this matcher is the Soft-TF-
IDF metric. the Soft-TF-IDF metric was chosen for the implementation of the
Documentation Matcher as this similarity metric has achieved promising results
in the comparison of short texts [CRF03]. The similarity metric implemented by
the Documentation Matcher is:

∀e ∈ S,∀o ∈ C ∪R ∪ A :

simdocumentation (e, o) : = simSoft−TF−IDF (doc (e) , (doc (o))

Additionally, doc is defined as a function returning the optional documentation
of an entity.

Structural Algorithms

The next two matching algorithms that are introduced exploit structural informa-
tion. Both use different strategies to exploit the structural information. While
Node-Path Matcher compares path information, the Related Entities Matcher
computes the similarity of elements based on the similarity of their children.

Node-Path Matcher. The node-path matcher uses the node-path of an entity
in a schema or an ontology to calculate the similarity of entities, an approach
commonly used in different schema and ontology matching approaches. In a
schema the node-path to an entity is simply defined as the concatenation of all
names of a node’s parent entities. In the running example the node-path of the
CountryCode entity is /BusinessPartner/AddressInformation/CountryCode.
In the ontology the node-path is defined as the path from the given entity in the
ontology to the one to which the root entity of the schema is mapped. Conse-
quently, the node path of the attribute hasCountry in the running example is
/Business Partner/hasAddress/Address/hasCountryCode.

The similarity of the node-paths of a schema and an ontology entity is cal-
culated using any of the string based mapping algorithms presented above. The
string based mapping algorithm used to calculate the similarity of node-paths is

5Note that the Name Matcher, as well as all other matching algorithms described in sub-
sequent sections, is executed for each schema element ei ∈ S in the source schema and each
ontology entity oj ∈ C ∪R ∪A of the domain ontology (cf. Section 7.1)

104 Chapter 7: Lifting

in the following referred to as a constituent matcher. According to the classifi-
cation presented by Rahm and Bernstein in [RB01] the node-path matcher is a
hybrid matcher. The similarity metric implemented by the node-path matcher
is:

∀e ∈ S,∀o ∈ C ∪R ∪ A :

simnode−path (e, o) : = simcon(nodePath(e), nodePath(o))

where nodePath(e) is a function retuning the node-path of a schema or an
ontology entity and simcon is the similarity metric implemented by the con-
stituent matcher. If the node-path matcher, for example, uses the lexical simi-
larity metric as the constituent matcher, simcon(nodePath(e), nodePath(o)) :=
simlexical(nodePath(e), nodePath(o)).

Related Entities Matcher. The related entities matcher is also a hybrid
matching algorithm that calculates the similarity of two entities based on the
similarity of their children. Therefore, it first calculates the similarities of leaf
entities in the schema tree and ontology entities. This is done using a constituent
matcher. The constituent matcher can again be any of the other matching algo-
rithms. After that the similarity of non-leaf entities in the schema and ontology
entities is calculated. Since each non-leaf schema entity has a set of children as
well as each non-leaf ontology entity has a set of related ontology entities, the
similarity of these entities is calculated using an extension of the dice coefficient.
Consequently, the related entities matcher implements the following similarity
metric:

∀e ∈ S,∀o ∈ C ∪R ∪ A :

simrelated (e, o) : =

{
simcon(e, o) iff e is a leaf

2 matching(θ,e,o)
|c(e)|+|c(o)| otherwise

In the previous formula simcon(e1, o) is the similarity of two entities as de-
rived by the constituent matcher. Furthermore, c(e) is defined as the set of
direct children of a schema entity e, c(o) as the set of directly related ontology
entities (i.e. relations and attributes) of an ontology entity o and the function
matching(θ, e1, e2) as the number of entities with a similarity above a certain
threshold (simrelated(e1, e2) ≥ θ).6 The Related Entities Matcher is an extension
of the Children Matcher introduced in COMA++ [DR02].

6The relation between the dice coefficient and the equation 2 matching(θ,e,o)
|c(e)|+|c(o)| becomes obvious

if matching(θ, e, o) is interpreted as |X ∩ Y |, c(e) as |X| and c(o) as |Y |.

7.2 Matching Algorithms 105

Integration-Knowledge-Based Algorithms

After the introduction of matching algorithms capable of exploiting the linguistic
and structural features of schemas and ontologies this subsection now focuses
on matchers exploiting the background knowledge modeled in the domain on-
tology. Three novel matchers, namely i) the Technical Names Matcher, ii) the
Instance Equality Matcher, and iii) the Instance Split/Concat Matcher are intro-
duced. These matchers are specially tailored towards exploiting the background
knowledge modeled according to the approach presented in Section 6.

Technical Names Matcher. The Technical Names Matcher exploits the in-
tegration knowledge regarding technical names (cf. Section 6.3.2) that is modeled
in the domain ontology to calculate the similarity of schema and ontology enti-
ties. Depending on the configuration the Technical Names Matcher either uses
the equality similarity metric or the lexical similarity metric to calculate the sim-
ilarity of a schema element and an ontology entity. Consequently, the similarity
returned by the technical names matcher is either

∀e ∈ S,∀o ∈ C ∪R ∪ A :

simtech−name(e, o) := simequal (e, techName(o))

where techName(o) is a function returning the possible technical name for a
given ontology entity o ∈ C ∪R ∪ A, or

simtech−name(e, o) := simlexical (e, techName(o)) .

Note that in the description of simtech−name the notion of context in which a
technical name is valid was omitted for readability reasons.

The Technical Names Matcher allows for two configurations due to the differ-
ent usage of the integration knowledge regarding technical names. If the matcher
is used in a context for which integration knowledge is available in the domain
ontology it is assumed that this integration knowledge is correct. Consequently,
the equality similarity metric is used as a basis for the Technical Names Matcher.
As an example for that assumption consider the HouseID element in Figure 7.2.
If the background knowledge contains the information that the hasHouseNumber

attribute of the ontology is in this particular context represented by the technical
name HouseID, this information is trusted. If an element in the schema is named
differently, it is not a possible match according to the Technical Names Matcher.
However, the Technical Names Matcher can also be used in situations where inte-
gration knowledge is reused to, for example, create a mapping for a new version
of a schema or to create a mapping for similar schemas. In this situation the
lexical similarity measure is used as basis for the Technical Names Matcher.

106 Chapter 7: Lifting

Instance Equality Matcher. The Instance Equality Matcher exploits the ex-
ample instances available for the schema and the ontology to calculate a lifting.
It is based on the equality metric. Using the equality similarity metric the in-
stance equality matcher compares an example instance provided for a schema
with the example instance modeled in the ontology. Consequently, the matcher
implements the following similarity metric:

∀e ∈ S,∀o ∈ C ∪R ∪ A :

siminst−equal(e, o) := simequal (inst(e), inst(o))

where inst(o) and inst(e) are functions that return the example instance for
a given ontology entity o or a schema element e respectively.

Instance Split/Concat Matcher. The Instance Split/Concat Matcher also
exploits available example data. Compared to the instance equality matcher it
checks example instance data for splitting or concatenation relationships. The
similarity calculated by this matcher is

siminst−split−concat(e, o) :=

{
1 : iff substring (inst(e), inst(o))) = 1
0 : otherwise

where substring(x, y) is a function that returns 1 if either x is a substring of y
or vice versa.

Note that the Instance Split/Concat Matcher only checks if the example in-
stance of a schema element is a substring of the example instance of an ontology
entity and vice versa. The Instance Split/Concat Matcher does not identify how
example instances need to split or concatenated (i.e. the mapping expression).
The mapping expression is identified in the mapping extraction step which is
described in Chapter 8.

The Instance Equality Matcher as well as the Instance Split/Concat Matcher
where first introduced in the QuickMig system [DSDR07].

7.3 Aggregation

The third step in the proposed lifting approach is the aggregation of the results
of the individual matching algorithms in order to create the final lifting. The
aggregation of the results of the individual matching algorithms is performed
in two steps as depicted in Figure 7.3. First the individual similarity scores of
each matcher are combined into one overall similarity score during the similarity
matrix aggregation step. The result of this aggregation is the two-dimensional
similarity matrix m′sim. After that the resulting similarity matrix m′sim is used

7.3 Aggregation 107

msim

LSO

m' sim

Similarity Matrix
Aggregation

ODomain Ontology

Lifting
Extraction

1. 2.

Matching Algorithm 1

Matching Algorithm p

Matching Algorithm 2

...
Aggregation

Lifting LSO

Figure 7.3: The aggregation of the matcher results.

in the lifting extraction step together with the domain ontology to calculate the
resulting lifting.

In the following subsections each of the two steps of the similarity aggregation
is described in more detail.

7.3.1 Similarity Matrix Aggregation

The similarity matrix aggregation is a step necessary in all schema matching
approaches based on the execution of individual matching algorithms. Both
Do [Do06] and Ehrig [Ehr06] suggested different possible aggregation approaches
including a pessimistic aggregation using the minimum of all similarity values, an
optimistic aggregation using the maximum similarity value and also the calcula-
tion of a weighted average similarity. According to the presentation in [Ehr06] a
weighted average similarity is calculated as follows:

simi,j =

∑
pwp · adj (simi,j,p)∑

pwp

108 Chapter 7: Lifting

In the above formula p is the number of matching algorithms executed to
calculate msim, wp is a weight assigned to each of the p matching algorithms and
adj : [0, 1]→ [0, 1] is an adjustment function.

If wk = 1 is chosen as a weighting for the matching algorithms and adj(x) =
id(x)7 as an adjustment function, the aggregated similarity values are simply the
average of the individual similarity values. A more advanced adjustment function
also suggested by Ehrig in [Ehr06] is the sigmoid adjustment function

adjsig(x) =
1

(1 + eκ(−x+0.5))

with κ defining the slope of the function. The rational behind using a sigmoid
adjustment function is that low similarity values are further decreased whereas
high similarity values are further emphasized [ES04].

In the OBM approach a sigmoid adjustment function together with an equiv-
alent weighting of each of the involved matching algorithms is used to calculate
the two-dimensional similarity matrix m′sim.

7.3.2 Lifting Extraction

In the next step, the lifting extraction step, the resulting lifting is calculated
based on m′sim and the domain ontology. The goal behind exploiting the domain
ontology during the lifting extraction step is to avoid errors in the resulting lifting.
Instead of simply selecting the pair of entities with the highest similarity as lifting
candidates as performed by most existing matching algorithms, the search space
for possible lifting elements is restricted to entities in the ontology that are related
to previously matched ones. This is especially valuable when lifting large schemas
to complex ontologies. In these cases, usually similar names for different schema
and ontology entities exist. Selecting matching entities based on the domain
ontology therefore helps to remove false lifting candidates. Figure 7.4 depicts the
idea underlying the lifting extraction.

Figure 7.4 shows on the left hand side an excerpt of a customer schema
containing two schema elements named CountryCode. One belongs to the sub-
schema describing the address information and one to the sub-schema describing
the telephone number of a customer. On the right hand side the correspond-
ing ontology excerpt is shown. This ontology contains two attributes named
hasCountry. One of them belongs to the concept Address and one to the con-
cept Telephone. If, for example, just the linguistic similarity metric is used to
calculate the similarity of these elements and attributes, the resulting similarity
would be the same for all four possible combinations (the resulting similarity is
0.8 in the example). Based solely on the similarity information it is not possible

7Where id(x) is the identity function.

7.3 Aggregation 109

Business Partner

Address

...
hasCountry: string

hasAddress

Telephone

...
hasCountry: string

hasTelephone

Source Schema: Domain Ontology:

BusinessPartner

AddressInformation

...

...

CountryCode : code

Telephone

...

CountryCode : code

sim = 0.8

sim = 0.8

sim = 0.8

sim = 0.8

1.

2.

3.

2.

Figure 7.4: Example showing the idea underlying the domain-ontology-based
lifting extraction.

to determine the correct lifting.8 By using the domain ontology, ambiguities of
the similarity values can easily be solved as depicted in the figure. The example
is based on the assumption that in a previous step the aggregation algorithm de-
termined that the schema element AddressInformation is lifted to the concept
Address (depicted by the step number 1 in the figure). In the next aggregation
step only schema elements and ontology entities in the neighborhood of the lifted
schema entity and the target ontology entity are taken into account (step num-
ber 2 in the figure). By applying this restriction of the search space for possible
lifting elements, the correct lifting can be identified by the algorithm in step 3.

A detailed specification of the lifting extraction algorithm is given in Algo-
rithm 1.

The aggregation algorithm performs the aggregation starting from the root
entities of a schema. For each root entity r ∈ Ro9 the aggregation algorithm is
initialized by first adding the root schema entity r and the most similar ontology
concept oj to a map M between ontology entities and schema entities. Addi-
tionally the lifting element (r, oj) is added to the resulting lifting LS→O and the
ontology entity oj to the list Q of currently processed ontology entities. After this
initialization, the aggregation is performed by iterating over the list Q of current
ontology entities and performing the following steps:

1. The set of ontology entities El in the neighborhood of the current ontology
entity is calculated. The neighborhood is defined as all entities in the

8Note, that in this simplified example the problem could also be solved by using, for example,
the node-path matcher to calculate the similarity of the elements and attributes.

9For a definition of the set Ro see the definition of XML Schema given in Section 4.2.

110 Chapter 7: Lifting

Algorithm 1: The ontology-based lifting extraction algorithm.

Input: The similarity matrix m′sim, the domain ontology O, the schema S,
maximum search depths θO and θS, cut off threshold τ

Output: The resulting lifting LS→O

forall r ∈ Ro do1

M = {(r, oj) | maxoi∈C (m′sim (r, oi))}2

LS→O = M3

Q = {oj | (r, oj) ∈M}4

while Q 6= ∅ do5

e = first(Q)6

El = set of entities x ∈ O connected to e with distance smaller θO7

n = π1(x) : x ∈M ∧ π2(x) = e8

Nl = set of all children of n in range θS9

forall n ∈ Nl do10

o = x ∈ El : m′sim(n, x) = maxy∈El (m
′
sim(n, y))11

if m′sim(n, o) ≥ τ then12

LS→O = LS→O ∪ {(n, o)}13

Q = Q ∪ {o}14

M = M ∪ {(e, n)}15

return LS→O16

ontology that have a distance ≤ θO to the current ontology entity (lines 6
and 7 of Algorithm 1).

2. The set of children nodes Nl of the current node is calculated (lines 8 and
9 in Algorithm 1). Again a parameter θS is used to define the maximum
search depth.

3. For each element in the set of ontology entities El, the most similar node
in the set of child nodes Nl is identified (lines 10-11 of Algorithm 1).

4. If the similarity of n and o is ≥ τ , n and o are added to the lifting and
added to the respective lists (lines 12-15 of Algorithm 1).

The algorithm terminates as soon as the list of currently processed ontology enti-
ties Q does not contain any further elements. This happens as soon as no further
lifting elements are found in the neighborhood of recently processed ontology
entities.

The lifting extraction algorithms presented above was developed with the goal
to reduce the possibility of wrong matches when creating a lifting from aggre-
gated matcher results. It is based on the assumption that the domain ontology

7.4 Summary 111

dominates the schema with respect to its information capacity (cf. Section 5.3).
Under this assumption it is obvious why the aggregation step is driven from the
domain ontology. First, all possible lifting elements can be identified. Since in
the approach presented the ontology dominates the schema with respect to its
information capacity (cf. Section 5.3.2), the situation that no matching ontology
entity exists for a schema entity does not occur. Second, this approach effectively
enables the reduction of possible wrong matches as shown in the example. Since
the domain ontology models the domain, all important concepts in this domain,
as well as their relations and attributes are available. Restricting the search for
matching entities to the neighborhood of previous matches significantly reduces
the search space and consequently the possibility of wrong matches.

7.4 Summary

The chapter provided as description how the lifting from schemas to a domain
ontology, the first and second step in the OBM approach, is performed. First an
overview of the different steps comprising the lifting approach was given. Next,
based on an analysis which features in a schema and which features in an ontology
can be exploited for a similarity calculation, different matching algorithms where
developed. These matching algorithms are based on general similarity metrics
and exploit different features of schemas and ontology in order to calculate the
similarity of entities. Finally, an aggregation algorithm exploiting the domain
ontology in order remove wrong matching candidates was introduced.

112 Chapter 7: Lifting

Chapter 8

Mapping Extraction

This chapter focusses on how a mapping between two schemas is extracted on
the basis of two liftings.

First, this chapter provides an overview of how the mapping extraction is
performed (Section 8.1). Then, the concept of mapping categories, which is
fundamental to the presented approach for mapping extraction, is introduced
(Section 8.2) before the algorithm used to calculate a mapping based on two
liftings is presented (Section 8.3).

8.1 Overview

The conceptual approach to the mapping extraction as well as how it relates
to the overall OBM approach is depicted in Figure 8.1. The figure shows that
the mapping extraction takes two liftings LS1→O, between the source schema S1

and the domain ontology O, and LS2→O, between the target schema S2 and the
domain ontology O, as well as the domain ontology O as input. Based on these
inputs the mapping extraction calculates the resulting mapping MS1→S2 between
the source to the target schema. The calculation of the resulting mapping MS1→S2

is performed in two steps:

1. In the first step, the matching extraction step, a set MatS1→S2 of matches
between the source and the target schema is calculated based on the two
liftings LS1→O and LS2→O. The algorithm for calculating the set MatS1→S2

on the basis two liftings is described in Section 8.3.1.

2. In the second step, the mapping category identification step, a mapping
category for each match mati ∈MatS1→S2 is identified. The resulting map-
ping element mj = (eS1,m, . . . , eS1,n, eS2,k, cat) consisting of the identified
mapping category cat and the source and target schema entities is added
to the resulting mapping MS1→S2 . The concept of mapping categories is

114 Chapter 8: Mapping Extraction

Schema
+ Example Instances

S 1

Domain Ontology O

Schema
+ Example Instances

S 2

Lifting LS 1O

Lifting LS 2O

Mapping M S1 S 2

Schema
Lifting

Schema
Lifting

Mapping
 Extraction

Lifting LS 1O

Lifting LS 2O

Mapping M S1 S 2Matching Mat S1 S 2

Matching
Extraction

Mapping
Category

Identification

Figure 8.1: Overview of the mapping extraction approach.

introduced in Section 8.2 while a detailed discussion of how the different
mapping categories can be identified is given in Section 8.3.2.

It is important to note that the mapping extraction step identifies a mapping
category for each match instead of a concrete mapping expression like e.g. a copy
expression in the XSLT language [Wor99b].1 The introduction of the concept of
mapping categories is based on the observation (see [DSDR07]) that in the gen-
eral case not all mapping expressions required to translate between two schemas
can be created automatically. In the most general case a complex program is
required to perform the actual mapping. The idea underlying the mapping cat-
egories is to abstract from the details of a particular mapping expression and
group similar mapping expressions into one mapping category. This abstraction
enables the identification of the correct mapping category even in cases where
the correct mapping expression could not be created automatically. On the basis
of the identified mapping categories, a user can be supported during the map-

1A copy expression in the XSLT language copies the content of a source XML element to a
target XML element.

8.2 Mapping Categories 115

KUNNR : string
(K00123)

ANRED : string
(Company)

NAME1 : string
(ACME)

BusinessPartner

Name

FormOfAddressCode : token
(01)

FirstLineName : string
(ACME)

AddressInfromation

StreetName : string
(5th Avenue)

HouseID : token
(1)

Source Schema: Target Schema:

DEBMAS

STRAS : string
(1, 5th Avenue)

LAND1 : string
(US)

InternalID : token
(ABC456)

CountryCode : code
(US)

BusinessPartnerRoleCode: token
(02)

KNURL : string
(http://acme.com)

Web

URI : anyURI
(http://acme.com)

Split

Move

Move

Code-Value-
Mapping

Internal-ID

Default

Move

Mapping
Categories

Figure 8.2: The running example including the mapping categories associated to
the correspondences.

ping completion in the review, correction and testing step. In the next section a
detailed description of the concept of mapping categories is provided.

8.2 Mapping Categories

The mapping extraction step not only identifies corresponding schema elements
but also a mapping category associated to them. In Figure 8.2 the two schemas
comprising the running example as well as the matches between the schema
entities are depicted. For each match between the entities of the DEBMAS schema
and the entities of the BusinessPartner schema the associated mapping category
is shown.

Move: The simplest mapping category used in the example is Move. It is
the mapping category assigned to the correspondence between the source
schema entity NAME1 and the target schema entity FirstLineName. The
interpretation of this mapping category is that the content of the source
schema entity needs to be copied into the target schema entity without
modification.

116 Chapter 8: Mapping Extraction

Split: The mapping category Split is assigned to the correspondence between
the source schema entity STRAS and the target schema entities StreetName
and HouseID. The meaning of the category Split is that the content of the
element STRAS needs to be split and distributed across the target schema
elements StreetName and HouseID.

Default: Default is the mapping category assigned to the correspondence be-
tween DEBMAS and BusinessPartnerRoleCode. The interpretation of this
category is that a default value exists for the target schema entity and that
this default value should be used.

As mentioned in the overview at the beginning of this chapter, the main reason
for introducing the mapping categories is that automatically creating the complex
mapping expressions necessary in the area of data migration or B2B integration
is not possible in the general case. Even though one goal of this thesis (cf. the
requirements in Section 1.1) is to create complex mapping expressions automati-
cally the examination of existing mappings originating from B2B integration and
Data Migration projects conducted by SAP showed that this goal can only be par-
tially achieved. Most examined mappings contained at least some very complex
mapping elements relating n source to m target elements by complex mapping
expressions involving loops or advanced mathematical computations. One exam-
ple of such a complex mapping expression is the calculation of the total amount
of a purchase order based on the individual amounts of the items in this purchase
order. Creating these mapping expressions automatically is not possible. How-
ever, the majority of mapping elements is much simpler (cf. occurrence frequency
of different mapping categories given in Table 8.2). Even when multiple schema
elements are mapped by a mapping element simple mapping expressions like e.g.
string splitting or concatenation are used frequently.

The idea underlying the mapping categories is to abstract from the complex
details of particular mapping expressions. This results in two simplifications:
First, similar mapping expression can be grouped into one mapping category. As
an example of such a simplification, consider the Split category in the running
example. It abstracts from the particular delimiter (the character “,” in the
example) at which the input string is split. This abstraction enables the mapping
extraction algorithm to identify the correct mapping category even in situations
where the correct mapping expression could not be determined. Second, the
mapping category eases the development of the correct mapping expression by a
user. In the case of some of the simple mapping categories it is even possible to
generate the mapping expressions required by a certain execution environment
automatically. In the case of the more complex ones at least templates of mapping
expressions can be created automatically. These templates need to be completed
by the user afterwards. In these cases the mapping category at least provides
the user with additional information regarding the needed mapping expression
consequently simplifying the development task of the user.

8.2 Mapping Categories 117

Next, the mapping categories available in the OBM approach are introduced.
In order to define a comprehensive set of mapping categories existing mappings
in the areas of data migration and B2B integration have been studied. These
mappings were created by experts through a manual development process in real
integration projects. Based on these existing mappings, ten mapping categories
have been identified. These mapping categories are capable of covering all map-
ping expression in the studied mappings. Table 8.1 lists each of the identified
mapping categories together with a short explanation and an indicator of their
occurrence in the B2B integration and Data Migration scenario.

8.2.1 Mapping Category Details

In the following paragraphs each mapping category listed in Table 8.1 is described
in more detail. For each mapping category a short example is provided. After the
introduction of the mapping categories a detailed discussion on how executable
mapping code can be generated based on these mapping categories is presented.

Move: Move is the simplest of all identified mapping categories. As already
explained in the example in the beginning of this section, it is used to
directly relate one source schema entity to one target schema entity. If two
entities are connected using Move the content of the source schema entity
is copied without modification to the target schema entity. An example of
the usage of the mapping category Move is given in the running example
in Figure 8.2. In the examined schema mappings (cf. Chapter 10) Move
was by far the most frequently occurring mapping category. It is obvious
that executable mapping code for this category can easily be generated
automatically.

Split: The mapping category Split is used whenever the content of one source
schema entity needs to be split and distributed across several target schema
entities. For example, the mapping category Split is assigned to the cor-
respondences between source schema entity STRAS and the target schema
entities StreetName and HouseID. In this case, the content of the source
schema element needs to be split at the “,” character. The first of the two
resulting strings is then used as the content of the HouseID schema entity,
whereas the second is used as the content of the StreetName schema entity.

Note that the mapping category Split does not imply any specific split
algorithm. Details on how the content of source schema entities is split
(e.g. at specific separating characters or at a particular index) are not
part of the mapping category. Instead, the details of how the content of
schema elements needs to be split in the context of a particular mapping is
independent of the mapping category and needs to be identified separately.

118 Chapter 8: Mapping Extraction

Table 8.1: Overview of the identified mapping categories together with a short
explanation.

Category Name Short Description DM B2B

Move Move the content of the source schema
entity to the target entity.

! !

Split Split the source schema entity con-
tent into multiple target schema entities
based on a specific split algorithm.

! !

Concatenate Concatenate multiple source schema en-
tities into one target schema entity
based on a specific concatenation algo-
rithm.

! !

Code-Value-Mapping Either the source schema entity, the tar-
get schema entity or both contain a code
according to a specific code list. There-
fore a value mapping between the code
value and the textual representation ac-
cording to the code list or between dif-
ferent code lists is necessary.

! !

Key-Value-Mapping The source schema entity and target
schema entity contain the identifiers of
an instance. A mapping of this identi-
fier is required.

! #

Internal-ID The target schema entity contains the
internal identifier of an instance.

! #

Default-Value The target schema entity is defaulted
with a special value.

! !

Create-Instance In Data Migration this category states
that a new entry in the target sys-
tem needs to be created for every en-
try in the source instance or whenever
the source element contains a particular
value. In the context of B2B integra-
tion this category identifies the creation
of complex sub-structures.

! !

Query The target schema entity contains an in-
ternal identifier of a related object and
multiple source schema entities are used
to find the correct identifier.

! #

Complex A complex mapping expression is re-
quired.

! !

8.2 Mapping Categories 119

Concatenate: The mapping category Concatenate is the inverse category to
the mapping category Split. In the case of Concatenate the contents of
several source schema entities is concatenated and used as the content of
one target schema entity. As an example, consider the running example
but with the BusinessPartner schema as the source and the DEBMAS as the
target schema. In this case Concatenate would be the mapping category
associated to the correspondence between the entities StreetName, HouseID
and STRAS.

Again, as in the case of Split, the mapping category Concatenate does
not imply a specific concatenation algorithm like e.g. used delimiter and
concatenation order.

Code-Value-Mapping: A Code-Value-Mapping is required whenever either the
source schema entity, the target schema entity or both represent data ac-
cording to a specific code list. In this case a mapping of the source entity
content (either a code value according to a code list or a text value) to
the appropriate value of the target schema entity (also either a code value
according to a code list or a text value) is required. Note that Code-Value-
Mappings not only occur when a standardized code list (e.g. ISO 3166-1 for
representing country names [Inta]) is used for the code values of the schema
entities. Instead a code value mapping is also required when proprietary
code lists are used. As an example of a Code-Value-Mapping consider the
elements ANRED and FormOfAddressCode in the running example. In the
source schema the form of address is represented by the plain text value
“Company” whereas the target system uses the value “01” to represent this
information. Consequently a mapping between these values is required.

Key-Value-Mapping: A mapping of type Key-Value-Mapping occurs when the
content of the source schema entity as well as the content of the target
schema entity are identifiers of instances of other objects. As an example
consider the migration of customer data. For each customer its banking
details are also migrated. However, bank specific information like the name
of the bank or its address are usually stored independently from the cus-
tomer. Each customer record simply contains a reference to the correct
bank information.2 In this case it is very likely that the source system uses
a different identifier to identify a particular bank. Consequently a mapping
of the different key values is required.

The Key-Value-Mapping mapping category is common in data migration.
However, in contrast to the previous mapping categories, it is not present
in B2B integration. The reason is that B2B messages are tailored towards

2This reference could, for example, be implemented using a foreign key relation in a relational
data base system.

120 Chapter 8: Mapping Extraction

supporting interoperability between different companies. Consequently in-
ternal identifiers are not part of B2B messages, since the receiver would
usually not be able to interpret them correctly. Instead, the internal refer-
ence is removed in B2B messages. This can be done by either including the
complete referenced instance in the message if it is required by the business
partner or omitting it otherwise.

Internal-ID: The mapping category Internal-ID is similar to the previous one
as it also only occurs in the data migration context. A mapping of this
category is required whenever the target schema entity contains a system
internal identifier used to identify a particular instance. An example of this
category is given in the running example. The source schema entity KUNNR

as well as the target schema entity InternalID contain an internal identifier
of a certain customer. However, the internal identifiers for one particular
instance are usually different across systems. In the example the internal
identifier in the source schema consists of a letter followed by a five digit
number whereas in the target schema the identifier consists of three letters
followed by three numbers. Consequently a mapping of these identifiers is
necessary.

The reason that mappings of the type Internal-ID are not present in the
B2B case is, as in the case of Key-Value-Mappings, that internal information
is usually not part of B2B messages.

Default-Value: Mappings of the type Default-Value assign a special, predefined
value to a target schema entity. The assignment of a default value becomes
necessary when either this specific information is not available in the source
schema or is modeled differently in the source and the target schema (cf.
semantic heterogeneities in Section 3.3.2). In the running example a default
value is assigned to the target schema entity BusinessPartnerRoleCode.
In this case the correct default value depends the source schema. The
target schema can be used to represent different types of business partners
like customers and suppliers while a different source schema exists for each
type of business partner. Consequently, whenever the source schema is the
DEBMAS schema the BusinessPartnerRoleCode has to be set to “02” as
this is the value necessary to represent customers in the target schema.

Mappings of type Default-Value also occur in the context of B2B integra-
tion.

Create-Instance: The mapping category Create-Instance is used whenever a
complex substructure or an instance needs to be created based on an ele-
ment in the source schema. While the former case usually occurs in map-
pings in the context of B2B integration, the later only occurs in the context
of data migration. Note that creating a complex substructure in a B2B

8.2 Mapping Categories 121

context is essentially the same as creating an instance in a system in the
context of Data Migration. A B2B message needs to contain all information
required by the target system to interpret the message correctly. Therefore,
a complex substructure can correspond to an independent instance in the
target system. As an example of a mapping of type Create-Instance in the
context of Data Migration consider again the migration of customer data.
Consider a source system that stores banking information together with
the other customer information and a target system that stores it indepen-
dently in a different object. When migrating customer objects containing
banking information new objects for storing banking information need to
be created in the target system depending on the information in the source
system.

Query: A mapping of type Query is necessary when the information of one or
several source schema elements needs to be used to find the correct inter-
nal identifier of a related object in the target system. The type of queries
represented by the mapping category Query are queries that select infor-
mation in the target system based on certain parameters. As an example,
again consider banking information. In the source system the information
to which branch of a bank an account belongs is stored together with the
account information, while in the target system the branch information is
stored separately in a bank directory. In order to find the correct identifier
for the branch of a bank the elements of the source system describing the
branch must be used to query the bank directory. In B2B messages such a
separation of the necessary information never occurs. B2B messages always
contain the information required by the receiving party to perform the re-
quested operation. Consequently, Query is again a mapping category that
only occurs in the context of data migration.

Complex: All other possible mapping expressions that are not part of any of the
previously presented categories, belong to the mapping category Complex
In addition to complex mapping expressions not captured by any of the pre-
sented mapping categories, this mapping category also contains mappings
resulting from a combination of the previous categories. As an example con-
sider the combination of a Concatenation and Split. If the content of some
source schema entities is first concatenated and then split across several
target schema entities the associated mapping category would be Complex.

Using the data sets from the data migration scenario described in Chapter 10
the occurrence frequencies of the different mapping categories were evaluated
(cf. [DSDR07]). Table 8.2 summarizes the results of this analysis. In the ana-
lyzed data migration scenario the mapping category Move is the most frequently
occurring one. It is used as the mapping category for about 36% of the matches.
The second and third most frequently used mapping categories where Complex

122 Chapter 8: Mapping Extraction

Table 8.2: Absolute number of occurrences and occurrence frequency of the dif-
ferent mapping categories in the evaluation scenarios (cf. Section 10.2.1).

Category Name Number of Occurrence
Occurrences Frequency (in %)

Move 365 ∼ 36, 1
Complex 150 ∼ 14, 9
Code-Value-Mapping 146 ∼ 14, 4
Query 134 ∼ 13, 2
Split 75 ∼ 7, 4
Create-Instance 69 ∼ 6, 8
Internal-ID 24 ∼ 2, 4
Key-Value-Mapping 23 ∼ 2, 3
Default-Value 20 ∼ 2, 0
Concatenate 4 ∼ 0, 4

which occurred in approximately 15% of the matches and Code-Value-Mapping
which occurred in approximately 14%. The occurrence frequencies for the differ-
ent mapping categories in the context of B2B integration are similar to the ones
presented in the table.

8.2.2 Generation of Mapping Code

This subsection now describes for which mapping categories this automatic gen-
eration of the mapping expression is possible and which information is required
to perform the generation correctly. Again, it is important to note that this dis-
cussion is not limited to a specific mapping language like e.g. XSLT but rather
describes the generation of mapping expressions on an abstract level.

Table 8.3 provides an overview how the mapping expressions for a certain
mapping category can be generated. The table shows for each mapping category
if the mapping expressions for this category can be generated automatically or
semi-automatically or needs to be developed manually. The subsequent para-
graphs describe in detail how the generation of the mapping expressions can be
performed.

Move. As mentioned earlier in this section, mapping expressions for the map-
ping category Move can be created automatically. In order to create the correct
mapping expression only the path of the source and target schema entities is
required.

Split. Using example data as additional information, the mapping expression
for the mapping category Split also can be generated automatically. As an

8.2 Mapping Categories 123

Table 8.3: Generation of mapping expressions for the different mapping cate-
gories.

Category Name Mapping Code
Generation

Move automatic
Split automatic
Concatenate automatic
Default-Value automatic
Code-Value-Mapping semi-automatic
Key-Value-Mapping semi-automatic
Internal-ID semi-automatic
Create-Instance semi-automatic
Query semi-automatic
Complex manual

example, consider the example data associated to the schema entities STARS,
StreetName and HouseID. By analyzing the example data, it is obvious that the
string “1, 5th Avenue” needs to be split at the comma into the two parts “1”
and “5th Avenue”. Using the example instance, it is also easy to identify that
the first part of the split result needs to be copied into the schema entity named
HouseID and the second part into the schema entity named StreetName.

It is important to note that the automatic creation of the mapping expression
for the mapping category Split split is based only on the example instance. No
machine learning over a set of instances needs to be performed. Instead the
automatic creation of the mapping expression is based on splitting strings at fixed
positions or certain characters (e.g. the character “,” in the above example).3

Concatenate. As in the case of Split the mapping expressions for the category
Concatenate can also be generated automatically using example data. Based on
the analysis of the example data, even the delimiter that needs to be added when
concatenating the contents of different schema entities can be identified. As an
example simply reverse the one presented above. Using the two example data
values “1”, “5th Avenue” and “1, 5th Avenue” it is easy to identify the required
delimiter, namely a comma followed by a space in this case.

Code-Value-Mapping. In the case of Code-Value-Mappings the possibility
for creating the mapping expressions depends on the availability of information
regarding code lists. If standardized code lists are used to represent the values of

3Note that the automatic splitting of strings based on a certain delimiter only works if the
delimiter is used consistently throughout the data.

124 Chapter 8: Mapping Extraction

certain entities and the integration knowledge regarding these code lists is avail-
able, the mapping expressions can automatically be created. However, especially
in the context of Data Migration, it is common that legacy systems use propri-
etary, undocumented code lists to represent data. In this case only a template
for a mapping expression can be created. The actual mapping between certain
code values and their textual representation has to be added afterwards to this
template by the user.

Default-Value. The mapping expression for this category can be created auto-
matically. Based on the integration knowledge regarding possible default values,
the default value valid in this particular context simply needs to be used as the
target entity value.

Key-Value-Mapping. The mapping expressions for the mapping category
Key-Value-Mapping cannot be generated automatically. The reason is that a
suitable method for translating between the key values of different systems can
not be deducted from the available information. In this case only a mapping
expression template, which needs to be completed by a user, can be generated
automatically. While the details of the mapping expression template depend on
the language used, the mapping expression template needs to consist of two parts.
First, the source system needs to be queried for details of the object represented
by the particular source key value. The resulting information then needs to be
used to query the target system for the correct key value. The details how the
querying of the source and the target system is performed needs to be specified
by the user.

Internal-ID. Similar to the previous mapping category, the mapping expres-
sion for the category Internal-ID also cannot be generated automatically. The
reason is again, that the necessary information is not available. Nevertheless it
is still possible to generate a template that a user needs to complete afterwards.
This generated mapping expression template needs to support 2 strategies for
the translation of internal identifiers. Depending on the target system an inter-
nal identifier originating from the source system can either be translated using
an algorithm that needs to be specified by the user, or drawn from a particular
number range. The idea behind the second approach is, that sometimes auto-
generated internal identifiers are used. As an example consider the target schema
in the example in Figure 8.2. Now assume that business partners are in the sys-
tem that use the target schema identified by a key consisting of the letters “ABC”
followed by a running number. In this case the correct mapping expression for
the mapping category Internal-ID simply needs to insert the next unused key
from the range of valid numbers (e.g. “ABC456” in the example).

8.3 Mapping Extraction Algorithm 125

Create-Instance. The mapping expression of the Create-Instance category can
not be created automatically. In this case only a template for the mapping
expression which a user needs to complete can be created. The reason is that the
information regarding the necessary function that needs to be invoked in order
to create an instance in the target system is not available. This information has
to be provided by the user.

Query. The mapping expressions for the mapping category Query cannot be
created automatically. Again, only a template of the mapping expression which
needs to be completed by the user can be created. The reason is that the in-
formation regarding the specific functionality in the target system that should
be used for querying the appropriate identifier is not known. Consequently, this
part of the mapping expression needs to be completed by the user.

Complex. As mentioned earlier, the mapping expression for the mapping cat-
egory Complex can only be created manually. The reason is that this mapping
category subsumes all complex mapping expressions that are not part of any of
the other categories. Since in the case of the mapping category Complex no infor-
mation regarding the functionality achieved by the needed mapping expression is
available, no automatic support like the creation of a template can be provided.

8.3 Mapping Extraction Algorithm

This section describes the mapping extraction algorithm in detail. As mentioned
in the overview section at the beginning of this chapter, the mapping extraction
algorithm consists of two steps, the identification of matching schema entities
and, based on that, the identification of the appropriate mapping category.

8.3.1 Inferring Matching Schema Entities

Identifying matches between the source and target schema is the first step to
create the final schema mapping. Recall that the input to the mapping extraction
step are the two liftings LS1→O between the source schema S1 and the domain
ontologyO and LS2→O between the target schema and the domain ontology as well
as the domain ontology O. In order to identify all matches between S1 and S2, the
lifting LS2→O is used as a start. Each lifting element lk = (e1, . . . , ej, o) ∈ LS2→O
consists of a set of target schema entities {e1, . . . , ej} and one ontology entity o.
Algorithm 2 calculates for each lifting element lk the set of related source schema
lifting elements, creates a match on the basis of this lifting elements and adds it
to the resulting matching MatS1→S2 .

The algorithm to infer matching source and target schema entities performs
three basic steps for all lifting elements lS2 = (e1, . . . , ej, o) ∈ LS2→0:

126 Chapter 8: Mapping Extraction

Algorithm 2: The algorithm to infer matching source and target schema
entities.

Input: The source schema lifting LS1→O, the target schema lifting LS2→O,
the domain ontology O

Output: MatS1→S2

MatS1,S2 = ∅1

foreach (e1, . . . , ej, o) ∈ LS2→0 do2

OE = ∅3

Q = {(t1, . . . , tk, p) ∈ LS1→0 | p = o}4

if Q 6= ∅ then5

SE = {ti | (t1, . . . , ti, . . . , tk, p) ∈ Q}6

else7

SE = ∅8

if o ∈ C then9

OE = OE ∪ {e ∈ C | e ≤C o}10

OE = OE ∪ {e ∈ C | o ≤C e}11

foreach ō ∈ OE do12

P = {(x1, . . . , xl, y) ∈ LS1→0 | y = ō}13

SE = SE ∪ {xi | (x1, . . . , xi, . . . , xl, y) ∈ P}14

else if o ∈ R or o ∈ A then15

OE = OE ∪ similar(o)16

if OE = ∅ then17

OE = OE ∪ neighbour(o)18

foreach e ∈ OE do19

P = {(x1, . . . , xl, y) ∈ LS1→0 | y = ō}20

SE = SE ∪ {xi | (x1, . . . , xi, . . . , xl, y) ∈ P}21

if SE 6= ∅ then22

MatS1→S2 = MatS1→S2 ∪ {(SE, e1, . . . , ej)}23

else24

MatS1→S2 = MatS1→S2 ∪ {(ε, e1, . . . , ej)}25

return MatS→T26

8.3 Mapping Extraction Algorithm 127

1. Identify directly related source schema entities.

2. Search entities in reach if no directly related source schema entities can be
found.

3. Add related schema entities to the resulting matching MatS1→S2 .

A detailed description of each step of the matching extraction algorithm is pro-
vided in the following paragraphs.

In order to infer the resulting matching MatS1→S2 the algorithm starts by
iterating through all lifting elements lS2 = (e1, . . . , ej, o) ∈ LS2→0. First, the
algorithm checks if the source lifting LS1→O contains a directly related lifting, i.e.
a lifting to the ontology entity o (line 4). If this is the case, the schema entities of
the respective lifting element are added to the set of source schema entities SE
(line 5 and 6). Based on the identified sets of source schema entities SE, a new
match is added to the result matching MatS1→S2 at the end of each iteration (line
21 -24). Note that when a new match is added to the result matching MatS1→S2

a check is performed if the set SE actually contains any elements. If this is not
the case, a match consisting only of target schema entities is added to the result
(line 24). These “empty” matches allow to identify certain types of mapping
categories, like e.g. Default Value (cf. Section 8.3.2), in the mapping category
identification step that could not be identified otherwise.

If no directly related lifting is found, ontology entities in the reach of the on-
tology entity o are checked for related liftings. In this case, the further execution
of the algorithm depends on the type of the ontology entity o. If o is a concept in
the ontology (o ∈ C) then all sub- and super-concepts of o in the ontology O are
checked for related liftings. This check is performed in lines 8-13 of the listing. If
o, in contrast to the previous case, is either an attribute or a relation (o ∈ A∪R)
the algorithm uses two steps to find related liftings (lines 14-20). First, it searches
in the concept hierarchy for liftings to similar attributes or relations (line 15). If
no related liftings are found in the first step the neighborhood of the ontology
entity o is searched in the second step (line 17).

In this algorithm, similar attributes or relations are defined as attributes or
relations that have the same name and for which the domain is a sub- or superclass
of the domain of the entity o. More precisely the set similar(o) of attributes or
relations similar to o is defined as:

similar(o) := {ui}

ui :


ui ∈ R iff o ∈ R
ui ∈ A iff o ∈ A
name(o) = name(ui)
dom(o) ≤C dom(ui)

As an example consider the small excerpt of a domain ontology depicted in Fig-
ure 8.3. The attribute hasIdentifier of the concept Customer is according to

128 Chapter 8: Mapping Extraction

KUNNR

BusinessPartner

Source Schema: Target Schema:

DEBMAS

InternalID

... ...

Business Partner

hasIdentifier : string
hasRoleCode: string

Customer

hasIdentifier : string

Domain Ontology:

Figure 8.3: Example of liftings related through a sub-class relation.

this definition similar to the attribute hasIdentifier of the concept Business

Partner as, i) both are attributes, ii) the name of both attributes is identical
and iii) Business Partner is a superclass of Customer (Customer ≤C Business

Partner)
The neighborhood of an ontology entity o is the set of relations and attributes

that either have the domain of o as their range or their domain. More precisely
the set neighbour(o) contains all relations and attributes ni with:

neighbour(o) := {ni}

ni :

{
ni ∈ R ∪ A
dom(o) = dom(ni) ∨ range(o) = range(ni)

According to this definition, for example, the attributes hasRoleCode and
hasIdentifier are elements of the neighborhood the of the concept Business

Partner (cf. Figure 8.3).
The rational underlying the algorithm and definitions presented above is the

following: Whenever entities of the source and the target schema are lifted to
the same ontology entities, a match between those entities should be identified.
If no lifting to the same ontology entity can be identified, the cases where a
schema entity is lifted to a concept in the ontology or to a relation or attribute
need to be treated differently. If the ontology entity to which the target schema
entities are lifted is a concept, the algorithm searches in the concept hierarchy
for a related lifting. As an example consider the situation depicted in Figure 8.3.
In addition to the two schemas the figure shows a domain ontology containing
the concept Business Partner and its sub-concept Customer. The correct lifting
elements for the two top level elements of the two examples schemas are (DEBMAS,
Customer) and (BusinessPartner, Business Partner). In this case no direct
related lifting can be found by the presented algorithm. Therefore, the algorithm
checks the sub- and super-classes for related liftings and would, therefore, be
able to identify (DEBMAS, Customer) as a related lifting. Consequently, the match
(DEBMAS, BusinessPartner) would be added to the result.

8.3 Mapping Extraction Algorithm 129

KUNNR

BusinessPartner

Source Schema: Target Schema:

DEBMAS

InternalID

... ...

Business Partner

hasIdentifier : string
hasRoleCode: string

Customer

hasIdentifier : string

Domain Ontology:

Figure 8.4: Example of liftings related through inheritance.

In the cases, where the target schema entity is lifted to a relation or an at-
tribute, the situation is a little bit more complex. First, similar relations or
attributes in the concept hierarchy are checked for related liftings. The ratio-
nal is that first inherited relations and attributes should be checked for related
liftings. An example of this situation is depicted in Figure 8.4. In this exam-
ple, the source schema entity KUNNR is lifted to the attribute hasIdentifier of
the concept Customer and the target schema entity InternalID is lifted to the
attribute hasIdentifier of the concept Business Partner. Again, no directly
related lifting can be identified for the target schema lifting. Therefore, the algo-
rithm checks the attributes similar to the attribute hasIdentifier of the concept
Business Partner. In this case, the set similar(hasIdentifier) only consists of
the attribute hasIdentifier of the concept Customer. Based on this attribute,
the correct match (KUNNR, InternalID) can be identified.

The neighborhood of an entity is only checked for related liftings if the pre-
vious steps could not identify any related liftings.

Example Execution. In order to illustrate the execution of the Algorithm 2,
the examples depicted in Figure 8.3 and 8.4 are used. Based on this example,
the algorithm is executed using the following input:

• LS1→O = {(DEBMAS,Customer), (KUNNR, hasIdentifier)}

• LS2→O = {(BusinessPartner,Business Partner), (InternalID, hasIdentifier)}

• The domain ontology O.

Based on these inputs, the following two iterations of the main foreach loop of
the Algorithm 2 are performed:

1. Iteration:

(a) The target lifting element (BusinessPartner,Business Partner) is se-
lected. Consequently e1 = BusinessPartner and o = Business Partner.

130 Chapter 8: Mapping Extraction

(b) No directly related lifting element is found. Q = ∅ after line 4.

(c) As o ∈ C all sub- and super-classes of o are added to the set OE =
{Business Partner,Customer} in lines 10 and 11.

(d) Source schema lifting elements related to the ontology entities in OE
are (DEBMAS,Customer). Consequently SE = {DEBMAS} after
line 14.

(e) As SE is not empty MatS1→S2 is set to MatS1→S2 =
{(DEBMAS,BusinessPartner)} in line 23.

2. Iteration:

(a) The target lifting element (InternalID, hasIdentifier) is selected. Con-
sequently e1 = InternalID and o = hasIdentifier .

(b) No directly related lifting element is found. Q = ∅ after line 4.

(c) As o ∈ R similar relations are identified and added to OE =
{hasIdentifier} in line 16.

(d) As OE in not empty line 18 is not executed.

(e) Source schema lifting elements related to the ontology entities in OE
are (KUNNR, hasIdentifier). Consequently SE = {KUNNR} after
line 21.

(f) As SE is not empty MatS1→S2 is set to MatS1→S2 =
{(DEBMAS,BusinessPartner), (KUNNR, InternalID)} in line 23.

After the second iteration, the execution of the algorithm ends since all target
schema lifting elements have been visited in the main foreach loop. Conse-
quently, the result of the execution of Algorithm 2 using the example input is the
matching MatS1→S2 = {(DEBMAS,BusinessPartner), (KUNNR, InternalID)}.

8.3.2 Identification of Mapping Categories

After matching schema entities have been identified in the matching extraction
step, the next step is to identify the appropriate mapping category for each of the
matches. In order to identify the correct mapping category for a given match,
different types of background knowledge are required. Table 8.4 provides an
overview of the types of knowledge required to identify the mapping category of
a match. The table indicates if the identification of a particular mapping category
requires example data or integration knowledge modeled in the ontology. In the
subsequent paragraphs for each category the rules used in the OBM approach to
identify them based on the available background knowledge are explained.

8.3 Mapping Extraction Algorithm 131

Table 8.4: Required background knowledge for the identification of the different
mapping categories. The required type of knowledge is indicated by a !in the
table, not required knowledge by a #.

Category Name Example Integration
Data Knowledge

Move # #

Split ! #

Concatenate ! #

Code-Value-Mapping ! !

Key-Value-Mapping # !

Internal-ID # !

Default-Value # !

Create-Instance # !

Query # !

Complex # #

Move. Move is the default mapping category assigned to a matching between
one source schema and one target schema entity if no background knowledge
is available. Consequently, no background knowledge is necessary to identify
this mapping category. However, example data can be beneficial to check if the
mapping category Move is correct. Only if the example instance for the source
and the target schema entity are equal, Move is the correct mapping category.

Complex. Complex is the default mapping category assigned to any m : n
matches between the source and the target schema whenever no background
information is available. This mapping category is assigned also whenever none
of the other mapping categories is applicable for a given match.

Split. The mapping category Split indicates that the contents of the source
schema entity needs to be split and distributed across several target schema
entities. Therefore, Split can only occur in the case of a 1 : m match. In order
to identify the mapping category Split example data is necessary. The category
Split is assigned to a 1 : m match mati = (e1, e2, . . . , ej) if the example data
associated to each of the target schema entities e2, . . . , ej ∈ S2 is a sub-string of
the example data associated to the source schema entity e1 ∈ S1. If this is not
the case the mapping category Complex is assigned to the match.

Concatenate. As Concatenate is the opposite mapping category to Split, it
consequently only occurs in the case of n : 1 matches. The identification of the

132 Chapter 8: Mapping Extraction

mapping category Concatenate is also based on example data. If for a given match
mati = (e1, . . . , ej, ek) the example data for each source schema entity e1, . . . , ej ∈
S1 is a sub-string of the example data associated to ek ∈ S2 the mapping category
of this match is Concatenate, otherwise Complex is the mapping category used
for this match.

Code-Value-Mapping. In order to identify the mapping category Code-
Value-Mapping example data as well as integration knowledge is required. If
in the case of a 1 : 1 match the mapping category Move is not applicable as the
example data of the schema entities differs, the integration knowledge is checked.
If for either the source or the target schema entity or for both information regard-
ing used code lists is available in the integration knowledge, then the mapping
category Code-Value-Mapping is assigned to this match.

Furthermore, the example data can then be used to check if this mapping
category is correct. The example data associated to the source schema entity is
translated using the available code lists information. If the result of this transfor-
mation is the example data associated with the target schema entity the mapping
category Code-Value-Mapping is most likely correct.

Key-Value-Mapping. The mappings category Key-Value-Mapping is identi-
fied based on integration knowledge. In this case, example data is not useful as
the key values used in different system to identify instances of objects is certainly
different. In the OBM approach the mapping category Key-Value-Mapping is
assigned to a 1 : 1 match if the target entity of the match is a global identifier of
an instance (cf. Section 6.3.2).

Internal-ID. The mapping category Internal-ID can only be identified based
on integration knowledge. As the internal identifiers used in different systems
certainly differ, example data is not useful to identify this mapping category.
The category Internal-ID is assigned to a 1 : 1 match if the integration knowledge
contains the information that the target entity of the match is used as an internal
identifier.

Default-Value. The identification of the mapping category Default-Value de-
pends solely on integration knowledge. If for a match mati = (ε, e1) only consists
of a target schema entity e1 ∈ S2 the integration knowledge is checked if a default
value exists for this target schema entity. If this is the case, the mapping cate-
gory Default-Value is assigned to the match. Otherwise no mapping category is
assigned.

Create-Instance. Similar to the previous two mapping categories, the map-
ping category Create-Instance is identified based on integration knowledge. It is

8.4 Summary 133

assigned to 1 : 1 matches if the target schema entity is a complex entity, i.e. an
entity consisting of a complex sub-structure that has been lifted to a concept in
the domain ontology. Only in this case the complex schema entity represents an
independent object that needs to be created in the target system.

Query. The mapping category Query can easily be identified based on the
integration knowledge. If the target schema entity ek ∈ S2 of a n : 1 match
mati = (e1, . . . , ej, ek) is, according to the integration knowledge, an internal
identifier, the mapping category Query is assigned to this match.

Using the different rules described above, the mapping categories for each
match mati ∈MatS1→S2 is identified in the Mapping Category Identification step.
After this step, the resulting mapping MS1→S2 is available and can be presented
to the user for review, completion and testing (Step 5 in the semi-automatic
mapping process introduced in Section 5.2).

8.4 Summary

This chapter introduced an approach for the extraction of schema mappings on
the basis of two liftings. First, an overview of the proposed mapping extraction
approach was given. After that the concept of mapping categories was intro-
duced. These mapping categories abstract from the details of particular mapping
expressions and group similar mapping expressions into one mapping category.
The advantage of this abstraction is that the correct mapping category associated
to a match can be identified even in cases where the correct mapping expression
cannot be created. Furthermore, the mapping categories simplify the finaliza-
tion of the proposed mapping by a user. After this Section 8.3.1 presented an
algorithm for identifying matching schema entities on the basis of two liftings.
The chapter closed by introducing a set of rules that can be used to identify the
correct mapping expression for each match between two schemas by exploiting
the background knowledge in the ontology.

134 Chapter 8: Mapping Extraction

Part III

Implementation and Evaluation

Chapter 9

Implementation

In Part II of this thesis the Ontology-Based Schema Mapping (OBM) approach
was introduced. In order to evaluate the OBM approach and compare it to the
main requirements identified for semi-automatic mapping approaches in industrial
environments presented in Chapter 1 it is necessary to apply the OBM approach
to real integration problems. Consequently, a prototypical implementation of
the OBM approach has been developed. This chapter describes this prototypical
implementation and highlights its main features (Section 9.1). Furthermore, a
set of tools that were developed to simplify the evaluation of the approach are
described in this chapter (Section 9.2).

9.1 The OBM Framework

The OBM Framework is the prototypical implementation of the OBM approach.
Figure 9.1 shows the high-level architecture of the OBM approach in Fundamen-
tal Modeling Concepts (FMC) notation [KGT06]. The OBM Framework mainly
consists of the three components Lifting together with the Matcher Repository,
the Mapping Extraction, and the Repository Adapter . The functionality offered
by the OBM Framework is solely available through an API (for details see Ap-
pendix B). For example, the Evaluation Toolkit Evanto, which is described in the
following section, uses this API to execute evaluation scripts.

The Lifting component mainly consist of two parts, the Matching component
and the Aggregation component. Both are using the interface of the Reposi-
tory Adapter component to read schemas and the domain ontology from the
Input Data Repository into the internal representation. The current prototypical
implementation of the OBM Framework supports XML Schema as the schema
language and OWL-DL as the ontology language. The Lifting component ac-
cesses the Matcher Repository in order to instantiate particular matchers. The
results of the individual matchers are aggregated by the Aggregation component

138 Chapter 9: Implementation

Evanto

OBM Framework

R

Evaluation
Script 1

Evaluation
Script 2

Lifting Mapping Extraction

Input Data Repository

Schema
Repository

Ontology
Repository

Repository Adapter
Schema
Parser

Ontology
Parser

Result Repository

Lifting
Repository

Mapping
Repository

Lifting
Parser/Writer

Mapping
Parser/Writer

Matching AggregationM
atcher

R
epository

Rule Creation

R R

Evaluation
Script N...

Figure 9.1: Architecture of the OBM Framework.

using the algorithm introduced in Section 7.2.3. The resulting lifting is stored to
the Lifting Repository using the interface offered by the Repository Adapter.

The Mapping Extraction accesses the schemas, the domain ontology and the
corresponding liftings using again the interface of the Repository Adapter. Based
on two previously created liftings, the Rule Creation extracts the resulting map-
ping between the two schemas and stores it to the Mapping Repository. Again
the interface of the Repository Adapter is used to store the results. The cur-
rent implementation of the OBM Framework only supports the file system for
storing schemas, ontologies, liftings and mappings. Nevertheless, the described
architecture would allow to use different storage systems like e.g. a relational
database.

In the following subsections the in-memory representation as well as the seri-
alization formats for schemas, ontologies, liftings and mappings used in the OBM
Framework are described. Furthermore, necessary optimizations performed in
the implementation of the OBM Framework are discussed.

9.1 The OBM Framework 139

9.1.1 Schema and Ontology Representation

In the file system based repository implementation XML Schemas as well as OWL
Ontologies are simply stored as files.

However, the memory representations of both are optimized to support opti-
mized access to the information frequently required by the matching algorithms.
In the case of XML Schema, the matching algorithms frequently require access to
different facets of the schema entities like e.g. name or associated XML Schema
data types as well as to the parent and child entities. Consequently XML Schemas
are represented in memory as node labelled trees. Each node in this tree has at-
tributes like name, minimum and maximum cardinality, associated XML Schema
data as well as a list of children elements. Furthermore, each node (except the
root node of a schema) also has a link to its parent node.

The ontology is represented in memory as sets of objects that contain the
concepts, relations and attributes comprising the ontology.

9.1.2 Lifting Representation

Liftings are in the OBM Framework represented as a set of LiftingElements.
Each LiftingElement relates an entity path in the source schema to a concept,
relation or attribute in the ontology. Furthermore, each lifting contains a refer-
ence to the schema and the ontology the particular lifting has been created for.
Figure 9.2 shows a small excerpt of the XML-based serialization format used by
the OBM Framework to store liftings in the file system.

The figure shows that for each lifting the path to the source schema and
the ontology are stored (marked by the <sourceSchema> and <targetOnto>

elements respectively). The figure shows that in this example the
/DEBMAS06/IDOC/E1KNA1M/STRAS schema entity is lifted to the relation
hasHouseNumber that relates the concepts PostalAddress and HouseID as well
as to the relation hasStreetName that relates the concepts PostalAddress and
StreetName. Furthermore, for each lifting element the aggregated similarity value
that was calculated in the lifting step of the OBM approach is stored.

9.1.3 Mapping Representation

Mappings are represented in the OBM Framework as a list of MappingRules.
Each such MappingRule consists of the path of a source schema entity, the
path of the target schema entity and the associated mapping category. An
excerpt of the XML-based serialization format used by the OBM Framework
to store mappings in the file system is shown in Figure 9.3. The figure
shows an excerpt of the mapping between the SAP R/3 DEBMAS and the SAP

140 Chapter 9: Implementation

<Lifting>
<sourceSchema > *.xsd </sourceSchema>
<targetOnto > *.owl </targetOnto>
<liftingList >

...
<element>

<schemaEntity> /DEBMAS06/IDOC/E1KNA1M/STRAS </...>
<relation>

<domain> *.owl#PostalAddress </domain>
<property> *.owl#hasHouseNumber </property>
<range> *.owl#HouseID </range>

</relation>
<plausibility> 0.8 </plausibility>

</element>
<element>

<schemaEntity> /DEBMAS06/IDOC/E1KNA1M/STRAS </...>
<relation>

<domain> *.owl#PostalAddress </domain>
<property> *.owl#hasStreetName </property>
<range> *.owl#StreetName </range>

</relation>
<plausibility> 0.9 </plausibility>

</element>
...

</liftingList>
</Lifting>

Figure 9.2: Excerpt of the serialization format used to store liftings.

Business ByDesign BusinessPartner schema (cf. evaluation scenarios in
Chapter 10). The excerpt contains for example the mapping rule that the source
schema entity /DEBMAS06/E1KNA1M/PFACH is mapped to the target schema entity
(/BusinessPartner/AddressInformation/PostalAddress/Elements/POBoxID
using the mapping category Move.

9.1.4 Implementation Considerations & Optimizations

An important decision taken during the implementation of the OBM Framework
is the representation of the three-dimensional similarity matrix msim which is
created during the lifting step of the OBM approach (cf. Chapter 7) due to
the possibly high memory consumption of this matrix. In the OBM Framework
the similarity matrix msim is simply represented as a three-dimensional array of
floating point numbers. The following simple example shows that no optimization

9.1 The OBM Framework 141

<Mapping >
<sourceSchema xmlns = "" > ../source/*.xsd </sourceSchema>
<targetSchema xmlns = "" > ../target/*.xsd </targetSchema>

...
<rule>
<sourceSchemaEntity> /DEBMAS06/IDOC/E1KNA1M/STRAS </...>
<targetSchemaEntity> /../PostalAddress/Elements/HouseID </...>
<operation> SPLIT </...>

</rule>
<rule>
<sourceSchemaEntity> /DEBMAS06/IDOC/E1KNA1M/PFACH </...>
<targetSchemaEntity> /../PostalAddress/Elements/POBoxID </...>
<operation> MOVE </...>

</rule>
<rule>
<sourceSchemaEntity> /DEBMAS06/IDOC/E1KNA1M/ORT01 </...>
<targetSchemaEntity> /../PostalAddress/Elements/CityName </...>
<operation> MOVE </...>

</rule>
<rule>
<sourceSchemaEntity> /DEBMAS06/IDOC/E1KNA1M/REGIO </...>
<targetSchemaEntity> /../PostalAddress/Elements/RegionCode
</...>
<operation> CODE VALUE MAPPING </...>

</rule>
<rule>

...
</Mapping>

Figure 9.3: Excerpt of the serialization format used to store mappings.

of the memory representation of the similarity matrix msim is necessary. In order
to store the similarity matrix calculated using 5 different mapping algorithms for
a schema consisting of 1000 entities and an ontology consisting of 5000 entities,
the three-dimensional array requires roughly 95 MB of main memory which can
easily be handled by current desktop computers.1

The only optimization performed during the implementation of the OBM
Framework was the caching of intermediate results of the matching algorithms.
This caching ensures that e.g. the lexical similarity of two identical strings is
only calculated once. The calculation of identical similarity values occurs quite
often due to the reuse of complex elements like an address in different parts of

1The calculation above assumes that a floating point number is stored using 4 bytes which
e.g. is true for the data type float in the Java language.

142 Chapter 9: Implementation

large schemas. Consequently, the caching of the similarity values improved the
overall performance of the OBM Framework significantly.

The implementation details of the OBM Framework are not further discussed
in this chapter as they do not add to the understanding of the OBM approach.2

The following section introduces the evaluation toolkit Evanto which was devel-
oped to facilitate the evaluation of the OBM Framework in real world scenarios.

9.2 The Evaluation Toolkit Evanto

The evaluation toolkit Evanto was developed in order to enable the evaluation
of the OBM Framework. While the implementation of the OBM Framework
facilitates the integration of the OBM Framework into existing applications, it
makes the evaluation of the OBM approach underlying the OBM Framework
rather complex. The reason is that functionality necessary for the evaluation of an
automatic schema mapping approach such as, for example, automatic comparison
of generated mappings with manually created ones or the calculation of certain
quality metrics, is usually not available in existing applications.

The goal of Evanto is to enable a highly automated evaluation of the OBM
approach. This requires the execution of a series of tests using different combi-
nations of matchers and different schemas and ontologies as input. Furthermore,
a set of quality metrics needs to be calculated for each test in order to enable the
comparison of the OBM approach with previous test results and other existing
approaches.

Evanto achieves this goal by enabling a user to easily specify test scripts that
can later be executed automatically. Figure 9.4 shows a simple example of an
Evanto script. This test script consist of one test case (lines 21 − 35) including
the calculation of the test results (lines 33 − 34). For a detailed explanation of
this example script cf. Appendix C.

In addition to the possibility to define and execute evaluation scripts the
Evanto toolkit offers additional tools for analyzing the mappings created by the
evaluation scripts. The analysis tools enable e.g. the automatic creation of HTML
based reports describing the quality of the automatically created mappings using
different metrics.3 The generated reports ease the analysis of the OBM approach
as they e.g. allow to quickly compare the mapping quality achieved by different
matchers or across different schemas.

Agile Development. Besides enabling a highly automated evaluation of the
OBM approach, Evanto also enables the agile development of novel matching and

2The interested reader may refer to Appendix B were additional implementation details are
provided.

3A detailed description of the metrics used for analyzing the quality of automatically created
mappings is given in the following chapter.

9.2 The Evaluation Toolkit Evanto 143

1 setup do
2 # Set some variables that are used later
3 set :result target dir, "./results/"
4 set :domain onto, "./IntegrationOnto.owl"
5 # instanziate OBM Framework
6 @source fw = OBMFramework.new(File.new("./OCRD.xsd"), File.
7 new("./OCRD.xml"), File.new(domain onto), nil,
8 true)
9 @target fw = OBMFramework.new(File.new("./d CUSTOMER.xsd"),
10 File.new("./d CUSTOMER.xml"),File.new(
11 domain onto), nil, true)
12 # read master mapping from file
13 @mastermapping = Mapping.deserializeFromXMLString(File.
14 read(master mapping))
15 # initialize the matchers and the aggregation algorithm
16 @matcher = []
17 @matcher << SampleInstanceMatcher.new()
18 @aggregator = OntoBasedAggregator.new(0.5)
19 end
20
21 run :OCRD to CUSTOMER Mapping do
22 # lift the source schema and target schema
23 @source lifting = @source fw.doLifting(@matcher,
24 @aggregator)
25 @target lifting = @target fw.doLifting(@matcher,
26 @aggregator)
27 # extract the mapping from the two liftings
28 # and store it for later analysis
29 mapping extraction = MappingExtraction.new(@source lifting,
30 @target lifting, @source fw,
31 @target fw)
32 mapping = mapping extraction.extract mapping()
33 result(:mapping, :list => mapping , :master => ".
34 /OCRD CUSTOMER.xml")
35 end

Figure 9.4: Example of an Evanto script.

144 Chapter 9: Implementation

mapping extraction algorithms as well as the improvement of existing ones. One
of the practices used in agile software development [Bec00] is called test driven
development [Bec02]. The idea underlying test driven development is to imple-
ment automatic tests programs in the first step of the development cycle. These
automatic test programs are usually called unit tests. Once the unit tests are
available, the implementation of the actual functionality is frequently tested dur-
ing development. Using this approach, errors in the program code can be detected
early during the development phase of new functionality and therefore easily be
fixed. Agile development methods have proven very successful in improving code
quality.

Evanto builds upon these ideas and enables their usage in the context of au-
tomatic schema mapping. Evanto scripts can be used to develop unit tests for
schema matching and mapping extraction algorithms. Once an Evanto script as
well as the required master mappings are available, this script can be executed
whenever the implementation of a schema matching or mapping extraction algo-
rithms is modified. On the basis of the automatically created HTML reports, the
results of the performed changes can immediately be identified. Consequently,
the test scripts allow to easily identify problems or bugs and therefore help to
improve the quality of schema matching and mapping extraction algorithms.

9.3 Summary

This chapter provided a brief overview of the OBM Framework, the prototypi-
cally implementation of the OBM approach, as well as the Evanto toolkit. The
OBM Framework was implemented as a Java package which is accessible using
a simple API. This enables an easy integration of the OBM Framework into ex-
isting applications. Consequently the OBM Framework offers no user interface
to analyze automatically created mappings. Therefore, the Evanto toolkit was
developed to facilitate the evaluation of the OBM approach as well as the anal-
ysis of automatically created mappings. In the following chapter the detailed
evaluation of the OBM approach that was performed using the OBM Framework
together with the Evanto toolkit is presented.

Chapter 10

Evaluation

This chapter focuses on the evaluation of Ontology-Based Mapping (OBM). First,
industrial state of the art tools together with their functionality supporting the
creation of schema mappings are described (Section 10.1). Next, the general
evaluation approach and the scenarios used in the evaluation are introduced (Sec-
tion 10.2). A detailed description of the conducted experiments and their results
is given (Section 10.3). The conducted experiments consist of three parts. First,
experiments aiming at the evaluation of the two approaches for collecting back-
ground knowledge, namely the schema reduction and the example data injection,
are conducted in Section 10.3.1 and Section 10.3.2 respectively. Following this,
several different experiments are conducted to evaluate the OBM approach itself.
For each of the conducted experiments a detailed analysis and explanation of the
experimental results is given. The chapter closes by analyzing how well the OBM
approach achieves the requirements stated in Chapter 1.

10.1 Industrial State of the Art

As the integration scenarios described in chapter 2 are well known problems, a
large number of tools from different vendors exist to support these integration
scenarios. In order to put this evaluation of the OBM approach into perspective,
this section reviews the functionality offered by the different industrial tools to
support the creation of schema mappings.

10.1.1 Tools supporting B2B Integration

Depending on the focus two main types of tools exist, namely i) stand-alone
schema mapping tools and ii) fully fledged B2B integration middleware consisting
of design-time and runtime components.

146 Chapter 10: Evaluation

Stand-alone Schema Mapping Tools

Examples of stand-alone schema mapping tools are Altova Mapforce1 and Stylus
Studio2. Although these tools are developed by different vendors, the functional-
ity offered is quite similar. They support the manual creation of schema mappings
using graphical editors as well as standardized data transformation and querying
languages, e.g. XSLT [Wor99b] and XQuery [Wor07]. The resulting mappings
can usually be exported using two technologies:

1. They are exported using the standardized data transformation languages
(e.g. XSLT [Wor99b]). These mappings can be executed on any integration
server supporting these standards.

2. The mappings are used to generate executable code in a programming lan-
guage, e.g. Java, which can then be used to integrate the mapping into
existing applications.

The stand-alone schema mapping tools usually offer none or only very limited
support for the automatic creation of schema mappings. The only functionality
that is generally available is the automatic generation of mappings for identical
schemas or identical parts of them.

Furthermore, the stand-alone tools often support the data extraction from
different data sources like e.g. data bases, XML files or spreadsheets. Conse-
quently these tools could also be used to support the Data Migration of legacy
data. However, as important functionality (like test functionality integrated with
the target system; cf. Section 10.1.2) required to support legacy Data Migration
is missing in these tools they are usually not used for this purpose.

B2B Integration Solutions

Today B2B integration is usually implemented using an integration middle-
ware [Ber96], e.g. SAP Exchange Infrastructure [SO05], IBM WebSphere Message
Broker3 or Microsoft BizTalk Server.4 Such an integration middleware typically
consists of a repository, a runtime component and a design time tool. The repos-
itory stores all integration information and design time artifacts like the service
descriptions and endpoint addresses, the message schemas and corresponding
schema mappings and also additional configuration information. The runtime
component is responsible for invoking the integration services and for execut-
ing the message mappings, whereas the design time tool is used for developing

1http://www.altova.com/products/mapforce/data_mapping.html
2http://www.stylusstudio.com/xml_mapper.html
3Additional information available online at http://www-306.ibm.com/software/

integration/wbimessagebroker/.
4Additional information available online at http://www.microsoft.com/biztalk/

default.mspx

http://www.altova.com/products/mapforce/data_mapping.html
http://www.stylusstudio.com/xml_mapper.html
http://www-306.ibm.com/software/integration/wbimessagebroker/
http://www-306.ibm.com/software/integration/wbimessagebroker/
http://www.microsoft.com/biztalk/default.mspx
http://www.microsoft.com/biztalk/default.mspx

10.1 Industrial State of the Art 147

Figure 10.1: The design time tool of the SAP Exchange Infrastructure showing
two messages.

and testing the necessary mappings and configuring the runtime. Some vendors
of B2B integration solutions already offer mappings between a number of well
known industry standards (e.g. Seeburger and SAP) together with their solu-
tions.

The commercially available design time tools support the graphical develop-
ment of the necessary message mappings. An example of such a graphical tool
for the manual development of message mappings is shown by the screen shot in
Figure 10.1. It shows the design time tool of the SAP Exchange Infrastructure.
On the left hand side of the picture the structure of the source schema is shown,
while the right hand side shows the structure of the target schema. The lines
connecting entities of the two schemas represent matching schema entities while
the lower part of the figure shows the complex mapping rule associated to the
match between two schema entities.

Users of these tools create mappings between any elements of the source and
the target schema by connection them visually through drag and drop operations.
Complex mapping expressions can be created by associating predefined mapping
functions to the matches (lower part of the user interface). More advanced tools
even offer some kind of integrated development environment for mappings. Using
these tools a user can either create mappings by connecting nodes in the tree
representation of the schemas or by writing mapping scripts using a specialized

148 Chapter 10: Evaluation

programming language. The tool takes care of synchronizing both representations
of the mapping.

Besides a graphical modelling of message mappings most integration middle-
ware also allows the development of message mappings using general purpose
programming languages like e.g. C and Java or specialized scripting languages
like XSLT [Wor99b].

In commercial B2B integration solutions only very basic functionality for the
semi-automatic creation of schema mappings is available. These tools usually
only offer functionality to automatically create mappings for identical schemas
or sub-schemas. Furthermore, only limited support for the reuse of previous
mapping results is available. The approaches for reuse mostly rely on some kind
or reusable mapping template that can be created by a user.

10.1.2 Data Migration Tools

State of the art Data Migration tools are often tightly integrated with the target
system for which they support the Data Migration. Consequently it is difficult
to get information about those tools, as they are usually not sold separately. As
a result of this situation only the SAP Migration Workbench is reviewed in this
section as one example of current Data Migration tools. However, other Data
Migration tools are likely to offer similar functionality to the one provided by the
SAP Migration Workbench.

Similar to general purpose B2B integration tools the SAP Migration Work-
bench consists of design-time tools, a repository and a runtime engine. While the
design-time tools are used to develop the necessary transformations, the runtime
is responsible for executing them to perform the actual migration of the legacy
data.

The functionality offered by the design-time tools of the SAP Migration Work-
bench to support the mapping development is very similar to the one offered by
the B2B integration tools presented above. Figure 10.2 shows a screen shot of
the SAP Migration Workbench tool for developing schema mappings. The cen-
tral part of the screen shows the source schema on the left hand side and the
target schema on the right hand side. Furthermore, different types of meta in-
formation like e.g. the version of the mapping and who changed it is shown on
the screen. However, the SAP Migration Workbench currently offers no support
for the automatic creation of schema mappings.

One important additional feature of the SAP Migration Workbench is its
ability to perform correctness checks of the created mappings automatically using
example data. As it is tailored to support the migration of legacy data to specific
SAP solutions, the SAP Migration Workbench can be tightly integrated with the
specific target systems. This integration enables the SAP Migration Workbench
to invoke the interfaces offered by the target system to support the migration of
legacy data in a so called test mode. In this test mode the interface is invoked

10.1 Industrial State of the Art 149

Figure 10.2: Creation of schema mappings in the SAP Migration Workbench.

with test data but no actual data migration to the target system is performed.
However, a result of this invocation is that possible errors in the current mapping
can be identified. If e.g. the current mapping transforms a given test data string
into a code according to a custom code list but the result of this transformation is
not valid in the target system, an error is raised. The errors returned by the data
migration interface can then be used to present the developer of the mapping with
a list of possible errors existing in the current mapping. Such a list of possible
errors created by the invocation of the migration interface in test mode is shown
in Figure 10.3.

Although different tools are used for creating the mappings in the Data Mi-
gration scenario they suffer from the same limitations as the tools used for B2B
integration. The creation of the necessary mapping is a purely manual process
and only rudimentary automatic support is provided to the developer during the
creation of the mappings. Reuse is also only supported through the usage of
templates.

10.1.3 Documentation Tools

Besides the set of specific B2B integration and Data Migration tools mentioned
in the previous sections, there are also tools available enabling the development

150 Chapter 10: Evaluation

Figure 10.3: A list of possible errors in a schema mapping generated by the
invocation of a migration interface in test mode.

of integration guidelines. Examples of these tools are GEFEG.FX5 and Contivo
Vocabulary Management System6. Both tools allow the documentation of ex-
isting data formats using meta data and the creation of documents for guiding
integration projects on the basis of this annotation.

While these tools allow the documentation of schemas and the creation of
integration guidelines it is not possible to exploit this information to (semi-) au-
tomatically generate schema mappings. As a result, the necessary documentation
is in industrial integration projects in most cases not captured in such tools. In-
stead the necessary mappings are developed without a previous documentation of
the required integration knowledge. Consequently, this knowledge is not available
for reuse in future integration projects.

10.2 Evaluation Approach

In order to evaluate the OBM approach different real world scenarios in the area
of data migration are used. In each of the scenarios a set of schemas together with

5http://www.gefeg.com
6http://www.contivo.com/

http://www.gefeg.com
http://www.contivo.com/

10.2 Evaluation Approach 151

the correct mappings between them are used as a basis for the evaluation. The
correct mappings between the schemas were developed by experts in the context
of real integration projects prior to the experiments. By comparing the mappings
automatically generated by the OBM approach with the correct mappings and
also with the mappings proposed by other existing automatic schema mapping
approaches, the absolute mapping quality as well as the relative quality compared
to existing approaches is evaluated. The evaluation of the OBM approach focuses
on scenarios in the area of Data Migration as the mappings required there tend
to be more complex compared to B2B integration scenarios. The reason is, for
example, that more different mapping categories exist in the Data Migration case.
Consequently, an approach achieving good results in Data Migration scenarios
will also be capable of achieving good results in B2B integration scenarios.

Prior to the experiments focussing on evaluating the quality of the mappings
proposed by the OBM approach two, more experiments are conducted. These
experiments aim at evaluating the two approaches for the collection of domain
knowledge proposed in Section 6.2.

Before describing the experiments the following subsections describe the sce-
narios used throughout the evaluation in more detail.

10.2.1 Evaluation Scenarios

The scenarios used throughout the evaluation originate from the area of Data
Migration from legacy systems to SAP Business ByDesign.7 As the name already
suggests, the scenario originates from the area of data migration. Using SAP
Business ByDesign, a novel SAP solution for small and medium enterprises, as
a target system, the creation of schema mappings required for the migration of
master data from various source system is evaluated.

Schemas

The schemas used in the data migration scenario introduced above are the
schemas describing customer and supplier master data in different SAP systems.
In particular the following schemas are used during the evaluation:

Source schemas:

• The DEBMAS and CREMAS schemas used to represent customers and
suppliers in SAP R/3 release 4.0

• The DEBMAS, CREMAS and ADRMAS schemas used to represent customers,
suppliers and address data in SAP ERP

• The OCRD schema used to represent business partners in SAP Business
One (B1).

7http://www.sap.com/solutions/sme/businessbydesign/index.epx

http://www.sap.com/solutions/sme/businessbydesign/index.epx

152 Chapter 10: Evaluation

Table 10.1: The four evaluation scenarios.
Scenario Source Target

Scenario 1 R/3 Customer (SAP R/3
DEBMAS schema)

ByD Business Partner
(BusinessPartner
schema)

Scenario 2 B1 Customer (SAP Business
One OCRD)

ByD Business Partner

Scenario 3 R/3 Vendor (SAP R/3 CREMAS) ByD Business Partner
Scenario 4 B1 Vendor (SAP Business One

OCRD)
ByD Business Partner

Target Schema:

• BusinessPartner schema originating from SAP Business ByDesign
(ByD).

In the cases where two or more schemas are mentioned in the list above, the in-
formation regarding customers and suppliers is split across several schemas. Con-
sequently, all of these schemas need to be matched against the BusinessPartner

schema of the target system.

Scenarios

Based on the schemas introduced above the four evaluation scenarios listed in
Table 10.1 were defined. In the case of SAP Business One the suitable moulding
of the OCRD schema for representing either a vendor or a customer was chosen in
the respective scenarios.

Note that even though all schemas used in the evaluation originate from dif-
ferent SAP solutions they differ largely with respect to size, structure and used
naming conventions. The reason is that the solutions from which the differ-
ent schemas originate have been developed independently. For example, SAP
Business One originates from the acquisition of a smaller software company by
SAP. Consequently these schemas exhibit most of the characteristics expected
in complex migration projects. The naming of the elements ranges from cryptic
eight letter names in the DEBMAS and CREMAS schemas to very verbose naming in
the case of the BusinessPartner schema. The structure of the schemas ranges
from rather flat structures in the case of the DEBMAS and CREMAS schemas to
deeply nested structures in the case of the target schema. In addition, each
schema groups the information differently. As an example of the differences of
the evaluation schemas consider Figure 10.4 and Figure 10.5. The figures show a
graphical representation of a small excerpt from the BusinessPartner and the
DEBMAS schema.

10.2 Evaluation Approach 153
B

us
in

es
sP

ar
tn

er
 S

ch
em

a:

F
ig

u
re

10
.4

:
P

ar
ti

al
gr

ap
h
ic

al
re

p
re

se
n
ta

ti
on

of
th

e
st

ru
ct

u
re

an
d

n
am

in
g

of
th

e
B
u
s
i
n
e
s
s
P
a
r
t
n
e
r

sc
h
em

a.

154 Chapter 10: Evaluation

DEBMAS Schema:

Figure 10.5: Partial graphical representation of the structure and naming of the
DEBMAS schema.

10.2 Evaluation Approach 155

Table 10.2: Complexity of the schemas used for evaluation in the data migration
scenario.

Schema Number of elements

SAP Business ByDesign (Target Schema) 4639
SAP R/3 4.0 953
SAP ERP 2150
SAP Business One 480

As mentioned earlier, schemas encountered in B2B and Data Migration sce-
narios are usually very complex. The complexity of the schemas that comprise
the evaluation scenarios are shown in Table 10.2. For each set of schemas the
complexity in terms of schema elements comprising the schemas is listed in the
table.

In order to conduct the experiments the correct mappings, the so-called master
mappings, as well as the domain ontology need to be created for each of the four
scenarios. The following subsections describe in detail how the master mappings
as well as the domain ontology where created.

10.2.2 Master Mappings

As mentioned above, the master mappings used for the evaluation of the OBM
approach originate from real integration projects. The only preprocessing of
the existing mappings that was performed was the substitution of the concrete
mapping expressions. Each concrete mapping expression was substituted with
the corresponding mapping category. Therefore, information contained in the
master mappings used in the experiments only consisted of the matches between
the source and the target schema and the mapping category associated to each
of the matches.8

Furthermore, Table 10.3 shows the size of the master mappings with respect to
the number of mapping expressions comprising a master mapping for the different
evaluation scenarios. Note that the size of the master mappings is significantly
smaller then the size of the involved schemas. Based on this observation it is
obvious that in each of the evaluation scenarios only a subset of the schema
entities needs to be mapped in order to create a correct mapping.

10.2.3 Evaluation Ontology

The evaluation ontology was created independently of any of the schemas used in
the evaluation scenarios. Instead the domain ontology was modeled based on the
conceptual description of an internal data model for the concept business partner.

8An excerpt of one of the mappings used in the evaluation is shown in Figure 9.2.

156 Chapter 10: Evaluation

Table 10.3: The size of the master mappings in the different evaluation scenarios.
Scenario Number

of Mapping Expressions

Scenario 1 164
Scenario 2 49
Scenario 3 108
Scenario 4 40

On the basis of this documentation, the domain ontology could be created by a
domain expert within one to two weeks.

The evaluation ontology consists of two parts:

Business Partner Ontology: The Business Partner Ontology is an ontology
describing the domain of the evaluation scenarios, namely the domain of
business partners.

Integration Knowledge Ontology: The Integration Knowledge Ontology
builds upon the Business Partner Ontology and contains the integration
knowledge associated to different concepts, relations and attributes in the
Business Partner Ontology.

Note that in order to enable different types of experiments, the Integration Knowl-
edge Ontology only contains integration knowledge, i.e. annotations regarding
technical names, default values, internal and global identifiers and code lists, re-
lated to the SAP R/3 DEBMAS schema and the parts of the ORCD schema related
to customers. Details on the conducted experiments are given in the following
section.

The evaluation ontology was developed using OWL-DL as the ontology lan-
guage [Wor04a] and is quite complex. The Business Partner Ontology itself con-
sists of about 490 concepts, about 440 object properties and about 10 datatype
properties. In total, the Business Partner Ontology consists of approximately
1950 axioms. On the basis of this domain ontology the Integration Knowledge
Ontology was developed. It contains only the few additional concepts, object
and datatype properties that are necessary to model the integration knowledge
as presented in Section 6.3.2. In order to model the integration knowledge neces-
sary for the DEBMAS and the ORCD schema, nearly 790 individuals where created
in the Integration Knowledge Ontology. These individuals consists of about 330
individuals representing technical names of schema entities. The largest fraction
of the remaining individuals, namely approximately 350 individuals, are used
to model the example data while the others are used to model the rest of the
integration knowledge.

Note that the number of individuals is directly related to the modeled inte-
gration knowledge and the complexity of the integrated schemas. For example,

10.2 Evaluation Approach 157

modeling one technical name in the ontology requires one instance (cf. Chap-
ter 6). Consequently, the 330 individual s representing technical names model
the technical names of 330 schema elements. The number of individuals neces-
sary to represent the technical names of a particular schema only depends on the
size of this schema. This is true for all different types of integration knowledge
modeled in the ontology.

10.2.4 Quality Metrics

To quantify the quality of the automatically obtained mappings the standard
quality metrics Precision, Recall and F-Measure [DMR02] are used. Below these
three quality metrics are defined on the basis of a master mapping MS→T from
a source schema S to a target schema T and an automatically created mapping
MS→T . Note that the definitions given below are based on the ones presented by
Ehrig in [Ehr06].

Definition 10.2.1 (Precision). The Precision of a mapping MS→T with respect
to a master mapping MS→T is defined as:

Precision
(
MS→T ,MS→T

)
=

∣∣MS→T ∩MS→T
∣∣

|MS→T |

Definition 10.2.2 (Recall). The Recall of a mapping MS→T with respect to a
master mapping MS→T is defined as:

Recall
(
MS→T ,MS→T

)
=
|MS→T ∩MS→T |
|MS→T |

As it is obvious that a schema matching approach can easily be optimized to
achieve a high Precision at the cost of a low Recall and vice versa, therefore the
F-Measure combines Precision and Recall into one result.

Definition 10.2.3 (F-Measure). For a given Precision and Recall and a weight-
ing factor α F-Measure is defined as:

F −Measure(α) =
Precision ∗Recall

(1− α) ∗ Precision+ α ∗Recall
.

As F-Measure is most commonly used with a weighting factor α = 0.5
(cf. [DMR02, Ehr06]), i.e. Precision and Recall are equally weighted, this the-
sis also uses this weighting factor. The resulting formula for calculating the
F-Measure is F −Measure = 2 ∗ Precision∗Recall

Precision+Recall
.

158 Chapter 10: Evaluation

10.3 Experiments

This section describes the different experiments conducted in order to evaluate
different aspects of the OBM approach in detail. First, the described approaches
for schema reduction as well as the example data injection are evaluated before
Section 10.3.3 focuses in detail on the experiments evaluating the quality of the
automatically created schema mappings.

10.3.1 Schema Reduction

As described in Section 5.2 the first step in the automatic schema mapping process
is the Knowledge Collection step. The collection of the usage characteristics
of a particular schema by answering an electronic questionnaire as proposed in
Section 6.2.1 is part of this step. The answers to the questionnaire are then
exploited in the Preprocessing step to reduce the complexity of the mapping
problem.

In order to evaluate the usability of this approach a questionnaire covering the
capabilities of the BusinessPartner schema of the target system was developed.9

In the next step, the questionnaire was answered according to the capabilities
of the different source schemas. Based on these answers the BusinessPartner

schema was reduced to the capabilities of the source schemas. Note that this
reduction was performed manually as the automatic schema reduction based on
an electronic questionnaire has not yet been implemented as part of the OBM
framework (cf. Chapter 9), yet.

The time necessary to answer the questionnaire mainly depends on how de-
tailed the person answering the questionnaire knows the involved systems. In the
conducted experiments, the user that was answering the questionnaire had very
detailed knowledge of the source and the target system and was therefore able to
answer the questionnaire in about 15 minutes. The general assumption is that
answering the questions of the questionnaire should not take longer than 1 hour
even for inexperienced users. However, since the knowledge required to answer
the questionnaire is essential to create the schema mappings, the time necessary
to answer the questionnaire is not lost.

The results of the schema reduction experiments are listed in Table 10.4. It
shows the complexity of the reduced target schema based on the different source
system capabilities. Generally speaking, the proposed schema reduction approach
is capable of reducing the target schema to about 10-15% of its original size in
the evaluated cased. Furthermore many of the complex sub-structures can be
removed or largely simplified using this approach.

It is not possible to state exactly what elements of the target schema were
removed as this largely depends on the source schema capabilities. However, a

9The complete questionnaire is available in Appendix A

10.3 Experiments 159

Table 10.4: Complexity of the target schema after the reduction

Scenario Number
of Schema Entities

BYD Business Partner Schema 4639
reduced to capabilities of R/3 4.0 645
reduced to capabilities of SAP ERP 612
reduced to capabilities of SAP B1 639

typical example from the experiments is that the target schema supports storing
multiple, time dependent addresses per business partner. Some of the source
systems in the experiments do not support address information on this level of
detail. Consequently the complexity of the parts of the target schema responsible
for storing time dependent address information could significantly be reduced.

As the original target schema contains about 4600 elements which turned out
to be difficult to handle for the developed prototype, the following experiments
were only conducted with the reduced schemas. Therefore, it can only be pointed
out that the complexity of the target structure can be reduced significantly with
the proposed schema reduction approach. However, no absolute numbers on the
increase of the mapping quality compared to the unreduced schemas are available.

Nevertheless, one important benefit of the schema reduction approach is avail-
able even if the schema reduction would not improve the mapping quality. Due to
the fact that the reduced schemas are significantly less complex than the original
ones, the schema reduction obviously simplifies the manual review of the result-
ing mappings. Fewer mapping elements need to be reviewed and the individual
mapping expressions tend to be simplified. This advantage alone already justifies
the usage of the schema reduction approach.

10.3.2 Example Data Injection

In order to test the viability of the example data injection, an example in-
stance of a customer and a vendor according to the information contained in
the BusinessPartner schema were created in a human understandable format.
A small excerpt of the human understandable representation of the customer
example data used in the experiments is shown in Table 10.5. The Table con-
tains one example data value for each attribute of a customer. Using this human
understandable representation of the data as a basis, the user interfaces of the
different systems (i.e. SAP R/3, SAP ERP and SAP B1) were used to manually
create the example data in the respective systems.

These experiments resulted in a number of important observations. First, the
experiments showed that the creation of example data using the user interface of
a system is indeed easily possible. Since the well-known user interfaces are used

160 Chapter 10: Evaluation

Table 10.5: Excerpt of the example data for a customer.

Attribute Example Data Value

Identifier LMASCHMIXU
Role Customer
Role valid from 2003-03-03
Role valid to 2004-04-04
Form of Address Company
Name Maschmi Maximum AG
Verbal Communication Language English
Search Term SEARCH
Search Term2 TERM2
Salutation Text Hello
Foundation Date 2001-01-01
Liquidation Date 2002-02-02
Street Street Name
ZIP Code 76131
City Karlsruhe
Country Germany

to create example data instances, very little effort is required for the creation of
example data. In the evaluation scenarios described, the creation of one example
instance (i.e. a customer or a supplier) took around 10 minutes. However, it
is obvious that the time necessary for creating an example instance depends
heavily on the involved systems and can therefore not be quantified in detail.
Second, it became obvious that providing example data does not make sense for
all possible attributes of a business object, e.g. customer or vendor. The reason
is that the example data needs to be easily understandable by a business user,
who has to create the data in the source system. Consequently, the example
data should e.g. not include code values, which are usually not understandable
by a business user and also no system specific attributes. Finally, the schema
mapping experiments conducted later showed that the attributes of the example
data should not contain equal values as this reduces the accuracy of the example
data based matching algorithms. For this reason the example data shown in
Table 10.5 does not contain any identical date values.

10.3.3 Automatic Schema Mapping

In order to asses the quality of the schema mapping generated by the OBM
Framework, a number of experiments were performed using the scenarios intro-
duced above. The experiments can be grouped into three sets. In the first set
of experiments the OBM Framework was executed using string-similarity and

10.3 Experiments 161

structure-based lifting algorithms. These experiments aimed at assessing the ef-
fectiveness of string-similarity and structure-based algorithms in the evaluation
scenarios. In the next set of experiments the OBM Framework was executed
using the integration-knowledge-based lifting algorithms. The goal of these ex-
periments was to assess how well the integration knowledge modeled in the inte-
gration ontology can be exploited by the OBM approach. Finally, the third set
of experiments investigated how well the integrated reuse of the OBM approach
performs.

Exploitation of Entity Names and Structure

In the first experiment the OBM Framework was executed using only string-
similarity based lifting algorithms. In particular, the Name Matcher and
the Documentation Matcher where used in these experiment. In addition
COMA++ [DR02] was executed on the same schemas using its standard con-
figuration.10

In the experiments using only string-based lifting algorithms, the OBM ap-
proach is not capable of creating any mappings between the different schemas.
Consequently the achieved Precision and the achieved Recall was 0. COMA++
in contrast is able to achieve a average Precision of ∼ 0.23 and an average Recall
of ∼ 0.07, resulting in an average F-Measure of 0.1.

In the second experiment the OBM Framework was executed using only struc-
tural lifting algorithms. In particular the Node Path Matcher in combination with
the Related Entities Matcher was used in this experiment. The Related Entities
Matcher was configured to use the Name Matcher as its constituent matcher.
Again, the OBM approach was not capable of creating any mappings between
the different schemas. COMA++ was used in the same configuration as in the
previous experiment. Consequently, it achieved equal results.

Analysis. The results of the first two experiments indicate that neither the us-
age of string-similarity-based nor the usage of structural lifting algorithms alone
is sufficient for creating mappings in the evaluation scenarios. Even COMA++
using a combination of several more advanced string-based matching algorithms,
including e.g. dictionary-based ones, is only capable of achieving poor matching
results. An important fact of the results achieved by COMA++ is not visible in
the average values for COMA++ shown in the figures above. On the schemas
using only cryptical entity names in a flat structure (i.e. the schemas originating
from SAP R/3) COMA++ was also not able to create any correct matches be-
tween the source and the target schema. Only in the schemas using more verbose
entity names COMA++ was able to identify some matches. Furthermore, it is

10This configuration uses a number of different string-based and structure-based matching
algorithms.

162 Chapter 10: Evaluation

Figure 10.6: The results achieved by the OBM Framework using the Technical
Names matcher.

important to note that in contrast to COMA++ the OBM Approach identifies
mappings between the schemas and not only matches: a much more complex
task.

The main conclusion of the previous experiments is that automatic schema
matching approaches relying solely on schema information (cf. Section 7.2.1) are
not able to achieve high quality results in the used evaluation scenarios. There-
fore, the next set of experiments aimed at assessing the possibility of exploiting
the different types of integration knowledge introduced in Section 6.1.

Exploitation of Integration Knowledge

In the first experiment aiming at assessing the exploitation of integration knowl-
edge the OBM Framework was executed using only the Technical Names Matcher.
The results of this experiment are depicted in Figure 10.6. Using only the tech-
nical names matcher the OBM approach achieved, depending on the evaluation
scenario, a Precision between ∼ 0.92 and 1, a Recall between ∼ 0.69 and ∼ 0.83
and consequently a F-Measure between ∼ 0.79 and ∼ 0.91. Note that the on-
tology used in these experiments only contained the technical names annotations
for some of the used schemas (cf. Section 10.2.3). A detailed analysis on how well
the OBM approach can reuse existing annotations in novel scenarios is performed
in Section 10.3.3.

In the next experiment the OBM approach was executed using only the In-
stance Equality and the Instance Split/Concat Matcher. To do so, a predefined

10.3 Experiments 163

Figure 10.7: The results achieved by the OBM Framework using the combination
of the Instance Equality and the Instance Split/Concat matcher.

example instance was generated in the source and the target system using the
example data injection approach. The results achieved by the OBM approach
using these two matchers is depicted in Figure 10.7. Using the example data
based matchers as well as the generated example instances the OBM approach
achieved, depending on the scenario, a Precision between ∼ 0.96 and 1, a Re-
call between ∼ 0.23 and ∼ 0.48 and consequently a F-Measure between ∼ 0.37
and ∼ 0.65. The rather low Recall in this experiments originates from the fact
that example data does not exist for all schema entities. The result is that these
elements are not lifted to the ontology and consequently no mapping is created
for them. An explanation why example data is only created for a subset of the
entities of a schema is given in the previous section.

In the last experiment the OBM approach was executed using a combination
of the Technical Names, the Instance Equality and the Instance Split/Concat
Matchers. Using this combination of matchers the OBM approach achieved the
results depicted in Figure 10.8. The Precision achieved in this experiments ranges
from ∼ 0.95 to 1, the Recall from ∼ 0.66 to ∼ 0.86. Consequently the F-Measure
achieved ranges from ∼ 0.78 to ∼ 0.93. In addition to the results achieved
by the OBM Framework, Figure 10.8 also contains the average results achieved
by QuickMig [DSDR07] and COMA++ on in these scenarios. It is obvious that
using a combination of the Technical Names Matcher and the example-data-based
matchers, the OBM approach is capable of creating significantly better mappings
then COMA++. Furthermore, the results show that while the OBM Framework

164 Chapter 10: Evaluation

Figure 10.8: The results achieved by the OBM Framework using the combination
of Technical Names and example data based matchers.

achieves in comparison to QuickMig a slightly worse Precision, the average Recall
is significantly higher. This results in a significant improvement of the F-Measure
in comparison to QuickMig.

Analysis. An analysis of the three experiments above leads to two main obser-
vations:

1. The exploitation of integration knowledge enables the creation of high qual-
ity mappings.

2. The mapping quality is significantly improved in comparison to the Quick-
Mig approach.

In the following section, each of these two observations is discussed in more detail.
All three experiments conducted indicate that the OBM approach is capable

of creating high quality mappings. In particular, the third experiment shows
that the best results are achieved by the combination of different algorithms.
The reason for this improvement is that the combination of different matching
algorithms enables the exclusion of false positives. This feature becomes obvious
in the situation where integration knowledge of similar scenarios is reused (i.e.
the evaluation scenarios 2 and 4). In these cases, the Technical Names Matcher
for example proposes some false liftings on the basis of the existing integration
knowledge. The combination of different algorithms by aggregating the similarity

10.3 Experiments 165

values calculated by the individual matchers as presented in Section 7.3.1 helps
to remove these false proposals and thereby improve the overall quality.

The improvement of the results achieved by the OBM approach over Quick-
Mig are twofold. First, the OBM approach has more integration knowledge avail-
able. As QuickMig mainly exploits example data it is only capable of identifying
mappings of the categories Move, Split and Concatenate. Using the additional
integration knowledge available, OBM is capable of identifying matches of all
available categories. Consequently, the Recall achieved by OBM is much higher.
However, as in the OBM approach matches between schemas are not only identi-
fied based on example data but also on other integration knowledge, the possibil-
ity for proposing wrong mapping elements is higher, resulting in a slightly lower
Precision compared to the QuickMig approach.

Integrate Reuse

In order to evaluate the reuse of existing integration knowledge Figure 10.9 com-
pares the result achieved by the OBM approach by reusing existing integration
knowledge to QuickMig. The figure show the results achieved by the OBM ap-
proach in evaluation scenarios 2 and 4. In these two scenarios existing integration
knowledge from the evaluation scenarios 1 and 3 was reused. Furthermore, the
figure shows the average results achieved by OBM in the evaluation scenarios 2
and 4 as well as the average results achieved by QuickMig and COMA++ across
all evaluation scenarios. In the case of QuickMig the average results where already
achieved by reusing existing mappings. The reuse approach used by QuickMig is
based on the assumption of the transitivity of mappings introduced in [DR02] as
well as on a predefined reuse path (cf. [DSDR07] for details). This means that
in the QuickMig approach, the systems knows in advance which existing schema
mapping can be reused in a particular case. This approach significantly simplifies
the reuse of existing mappings.

Analysis. The results depicted in Figure 10.9 show that by reusing existing an-
notations, OBM achieves results comparable to the QuickMig approach. While
QuickMig retains an average Precision of 1, the OBM approach achieves higher
Recall values resulting in an improvement of the average F-Measure from 0.70 to
∼ 0.84. The results, however, are solely based on the reuse of existing integra-
tion knowledge. QuickMig achieves an average Precision of 1 as it only reuses
matches and the corresponding mapping expressions that can be verified with
the available example instance. Consequently, not all possibly reusable matches
and mappings expressions can be identified leading to the lower Recall values.
The OBM approach reuses all available integration knowledge and is therefore
capable of achieving significantly higher F-Measure values.

These results show that indeed integration knowledge gained in previous
projects can be exploited to create high quality mappings. Furthermore, adding

166 Chapter 10: Evaluation

Figure 10.9: The results achieved by the OBM Framework by reusing integration
knowledge from related integration scenarios.

contextual information to the integration knowledge as proposed in Section 6.3
simplifies the selection of the integration knowledge for reuse. While COMA++
requires a manual selection of possible reuse paths through a number of existing
mappings and QuickMig used predefined reuse paths, the integrated reuse ap-
proach of the OBM approach is much more flexible. It only relies on a definition
of similar contexts, which can easily be given in industrial scenarios.

Analysis Summary

In summary, the results achieved by the OBM approach show that by exploiting
domain and integration knowledge about 80% of the manual effort can be au-
tomated. As the overall approach requires an initial schema reduction and the
maintenance and extension of the domain ontology and integration knowledge,
this effort also has to be taken into account. However, as this knowledge can be
reused across different projects, the initial effort for creating the domain ontology
as well as the maintenance of the integration knowledge can quickly be amortized.

10.3.4 Requirements Revisited

In this subsection the requirements introduced in Chapter 1 are revisited. For
each of the requirements this section will check to which degree it is achieved by
the OBM approach and indicate possibilities for future enhancements.

10.3 Experiments 167

R1 (Quality). As stated in Chapter 1, the quality of the created mappings
is the most important requirement for the application of an automatic map-
ping approach in industrial settings. As indicated by the results achieved in the
evaluation scenarios the OBM approach is capable of creating schema mappings
with very high quality. Especially the property of the OBM approach to gen-
erate mappings with a very high Precision is important in an industrial setting.
Only if mappings are generated with a Precision close to 1 is a reduction of the
development effort achieved. If the Precision is too low, the identification and
the correction of the wrong mapping elements requires more effort than devel-
oping the mapping from scratch. In addition, the achieved Recall of ∼ 0.78 on
average shows that most mapping expression can be identified correctly by the
OBM approach. A user only needs to manually create the remaining mapping
expressions.

In summary, it is obvious that the OBM approach provides a significant im-
provement over existing approaches regarding the quality of automatically gen-
erated schema mappings.

R2 (Mappings) and R3 (Complex Mapping Expressions). As mentioned
in Section 8 the OBM approach identifies mapping expressions for each match
between two schemas. The correct mapping expression is identified with a very
high accuracy even for the more complex mapping categories. In fact, matches
between two schemas with the wrong mapping category assigned to it have been
counted as false positives in the experiments above. However, creating an exe-
cutable mapping expression from the mapping categories can only be partially
automated as described in Section 8.2.2.

In summary it can be stated that the OBM approach is a significant step to-
wards the semi-automatic creation of schema mappings instead of schema match-
ings. Given the possible complexity of mapping expressions in industrial integra-
tion scenarios identifying the correct mapping category for over 75% of the map-
ping expressions is a very good result. The possibility to at least create mapping
expression templates for all mapping categories except the category Complex
show that the OBM approach fully meets the requirement R2.

R4 (Capture and Reuse Integration Knowledge). In the OBM approach,
integration knowledge is captured by augmenting a domain ontology and ex-
ploited during the automatic mapping creation. This is one part of the require-
ment R4. Furthermore, R4 states that the chosen representation of the integra-
tion knowledge should enable a developer to easily query the available integration
knowledge. While this part of the requirement has not been investigated in this
thesis the choice of an ontology as the representation formalism enables the us-
age of the integration knowledge by humans. The reason is that representing the
concepts in a domain in a human interpretable way is one of the design goals un-

168 Chapter 10: Evaluation

derlying the development of ontologies (cf. Section 3.5). While current ontology
languages require significant training to enable a human user to understand the
represented knowledge it is possible to support a user by tools to simplify the
querying of the available integration knowledge. In addition the availability of
example instances for the concepts in the ontology should further facilitate the
human understanding of the integration knowledge.

R5 (Flexible Mapping Execution). All mappings generated by the OBM
approach are represented using the mapping categories introduced in Section 8.2.
These mapping categories provide an abstract representation of a mapping which
can semi-automatically be translated into the representation required by a par-
ticular execution environment. Consequently the OBM approach achieves the
requirement R5 based on the design underlying the approach.

R6 (Performance). The requirement for the performance of the OBM ap-
proach was to be executable in the area of minutes on typical mapping problems.
In the experiments conducted during the evaluation, the OBM Framework took
between 30 and 120 seconds for the automatic calculation of a schema mapping.
The execution time of the OBM Framework was mainly influenced by the com-
plexity of the source and the target schema. This execution time is inside the time
frame required by requirement R6. However, the current implementation of the
OBM Framework has not been optimized regarding performance. Consequently,
it might be possible to significantly improve execution time by an optimization
of the implementation.

10.4 Summary

This section focused on the evaluation of the OBM approach. After describing
industrial state of the art tools the general evaluation approach was introduced.
Next, a number of experiments aiming at the assessment of the feasibility of differ-
ent parts of the OBM approach were described. These experiments showed that
the proposed schema reduction as well as the proposed example data injection
approach are both viable solutions for the collection of integration knowledge.
The next set of experiments focused on assessing the quality of the mapping
generated by the OBM approach. The results of these experiments indicated
that the OBM approach is capable of automatically creating schema mappings
of high quality. Furthermore a comparison with existing tools showed that the
OBM approach achieved significantly better results as compared to state-of-the-
art research prototypes. Finally, the requirements listed in the introduction were
revisited. The analysis showed that indeed the OBM approach is capable of
archiving the requirements stated in Chapter 1.

Part IV

Summary and Outlook

Chapter 11

Summary & Future Work

In this chapter a summary of the presented work as well as an outlook on possible
future extensions is presented. After an outlook on possible future work (Sec-
tion 11.1) the possible application of the OBM approach to bootstrap semantic
Web services is presented. This chapter closes by presenting possible industrial
applications of the OBM approach within SAP (Section 11.3).

11.1 Future Work

This section details possible future extensions and improvements to the work
presented in this thesis. For the discussion of possible future work related to
the OBM approach, the generic ontology-based mapping process introduced in
Section 5.2 is taken as a guideline. For each of the process steps which are
highlighted in Figure 11.1 possible directions for future work are discussed.

11.1.1 Knowledge Collection

The Knowledge Collection step is the first step in the ontology-based mapping
process. In this thesis two possible approaches for knowledge collection were pre-
sented. The following paragraphs list future research directions for the knowledge
collection prior to the semi-automatic creation of schema mappings.

Knowledge
Collection

Pre-
processing Import

Automatic
Mapping

Calculation

Review,
Correction

&
Testing

Iteration

Finalisation

Figure 11.1: Steps of the ontology mapping process discussed in the future work.

172 Chapter 11: Summary & Future Work

Exploitable Types of Knowledge. The collection and exploitation of usage
characteristics and example data proved very successful in the presented
scenarios. However, other types of background knowledge are not yet ex-
ploited. Other types of knowledge that could possibly be exploited are, for
example, knowledge regarding extensions and customizations of a system
or messaging standard or knowledge regarding known usage characteristics
(cf. Section 6.1.2).

Although the relevant integration knowledge presented in Section 6.1.2 is
quite general, other types of integration knowledge could be more relevant in
scenarios that were not investigated in this thesis. Therefore future work on
the topic of Knowledge Collection should investigate wether the integration
knowledge relevant in B2B integration and Data Migration is also important
in other scenarios requiring the development of schema mappings or if other
types of integration knowledge need to be taken into account.

Knowledge Collection Approaches. The knowledge collection approaches
presented in Section 6.2 focus specifically on the collection of usage char-
acteristics and implementation details. These approaches to knowledge
collection can be improved and extended into different directions.

First, the existing approaches, namely example data injection and collection
of usage characteristics, should be integrated into a real tool. In contrast to
this thesis where the two knowledge collection approaches were implemented
and evaluated independently of the implementation of the OBM approach,
an integrated tool would allow to study the user interaction with a mapping
tool. Based on observations resulting from this interaction, the processes
used for the knowledge collection approaches could be further refined and
optimized.

Second, new approaches for the collection of different types of integration
knowledge should be investigated. As any additional knowledge improves
not only the quality achieved by an automatic schema mapping system but
also helps in the documentation of a system, the collection of additional
knowledge is definitely beneficial. However, when developing new knowl-
edge collection approaches, a strong focus needs to be put on enabling
the non-intrusive collection of knowledge. Approaches that require users to
learn complex tools or to invest significant effort in the knowledge collection
step will most likely not be used in industrial scenarios.

Third, the knowledge collection step should not only take the process of
generating schema mappings into account. Instead, approaches to collect
integration knowledge already during the development of systems should
also be investigated. Collecting the required integration knowledge already
throughout system development, e.g. through the annotation of source

11.1 Future Work 173

code or configuration files, would significantly simplify the future creation
of schema mappings.

Integration of Knowledge Collection and Context. Another promising
option is the integration of knowledge collection approaches and contextual
information. As an example, consider the collection of usage character-
istics. By presenting users only with the questionnaires related to the
current migration task, this knowledge collection approach already takes
the current context into account.

However, contextual information can potentially be exploited in much more
detail and can also be beneficially combined with any knowledge collection
approach. As an example consider the example data injection. In its current
version, a user receives a textual description of the example data and enters
this data in the system at hand. However, some of this example data is
not applicable in certain scenarios as e.g. particular data is not supported
by the involved system. Consequently, the example data injection could be
simplified if only applicable example data is presented to the users.

11.1.2 Automatic Mapping Calculation

The general future work related to the overall OBM approach is its application
and evaluation in different scenarios. The evaluation performed in this thesis
was focused on the two scenarios B2B integration and Data Migration and used
different SAP schemas for the evaluation. While these schemas contained all
types of integration challenges presented in Chapter 3, an evaluation of the OBM
approach with additional schemas originating from different integration scenarios
would nevertheless be interesting. In addition to this, the OBM approach should
be evaluated in different scenarios, e.g. Master Data Management,1 that require
mappings between schemas.

Specific future work focussing on the Automatic Mapping Calculation step
in the OBM approach is related to two parts, namely the lifting and the map-
ping extraction. In both areas different improvements, especially regarding the
selection of mapping algorithms and the parameterization of the algorithms, are
possible.

Domain-specific Parametrisation. Most semi-automatic schema mapping
tools require a user to set certain parameters i.e. setting threshold val-
ues for matching or cut off values for the search depth in the ontology,
manually. This is also true for the OBM approach. As in different sce-
narios different parameters are necessary to achieve high quality mappings,

1See http://en.wikipedia.org/wiki/Master_Data_Management for a short description of
the term Master Data Management.

http://en.wikipedia.org/wiki/Master_Data_Management

174 Chapter 11: Summary & Future Work

correctly setting the required parameters is difficult. One approach to im-
prove the usability of mapping tools is to automatically adjust the required
parameters to the current domain.

Different approaches for this automatic adjustment of parameters is possi-
ble. Either a set of parameters that perform well in certain domains could
be defined. Using contextual information that can e.g. be collected in
the Knowledge collection step, the appropriate set of parameters could be
selected. Another possible approach would be through a user interaction
during the Review and Iteration steps. In this case, the system would have
to monitor which mapping elements of a proposed mapping are accepted
and which rejected or changed. Based on this information the system could
try to adjust the parameter of a mapping tool. However, this approach to
setting the parameters of a mapping approach would require a very iterative
approach to schema mapping (cf. Section 11.1.4).

Selection and Weighting of Matching Algorithms. Instead of preselecting
a set of matching algorithms that are executed in order to lift a given
schema, the domain ontology also allows a dynamic selection and weight-
ing of matching algorithms. For example, instead of using a general purpose
instance-based matcher to match date and code-list instances either specific
matchers could be selected or the weighting of the matchers could be ad-
justed based on concepts in the domain ontology and the associated integra-
tion knowledge. If, for example, a concept in the ontology is a sub-concept
of a date, a specialized date-instance matcher could be given a higher weight
during the aggregation of the matcher results (cf. Section 7.3).

Semi-Automatic Extension of the Domain Ontology. One important as-
sumption that was made during the development of the OBM approach is
that the domain ontology dominates the schemas regarding the informa-
tion capacity (see Section 5.3 and [MIR93]). However, while this feature
of the domain ontology can be guaranteed in the case of Data Migration
scenarios2 it can not be guaranteed in the case of B2B integration projects.
Therefore, an application of the OBM approach in industrial scenarios also
requires functionality to extend and version the domain ontology if the
domain ontology does not dominate the schemas with respect to its infor-
mation capacity. One possible approach for the domain-specific extension
of a domain ontology used for B2B integration is given in [Stu07]. However,
the extension of the domain ontology needs to be further investigated and
also integrated with approaches for ontology modeling.

2In this case the domain ontology only needs to dominate the target schema as information
that cannot be represented by the target schema cannot be migrated.

11.1 Future Work 175

11.1.3 Review, Correction & Testing

Despite the fact that the Review, Correction & Testing step was not the focus of
this thesis, it plays an important role in productive scenarios. Only if automati-
cally created mappings can easily and quickly be reviewed, possibly corrected and
tested, will automatic schema mapping approaches be used in industrial scenar-
ios. Regarding the testing of mappings, the industrial tools for Data Migration
already provide powerful solutions (see Section 10.1.2). However, especially the
review and correction of automatically created mappings needs to be improved.

User Interface for Large Schemas. The user interfaces to support the
schema mapping task of both, research prototypes and industrial solutions,
are quite similar. Usually these tools present the source and target schema
or schemas as trees and mappings as lines connecting elements in these
trees. This kind of user interface is not very useful when creating mappings
for large schemas, as it quickly becomes cluttered and difficult to use. This
problem is even more important when large, automatically-generated map-
pings need to be reviewed and corrected by a user. In order to enable an
efficient review and correction for mappings novel user interface paradigms
for schema mappings need to be explored. User interfaces should focus on
the user’s current task, easily allowing one to hide currently unnecessary
information and thereby supporting a user much better than current tools.

One possibility for different user interfaces could be the use of confidence
markers for mapping elements. Current user interfaces of automatic schema
mapping tools like COMA often display a similarity value for identified
mapping elements. The idea is that a higher similarity represents a higher
confidence, that a mapping is correct. However, this is not sufficient es-
pecially when handling large schemas. A user needs to be able to quickly
identify which mapping elements need to be checked, which are certainly
correct or where additional work for completing the expression is needed.
That could, for example, be achieved by visual markers for mapping ele-
ments. Furthermore, a user should have the possibility to filter for certain
types of mappings, e.g. ones already accepted by him or ones mainly gen-
erated on the basis of example data. This would allow a user to more easily
identify relevant mapping expressions for review and correction.

Automatic Testing of Mappings. Testing functionality similar to the one al-
ready available in Data Migration tools is also required in the case of B2B
integration tools. Testing automatically generated mappings using example
data allows to quickly identify possible problems in the mapping. Highlight-
ing possibly wrong mapping elements enable a user to quickly fix the errors
leading to the wrong mapping.

176 Chapter 11: Summary & Future Work

11.1.4 Iteration & Finalization

The Iteration step is an important part of the ontology-based mapping process
that has not been discussed in this thesis. Developing a schema mapping using
the support of automatic mapping approaches will in real projects always result
in an iterative development process. For example, a user might create a first
mapping using the automatic mapping functionality, after that the user corrects
some mappings and also uses the automatic functionality to create a mapping for
a small sub-part of the schemas. In order to develop the OBM approach into a
complete solution, this Iteration step consequently has to be taken into account.
The following paragraphs highlight possible extensions of the OBM approach that
can be integrated into the iteration step.

Iterative Mapping Creation. The idea of an iterative mapping creation is
to support the creation of schema mappings in a highly interactive fashion.
While the user corrects an initial proposal created by the automatic schema
mapping approach, an updated proposal is calculated in the background.
In order to support this kind of interactive mapping creation user feedback
from the Review, Correction & Testing step needs to be used immediately to
update the automatically created mapping. Therefore, the execution time
of the performance of the matching algorithms needs to be significantly
improved. In addition, selection and weighting of the matching algorithms
based on user feedback is also required.

Integrating Knowledge into the Ontology. During the Review, Correction
& Testing step additional integration knowledge is generated. This ad-
ditional integration knowledge should be integrated into the integration
knowledge ontology in order to enable its exploitation in the future. This
integration could, for example, be performed in the finalization step. How-
ever, several problem exist for this integration. First, the correct ontology
entity for associating the new integration knowledge with needs to be iden-
tified. Second, approaches for ontology versioning and conflict resolution
have to be taken into account. Finally, the integration of new integration
knowledge should happen non-intrusively and should only require minimal
user interaction

11.2 Application of the OBM Approach to se-

mantic Web services

A recent development in research are semantic Web services [MSZ01]. The ra-
tional behind the development of semantic Web services is the automation of
certain tasks during the life cycle of a Web service. Typical tasks that semantic

11.2 Application of the OBM Approach to semantic Web services 177

Web services aim to automate are the discovery of suitable services or the com-
position of different services in order to perform some complex task. In order
to achieve this, semantic Web services extend Web service descriptions with a
formal description of the Web service functionality, its inputs and outputs, and
its behavioral requirements. The formal description of semantic Web services
includes an annotation which is expressed by using an ontology. Currently, there
exist two competing frameworks for the expression of semantic Web services:
OWL-S[The04] and WSMO[Dig04]. The METEOR-S project[Lar05] aims at the
same target, but is restricted to the adaptation of existing languages, like WSDL-
S[AFM+05]. OWL-S and WSMO were developed completely from scratch to fully
support the whole potential of semantic technologies.

The goal of all semantic Web service frameworks is to create semantic Web
services based on existing Web services in order to reuse existing development.
To achieve this, all frameworks require the annotation of existing Web services
using ontologies. Take a B2B service that accepts purchase orders in the message
format depicted in Figure 2.2 as an example. Creating a semantic Web service
based on this Web service would, besides other tasks, require the annotation of
each element of the schema with entities of an ontology. In the context of a B2B
service performing this annotation requires significant effort due to the size of the
involved message schemas. Therefore, in order to bootstrap the usage of semantic
Web services in industry, an automation of the initial annotation of existing Web
services is required [HK03]. The following discussion focuses on the annotation
of the input and output messages of existing Web services.

Automating this annotation requires the creation of a mapping between the
schema elements of the input and output messages and the entities of the ontology
used for annotating the Web service. The mappings necessary for annotating
semantic Web services differ from the ones required in the areas of B2B integration
and Data Migration as they map between different representation formalisms. In
the B2B integration or Data Migration scenarios both, the source and the target,
are schemas while when annotating Web services the sources of the mapping are
schemas and the target are ontologies. In the following paragraphs, the special
mappings necessary for annotating Web services are referred to as schema liftings.
A formal definition of the term is given in Section 4.5. For now it is sufficient
to understand that a schema lifting is a mapping between a schema and a given
ontology. The task of creating such a schema lifting is required whenever a
existing Web service needs to be annotated with an existing ontology.

Schema lifting involves two steps:

1. Identifying correspondences between the source schema and the target on-
tology

2. Creating the mapping rules for the identified correspondences.

However, the second step is optional in the schema lifting use case.

178 Chapter 11: Summary & Future Work

It is important to note that an annotation of an existing schema can only be
performed with good quality if the ontology used for annotation is sufficiently
detailed. If this is not the case, it is only possible to create the annotation for a
limited number of schema elements.

11.3 Industrial Applications

In order to show the applicability of the OBM approach in industrial applications,
this paragraph highlights three possible SAP applications or prototypes where
semi-automatic mapping functionality on the basis of the OBM approach could
be applied beneficially. It is important to understand that this list does not
contain applications into which the OBM approach will be integrated in the near
future, but rather a list of possible candidates for an integration. Nevertheless,
first prototypes exist for some applications (e.g. a prototype related to the SAP
Migration Workbench) in which at least parts of the OBM approach have already
been integrated. Furthermore, the list of possible applications presented below is
not extensive, but rather represents a selection of applications where first work
regarding semi-automatic schema matching was performed. The OBM approach
could also be applied to other SAP applications like SAP NetWeaver Master
Data Management or the SAP Exchange Infrastructure. The SAP applications
for which an extension with the OBM approach is discussed below are i) the SAP
NetWeaver Composition Environment, ii) the SAP Migration Workbench and iii)
the SAP CCTS Modeller Wrap 10.

11.3.1 The SAP NetWeaver Composition Environment

The SAP NetWeaver Composition Environment is part of SAPs NetWeaver offer-
ing. It enables users to develop so-called composite applications. These composite
applications compose functionalities of legacy systems as well as SAP systems into
new applications. In a recent press release SAP announced a future extension
of the SAP NetWeaver Composition Environment called Galaxy [Nie08]. Galaxy
consists of a runtime and a design-time component and enables the modeling,
execution, management and monitoring of business processes.

Figure 11.2 shows a screen shot of the design-time component of Galaxy, the
Galaxy Workbench. The central part of the screen shows a complex business
process modeled within the tool. Each of the independent, automated process
steps, like e.g. the process step “Sales Order”, is implemented using a Web
service. As different steps in the process are implemented using independently
developed Web services, a mapping between the input and output messages of the
Web services and the global data representation of the whole process is required.
These mappings are developed using the mapping editor which is shown in the
lower part of the screen.

11.3 Industrial Applications 179

Figure 11.2: The Galaxy Workbench showing a simple process and a schema
mapping.

As the input and output messages of Web services in industrial scenarios are
usually quite complex, the mapping editor of the Galaxy Workbench is a natural
candidate for an extension with the automatic mapping functionality provided by
the OBM approach. Currently only basic mapping functionality based on simple
name matching algorithms is available in the Galaxy Workbench.

11.3.2 The SAP Migration Workbench

The SAP Migration Workbench is a tool developed by SAP to support the migra-
tion of legacy data to SAP solutions. Its functionality has already been described
in Section 10.1.2. The SAP Migration Workbench is targeted specifically on mi-
gration experts supporting customers in the migration of their legacy data.

The OBM approach can be used to extend the SAP Migration Workbench into
two directions. First, the OBM approach could be integrated directly into the
SAP Migration Workbench in order to support consultants during the creation
of mappings in Data Migration projects. Second, the OBM approach could be
used to extend the target user group of the SAP Migration Workbench into
the direction of non-expert users. As the first option is very similar to the one

180 Chapter 11: Summary & Future Work

discussed in the context of the Galaxy Workbench, the following paragraphs focus
on the second one.

The main idea underlying an extension of the SAP Migration Workbench in
the direction of non-expert users is to allow inexperienced users to create an initial
mapping between their legacy system and the SAP solution. This initial mapping
could be taken in a second step and completed by a migration expert in order
to complete the mapping. The OBM approach would be a suitable fit to enable
such a solution. Using the example data and the schema reduction approach,
valuable integration information could be gathered even by inexperienced users.
The OBM approach could then be used to create a first mapping. A first sanity
check of this mapping would be performed again by the user. As the mapping
is expressed using the mapping categories, this sanity check does not require any
expert knowledge. In the subsequent step a migration expert would take the
initial mapping and complete it before performing the actual Data Migration.

This approach separates the rather complex task of creating an executable
mapping and testing it from the much simpler task of injecting example data,
answering a questionnaire and performing a first sanity check of a mapping.
Consequently, this extension of the SAP Migration Workbench would allow in-
experienced users to perform some parts of the tasks that currently need to be
performed by migration experts.

11.3.3 SAP CCTS Modeller Warp 10

SAP CCTS Modeller Warp 10 [Stu07, SC07] is a recent prototype developed
by SAP aiming at solving three difficult problems. The first goal of the CCTS
Modeller Warp 10 is to enable the easy adaptation of existing B2B messaging
standards to the specific needs in a certain domain. Based on this, the second
goal of the CCTS Modeller Warp 10 is to enable a harmonization of extensions and
modifications made to a B2B messaging standard. Third, CCTS Modeller Warp
10 aims at automating the creation of mappings between different messaging
standards.

The CCTS Modeller Warp 10 tries to achieve these ambitious goals by map-
ping existing B2B messaging standards to a central ontology which is based on
the UN/CEFACT Core Component Technical Specification [WSC+07]. Exten-
sions and modifications to B2B messages are then not performed at the level of
the message schemas, but rather at the ontology level. The required schemas are
later on automatically extracted from the central ontology.

Figure 11.3 shows the high-level architecture of the CCTS Modeller Warp
10. One of the central parts of this architecture is the context-driven semi-
automatic mapping of B2B standards. The OBM approach would be an ideal fit
for implementing the functionality required by this component. The reason is that
the CCTS Modeller Warp 10 is already based on the idea of a central ontology.
Consequently, the primary requirement of the OBM approach is already fulfilled.

11.3 Industrial Applications 181

Figure 11.3: High-level architecture of the CCTS Modeller Warp 10.

182 Chapter 11: Summary & Future Work

Chapter 12

Conclusion

The two main contributions of this thesis are an ontology-based schema mapping
approach and two novel approaches for the non-intrusive collection of integration
knowledge from users. Both parts of the thesis have been applied and evaluated in
industrial integration scenarios (cf. Chapter 10). On the one hand, the feasibility
to collect integration knowledge using the two presented approaches could be
proven in this evaluation. On the other hand, the evaluation showed that the
proposed ontology-based mapping approach enables the automatic creation of
high quality schema mappings.

Next, the research questions posed in the abstract are revisited and the pro-
posed solutions are reviewed.

• Which knowledge is necessary to create schema mappings? The analysis
in Section 6.1 showed that two types of knowledge, namely domain and
integration knowledge, are necessary to create schema mappings. While
domain knowledge is related to the relation of the real world entities rep-
resented by certain schemas or schema entities, integration knowledge is
related to detailed knowledge concerning a specific implementation of a
system or messaging standard.

• How can the necessary background knowledge be collected? In Section 6.2
two different approaches to collect required background knowledge, in par-
ticular integration knowledge were introduced. While the proposed ap-
proach to the collection of usage characteristics focusses specifically on one
type of integration knowledge, the Example Data Injection can be used
to easily collect knowledge regarding different implementation details. The
goal of both approaches was to non-intrusively collect the integration knowl-
edge from a user with no detailed implementation knowledge of the involved
systems. The reason is that in industrial integration scenarios, e.g. in the
area of Data Migration, implementation knowledge of the involved systems
is usually not easily accessible (cf. Section 2.2). Consequently, approaches

184 Chapter 12: Conclusion

aiming at the collection of background knowledge should also be applicable
in these cases.

The evaluation in Chapter 10 showed the feasibility of both approaches in
industrial integration scenarios. While the collection of usage character-
istics could be used to significantly reduce the complexity of the schema
mapping problem, the Example Data Injection proved very successful for
automatically creating schema mappings of high quality. Furthermore, the
evaluation showed that both approaches could easily be used in situations
where no detailed implementation knowledge of the involved systems or
messaging standards is available.

• How can background knowledge be exploited by an automated approach?
One of the key requirements of the different integration scenarios presented
in Section 2 is the capturing and reuse of background knowledge. Sec-
tion 6.3 showed how domain and integration knowledge can be modeled in
an ontology enabling the usages of the captured knowledge by both, humans
and machines.

Based on the representation of background knowledge in a domain ontology
the Ontology-Based Mapping (OBM) approach was developed in Chapters 7
and 8. The OBM approach divides the problem of developing a schema
mapping for two schemas into two sub-problems: i) the lifting of the two
schemas to a domain ontology and ii) the extraction of a schema mapping
based on two liftings and a domain ontology. In both steps of the OBM
approach, the background knowledge modeled in the ontology is exploited.
During the lifting step it is exploited by the different matching algorithms
(cf. Section 7.2)and the aggregation algorithm (cf. Section 7.3) to create a
lifting between a schema and the domain ontology while during the mapping
extraction step the background knowledge is used to identify the correct
mapping category (cf. Section 8.3).

• Can complex mappings be created automatically? The analysis of differ-
ent scenarios in the area of B2B integration and Data Migration showed
that complex mapping expressions are very common (cf. Section 8.2.1).
However, creating these complex mapping expressions automatically is not
always possible. Therefore, the concept of mapping categories was intro-
duced in Section 8.2. The idea underlying the mapping categories is to
abstract from the details of complex mapping expressions resulting in two
simplifications in the mapping process:

– similar mapping expressions are grouped into one mapping category

– mapping categories ease the development of the correct mapping ex-
pressions by a user.

185

The grouping of similar complex mapping expressions into one mapping cat-
egory enables the automatic identification of the correct mapping category
even in situations where the correct mapping expressions cannot be created.
The identification of the correct mapping category is based mainly on the
available background knowledge. The evaluation in Chapter 10 showed that
the OBM approach is capable of identifying the correct mapping expression
with very high precision.

In the case of some of the simple mapping categories, it is even possible to
generate the mapping expressions automatically. In the case of the more
complex ones at least templates of mapping expressions can be created au-
tomatically. These templates need to be completed by the user afterwards.
In these cases the mapping category at least provides the user with addi-
tional information regarding the needed mapping expression consequently
simplifying the development task of the user.

• Can the mapping quality required for industrial applications be achieved?
The evaluation in Chapter 10 was performed using real world scenarios in
the area of data migration. In these experiments the OBM approach was
capable of achieving a average precision of ∼ 0.97 and average recall of
∼ 0.78 and consequently an average F-Measure of ∼ 0.87. For each of the
identified matches the correct mapping category was also identified in the
experiments. The results presented are a significant improvement over the
results achieved by existing approaches.

The results achieved by the OBM approach show that by exploiting do-
main and integration knowledge, about 80% of the manual effort can be
automated. As the overall approach requires an initial schema reduction
and the maintenance and extension of the domain ontology and integra-
tion knowledge, this effort also has to be taken into account. However, as
this knowledge can be reused across different projects, the initial effort for
creating the domain ontology as well as the maintenance of the integration
knowledge can quickly be amortized.

Put together, the results in this thesis show that the OBM approach is ca-
pable of achieving the mapping quality required for industrial applications. By
exploiting domain and integration knowledge even the correct mapping category
can be identified automatically. The collection of usage characteristics and the
Example Data Injection enable the non-intrusive collection of integration knowl-
edge. In summary, the results presented in this thesis achieve the ambitious goal
of developing schema mapping to a new level where it can be applied in industrial
settings, presented in the introduction.

186 Chapter 12: Conclusion

Part V

Appendix

Appendix A

Questionnaire to Collect Usage
Characteristics

The following questionnaire was used to evaluate the collection and exploitation
of usage characteristics in the data migration to SAP Business ByDesign scenario.
It is obvious that some questions of this questionnaire are closely related. If, for
example, in a given integration project no address data should be imported for
a certain object (e.g.. for the Customer object), the questions regarding address
versions and phone numbers are not relevant. Consequently, only the relevant
questions (according to previous answers) where presented to the user during
evaluation.

• Which objects should be imported into the system? Possible answers: Cus-
tomer, Supplier, Employee, House Bank, Clearing House, Tax Authority,
Business Partner.

• Business Partner Questionnaire

– Does the object business partner also cover persons?

– Should time dependent business partner data be imported?

– Should address data be imported?

– Should different address versions such as “Kanji” be imported?

– Should different address types or usages such as “delivery address” be
imported?

– Should notes for addresses be imported?

– How should communication data such as phone numbers be imported?

– Should phone numbers be imported?

– Should fax numbers be imported?

– Should email addresses be imported?

190 Appendix A: Questionnaire to Collect Usage Characteristics

– Should URLs such as homepages be imported?

– Should contact person relationships be imported?

– Can the same person be the contact person for multiple business part-
ners?

– Can a contact person have multiple workplaces at different locations
of the same business partner?

– Should contact person calling hours be imported?

– Should contact person visiting hours be imported?

– Should contact person private address information be imported?

– Should service performer relationships be imported?

– Can the same person be service performer for multiple business part-
ners?

– Can a service performer have multiple workplaces at different locations
of the same business partner?

– Should service performer calling hours be imported?

– Should service performer visiting hours be imported?

– Should service performer private address information be imported?

– Should shareholder relationships be imported?

– Should other relationships such as ”ship-to-party” be imported?

– Should bank account information be imported?

– Should payment card information be imported?

– Should blocks and blocking reasons for payment cards be imported?

– Should identification numbers be imported?

– Should tax numbers be imported?

– Should texts be imported?

– Should attachments be imported?

– Should address independent communication data be imported?

• Customer Questionnaire

– Does the object customer also cover persons?

– Should time dependent customer data be imported?

– Should address data be imported?

– Should different address versions such as “Kanji” be imported?

191

– Should different address types or usages such as “delivery address” be
imported?

– Should notes for addresses be imported?

– How should communication data such as phone numbers be imported?

– Should phone numbers be imported?

– Should fax numbers be imported?

– Should email addresses be imported?

– Should URLs such as homepages be imported?

– Should contact person relationships be imported?

– Can the same person be the ontact person for multiple customers?

– Can a contact person have multiple workplaces at different locations
of the same customer?

– Should contact person calling hours be imported?

– Should contact person visiting hours be imported?

– Should contact person private address information be imported?

– Should service performer relationships be imported?

– Can the same person be service performer for multiple customers?

– Can a service performer have multiple workplaces at different locations
of the same customer?

– Should service performer calling hours be imported?

– Should service performer visiting hours be imported?

– Should service performer private address information be imported?

– Should shareholder relationships be imported?

– Should other relationships such as “ship-to-party” be imported?

– Should bank account information be imported?

– Should payment card information be imported?

– Should blocks and blocking reasons for payment cards be imported?

– Should identification numbers be imported?

– Should tax numbers be imported?

– Should texts be imported?

– Should attachments be imported?

– Should address independent communication data be imported?

– Should role information such as “customer is a prospect” be imported?

192 Appendix A: Questionnaire to Collect Usage Characteristics

– Should industry sectors be imported?

– Should tax exemptions be imported?

– Should calling hours be imported?

– Should visiting hours be imported?

– Should goods receiving hours be imported?

– Should marketing data be imported?

– Should sales data be imported?

• Supplier Questionnaire

– Does the object supplier also cover persons?

– Should time dependent supplier data be imported?

– Should address data be imported?

– Should different address versions such as “Kanji” be imported?

– Should different address types or usages such as “delivery address” be
imported?

– Should notes for addresses be imported?

– How should communication data such as phone numbers be imported?

– Should phone numbers be imported?

– Should fax numbers be imported?

– Should email addresses be imported?

– Should URLs such as homepages be imported?

– Should contact person relationships be imported?

– Can the same person be the contact person for multiple suppliers?

– Can a contact person have multiple workplaces at different locations
of the same supplier?

– Should contact person calling hours be imported?

– Should contact person visiting hours be imported?

– Should contact person private address information be imported?

– Should service performer relationships be imported?

– Can the same person be service performer for multiple suppliers?

– Can a service performer have multiple workplaces at different locations
of the same supplier?

– Should service performer calling hours be imported?

193

– Should service performer visiting hours be imported?

– Should service performer private address information be imported?

– Should shareholder relationships be imported?

– Should other relationships such as ”invoicing-party” be imported?

– Should bank account information be imported?

– Should identification numbers be imported?

– Should tax numbers be imported?

– Should texts be imported?

– Should attachments be imported?

– Should address independent communication data be imported?

– Should role information such as “supplier is a bidder” be imported?

– Should industry sectors be imported?

– Should tax exemptions be imported?

– Should bidding characteristics be imported?

– Should quality system information be imported?

– Should product category information be imported?

– Should procurement data be imported?

• Employee Questionnaire

– Does the object employee also cover external employees?

– Should time dependent employee data be imported?

– Should address data be imported?

– Should different address versions such as “Kanji” be imported?

– Should different address types or usages such as “delivery address” be
imported?

– Should notes for addresses be imported?

– How should communication data such as phone numbers be imported?

– Should phone numbers be imported?

– Should fax numbers be imported?

– Should email addresses be imported?

– Should URLs such as homepages be imported?

– Should employee workplace address data be imported?

– Should relationships be imported?

194 Appendix A: Questionnaire to Collect Usage Characteristics

– Should bank account information be imported?

– Should payment card information be imported?

– Should blocks and blocking reasons for payment cards be imported?

– Should the employee ID be imported?

– Should tax numbers be imported?

– Should texts be imported?

– Should attachments be imported?

– Should address independent communication data be imported?

• House Bank Questionnaire

– Should time dependent house bank data be imported?

– Should address data be imported?

– Should different address versions such as “Kanji” be imported?

– Should different address types or usages such as “delivery address” be
imported?

– Should notes for addresses be imported?

– How should communication data such as phone numbers be imported?

– Should phone numbers be imported?

– Should fax numbers be imported?

– Should email addresses be imported?

– Should URLs such as homepages be imported?

– Should contact person relationships be imported?

– Can the same person be the contact person for multiple house banks?

– Can a contact person have multiple workplaces at different locations
of the same house bank?

– Should contact person calling hours be imported?

– Should contact person visiting hours be imported?

– Should contact person private address information be imported?

– Should shareholder relationships be imported?

– Should other relationships be imported?

– Should texts be imported?

– Should attachments be imported?

– Should address independent communication data be imported?

195

– Should calling hours be imported?

– Should opening hours be imported?

– Should electronic banking hours be imported?

– Should working day calendar information be imported?

– Should payment medium format information be imported?

• Clearing House Questionnaire

– Should time dependent clearing house data be imported?

– Should address data be imported?

– Should different address versions such as “Kanji” be imported?

– Should different address types or usages such as “delivery address” be
imported?

– Should notes for addresses be imported?

– How should communication data such as phone numbers be imported?

– Should phone numbers be imported?

– Should fax numbers be imported?

– Should email addresses be imported?

– Should URLs such as homepages be imported?

– Should contact person relationships be imported?

– Can the same person be the contact person for multiple clearing
houses?

– Can a contact person have multiple workplaces at different locations
of the same clearing house?

– Should contact person calling hours be imported?

– Should contact person visiting hours be imported?

– Should contact person private address information be imported?

– Should shareholder relationships be imported?

– Should other relationships be imported?

– Should bank account information be imported?

– Should texts be imported?

– Should attachments be imported?

– Should address independent communication data be imported?

– Should calling hours be imported?

196 Appendix A: Questionnaire to Collect Usage Characteristics

– Should opening hours be imported?

– Should working day calendar information be imported?

• Tax Authority Questionnaire

– Should time dependent tax authority data be imported?

– Should address data be imported?

– Should different address versions such as “Kanji” be imported?

– Should different address types or usages such as “delivery address” be
imported?

– Should notes for addresses be imported?

– How should communication data such as phone numbers be imported?

– Should phone numbers be imported?

– Should fax numbers be imported?

– Should email addresses be imported?

– Should URLs such as homepages be imported?

– Should contact person relationships be imported?

– Can the same person be the contact person for multiple tax authori-
ties?

– Can a contact person have multiple workplaces at different locations
of the same tax authority?

– Should contact person calling hours be imported?

– Should contact person visiting hours be imported?

– Should contact person private address information be imported?

– Should shareholder relationships be imported?

– Should other relationships be imported?

– Should bank account information be imported?

– Should identification numbers be imported?

– Should texts be imported?

– Should attachments be imported?

– Should address independent communication data be imported?

– Should calling hours be imported?

– Should opening hours be imported?

Appendix B

Implementation Details of the
OBM Framework

The OBM Framework has been implemented using the Java1 language. The
functionality provided by the OBM Framework is solely available through an
API. This API enables the integration of the OBM Framework into existing
solutions that require semi-automatic schema matching functionality. Figure B.1
provides an overview of the packages comprising the OBM Framework.

The main package of the OBM Framework is the
com.sap.research.obm framework package. It contains the classes that
form the public API offered by the OBM Framework. A description of this
public API is given in Section B.5. Furthermore the main package contains the
three sub-packages:

• com.sap.research.obm framework.lifting

• com.sap.research.obm framework.mapping

• com.sap.research.obm framework.repository.

The first one contains all the functionality related to the lifting of XML
Schemas to OWL-DL ontologies while the second one contains the function-
ality related to the mapping extraction on the basis of two liftings. The
com.sap.research.obm framework.repository package contains the function-
ality for accessing the schema, ontology, lifting and mapping repositories. A brief
overview of these three packages is given in the subsequent paragraphs. In ad-
dition, Figure B.1 shows the main dependencies of the OBM Framework. The
prototypical implementation mainly relies on the SecondString, the OWL API
and the XML Beans libraries.

1http://java.sun.com

http://java.sun.com

198 Appendix B: Implementation Details of the OBM Framework

Figure B.1: Overview of the packages comprising the OBM Framework imple-
mentation.

B.1 The Lifting Package.

The lifting package itself consists of the following sub-packages:

• com.sap.research.obm framework.lifting.matching

• com.sap.research.obm framework.lifting.aggregation.

The matching package contains the implantation of the distance metrics as well
as the implementations of the matching algorithms introduced in Section 7.2.3.
Additionally the matching packages also contains the functionality necessary for
calculating the two-dimensional similarity matrix m′sim based on msim as well
as the implementation of the ontology-based aggregation algorithm presented in
Section 7.3.

B.2 The Mapping Package.

The mapping package only consists of one sub-package, namely the package

• com.sap.research.obm framework.mapping.rulecreation.

Besides functionality for identifying matching schema entities based on two lift-
ings also the rule responsible for identifying the appropriate mapping category
for a matching element are implemented in this package.

B.3 The Repository Package. 199

B.3 The Repository Package.

The repository package consist of the following sub-packages:

• com.sap.research.obm framework.repository.xsd

• com.sap.research.obm framework.repository.owl

• com.sap.research.obm framework.repository.lifting

• com.sap.research.obm framework.repository.mapping.

The xsd packages encapsulates all functionality related to the handling of XML
schemas. Besides functionality for parsing XML schemas into an internal repre-
sentation it also provides functionality for parsing example instances for a given
XML schemas. The package is implemented using the XML Beans package. Ad-
ditionally this packaged also contains the implementation of the tree-like data
structure used by the OBM Framework to represent XML schemas internally.
Similar to this the owl package contains the functionality for parsing OWL-DL
ontologies into the OBM Framework internal representation. The lifting and
mapping packages contain the functionality for storing and parsing of liftings and
mappings respectively.

Furthermore, the repository package contains functionality abstracting from a
concrete repository technology. However, currently only the use of the file system
as a repository is supported.

B.4 Used Libraries

As already mentioned above the implementation of the OBM Framework is based
on a number of libraries providing different basis functionalities like XML schema
handling, ontology handling or basic string matching algorithms. The most im-
portant libraries used by the OBM Framework are the OWL API together with
the Pellet reasoner, XML Beans and SecondString.

OWL API: The OWL API2 is an open source Java package for working with
OWL ontologies. It is developed as part of the CO-ODE project.3 It provides
functionalities for in-memory manipulation of OWL ontologies compliant to the
OWL 1.1 specification, parsing and writing of different serialization formats as
well as an abstraction layer for accessing different OWL reasoners. In the OBM
Framework implementation the OWL API was used in conjunction with the Pellet
reasoner.

2http://owlapi.sourceforge.net/
3http://www.co-ode.org/

http://owlapi.sourceforge.net/
http://www.co-ode.org/

200 Appendix B: Implementation Details of the OBM Framework

Pellet: Pellet4 is an open source OWL-DL reasoner developed and supported
by Clark & Parsia, LLC.5 Like the OWL API the Pellet reasoner supports the
OWL 1.1 specification.

XML Beans: XML Beans6 are a set of tools and an API developed as part of
the Apache XML Project.7 As the previous two also XML Beans are open source.
XML Beans allows the manipulation of XML documents through specialized Java
classes generated on the basis of a XML schema. In the OBM Framework XML
Beans are used for manipulating both, XML schemas and XML documents.

SecondString: SecondString8 is an open source Java package for approximate
string matching. It is developed at the Carnegie Mellon University and offers
implementations of the basic string similarity metrics described in Section 7.2.2.
In the OBM Framework the SecondString package has been used to implement
the different string-similarity-based matching algorithms.

In the next section the public API that can be used to access the functionality
of the OBM Framework is discussed.

B.5 Public API

The public API of the OBM Framework mainly consists of 4 classes:

• OBMFramework

• Lifting

• MappingExtraction

• Mapping.

The class OBMFramework encapsulates the functionality responsible for lifting
a schema to an ontology. After the source schema, the target ontology and
an optional example instance have been specified the doLifting(Matcher[] m,

Aggregator a) method can be invoked. This method takes an array of Matchers
and an Aggregator as input and returns an instance of a Lifting. Matcher is
the common interface implemented by all matching algorithms. Similar to this
Aggregator is the interface implemented by the aggregation algorithm. Once
two liftings, one for the source and one for the target schema, have been created

4http://pellet.owldl.com/download
5http://pellet.owldl.com
6http://xmlbeans.apache.org/
7http://xml.apache.org/
8http://secondstring.sourceforge.net/

http://pellet.owldl.com/download
http://pellet.owldl.com
http://xmlbeans.apache.org/
http://xml.apache.org/
http://secondstring.sourceforge.net/

B.5 Public API 201

the method extractMapping() of the class MappingExtraction can be used to
extract the resulting Mapping from these liftings.

Using this simple API the functionality of the OBM Framework is offered to
other applications.

202 Appendix B: Implementation Details of the OBM Framework

Appendix C

Evanto Details

This appendix provides some implementation details of the Evanto toolkit. As
well, a detailed explanation of an example test script is given.

Evanto enables a user to easily specify test scripts that can later be executed
automatically. These tests scripts are written using the Ruby1 scripting language
as well as some Evanto specific extensions to it. The interface between the Evanto
test scripts written in Ruby and the Java implementation of the OBM Framework
is provided by the JRuby2 interpreter. The JRuby interpreter is an implemen-
tation of an Ruby interpreter using the Java language. In addition, it contains
some specific extensions enabling a simplified access to Java classes from within
Ruby scripts.

Figure C.1 again shows the Evanto script introduced in Section 9.2. Lines
1−19 of this script comprise the initial set-up phase which is part of every Evanto
script. In this phase all required initialization steps are preformed. In the example
script this step consists of initializing some variables (lines 2 and 3), initializing
the two instances of the Java class OBMFramework that are required (lines 6−11),
reading the master mapping from a file (lines 13 and 14) and initializing the
matcher array (lines 16 and 17) as well the ontology-based aggregation algorithm
(line 18).

Besides the initial set-up phase the example Evanto script contains one so-
called run-method (lines 21− 35). In an Evanto script each run-method encap-
sulates one evaluation step. The run-method in the example script is named
OCRD to CUSTOMER Mapping. It performs a lifting of the source and the target
schema (lines 23−26), extracts the resulting mapping from the two liftings (lines
29− 32) and finally stores the resulting mapping for later analysis (lines 33 and
34).

1http://www.ruby-lang.org
2http://jruby.codehaus.org/

http://www.ruby-lang.org
http://jruby.codehaus.org/

204 Appendix C: Evanto Details

1 setup do
2 # Set some variables that are used later
3 set :result target dir, "./results/"
4 set :domain onto, "./IntegrationOnto.owl"
5 # instanziate OBM Framework
6 @source fw = OBMFramework.new(File.new("./OCRD.xsd"), File.
7 new("./OCRD.xml"), File.new(domain onto), nil,
8 true)
9 @target fw = OBMFramework.new(File.new("./d CUSTOMER.xsd"),

10 File.new("./d CUSTOMER.xml"),File.new(
11 domain onto), nil, true)
12 # read master mapping from file
13 @mastermapping = Mapping.deserializeFromXMLString(File.
14 read(master mapping))
15 # initialize the matchers and the aggregation algorithm
16 @matcher = []
17 @matcher << SampleInstanceMatcher.new()
18 @aggregator = OntoBasedAggregator.new(0.5)
19 end
20
21 run :OCRD to CUSTOMER Mapping do
22 # lift the source schema and target schema
23 @source lifting = @source fw.doLifting(@matcher,
24 @aggregator)
25 @target lifting = @target fw.doLifting(@matcher,
26 @aggregator)
27 # extract the mapping from the two liftings
28 # and store it for later analysis
29 mapping extraction = MappingExtraction.new(@source lifting,
30 @target lifting, @source fw,
31 @target fw)
32 mapping = mapping extraction.extract mapping()
33 result(:mapping, :list => mapping , :master => ".
34 /OCRD CUSTOMER.xml")
35 end

Figure C.1: Example of an Evanto script.

References

[ABM05] Yuan An, Alexander Borgida, and John Mylopoulos. Inferring complex
semantic mappings between relational tables and ontologies from sim-
ple correspondences. In Robert Meersman, Zahir Tari, Mohand-Said
Hacid, John Mylopoulos, Barbara Pernici, Özalp Babaoglu, Hans-Arno
Jacobsen, Joseph P. Loyall, Michael Kifer, and Stefano Spaccapietra,
editors, On the Move to Meaningful Internet Systems 2005: CoopIS,
DOA, and ODBASE, OTM Confederated International Conferences,,
volume 3761 of Lecture Notes in Computer Science, pages 1152–1169.
Springer, October 2005. ISBN: 3-540-29738-3.

[AFM+05] Rama Akkiraju, Joel Farrell, John Mille, Meenakshi Nagarajan,
Marc-Thomas Schmidt, Amit Sheth, and Kunal Verma. Web ser-
vice semantics - WSDL-S. Online, http://www.w3.org/Submission/
WSDL-S/, November 2005. W3C Member Submission.

[Ame07] American Petroleum Institute. Petroleum industry data exchange
(PIDX). Online, http://www.pidx.org/, 2007.

[BA05] Hannes Bohring and Sören Auer. Mapping XML to OWL ontologies.
In Proceedings of 13. Leipziger Informatik-Tage (LIT 2005), Lecture
Notes in Informatics (LNI), 2005.

[Bat04] Steve Battle. Round-tripping between XML and RDF. In Proceedings
of the 3rd International Semantic Web Conference (ISWC), Hiroshima,
Japan, November 2004. Springer. Poster.

[BCL+05] Angela Bonifati, Elaine Qing Chang, Aks V. S. Lakshmanan, Terence
Ho, and Rachel Pottinger. HePToX - marryingXML and heterogeneity
in your P2P databases (software demonstration). In Proceedings of
the 31st International Conference on Very Large Data Bases (VLDB
05), pages 1267–1270, Trondheim, Norway, 2005. VLDB Endowment.
ISBN: 1-59593-154-6.

[Bec00] Kent Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2000. ISBN: 0-201-61641-6. Second edition 2005 with
Cynthia Andres. ISBN: 0-321-27865-8.

http://www.w3.org/Submission/WSDL-S/
http://www.w3.org/Submission/WSDL-S/
http://www.pidx.org/

206 REFERENCES

[Bec02] Kent Beck. Test-Driven Development: By Example. Addison-Wesley,
2002. ISBN: 0-321-14653-0.

[Ber96] Philip A. Bernstein. Middleware: a model for distributed system ser-
vices. Communications of the ACM, 39(2):86 – 98, February 1996.
ISSN: 0001-0782.

[BGD97] Andreas Behm, Andreas Geppert, and Klaus R. Dittrich. On the mi-
gration of relational schemas and data to object-oriented database sys-
tems. In J. Györkös, M. Krisper, and H. C. Mayr, editors, Proc. 5th
International Conference on Re-Technologies for Information Systems,
pages 13–33, Klagenfurt, Austria, 1997. Oesterreichische Computer
Gesellschaft.

[BHHS06] Saartje Brockmans, Peter Haase, Pascal Hitzler, and Rudi Studer. A
metamodel and UML profile for rule-extended OWL DL ontologies. In
York Sure and John Domingue, editors, The Semantic Web: Research
and Applications, volume 4011 of Lecture Notes in Computer Science,
pages 303–316. Springer, June 2006.

[BM02] Jacob Berlin and Amihai Motro. Database schema matching using
machine learning with feature selection. In Proc. 14th Intl. Conf. on
Advanced Information Systems Engineering (CAiSE), volume 2348 of
Lecture Notes in Computer Science, pages 452–466. Springer, January
2002. ISBN: 978-3-540-43738-3.

[Bus03] Christoph Bussler. B2B Integration - Concepts and Architecture.
Springer, 2003. ISBN: 3540434879.

[CDS+04] Emilia Cimpian, Christian Drumm, Michael Stollberg, Ion Constan-
tinescu, Liliana Cabral, John Domingue, Farshad Hakimpour, and
Atanas Kiryakov. Report on the State-of-the-Art and Requirements
Analysis. Online, http://www.dip.semanticweb.org/documents/

Deliverable1Wp5.doc, June 2004. Deliverable D5.1 of the DIP
project.

[CID] CIDX. Chemical industry data exchange (CIDX). Online. http:

//www.cidx.org.

[CRF03] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg.
A comparison of string distance metrics for name-matching tasks. In
Proceedings of the IJCAI 2003 Workshop on Information Integration
on the Web, pages 73–78, August 2003.

[DDH01] AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling
schemas of disparate data sources: A machine-learning approach. In

http://www.dip.semanticweb.org/documents/Deliverable1Wp5.doc
http://www.dip.semanticweb.org/documents/Deliverable1Wp5.doc
http://www.cidx.org
http://www.cidx.org

REFERENCES 207

Proc. of the ACM SIGMOD Intl. Conf. on Management of Data (SIG-
MOD), pages 509–520, Santa Barbara, California, USA, 2001. ACM.
ISBN: 1-58113-332-4.

[DFRW02] Mirella Dell’Erba, Oliver Fodor, Francesco Ricci, and Hannes Werth-
ner. Harmonise: A solution for data interoperability. In Proceed-
ings of the IFIP Conference on Towards The Knowledge Society: E-
Commerce, E-Business, E-Government, volume 233 of IFIP Confer-
ence Proceedings, pages 433–445, Deventer, The Netherlands, 2002.
Kluwer, B.V. ISBN: 1-4020-7239-2.

[Dig04] Digital Enterprise Research Institute (DERI). Web Service Modelling
Ontology (wsmo). Online, 2004. http://www.wsmo.org.

[DK05] Christian Drumm and Philipp Kunfermann. Lifting XML schemas
to ontologies - the concept finder algorithm. In Martin Hepp, Axel
Polleres, Frank van Harmelen, and Mike Genesereth, editors, Proceed-
ings of the First International Workshop on Mediation in Semantic
Web Services (MEDIATE 2005), volume 168. CEUR Workshop Pro-
ceedings (ceur-ws.org), December 2005.

[DLD+04] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Halevy, and
Pedro Domingos. iMAP - discovering complex semantic matches be-
tween database schemas. In Proc. of the ACM SIGMOD Intl. Conf.
on Management of Data (SIGMOD), pages 383–394, New York, USA,
2004. ACM. ISBN: 1-58113-859-8.

[DLN06] Christian Drumm, Jens Lemcke, and Kioumars Namiri. Integrating
semantic web services and business process management: A real use
case. In Proc. of the ESWC 2006 Workshop Semantics for Business
Process Management 2006 (SBPM 2006), June 2006.

[DLO07] Christian Drumm, Jens Lemcke, and Daniel Oberle. The Semantic
Web: Real-World Applications from Industry, volume 7 of Semantic
Web and Beyond, chapter Business Process Management and Semantic
Technologies, pages 207 – 239. Springer, 2007. ISBN: 978-0-387-48530-
0.

[DMDH02] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy.
Learning to map between ontologies on the semantic web. In Proc. of
the 11th international conference on World Wide Web (WWW), pages
662–673. ACM, 2002. ISBN:1-58113-449-5.

[DMR02] Hong-Hai Do, Sergey Melnik, and Erhard Rahm. Comparison of
schema matching evaluations. In Revised Papers from the NODe 2002

http://www.wsmo.org

208 REFERENCES

Web and Database-Related Workshops on Web, Web-Services, and
Database Systems, volume 2593 of Lecture Notes In Computer Science,
pages 221–237. Springer, 2002. ISBN: 3-540-00745-8.

[Do06] Hong-Hai Do. Schema Matching and Mapping-based Data Integration.
Verlag Dr. Müller (VDM), 2006. ISBN: 3-86550-997-5.

[DR02] Hong-Hai Do and Erhard Rahm. COMA - a system for flexible combi-
nation of schema matching approaches. In Proc. of the 28th Interna-
tional Conference on Very Large Data Bases (VLDB), pages 610–621.
VLDB Endowment, 2002.

[Dru04] Christian Drumm. Finding Ariadnes thread in the data mediation
maze. In John Domingue, Liliana Cabral, and Enrico Motta, editors,
First AKT Workshop on Semantic Web Services, volume 122. CEUR
Workshop Proceedings (ceur-ws.org), 2004.

[Dru07] Christian Drumm. Challenges in automatic schema matching for data
migration. In Proc. of the Bertinoro Workshop on Information Inte-
gration (INFINT 07), 2007.

[DSDR07] Christian Drumm, Matthias Schmitt, Hong-Hai Do, and Erhard
Rahm. QuickMig - automatic schema matching for data migration
projects. In Proc. of the Sixteenth Conference on Information and
Knowledge Management (CIKM 2007), pages 107–116. ACM, Novem-
ber 2007. ISBN: 978-1-59593-803-9.

[Ehr06] Marc Ehrig. Ontology Alignment. Bridging the Semantic Gap.
Springer-Verlag, 2006. ISBN: 038732805X.

[EIM+07] Jerome Euzenat, Antoine Isaac, Christian Meilicke, Pavel Shvaiko,
Heiner Stuckenschmidt, Ondrej Svab, Vojtech Svatek, Willem Robert
van Hage, and Mikalai Yatskevich. Results of the ontology align-
ment evaluation initiative 2007. In Pavel Shvaiko, Jerome Euzenat,
Fausto Giunchiglia, and Bin He, editors, Proceedings of the 2nd Inter-
national Workshop on Ontology Matching (OM-2007). Collocated with
the 6th International Semantic Web Conference (ISWC-2007) and the
2nd Asian Semantic Web Conference (ASWC-2007), volume 304 of
CEUS Workshop Proceedings, pages 96–132, Busan, Korea, November
2007. ISSN: 1613-0073.

[ES04] Marc Ehrig and York Sure. Ontology mapping - an integrated ap-
proach. In 1st European Semantic Web Symposium, 2004.

[ES07] Jerome Euzenat and Pavel Shvaiko. Ontology Matching. Springer-
Verlag, 2007. ISBN: 9783540496113.

REFERENCES 209

[Fel98] Christiane Fellbaum, editor. WordNet. MIT Press, 1998. ISBN: 0-262-
06197-X.

[FZT04] Matthias Ferdinand, Christian Zirpins, and D. Trastour. Lifting XML
Schema to OWL. In Proc. of the 4th International Conference on Web
Engineering (ICWE 2004),, pages 354–358. Springer, 2004.

[Gru93] Thomas R. Gruber. A translation approach to portable ontologies.
Knowledge Acquisition, 5(2):199–220, 1993. ISSN: 1042-8143.

[Hai91] Jean-Luc Hainaut. Database reverse engineering: Models, techniques,
and strategies. In Proceedings of the 10th International Conference
on Entity-Relationship Approach (ER 91), pages 729–741, San Mateo,
California, USA, October 1991. ER Institute.

[Hep07] Martin Hepp. Ontology Management: Semantic Web, Semantic Web
Services, and Business Applications, chapter Ontologies: State of the
Art, Business Potential, and Grand Challenges, pages 3–22. Springer,
2007. ISBN: 978-0-387-69899-1.

[HHH+05] Laura M. Haas, Mauricio A. Hernández, Howard Ho, Lucian Popa,
and Mary Roth. Clio grows up: From research prototype to industrial
tool. In Proc. ACM SIGMOD International Conference on Manage-
ment of Data, pages 805–810, New York, NY, USA, 2005. ACM. ISBN:
1-59593-060-4.

[HK03] Andreas Hess and Nicholas Kushmerick. Learning to attach semantic
metadata to Web services. In The SemanticWeb - ISWC 2003, volume
2870 of Lecture Notes in Computer Science, pages 258–273. Springer,
2003. ISSN: 0302-9743.

[Inta] International Organization for Standardization (ISO). ISO 3166-1,
codes for the representation of names of countries and their subdi-
visions. Online. http://tinyurl.com/32ezsm.

[Intb] International Organization for Standardization (ISO). ISO 8601:2004,
data elements and interchange formats information interchange repre-
sentation of dates and times. Online. http://www.iso.org/iso/en/

prods-services/popstds/datesandtime.html.

[JHCQ05] Ningsheng Jian, Wei Hu, Gong Cheng, and Yuzhong Qu. Falconao:
Aligning ontologies with falcon. In Benjamin Ashpole, Marc Ehrig,
Jérôme Euzenat, and Heiner Stuckenschmidt, editors, Integrating On-
tologies ’05, Proceedings of the K-CAP 2005 Workshop on Integrat-
ing Ontologies, volume 156 of CEUR Workshop Proceedings, Banff,
Canada, October 2005. CEUR-WS.org.

http://tinyurl.com/32ezsm
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

210 REFERENCES

[KBS06] Dirk Krafzigand, Karl Banke, and Dirk Slama. Enterprise SOA. Pren-
tice Hall PTR, reprint edition, 2006. ISBN: 978-0131465756.

[KGT06] Andreas Knöpfel, Bernhard Grone, and Peter Tabeling. Fundamental
Modeling Concepts: Effective Communication of IT Systems. Wiley,
March 2006. ISBN: 978-0-470-02710-3.

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of
object-oriented and frame-based languages. Journal of the Association
for Computing Machinery, 42(4):741–843, July 1995. ISSN: 0004-5411.

[KS00] Vipul Kashyap and Amit P. Sheth. Information Brokering Across Het-
erogeneous Digital Media - A Metadata-based Approach. Number 20
in Advances in Database Systems. Kluwer Academic Publishers, 2000.
ISBN: 978-0-7923-7883-9.

[Lar05] University of Georgia Large Scale Distributed Information Systems
(LSDIS), Department of Computer Science. METEOR-S: Semantic
Web services and processes. Online, 2005. http://lsdis.cs.uga.

edu/projects/meteor-s/.

[LC00] Wen-Syan Li and Chris Clifton. Semint - a tool for identifying at-
tribute correspondences in heterogeneous databases using neural net-
work. Data and Knowledge Engineering, 33(1):49–84, 2000. ISSN:0169-
023X.

[Lev66] Vladimir I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[MIR93] Renee J. Miller, Yannis E. Ioannidis, and Raghu Ramakrishnan. The
Use of Information Capacity in Schema Integration and Translation. In
Proceedings of the Nineteenth International Conference on Very Large
Data Bases (VLDB), pages 120–133, Dublin, Ireland, August 1993.
Morgan Kaufmann Publishers Inc. ISBN: 1-55860-152-X.

[MLM01] Murali Mani, Dongwon Lee, and Richard R. Muntz. Semantic data
modeling using XML Schemas. In Hideko S. Kunii, Sushil Jajodia,
and Arne Slvberg, editors, Proceedings of the 20th International Con-
ference on Conceptual Modeling, volume 2224 of Lecture Notes in Com-
puter Science, pages 149–163. Springer-Verlag, November 2001. ISBN:
3540428666.

[MLMK05] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke
Kawaguchi. Taxonomy of XML schema languages using formal lan-
guage theory. ACM Trans. Inter. Tech., 5(4):660–704, 2005. ISSN:
1533-5399.

http://lsdis.cs.uga.edu/projects/meteor-s/
http://lsdis.cs.uga.edu/projects/meteor-s/

REFERENCES 211

[MS02] Alexander Maedche and Steffen Staab. Measuring similarity between
ontologies. In Proc. Of the European Conference on Knowledge Ac-
quisition and Management (EKAW), number 2473 in Lecture Notes in
Computer Science, pages 251–263. Springer, October 2002.

[MSZ01] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semantic Web
services. IEEE Intelligent Systems, 16(2):46–53, Mar./Apr. 2001.

[NHT+02] Felix Naumann, Ching-Tien Ho, Xuqing Tian, Laura Haas, and Nim-
rod Megiddo. Attribute classification using feature analysis (poster).
In Proc.s of the 18th International Conference on Data Engineering
(ICDE), page 271. IEEE Computer Society, 2002. ISSN: 1063-6382.

[Nie08] Frank Niemann. Projekt Galaxy: SAP baut Netweaver zur SOA-
middleware aus. Online, February 2008. http://tinyurl.com/

2q9p2n.

[NVS+06] Meenakshi Nagarajan, Kunal Verma, Amit P. Sheth, John Miller, and
Jon Lathem. Semantic interoperability of Web services - challenges
and experiences. In Proceedings of the IEEE International Conference
on Web Services (ICWS’06), pages 373–382, Washington, DC, USA,
2006. IEEE Computer Society. ISBN: 0-7695-2669-1.

[PTU00] Luigi Palopoli, Giorgio Terracina, and Domenico Ursino. The system
DIKE - towards the semi-automatic synthesis of cooperative informa-
tion systems and data warehouses. In Y. Masunagam, J. Pokorny,
J. Stuller, and B. Thalheim, editors, Proceedings of the Challenges
of Symposium on Advances in Databases and Information Systems
(ADBIS-DASFA), pages 108–117, Prague, Czech Republic, 2000. Mat-
fyzpress.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to
automatic schema matching. The VLDB Journal: The International
Journal on Very Large Data Bases, 10(4):334–350, 2001. ISSN: 1066-
8888.

[Ros07] RosettaNet Program Office. Overview - clusters, segments and
pips. Technical report, RosettaNet, May 2007. Online, http://

portal.rosettanet.org/cms/export/sites/default/RosettaNet/

Downloads/RStandards/ClustersSegmentsPIPsOverview_

UpdateFinal_May07_revised.pdf.

[SBF98] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge
engineering: Principles and methods. Data & Knowledge Engineering,
25(1-2):161–197, 1998. ISSN: 0169-023X.

http://tinyurl.com/2q9p2n
http://tinyurl.com/2q9p2n
http://portal.rosettanet.org/cms/export/sites/default/RosettaNet/Downloads/RStandards/ClustersSegmentsPIPsOverview_UpdateFinal_May07_revised.pdf
http://portal.rosettanet.org/cms/export/sites/default/RosettaNet/Downloads/RStandards/ClustersSegmentsPIPsOverview_UpdateFinal_May07_revised.pdf
http://portal.rosettanet.org/cms/export/sites/default/RosettaNet/Downloads/RStandards/ClustersSegmentsPIPsOverview_UpdateFinal_May07_revised.pdf
http://portal.rosettanet.org/cms/export/sites/default/RosettaNet/Downloads/RStandards/ClustersSegmentsPIPsOverview_UpdateFinal_May07_revised.pdf

212 REFERENCES

[SC07] Gunther Stuhec and Mark Crawford. Accelerate your business data
modeling and integration issues by CCTS Modeler Warp 10. Technical
report, SAP AG, SAP Developer Network, November 2007. http:

//tinyurl.com/3boj5p.

[SEH+04] Gerd Stumme, Marc Ehrig, Siegfried Handschuh, Andreas Hotho,
Alexander Maedche, Boris Motik, Daniel Oberle, Christoph Schmitz,
Steffen Staab, Ljiljana Stojanovic, Nenad Stojanovic, Rudi Studer,
York Sure, Raphael Volz, and Valentin Zacharias. The Karlsruhe
view on ontologies. Technical report, University of Karlsruhe, Insti-
tute AIFB, 2004.

[SK93] Amit P. Sheth and Vipul Kashyap. So far (schematically) yet so near
(semantically). In Proceedings of the IFIP WG 2.6 Database Semantics
Conference on Interoperable Database Systems (DS-5)6, pages 283–
312, Amsterdam, The Netherlands, 1993. North-Holland Publishing
Co. ISBN: 0-444-89879-4.

[SO05] Jens Stumpe and Joachim Orb. SAP Exchange Infrastructure. Galileo
Press GmbH, 1. edition, 2005. ISBN: 978-3-89842-437-0.

[SPR07] Fatiha Säıis, Nathalie Pernelle, and Marie-Christine Rousset. L2R:
A logical method for reference reconciliation. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence, pages 329–
334. AAAI Press, 2007. ISBN: 978-1-57735-323-2.

[Stu07] Gunther Stuhec. Using CCTS Modeler Warp 10 to customize business
information interfaces. Technical report, SAP AG, SAP Developer Net-
work: Business Process Expert Community, November 2007. Online,
http://tinyurl.com/34j7q2.

[SvH05] Heiner Stuckenschmidt and Frank van Harmelen. Information Sharing
on the Semantic Web. Advanced Information and Knowledge Process-
ing. Springer-Verlag, 2005. ISBN: 978-3-540-20594-4.

[The02] The Organization for the Advancement of Structured Information
Standards (OASIS). RELAX NG compact syntax specification. On-
line, November 2002. http://www.oasis-open.org/committees/

relax-ng/compact-20021121.html.

[The04] The OWL Services Coalition. OWL-S: Semantic markup for Web ser-
vices. Online, 2004. http://www.daml.org/services/owl-s/1.1/

overview/.

http://tinyurl.com/3boj5p
http://tinyurl.com/3boj5p
http://tinyurl.com/34j7q2
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.daml.org/services/owl-s/1.1/overview/
http://www.daml.org/services/owl-s/1.1/overview/

REFERENCES 213

[The07] The Web Services-Interoperability Organization (WS-I). Basic pro-
file version 2.0. Online, 2007. http://www.ws-i.org/Profiles/

BasicProfile-2.0.html.

[Uni] United Nations Economic Commision for Europe (UNECE). United
nations directories for electronic data interchange for administration,
commerce and transport. Online. http://www.unece.org/trade/

untdid/welcome.htm.

[Wac03] Holger Wache. Semantische Mediation für heterogene Information-
squellen, volume DISKI 261 of Dissertationen zur Künstlichen Intelli-
genz. Akademische Verlagsgesellschaft Aka GmbH, Berlin, 2003. ISBN:
978-3-89838-261-8.

[WMD07] Ingo Weber, Ivan Markovic, and Christian Drumm. A conceptual
framework for composition in business process management. In Witold
Abramowicz, editor, Proceedings of the 10th International Conference
Business Information Systems (BIS 2007), number 4439 in Lecture
Notes in Computer Science, pages 54 – 66. Springer, April 2007. ISBN
978-3-540-72034-8.

[WMD08] Ingo Weber, Ivan Markovic, and Christian Drumm. A conceptual
framework for composition in business process management. 2008.

[Wor99a] World Wide Web Consortium (W3C). XML Path Language (XPath).
Online, 1999. http://www.w3.org/TR/xpath.

[Wor99b] World Wide Web Consortium (W3C). XSL Transformations (XSLT).
Online, 1999. http://www.w3.org/TR/xslt.

[Wor01a] World Wide Web Consortium (W3C). Web Services Description Lan-
guage (wsdl). Online, 2001. http://www.w3.org/TR/wsdl.

[Wor01b] World Wide Web Consortium (W3C). XML Schemas. Online, 2001.
http://www.w3.org/XML/Schema.

[Wor03] World Wide Web Consortium (W3C). Extensible Markup Language
(XML). Online, 2003. http://www.w3.org/XML/.

[Wor04a] World Wide Web Consortium (W3C). OWL Web Ontology Language.
Online, 2004. http://www.w3.org/TR/owl-guide/.

[Wor04b] World Wide Web Consortium (W3C). XML Schema part 2: Datatypes
second edition. Online, October 2004. http://www.w3.org/TR/

xmlschema-2/.

http://www.ws-i.org/Profiles/ BasicProfile-2.0.html
http://www.ws-i.org/Profiles/ BasicProfile-2.0.html
http://www.unece.org/trade/untdid/welcome.htm
http://www.unece.org/trade/untdid/welcome.htm
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt
http://www.w3.org/TR/wsdl
http://www.w3.org/XML/Schema
http://www.w3.org/XML/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

214 REFERENCES

[Wor06a] World Wide Web Consortium (W3C). Web services activity. Online,,
2002-2006. http://www.w3.org/2002/ws/.

[Wor06b] World Wide Web Consortium (W3C). Extensible Markup Language
(XML) 1.0 (fourth edition). Online, August 2006. http://www.w3.

org/TR/2006/REC-xml-20060816.

[Wor07] World Wide Web Consortium (W3C). XQuery 1.0: An XML Query
Language. Online, Janurary 2007. http://www.w3.org/TR/xquery/.

[WSC+07] Jim Wilson, Gunther Stuhec, Mark Crawford, Mary Kay Blantz,
Anthony Coates, Oyvind Aassve, Ed Buchinski, Michael Dill,
Jostein Fromyr, Kenji Itoh, Garret Minakawa, Sue Probert, Nada
Reinprecht, Jean-Luc Sanson, Fred Van Blommestein, and Sylvia
Webb. UN/CEFACT Core Components Technical Specification.
Online, April 2007. Second Public Review, http://75.43.29.149:

8080/download/attachments/3801818/Specification_CCTS3p0+

2nd+Public+Review+16APR2007.pdf?version=1.

[XE03] Li Xu and David W. Embley. Discovering direct and indirect matches
for schema elements. In Proceedings of the 8th International Conference
on Database Systems for Advanced Applications, pages 39–46, Wash-
ington, DC, USA, March 2003. IEEE Computer Society. ISBN: 0-7695-
1895.

http://www.w3.org/2002/ws/
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/xquery/
http://75.43.29.149:8080/download/attachments/3801818/Specification_CCTS3p0+2nd+Public+Review+16APR2007.pdf?version=1
http://75.43.29.149:8080/download/attachments/3801818/Specification_CCTS3p0+2nd+Public+Review+16APR2007.pdf?version=1
http://75.43.29.149:8080/download/attachments/3801818/Specification_CCTS3p0+2nd+Public+Review+16APR2007.pdf?version=1

Index

Enterprise Application Integration, 13

SAP Business ByDesign, 151

A2A, see Application-to-Application
Integration

Altova Mapforce, 146
Application Service Provider Integra-

tion, 14
Application-to-Application Integration,

14
Automatic Mapping Calculation, 56,

173

B2B, see Business-to-Business Integra-
tion

Background Knowledge, 67
Business Partner Ontology, 156
Business-to-Business Integration, 14
BusinessPartner, 23

Clio, 61
COMA, 62
COMA++, 62, 163
Complex Mappings Expressions, 6
Composite Matcher, 90
Conceptual Re-engineering, 64
Core Component Technical Specifica-

tion, 180
Correction, 56, 175
Customizations, 72

Data Migration, 16
Data Model Heterogeneity, 26
Data Type Constraints, 72
DEBMAS, 23
DIKE, 60

Documentation Matcher, 103
Domain Knowledge, 68

Evaluation Ontology, 155
Evaluation Scenarios, 156
Evaluation Toolkit, see Evanto
Evanto, 142
Example Data Injection, 78
Extensions, 72

F-Measure, 157
Falcon-AO, 63
Finalization, 54, 56, 176

Galaxy, see SAP NetWeaver Composi-
tion Environment

Galaxy Workbench, 178

HepToX, 61
Heterogeneity Layers, 24

IBM WebSphere Message Broker, 146
iMap, 60
Implementation Details, 70
Import, 53, 56
Information Capacity, 65
Input Data Repository, 137
Instance Equality Matcher, 106
Instance Split/Concat Matcher, 106
Integration Challenges, 32
Integration Knowledge, 68
Integration Knowledge Ontology, 156
Integrity Constraints, 72
Iteration, 176

Knowledge Collection, 55, 171

Lifting, 48, 89

216 INDEX

Lifting Extraction Algorithm, 108
Lifting Repository, 138

Manual Mapping Process, 53
MapOnto, 63
Mapping, 47
Mapping Development, 54
Mapping Extraction, 113, 137
Mapping System by Xu and Embley, 61
Master Data

Basic Master Data, 17
Dependent Master Data, 17

Master Mapping, 155
Matcher Repository, 137
Matching, 46
Matching Algorithm, 102
Matching Categories, 115

Code-Value-Mapping, 119
Complex, 121
Concatenate, 119
Create-Instance, 120
Default-Value, 120
Internal-ID, 120
Key-Value-Mapping, 119
Move, 117
Query, 121
Split, 117

METEOR-S, 177
Microsoft BizTalk Server, 146
Modeling, 80

Code List Information, 86
Conceptual Modeling, 80
Default Values, 84
Example Data, 88
Global Identifiers, 86
Integration Knowledge, 81
Internal Identifiers, 86
Technical Names, 82

Modeling Alternatives, 73

Naive Ontology Mapping, 63
Name Matcher, 102
Neighborhood, 128

Node-Path Matcher, 103
NOM, see Naive Ontology Mapping

OBM, see Ontology-Based Mapping
OBM Framework, 137
Ontology, 35, 44
Ontology Features, 93

Attributes, 97
Code Lists, 98
Data Type, 97
Default Values, 98
Entity Documentation, 95
Entity Hierarchy, 97
Entity Name, 95
Example Instance Data, 98
Indentifiers, 98
Relations, 97
Technical Names, 97

Ontology Matching, 62
Ontology Merging, 62
Ontology-Based Mapping, 58
OWL-DL, 156
OWL-S, 177

Parametrisation, 173
Performance, 7, 168
Precision, 157
Preprocessing, 53, 56
Process Mediation, 15

QOM, see Quick Ontology Mapping
Quality, 6, 167
Quality Metrics, 157
Questionnaire, 77
Quick Ontology Mapping, 63
QuickMig, 62, 163

Recall, 157
Related Entities Matcher, 104
Repository Adapter, 137
Requirements, 6, 166
Review, 54, 56, 175
Root Entity, 40
Rule Creation, 138

INDEX 217

Running Example, 23

SAP CCTS Modeller Warp 10, 180
SAP Exchange Infrastructure, 146
SAP Migration Workbench, 148, 179
SAP NetWeaver Composition Environ-

ment, 178
Schema, 39
Schema Features, 93

Cardinality Constraints, 95
Children, 94
Data Type Constraints, 95
Entity Documentation, 94
Entity Name, 93
Example Instance, 95
Parents, 94
Siblings, 94

Schema Mapping, 19
Schematic Heterogeneity, 27

Bilateral Heterogeneities, 27
Meta-level Heterogeneities, 29
Multilateral Heterogeneities, 28

Semantic Heterogeneities, 25
Semantic Data Heterogeneities, 30

Representation Heterogeneities,
30

Scaling Heterogeneities, 30
Surjective Mappings, 31
Value Range Heterogeneities, 30

Semantic Domain Heterogeneities,
31

Aggregation, 32
Incompatibility, 32
Overlap, 31
Subsumption, 31

Semantic Web service, 176
Semi-Automatic Mapping Process, 55
Similarity Matrix, 89
Similarity Matrix Aggregation, 107
Similarity Metrics, 98

Dice Coefficient, 101
Equality, 99
Lexical Similarity, 99

Soft-TF-IDF, 100
SOA, 15
Structural Heterogeneities, 25
Stylus Studio, 146
Syntactic Heterogeneities, 25
System Heterogeneities, 24

Technical Names Matcher, 105
Testing, 54, 56, 175
Transactional Data, 17

Usage Characteristics, 73
Collection of, 76

WSDL-S, 177
WSMO, 177

XML Document, 41
XML Schema, 40
XML Schema Lifting, 50
XML Schema Mapping, 48

	Introduction
	Motivation
	Examples Scenarios & Requirements
	Research Questions
	Contribution
	Overview

	I Foundations
	Scenarios & Use Cases
	Enterprise Application Integration
	Data Migration
	Schema Mapping
	Summary

	Challenges for Integration
	Running Example
	Heterogeneity Layers
	Types of Heterogeneity
	Types of Structural Heterogeneity
	Types of Semantic Heterogeneity

	Resulting Integration Challenges
	Integration Challenges resulting from Semantic Heterogeneities
	Integration Challenges resulting from Structural Heterogeneities

	The Role of Ontologies in Integration
	Summary

	Definitions
	Schema
	XML and XML Schema
	Ontology
	Matching and Mapping
	Lifting
	Summary

	II Ontology-based Mapping
	The Mapping Process
	The Manual Mapping Process
	The Semi-Automatic Mapping Process
	The Ontology-Based Mapping Approach
	Related Work
	Information Capacity Considerations.

	Summary

	The Role of Background Knowledge
	Background Knowledge
	Domain Knowledge
	Integration Knowledge
	Relation of Background Knowledge and Heterogeneity Problems

	Collecting Domain Knowledge
	Collection of Usage Characteristics
	Example Data Injection

	Modeling Domain and Integration Knowledge
	Conceptual Modeling of the Domain
	Modeling Integration Knowledge
	Modeling Example Data

	Summary

	Lifting
	Overview
	Matching Algorithms
	Exploitable Schema and Ontology Features
	Similarity Metrics
	Matching Algorithm Details

	Aggregation
	Similarity Matrix Aggregation
	Lifting Extraction

	Summary

	Mapping Extraction
	Overview
	Mapping Categories
	Mapping Category Details
	Generation of Mapping Code

	Mapping Extraction Algorithm
	Inferring Matching Schema Entities
	Identification of Mapping Categories

	Summary

	III Implementation and Evaluation
	Implementation
	The OBM Framework
	Schema and Ontology Representation
	Lifting Representation
	Mapping Representation
	Implementation Considerations & Optimizations

	The Evaluation Toolkit Evanto
	Summary

	Evaluation
	Industrial State of the Art
	Tools supporting B2B Integration
	Data Migration Tools
	Documentation Tools

	Evaluation Approach
	Evaluation Scenarios
	Master Mappings
	Evaluation Ontology
	Quality Metrics

	Experiments
	Schema Reduction
	Example Data Injection
	Automatic Schema Mapping
	Requirements Revisited

	Summary

	IV Summary and Outlook
	Summary & Future Work
	Future Work
	Knowledge Collection
	Automatic Mapping Calculation
	Review, Correction & Testing
	Iteration & Finalization

	Application of the OBM Approach to semantic Web services
	Industrial Applications
	The SAP NetWeaver Composition Environment
	The SAP Migration Workbench
	SAP CCTS Modeller Warp 10

	Conclusion

	V Appendix
	Questionnaire to Collect Usage Characteristics
	Implementation Details of the OBM Framework
	The Lifting Package.
	The Mapping Package.
	The Repository Package.
	Used Libraries
	Public API

	Evanto Details

