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Summary 

Clay minerals show a large variability, e.g., in chemical composition, morphology, layer 

charge, layer charge density and exchange behaviour. Thus, for technical applications a 

comprehensive characterisation is essential. The focus of this work was the structural 

characterisation and modification of different and apparently similar clay minerals, allowing 

technical applications. A couple of possibilities are described subsequently. 

In this study, samples were selected with respect to their layer charge and morphology. 

Sixteen bulk materials were pre-selected, which contained either swellable clay minerals 

(smectite, vermiculite) or non-swelling clay minerals (kaolinite, illite, sepiolite, palygorskite, 

magadiite). A comprehensive characterisation of all materials was carried out. Based on 

these results, several samples were selected for further investigations. 

The investigations revealed that the cation exchange behaviour of vermiculite is a function 

of the charge and size of the interlayer cations, which is differed from the exchange 

behaviour of smectite. Thus, special attention was paid to the cation exchange behaviour of 

vermiculite. The selected vermiculite was ground and purified. However, the exchange of all 

interlayer cations against Cu-triethylenetetramine (Cu-trien) was solely possible after the 

homoionic exchange with monovalent cations such as Na+ and Li+. Based on these results, 

vermiculite can be used to prepare pillared clays, which will upgrade the spectrum of charge 

density remarkably. 

Another topic of this work was a comprehensive determination of layer and edge charge 

and exchange properties of clay minerals, because the exchange capacity is the most 

important feature of swellable clay minerals. Changes in exchange properties of layer charge 

reduced materials of two homoionic smectites were investigated. The influence of Li+ and 

Cu2+ in the interlayer was compared. The CEC of the materials decreased with increasing 

temperature. The decreasing CEC is combined with an apparent reduced layer charge. The 

amount of Li+ or Cu2+, which moved into the octahedral vacancies or in the hexagonal 

cavities of the tetrahedral sheet of the smectite, is equivalent to the CEC reduction. The 

decrease of CEC of Volclay was larger over the temperature range compared to the Indian 

Bentonite. Therefore, more Li+ or Cu2+ moved into the structure of the Volclay smectite than 

in the smectite from the Indian Bentonite. Both smectites have the same octahedral charge, 

but exhibit different layer charge, tetrahedral charge and iron content. One or more of these 

three parameters constrained the migration of Li+ or Cu2+ in the structure. Layer charge 
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reduction can be used to prepare material with a certain layer charge. However, materials of 

the same apparent layer charge differed in their hydration behaviour. 

In addition to the layer charge, the charges of the edges were investigated using the 

purified and fractionated material of two smectites (Volclay, Indian Bentonite), one 

vermiculite and one sepiolite. Two methods were used to determine the edge charge of 

these clay minerals: 

1) Cation exchange capacity (CEC) was measured in dependency of pH using Cu-

triethylenetetramine (Cu-trien) in the pH range between 4 and 11.  

2) Hydroxyl groups were exchanged by fluoride in the second method for edge charge 

determination.  

Both methods give similar results and can be applied to estimate the charge of the edges, 

however, with some constraints for vermiculite and sepiolite. HCl, NaOH and NaF attack the 

octahedral and tetrahedral sheets. The release of elements occurs incongruently for acids or 

bases and congruently for NaF. The ion release is too low (< 0.01% related to the 

concentration in the structural formula) to cause substantial dissolution of the clay minerals. 

Thus, clay minerals remain nearly unaltered during the exchange reactions. The 

characterisation of the edges can be used as screening method prior to edge modification to 

achieve a homogeneous and oriented arrangement by edge-to-edge or surface-to-edge 

connections e.g., in clay polymer-nanocomposites. 

A further topic in this study concerned the modification of swellable and non-swelling clay 

minerals with mineral acids, e.g., HCl and H2SO4. The alteration of the clay mineral 

structures was controlled by the individual character of each mineral. Acid treatment resulted 

in a successive dissolution of the octahedral and tetrahedral sheets. The number of 

substitutions by Mg2+ or Fe3+ in the octahedral and by Al3+ in the tetrahedral sheet of the clay 

minerals promoted the dissolution of the layers and the formation of X-ray amorphous silica 

phase. The results showed that the release of the octahedral cations occurred in the 

following order: Mg2+ > Fe3+ > Al3+, i.e. dioctahedral clay minerals are more stable against 

acid attack than trioctahedral clay minerals. 

The acid treated swellable clay minerals like smectite retain the ability to exchange 

cations. The acid treated materials possessed a simple chemical composition with layered 

structure. These materials have a low CEC and a high specific surface area (AS), resulting in 

a lower charge density compared to the raw materials. Thus, the acid treated materials have 

the ability to adsorb very large organic molecules (e.g., dodecylamine), which can be used as 

precursor for clay-polymer nanocomposites. 
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The observed development of micropores and increase in specific surface area implied 

the delamination of the non-swellable clay minerals, which occurred more slowly in contrast 

to smectite and vermiculite. The protonation of the SiO-groups of the tetrahedral sheet at low 

pH (< 2) resulted in a delamination of the particles. The protons caused a positive charge of 

the layers, which tend to repulse each other. 

An adjusted residual Al2O3 content was proved applicable for a reliable estimation of 

residual kaolinite and smectite in bulk materials after acid treatment. The calculated amount 

of these minerals was comparable with the XRD quantification and with the CEC 

measurements in relation to smectite content. 

Acid treatment of non-swelling layer silicates can be used to produce materials with a 

simple chemical composition that retain the layered structure. These materials consisted of 

delaminated particles resulting in a high specific surface area. Thus, they can be used as 

precursor for clay-polymer nanocomposites. Polymer incorporation will be investigated in the 

near future. 
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Zusammenfassung 

Tonminerale weisen eine große Variabilität z.B. in Bezug auf chemische 

Zusammensetzung, Morphologie, Schichtladung, Ladungsdichte und Austauschverhalten 

auf, so dass eine umfassende Charakterisierung für technische Anwendungen unumgänglich 

ist. Der Fokus dieser Arbeit lag deshalb auf der Analyse und auf der Modifizierung von 

unterschiedlichen und scheinbar ähnlichen Tonmineralien in Hinblick auf mögliche 

Anwendungen. Somit werden nachfolgend einige Anwendungsmöglichkeiten beschrieben. 

Die Auswahl der Minerale erfolgte in Bezug auf Schichtladung und Morphologie. Daher 

wurden sechzehn Proben ausgewählt, die quellfähige (Smectit, Vermiculit) oder nicht 

quellfähige Tonminerale (Kaolinit, Illit, Sepiolith, Palygorskit, Magadiit) enthalten. Alle 

vorliegenden Proben wurden umfassend charakterisiert und für die nachstehenden 

Untersuchungen verwendet. 

Während der Charakterisierung zeigte sich, dass sich das Kationenaustauschverhalten 

des ausgewählten Vermiculits deutlich von dem des Smectits unterscheidet, obwohl beide zu 

den quellfähigen Tonmineralen zählen. Daher wurde das Kationenaustauschverhalten näher 

untersucht. Der vorliegende Vermiculit wurde aufgemahlen und gereinigt, aber erst durch die 

Belegung mit einwertigen Kationen wie Na+ oder Li+ war es möglich, alle 

Zwischenschichtkationen gegen Cu-Triethylentetramin (Cu-Trien) auszutauschen. Aufgrund 

dieser Ergebnisse kann Vermiculit zur Herstellung von „Pillared Clays“ verwendet werden. 

Somit wird die Bandbreite der Ladungsdichte deutlich erweitert. 

Ein weiteres Thema der Arbeit beinhaltet Schichtladungs- und Kantenladungsmessungen 

sowie Austauscheigenschaften von Tonmineralien. In diesem Zusammenhang wurde das 

Austauschvermögen von ladungsreduzierten Smectiten untersucht. Zur Herstellung dieser 

Materialien wurden zwei homoionisch belegte Smectite verwendet. Neben dem 

Austauschverhalten wurde der Einfluss von Li+ und Cu2+ in der Zwischenschicht untersucht. 

Die Kationenaustauschkapazität (KAK) der Materialien sinkt mit zunehmender Temperatur 

und ist verbunden mit einer scheinbaren Ladungsreduzierung. Der Anteil an Li+ und Cu2+, 

das in die freien Stellen der Oktaederschicht oder in die hexagonalen Löcher der 

Tetraederschicht wandert, ist äquivalent zur Reduzierung der KAK. Die KAK des Volclays 

sinkt schneller über den ausgewählten Temperaturbereich als die des Indischen Bentonits. 

Das bedeutet, das mehr Li+ und Cu2+ in die Smectitstruktur des Volclays, als in die des 

Indischen Bentonits wandert. Beide Smectite haben die gleiche Oktaederladung, aber sie 

unterscheiden sich in ihrer Schichtladung, im Anteil an tetraedrischer Ladung und in der 
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Höhe des Eisengehaltes. Einer oder mehrere dieser drei Parameter behindern das 

Einwandern von Li+ und Cu2+ in die Smectitstruktur. Damit bietet die gezielte 

Schichtladungsreduzierung die Möglichkeit, Materialien mit einer definierten Schichtladung 

herzustellen. Proben mit einer scheinbar gleichen Schichtladung können dabei 

unterschiedliche Dehydratationseigenschaften aufweisen. 

Zusätzlich zur Schichtladung wurde die Kantenladung untersucht. Verwendet wurde das 

gereinigte und fraktionierte Material von zwei Smectiten (Volclay, Indischer Bentonit), von 

einem Vermiculit und einem Sepiolith. Zwei Methoden wurden zur Bestimmung der 

Kantenladung an diesen Tonmineralien angewandt: 

1) Die erste Methode basiert auf einer Kationenaustauschreaktion. Die KAK wurde in 

Abhängigkeit vom pH-Wert, unter Verwendung von Cu-Triethylentetramin (Cu-Trien) im 

Bereich von pH 4 bis pH 11, gemessen.  

2) Die zweite Methode basiert auf einer Anionenaustauschreaktion. Dabei wurden die an 

den Kanten befindlichen Hydroxylgruppen gegen Fluorid ausgetauscht.  

Beide Methoden führen zu ähnlichen Ergebnissen und können zur Bestimmung der 

Kantenladung angewandt werden. Allerdings gibt es Einschränkungen für Vermiculit und 

Sepiolith. HCl, NaOH und NaF können die Oktaeder- und Tetraederschicht angreifen. Die 

Freisetzung der Elemente erfolgt dabei inkongruent für Säuren und Basen und kongruent für 

NaF. Die freigesetzte Ionenkonzentration ist zu niedrig (< 0,01% bezogen auf den Gehalt pro 

Formeleinheit), um die Tonminerale erheblich aufzulösen. Somit bleiben diese während der 

Austauschreaktionen nahezu unverändert. Die Charakterisierung der Kanten kann als 

Vorstufe zu deren Modifizierung verwendet werden, um eine homogene und orientierte 

Verteilung über Kanten-Kanten- oder Flächen-Kanten-Vernetzungen, z.B. in Tonmineral-

Polymer-Nanokompositen zu erreichen. 

Diese Arbeit beschäftigt sich außerdem mit der Modifizierung von quellfähigen und nicht 

quellfähigen Tonmineralien mit Hilfe mineralischer Säuren (HCl, H2SO4). Die Änderung der 

Tonmineralstruktur wird durch den individuellen Charakter jedes Minerals kontrolliert. Im 

Allgemeinen verursacht Säurebehandlung die Auflösung der Oktaeder- und 

Tetraederschichten. Die Anzahl der Substitutionen durch Mg2+ oder Fe3+ in der 

Oktaederschicht und durch Al3+ in der Tetraederschicht bewirken die Freisetzung der 

Oktaederkationen und die Bildung einer Silicatphase. Die Ergebnisse zeigen, dass die 

Oktaederkationen in folgender Reihenfolge freigesetzt werden: Mg2+ > Fe3+ > Al3+, das heißt 

dioktaedrische Tonminerale sind stabiler gegenüber Säureangriffe als trioktaedrische 

Tonminerale.  
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Säurebehandelte, quellfähige Tonminerale wie Smectite haben noch immer die Fähigkeit 

Kationen auszutauchen. Die erhaltenen Materialien verfügen über eine einfache chemische 

Zusammensetzung und behalten ihre Schichtstruktur. Die Materialien haben eine niedrige 

KAK und eine große spezifische Oberfläche (As) und somit eine niedrigere Ladungsdichte 

verglichen mit dem Ausgangsmaterial. Folglich haben diese Materialien die Fähigkeit große 

organische Moleküle (z.B. Dodecylamin) zu adsorbieren und können als Vorstufe für 

Tonmineral-Polymer-Nanokompositen verwendet werden. 

Die Entwicklung der Mikroporen und der spezifischen Oberfläche unterstützt die 

Delamination der nicht quellfähigen Tonmineralien, die deutlich langsamer als bei Smectiten 

und Vermiculiten erfolgt. Die Protonierung der SiO-Gruppen der Tetraederschicht bei 

niedrigem pH (< 2) bewirkt die Delamination der Partikel. Die Protonen verursachen eine 

positive Ladung der Schichten, wodurch sich diese gegenseitig abstoßen. 

Der korrigierte, noch vorhandene Al2O3-Gehalt wurde zur Abschätzung des verbleibenden 

Kaolinit- und Smectitgehaltes im Gesamtmaterial genutzt. Der berechnete Gehalt von diesen 

Mineralien ist vergleichbar mit der Quantifizierung und mit den KAK-Messungen in Bezug auf 

den Smectitgehalt. 

Auch die Säurebehandlung von nicht quellfähigen Schichtsilicaten kann zur Herstellung 

von Materialien mit einer einfachen chemischen Zusammensetzung genutzt werden, die ihre 

Schichtstruktur behalten. Diese Materialien bestehen aus delaminierten Partikeln, wodurch 

eine große spezifische Oberfläche erzeugt wird. Somit können diese als Vorstufe für 

Tonmineral-Polymer-Nanokompositen genutzt werden. Die Einarbeitung dieser Materialien in 

Polymere wird in näherer Zukunft untersucht. 
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1 Introduction 

Layer silicates like kaolinite, smectite, vermiculite, illite and sepiolite are natural 

nanoparticles and are characterised by their layered structure. They are of great importance 

for the improvement of material properties, e.g., in clay-polymer composites (Pinnavaia and 

Beall, 2001). 

Clay minerals are low-cost materials, which differ in their morphological, mineralogical, 

chemical and thermal properties, as well as in their exchange behaviour. Because of their 

large variability (e.g., in chemical composition), clay minerals are often used in their natural 

form in many industrial applications like ceramic industries, food industries, chemical 

industries and paper industries (Jasmund and Lagaly, 1993). However, it is not possible in all 

cases to use the minerals without modification (e.g., acid or alkali treatment). 

 For example, acidic activated clay minerals are widely used as bleaching earth (Siddiqui, 

1968; Komadel et al., 1997; Ravichandran and Sivasankar, 1997; Kaufhold, 2001), catalysts 

(Adams, 1987) or catalyst supports (Rhodes et al., 1991; Rhodes and Brown, 1992) and in 

carbonless copying paper (Fahn and Fenderl, 1983). 

Alkali treatment (e.g., by soda) of bentonites with a high content of smectite affects the 

structure of smectite crystals by changing the layer sequence (Lagaly et al., 1981). Soda 

activated bentonites are used for geotechnical applications. The production of molecular 

sieves (MCM-41) by NaOH treatment of smectite or kaolinite (Kang et al., 2005; Adjdir et al., 

2008) also uses clay minerals as a low cost Si4+ and Al3+ source. 

In the following paragraphs, the key aspects of the present work are described with some 

important references. Each chapter starts with an introduction, including several references.   

This work dealt with two topics. The first focused on the selection and characterisation of 

natural layer silicates. The second part included the modification of clay minerals for 

technical applications. 

Several clay minerals were selected for the investigation with respect to layer charge and 

morphology. The origin of the selected clay minerals is shown in Chapter 2. A detailed 

description to chemical pre-treatment and particle size separation are also included in this 

chapter. Morphological and surface investigations were carried out using environmental 

scanning electron microscopy (ESEM) and specific surface area investigation (BET). 

Qualitative and quantitative phase analysis was done using X-ray diffraction analysis (XRD). 

A number of chemical analytical methods (X-ray fluorescence analysis (XRF), inductively 
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coupled plasma - optical emission spectroscopy (ICP-OES), determination of cation 

exchange capacity (CEC) and layer charge (ξ)) were applied to investigate the chemical 

composition, the interlayer composition and the exchange behaviour. The thermal properties 

were investigated using simultaneous thermal analysis (STA). Fourier transform infrared 

spectroscopy (FTIR) was used to characterise the clay near structural order. A detailed 

description of all these methods is given in Chapter 3. Summaries of these methods are also 

given in Chapter 5 and 6. 

Results of the comprehensive basic characterisation are described in Chapter 4 and 

include description of morphological, mineralogical, chemical and thermal properties, as well 

as description of the exchange behaviour. Special attention was paid to the cation exchange 

reactions of vermiculite and to the thermal transformation of sepiolite. 

An important feature of smectite, vermiculite and sepiolite is their ability to exchange 

cations. Layer and edge charge and exchange properties of clay minerals are presented in 

Chapter 5.  

Several layer charge reduced materials were prepared according to the methods of 

Madejová et al. (1996). Two smectites with different layer charges and tetrahedral charges 

were used to investigate the correlation between chemical composition resulting layer 

charges and charge reduction by heat treatment. 

Homoionically exchanged samples of smectite, vermiculite and sepiolite were investigated 

to characterise the edges. Two methods were used to characterise the edge charge of these 

materials. One method was the measurement of the CEC in dependency of pH (Kaufhold, 

2001; Amman et al. 2005). The second method was the exchange of hydroxyl groups against 

fluoride (Weiss et al., 1956). 

Chapter 6 includes the structural modification of several clay minerals with mineral acids 

(Madejová et al., 1998; Snäll and Liljefors, 2000; Yebra-Rodríquez et al., 2003; Makó et al., 

2006; Önal and Sarikaya, 2007; Superti et al., 2007). The aim was to prepare materials with 

a simple chemical composition, which have a similar layered morphology as the untreated 

material and which still have the ability to adsorb organic molecules. The investigations 

resulted in detailed information on the stability of each clay mineral during acid treatment. 

The goal of this work was the structural characterisation and modification of different and 

apparent similar clay minerals, allowing technical applications. 
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2 Material 

2.1 Samples 

Natural nanoparticles (layer silicates) were used for the investigations. They differ in 

morphology and layer charge. The selected clay minerals belong to the 2:1 layer silicates, 

with the exception of kaolinite, belonging to the 1:1 layer silicates. The layers of 1:1 layer 

silicates consist of one tetrahedral and one octahedral sheet, whereas in 2:1 layers silicates 

one octahedral sheet is surrounded by two tetrahedral sheets. These layers are connected 

by exchangeable interlayer cations. Seven bentonites with a high content of smectite, one 

vermiculite, one illite, one sepiolite and three kaoline samples with a high content of kaolinite 

(Table 2.1) were selected. Additionally, a synthetic magadiite was used.  

Table 2.1 Origin of samples. 

Sample ID Name Source Supplier 

1_Calci Bentonite (“Calcigel”) Germany Südchemie 

2_EXM757 Montmorillonite Germany Südchemie 

3_Swy-2 Bentonite USA Source Clay Repository of the Clay 
Mineral Society 

4_Vol Bentonite (“Volclay”) USA Südchemie 

5_WYO Bentonite USA Wyoming 

6_IndBent Bentonite  
(“Indian Bentonite”) India F. Wolters / Institute for Foundry 

Technology (IFG) 
7_Nhec Hectorite (natural) USA Elementis 

8_Verm Vermiculite Russia S. Dultz / University Hannover 

9_Illite Illite (“Arginotec NX”) France Commercial product of B.+M. 
Nottenkämper  

10_PangelS9 Sepiolite (“Pangel S9”) Spain Tolsa 

11_Pansil Sepiolite (“Pansil”) Spain Tolsa 

12_Palygorskite Palygorskite (“Smectagel”) Spain Tolsa 

13_Pol Kaoline (“Polwhite B”) GB IMERYS 

14_Kaolex Kaoline (“Kaolex BN”) USA Kentucky-Tennessee Clay Company 

15_Rogers Kaoline (“Rogers”) USA Kentucky-Tennessee Clay Company 

16_Mag Magadiite (synthetic) --- TNO Science and Industry (NL)  
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2.2 Chemical pre-treatment and particle size separation 

Purification of the bulk material 

Grain size separation of the bulk material is necessary to concentrate single phases like 

smectite or sepiolite with small particle sizes. With decreasing particle size the charge of their 

edges increase. For characterisation, the edges of the material must be coated homoionically 

(e.g., with sodium).  

Before separation of the fractions, disturbing phases such as carbonates, iron oxides and 

organic matter have to be removed. These substances may cause aggregation of the clay 

minerals and hence an inadequate dispersion of the sample powders. The elimination of 

these impurities was performed according to, Mehra and Jackson (1960), Tributh and Lagaly 

(1986a), Emmerich (2000) and Wolters et al. (2008). 

Only four samples (4_Vol, 6_IndBent, 8_Verm, 10_PangelS9) from the 16 samples were 

selected for purification and separation because it was necessary for the subsequent 

investigations a) characterisation of layer charge reduced materials and b) characterisation 

of the edges (Chapter 5). These four samples were treated in the same way to make sure 

that they underlie the same reaction conditions. The removal of impurities was done in the 

following order:  

1. removal of carbonates 

2. removal of iron oxides  

3. removal of organic matter.  

300 g of these samples were purified. For the purification, every sample was divided into 

three beakers. A detailed description of the methods is given below. 

Removal of carbonate 

Calcium carbonate was dissolved by an acetic acid-acetate buffer and then was washed with sodium 

chloride and deionised water. 

OHCOCOOCHCaCOOHCHCaCO 222333 )(2 ++→+  

Equipment: 

Scale, beaker (5 l), graduated cylinder, graduated flask, pH-meter, magnetic stirrer, centrifuge tube 

(600 ml), centrifuge (Multifuge 3S-R Heraeus/Kendro). 
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Chemicals: 

Sodium acetate p.a. (CH3COONa), acetic acid (100%) p.a. (CH3COOH), sodium chloride p.a. (NaCl), 

deionised water. 

Brief description: 

The acetate buffer was prepared by mixing a 2 M sodium acetate solution with a 2 M acetic acid 

solution at a ratio of 2 to 1. The buffer was adjusted to pH 4.8. A volume between 1000 and 1500 ml of 

the buffer was added to 100 g sample in a beaker and then stirred without heating. The amount of 

carbonate in the samples was very low; therefore the reaction was finished after one day. Thereafter, 

the suspensions were centrifuged and washed 4 times with a 1 M sodium chloride solution and one 

time with deionised water. The centrifugation was carried out at 4500 rpm between 10 and 30 min. 

Error: 

The pH of the acetate buffer should not be lower than 4.8 to avoid solution of the clay mineral 

structure. Carbonates such as dolomite and siderite cannot be dissolved during short reaction times. 

Removal of iron oxide 

The removal of iron oxide and aluminium hydroxides was performed with a buffered dithionite-citrate 

system according to Mehra and Jackson (1960). The reduction of iron oxide occurred by sodium 

dithionite and the complexation of Fe2+ by sodium citrate. Sodium hydrogen carbonate was used to 

buffer the consumed hydrogen ions during the oxidation of sodium dithionite to sodium sulphate. 

Equipment: 

Scale, beaker (5 l), graduated cylinder, graduated flask, pH-meter, magnetic stirrer, centrifuge tube 

(600 ml), centrifuge (Multifuge 3S-R Heraeus/Kendro). 

Chemicals: 

Tri-sodium citrate p.a. (C6H5O7Na3), sodium hydrogen carbonate p.a. (NaHCO3), sodium dithionite 

LAB (Na2S2O4), sodium chloride p.a. (NaCl), deionised water. 

Brief description: 

The carbonate free samples were transferred together with about 1 l 0.3 M Tri-sodium-citrate-

dehydrate solution into a beaker. Subsequently, 125 ml sodium hydrogen carbonate solution were 

added. The suspensions were stirred and 25 g of the solid dithionite carefully added. After one day the 

suspensions were centrifuged and washed again 4 times with a 1 M NaCl solution and one time with 

deionised water. The centrifugation was carried out at 4500 rpm between 10 and 30 min.  

Error: 

Short reaction times might cause insufficient removal of iron oxides and aluminium hydroxides.  
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Removal of organic matter 

Organic matter can be destroyed effectively by hydrogen peroxide. 

Equipment: 

Beaker (5 l), graduated cylinder, magnetic stirrer, centrifuge tube (600 ml), centrifuge (Multifuge 3S-R 

Heraeus/Kendro). 

Chemicals: 

Hydrogen peroxide 30% p.a. (H2O2), sodium chloride p.a. (NaCl), deionised water. 

Brief description: 

After the removal of iron oxides the washed sample was resuspended in 1000 ml deionised water. 

Between 270 and 360 ml hydrogen peroxide solution were added stepwise to the suspension to adjust 

the suspension to 5%. The amount of organic matter in the used samples was very low; therefore the 

reaction was finished under stirring in one day. In case of intense reaction, the solutions have to be 

adjusted to 10% in order to remove the remaining organic matter. After reaction the suspensions were 

centrifuged and washed 4 times with a 1 M sodium chloride solution and one time with deionised 

water. The centrifugation was carried out at 4500 rpm between 20 and 30 min. In some cases it is 

necessary to add solid sodium chloride to the suspensions after the removal of organic matter for 

centrifugation. The hydrogen peroxide ions affected the buoyancy of the clay particles therefore the 

overlaying solution is cloudy. Solid sodium chloride caused a faster sedimentation of the material. 

Error: 

Residues of organic matter may remain.  
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Separation of < 2 µm and < 0.2 µm fractions 

The < 2 µm fraction was obtained by sedimentation from the purified samples and the 

< 0.2 µm fraction by centrifugation of the < 2 µm fraction. 

After purification the samples are saturated with sodium, as this is important for stable 

dispersions. However, high amounts of sodium chloride in the suspensions caused a 

coagulation of the particle; therefore it is important to dilute the suspensions with deionised 

water. 

The settling time for the particles follows the Stoke’s law. The settling time for a particle in 

a gravity field is determined by: 

     ( ) 2
0
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d
h
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⋅−
=

ρρ
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     (1). 

The gravity force (g) is included in the calculation. The calculation of the settling time for 

sedimentation in the centrifuge is based on the following formula: 
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    (2). 

The centrifugal acceleration [ 22 )60/(4 Rr ⋅π ] with the radius of the particles (r) and R/60 

as rotation per minute is included in the calculation. The formulas (1) and (2) include the 

viscosity of water (η0), the density of the clay mineral (ρ) and water (ρ0), the equivalent 

particle diameter (d) and the settling distance of the particles (h). Sedimentation of the 

particles depends on the temperature (Stoke’s law), as η0 = f (T). With increasing 

temperature the sedimentation time decreases. 

Particle size separation 

Equipment: 

Beaker (5 l), timer, thermometer, U-shaped glass pipe, water jet pump, centrifuge (Multifuge 3S-R 

Heraeus/Kendro), buckets, tube for dialysis (Nadir, pore size 25 Ǻ), plastic pots, drying oven, agate 

mill or agate mortar. 

Chemicals: 

Sodium chloride p.a. (NaCl), deionised water.  
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Brief description: 

After purification, the samples were mixed with deionised water and then shaken overnight. The 

homogeneous suspensions were transferred into 5 l beakers, diluted so that the concentration of solid 

was less than 1% and stirred. The sedimentation of the < 2 µm fraction was calculated in dependence 

of the temperature. For temperature measurement, a thermometer was placed into a beaker of water. 

One part of the < 2 µm suspensions was coagulated with sodium chloride to reduce the volume. The 

second half of the < 2 µm suspension was centrifuged at a constant temperature (20 °C) and a 

constant rotation speed of 4500 rpm for 25 min to obtain the < 0.2 µm fraction. The time for 

centrifugation was calculated according to Tributh and Lagaly (1986b). After centrifugation, the 

< 0.2 µm suspensions were also coagulated with sodium chloride. The suspensions were transferred 

into a dialysis tube, which was treated beforehand in boiling deionised water twice for few hours to 

remove organic molecules. The material was dialysed until the conductivity of the surrounding 

deionised water was below 5 µS/cm. This process is time consuming and needs between 2 and 3 

weeks. During dialysis, it is very important to change the deionised water constantly (every day or 

every second day). The chloride free samples were dried at 60 °C. After drying, the fractions were 

milled slightly in an agate mortar. 

Error: 

Larger particles (e.g., > 2 µm) were separated when the centrifugation or sedimentation time was too 

short. Acceleration and deceleration also have an influence on the separation of the < 0.2 µm fraction, 

both cause that larger particles are in the fraction < 0.2 µm. 

The purification of four samples (~ 300 g) and the separation of the < 2 µm and < 0.2 µm 

fraction took between 5 and 6 months. 
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3 Methods 

Table 3.1 Techniques to characterize clay minerals. 

Method  Sample preparation 
and reactants direct information indirect information  

Morphology and surface 

Environmental Scanning 
Electron Microscopy  ESEM Powder  

(without sputtering) Morphology - 

Determination of 
Specific surface area  BET Powder Specific surface area - 

Mineralogy 

X-Ray Diffraction 
Analysis  XRD Powder sample texture 

sample 
Qualitative and quantitative 
phase analysis Chemical composition 

Chemical composition 

X-Ray Fluorescence 
Analysis  XRF Melting pellets Chemical composition Structural formula of  

pure phases 
Inductively Coupled 
Plasma - Optical 
Emission Spectroscopy   

ICP-
OES Supernatant solutions Soluble and / or exchanged 

cations 
Cation exchange 
capacity 

Short range order 

Fourier Transform 
Infrared Spectroscopy  

FTIR / 
DRIFT 

KBr-Pellets,  
Powder with KBr Structural information Structural changes 

Thermal reactions 

Simultaneous Thermal 
Analysis  STA Powdered samples Phase transformations, 

release of water 
Clay mineral content, 
thermal stability 

Exchange behaviour and interlayer composition 

Determination of Cation 
Exchange Capacity  CEC 

Copper-
triethylenetetramine, 
Ammonium acetate 

Cation exchange capacity Layer charge 

Determination of Layer 
Charge  ξ Alkylammonium ions Layer charge Calculation of the cation 

exchange capacity 

 

Table 3 summarized the methods used to characterise the clay materials. A brief description 

of each technique follows.  
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3.1 Morphology and surface 

3.1.1 Environmental Scanning Electron microscopy (ESEM) 

The examination of the particle morphology was carried out by ESEM using a Philips 

ESEM XL 30 FEG. This kind of SEM uses a chamber atmosphere of 1 to 3 Torr water vapour 

instead of high vacuum. The microscope is equipped with a special gaseous secondary 

electron detector (GSE-detector); therefore sputtering of the samples with conductive 

material (gold, carbon) is not necessary. Thus, it can be used for the investigation of 

moisture sensitive samples like clay minerals. A chamber atmosphere of 1 Torr and an 

acceleration voltage of 20 KV were applied.  

There are two kinds of sample holders for the sample preparation. One of the holders 

consists of aluminium, which was laminated with an adhesive carbon foil. Very small 

amounts of the clay powder were dispensed onto the foil. The other holder was made of 

polished brass and was coated with a 0.1% clay suspension. 

3.1.2 Specific Surface Area (BET)   

Nitrogen adsorption using a Quantochrome Autosorb-1MP and BET evaluation was used 

to measure specific surface area (AS or SSA in most literature) (Brunauer et al., 1932; Gregg 

and Sing, 1991). Eleven adsorption points in the range of p/p0 from 0.05 to 0.32 were used 

for BET evaluation. The outgassing conditions were 24 h under vacuum at 95 °C. The t-plot 

according to De Boer et al. (1966) was applied to estimate the external specific surface area 

(AE) and the part of the micro-pore area (AMP). 

3.2 Mineralogy 

3.2.1 X-Ray Diffraction Analysis (XRD) 

XRD was used to determine the mineralogical composition of the natural materials. For 

the XRD measurements, powder and textured samples of the starting materials were 

prepared. The measurements were performed on a Siemens D5000 diffractometer (CuKα 

radiation) equipped with a graphite secondary monochromator. The powder patterns were 

recorded between 5 and 80° 2θ (step size: 0.03° 2θ / 5 s). The texture patterns were 

recorded between 2 and 35° 2θ (step size: 0.03° 2θ / 3 s).  

Qualitative phase analysis was done by using Brindley and Brown (1980) and Diffrac Plus 

Evaluation software (Version 10.0) by Bruker. Quantification of the samples was done with 
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the Rietveld program “Autoquan” (Agfa NDT Pantak Seifert GmbH_Co.KG, Version 2.7.0.0). 

The Rietveld method is based on a mathematical method, which calculates a pattern by the 

optimisation of crystal structure parameters, profile form functions and background functions 

(Kleeberg and Bergmann, 2002). This calculated diffractogram is adjusted by increment 

match to the measured pattern until the best match within defined limits is achieved. 

The Rietveld analysis is a method for a stepwise refinement of crystal structures. 

According to Kleeberg and Bergmann (2002) every point in the diffractogram is specified by 

the following equation:   

( )[ ]∑ ∑ +⎥
⎦

⎤
⎢
⎣

⎡
ΔΘ=

p
bi

k
kikkkkipi yPoGFHPLSY 2

       (3) 

         (Kleeberg and Bergmann, 2002) 

with yi  intensity on the measuring point i 
 Sp  scale factor (proportional to the scattering volume of the phase) 
 Lk, Pk, Hk Lorentz-, polarisation and. multiplicity factors (line k) 
 structure factor  2׀Fk׀ 
 G(ΔΘik) profile function 
 Pok  preferred orientation correction 
 ybi  intensity of the background.  

“Autoquan” combines the analytical properties of the plain Rietveld program BGMN with a 

simple operator interface. 

Powder samples 

Equipment: 

Sample holder, glass slide, sandpaper. 

Brief description: 

The powder was loosely filled into the sample holder. The powder was then carefully pressed with the 

long edge of a glass slide into the sample holder; therefore removing surplus material at the same 

time. The result of the preparation is the formation of a plane surface. This surface was roughed up 

with sandpaper to obtain a random orientation. The powder sample should be prepared without force 

or textures. 

An internal standard (ZnO) was used to quantify the content of amorphous SiO2 in the powder 

samples. For these measurements, the powdered samples were mixed with ZnO in the ratio of 9:1.  
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Textured samples 

Equipment: 

Glass slide (diameter: 25 mm), cap (5 ml), spatula, ultrasonic finger, desiccator. 

Chemicals: 

Ethylene glycol, deionised water. 

Brief description: 

100 mg powder (tip of a spatula) were dispersed in 3 ml deionised water. The suspension was treated 

with the ultrasonic finger (UP 200s, Dr Hielscher GmbH; amplitude: 90; cycle: 0.9) for one minute to 

yield a homogenous suspension. Afterwards the dispersion was pipetted onto a glass slide and dried 

at room temperature under atmospheric conditions. The textured sample was measured air-dried, after 

treatment with ethylene glycol and after heating at 375 °C and 550 °C for 3 h. For the treatment with 

ethylene glycol the oriented sample was stored for 2 or 3 days in a desiccator with ethylene glycol. 

3.3 Chemical composition 

3.3.1 X-Ray Fluorescence Analysis (XRF) 

The chemical composition of the natural materials and the < 2 µm and < 0.2 µm fractions 

were investigated with XRF. The chemical composition of the crude sample is important to 

verify the quantification of the sample. From quantitative analysis by XRD, the chemical 

composition of the sample based on stoichiometric formula of the phases can be calculated 

and compared with the measured chemical composition of the XRF analysis. The 

investigation of the fractions is important for the calculation of the structural formula of clay 

minerals.  

In XRF the sample X-ray emission following excitation with primary radiation source is 

detected. The emitted X-ray radiation can be used to identify elements in the sample and 

quantity their amount. The wavelengths of the emitted fluorescence radiation are specified 

for an element atomic number in the sample. The concentration of selected elements can be 

determined by the intensity of their characteristic radiation on the basis of extensive 

adjustment and calibration programs. The concentration range differs from element to 

element and ranges from 0.0001 to 100%. 

The XRF analyses were performed on a MagiXPRO spectrometer from Phillips equipped 

with a rhodium X-ray tube (stimulation power: 3.2 KW) using molten pellets. The loss of 

ignition was determined separately by storing a sample in an oven at 1000 °C for 2 h. The 

general measurement conditions of the basic elements are listed in Table 3.2. The calibration 

occurs with 59 international standards. 
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Table 3.2 General measurement conditions of the elements indicated. 

Element Line Crystal Detector kV mA 

Na Kα PX1 Flow 32 100 

Mg Kα PX1 Flow 32 100 

Al Kα PE002 Flow 32 100 

Si Kα PE002 Flow 32 100 

P Kα Ge111 Flow 32 100 

K Kα LiF200 Flow 32 100 

Ca Kα LiF200 Flow 32 100 

Ti Kα LiF200 Duplex 37 86 

Cr Kα LiF200 Duplex 57 56 

Mn Kα LiF220 Duplex 57 56 

Fe Kα LiF220 Duplex 60 53 

Ni Kα LiF200 Duplex 57 56 

As the samples strongly differ in their amount of SiO2, they were measured with two 

different programs. One was used for samples with SiO2 contents larger than 60% and the 

other for materials with SiO2 amounts below 60%. The information about the possible 

sources of error of the calibration of the basic elements for SiO2-rich and SiO2-poor samples 

is listed in Tables 3.3 and 3.4.  

Table 3.3 Possible calibration sources of error for SiO2-rich samples (SiO2 > 60%). 

Oxide 
Average 

concentration   
[%] 

Root mean 
square 

[%] 

Testing time    
[s] 

Calibration range     
[%] 

Root mean 
square relative 

[%] 

SiO2 75 0.28 12 60 - 100 0.4 

TiO2 0.55 0.01 8 0.01 - 1 1.8 

Al2O3 12 0.11 24 3 - 22 0.9 

Fe2O3 3.7 0.04 8 0.2 - 8 1.1 

MnO 0.16 0.003 16 0.01 - 0.4 1.9 

MgO 1.35 0.04 24 0.05 - 3 3.0 

CaO 4 0.04 8 0.10 - 9 1.0 

Na2O 4.5 0.04 24 0.10 - 10 0.9 

K2O 6.9 0.05 8 0.6 - 13 0.7 

P2O5 0.7 0.006 16 0.01 - 1.4 0.9 
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Table 3.4 Possible calibration sources of error for SiO2-poor samples (SiO2 < 60%). 

Oxide 
Average 

concentration   
[%] 

Root mean 
square         

[%] 

Testing time    
[s] 

Calibration range     
[%] 

Root mean 
square relative 

[%] 

SiO2 52 0.19 12 32 - 60 0.4 

TiO2 1.9 0.027 8 0.02 – 4.0 1.4 

Al2O3 16 0.18 24 0.2 - 30 1.1 

Fe2O3 9 0.09 8 0.2 - 20 1.0 

MnO 0.17 0.006 16 0.03 – 0.2 3.5 

MgO 20 0.09 24 0.04 - 50 0.5 

CaO 8 0.08 8 0.1 - 16 1.0 

Na2O 4.5 0.06 24 0.02 - 10 1.3 

K2O 6.6 0.06 8 0.01 - 14 0.9 

P2O5 0.75 0.01 12 0.01 – 1.5 1.3 

Cr2O3 0.12 0.005 12 0.002 - 3.5 4.2 

NiO 0.12 0.002 12 0.002 – 0.35 1.7 

Equipment: 

Scale, Pt crucible, smelting gadget (Vulcan 4MA, HD Electronic). 

Chemicals: 

Lithium tetraborate (Spectromelt A10, Merck) supra pure (Li2B4O7). 

Brief description: 

The powdered samples were mixed with lithium tetraborate in the ratio of 1 to 7. The whole material 

was molten stepwise in a platinum crucible at a smelting apparatus. After this procedure, the melt was 

transferred into a platinum jacket and cooled. 

Error: 

Too short of smelting time lead to incomplete melting. 
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3.3.2 Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)   

ICP-OES is a method to quantify ion concentrations in solutions. The general parameters 

of the spectrometer used are listed in Table 3.5. The characteristic wavelengths for the 

analysed ions are listed in Table 3.6. 

Table 3.5 Experimental parameters for ICP-OES. 

ICP emission spectrometer Jobin Yvon, Typ JY 38 S 

Monochromator Czerny-Turner-specification (1 m) 

Frequency MHz 40.68 
HF generator 

Power W 1000 

ICP torch Demountable torch with ceramic injector tube 

Nebulizer chamber Cyclone chamber   

Nebulizer Burgener Graphit Mira Mist HS   

Plasma [l/min] 14.0 

Protective gas [l/min] 0.2 Argon gas flow 

Nebulizer gas [l/min] 0.71 

Sample uptake Flexible-tube pump [ml/min] 1 

ICP-OES was used for the investigation of the exchanged cations in the supernatant 

solution after the exchange with copper triethylenetetramine and the determination of the 

released cations during the acid treatment. 

The analysis of the exchanged cations (Na+, Ca2+, Mg2+, K+ and Li+) gives information 

about the kind of interlayer cations and about the ratio of the cations relative to one another. 

The amount of all exchanged cations allows verification of the measured cation exchange 

capacity. The investigation of the cations released by acid treatment (Si4+, Al3+, Fe2+/3+, Mg2+, 

Ca2+, Na+, K+ and Li+) gives information about the kind and amount of cations within the 

octahedral sheet and interlayer.  

Table 3.6 Characteristic wavelengths of the analysed ions.  

Elements Wavelength [nm] 

Silicon 251.611 
Aluminium 259.940 
Magnesium 279.533 
Calcium 317.933 
Iron 396.152 
Sodium 589.592 
Lithium 670.784 
Potassium 766.490 
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Equipment: 

Vials (20 ml), pipette (5 ml) with pipette tips, centrifuge (Multifuge 3S-R Heraeus/Kendro), ICP 

emission spectrometer (Jobin Yvon, Typ JY 38 S). 

Chemicals: 

Nitric acid (65%) supra pure (HNO3), deionised water. 

Brief description: 

For the analysis of the exchanged cations, 5 ml of the supernatant solution were separated with a 

pipette from the clay. The solution was filled in vials and diluted with deionised water in 1:1, 1:2 or 1:4. 

Volumes, expending on concentration, estimated from the cation exchange capacity. Between 10 and 

20 ml solution were used for the measurements of Na+, Ca2+, Mg2+, K+ and Li+. 10 to 20 µl of nitric acid 

were added to stabilise the solutions. Nitric acid caused decolourisation of the solutions, indicating that 

means the copper complex was destroyed (Section 3.6.1). 

For the determination of the released cations (Si4+, Al3+
, Fe2+/3+

, Mg2+, Na+, Ca2+, K+, Li+), the solutions, 

as separated from the residual clay fragments, were analysed by ICP-OES after centrifugation. The 

supernatant solutions were concentrated; therefore the solutions were diluted with dilution factors 

1:20, 1:50 or 1:100 using deionised water. 20 ml solution were used in the analyses. 

Error: 

The precision of the method averaged 3 meq/100g for the sum of the exchanged cations. In some 

cases, the amount of the exchanged cations is higher than the measured cation exchange capacity, 

because the sample contained small amounts of soluble phases such as carbonates and sulphates. 

These phases also released elements like Ca. 

3.4 Short range order 

3.4.1 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR spectroscopy can be divided into near infrared (NIR: 8000 - 4000 cm-1), mid infrared 

(MIR: 4000 - 400 cm-1) and far infrared spectroscopy (FIR: 400 - 50 cm-1). The MIR 

spectroscopy represents an established tool for the study of the clay lattice and of molecules 

adsorbed on its surface. In this work only MIR spectroscopy was used to characterise the 

structural changes of the natural and treated materials. 

The FTIR spectra were recorded on a Bruker IFS66/S spectrometer equipped with a 

deuterated triglycinesulfonate detector (DTGS) using pressed KBr-pellets 

(3 mg sample : 300 mg KBr). Thirty-two scans were recorded in the 4000 - 400 cm-1 spectral 

range with a resolution of 4 cm-1. A pure KBr pellet was used for the background 

measurement. 
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For a higher resolution of the bands in the Si-O stretching region (1200 - 800 cm-1), a 

diffuse reflectance accessory from Spectra-Tech Inc. (DRIFT) was used. In this case, 2.5 mg 

of a sample was mixed with 500 mg KBr. The powder was filled loosely into a sample cup to 

obtain a random orientation. The FTIR spectra were recorded on a Bruker IFS66/S 

spectrometer equipped with a DTGS detector. Sixty-four scans were recorded in the 

4000 - 400 cm-1 spectral range with a resolution of 4 cm-1 using a scanner velocity of 4 kHz 

and a lens aperture of 12 mm. After preparation and prior to the measurement, each sample 

was flushed with nitrogen for 2 min. Pure KBr was used for the background measurements. 

The raw DRIFT data were transformed using Kubelka-Munk-Function (Kubelka and Munk, 

1931; Petrick, 2007). 

3.5 Thermal reactions 

3.5.1 Simultaneous Thermal Analysis (STA) 

STA is a combination of thermogravimetry (TG) with differential thermal analysis (DTA) or 

differential scanning calorimetry (DSC). In this study, the thermal behaviour of the clay 

minerals was observed with a STA 449 C Jupiter from Netzsch connected to a quadrupole 

mass spectrometer (QMS 403 C, Aeolos, Netzsch). The samples were measured at a 

defined temperature-time-program with a defined heating rate. The mass spectrometer 

allows detection of released gases such as H2O, CO2 and SO2 during the measurements. 

STA is a very useful device to characterise clay minerals. The STA measurements give 

information on the release of water, phase transformations, decomposition and 

recrystallisation. Clay minerals contain various kinds of water, which are released at different 

temperature ranges. First dehydration occurs up to temperatures of around 300 °C. During 

dehydration adsorbed water from the mineral surfaces and interlayer water from inner 

surfaces are released in endothermic reactions. The dynamic mass loss during the 

dehydration is equal to the static determined water content at 200 °C. Dehydroxylation 

occurs between 330 and 850 °C. During dehydroxylation structural water associated with 

hydroxyl groups migrates out of the mineral structure. The dehydroxylation temperature gives 

information about the stability of clay minerals and is associated with the structure of the 

octahedral layer of dioctahedral 2:1 clay minerals (Drits et al., 1995). Fe-rich smectites such 

as nontronite release structural water between 450 and 600 °C, while Al-rich smectites 

release water between 500 and 750 °C. Trioctahedral smectites (Mg-rich) such as saponite 

or hectorite show dehydroxylation temperatures between 750 and 850 °C (Smykatz-Kloss, 

1974; Köster and Schwertmann, 1993; Niederbudde, 2002). 
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In some cases, the dehydroxylation temperature gives additional information about the 

crystallinity of the clay mineral, especially of kaolinite (Jasmund and Lagaly, 1993). The 

dehydration and the dehydroxylation can occur stepwise, which is dependent on the clay 

mineral structure. In addition to dehydration and dehydroxylation, some clay minerals like 

sepiolite and palygorskite show the release of coordinated water, which is connected to the 

edges of the octahedral sheet (Frost and Ding, 2003). 

It is also possible to obtain qualitative information on impurities like sulphides, sulphates 

and carbonates from STA measurements. In addition, the STA is connected to a pulse box 

(PulseTa, Netzsch) for injection of CO2, which can be used for the quantification of 

carbonates. At the end of the measurements a 30 min isotherm segment is added. During 

this time a defined content of CO2 (0.5 ml) is injected by the pulse box and repeated 5 times. 

On the basis of the averaged peak area detected and the peak area from the dynamic 

segment, the CO2 volume of the sample can be calculated. The amount of carbonate in the 

sample can be calculated using the density of CO2 and the molar mass of the identified 

carbonates (calcite, dolomite, magnesite and siderite). The different carbonates can be 

identified from their different decomposition temperatures (Smykatz-Kloss, 1974). 

At the beginning of the measurement, there is an added isotherm 10 minute segment to 

redress the balance. Prior to the measurements, the samples are stored above a saturated 

magnesium nitrate solution (Mg(NO3)2, 53%) in a desiccator to equilibrate at constant 

humidity conditions. The general measurement conditions are listed in Table 3.7. 

Table 3.7 Experimental parameters. 

Start temperature [°C] 35 

End temperature [°C] 1100 Dynamic segment 

Heating rate [K/min] 10 

Isotherm segment at     35 °C [min] 10 

 1100 °C [min] 30 

Nitrogen as protective gas [ml/l] 20 
Atmosphere 

Synthetic air as purging gas [ml/l] 50 

Sample holder Pt/Rh 

Crucible Pt/Rh with lid 

Reference material Empty crucible with lid 

Bentonite [mg] 100 

Kaolinite, vermiculite, illite, magadiite [mg] 50 Net weight 

Sepiolite, palygorskite  [mg] 30 

According to Wolters and Emmerich (2007), the dehydroxylation temperature of 

dioctahedral smectites can be used to estimate the cis- and trans-vacant character. The 
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proportions were determined by fitting the MS curve of water (m/e = 18) using PeakFit 

program 4.0 from Jandel Scientific. Details of the peak fit program are described in the 

appendix. The fitting procedure includes the determination of the peak areas in the range of 

350 and 900 °C. The ratio between the areas of the peaks reflects the ratio between trans- 

and cis-vacant layers. The border between both varieties was defined by 600 °C according to 

Drits et al. (1998). The limits of the amount of cis- and trans-vacant layers in the dioctahedral 

smectites are displayed in Table 3.8 (Wolters and Emmerich, 2007).  

Table 3.8 Limits of the amount of cis- and trans-vacant layers in the dioctahedral smectites 
 according to Wolters and Emmerich (2007). 

 Cis-vacant   
(cv) 

Cis-trans-vacant 
(cv/tv) 

Trans-cis-vacant 
(tv/cv) 

Trans-vacant  
(tv) 

wcv 100 - 75 wcv 74 - 50 wcv 49 - 25      wcv 24 - 0 Percentage area [w] 
of MS curve of 
water (m/e=18) [%] wtv     0 - 25 wtv 26 - 50 wtv 51- 75 wtv 76 - 100 

3.6 Exchange behaviour and interlayer composition 

3.6.1 Cation Exchange Capacity (CEC) 

Clay minerals have the ability to adsorb cations, which can be exchanged by other 

cations. This ability can be described as cation exchange capacity (CEC), which is an 

important property of clay minerals, especially of smectites and vermiculites. 

The total CEC consists of two parts: the exchange capacity of the interlayer and that of 

the edges. The exchange of the interlayer cations is independent of the pH-value, whereas 

the amount of cations, which are located at the edges, strongly depends on pH. For example, 

smectites have up to 20% charge at their edges. This means 20% of the total exchange 

capacity measured at pH 7 results from the edges (Lagaly, 1981). In the acid pH range, the 

edges are positively charged; thus the edges do not contribute to the measured CEC. In the 

basic pH range, the edges are negatively charged; therefore in this pH range all edges 

contribute to the CEC. 

The CEC of the natural materials was measured with 0.01 M copper triethylenetetramine 

solution according to Meier and Kahr (1999). The concentration of copper 

triethylenetetramine in the supernatant solution was measured by photometry. The CEC is 

determined by: 

[ ] ( )( )[ ]
[ ]gm

mlmlcmllmolgmeqCEC
dried

TrienCu 1001000/1055/01.02100/ ⋅+⋅−⋅⋅
= −          (4) 
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[ ] [ ] [ ]( )
%100

%100 minwgmgm netweightdried
−

⋅=             (5) 

[ ] Absalmmolc Triencu ⋅=− /               (6) 

with  cCu-Trien   concentration of copper triethylenetetramine 
   mdried   mass of dried sample     
   mnet weight  mass of air dried sample    
   wmin   water content      
   a   slope of the calibration curve    
   Abs   measured absorbance of the overlaying solution.   

The calculation of the CEC includes the volume of deionised water (10 ml) and copper 

triethylenetetramine (5 ml), as well as the molarity of copper triethylenetetramine. For the 

calculation of the CEC, it is necessary to measure the water content of the clay sample, 

because the CEC refers to the dry sample weight. The water content can be measured with 

simultaneous thermal analysis or by oven drying. 

Due to its size, the copper triethylenetetramine molecule can not be exchanged 

completely in natural vermiculites. Therefore the CEC of the vermiculite was determined with 

the ammonium acetate method. This CEC is here defined by: 

][
100][][

]100/[ 4242

gm
molnmlV

gmeqCEC
dried

SOHSOH ⋅⋅
=                (7) 

][][][
42

mlVmlVmlV BlankSampleSOH −=              (8) 

with VH2SO4 revised Volume (Consumption) of H2SO4  

 nH2SO4 Molarity of H2O4 (0.0067 mol)   
 mdried mass of dried sample    
 VSample measured Volume of H2SO4

 of the used sample 
 VBlank measured Volume of H2SO4 of the blank sample. 

Copper triethylenetetramine method 

Equipment: 

Scale, weighing glasses, desiccator, centrifuge tube (50 ml), shaking table, disposable cuvettes 

(1.5 ml semi-micro, Plastibrand), centrifuge (Multifuge 3S-R Heraeus/Kendro), UV-vis Spectrometer 

Genesys 10UV (Thermo). 

Chemicals: 

0.01 M (CuSO4)·5H2O, triethylenetetramine purum, saturated Mg(NO3)2 (53% r.h.), deionised water. 

Brief description: 
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Before CEC measurements, the hydration state of the samples is allowed to equilibrate by storing the 

samples over magnesium nitrate between 3 and 5 days. Thereafter, a specified amount of material is 

weighed into 50 ml centrifuge tubes. The amount of sample depends on the expected CEC. If the CEC 

is higher than 50 meq/100 g, the net weight averages 50 mg. If the CEC is less than 50 meg/100 g, a 

larger amount of material has to be used. 10 ml deionised water and 5 ml 0.01 M copper 

triethylenetetramine (Cu-trien) are then added and the resulting suspensions shaken for 3 h. After this 

procedure, a complete exchange of the Cu2+-complex with the exchangeable cations is guaranteed. 

Afterwards, the suspensions are centrifuged at a constant rotation speed of 4500 rpm for 10 min. The 

clear blue supernatant is transferred into cuvettes and is measured in a photometer at a wavelength of 

580 nm. A calibration curve to calculate the Cu-trien concentrations in the clay samples was prepared 

by mixing 10 ml deionised water with several volumes of Cu-trien (0,5, 1, 2, 3, 4 and 5 ml), which were 

measured. At our laboratory repeated measurements of two bentonites (Volclay, Calcigel) have been 

done during the last year. Volclay has an average value of 85 meq/100g and Calcigel has an average 

value of 63 meq/100g. Thus, these clays are measured as standards to check the correctness of my 

measurements. The CEC measurement of a sample was always done twice. 

Error: 

The correctness of the method was determined by repeated measurements (> 75) of two standards 

(Volclay and Calcigel) in our laboratory. The precision is defined to be ± 3 meq/100g. 

Ammonium acetate method 

Equipment: 

Scale, centrifuge tube (50 ml), shaking table, centrifuge (Multifuge 3S-R Heraeus/Kendro), distillation 

apparatus, evaporating dish, burette, Erlenmeyer flasks (100 ml), Kjeldahl flasks, pipette (5 ml, 10 ml), 

magnetic stirrer, drying oven, volumetric flask (100 ml), polyethylene bottles. 

Chemicals: 

1 M CH3COONH4 (pH=7, p.a.), CH3CH2OH (pure), H2SO4 (0.0067 M, p.a.), H3BO3 (pH=4.75, 4%, 

p.a.), NaOH (50%, p.a.), indicator (25 mg methylred and 125 mg bromocresol green in 25 ml ethanol), 

HNO3 (Suprapur®, Merck), deionised water.  

Brief description: 

The preparation of the samples follows the instructions of MacKenzie (1951) and Emmerich (2000). 

60 mg material was weighed in 50 ml centrifuge tubes. Between 25 and 30 ml ammonium acetate 

solution were added. The suspensions were shaken during 24 h. After this procedure, a complete 

exchange of the ammonium with the exchangeable cations is guaranteed. The next day, the solutions 

were centrifuged with 4500 rpm for 10 min. The clear supernatant was exchanged by 25 to 30 ml 1 M 

ammonium acetate solution. The procedure was repeated four times. Afterwards, the materials were 

washed 4 times with 25 to 30 ml ethanol. All supernatant solutions were collected in evaporation bowls 

and dried at 90 °C. The solid residue was prepared for ICP-OES. It was redissolved with 3 ml nitric 
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acid and deionised water and transferred into a volumetric flask (100 ml) and filled to the mark. The 

solutions were stored in polyethylene bottles. 

The ammonium exchanged material was transferred into Kjeldahl flasks together with 30 ml deionised 

water and was mixed with 2 ml NaOH solution before the measurement started. Ammonium was 

eliminated from the interlayer by the sodium and transformed to ammoniac. The released NH3 was 

transferred into an Erlenmeyer flask by water vapour distillation (Kjeldahl). The Erlenmeyer flask 

contained already 2 ml boric acid and the indicator for titrimetric determination of NH3 by H2SO4. In 

addition to the samples, a blank was measured. The blank consisted of 30 ml deionised water and 2 

ml NaOH solution. After the distillation, each solution in the Erlenmeyer flask was blue and the pH was 

basic. The titration occurred from basic to acid and the colour changed from blue to red. The 

measurement of the CEC of a sample was always done twice. The water content of the clay sample 

was measured with STA, because smectite and vermiculite can release water up to 250 °C. The CEC 

determined referred to the dry sample weight. 

Error: 

A CEC value being too high was determined, when the surplus ammonium was not completely 

washed out. A lower CEC value is obtained, when the exchange with ammonium was not complete. 

3.6.2 Layer Charge Determination (ξ) 

The layer charge of smectite in bentonite and vermiculite was determined by the 

alkylammonium method (Lagaly and Weiss, 1970; Lagaly, 1989 and 1994). Interlayer cations 

like sodium, calcium, magnesium were exchanged by alkylammonium ions of various chain 

lengths. The intercalation of the alkylammonium ions results in an expansion of the interlayer 

and to a shift of the characteristic basal XRD peaks (d001 peak), which was measured after 

washing and drying. With increasing alkyl chain length, the basal spacings increase. Short 

chains cause monolayer (1.36 nm) and longer chains are oriented in bilayers (1.77 nm). Very 

long chains produce pseudotrimolecular layers (2.17 nm) and a paraffin-type configuration 

(> 2.2 nm), which can be observed in vermiculites. 

In most cases, a heterogeneous charge distribution in smectites exists because the 

interlayer cation density varies from interlayer space to interlayer space. The transition from 

monolayer to bilayer is required to determine the charge distribution or the cation density. For 

homogeneous charge distribution, the cation density and the charge density are equal. 

The peak migration curve according to Lagaly (1981) was used to calculate the cation 

density. The method of Lagaly and Weiss (1970) is very time-consuming, because this 

procedure requires the exchange with 14 different alkylammonium chains for each sample, 

the preparation and measuring of 14 texture samples and then subsequent calculation. 

Therefore, Olis et al. (1990) developed an empirical method for the rapid estimation of the 

layer charge of expandable clays like smectites or vermiculites. Here, the exchange is done 
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with only one alkylammonium chain (nc = 12 or nc = 18). The mean layer charge (MLC) can 

be determined for the monolayer to bilayer transition by the following formula (Olis et al., 

1990): 

nc= 12:   
98.32

52.5)001( −
=

dMLC         (9) 

nc = 18:  
22.34

21.8)001( −
=

dMLC       (10) 

and for the bilayer to pseudotrimolecular layer transition by the following equation (Olis et 

al., 1990): 

nc = 12:   
25.20

71.8)001( −
=

dMLC      (11) 

nc = 18:   
65.29

71.8)001( −
=

dMLC      (12). 

Equipment: 

Scale, weighing glasses, desiccator, centrifuge tube (10 ml), centrifuge (Multifuge 3S-R 

Heraeus/Kendro), drying oven, X-ray diffractometer (Siemens D5000), sample holder. 

Chemicals: 

Alkylammonium ions (chain lengths 4 to 18, Aldrich and Merck), formic acid, ethanol, di-phosphor 

pentaoxyde p.a. (P2O5). 

Brief description: 

For the determination of the layer charge, aqueous solutions of n-alkylammonium formiate were used 

because of their good solubility, especially of longer chains (Wolters et al., 2008). Fourteen various 

alkylammonium solutions from nc = 4 to nc = 18 (except nC = 17) were prepared for the measurements 

according to Lagaly and Weiss (1971) and Wolters et al. (2008). 

100 mg of the clay sample were mixed with 3 ml alkylammonium solution and stored at 60 °C. After 2 

or 3 days the alkylammonium solution was replaced. First, by separating the clay from the 

alkylammonium solution by centrifugation and washing with ethanol one time. The fresh suspensions 

were stored again at 60 °C for three days. After this procedure, a complete exchange of the 

alkylammonium ions with the exchangeable cations is guaranteed. Afterwards, the solutions are 

washed free of the excess alkylammonium ions with ethanol. Sixteen washing cycles were necessary. 

After centrifugation, the clay samples were dispersed in 3 ml ethanol together with small amounts of 

muscovite (~ 10 mg) to prepare textured samples for XRD. The muscovite was used as line standard. 

After drying at room temperature, the samples were stored in a desiccator above P2O5 until the XRD-

patterns were recorded. The prepared samples are stable for only 2 days. 
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The XRD measurements were performed on a Siemens D5000 diffractometer (CuKα radiation) 

equipped with a graphite secondary monochromator. The patterns were recorded between 2 and 12° 

2θ with a step size of 0.04° 2θ / 8 s.  

Annotation: 

For the determination of the layer charge, vermiculite samples need a longer reaction time for the 

exchange with alkylammonium ions in comparison to smectites. For smectite, the exchange is 

completed in one week, while vermiculite needs more than one month. 

Error: 

Too short reaction times may result in an incomplete exchange, especially for high charge expandable 

clays like vermiculite. The correction of the particle size is necessary for particles < 0.1 µm and for 

chain length above nc = 9. For the < 0.2 µm fraction, the values for the particle size correction were 

taken from Lagaly (1994). 
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4 Mineralogical characterisation and selection strategy 

4.1 Introduction 

Prior to the characterisation of the clay mineral edges and modification of the clay 

minerals, it is necessary to know the characteristic properties of the bulk material. 

Information on the samples studied is given in Table 2.1 (Chapter 2). The methods to 

characterise each sample are listed in Table 4.1. 

Table 4.1 Samples and applied characterisation methods. 

  Method 
Sample XRD CEC Layer 

charge STA FTIR ESEM XRF ICP-
OES BET 

1_Calci X X X X X X X X X 

2_EXM757 X X X X X X X X X 

3_Swy-2 X X X X X X X X X 

4_Vol X X X X X X X X X 

5_WYO X X X X X X X X X 

6_IndBent X X X X X X X X X 

7_Nhec X X X X X X X X X 

8_Verm X  X* X X X X X X X 

9_Illite X   X X X X  X 

10_PangelS9 X X X X X X X X X 

11_Pansil X X X X  X X X X 

12_Palygorskit X X X X  X X X X 

13_Pol X X  X X X X X X 

14_Kaolex X X  X X X X X X 

15_Rogers X X  X X X X X X 

16_Mag X X  X X X X X X 

* CEC was measured with the ammonium acetate method. 

The complete data set for each sample is given in the appendix. The results of the 

characterisation are discussed exemplarily for one sample of each mineral group. 

A grain size separation has been carried out for several samples. From six bentonites, one 

vermiculite and one sepiolite (1_Calci, 2_EXM757, 4_Vol, 5_WYO, 6_IndBent, 7_Nhec, 

8_Verm, 10_PangelS9), the < 2 µm fraction was separated and the < 0.2 µm fraction was 

separated from the samples 3_SWy-2, 4_Vol, 6_IndBent and 10_PangelS9. 
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4.2 Bentonites and Smectites 

Morphology and surface  

Smectites are Al-bearing layer silicates and the main phases in the < 2 µm fraction of 

bentonites. The natural bentonites in this study contain about 80% of the < 2 µm fraction. 

They consist of thick but small agglomerates of smectites with irregular shape and partly 

sharp grain boundaries. Figure 4.1 displays the typical morphology of the smectite particles 

in the bentonite sample EXM757. Due to their small particle size, the specific surface area of 

the smectites in the raw bentonites ranged between 20 and 65 m2/g. All BET data are given 

in the appendix. 

 
Figure 4.1 ESEM image showing the typical smectite morphology in the bentonite sample 

EXM757 (2_EXM757). 

 Mineralogy  

The mineralogy of the bentonites is shown in Table 4.2. The qualitative analysis of the 

XRD patterns using Brindley and Brown (1980) showed that one of the smectites is a 

trioctahedral (d060 = 0.152 nm) natural hectorite (7_Nhec). According to Brindley and Brown 

(1980), all further smectites are dioctahedral (d060 between 0.149 and 0.150 nm). 
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Table 4.2 Phase content of the natural bentonites. 

Sample 
Phases#     

1_Calci 
[%] 

2_EXM757
[%] 

3_SWy-2 
[%] 

4_Vol 
[%] 

5_WYO 
[%] 

6_IndBent 
[%] 

7_Nhec 
[%] 

Smectite       
(Na-rich, di) - 86.5 ± 1.3 79.4 ± 2.1 60.0 ± 4.2 67.2 ± 2.2 82.2 ± 3.6 - 

Smectite       
(Na-rich, tri) - - - - - - 93.9 ± 1.3 

Smectite       
(Ca-rich, di) 24.6 ± 10.8 - - 19.8 ± 3.6 - 6.7 ± 3.0 - 

Smectite        
(Mg-rich, di) 38.9 ± 10.2  - - - - - - 

Kaolinite 3.8 ± 0.8 - - - - 4.4 ± 0.8 - 

Muscovite / 
Illite 

13.7 ± 1.5 - 3.7 ± 1.4 2.8 ± 0.9 5.4 ± 1.4 - - 

Quartz 5.9 ± 0.7 2.3 ± 0.3 10.5 ± 1.0 4.4 ± 0.5 6.6 ± 0.8 1.1 ± 0.3 - 

Cristobalite - 11.2 ± 1.3 - - 3.6 ± 0.6 - - 

K-Feldspars 
(Orthoclase) - - 4.2 ± 1.4 4.0 ± 0.9 - - - 

K-Feldspars 
(Microcline Int1) - - - - 3.9 ± 0.7  - 

Plagioclase 
(Albite) 2.5 ± 0.7 - - 4.1 ± 0.8 - - - 

Plagioclase 
(Oligoclase) - - - - 8.0 ± 1.8 - - 

Plagioclase 
(Anorthite) - - - - - 3.9 ± 1.2 - 

Calcite 3.3 ± 0.5 - 2.2 ± 0.4 1.3 ± 0.4 3.5 ± 0.6 - 3.1 ± 0.8 

Dolomite 7.3 ± 0.5 - - - - - - 

Ankerite          
(Fe 0.54)  - - - - - - 0.7 ± 0.6 

Maghemite - - - - - 0.9 ± 0.3 - 

Hematite - - - - - 0.8 ± 0.3 - 

Gypsum - - - 3.6 ± 0.6 0.9 ± 0.4 - - 

Clinoptilolite - - - - 1.0 ± 0.5 - - 

Analcime    
(cubic) 

- - - - - - 2.1 ± 0.7 

# In parenthesis the structure model used for Rietveld analysis is given. 

Rietveld quantification revealed smectite contents between 64 and 94% for these seven 

bentonites (Table 4.2). All bentonites have similar impurities such as quartz, feldspars, mica 

and calcite. The bentonites 2_EXM757 and 5_WYO contain quartz and cristobalite as 

impurities (Figure 4.2). 
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Figure 4.2 X-ray pattern (powder sample) of the bentonite EXM 757 (2_EXM757);   
  Sm: characteristic Smectite peaks with increasing 2θ (001), (020,110,021), (060);
  Qz: Quartz; Ct: Cristobalite. 

Chemical composition 

The chemical composition of the bentonites, determined by XRF, is given in Table 4.3. 

The main octahedral cation of the dioctahedral smectites is aluminium. In the octahedral 

sheet of the hectorite, the main cation is magnesium. It can partly be substituted by lithium. 

In this sample 1.1% lithium has been determined by ICP-OES.  

Table 4.3  XRF-analysis of the natural bentonites. 

Oxides 1_Calci 2_EXM757 3_Swy-2 4_Vol 5_WYO 6_IndBent 7_Nhec 

SiO2 [%] 49.35 61.01 61.26 56.50 59.85 43.08 55.03 

Al2O3 [%] 16.61 17.15 17.98 18.56 15.21 15.59 1.99 

MgO [%] 4.15 2.08 2.41 2.26 5.41 2.40 22.84 

Fe2O3 [%] 5.09 3.76 3.79 3.56 1.61 13.74 0.81 

TiO2 [%] 0.38 0.16 0.15 0.15 0.17 0.94 0.08 

MnO [%] 0.05 0.01 0.03 0.01 0.33 0.12 0.02 

Na2O [%] 0.26 2.95 1.34 1.88 2.17 3.29 3.31 

CaO  [%] 4.26 0.74 1.54 1.14 2.37 1.23 1.88 

K2O  [%] 1.52 0.17 0.59 0.52 0.52 0.10 0.42 

P2O5 [%] 0.06 0.52 0.04 0.04 0.07 0.06 0.87 

LOI [%] 17.7 11.4 10.3 15.4 12.3 18.8 12.7 

The dioctahedral smectites differ in the components of their interlayers and of their 

octahedral sheets. The interlayer cations and the cations of the octahedral sheet are listed in 

Tables 4.4 and 4.5 for the seven clays, respectively. The bentonite EXM757 consists of a 
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Na-rich smectite, while the bentonite Calcigel (1_Calci) consists of a Ca-rich smectite with a 

high content of magnesium (28%) in the interlayer. In comparison to the other dioctahedral 

smectites, this smectite has a higher content of iron and magnesium in the octahedral sheet. 

In the Wyoming bentonites (3_SWy-2, 4_Vol, 5_WYO), sodium and calcium are the main 

interlayer cations and also the Indian Bentonite (6_IndBent) consists mainly of a Na-rich 

smectite. Furthermore, one third of the aluminium in the octahedral sheet of the Indian 

Bentonite is substituted by iron; therefore this dioctahedral smectite belongs to the iron rich 

smectites compared to the other used dioctahedral smectites. 

Table 4.4 Composition of the interlayer [%] of the smectites.  

Sample 
Na+ 

[%] 
Ca2+ 

[%] 
Mg2+ 
[%] 

K+ 
[%] M2+ (Ca, Mg) : M+ (Na) ratio 

1_Calci 11 58 28 2 8 : 1 

2_EXM757 83 14 2 1 1 : 6 

3_SWy-2 48 31 19 2 1 : 1 

4_Vol 61 31 6 2 1 : 2 

5_WYO 67 29 4 - 1 : 2 

6_IndBent 90 8 1 1 1 : 11 

7_Nhec 90 7 3 - 1 : 13 

Table 4.5 Composition of the octahedral sheet in [%] of the used smectites. 

Sample 
Al3+ 

[%] 
Fe3+ 

[%] 
Mg2+ 
[%] 

Li+ 
[%] 

1_Calci 65 15 20 - 

2_EXM757 77 11 12 - 

3_Swy-2 74 11 15 - 

4_Vol 79 10 11 - 

5_WYO 76 13 11 - 

6_IndBent 64 24 13 - 

7_Nhec 2 1 87 10 
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The chemical composition of the < 2 and < 0.2 µm fractions combined with the layer 

charge (Köster, 1977; Wolters et al., 2008) was used to calculate the structural formula of the 

smectites. The results are listed in Table 4.6. Only the chemical data of the fractions could be 

used for the calculation, because the crude materials contained other mineral phases. 

Table 4.6 Structural formula of the smectites. 

Sample Fraction Structural formula 

1_Calci <      2 µm ])()[)(( 210
2

43.0
3

30.0
3

38.1
3

16.084.326.0 OHOMgFeAlAlSiMe +++++  
2_EXM757 <      2 µm ])()[)(( 210

2
24.0

3
22.0

3
53.1

3
05.095.332.0 OHOMgFeAlAlSiMe +++++  

3_Swy-2 <   0.2 µm ])()[)(( 210
2

32.0
3

23.0
3

53.1
3

21.079.329.0 OHOMgFeAlAlSiMe +++++  
4_Vol <   0.2 µm ])()[)(( 210

2
23.0

3
20.0

3
58.1

3
05.095.325.0 OHOMgFeAlAlSiMe +++++  

5_WYO <      2 µm ])()[)(( 210
2

23.0
3

26.0
3

53.1
3

11.089.328.0 OHOMgFeAlAlSiMe +++++  
6_IndBent <   0.2 µm ])()[)(( 210

2
26.0

3
49.0

3
32.1

3
29.071.334.0 OHOMgFeAlAlSiMe +++++  

7_Nhec <      2 µm ])()[)(( 210
3

04.0
3

05.029.0
2

64.2
3

10.090.326.0 OHOFeAlLiMgAlSiMe ++++++  

Short range order  

The chemical differences in the octahedral sheet can be observed in the FTIR spectra in 

the wavenumber region between 1200 and 400 cm-1 (Figure 4.3). In this range, dioctahedral 

smectites show sharp vibration bands. Their assignments are listed in Table 4.7 (Farmer, 

1974; Komadel et al., 1990; Komadel et al., 1996; Madejová et al., 1998; Tyagi et al., 2006). 

 
Figure 4.3 FTIR spectrum of the bentonite EXM757 (2_EXM757). 
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Table 4.7 Positions and assignments of the vibrational bands in the lattice region 
of the dioctahedral smectites. 

Wavenumber [cm-1] Assignment*  

1103 Si-O stretching vibration (out-of-plane) 

1037 Si-O stretching vibration (in-plane) 

923 AlAlOH bending  

885 AlFeOH bending 

850 AlMgOH bending 

622 R-O-Si with R = Al, Mg, Fe 

526 Si-O-Al vibration (Al tetrahedral cation)  

470 Si-O-Si bending vibration  

* (Komadel et al., 1990; Madejová et al., 1998; Tyagi et al., 2006). 

Various bands around 923, 885, 850, 622 and 526 cm-1 can be attributed to vibrations of 

aluminium in the octahedral sheet. For example, the band near 923 cm-1 can be assigned to 

an AlAlOH bending vibration and gives information on the content of aluminium in the 

octahedral sheet. The vibrations at 885 and 850 cm-1 reflect a partial substitution of 

aluminium by iron (AlFeOH bending vibration) and magnesium (AlMgOH bending vibration). 

The absorption band around 622 cm-1 can be attributed to a R-O-Si vibration (R = Al, Fe, Mg) 

and indicates a perpendicular vibration of the octahedral cations and their connection to the 

tetrahedral sheet. The band near 524 cm-1 can be assigned to a Si-O-Al vibration of 

aluminium in the tetrahedral sheet. All the other bands near 1103 (shoulder), 1037 and 

470 cm-1 are strong Si-O bending and stretching vibrations. 

In contrast to the spectra of dioctahedral smectites, the FTIR spectra (Figure 4.4) of 

trioctahedral smectites generally show broad and rounded absorption bands (Wilson, 1994). 

Their assignments are listed in Table 4.8 (Farmer, 1974; Komadel et al., 1990; Komadel et 

al., 1996; Madejová et al., 1998; Tyagi et al., 2006).  

Table 4.8 Positions and assignments of the vibrational bands in the lattice region 
of trioctahedral smectites. 

Wavenumber [cm-1] Assignment (Komadel et al., 1996; Madejová et al.,1998; Farmer, 1974) 

1124 Si-O stretching vibration (out-of-plane) 

1000 Si-O stretching vibration (in-plane) 

696 SiO bending vibration (out of plane) 

659 OH bending vibration  

526 MgO 

466 SiO bending vibration (in plane) 

450 – 460 Si-O-Mg vibration  
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Figure 4.4 FTIR spectrum of the natural hectorite (7_Nhec). 

Similar to spectra of dioctahedral smectites, one sharp band with a shoulder to higher 

wavenumber is observable in the region around 1000 cm-1 for the trioctahedral smectites. 

This band at 1000 cm-1 and the shoulder are attributed to SiO-stretching vibrations. A further 

small shoulder at 879 cm-1 supports the presence of calcite in this sample. In the OH-bending 

region from 900 to 400 cm-1, a broad band occurs with two maxima (696 and 659cm-1). The 

band at lower wavenumbers can be assigned to an OH bending vibration (Komadel et al., 

1990; Madejová et al., 1996), while Farmer (1974) attributed the vibration at 696 cm-1 to a 

complex bending vibration of Si2O5 units. The strong band at 466 cm-1 is generally attributed 

to a Si-O (in plane) bending vibration. Madejova et al. (1998) interpreted this vibrational 

mode as Si-O-Mg band, which is overlapped by a strong Si-O-Si vibration. 

Thermal reactions 

The chemical composition of the interlayers and of the octahedral sheet of the smectite 

has an influence on the thermal behaviour. In dependence of the temperature, smectites 

show four characteristic reactions during thermal analysis (Figure 4.5): dehydration, 

dehydroxylation, decomposition and recrystallisation (Niederbudde et al., 2002; Wolters et 

al., 2008).  

While most of the smectites in this study showed one dehydration peak below 300 °C, the 

two smectites with the highest layer charge (5_WYO, 6_IndBent, Table 4.12) showed two 

dehydration peaks in this temperature range (Table 4.9). Here, the release of adsorbed water 

from the mineral surfaces and interlayer water from the inner surfaces occurred stepwise. 
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Figure 4.5 DSC, TG and MS (H2O and CO2) curve of EXM757 (2_EXM757). 

Table 4.9 Thermal analysis data of the smectites. 

Sample 
Dehydration 

[°C] 
Dehydroxylation 

[°C] 
Decomposition 

[°C] 
Recrystallisation 

[°C] 

1_Calci 136 - 517 653 860 919 

2_EXM757 121 - - 669 879 930 

3_Swy-2 132 - - 696 904 944 

4_Vol 144 - - 707 909 951 

5_WYO 138 243 - 691 885 943 

6_IndBent 151 279 511 649 853 908 

7_Nhec 138 - - 691 902 972 

In general, the dehydroxylation temperature is influenced by the chemical composition 

and by the structure of the octahedral sheet. According to Smykatz-Kloss (1974), the 

dehydroxylation temperature shifts to higher temperature with an increasing content of 
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magnesium and to lower temperature with an increasing content of iron in the octahedral 

sheet. Higher dehydroxylation temperature of Al-rich smectites can be associated with the 

arrangement of the cations in the octahedral sheet (Drits et al., 1995).  

In the seven samples, the release of structural water (dehydroxylation) occurred between 

500 and 750 °C (Table 4.9). The DSC curves of two smectites 1_Calci and 6_IndBent 

showed two dehydroxylation peaks, which are associated with maxima in the MS curves of 

the released water. These peaks indicate a two-step dehydroxylation. In comparison, the 

other smectites showed only one dehydroxylation peak at temperatures above 660 °C. The 

smectite in the Indian Bentonite and in the Calcigel had more iron in the octahedral sheet 

than the other smectites (Table 4.5); therefore one dehydroxylation peak was around 510 °C. 

The dehydroxylation temperature can also be used to estimate the cis- and trans-vacant 

character of the dioctahedral smectites (Table 4.10). According to Drits et al. (1998), the 

border between both varieties was defined by 600 °C. A classification of dioctahedral 

smectites with respect to the occupancy of cis- and trans-positions was created by Wolters 

and Emmerich (2007). 

Table 4.10 Proportions of trans-vacant (Wtv) and cis-vacant (Wcv) parts and classification. 

original material fraction < 2 µm  fraction < 0.2 µm 
Sample 

Wcv [%] Wtv [%] Wcv [%] Wtv [%] Wcv [%] Wtv [%]
Classification 

1_Calci 50 50 61 39 - - cv/tv 

2_EXM757 95 5 98 2 - - Cv 

3_Swy-2 90 10 - - 94 6 Cv 

4_Vol 92 8 99 1 99 1 Cv 

5_WYO 93 7 - - 93 7 Cv 

6_IndBent 34 66 34 66 33 67 tv/cv 

Most of the starting materials are cis-vacant. Only the Indian Bentonite (6_IndBent) and 

the Calcigel have more trans-vacant positions. The Indian Bentonite can be assigned to the 

group of trans-cis-vacant smectites. The starting material of Calcigel has cis- and trans-

vacant portions in equal shares. According to Wolters and Emmerich (2007), the Calcigel 

belongs to the cis-trans-vacant smectites.  

Decomposition started at temperatures between 850 and 920 °C, where a loss of 

crystalline order in the smectite phases occurred. Recrystallisation took place between 910 

and 980 °C, which indicated the formation of anhydrous high temperature phases (Table 

4.9).  
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Exchange behaviour and interlayer cations 

The exchange capacity and the layer charge give information about the exchange 

behaviour of the smectites in the bentonites. They have a measured CEC between 60 and 

95 meq/100g (Table 4.11). The layer charges of the Volclay (0.26 - 0.27 eq/FU) and Indian 

Bentonite were measured by the alkylammonium method (Lagaly and Weiss, 1970; Lagaly, 

1989 and 1994) (see Chapter 3). The layer charge of the other materials (between 0.28 and 

0.38 eq/FU) was measured according Olis et al. (1990) using the alkylammonium ions with a 

chain length of nc = 12 (see Chapter 3). Each can be used to estimate the other value (Table 

4.11 and 4.12).  

We assumed that the measured CEC and layer charge are only caused by the existence 

of the smectite phases. The differences of the CEC between the crude material and the 

fractions (< 2 µm and < 0.2 µm) are caused by the presence of additional mineral phases. 

These impurities lead to a dilution of the smectite and, as a result, the CEC of the raw 

material was slightly lower.  

The measured layer charge disregarded the charge of the mineral edges. Therefore, the 

measured layer charge is lower in the clay-rich fractions (< 2 µm and < 0.2 µm) than the 

calculated charge from CEC. The calculated CEC of these fractions was also lower than the 

measured CEC. 

Table 4.11 Cation exchange capacity of the original material and of the < 2 µm and < 0.2 µm 
fraction. 

CEC [meq/100g] 

original material fraction < 2 µm fraction < 0.2 µm Sample 

Measured Calculated measured calculated measured calculated 

1_Calci 63 81 88 83 - - 

2_EXM757 84 81 84 81 - - 

3_Swy-2 78 78 - - 91 83 

4_Vol 85 78 85 70 90 70 

5_WYO 68 75 80 72 - - 

6_IndBent 91 94 96 86 98 86 

7_Nhec 89 73 90 70 - - 

The layer charge of the raw material can be estimated, but must be interpreted with care. 

The measured layer charge of the starting material was higher than the calculated layer 

charge due to the preparation of the alkylammonium samples. The impurities did not cause a 

dilution. These values are in agreement with the layer charge values of the fractions (< 2 µm 

and < 0.2 µm). Therefore, most of the starting smectites had a higher calculated than a 
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measured CEC. The measured CEC of the raw materials of EXM757 (2_EXM757), Volclay 

(4_Vol) and hectorite (7_Nhec) were higher than the calculated CEC, because in the 

calculated values the charges of the edges were not considered. 

Table 4.12 Measured and calculated layer charge of the crude material and  
of the < 2 µm and < 0.2 µm fractions. 

Layer charge ξ [eq/FU] 

original material fraction < 2 µm fraction < 0.2 µm Sample 

measured Calculated measured Calculated Measured calculated 

1_Calci** 0.30 0.23 0.31 0.33 - - 

2_EXM757** 0.30 0.31 0.30 0.31 - - 

3_Swy-2** 0.29 0.29 - - 0.31 0.34 

4_Vol* 0.27 0.32 0.26 0.32 0.26 0.33 

5_WYO** 0.28 0.25 0.27 - - - 

6_IndBent* 0.36 0,35 0.33 0.37 0.33 0.38 

7_Nhec** 0.28 0.34 0.27 0.35 - - 

* For the measurement all alkylammonium chains were used (Lagaly, 1994). 
** Measurements according to Olis et al. (1990), using alkylammonium ion with the chain length nc =12. 
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4.3 Vermiculite 

4.3.1 Morphological, mineralogical, chemical and thermal properties 

Morphology and surface 

The vermiculite is a Mg-rich layer silicate. In contrast to smectite, vermiculite has a lower 

content of < 2 µm fraction (< 10%) and a larger particles size (> 20 µm). Due to the large 

particle size, a pre-treatment (grinding) is necessary.  

The crude vermiculite particles, after grinding with the CGS 10 from Netzsch (see Chapter 

4.3.2), consist of thick agglomerates with a layered appearance and with an irregular shape 

(Figure 4.6).  

 
Figure 4.6 ESEM image shows the morphology of the vermiculite (8_Verm). 

The specific surface area of the vermiculite increased to 36 m2/g due to reduced particle 

size after grinding. This value is similar to that of the bentonites. After grinding, the natural 

material had a higher content of micropores (24 m2/g) in comparison to the other materials 

like smectite. 

Mineralogy  

The vermiculite (8_Verm) used in this study is a trioctahedral mineral with a high 

magnesium content in the octahedral sheet. In comparison to the smectites, this vermiculite 

has a higher layer charge due to substitutions in the octahedral and tetrahedral sheets. The 

vermiculite sample consists of 84% vermiculite and contains calcite (2%) and phlogopite 

(14%) as impurities (Figure 4.7). 
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Figure 4.7 X-ray pattern (powder sample) of the vermiculite (8_Verm);    
  Ph: Phlogopite; Ca: Calcite; all not indexed peaks originated from Vermiculite. 

Grinding Experiments 

The starting material of the vermiculite used has a low < 2 µm fraction content. Particle 

size separation revealed an amount of less than 10%. The aim of the grinding experiment 

was to find a grinding method to increase this content without affecting changes in the 

structure of the vermiculite. 

Several mills were used (Table 4.13). The agate mill was used in combination with a sieve 

of a mesh size of 63 µm. Furthermore, the material for the McCrone mill was first ground with 

the agate mill for 1 h to obtain material with a particle size smaller than 400 µm. 

Table 4.13 The kind of mill used in this study. 

Mill  Company 

Agate Mill  Fritsch 

McCrone Mill   McCrone Scientific Ltd 

Wet Mill PE 075 Netzsch 

Dry Mill CGS 10 Netzsch 

A volume of 3 ml of this powder and 10 ml deionised water were filled in a grinding vessel. 

The suspension was milled in the McCrone mill for 15, 20 and 25 min with a rotation speed of 

4800 min-1. For 100 g powder, the grinding process requires 2 days when each charge is 

ground for 15 min. The wet mill was used with a rotation speed of 1000 min-1. After 20, 40 

and 60 min, samples were taken. Several rotation speeds (16000, 17000, 18000 min-1) were 

tested in the dry mill CGS 10. After 15 and 30 min, a sample was taken (Figure 4.8).  
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Figure 4.8 The raw vermiculite before (left) and after (right) the grinding procedure.  
The material was ground with the dry mill CGS 10 from Netzsch. 

After grinding, the changes in the structure and the particle size distribution of the ground 

material were investigated using X-ray diffraction analysis and a laser scattering particle size 

distribution analyser LA-950 from Horiba. 

The X-ray patterns of the powder samples (Figure 4.9) showed that the intensity of the hkl 

peaks increased, while the intensity of the basal reflections decreased slightly with 

decreasing particle size. The primary domains are still present. The particles are equal in 

length and width; indicating the particles cannot be oriented completely. 

In general, the use of the agate mill in combination with a sieve (< 63 µm) was very time 

consuming (30 g in 1 h) and the content of the < 2 µm fraction could not be increased (Table 

4.14). 

Table 4.14 Grain size distribution of the vermiculite after grinding in an agate mill in combination 
with a sieve (< 63 µm). 

Fraction % 

> 63 µm 3 

63 – 20 µm 44 

20 – 2 µm 37 

< 2 µm 16 
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Figure 4.9 Influence of the grinding procedure on the vermiculite structure. 

The particle size measurements showed that nearly 83% of the particles milled for 15 

minutes in the McCrone mill were smaller than 20 µm (Figure 4.10a). The amount of this 

fraction increased about 15% with increasing grinding time (25 min). In spite of this increase, 

the amount was still insufficient for particle size separation. Due to its small volume, the use 

of the McCrone mill was too time consuming to significantly increase the content of the 

fraction < 2 µm. 
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Grinding in the wet mill reduced grain size to below 90 µm. 20 min of wet grinding 

revealed an amount of 40% of the < 20 µm fraction, which increased to nearly 70% after 

60 min. However, the content of the < 2 µm fraction was again insufficient for particle size 

separation (Figure 4.10b). 

  
Figure 4.10 Particle size distributions a) after 15 and 25 min grinding time using the McCrone mill 

and b) after 20 and 60 min grinding time using the wet mill from Netzsch. 

At the beginning of the grinding experiment, a part of the raw material was ground with the 

dry mill CGS 10 for 15 min with a rotation speed of 16000 min-1 and the particle size 

distribution was determined. The particle size of this material was completely less than 

20 µm and the content of the fraction size < 2 µm was about 25% (Figure 4.11).  

 
Figure 4.11 Particle size distributions after 15 and 30 min grinding time using the dry mill CGS 10 

from Netzsch. 
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Further dry grinding with the CGS 10 mill reduced the grain size to below 10 µm (Figure 

4.11). Also the content of the < 2 µm fraction increased to nearly 50% with increasing 

grinding time. In this case, a particle size separation was possible. Furthermore, the grinding 

procedure with the dry mill from Netzsch was not time consuming; 5 kg vermiculite were 

ground in one day. 

The differences in the particle size distribution after the grinding procedure with several 

mills are displayed in Figure 4.12. 

The McCrone mill can be used for rapid particle size reduction of small sample amounts 

for qualitative and quantitative phase analysis, but not to enrich the < 2 µm fraction. The wet 

mill from Netzsch can also be used for particle size reduction, but in comparison to the 

McCrone mill it needs significantly more time. The dry mill CGS 10 can be used to enrich the 

< 2 µm fraction. 

 
Figure 4.12 Comparison between the particle size distribution using the McCrone mill (25 min), the 

wet mill (60 min) and the dry mill (30 min). 



4 Mineralogical characterisation and selection strategy 
 

 
 47 

Chemical composition  

The chemical composition of the natural vermiculite sample is given in Table 4.15.  

Table 4.15 XRF-analysis of the natural vermiculite. 

Oxides 8_Verm 

SiO2 [%] 36.89 

Al2O3 [%] 10.21 

MgO [%] 26.08 

Fe2O3 [%] 5.14 

TiO2 [%] 0.55 

MnO [%] 0.06 

CaO  [%] 0.57 

K2O  [%] 0.26 

P2O5 [%] 0.02 

LOI [%] 20.2 

Due to the large grain size of the vermiculite sample, it was not possible to separate the 

< 0.2 µm fraction. Thus, the < 2 µm fraction was used to characterise the edges (see Chapter 

5). Furthermore, this fraction was used to calculate the structural formula of the vermiculite 

according to Köster (1977). The stoichiometric composition was calculated as follows:  

])()[)(( 210
3

01.0
3

31.0
2

65.2
3

96.004.370.0 OHOAlFeMgAlSiMe +++++ . 

Short range order 

The FTIR spectra show only a few sharp and characteristic vibrations (Figure 4.13). The 

absorption bands are broad and rounded (Wilson, 1994). In comparison to dioctahedral clay 

minerals like smectite, trioctahedral clay minerals show a distinctive OH-band, which is 

broad, strong and at lower wavenumbers (995 cm-1). 

In the region between 900 - 550 cm-1, several small (823 cm-1) and broad bands (736 and 

665 cm-1) occur, which can be attributed to OH bending vibrations and their interactions with 

octahedral cations (Farmer, 1974; Wilson, 1994; Ravichandran and Sivasankar, 1997). The 

other intense band at 466 cm-1 can be attributed to a Si-O bending vibration. 
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Figure 4.13 FTIR spectrum of the vermiculite sample (8_Verm). 

Thermal reactions 

The thermal behaviour of vermiculite was similar to that of the high charged smectites, as 

well as of the trioctahedral smectites. The DSC curve showed two endothermic peaks at low 

temperature (Figure 4.14). Both peaks are associated with maxima in the MS curve and with 

a mass loss of 14%. These two peaks can be assigned to the release of adsorbed and 

interlayer water. The dehydration of vermiculite occurred stepwise, which was also observed 

for high charged smectites like Indian Bentonite (6_IndBent). The reason is the higher layer 

charge, thereby the interlayer water is bound stronger and the complete release occurs at 

higher temperature. 

The MS-curve of H2O showed that the loss of the hydroxyl groups occurred very slowly 

and over a large temperature range (750 to 900 °C). The dehydroxylation is associated with 

a mass loss of 6%. The final stage of dehydroxylation is followed by decomposition and 

recrystallisation.  

In contrast to smectite the final stage of dehydroxylation, decomposition and 

recrystallisation occurred in vermiculite over a smaller temperature range (800 to 860 °C). 
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Figure 4.14 DSC, TG and MS (H2O and CO2) curve for the vermiculite (8_Verm). 

The DSC curve showed a small endothermic peak at 670 °C, which is associated with a peak 

in the MS curve of CO2. These results show that the vermiculite sample contained calcite, in 

agreement with the X-ray diffraction data. 
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4.3.2 Cation exchange reactions 

Copper triethylenetetramine (Cu-trien) and ammonium acetate can be used to measure 

the CEC of swellable clay minerals like smectite and vermiculite (see Chapter 3). 

The Cu-trien treated vermiculite samples were shaken for 3 h. Calculation of the CEC 

shows that only some Cu-trien replaced interlayer cations (Table 4.16).  

Table 4.16 Preliminary results of the CEC of vermiculite using Cu-triethylenetetramine,  
shaking time: 3 h.  

Sample Vermiculite* (1) Vermiculite* (2) Vermiculite* (3)  

CEC [meq/100g] 31 63 53 

 *  Samples were not purified according to Tributh and Lagaly (1986). 
 (1)  Vermiculite < 63 µm (using agate mill in combination with a sieve with mesh size 63 µm). 
 (2)  Vermiculite < 2 µm (separation of the fraction < 2 µm by sedimentation). 
 (3)  Vermiculite < 10 µm (using dry mill CGS 10). 

For the determination of the layer charge, vermiculite samples need a longer reaction time 

for the exchange with alkylammonium ions in comparison to smectites. For smectite, the 

exchange is complete in one week, while vermiculite needs more than one month. Thus, we 

would expect that the exchange procedure with Cu-trien also needs much longer time for 

vermiculite. However, an increased shaking time caused no remarkable variations.   

Table 4.17 Measured CEC of vermiculite at various shaking times. 

Shaking time  3 h 7 d 14 d 21 d 28 d 

Vermiculite* (1) [meq/100g] 31 47 56 53 52 

Vermiculite* (2) [meq/100g] 63 63 75 65 66 

 *  Samples were not purified according to Tributh and Lagaly (1986). 
 (1)  Vermiculite < 63 µm (using agate mill in combination with a sieve with mesh size 63 µm). 
 (2)  Vermiculite < 2 µm (separation of the fraction < 2 µm by sedimentation).  

The exchange of alkylammonium ions was performed at 60 °C, because heating improves 

the exchange with Cu-trien. The samples were shaken for 24 h. After that, the samples were 

stored at 60 °C for several weeks. To check the stability of the Cu-trien solution against heat, 

the same procedure was applied on a standard smectite sample (Volclay). These 

measurements showed that Cu-trien is stable at higher temperatures (60 °C), but again the 

intrinsic CEC of vermiculite was not achieved (Figure 4.15). 
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Figure 4.15 CEC of the vermiculite as a function of time, as well as the temperature stability check 

of Cu-triethylenetetramine, using a standard sample (Volclay). 

According to these results, Cu-trien cannot be used to determine the CEC of this non-

purified vermiculite. A possible reason is the size of the Cu-trien molecules. Cu-trien has a 

planar cyclic structure with a size between 4.0 and 4.5 nm2, i.e. this molecule has an 

equivalent area per charge between 2.0 and 2.25 nm2. Vermiculite has an equivalent area 

per charge of 3.1 nm2 (Lagaly, 1994). This value is remarkably lower than that of smectites, 

which have an equivalent area between 4.5 and 8.0 nm2 (Lagaly, 1994). A further reason 

could be the charge of the vermiculite per formula unit. This charge lies between 0.6 and 0.9 

for vermiculite and between 0.2 and 0.6 for smectite. This means, the vermiculite has 

between 1.2 and 1.8 and the smectite between 0.4 and 1.2 charges per unit cell. This results 

in stronger electrostatic interactions in the interlayer of vermiculite than in the interlayer of 

smectite. The released energy of the Cu-trien molecule is too low to reduce the bond energy 

between the layers. Therefore, the molecule cannot be intercalated completely. In summary, 

the high charge content, the low equivalent area per charge and the size of the Cu-trien 

molecule prevent the exchange. 

In addition, the CEC of purified vermiculite samples were measured with Cu-trien (Table 

4.18). Therefore, the sample, which was milled with the CGS 10, was purified according to 

Tributh and Lagaly (1986) and the < 2 µm fraction was separated (see Chapter 2). The 

measured CEC of the purified vermiculite is comparable to that determined with ammonium 

acetate (Table 4.24). 
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Table 4.18 CEC of the purified vermiculite sample using Cu-triethylenetetramine,  
shaking time: 3 h. 

Sample Vermiculite # 
(8_Verm purified) 

Vermiculite # 
(8_Verm < 2 µm) 

CEC [meq/100g] 157 151 

 # Samples were purified according to Tributh and Lagaly (1986).  

The measurements were also repeated with varying shaking times (3, 6, 24, 48, 72 and 

96 h). Again a standard sample (Volclay) was measured under same conditions, to check the 

stability of Cu-trien during the shaking time (Figure 4.16).  

 
Figure 4.16 CEC of the purified and milled vermiculite samples as a function of time, as well as the 

stability check of Cu-triethylenetetramine using a standard sample (Volclay). 

Purification according to Tributh and Lagaly (1986) includes 3 steps (removal of 

carbonate, removal of organic matter and removal of iron). To identify, which purification step 

enhanced Cu-trien exchange, three samples were prepared by applying only one step to 

each of them. Afterwards, the samples were dried and the CEC with Cu-trien was measured. 

For this, the samples were shaken for 48 h. According to the results displayed in Table 4.19, 

all purification steps caused an exchange with Cu-trien. The best result was achieved after 

the removal of carbonate.  
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Table 4.19 CEC of the differently purified vermiculite samples (< 10 µm) using Cu-
triethylenetetramine, shaking time: 48 h. 

Sample CEC [meq/100g] 

Vermiculite# (8_Verm - completely purified) 163 

Vermiculite# (8_Verm - removal of carbonate) 160 

Vermiculite# (8_Verm - removal of iron)  141 

Vermiculite# (8_Verm - removal of organic matter) 142 

 # Vermiculite < 10 µm partially purified according to the applied steps  
  of the procedure described by Tributh and Lagaly (1986) (see Chapter 2). 

Each purification step yields homoionic sodium exchanged material, because excess 

reagents were removed by washing with NaCl. To understand the influence of the interlayer 

cations of the exchange behaviour of the vermiculite, the purified bulk material and the 

purified < 2 µm fraction were homoionically exchanged with several cations (Na+, Li+, Ca2+, 

Mg2+ and Cu2+). For these measurements, the samples were shaken for 48 h. 

Table 4.20 CEC of the differently homoionic exchanged vermiculite samples 
using Cu-triethylenetetramine, shaking time: 48 h. 

CEC [meq/100g] 
 

Cation Vermiculite * 
(8_Verm) 

Vermiculite # 
(8_Verm purified) 

Vermiculite # 
(8_Verm < 2 µm) 

Na+ 88 165 164 

Li+ 87 - 161 

Ca2+ 55 64 71 

Mg2+ 54 71 71 

Cu2+ 24 - 47 

   * Samples were not purified according to Tributh and Lagaly (1986). 
   # Samples were purified according to Tributh and Lagaly (1986).  

The measurements showed that the type of interlayer cation influenced the exchange with 

Cu-trien. Only a small amount of Cu-trien exchanged by the untreated homoionically 

exchanged vermiculite sample, but the Na+ and Li+ exchanged material showed a higher 

CEC compared with the Mg2+ and Ca2+ exchanged material. The purification in combination 

with monovalent cations (Na+, Li+) permitted the complete exchange. Bivalent cations such 

as Ca2+, Mg2+, Cu2+ prevent the exchange with Cu-trien. These results showed that the 

charge of the cations influenced the exchange. The higher charge results in stronger 

electrostatic interactions in the interlayer. The released energy of the Cu-trien molecule is too 

low to reduce the bond energy between the layers. Therefore, the molecule can not be 

intercalated completely.  

The chemical composition of the differently purified vermiculites, as well as of the several 

homoionically exchanged, purified and fractionated vermiculite samples were measured to 
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calculate the structural formula. Tables 4.21, 4.22 and 4.23 contain the structural formulae to 

show the interlayer composition of the materials. 

Table 4.21 Structural formulae of several purified vermiculite samples according to Köster (1977) 
and Wolters et al. (2008). 

8_Verm Structural formulae 

completely purified ])()[)(( 210
3

02.0
3

31.0
2

64.2
3

96.004.3
2

01.068.0 OHOAlFeMgAlSiCaNa ++++++  
removal of carbonate ])()[)(( 210

3
03.0

3
31.0

2
60.2

3
95.005.301.0

2
01.071.0 OHOAlFeMgAlSiKCaNa +++++++  

removal of iron ])()[)(( 210
3

30.0
2

77.2
3

99.097.201.0
2

03.064.0 OHOFeMgAlSiKCaNa ++++++  
removal of organic matter ])()[)(( 210

3
31.0

2
79.2

3
00.195.201.0

2
03.062.0 OHOFeMgAlSiKCaNa ++++++  

Table 4.22 Structural formulae of several homoionically exchanged and purified bulk material of 
the vermiculite according to Köster (1977) and Wolters et al. (2008). 

8_Verm purified# Structural formulae 

Na ])()[)(( 210
3

02.0
3

31.0
2

64.2
3

96.004.3
2

01.068.0 OHOAlFeMgAlSiCaNa ++++++  
Ca ])()[)(( 210

3
31.0

2
69.2

3
99.00.3

2
36.0 OHOFeMgAlSiCa ++++  

Mg ])()[)(( 210
3

04.0
3

31.0
2

60.2
3

95.005.3
2

01.0
2

34.0 OHOAlFeMgAlSiCaMg ++++++  

# Vermiculite < 10 µm purified according to Tributh and Lagaly (1986). 

Table 4.23 Structural formulae of the several homoionic exchanged and fractionated (< 2 µm) 
vermiculite samples according to Köster (1977) and Wolters et al. (2008). 

8_Verm < 2 µm# Structural formulae 

Na ])()[)(( 210
3

01.0
3

31.0
2

65.2
3

96.004.3
2

01.068.0 OHOAlFeMgAlSiCaNa ++++++  

Ca ])()[)(( 210
3

31.0
2

68.2
3

99.001.3
2

35.0 OHOFeMgAlSiCa ++++  

Mg ])()[)(( 210
3

04.0
3

31.0
2

60.2
3

95.005.3
2

01.0
2

34.0 OHOAlFeMgAlSiCaMg ++++++  

Cu ])()[)(( 210
3

32.0
2

67.2
3

94.004.3
2

36.0 OHOFeMgAlSiCu ++++  

Li ])()[)(( 210
3

31.0
2

67.2
3

98.002.301.0
2

02.066.0 OHOFeMgAlSiKCaLi ++++++  

# Vermiculite < 2 µm purified according to Tributh and Lagaly (1986). 

In summary, the purification and the homoionic exchange with sodium or lithium allowed 

the complete exchange with Cu-trien and the estimation of the CEC. These CEC values are 

comparable with the CEC of ammonium acetate (Table 4.24).  

The CEC of unpurified vermiculite can very well be measured very well with ammonium 

acetate. The unpurified vermiculite had a measured CEC of 159 meq/100g. The purified < 2 

µm fraction had a value of 176 meq/100g. These variations are caused by additional phases 

in the starting material contributing to a decrease in CEC. In contrast, the purified raw 

material has a CEC of 173 meq/100g. The sum of the exchanged cations is comparable with 
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the measured CEC values and reveals information on the composition of the interlayers 

(Table 4.24). 

Table 4.24 Composition of the interlayer and sum of the exchanged cations as well as the cation 
exchange capacity of the vermiculite samples using the ammonium acetate method. 

Sample Vermiculite * 
(8_Verm) 

Vermiculite # 
(8_Verm purified) 

Vermiculite # 
(8_Verm < 2 µm) 

Na [meq/100g] - 151 157 

K [meq/100g] 2 0 0 

Ca [meq/100g] 20 3 4 

Mg [meq/100g] 98 11 14 

Al [meq/100g] 33 - - 

    

Sum of exchanged cations [meq/100g] 153 165 175 

CEC [meq/100g] 159 173 176 

 * Sample was not purified according to Tributh and Lagaly (1986). 
 # Sample was purified according to Tributh and Lagaly (1986).  
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4.4 Illite 

The illite sample used in this study exhibits dioctahedral 2:1 layer. This illite had a very 

small particle size and is characterised by a layer charge between 0.6 and 0.9, which is 

higher than that of smectite, but lower than that of muscovite. Illite has lower potassium 

contents in the interlayer than the muscovite, because the potassium can be substituted by 

H3O+. Its layer charge is in the same range as vermiculite. The differences between illite and 

vermiculite are the different interlayer cations. Illite has potassium cations in the interlayer 

sheets and is not swellable, while vermiculite is swellable with mainly Mg interlayer cations. 

The negative charge of both is caused in both minerals by substitutions in the octahedral and 

in the tetrahedral sheet. 

Morphology and surface 

Due to its small particle size and the slat-like shape, the illite has a larger specific surface 

area (95 m2/g) than vermiculite and smectite (Figure 4.17, Table 4.25).  

 

Figure 4.17 ESEM image shows the morphology of the illite (9_Illite). 

Table 4.25 Grain size distribution of the natural illite. 

Sample d10 d50 d90 

9_Illite     [nm] 51 144 420 

Mineralogy and chemical composition  

Rietveld quantification of the natural sample revealed 76% illite (Table 4.26). The main 

impurity is phlogopite (7.9%); further minerals are kaolinite (5.4%), feldspars (5.5%) and 

calcite (2.4%) (Figure 4.18). Results of the chemical analysis of the illite are contained in 

Table 4.27. Remarkable is the relatively high iron content; the Mg and Ca contents may be 

attributed to phlogopite and calcite, respectively. 
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Figure 4.18 X-ray pattern (powder sample) of the illite (9_Illite);    

 It: characteristic illite peaks with increasing 2θ (001), (002), (130), (060);  
 Qz: Quartz; Kao: Kaolinite; Ph: Phlogopite (060). 

 

Table 4.26 Quantification of the natural illite. 

Sample 9_Illite 

Illite 76.4 ± 2.0 

Phlogopite 7.8 ± 1.2 

Kaolinite 5.4 ± 0.7 

K-feldspar (Orthoclase) 4.4 ± 0.6 

Plagioclase (Anorthite) 1.1 ± 0.9 

Calcite 2.4 ± 0.4 

Anhydrite 1.4 ± 0.3 

Apatite 0.7 ± 0.4 

Quartz 0.4 ± 0.3 

#    In parenthesis the structure model used for    
      Rietveld analysis is given. 

 

Table 4.27 XRF-analysis of the natural illite. 

Elements 9_Illite 

SiO2 [%] 47.56 

Al2O3 [%] 22.02 

MgO [%] 3.27 

Fe2O3 [%] 7.93 

TiO2 [%] 0.8 

MnO [%] 0.06 

Na2O [%] 0.00 

CaO [%] 1.46 

K2O [%] 6.82 

P2O5 [%] 0.41 

LOI [%] 11.1  

Short range order 

The FTIR spectrum of the raw illite shows a number of sharp bands in the region between 

1200 and 400 cm-1 (Figure 4.19). Their assignments are listed in Table 4.28 (Farmer, 1974; 

Komadel et al., 1996; Liu, 2001). The OH bending vibrations at 912, 877 and the weak 

absorption bands near 825 and 750 cm-1 are associated with vibrations of cations 

(aluminium, magnesium, iron) in the octahedral position. The assignment of the bands at 825 
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and 750 cm-1 is not yet clear. They may be attributed to AlMgOH deformations, or in analogy 

to muscovite spectra to Al-O-Si vibrations (Farmer, 1974; Wilson, 1994). 

 
Figure 4.19 FTIR spectrum of the illite (9_Illite). 

Table 4.28 Positions and assignments of the vibrational bands in the lattice region 
of the raw illite. 

Wavenumber [cm-1] Assignment*  

1101 Si-O stretching vibration (out-of-plane) 

1031 Si-O stretching vibration (in-plane) 

912 AlAlOH bending  

877 AlFeOH bending 

823 AlMgOH vibration 

750 Al-O-Si vibration 

700 OH bending  

538 Si-O bending  

472 Si-O-Si vibration 

431 Si-O bending 

* (Farmer, 1974; Wilson, 1994; Liu, 2001). 

The weak band at 700 cm-1 can be assigned to another OH bending vibration. The vibration 

at 538 cm-1 is attributed to a Si-O-Al bending vibration of silicon and aluminium in the 

tetrahedral sheet. All the other strong bands at 1031 with a weak shoulder at 1101, at 472 

and 431 cm-1 are attributed to strong Si-O vibrations.  
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Thermal reactions 

The DSC curve for the 9_Illite sample showed two endothermic peaks below 550 °C. Both 

are correlated to maxima in the MS curve. The first peak at lower temperature is associated 

with the release of adsorbed water (97 °C). The second peak at 508 °C displays the release 

of hydroxyl groups. Another small endothermic peak at 659 °C is associated with the release 

of CO2 (Figure 4.20). This reaction shows the decomposition of a carbonate. In this case, the 

carbonate was calcite, as verified by XRD. Furthermore, the decomposition and the 

recrystallisation of the illite occurred at 883 and 914 °C. 
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Figure 4.20 DSC, TG and MS (H2O and CO2) curve of the illite (9_Illite). 
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4.5. Sepiolite and Palygorskite 

4.5.1 Morphological, mineralogical, chemical and thermal properties 

Morphology and surface 

Sepiolite and Palygorskite are hydrous Mg-bearing and Al-Mg-bearing silicates with a 

fibrous morphology and distinctive layered appearance (Figure 4.21). 

 
a) Sepiolite (10_Pangel S9) b) Palygorskite (12_Palygorskite) 

Figure 4.21 ESEM images show the morphology a) of sepiolite (10_PangelS9) and b) of  
palygorskite (12_Palygorskite). 

Both are layer silicates, but they also have structural affinities to inosilicates (Vivaldi and 

Hach-Ali, 1970). The sepiolite has eight octahedral positions per formula unit, which are 

mainly occupied by magnesium. In contrast, the palygorskite has only five octahedral 

positions per formula unit, which are partly occupied by aluminium and magnesium. The 

single layers consist of an octahedral sheet, which is surrounded by two tetrahedral sheets. 

They are linked via oxygen atoms. This results in triple (sepiolite) or double (palygorskite) 

pyroxene-type chains with channels along the c-axis. The channels can be filled with water, 

exchangeable cations or organic molecules. 

The specific surface area of these fibrous clay minerals is remarkably higher than that of 

smectite (Paragraph 4.2), vermiculite (Paragraph 4.3) or kaolinite (Paragraph 4.6). The high 

values are caused by the channel-like structure (Table 4.29). 

Table 4.29 BET data of the crude sepiolites and palygorskite. 

BET data 10_PangelS9 11_Pansil 12_Palygorskite 

External area [m2/g] 133 115 143 

Micropore area [m2/g] 167 146 178 

Specific surface area [m2/g] 300 261 321 
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Mineralogy  

All three samples show a characteristic d110 peak in their X-ray pattern (see Appendix). 

The d110 peak of sepiolite is located at 1.21 nm and that of palygorskite at 1.05 nm.  

The sepiolite Pangel S9 (10_PangelS9) consists of 90% sepiolite and has only muscovite 

and calcite as impurities. The other sepiolite sample (11_Pansil) consists of 72% sepiolite 

and has a slightly higher content (28% vs. 10%) of impurities including muscovite, quartz, 

orthoclase, albite and calcite (Table 4.30). In contrast, the palygorskite sample exhibits more 

impurities than the two sepiolites; only 50% palygorskite is present in this sample 

(12_Palygorskite). The quantification of the raw material was adjusted with the chemical 

composition. 

Table 4.30 Quantification of the natural sepiolites and palygorskite. 

Sample 
Phases#   

10_PangelS9 
[%] 

11_Pansil 
[%] 

12_Palygorskite 
[%] 

Sepiolite 90.7 ± 2.2 71.6 ± 2.4 - 

Palygorskite - - 47.0 ± 2.7 

Muscovite / Illite 8.2 ± 2.1 8.6 ± 1.7 - 

Kaolinite - -  2.9 ± 1.3 

Chlorite - - 8.1 ± 2.7 

K-Feldspars (Orthoclase) - 6.9 ± 1.4 5.9 ± 1.4 

Plagioclase (Albite) - 7.1 ± 1.4 - 

Quartz - 4.1 ± 1.1 22.6 ± 1.6 

Calcite 1.1 ± 0.8 1.7 ± 0.7 - 

Dolomite - - 10.5 ± 1.1 

Jarosite - - 3.1 ± 0.8 

 #  In parenthesis the structure model used for Rietveld analysis is given. 

Chemical composition  

The chemical composition is shown in Table 4.31. The chemical composition of the 

purified and fractionated material of the sepiolite Pangel S9 sample was used to calculate its 

structural formula. According to Stevens (1945), the stoichiometric composition of the fraction 

< 0.2 µm is given as: 

OHOHOHOFeAlMgAlSiMe 22215
3

06.0
3

18.0
2

63.3
3

09.091.511.0 42])()[)(( +⋅+++++ . 
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Table 4.31 XRF-analysis of the natural sepiolites and palygorskite. 

Oxides 10_PangelS9 11_Pansil 12_Palygorskite 

SiO2 [%] 53.59 57.51 52.76 

Al2O3 [%] 2.51 3.17 8.54 

MgO [%] 22.93 19.23 8.62 

Fe2O3 [%] 0.81 0.59 2.79 

TiO2 [%] 0.12 0.12 0.52 

MnO [%] 0.03 0.01 0.09 

Na2O [%] 0.09 0.36 0.12 

CaO  [%] 0.34 0.90 2.83 

K2O  [%] 0.63 1.07 0.80 

P2O5 [%] 0.05 0.04 0.02 

LOI [%] 18.9 17.0 22.9 

Thermal reactions 

Sepiolite and palygorskite showed a similar thermal behaviour, but different to that of 

smectite and vermiculite. The dehydroxylation of palygorskite started at lower temperature 

than that of sepiolite (Figure 4.22). 
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Figure 4.22 DSC, TG and MS curve of palygorskite (12_Palygorskite). 
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The DSC curve of palygorskite showed two endothermic peaks in the region below 300 °C. 

Both are associated with maxima in the MS curve of water. The peak at lower temperature 

(149 °C) mirrored the release of adsorbed and zeolitic water and the broad peak at higher 

temperature with two maxima showed the release of coordinated water. In contrast to 

sepiolites, palygorskite did not release its coordinated water stepwise (see Chapter 4.5.1).  

The complete dehydroxylation occurred below 500 °C. Above 500 ° C, there is no water left. 

The two further endothermic peaks can be assigned to the transformation of low to high 

quartz (575 °C) and to the decomposition of the carbonate mineral calcite (778 °C). This 

latter peak is associated with a maximum at 780 °C in the MS curve of CO2. 

The decomposition of palygorskite is overlapped by the decomposition of calcite. According 

to Jones and Galan (1988), palygorskite is amorphous above 700 °C. The exothermic peak 

at 926 °C can be attributed to the recrystallisation of the material. 

Exchange behaviour and interlayer cations 

Cu-triethylenetetramine is used to estimate the CEC of sepiolite and palygorskite (Table 

4.32). Similar to the previously discussed minerals, the variations between the raw material 

and the isolated fractions are caused by the presence of additional phases in the natural 

material, which contribute a decrease in measured CEC. Compared to the non-purified 

material, the purified bulk material of the sepiolite Pangel S9 (10_PangelS9) had a CEC of 

16 meq/100g. 

Table 4.32 CEC of sepiolites and palygorskite. 

Sample CEC raw material 
[meq/100g] 

CEC fraction < 2 µm 
[meq/100g] 

CEC fraction < 0.2 µm 
[meq/100g] 

10_PangelS9 14   16 *   19 * 

11_Pansil 11 19 - 

12_Palygorskite 5 10 - 

* The separation of the three fractions occurred after purification of the raw material. 

The CEC of these materials is located in the lower range of the published CEC values for 

sepiolites and palygorskite (Vivaldi and Hach-Ali, 1970). The CEC of palygorskite is reported 

to vary from below 10 to 35 meq/100g and that for sepiolite between 25 and 45 meq/100 g. 

Cations in these minerals can be exchanged against alkylammonium ions, but the alkyl 

chains are too short to produce bilayers. Therefore, the layer charge of sepiolite and 

palygorskite cannot be measured with the alkylammonium method. Thus, the layer charge 

has to be estimated from the measured CEC (Table 4.33) and from the chemical 
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composition. For the purified < 0.2 µm fraction of the sepiolite Pangel S9, a layer charge of 

0.12 eq/FU was calculated from the structural formula. 

Table 4.33 Calculated layer charge of sepiolite and palygorskite, using CEC values. 

Sample 
ξ [eq/FU] 

 raw material 
ξ [eq/FU] 

fraction < 2 µm 
ξ [eq/FU]  

Fraction < 0.2 µm 

10_PangelS9 0.18  0.21 *   0.24 * 

11_Pansil 0.14 0.24 - 

12_Palygorskite 0.04 0.08 - 

*  The separation of the fractions occurred after purification of the raw material. 

4.5.2 Thermal transformation of sepiolite 

The characterisation of all clay materials investigated in this study revealed that the 

thermal behaviour of sepiolite was different to that of smectite and vermiculite. The thermal 

behaviour was investigated by various high temperature techniques, including STA, XRD and 

FTIR spectroscopy. Upon heating, the mineral undergoes complex structural changes 

(Nagata et al., 1974; Serna et al., 1975). Therefore, these three techniques were combined 

in a comparative investigation of phase transitions, structural changes and dehydration 

reactions during heating of a sepiolite sample (Pangel S9) from 30 to 900 °C in order to 

understand the thermal behaviour of sepiolite.  

Methods 

The thermal behaviour of sepiolite was observed with a STA equipment (STA 449 C 

Jupiter, Netzsch), which was connected to a quadrupole mass spectrometer (QMS 403 C, 

Aeolos, Netzsch). Thirty mg were heated to 1100 °C (Pt-crucible with lid) with a heating rate 

of 10 K/min. N2 was used as protective gas (20 ml/min) and synthetic air as purging gas 

(50 ml/min). 

The XRD measurements were performed on a Bruker AXS D8 diffractometer (CuKα 

radiation) equipped with a high-temperature chamber (MRI TC1200). Patterns were recorded 

between 5 and 50° 2θ (step size: 0.013° 2θ/s). A temperature range from 80 to 900 °C was 

chosen, with a heating rate < 1 K/min. A data set containing 31 patterns was obtained. Prior 

to and after heating, XRD patterns at room temperature were recorded. Silicon powder was 

used as calibration standard. 

In comparison to the temperatures of the DSC signals, the reaction temperatures in the X-ray 

patterns lie somewhat lower. This can be explained by the lower heating rate (< 1 K/min, 

DSC: 10 K/min). Thus, the material has more time to react during the X-ray measurements. 
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FTIR spectra were recorded on a Bruker IFS66/S spectrometer equipped with a DTGS 

detector using KBr-pellets. Thirty-two scans were recorded in the 4000 - 400 cm-1 range with 

a resolution of 4 cm-1. Four sepiolite samples were heated at 350, 500, 700 and 820 °C for 2 

h and then quenched. From each heated specimen, a KBr pellet was pressed (1 mg sample : 

300 mg KBr). 

Results and Discussion 

The DSC curve (Figure 4.23) shows the release of adsorbed and zeolitic water up to 

200 °C, which is associated with a mass loss of 9% (A). At higher temperatures, two 

endothermic peaks occurred at 304 and 344 °C. The first is correlated to a maximum at 332 

°C in the MS curve and displayed the partial release of coordinated water (B). The very small 

peak at 344 °C, which is not associated with any release of gases, can be attributed to the 

transformation of the sepiolite to its anhydrous form (Nagata et al., 1974).  

 

 
A)  
Mg 8 (OH)4 [Si 12 O 30] * 4 H2O + 8 H2O
  

 ↓- 8 H2O 
 
Mg 8 (OH)4 [Si 12 O 30] * 4 H2O 
 
B) 
Mg 8 (OH)4 [Si 12 O 30] * 4 H2O 
 

        ↓- 2 H2O 
 
Mg 8 (OH)4 [Si 12 O 30] * 2 H2O  
 
C) 
Mg 8 (OH)4 [Si 12 O 30] * 2 H2O 
 

        ↓- 2 H2O 
  
Mg 8 (OH)4 [Si 12 O 30] 
 
D) 
Mg 8 (OH)4 [Si 12 O 30] 
  

        ↓- 2 H2O  
 
Mg 8 [Si 12 O 30] + 2 H2O + O2 
 
E) 
Mg 8 [Si 12 O 30] + O2  
 

        ↓ 
 
8 ( Mg [Si O3] ) + 4 SiO2 

Figure 4.23 DSC, TG and MS curve of sepiolite (10_PangelS9), as well as the stoichiometric 
formula of sepiolite and the several steps of water release (A trough E). 
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The anhydrous phase occurred, when half of the coordinated water at the edges of the 

octahedral sheets is removed (Frost and Ding, 2003). The second part of the coordinated 

water is released at 508 °C, while in the MS curve the maximum occurred at 519 °C. The 

release of coordinated water is associated with a mass loss of 5.1% (C). 

The MS curve indicated a two-step dehydroxylation of sepiolite. One part of the hydroxyl 

groups is released at 801 °C, the other at 839 °C. The dehydroxylation is associated with a 

mass loss of 2.8% (D). In contrast to smectites, the transition from dehydroxylation to 

decomposition and to recrystallisation (formation of enstatite Mg[SiO3]; Brauner and 

Preisinger, 1956) occurred in sepiolites over a much smaller temperature range 

(800 °C - 840 °C) (E). This is attributed to the unique "channel-like" structure of sepiolite. 

The X-ray pattern (Figure 4.24) recorded at room temperature showed the characteristic 

d110 peak of sepiolite at 1.21 nm. 

 

Figure 4.24 Sequence of XRD patterns of sepiolite in dependence on the temperature. 

During heating up to 280 °C, the intensity of the d110 peak strongly decreased while the 

intensity of the d001 peak at 1.01 nm slightly increased. In addition, a new d110 peak occurred 

at 0.82 nm. This new peak reflects the transformation from sepiolite into a sepiolite 

anhydrous form. At about 500 °C, the d110 peak at 1.21 nm completely disappeared, while the 

intensity of the other two peaks (d001 = 1.01 nm and d110 = 0.82 nm) increased slightly. Within 

the temperature range from 600 to 650 °C, the intensity of the 0.82 and 1.01 nm peaks 

gradually decreased. At 700 °C, the 0.82 nm peak disappeared completely and two new 

peaks at 0.32 nm (d220) and 0.29 nm (d-221) appeared indicating the occurrence of the high 

temperature mineral enstatite (Brauner and Preisinger, 1956). 
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As expected, the FTIR spectra showed distinct changes in the OH stretching region with 

increasing temperature (Figure 4.25a). The band at 3745 cm-1 can be attributed to a Si-OH 

vibration. The intensity of this vibration increased with increasing temperature, because of 

new hydrogen bonds associated with the folded structure of the anhydrous sepiolite phase. 

The bands at 3687 and 3629 cm-1 can be assigned to Mg-OH stretching modes. Both 

disappeared below 500 °C, which reflect the complete release of the coordinated water at the 

edges of the octahedral sheets (Frost et al., 1998). 

Above 350 °C, three new OH stretching vibrations at 3675, 3596 and 3533 cm-1 occurred 

because the adsorbed and zeolitic water are lost and a part of the vibrations are then free to 

vibrate. The band at 3675 cm-1 can be attributed to a MgO stretch vibration. The other bands 

at 3596 and 3533 cm-1 are assigned to OH stretching vibrations.  

        a) OH stretching region         b) OH bending region  

Figure 4.25 FTIR spectra of sepiolite and thermal treated sepiolite a) in the region between 3000 
and 4000 cm-1 and b) 400 and 900 cm-1. 

The new vibrations are associated with the formation of the folded structure of an anhydrous 

sepiolite phase (Nagata et al., 1974), which can be observed in the DSC curve at 344 °C. 

The lower bands disappeared above 700 °C. This temperature reflects the ongoing release 
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of hydroxyl groups. Another band at 3566 cm-1 can be attributed to a OH stretching of 

coordinated water. It disappeared at 350 °C, reflecting the partial release of coordinated 

water.    

The heat treatment and the release of hydroxyls obviously affect the SiO-structure of 

sepiolite (Figure 4.25b). The band at 765 cm-1 can be attributed to an OH deformation, which 

occurred at 350 °C and shifted to lower wavenumbers. This vibration reflected the formation 

of hydrogen bonds within the new folded structure of the anhydrous phase. The band at 

649 cm-1 can be assigned to an OH translation, which shifts to 667 cm-1 with increasing 

temperature. The vibration reflected the release of water molecules bound to Mg-O sites. 

The band at 437 cm-1 can be attributed to an O-Si-O bend, which shifts to 455 cm-1 with 

increasing temperature. The vibration is caused by distortions and weakening of the Si-O-Mg 

bonds between tetrahedral and octahedral sheets (Vicente-Rodriguez et al., 1996).  

Conclusions 

Changes in X-ray patterns show the transformation of sepiolite into an anhydrous sepiolite 

phase at about 280 °C. This is confirmed by the results of DSC measurements, which 

suggest that new XRD peaks occur, when half of the coordinated water is removed. 

Furthermore, two dehydration steps and two dehydroxylation steps are observed over the 

temperature range from 300 to 850 °C. FTIR spectroscopic results indicate that remarkable 

structural changes occur. Especially, the formation of the anhydrous sepiolite phase is 

characterized by a rotation and folding of the original sepiolite structure and by the formation 

of new O-Si-O bonds. 

4.6 Kaolin and Kaolinite 

Kaolinite belongs to the 1:1 layer silicates with a layer charge of 0. Three kaolin samples, 

which contain kaolinite with varying particle size, were investigated. Polwhite has 40% of the 

< 2 µm fraction, whereas the other two samples possess about 80% of the < 2 µm fraction. 

The d10, d50 and d90 values of the three kaolin samples are shown in Table 4.34.  

Table 4.34 Grain size distribution of the natural kaolin samples. 

Sample D10 d50 d90 

13_Pol [nm] 244 1109 2022 

14_Kaolex [nm] 104 314 1317 

15_Rogers [nm] 97 390 1377 
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Morphology and surface 

The crude kaolinites consist of platy particles with a pseudohexagonal habit (Figure 4.26, 

Appendix). Different particle sizes influenced the measured specific surface area. The 

specific surface area of the raw kaolinites ranged from 10 to 25 m2/g. Two kaolinites 

(14_Kaolex, 15_Rogers) have smaller particles, which caused a higher specific surface area 

compared to the other kaolinite (13_Pol). 

 

Figure 4.26 ESEM image shows the morphology of the kaolinite Rogers (15_Rogers). 

Mineralogy and chemical composition  

The kaolinite content of the kaolin raw materials ranged from 71 to 87%. All samples have 

similar impurities like quartz, mica, feldspars, smectite and anatase (Table 4.35).  

 

Figure 4.27 X-ray pattern (powder sample) of the kaolin Rogers (15_Rogers);  
  Kao: characteristic kaolinite peaks with increasing 2θ (001), (002), (060); 
  Qz: Quartz; M: Muscovite/Illite; Sm: Smectite. 
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The existence of smectite as impurity was verified by the measured CEC (Table 4.36) using 

a CEC of 82 meq/100g for the calculation. The X-ray pattern of the kaolin Rogers is shown in 

Figure 4.27. The chemical composition of the used kaolin is listed in Table 4.37. 

Table 4.35 Quantification of the natural kaolin samples. 

Sample 
Phases# 

13_Pol 
[%] 

14_Kaolex 
[%] 

15_Rogers 
[%] 

Kaolinite  71.4 ± 1.4 85.3 ± 1.3  86.1 ± 2.6 

Muscovite \ Illite 9.2 ± 0.7 - - 

Fe-rich Muscovite \ Illite - 6.6 ± 1.1 3.3 ± 1.0 

Smectite 6.9 ± 1.1 5.1 ± 1.0 9.1 ± 2.9 

Orthoclase 10.8 ± 0.6 - - 

Quartz 1.7 ± 0.4 1.5 ± 0.3 - 

Anatase - 1.5 ± 0.3  1.4 ± 0.3 

# In parenthesis the structure model used for Rietveld analysis is given. 

Table 4.36 CEC of the kaolin samples. 

Sample 13_Pol 14_Kaolex 15_Rogers 

CEC        [meq/100g] 6 4 10 

Smectite [%] 7 5 12 

Table 4.37 XRF-analysis of the natural kaolin. 

Oxides 13_Pol 14_Kaolex 15_Rogers 

SiO2 [%] 49.72 44.72 45.69 

Al2O3 [%] 33.85 36.34 35.98 

MgO [%] 0.30 0.08 0.33 

Fe2O3 [%] 0.96 1.58 0.97 

TiO2 [%] 0.04 1.58 1.39 

MnO [%] 0.02 0.00 0.00 

Na2O [%] 0.00 0.00 0.00 

CaO  [%] 0.03 0.00 0.16 

K2O  [%] 3.02 0.47 0.27 

P2O5 [%] 0.16 0.10 0.07 

LOI [%] 11.9 14.2 15.1 

The potassium content of the kaolin sample Polwhite was noticeably higher than that of 

the other two samples (Kaolex and Rogers). The mica in the kaolin samples Kaolex and 

Rogers was to be an illite or an iron-rich muscovite. Up to 8.5% iron can be incorporated into 

the mica (muscovite) structure (Rösler, 1979). Kaolin sample (13_Pol) contained K-rich 

feldspar (orthoclase) besides a mica phase. 



4 Mineralogical characterisation and selection strategy 
 

 
 71 

K-feldspar and muscovite have the same potassium content in mol per formula unit, but 

the potassium content related to the molecular weight of the formula unit varied strongly, 

because 1 mol K+ in the muscovite corresponds to nearly 11.8 % K2O and 1 mol K+ in K-

feldspar corresponds to 16.9 % K2O. The different influence of the K contents is depicted by 

an example based on two fictive samples. The chemical data of these two samples are listed 

in Table 4.38. Sample A has a total K2O content of 2.7% and sample B of 0.5%. Sample A 

includes muscovite (8%) and K-feldspar (10%). Sample B includes only muscovite (4%) as 

K-rich phase. Eight percent muscovite contain nearly 1% K2O and 10% K-feldspar contain 

nearly 1.7% K2O that means the content of potassium in the muscovite is lower than in K-

feldspar. 

Table 4.38 Chemical data of the two fictive samples A and B.  

Sample A B 

Muscovite [%] 8 4 

K-feldspar [%] 10 - 

K2O content from Muscovite [%] 0.95 0.47 

K2O content from K-Feldspar [%] 1.69 - 

Total amount of K2O [%] 2.7 0.5 

 

An increasing amount of K-feldspar has a higher influence on the total K2O content than the 

increase of muscovite. Therefore, the difference in the chemistry between sample A and B 

are noticeable higher than in the quantification, which is valid for sample 13_Pol and 

14_Kaolex, too. 

Short range order 

The FTIR spectra of the raw kaolin samples (Figure 4.28, Appendix) generally showed a 

number of sharp vibration bands, especially in the region between 400 and 1200 cm-1. Their 

assignments are listed in Table 4.39 (Farmer, 1974; Makó et al., 2006).  
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Figure 4.28 FTIR spectra of the kaolin Rogers (15_Rogers). 

The bands at 939, 917, 792, 754 and 539 cm-1 are to be connected to aluminium in 

tetrahedral and octahedral positions. The vibrations at 939 and 917 cm-1 can be assigned to 

OH deformations, which also give information on the content of aluminium in the octahedral 

sheet. The lower bands at 792 and 754 cm-1 can be assigned to Si-O-Al vibrations. They 

indicate linkage between octahedral aluminium and tetrahedral silicon via an oxygen atom. 

The vibration at 539 cm-1 can be attributed to a Si-O-Al bending vibration within the 

tetrahedral sheet. All the other bands at 1110, 1030, 472 cm and 431 cm-1 are strong Si-O 

vibrations. 

Table 4.39 Positions and assignments of the vibrational bands in the lattice region 
of the raw kaolinite. 

Wavenumber [cm-1] Assignment* 

1110 (apical) Si-O out-of-plane 

1030 Si-O in-plane 

939 inner surface OH deformation  

917 inner OH deformation  

792 Si-O-Al vibrations 

754 Si-O-Al vibrations 

698 OH translation  

644 inner surface OH vibration  

539 Si-O-Al (out-of-plane) bending (Al in the tetrahedral sheet) 

472 Si-O (in-plane) bending associate with OH 

431 Si-O bendino 

* Farmer, 1974; Makó et al., 2006.1 
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Thermal reactions 

All three kaolin samples showed an endothermic peak around 545 °C and an exothermic 

peak between 970 and 990 °C in the DSC curve (Figure 4.29). The first is correlated to a 

maximum in the same range in the MS curve of H2O and indicates the release of hydroxyl 

groups. The sharp peak at higher temperature is not associated with any release of gases 

and can be attributed to the recrystallisation of the mullite phase. 

The dehydroxylation temperature gives additional information on the kaolinite crystallinity 

(Smykatz-Kloss, 1974). Ordered kaolinites show a dehydroxylation maximum between 570 

and 600 °C. In comparison, the dehydroxylation maximum of disordered kaolinites is shifted 

to lower temperatures (between 540 and 570 °). All three kaolinites in this study showed a 

dehydroxylation below 570 °C. Additionally, disordered kaolinites show a weak endothermic 

peak below 200 °C, which indicates the release of some adsorbed water. All three kaolinites 

in this study showed a small dehydration between 80 and 100 °C. In addition to the peak at 

98 °C, the kaolin Rogers showed a further dehydration peak at 156 °C. This endothermic 

peak, which is associated with the release of water, is an indication of the existence of a 

smectite phase in this particular sample. This was supported by X-ray diffraction and by 

cation exchange measurements. 
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Figure 4.29 DSC, TG and MS curve of the kaolin Rogers (15_Rogers). 
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4.7 Magadiite 

The Magadiite (16_Mag) in this work is a synthesised silicic acid with sodium, which has 

the ability to exchange organic molecules (e.g., copper triethylenetetramine). The measured 

CEC is 54 meq/100g. Natural magadiite was found in the area of the Lake Magadi in Kenya 

(Eugster, 1967).  

Morphology and surface 

Magadiite has a layered appearance. The magadiite consists of agglomerated particles 

with an irregular shape and partly sharp grain boundaries (Figure 4.30). The morphology of 

the magadiite is similar to that of smectite in bentonites. 

 
Figure 4.30 ESEM image shows the morphology of the magadiite (16_Mag). 

The natural magadiite has a specific surface area of 30 m2/g, which is close to that of 

smectite. In comparison to smectites, magadiite is more porous, having a higher amount of 

micropores (14 m2/g). 

Mineralogy 

X-ray powder data were published by Brindley (1969) and are identical with the magadiite 

investigated in this work (Figure 4.31). The d001 peak is the strongest line in the X-ray pattern 

with a basal spacing of 0.156 nm. 
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Figure 4.31 X-ray pattern (powder sample) of the magadiite (16_Mag).   
  All peaks originated from magadiite. 

Chemical composition 

The chemical composition is shown in Table 4.39. The magadiite contains silicon and 

sodium as main elements, as well as low amounts of aluminium and iron (Table 4.40). Its has 

the following structural formula: NaSi7O13(OH)3·3H2O (Eugster, 1967) or NaSi7O13(OH)3·4H2O 

(Brindley, 1969), respectively.  

Table 4.40 XRF-analysis of the magadiite. 

Oxides 16_Mag 

SiO2 [%] 77.91 

Al2O3 [%] 0.36 

Fe2O3 [%] 0.20 

TiO2 [%] 0.03 

Na2O [%] 6.09 

K2O  [%] 0.02 

LOI [%] 15.4 

Short range order 

According to previous studies (Eypert-Blaison et al., 2001; Superti et al., 2007), the FTIR 

spectra of magadiite (Figure 4.32) can be divided into three parts. In the first region (1000 - 

1300 cm-1), four absorption bands at 1236, 1201, 1172 and 1081 cm-1 are observed, which 

can be assigned to the antisymmetric stretching vibrations of Si-O-Si bridges. In the second 

region (700 - 1000 cm-1), four vibrations at 941, 819, 786 and 707 cm-1 are visible. These 

bands can be attributed to symmetric stretching vibrations of the Si-O-Si bridges.  



4 Mineralogical characterisation and selection strategy 
 

 
 77 

In the third region between 400 and 700 cm-1, bands at 620, 578, 543 and 457 cm-1 are 

observed. These absorption bands can be assigned to Si-O-Si and O-Si-O bending 

vibrations. 

 
Figure 4.32 FTIR spectra of the magadiite (16_Mag). 

Thermal reactions 

The DSC curve showed three endothermic peaks in the temperature range between 100 

and 310 °C (Figure 4.33). These peaks are correlated to maxima in the MS curve and 

represent the release of adsorbed and interlayer water molecules. The dehydration occurred 

stepwise and is associated with a mass loss of 13.5%.  

A weak mass loss of 1% was observed in the temperature range between 350 and 650 °C. 

This mass loss is associated with a small peak in the MS curve. The release of water here is 

attributed to the dehydroxylation of silanol groups of the magadiite framework in combination 

with the formation of siloxane bonds (Superti et al., 2007). 

Two further peaks are observed at higher temperatures in the DSC curve. Both peaks are 

not associated with the release of any gases. The peak at 721 °C is endothermic and can be 

attributed to the decomposition of magadiite. This decomposition peak is followed by an 

exothermic peak at 722 °C, which can be assigned to the recrystallisation of the magadiite 

phase to a quartz-like phase. 
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Figure 4.33 DSC, TG and MS (H2O and CO2) curve of the magadiite (16_Mag). 
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4.8. Conclusions 

The materials were characterised with several mineralogical and chemical methods 

including XRD, STA, BET, ESEM, XRF, CEC, layer charge (ξ) ICP-OES and FTIR. The 

results of this characterisation were used as basis for selection of different clay minerals for 

the subsequent investigation of a) characterisation of layer charge reduced materials and of 

b) the characterisation of the edges (Chapter 5) (Figure 4.34). 

Sepiolite Pangel S9 was chosen due to its small amount of impurities compared to the other 

two fibrous minerals. The Indian Bentonite was selected due to its higher layer charge in 

comparison with the other dioctahedral smectites. The Volclay was selected due to its lower 

layer charge compared to the Indian Bentonite and is used as standard in our institute. The 

vermiculite was chosen due to its swellability compared to the illite and due to its higher layer 

charge and its layer appearance compared to the smectite. 

While several clay minerals were characterised comprehensively, special attention was 

paid to the cation exchange behaviour of vermiculite. After grinding and purification, which 

was combined with a homoionic exchange (Na+), it was possible to exchange all interlayer 

cations against Cu-triethylenetetramine (Cu-trien). On the basis of these results vermiculite 

can be used to prepare pillared clays, which will upgrade the spectrum of the charge density, 

remarkably. 

The raw material of all swellable and non-swellable clay minerals, except sepiolite 

(11_Pansil) and palygorskite (12_Palygorskite), were used for the structural modification with 

mineral acids to receive information on their stability and to prepare materials with a simple 

chemical composition, which have a similar layered morphology like the untreated materials 

and which still will have the ability to adsorb organic molecules. 
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Figure 4.34 Selection scheme, sample preparation and analytical scope for the individual clay 
minerals. 
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5 Comprehensive description of layer and edge charge and 
exchange properties 

5.1 Introduction 

The layers of a 2:1 clay mineral consist of an octahedral (O) sheet, which is surrounded 

by two tetrahedral (T) sheets (Figure 5.1). The TOT-layers are connected by interlayer 

cations (e.g., Na+, Ca2+, Mg2+). 

 

Figure 5.1 Structure model of clay minerals. 

Small interlayer cations such as Li+ and small metal cations like Cu2+, Ni2+ leave their 

interlamellar position upon heating of dioctahedral clay minerals to migrate into the structure. 

This phenomena is well-known as Hofmann-Klemen effect (Hofmann and Klemen, 1950)     

A negative surface charge is caused by substitutions of aluminium for silicon in the 

tetrahedral sheet and exchange of twofold charged cations like iron and magnesium for 

aluminium in the octahedral sheets. Thus, the charge of the basal surface is always negative 

and independent of pH. In contrast, the charge of the edges depends on pH. At low pH, the 

edges are saturated with protons. Therefore, they are positively charged. With increasing pH, 

the protons are released and the amount of the negative charge decreases until at high, 

basic pH the edges are completely negatively charged.    

Resulting from layer charge and edge charge, clay minerals are characterised by their 

ability to exchange cations. The cation exchange capacity (CEC) is an important property of 
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clay minerals. The total CEC of clay minerals consists of two parts: the exchange capacity of 

the interlayer and that of the edges. At about pH 7, smectites can have up to 20%  negative 

charge of the edges (Lagaly, 1981) (Figure 5.2). 

 
Figure 5.2 Arrangement of the positive charges in the layers of clay minerals.  

At low pH, the edges are positively charged (Figure 5.3); thus edge charge does not 

contribute to the measured CEC at low pH. The difference between the total CEC at pH 7 

and the exchange capacity in the acid range gives the charge of the edges. At high pH, the 

edges are negatively charged (Figure 5.3); therefore all edges contribute to CEC.  

 
Figure 5.3 Charge and exchangeable cations on the edges of the clay minerals in dependence of 

pH (source: Jasmund and Lagaly, 1993). 
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5.2 Material 

The purified and Na-exchanged bulk materials of Volclay, Indian Bentonite, sepiolite and 

vermiculite were fractionated and used for determination of the layer and edge charges. 

Determination of the edge charge properties was performed on purified and Na-

exchanged bulk materials, as well as on < 2 µm and < 0.2 µm fractions. The samples are 

listed in Table 5.1. The purification and the separation of the fractions are explained in 

Chapter 2. 

Table 5.1 Purified and Na-exchanged bulk material and fractions. 

Sample Bulk material Fraction < 2 µm Fraction < 0.2 µm  

4_Vol X X X 

6_IndBent X X X 

8_Verm X X n.s. 

10_PangelS9 X X X 

 n.s. not separated. 

The Na+ in the interlayer of a part of each material was exchanged against Cu2+ and Li+ to 

create Cu- and Li-exchanged materials to this end, 10 g of Na+-exchanged material were 

dispersed in 500 ml deionised water. Solid copper chloride (CuCl2) or lithium chloride (LiCl) 

was added to the suspensions. The concentration was 20 times that of the CEC. The 

suspensions were shaken for 24 h. Thereafter, the suspensions were centrifuged at 4500 

min-1 between 10 and 30 min. In some cases, it was necessary to add additional LiCl to the 

Li-exchanged sample for flocculation. The clear supernatant was replaced by fresh deionised 

water and solid CuCl2 or LiCl were added again. The procedure was repeated four times, 

resulting in a complete exchange of Cu2+ or Li+ against Na+. After the reaction, the Cu-

exchanged materials were washed with deionised water to remove chloride and surplus 

cations until the conductivity of the supernatant solutions were below 5 µS/cm. The Li-

exchanged materials were filled in dialyse tubes to remove the excess salt. The suspensions 

were dialysed until the conductivity of the surrounding deionised water was below 5 µS/cm. 

The chloride free samples were dried at 60 °C. Afterwards the samples were milled slightly in 

an agate mill. For the creation of layer charge reduced materials, the Cu- and Li-exchanged 

materials of Volclay and Indian Bentonite were used. The samples were divided into 5 

portions of 2 g each. One portion was not treated, while the others were heated for 24 h at 

several temperatures (110, 150, 200 and 300 °C).  
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5.3 Layer charge and layer charge reduction 

Smectites are utilized in many industrial processes due to their high CEC, swelling ability and 

high surface area. Reduction of layer charge upon heating causes changes in the expansion 

properties of the clays. It is well known that small cations like Li+ migrate into the structure of 

clay minerals like smectite (Hofmann and Klemen, 1950), but the location of their fixation is 

still under discussion. 

In the last years, several studies about layer charged reduced smectites have been 

published. Mosser et al. (1997) used several methods (STA, IR, EPR, XPS, XRD, CEC) to 

compare a dioctahedral with a trioctahedral smectite in relation to the migration behaviour of 

Cu2+ upon heating at 100 to 500 °C. The influence of the migration of several cations on the 

dehydroxylation behaviour of smectites was investigated by Emmerich et al. (1999, 2001). A 

smectite was homoionically exchanged with Li+, Na+, Cu2+, Zn2+, Sr2+ and Ca2+ and heated at 

several temperatures 220 to 700 °C. 

Sorption capabilities of layer charge reduced materials were researched by Hrobáriková and 

Komadel (2002). They used Li-saturated montmorillonite, which were heated at several 

temperatures (110 to 300 °C). Beside the sorption capacity, they also investigated the 

influence of Li-fixation on CEC and swelling ability, using raw materials of various sources, 

differing in layer charge and chemical composition (Hrobáriková et al., 2001). The hydration 

properties of layer charge reduced montmorillonite was analysed gravimetrically and with in 

situ XRD by Komadel et al. (2002). The samples were heated at 110 to 180 °C.  

Karakassides et al. (1999) showed that FTIR and ESR spectroscopy are powerful techniques 

to investigate the location of Li+, Cu2+ and Cd2+ in heated montmorillonites (130 to 300 °C). 

Detailed FTIR spectroscopic investigations of layer charge reduced montmorillonites were 

also done by Madejová et al. (1996, 1999, 2000, 2006) to determine the influencing factors of 

the fixation of Li+, Cu2+ and Cd2+ in the structure of the smectites. Madejová et al. (2006) 

researched the possibility of infrared spectroscopy in the far-, mid- and near infrared regions 

to follow structural changes upon heating in Li- and Cu-saturated montmorillonites. 

A comprehensive description about the preparation and properties of reduced-charge 

smectites were published by Komadel et al. (2003). Gates et al. (2000) investigated the 

changes in electronic and structural properties that are induced by Li+ fixation by solid state 
29Si and 27Al nuclear magnetic resonance spectroscopy.  

Layer charge reduction is one method to change the properties of the clay minerals like 

smectite without changing the overall chemistry too much. To modify these new materials 

they were treated with acid (Pálková and Madejová, 2003; Pálková et al., 2003). Dissolution 
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of layer charge reduced samples was slower and took place mainly from the particle edges 

compared to unheated materials (Pálková et al., 2003). Komadel et al. (1999) used Li fixation 

to stabilize Fe2+ in reduced Fe-rich smectites. 

In the present study, several layer charged reduced materials were prepared. The main 

focus was put on the influence of layer charge and tetrahedral charge. The results of CEC 

measurements were compared with the measurements of FTIR spectroscopy. The 

dehydration behaviour of the different layer charge reduced materials was compared with 

possible application of charge reduced smectites as standard material for investigation of 

charge related properties and behaviour. 

5.3.1 Methods 

The CEC of the homoionic exchanged and layer charged reduced materials were 

measured with 0.01 M Cu-triethylenetetramine (Cu-trien) according to Meier and Kahr 

(1999). The concentration of Cu-trien in the overlaying solution was determined by 

photometry (λ = 580 nm). The exchangeable cations were analysed by ICP-OES from the 

supernatant solutions. The dilution factors were 1:4 or 1:10 in dependence on the 

concentration.  

FTIR was used to observe the migration of ions within the clay structure. A Bruker IFS 

66/s spectrometer equipped with a DTGS detector was employed to obtain the IR-spectra. 

Sixty-four scans in the 4000 – 400 cm-1 spectral range were recorded with a scanner velocity 

of 2.2 kHz, a resolution of 4 cm-1 and a lens aperture of 12 mm. For the ATR measurements, 

a Golden Gate Mark II ATR single reflection diamond cell (Specac Limited) equipped with 

KRS5 lenses was used. For the ATR measurements no further sample preparation was 

necessary; only a small amount of powder was pressed on the diamond surface by a 

sapphire tipped anvil. To apply reproducible contact pressures, a torque screw driver was 

used. For Golden Gate ATR measurements, a torsional moment of 90 cNm is applied as 

standard. 

The dehydration behaviour of the homoionic exchanged and layer charged reduced 

materials were investigated by STA. The measurement conditions are listed in Table 5.2. 

The short isothermal segment at the beginning of the measurement was added to redress 

the balance. In advance of the measurements, the samples were stored above a saturated 

Mg(NO3)2 solution to equilibrate at constant humidity (r.h. 53%). 
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Table 5.2 Experimental parameters for simultaneous thermal analysis. 

Start temperature [°C] 35 
End temperature [°C] 1100 Dynamic segment 
Heating rate [K/min] 10 

Isothermal segment at     35 °C [min] 10 
 1100 °C [min] 30 

Nitrogen as protective gas [ml/l] 20 
Atmosphere Synthetic air as purging gas [ml/l] 50 
Sample holder Pt/Rh 
Crucible Pt/Rh with lid 
Reference material Empty crucible with lid 
Net weight  [mg] 100 

5.3.2 Results and Discussion 

The influence of heat treatment on the CEC of smectites was investigated on Volclay and 

Indian Bentonite samples, which were saturated with Li+ and Cu2+. Both smectites are 

dioctahedral. The raw smectite in Indian Bentonite has a higher layer charge than the Volclay 

smectite, while the octahedral charges were similar. Therefore, the two samples differ in 

tetrahedral charge (Table 5.3). The Volclay smectite had a lower tetrahedral charge 

compared to the smectite of the Indian Bentonite. The CEC decrease with increasing heat 

treatment was dependent on the type of clay used. The CEC of the two clay fractions (< 2 µm 

and < 0.2 µm) did not vary significantly (Figure 5.4).  

Table 5.3 Structural formula of the smectite fractions < 0.2 µm. 

Sample Structural formula 

4_Vol ])()[)(( 210
2

23.0
3

20.0
3

58.1
3

05.095.325.0 OHOMgFeAlAlSiMe +++++  
6_IndBent ])()[)(( 210

2
26.0

3
49.0

3
32.1

3
29.071.334.0 OHOMgFeAlAlSiMe +++++  

Figure 5.4 Variation with heat treatment of the CEC a) of the Li-exchanged and b) Cu-exchanged 
Volclay (< 2 µm / < 0,2 µm) and Indian Bentonite (< 2 µm / < 0.2 µm).  
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The CEC of the Li-exchanged Volclay decreased about 55% at 150 °C and up to 90% at 

300 °C. The Li-saturated Indian Bentonite had a CEC of 23 mq/100g at 300 °C, which equals 

to a decrease of about 77% of the original CEC (Table 5.4). 

Table 5.4 Percentage of the CEC decrease for different temperatures normalized to the original 
CEC value of the Li- and Cu-saturated Volclay < 2 µm and Indian Bentonite < 2 µm at 
room temperature.  

Temperature 
[°C] 

Li-Volclay < 2 µm 
[%] 

Li-IndBent < 2 µm 
[%] 

Cu-Volclay < 2 µm 

[%] 
Cu-IndBent < 2 µm

[%] 

RT 0 0 0 0 

110 19 11 1 11 

150 57 45 25 19 

200 88 70 73 44 

300 90 77 83 60 

The CEC of the Cu-saturated Volclay heated to 110 °C was nearly identical to that for the 

unheated Cu-exchanged Volclay. At 150 °C, the CEC decreased by 25% and at 200 °C the 

CEC diminished to less than half of the original CEC (75 meq/100g). The difference between 

the CEC at 200 °C and 300 °C averaged 10% (Figure 5.4 and Table 5.4). For the Cu- and Li-

exchanged Indian Bentonite, the CEC decreased to the same level upon heating to 110 °C 

(Table 5.4). At 300 °C the decrease of the CEC reached 77% for the Li-exchanged Indian 

Bentonite and 60% for the Cu-treated material. The CEC values of the Li-saturated samples 

decreased with increasing temperature more than those of the Cu-exchanged materials. The 

CEC of the Li- and Cu-exchanged and heat treated Volclay showed a stronger decrease 

compared to the Indian Bentonite (Table 5.4). It is known that the CEC decreases with 

increasing temperature, because small exchangeable cations like Li+ and Cu2+ move into the 

structure (Hofmann and Klemen, 1950). A decrease in CEC is combined with an apparent 

reduced layer charge.  

The Li+ and Cu2+ cations are similar in size but differ in charge. According to Madejova et 

al. (1999) Li+ is fixed within the octahedral vacancies and Cu2+ is trapped in the hexagonal 

cavities of the tetrahedral sheet. The migration is combined with a reduction of the charge 

deficit in the structure. The content of Li+ or Cu2+, which moved into the structure of the 

smectite, is equivalent to the CEC reduction. These results suggest that more Li+ or Cu2+ 

moved into the structure of the Volclay smectite than in the smectite from the Indian 

Bentonite. The octahedral charge of both was similar, but layer charge and tetrahedral 

charge varied. The higher layer charge and the higher tetrahedral charge of the smectite in 

the Indian Bentonite retarded the migration of Cu2+ and Li+ into the structure. The higher 

content of iron in the octahedral sheet of the Indian Bentonite influenced the migration of 
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Cu2+ and Li+ in the structure, too. Therefore, the CEC reduction of the smectite was higher in 

the Volclay than in Indian Bentonite. 

These changes in the CEC are also reflected in their FTIR spectra. Figure 5.5 displays the 

spectra of Li-saturated and heat treated (300 °C) material of the < 2 µm fraction of Volclay 

and Indian Bentonite and Figure 5.6 shows the corresponding FTIR spectra for the Cu-

exchanged and heat treated material. The intensity of all vibrations in the range between 500 

cm-1 and 1250 cm -1 decreased upon heating.  

The unheated and homoionically exchanged material showed a sharp vibration around 

990 cm-1. This vibration can be assigned to a Si-O stretching vibration (in-plane) (Farmer, 

1974; Komadel et al., 1996; Madejová et al., 1998). After heating, this vibration shifted to 

higher wavenumber. The shift is induced by the migration of Li+ and Cu2+ into the structure, 

which caused the deformation of the tetrahedral sheet. Another band at 512 cm-1 can be 

assigned to a Si-O-Al vibration of aluminium in the tetrahedral sheet (Farmer, 1974; Komadel 

et al., 1996; Madejová et al., 1998). In the spectra of the Li-exchanged material a decrease 

of the vibration intensity was observed. The Cu-saturated samples showed a shift of this 

vibration to a higher wavenumber (520 cm-1). The shifts proved the structural changes of the 

tetrahedral sheet.   

  
Figure 5.5 FTIR spectra of Li-exchanged and heat treated (T 300 °C) Volclay < 2 µm (a) and 

Indian Bentonite < 2 µm (b). 

The spectra of the Li- and Cu-exchanged Volclay showed stronger shifts of the Si-O 

vibration near 990 cm-1 than the Indian Bentonite. These results of FTIR spectroscopy are in 

good agreement with the results of the CEC measurements. The higher layer charge and the 

higher tetrahedral charge of the smectite (Indian Bentonite) influenced the migration of the 

cations into the structure. The spectra of the Li-saturated and heated samples showed 
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changes in the region between 930 and 830 cm-1. The vibrations in this range are connected 

to octahedral cations (Al3+, Fe3+, Mg2+) (see Chapter 4 and 6). The changes reflect that Li+ 

migrate deeper into the structure (near or into the octahedral sheet) than Cu2+ (Madejová et 

al., 1999). 

  
Figure 5.6 FTIR spectra of Cu-exchanged and heat treated (T 300 °C) Volclay < 2 µm (a) and 

Indian Bentonite < 2 µm (b).  

In addition to the CEC and FTIR measurements, the dehydration behaviour of the Li- and 

Cu-exchanged and heat treated material was characterized. The dehydration values of the 

fraction < 2 µm are listed in Table 5.5.  

Table 5.5 Development of the dehydration behaviour in dependence on the temperature for the 
Li- and Cu-saturated Volclay < 2 µm and for the Indian bentonite < 2 µm.  

Temperature 
[°C] 

Li-Volclay < 2 µm 
[%] 

Li-IndBent < 2 µm 
[%] 

Cu-Volclay < 2 µm 

[%] 
Cu-IndBent < 2 µm

[%] 

RT 15.0 17.3 12.7 17.5 

110 10.8 14.8 11.6 16.0 

150 6.4 10.6 6.3 13.6 

200 2.1 6.3 2.2 9.1 

300 1.6 5.4 1.8 7.5 

The mass loss of the < 0.2 µm fraction due to dehydration is higher (~ 1%) than the mass 

loss of the < 2 µm fraction. The dehydration decreased with increasing temperature. The 

development of the dehydration is confirmed with the CEC reduction.  

It was not possible to measure the layer charge for the layer charge reduced material with 

dodecylamine (Olis et al., 1990). A test with a source clay (SWy-2) from the Clay Minerals 
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Society, saturated with Li and heated between 110 and 210 °C, showed that all samples 

heated up to T > 120 °C intercalated dodecylamine in a planar alignment. Therefore, the 

layer charge cannot be measured. The resulting layer charge after heat treatment was 

calculated from measured CEC values (Table 5.6). An average molecular weight of 

375 g/mol was used and the CEC resulting from edge charges (see Chapter 5.4 and Table 

5.7) subtracted from the total measured CEC. 

Table 5.6 Reduced layer charge in dependence on the temperature for the Li- and Cu-saturated 
Volclay < 2 µm and for the Indian Bentonite < 2 µm.  

Temperature 
[°C] 

Li-Volclay < 2 µm 
[%] 

Li-IndBent < 2 µm 
[%] 

Cu-Volclay < 2 µm 

[%] 
Cu-IndBent < 2 µm

[%] 

RT 0.27 0.31 0.26 0.31 

110 0.18 0.27 0.26 0.27 

150 0.09 0.15 0.19 0.24 

200 0 0.06 0.06 0.16 

300 0 0.05 0.03 0.10 

Table 5.7 Edge charge of Li- and Cu-exchanged Volclay and of Indian Bentonite          
(subtracted from the measured CEC values).  

Edge charge Li-Volclay < 2 µm Li-IndBent < 2 µm Cu-Volclay < 2 µm Cu-IndBent < 2 µm

meq/100g 12 15 5 10 

The smectite in the Volclay has a lower layer charge than the smectite of the Indian 

Bentonite. Heat treatment can be applied to create materials with a certain layer charge. 

Variations in the layer charge are greater, when the raw materials have a higher layer charge 

at the beginning. The strength of the changes depends on the interlayer cation (Li+, Cu2+). 

Allowing for the error of the CEC method (± 2 meq/100g) for the Li- and Cu-saturated Indian 

Bentonite, as well as for the Cu-exchanged Volclay, we assumed that the edge charge 

stayed unchanged upon heating. The edge charge of the Li-saturated Volclay stayed 

unchanged only up to 150 °C. Due to the low CEC values above 200 °C, we assumed that 

only a small content of Cu-trien cations moved into the interlayer. The rest of the 

exchangeable cations are located at the edges, but part of the edges is also blocked (Table 

5.6). Above 200 °C, the total measured CEC of the Li-saturated Volclay was lower than the 

CEC of the edges of the starting material; this means that these materials had no layer 

charge. With increasing temperature the CEC as well as the layer charge decreased and 

reached a constant limit. This limit was reached at lower temperature for Li-exchanged 

samples than for Cu-exchanged samples.   

After heating up to 110 °C, the Cu-exchanged smectite of the Indian Bentonite had the 

same layer charge as the unheated Li- and Cu-exchanged smectite of the Volclay. The Cu-
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exchanged Volclay heated up to 200 °C had the same layer charge as the Li-exchanged 

Indian Bentonite heated up to the same temperature. The Li-saturated Volclay heated at 150 

°C had the same layer charge as the Li-saturated Indian Bentonite heated up to 300 °C. The 

Li-exchanged Volclay heated up to 150 °C had the same layer charge as the Cu-exchanged 

Indian Bentonite heated up to 300 °C. The materials have nearly the same layer charge, but 

the dehydration properties differed. This indicates that layer charge reduced materials can 

only find restricted use for model investigations in dependence on the layer charge.  

5.4 Edge charge 

The characterisation of the edges is difficult for clay minerals compared to the 

characterisation of their surface, because the surface area is larger than the area of the 

edges. Kaufhold (2001) investigated the influence of the pH on the cation exchange capacity 

to characterise the edges. Amman et al. (2005) studied the influence of the pH on two copper 

complexes. Weiss et al. (1956) used an anion exchange procedure to determine the content 

of the edge charge. 

5.4.1 Methods 

Two methods were used to characterise the edge charge of these clay minerals. First, the 

CEC was measured in dependence on the pH. Second, the hydroxyl groups of the edges 

were exchanged against fluoride. 

CEC measurements with Cu-trien, as described in Chapter 3, were modified by adding of 

HCl or NaOH to vary the pH of the exchange solution. The modification scheme followed 

Kaufhold (2001). The used solutions consisted of 5 ml 0.01 M Cu-trien, 9 ml deionised water 

and 1 ml acid or base (Table 5.8). 

Table 5.8 Concentrations of HCl and NaOH.  

HCl [mol·l-1] NaOH [mol·l-1] 

0.1 0.1 

0.01 0.01 

0.001 0.001 

0.0001 0.0001 

0.00001 0.00001 

 Sodium fluoride solution, instead of an ammonium fluoride solution (Weiss et al. 1956), 

was used for anion exchange. The NaF solution was applied to avoid the cation exchange 

with the interlayer cations during the anion exchange procedure. Due to the purification, the 
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used materials are Na+-saturated. The purification and the homoionic exchange are 

necessary, because Ca-rich and Mg-rich phases like Calcite and Dolomite can be dissolved 

by NaF. The released Ca and Mg form insoluble complexes with fluoride, which would have 

an influence on the fluoride concentration in the supernatant.  

Prior to the measurements, the hydration state of the samples was equilibrated by storing 

the samples above magnesium nitrate between 3 and 5 d. Thereafter, 100 mg of the material 

is weighed in 50 ml centrifuge tubes. 50 ml of a 0.01 M sodium fluoride solution was added 

and the suspensions were shaken, several hours (3, 20, 48, 72 and 96 h). The hydroxyl 

groups of the edges were exchanged against fluoride. After the exchange, the samples were 

centrifuged (4500 cm-1, 10 min, 21 °C) and the clear supernatant was separated from the 

solid. The fluoride in the solutions was analysed using ion chromatography. The difference 

between the amount of fluoride before and after the exchange reflects the charge of the 

edges.  

The influence of NaF on the structure of the clays was investigated by ICP-OES. The 

content of Si, Al, Fe and Mg was measured in the supernatant. These four cations are in the 

tetrahedral and octahedral sheets. The investigations were done to control the stability of the 

clay minerals against the fluoride solution.  

5.4.2 Results and Discussion 

pH-depended CEC 

The influence of the pH on the stability of Cu-trien was tested before the measurements 

started. The concentration of the Cu-trien solution was 0.01 M. The pH of the calibration 

solutions were measured and calculated (Table 5.9). The measured pH values differ from the 

calculated pH. The influence of Cu-trien on pH is stronger than that of HCl. Therefore, the 

measured pH below 7 is higher than the calculated pH values. Cu-trien has no influence on 

the pH at high NaOH concentration. Cu-trien can be regarded as a weak acid.  
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Table 5.9 Concentrations of HCl or NaOH and the measured and calculated pH of the calibration 
solutions. 

HCl or NaOH 
[mol·l-1] pHmeasured pHcalculated 

0.1 3.1 2.2 

0.01 4.0 3.2 

0.001 5.9 4.2 

0.0001 6.5 5.2 

0.00001 6.6 6.2 

- 7.1 7 

0.00001 6.9 7.8 

0.0001 7.3 8.8 

0.001 8.4 9.8 

0.01 10.8 10.8 

0.1 11.8 11.8 

Cu-trien is stable from pH 4 to pH 11 (Figure 5.7). Below pH 4 and above pH 12 the 

stability of Cu-trien decreases. Therefore, separate calibrations are useful for acids with a 

molarity of 0.1 and 0.01 M and for base with a molarity of 0.1 M. The data are comparable 

with those of Kaufhold (2001) and Amman et al. (2005). Kaufhold (2001) used a higher 

volume of Cu-trien (10 ml) and a lower volume (0.5 ml) of HCl and NaOH (0.1 and 0.01 M). 

Amman et al. (2005) used a buffer to adjust the pH of the solution. This buffer solution (pH 8) 

was prepared by dissolving of 0.1 M (12.114 g) of tris(hydroxymethyl)amminomethane and 

55.8 ml of 1 M HCl in water to give 100 ml of solution. 1 ml of the buffer was added to 3 ml of 

the separated supernatant. 

 
Figure 5.7 Influence of the pH (measured) on the stability of Cu-triethylenetetramine. 

In all Figures (5.8 - 5.10), the measured pH of the calibration solutions is plotted on the x-

axis for a better illustration because the clay materials also have an influence on the 
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measured pH value (Table 5.9). Clay minerals are able to buffer low concentrations of acids 

and bases. Clay minerals react amphoteric. 

The first measurements of the pH-dependent CEC were carried out on the bulk material of 

Volclay (4_Vol), Indian Bentonite (6_IndBent) and sepiolite (10_PangelS9) to check the 

feasibility (Figure 5.8). The measurements showed that the added acid caused a decrease 

and the added base an increase of the CEC. At low pH, the edges did not contribute to the 

CEC, while the bases increased the number of negative charged edges, which lead to higher 

CEC values. After these measurements, purified and Na-exchanged materials were used. 

The results of both bentonites are shown in Figure 5.9 and for the sepiolite Pangel S9 in 

Figure 5.10. 

 
Figure 5.8 CEC of the untreated bulk material in dependence on the pH.  

  
Figure 5.9 CEC in dependence on pH of the purified and fractionated materials of a) Volclay and 

b) Indian Bentonite compared to the purified bulk material.  
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Figure 5.10 CEC in dependence on pH of the purified and fractionated material of the sepiolite 
Pangel S9 compared to the purified bulk material. 

Table 5.9 Measured CEC and pH after the exchange experiment for the < 0.2 µm fraction of 
Volclay, Indian Bentonite (IndBent) and Sepiolite (Pangel S9).  

Volclay < 0.2 µm IndBent < 0.2 µm PangelS9 < 0.2 µm 
Addition of 1ml 

pH 
CEC  

[meq/100g]  
pH 

CEC  
[meq/100g]  

pH 
CEC 

[meq/100g]  

HCl 0.1 M 2.9 40 2.9 49 3.1 10 

HCl 0.01 M 4.8 80 4.3 85 5.8 11 
deionised 
water 5.7 86 5.4 98 6.7 19 

NaOH 0.01 M 6.8 88 8.8 102 7.5 19 

NaOH 0.1 M 11.9 111 11.9 112 11.8 33 

Following the CEC measurements, a part of the overlaying solution was analysed for  

released Si4+, Al3+, Fe3+/2+ and Mg2+. The investigations were done to control the dissolution 

of the clay minerals during the reaction.  

Despite homoionic exchange with Na+ of the interlayer cations, 1 meq/100g Mg2+ is still 

present in the interlayer (Table 5.10). Around pH 7, one might expect that Mg2+ comes only 

from the interlayer sheet. The largest amount of Mg2+ is present in the octahedral sheet. 

Table 5.10 Mg2+ content of the interlayer of Volclay < 2 µm (pH 7). 

Volclay < 2 µm mg/l mmol meq/100g 

Mg (pH 7) 0.0873 0.00022 1 

The concentrations of the octahedral and tetrahedral cations in the supernatant solution 

after the CEC measurements were very low (well below 0.0001%, Table 5.11).  
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Table 5.11 Si4+ content of the supernatant solution of Volclay < 2 µm. 

Si4+ 
Addition of 1ml 

mmol % 

0.1 M HCl 0.00058 0.00001 

0.01 M HCl 0.00026 0.000004 

deionised water 0.00024 0.000004 

0.01 M NaOH 0.00043 0.000007 

0.1 M NaOH 0.00232 0.00004 

The release occurred unbalanced, which means that the dissolution of the clay minerals 

by acid or base occurred incongruently. The concentration and the volume of acid or base 

are too low to affect dissolution of the octahedral and tetrahedral sheet of the clay minerals 

(Chapter 6). The results show that the release of these elements is insignificant and the clay 

minerals stay unaltered during the exchange reaction.  

The CEC, as a function on pH, was used to estimate the charge of the edges. The 

difference between the total CEC measured around pH 7 and the CEC in the acid range 

corresponds to the charge of the edges. The value of 0.01 M HCl was used, because the Cu-

trien complex is not stable with 0.1 M HCl (Figure 5.11). The value of 0.1 M NaOH was used 

to estimate the maximum of the charge of the edges. 

The charge of the edges of the purified and fractionated Volclay, as well as of the Indian 

Bentonite, is listed in Table 5.12 and the maximum of the edge charge of both materials in 

Table 5.13.   

Table 5.12 Charge of the edges of purified and fractionated Volclay and Indian Bentonite. 

  bulk < 2 µm < 0.2 µm 

Volclay [%] 6 ± 2 7 ± 2 7 ± 2 

Indian Bentonite [%] 15 ± 2 14 ± 2 13 ± 2 

Table 5.13 Maximum of the edge charge of purified and fractionated Volclay and Indian 
Bentonite. 

  bulk < 2 µm < 0.2 µm 

Volclay [%] 18 ± 2 23 ± 2 23 ± 2 

Indian Bentonite [%] 12 ± 2 13 ± 2 12 ± 2 

The charge of the edges did not differ significantly between the purified bulk material and the 

fraction of sepiolite. The values were above 40%. The maximum of the edge charge 

averaged above 40%, too (Table 5.14). The high value can be explained by its tube-like 

structure. 
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Table 5.14 Edge charge and maximum of the edge charge of purified and fractionated sepiolite. 

Sepiolite  bulk < 2 µm < 0.2 µm 

Edge charge [%] 40 ± 4 44 ± 4 42 ± 4 

Maximum of the edge charge [%] 43 ± 4 47 ± 4 42 ± 4 

The results for the CEC in dependence on pH for vermiculite showed large variation. 

Vermiculite was much less stable against acid than smectite (Chapter 7). The incorporation 

of Cu-trien into the vermiculite interlayer is limited to certain conditions (Chapter 4).  

Fluoride exchange of hydroxyl groups 

The fluoride content of the supernatant was only slightly reduced after the reaction. The 

pH increase of the fluoride solution after the reaction proved the release of the hydroxyl 

groups and is an indicator that anion exchange took place. The difference between the 

fluoride concentration before and after the anion exchange can be used to estimate the 

charge of the edges. The variation of shaking time showed that 3 h (Table 5.15) was too 

short for the complete exchange, because the charge of the edges was lower after 3 h than 

after 20 h (Tables 5.16 and 5.17).  

Table 5.15 Charge of the edges after the reaction with sodium fluoride after 3 h.  

Sample Bulk material#         
[%] 

Fraction < 2 µm#      
[%] 

Fraction < 0.2 µm#      
[%] 

Volclay 8 ± 2 9 ± 1 7 ± 2 

Indian Bentonite 8 ± 1 7 ± 1 9 ± 2 

Vermiculite 5 ± 2  5 ± 2 - 

 # Material was purified according to Tributh and Lagaly (1986). 

A shaking time between 20 h and 48 h was enough for the exchange (Tables 5.16 and 5.17). 

With increasing time, the results were constant within the variation limit of the error of the 

method (± 3%) (Table 5.17). 

Table 5.16 Charge of the edges after the reaction with sodium fluoride after 20 h.  

Sample Bulk material#        
[%] 

Fraction < 2 µm#      
[%] 

Fraction < 0.2 µm#        
[%] 

Volclay 14 ± 2 14 ± 3 14 ± 2 

Indian Bentonite 17 ± 2 16 ± 2 - 

Vermiculite 10 ± 1  10 ± 1 - 

 # Material was purified according to Tributh and Lagaly (1986). 
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Table 5.17 Charge of the edges after the reaction with sodium fluoride. 

Sample 3 h 20 h  48 h 72 h 96 h 

Volclay#                 [%] 8 ± 2 14 ± 2 11 ± 2 15 ± 2 12 ± 2 

Indian Bentonite#  [%]  8 ± 2 17 ± 3 17 ± 3 13 ± 2 16 ± 2 

Vermiculite#          [%] 5 ± 1 10 ± 1    9 ± 2    9 ± 1    7 ± 1 

 # Bulk material, which was purified according to Tributh and Lagaly (1986). 

Sepiolite showed unreliable results for the fluoride reaction. The method cannot be 

applied for this material. The reason might be the tube-like structure of sepiolite, allowing a 

higher content of fluoride to be adsorbed rather than exchanged at the edges. 

The fluoride solution can attack cations in the tetrahedral and octahedral sheet. Therefore, 

the supernatant solution after the reaction was analysed for the release of Si4+, Al3+, Fe2+/3+ 

and Mg2+ after 96 h. In the supernatant solution of vermiculite samples, the element 

concentrations of Si4+, Al3+, Fe2+/3+ and Mg2+ were below 0.5 mg/50ml. The release of these 

elements is unbalanced. The release of the elements occurred in the following order: Al3+ > 

Fe2+/3+ > Si4+ > Mg2+. This means that the dissolution of vermiculite by NaF was incongruent. 

The element concentration in mg/50ml in the supernatants of the smectite samples is higher 

compared to the vermiculite sample. The dissolution of smectite occurred congruently, 

because the ratio between Si4+, Al3+, Fe2+/3+ and Mg2+ in the structural formula is equal with 

that in the supernatant solution. The structural formulas are given in Chapter 4. The content 

of Si4+, Al3+, Fe2+/3+ and Mg2+ in mol and the corresponding amount in % are listed in Table 

5.18. 

Table 5.18 Content of Si, Al, Fe and Mg of the structural formula in mol and %.  

 Vermiculite < 2 µm Volclay < 2 µm Indian Bentonite < 2 µm 

Element [mol]  [%]  [mol]  [%]  [mol]  [%] 

Si4+ 3.03 50.0 3.92 65.1 3.66 60.4 

Al3+ 0.97 16.0 1.64 27.2 1.62 26.7 

Fe2+/3+ 0.31 5.1 0.19 3.2 0.52 8.6 

Mg2+ 2.63 43.4 0.27 4.5 0.26 4.3 

The values of Si4+, Al3+, Fe2+/3+ and Mg2+ in mg/50ml were converted in mmol and the 

percentages of each element were calculated in relation to the structural formula. The 

release of Si4+ was nearly 0.01 % and the release of Al3+, Fe2+/3+ and Mg2+ was well below 

0.01%. These low concentrations in the supernatants are insignificant. The results show that 

NaF did not disintegrate the clay mineral structure. 
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5.4.3 Conclusions 

Both methods applied for edge charge determination can be used for smectites. There are 

limitations for application of these methods to vermiculite and sepiolite samples, but still one 

method can be applied for these materials. The charge of the edges of the vermiculite was 

determined with the fluoride method. The charge of the edges of the sepiolite was 

ascertained by using the CEC measurements in dependence on pH. The vermiculite has a 

charge of the edges of 10% and the sepiolite of about 40%. 

Both methods were applied to estimate the charge of the edges of the smectites. The values 

are comparable. The smectite in the Indian Bentonite had a charge of the edges of 13% and 

in the Volclay of 14%. 

In summary, both methods can be used to determine the charge of the edges in cases 

where the acid-base-system of Cu-trien and of the clay minerals does not interfere. This 

method of characterisation of clay edges can be used as screening for modification of edges. 

The modification of clay edges can be performed in order to achieve their homogenous and 

oriented arrangement by edge-to-edge or surface-to-edge connections (e.g., in clay polymer-

nanocomposites). 
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6 Structural modifications during acid treatment of several clay 
minerals 

The results of Chapter 6 are submitted to Applied Clay Science in the form of two publications: 

Steudel A., Batenburg L. F., Fischer H. and Emmerich K. (2008) Alteration of swellable clay minerals 

by acid treatment. Applied Clay Science, submitted. 

Steudel A., Batenburg L. F., Fischer H. and Emmerich K. (2008) Alteration of non-swelling clays by 

acid treatment. Applied Clay Science, submitted. 

6.1 Introduction 

Clay minerals like smectite, vermiculite, illite, sepiolite and even kaolinite vary in their 

chemical composition, which causes different mineralogical properties such as layer charge, 

cation exchange capacity, adsorption capacity and morphology. Therefore, a detailed 

description of the clay minerals is very important (Wolters et al., 2008). Because of their large 

variability (e.g., in chemical composition), clay minerals are widely used for many industrial 

applications including ceramic industries, food industries, chemical industries and paper 

industries. They are applied in their natural form or after specific modification (Komadel, 

2003). One type of modification is acid treatment. Diluted sulphuric acid and other inorganic 

acids (e.g., hydrochloric acid, nitric acid, oxalic acid) find use for the preparation of acidic 

activated clay minerals to enhance the catalytic activity of these minerals (Komadel et al., 

1997) and to obtain bleaching earth (Kaufhold, 2001), which is used e.g., for the purification 

of beverages and cooking oil. 

There are several studies dealing with acid treatment. A number of workers have 

investigated the influence of hydrochloric acid on the structure of smectite (Novák and Číčel, 

1978; Komadel et al., 1990; Ravichandran and Sivasankar, 1997; Madejová et al., 1998; 

Pálková et al., 2003; Klinke 2007). Abdul-Latif and Weaver (1969), Vicente-Rodríquez et al. 

(1995) and Yebra-Rodríquez et al. (2003) treated sepiolite and palygorskite with hydrochloric 

acid. Jozefaciuk and Bowanko (2002) and Caroll and Starkey (1971) investigated the 

influence of acid treatment on clay minerals like montmorillonite, biotite, illite, kaolinite, 

halloysite, vermiculite. Snäll and Liljefors (2000) treated mica- and chlorite-rich bulk clays 

and other minerals like amphibole, titanite, epidote and plagioclase with hydrochloric acid.  

Only a few workers used sulphuric acid for the treatment of minerals of the smectite or 

kaolinite group (Breen et al., 1995; Komadel et al., 1997; Hradil et al., 2002; Makó et al., 
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2006; Tyagi et al., 2006; Önal and Sarikaya, 2007). Two studies (Komadel et al., 1990; Hradil 

et al., 2002) used both acids but in different concentrations.    

From these studies, it is well known that acid treatment of clay minerals causes corrosion of 

the octahedral sheet. It is still a matter of debate if this process is complete or incomplete. 

Furthermore, only a few of these earlier studies compared differences in the influence of 

sulphuric and hydrochloric acid on clay minerals (e.g., Komadel et al., 1996).  

The aim of this study was to prepare materials with a simple chemical composition, which 

have a similar layered morphology like the untreated materials and which still have the ability 

to adsorb organic molecules. We selected samples from five clay mineral groups and two 

acids (HCl, H2SO4). Special attention was given to the dissolution kinetics of the octahedral 

sheet with respect to aluminium, magnesium and iron. Furthermore, we obtained information 

on the stability of several clay minerals by using two several acids with the same 

concentration at different reaction times.  

6.2 Materials and acid treatment 

Seven bentonites with a high content of smectite, one vermiculite, one illite, one sepiolite, 

three kaolin samples and one magadiite were used.  Although, most of the sample data are 

already given in Chapter 2 all samples, except 11_Pansil and 12_Palygorskite, are listed 

again in Table 6.1 for a better readability of Chapter 6. 

Table 6.1 Sample data. 

Sample Name Provenance Supplier 

1_Calci Bentonite (Calcigel) Germany Südchemie 

2_EXM757 Montmorillonite Germany Südchemie 

3_Swy-2 Bentonite USA Source Clay Repository of the Clay 
Mineral Society 

4_Vol Bentonite (Volclay) USA Südchemie 

5_WYO Bentonite USA Wyoming 

6_IndBent Bentonite (Indian) India F. Wolters / IFG 

7_Nhec Hectorite (natural) USA Elementis 

8_Verm Vermiculite Russia S. Dultz / Uni   Hannover 

9_Illite Mica (Illite) France Commercial product of B+M 

10_PangelS9 Sepiolite (Pangel S9) Spain Tolsa 

13_Pol Kaolin (Polwhite) GB IMERYS 

14_Kaolex Kaolin (Kaolex) USA Kentucky-Tennessee Clay Company 

15_Rogers Kaolin (Rogers) USA Kentucky-Tennessee Clay Company 

16_Mag Magadiite (synthetic) --- TNO (NL)  
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In contrast to the other raw materials, the natural vermiculite has a low < 2 µm fraction 

content; particle size separation revealed an amount of less than 10 %. Therefore, particle 

size had to be reduced by grinding without affecting the vermiculite structure. Best results 

were obtained with a CGS 10 mill (Netzsch). More detailed descriptions were given in 

Chapter 4. 

The acid treatment was performed with untreated bulk materials, because for most of the 

industrial applications purification and separation of clay < 2 µm fraction is too time 

consuming and too expensive. 

For the experiments, 4 g of each bulk material were treated with H2SO4 and HCl at 

concentrations of 1, 5 and 10 M at 80 °C for several hours. The volume of the suspensions 

was 400 ml. This resulted in a suspension of 1 % solid in an acidic liquid. 100 ml deionised 

water (VE-water) were used to disperse the clay. The reaction between pure water and 

H2SO4 is very strong. Therefore, heat development was inhibited by cooling with ice. The 

chilled acid (300 ml) was mixed with the clay suspension by mechanical stirring. 

Subsequently, the suspensions were heated to 80 °C in an oil bath. Reaction time varied 

between 1.5 and 96 h. Table 6.2 shows the applied reaction times of the bulk material for 

H2SO4 at a concentration of 5 M at 80 °C. 

Table 6.2 Reaction times of clay suspensions with 5 M H2SO4 at 80 °C. 

Time [h] 
 Sample 1.5 5 20 72 96 

1_Calci X X X X X 

2_EXM757 X X X X X 

3_Swy-2   X  X 

4_Vol X X X X X 

5_WYO   X  X 

6_IndBent X X X  X 

7_Nhec X X X  X 

8_Verm X X X X  

9_Illite   X  X 

10_PangelS9 X X X X  

13_Pol X X X X X 

14_Kaolex   X  X 

15_Rogers   X  X 

16_Mag    X  

One bentonite (4_Vol), one kaolin (13_Pol), the sepiolite (10_PangelS9) and the 

vermiculite (8_Verm) were also treated with HCl under the same reaction conditions to show 

the influence of various kinds of acid. 
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The same 4 materials were treated with H2SO4 and HCl to investigate the influence of the 

acid concentration, using several concentrations (1, 5 and 10 M) at constant reaction time 

and constant temperature (80 °C). The bentonite and the kaolin were treated for 96 h and the 

other two materials (sepiolite, vermiculite) were treated for 20 h, because of their lower 

stability in the presence of acids (Table 6.3). 

Table 6.3 Variation of the acid concentration, using HCl and H2SO4 at 80 °C. 

Sample Time   
[h] 

Molarity 
1 M  

Molarity  
5 M 

Molarity 
10 M 

4_Vol 96 X X X 

8_Verm 20 X X X 

10_PangelS9 20 X X X 

13_Pol 96 X X X 

At the end of the reaction interval, the suspensions were cooled down with ice for 5 to 10 

min. The samples were then centrifuged to separate the acid from the residual clay 

fragments. The acidic supernatant was removed and the remaining solid washed with 

deionised water and repeatedly centrifuged until the conductivity of the supernatant solution 

was below 5 µS/cm. Then the suspensions were freeze-dried. 

6.3 Methods 

The chemical composition of the natural and acid treated materials was determined by 

X-ray fluorescence analysis (XRF). The analysis were performed on a MagiXPRO 

spectrometer from Phillips equipped with a rhodium X-ray tube (stimulation power: 3.2 KW) 

using molten pellets. For these pellets, powdered samples were mixed with lithium 

tetraborate in the ratio of 1 to 7 and molten in a platinum crucible at a smelting apparatus. 

The loss of ignition was determined separately by storing a sample in an oven at 1000 °C for 

2 h. 

The content of lithium in the octahedral sheet of the hectorite was estimated by inductively 

coupled plasma optical emission spectroscopy (ICP-OES). Therefore, the material was 

diluted with nitrohydrochloric acid and with a mixture of hydrofluoric and nitric acid, using a 

microwave. 

The composition of the supernatant solutions, which were separated from the residual 

clay fragments after reaction, were analysed by ICP-OES. The dilution factors were 1:20, 

1:50 or 1:100 in dependence on concentration due to the reaction time. A certain amount of 

solution (20 ml) was used to determine Si4+, Al3+
, Fe2+/3+

, Mg2+, Na+, Ca2+ and K+. 

Examination of the changes in particle morphology was carried out with an Environmental 

Scanning Electron Microscope (ESEM) using a Philips ESEM XL 30 FEG.  This kind of SEM 
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uses a chamber atmosphere of 1 to 3 Torr water vapour instead of high vacuum. The 

microscope is equipped with a special gaseous secondary electron detector (GSE-detector); 

therefore sputtering of the samples with conductive material (gold, carbon) is not necessary. 

Thus, it can be used for the investigation of moisture sensitive samples like clay minerals. A 

chamber atmosphere of 1 Torr and an acceleration voltage of 20 kV were applied. The used 

holder consists of aluminium, which was laminated with an adhesive carbon foil. Very small 

amounts of the clay powder were dispensed onto the foil. 

Nitrogen adsorption, using a Quantochrome Autosorb-1MP and BET evaluation, was used 

to measure specific surface area (AS or SSA in most literature) (Brunauer et al., 1932; Gregg 

and Sing, 1991). Eleven adsorption points in the range of p/p0 from 0.05 to 0.32 were used 

for BET evaluation. The outgassing conditions were 24 h under vacuum at 95 °C. The t-plot 

according to De Boer et al. (1966) was applied to estimate the external specific surface area 

(AE) and the micro-pore area (AMP).  

X-ray diffraction analysis (XRD) was used to determine the mineralogical composition of 

the natural and acid treated materials, as well as the changes in the long range order. 

Powdered samples were used. The measurements were performed on a Siemens D5000 

diffractometer (CuKα radiation) equipped with a graphite secondary monochromator. The 

patterns were recorded between 5 and 80° 2θ (step size: 0.02° 2 θ / 5 s). Fix slit (primary and 

secondary) were used with a size of 1 mm and a detector slit (secondary) of 0.1 mm. 

Qualitative phase analysis was done using Brindley and Brown (1980) and the Diffrac Plus 

Evaluation software (Version 10.0) by Bruker. Quantification of the samples was done with 

the Rietveld program “Autoquan” (Agfa NDT Pantak Seifert GmbH_CO.KG, Version 2.7.0.0). 

The Rietveld method is based on a mathematical method, which calculates a pattern by the 

optimisation of crystal structure parameters, profile form functions and background functions 

(Kleeberg and Bergmann, 2002). This calculated diffractogram is adjusted by increment 

match to the measured pattern until the best match within defined limits is achieved. An 

internal standard (ZnO) was used to quantify the content of amorphous SiO2 in the acid 

treated samples. For these measurements, the powdered samples were mixed with ZnO in 

the ratio of 9:1. 

The Fourier Transform Infrared Spectroscopy (FTIR, DRIFT) of the natural and acid 

treated materials was used to investigate the short range of structural changes, which were 

caused by the acid treatment. For a better discrimination of the bands in the Si-O stretching 

region (1200 - 800 cm-1), a diffuse reflectance accessory from Spectra-Tech Inc. (DRIFT) 

was used. For the measurements, 2.5 mg of a sample was mixed with 500 mg KBr. The 

powder was filled loosely into a sample cup to obtain a random orientation. The FTIR spectra 

were recorded on a Bruker IFS66/S spectrometer equipped with a deuterated 
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triglycinesulfonate detector (DTGS). Sixty-four scans were recorded in the 4000 - 400 cm-1 

spectral range with a resolution of 4 cm-1 using a scanner velocity of 4 kHz and a lens 

aperture of 12 mm. After preparation and prior to the measurement, each sample was 

flushed with nitrogen for 2 min. Pure KBr was used for the background measurements.  

The raw DRIFT data were transformed using Kubelka-Munk-Function (Kubelka and Munk, 

1931; Petrick, 2007). The interpretation of the FTIR spectra was made by description of 

changes in band position and shape. In addition, PeakFit program 4.0 from Jandel Scientific 

was used to determine peak areas of selected peaks. According to Petrick (2007), the 

percentages of the area from vibration bands, which are connected to octahedral cations, 

were determined by curve fitting. Details of the peak fit program are described in the 

appendix. The data obtained from calculated band areas were compared with the adjusted 

amount of the unreacted octahedral cations like aluminium, magnesium and iron, which were 

measured by XRF. 

The cation exchange capacity (CEC) of the starting materials, except of vermiculite, was 

measured with 0.01 M copper triethylenetetramine (Meier and Kahr, 1999). The CEC of the 

acid-treated bentonites, kaolins and sepiolites was also determined with copper 

triethylenetetramine solution to check how far the acid treatment has affected the initial CEC. 

The concentration of copper triethylenetetramine in the overlaying solution was measured by 

photometry (λ = 580 nm).  

Due to its size, the Cu-triethylenetetramine molecule can not be exchanged completely 

into natural vermiculites. Therefore, the CEC of the vermiculite and acid treated vermiculite 

was determined with the ammonium acetate method according to MacKenzie (1951) and 

Emmerich (2000). 

More detailed descriptions of the methods are given in Chapter 3. 
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6.4 Results and Discussion 

6.4.1 Bentonites and Smectites 

Composition, colour, morphology and surface 

Smectites are Al-bearing layer silicates and the main phases in the < 2 µm fraction of 

bentonites. The chemical composition of the crude samples is given in Table 6.4. 

Table 6.4 XRF-analysis of the natural bentonites. 

Oxides 1_Calci 2_EXM757 3_SWy-2 4_Vol 5_WYO 6_IndBent 7_NHec 

SiO2 [%] 49.35 61.01 61.26 56.50 59.85 43.08 55.03 

Al2O3 [%] 16.61 17.15 17.98 18.56 15.21 15.59 1.99 

MgO [%] 4.15 2.08 2.41 2.26 5.41 2.40 22.84 

Fe2O3 [%] 5.09 3.76 3.79 3.56 1.61 13.74 0.81 

TiO2 [%] 0.38 0.16 0.15 0.15 0.17 0.94 0.08 

MnO [%] 0.05 0.01 0.03 0.01 0.33 0.12 0.02 

Na2O [%] 0.26 2.95 1.34 1.88 2.17 3.29 3.31 

CaO  [%] 4.26 0.74 1.54 1.14 2.37 1.23 1.88 

K2O  [%] 1.52 0.17 0.59 0.52 0.52 0.10 0.42 

P2O5 [%] 0.06 0.52 0.04 0.04 0.07 0.06 0.87 

LOI [%] 17.7 11.4 10.3 15.4 12.3 18.8 12.7 

The dioctahedral smectites differ in the composition of their interlayers and octahedral 

sheets. Especially, the Fe- and Mg-contents vary strongly. The cation contents of the 

smectite interlayers and the Al, Fe and Mg content of the octahedral sheet are listed in 

Tables 6.5 and 6.6, respectively. The smectite in bentonite EXM757 (2_EXM757) consists of 

a Na-rich smectite, while the bentonite Calcigel (1_Calci) consists of a Ca-rich smectite with 

a high content of Mg2+ (28%) in the interlayer. In comparison to the other dioctahedral 

smectites, this smectite has a higher content of Fe3+ and Mg2+ in the octahedral sheet. In the 

Wyoming bentonites (3_SWy-2, 4_Vol, 5_WYO) Na+ and Ca2+ are the main interlayer 

cations. The Indian Bentonite (6_IndBent) consists of a Na-rich smectite. Furthermore, one 

third of Al3+ in the octahedral sheet is substituted by Fe3+; therefore this dioctahedral smectite 

(6_IndBent) belongs to the Fe-rich smectites.  

The main cation in the octahedral sheet of the hectorite is Mg2+. It can partly be substituted 

by Li+. The amount of Li+ has been determined by ICP-OES to be 1.1%.  
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Table 6.5 Content of interlayer cations [%] of the smectites.  

Sample 
Na+ 

[%] 
Ca2+ 

[%] 
Mg2+ 
[%] 

K+ 
[%] M2+ (Ca, Mg) : M+ (Na) ratio  

1_Calci 11 58 28 2 8:1 

2_EXM757 83 14 2 1 1:6 

3_SWy-2 48 31 19 2 1:1 

4_Vol 61 31 6 2 1:2 

5_WYO 67 29 4 - 1:2 

6_IndBent 90 8 1 1   1:11 

7_Nhec 90 7 3 -   1:13 

Table 6.6 Content of aluminium, iron and magnesium in the octahedral sheet [%] and the 
amount of the tetrahedral charge. 

Sample 
Al3+ 

[%] 
Fe3+ 

[%] 
Mg2+ 
[%] 

Li+ 
[%] 

Σ(Mg2+, Fe3+) 
[%] 

tetrahedral 
charge 

[%] 

1_Calci 65 15 20 - 35 62 

2_EXM757 77 11 12 - 23 16 

3_Swy-2 74 11 15 - 26 72 

4_Vol 79 10 11 - 21 20 

5_WYO 76 13 11 - 24 39 

6_IndBent 64 24 13 - 37 85 

7_Nhec 2 1 87 10 88 38 

Figure 6.1 depicts the Al2O3 content of the residual solid of the acid treated dioctahedral 

bentonites in dependence of the time. Figure 6.1 (left) presents the unreacted Al2O3 in %, 

while Figure 6.1 (right) the amount of unreacted Al2O3 as expressed as [g·mol-1] related to 

the molecular weight of the formula unit (half unit cell).  

The Al2O3 content was adjusted, because other Al2O3 containing phases occur in the bulk 

material (Table 6.10). For this reason, the Al2O3 content of the impurities was subtracted from 

the total amount of Al2O3 (Table 6.4). The resulting “corrected” Al2O3 content gives 

information on the stability of the residual solid of the smectites. The corresponding curves of 

the other octahedral cations (Mg2+, Fe3+) are found in the appendix. The adjustment of the 

Mg2+ and Fe3+ content was not necessary, because the main part of the measured Mg2+ and 

Fe3+ stems from the smectite.  

Both graphs in Figure 6.1 reveal that the Al2O3 content of the smectite in the Indian Bentonite 

and in the Calcigel decreased faster than the Al2O3 content of the other dioctahedral 

smectites like Wyoming bentonites (4_Vol, 5_WYO, 3_SWy-2). 
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             Error: ± 2 %                   Error: ± 0.006 g·mol-1 

Figure 6.1 Both graphs show the chemical composition of the residual solid with unreacted 
oxides in % determined by XRF (left) and with unreacted oxides [g·mol-1] related to the 
molecular weight of the formula unit (half unit cell) (right). The material was treated 
with 5 M H2SO4 for 0, 1.5, 5, 20, 72 and 96 h at 80 °C.  

The chemical composition of the residual solid for the hectorite sample in comparison to 

the raw material is displayed in Table 6.7. After 1.5 h the Al2O3 and especially the MgO 

content were below 1%.  

Table 6.7 Chemical composition of the crude and residual hectorite. 

Hectorite (7_NHec) 
Oxides 

untreated 1.5h 

SiO2 [%] 63.04 99.06 

Al2O3 [%]  2.28 0.42 

MgO [%] 26.16 0.00 

Fe2O3 [%] 0.93 0.16 

TiO2 [%] 0.09 0.08 

MnO [%] 0.02 0.00 

Na2O [%] 3.80 0.02 

CaO  [%] 2.16 0.08 

K2O  [%] 0.53 0.13 

P2O5 [%] 1.00 0.00 

The data of the chemical composition reveal that acid treatment caused the leaching of the 

octahedral cations. This was proved by the decreasing Mg2+, Fe3+ and Al3+ content in all 

bentonite samples investigated. The composition of the octahedral sheet played an important 

role for the different dissolution rates. Additionally, the data confirm that the dioctahedral 

smectites are more stable than the trioctahedral smectites. 
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For the experiment, 4 g of each sample was used. After 1.5 h acid treatment, the total 

weight of solid was significantly reduced for all bentonite samples. In dependence on the 

material composition, only 40 to 60% of the material remained. The decrease of weight 

proved the partial dissolution of the materials. 

The bentonite samples are coloured (Figure 6.2), due to the presence of the octahedral 

cations, especially of iron. The Indian Bentonite was dark brown, whereas the Volclay and 

the Calcigel were greyish. The other bentonites and the hectorite were lightly coloured. After 

acid treatment, the materials were significantly lighter in colour (Figure 6.2). The hectorite 

was completely white after 1.5 h. The Indian Bentonite and the bentonite EXM757 were white 

after 20 h. The other bentonites were light brown or grey after 96 h. The lightening of the 

material is proof of the partial release of the octahedral cations. 

 
Figure 6.2 Colour of the material before (left side) and after (right side) acid treatment  
  (5 M H2SO4 at 80 °C). 

All crude bentonites consist of thick agglomerates of smectites with irregular shape and 

partly sharp grain boundaries. For examples, Figures 6.3a and 6.4a show the morphology of 

smectite particles in the natural Indian Bentonite and hectorite. After acid treatment, their 

morphologies have remarkably changed (Figure 6.3b and 6.4b). The particles of the treated 

Indian Bentonite and hectorite are smaller and thinner compared to the raw material; 

however they are still agglomerated. The ESEM images of the other bentonites show similar 

changes. These images are given in the appendix. 
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Figure 6.3 ESEM image of the a) raw and b) acid treated Indian Bentonite (6_IndBent).  
The material was treated with 5 M H2SO4 at 80 °C for 96 h. 

Figure 6.4 ESEM image of the a) raw and b) acid treated hectorite (7_Nhec).  
The material was treated with 5 M H2SO4 at 80 °C for 96 h. 

The smectites are the main phase in the fraction < 2 µm of the bentonites. Due to their small 

particle size, the specific surface area (AS) ranged from 20 to 65 m2/g.  

Two different behaviours for the development of AS with ongoing acid treatment was 

observed. For some clays, AS increased and reached a constant value (4-Vol, SWy-2, 

5_WYO); for others, AS increased and then decreased (1-Calci, 2_EXM757, 6_IndBent, 

7_NHec) with further acid treatment (Figure 6.5a). The Indian Bentonite (6_IndBent) 

displayed the highest AS after acid treatment of all dioctahedral smectites. After 90 min, the 

AS of the hectorite reached a value of 280 m2/g and with further acid treatment the AS 

decreased, but it is still remarkably higher than that of the untreated material (Figure 6.5b). 

After 96 h, the acid treated hectorite still had a As of 122 m2/g. This trioctahedral smectite 

showed the same behaviour as vermiculite. The progression of both curves is similar (Figure 
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6.5b and 6.17). After 96 h, the AS of the dioctahedral smectites ranged from 80 to 315 m2/g 

and is still higher than that of the untreated materials. 

The values of the micropore area and the external area, as a function of acid treatment, 

are given in the appendix. The development of the micropore area reveals that acid 

treatment caused at first a delamination of the particles. In this case, the delamination of the 

particles caused a decreasing number of layers per stack. The high values of the AS of some 

bentonites (1_Calci, 6_IndBent, 7_NHec) indicate a reduction of layers per stack, too. The 

maximum of the theoretical AS was calculated according to Müller-Vonmoos and Kahr (1983) 

(Table 6.8). These values, which are related to the calculated smectite content (Table 6.10), 

indicate a complete delamination of the particle into single layers. 

Figure 6.5 Influence of acid treatment with 5 M H2SO4 at 80 °C on the specific surface area.  
Part a) displayed results for bentonite samples that reached a maximum below 250 
m2/g and b) for bentonite samples that attained more than 250 m2/g as values. 
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Table 6.8 Calculation of the theoretical surface area in relation to the smectite content. 

Sample d060
  

[nm] 
d400   
[nm] 

a       
[nm] 

b       
[nm] 

A*    
[nm2] 

M** 
[g/mol] 

AS(max)*** 
[m2/g] 

msmectite
# 

[%] 
AS

##    
[m2/g] 

1_Calci 0.12914 0.14988 0.51657 0.89929 0.4645 743.90 749 64 480 

2_EXM757 0.12899 0.14978 0.51598 0.89865 0.4637 734.90 757 87 659 

3_SWy-2 0.12884 0.14967 0.51536 0.89801 0.4628 733.86 757 79 598 

4_Vol 0.12889 0.14965 0.51557 0.89794 0.4629 731.78 759 80 607 

5-WYO 0.12881 0.14984 0.51523 0.89906 0.4632 736.92 754 67 505 

6_IndBent 0.12911 0.15005 0.51644 0.90033 0.4650 753.88 740 89 659 

7_NHec 0.13055 0.15177 0.52221 0.91065 0.4755 750.82 760 94 714 

* Area of the base plane of the unit cell.  
** Molecular weight per unit cell. 

*** Calculated specific surface area, assuming a smectite content of 100%.  
# Smectite content obtained from Rietveld quantification (of Table 6.10). 
## Specific surface area calculated based on smectite content.   

Table 6.9 shows the calculated AS in comparison to the AS of natural material and to the 

maximum of As after acid treatment. The maximum value of AS was reached after different 

times (e.g., for the Calcigel after 5 h acid treatment) for the various bentonites. The 

calculation of layers per stack does not indicate the thickness of the coherently scattering 

domains for XRD. 

Table 6.9 Comparison between the theoretical and measured As and rate of delamination, as 
well as the number of layers per stack.  

Sample Maximum of As [m2/g] 

 theoretical Measured 

As of the crude 
material  
[m2/g] 

Number 
of layers 
per stack  

Degree of 
Delamination 

[%] 

1_Calci 480 248 65 7-8 52 

2_EXM757 659 141 28 23-24 21 

3_Swy-2 598 135 24 25 23 

4_Vol 607 152 30 20 25 

5_WYO 505 88 32 15-16 17 

6_IndBent 659 452 29 22-23 69 

7_Nhec 714 280 48 14-15 39 

The maximum of the measured AS of the Calcigel (1_Calci) is 248 m2/g after 5 h. This 

value is slightly higher than half of the theoretical AS (480 m2/g). This implies that the number 

of layers per stack is reduced from 8 to 4 by acid treatment. With further acid treatment 

(20 h), AS decreased, while the number of micropores did not increase. This means that with 

ongoing acid treatment, small particles were completely dissolved. Nearly 70% of the 

particles from the Indian Bentonite (6_IndBent) and nearly 40% of particles from the hectorite 

were delaminated by acid treatment. The smectite particles of the Indian Bentonite consist of 
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22 to 23 layers and the hectorite particle consist of 14 to 15 layers per stack. Thus they are 

reduced to 6 to 7 layers (6_IndBent) and to 8 to 9 layers (7_Nhec) per stack by acid 

treatment. The delamination of the Wyoming bentonites (3_SWy-2, 4_Vol, 5_WYO) occurred 

more slowly compared to the other bentonites (1_Calci, 6_IndBent, 7_NHec). Between 15 

and 25% of the particles are delaminated. The layers per stack ranged from 12 to 20 after 

acid treatment.  

The delamination of smectites proceeded in different ways. One reason may be the 

differences in charge distribution in the octahedral and tetrahedral sheets. High contents of 

substitutions in the tetrahedral sheet cause distortions within the crystal structure and a 

weakening of the linkage between the layers. Indian Bentonite and Calcigel have the highest 

content of tetrahedral charge compared to the other smectites, which have nearly the same 

amount of tetrahedral charge (Table 6.7). Another reason is the exchange of the interlayer 

cations during acid treatment and the protonation of the SiO-groups of the tetrahedral sheet 

at low pH (< 2). The interlayer cations like Na+, Ca2+ and Mg2+ were exchanged by H+ ions. 

The protons cause a positive surface charge of the layers, which tend to repulse each other, 

thereby enhancing delamination of the layers.  

Long range order 

The mineralogy of the samples is shown in Table 6.10. All bentonites have similar 

impurities like quartz, feldspars, mica and calcite. The smectite content of the raw materials 

ranged from 64 to 94%. One of the smectites is a trioctahedral (d060 = 0.152 nm; Brindley and 

Brown, 1980) natural hectorite (7_Nhec). All the other smectites are dioctahedral (d060 

between 0.149 and 0.150 nm; Brindley and Brown, 1980).  

The changes in the long range order with acid treatment were observed by X-ray 

diffraction. In the XRD pattern, the intensity of the basal reflection (d001) and of the peaks 

(d020, 110, 021 and d060) decreased with increasing acid treatment. The peaks of the impurities 

(quartz, cristobalite, feldspar, mica) were still partly detected, because their dissolution is 

much slower (Carroll and Starkey, 1971; Snäll and Liljefors, 2000; Jozefaciuk and Bowanko, 

2002). Additionally the background increased with increasing acid treatment, which can be 

interpreted as increasing content of X-ray amorphous silica phases.  

The X-ray patterns (Figure 6.6 and 6.7) of the acid treated and natural Indian Bentonite 

(6_IndBent) and hectorite (7_NHec) show that the octahedral sheet of the Indian Bentonite 

(Figure 6.1) was completely dissolved after 20 h, whereas the octahedral sheet of the 

hectorite was already dissolved after 1.5 h. In comparison, the Volclay still exhibited a very 

small and broad peak after 96 h. Its octahedral sheet was not completely dissolved. The X-

ray patterns of the other bentonites are displayed in the appendix. 
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Table 6.10 Quantification of the natural bentonites from Rietveld analysis of XRD patterns. 

Sample 
Phases#     

1_Calci 
[%] 

2_EXM757
[%] 

3_SWy-2 
[%] 

4_Vol 
[%] 

5_WYO 
[%] 

6_IndBent 
[%] 

7_Nhec 
[%] 

Smectite          
(Na-rich, di)* - 86.5 ± 1.3 79.4 ± 2.1 60.0 ± 4.2 67.2 ± 2.2 82.2 ± 3.6 - 

Smectite          
(Na-rich, tri)* - - - - - - 93.9 ± 1.3 

Smectite          
(Ca-rich, di)* 24.6 ± 10.8 - - 19.8 ± 3.6 - 6.7 ± 3.0 - 

Smectite          
(Mg-rich, di)* 38.9 ± 10.2  - - - - - - 

Kaolinite*  3.8 ± 0.8 - - - - 4.4 ± 0.8 - 

Muscovite / Illite* 13.7 ± 1.5 - 3.7 ± 1.4 2.8 ± 0.9 5.4 ± 1.4 - - 

Quartz 5.9 ± 0.7 2.3 ± 0.3 10.5 ± 1.0 4.4 ± 0.5 6.6 ± 0.8 1.1 ± 0.3 - 

Cristobalite - 11.2 ± 1.3 - - 3.6 ± 0.6 - - 

K-Feldspars 
(Orthoclase)* - - 4.2 ± 1.4 4.0 ± 0.9 - - - 

K-Feldspars 
(MicroclineInt1)* - - - - 3.9 ± 0.7  - 

Plagioclase 
(Albite)* 2.5 ± 0.7 - - 4.1 ± 0.8 - - - 

Plagioclase 
(Oligoclase)* - - - - 8.0 ± 1.8 - - 

Plagioclase 
(Anorthite)* - - - - - 3.9 ± 1.2 - 

Calcite 3.3 ± 0.5 - 2.2 ± 0.4 1.3 ± 0.4 3.5 ± 0.6 - 3.1 ± 0.8 

Dolomite 7.3 ± 0.5 - - - - - - 

Ankerite (Fe 0.54)  - - - - - - 0.7 ± 0.6 

Maghemite - - - - - 0.9 ± 0.3 - 

Hematite - - - - - 0.8 ± 0.3 - 

Gypsum - - - 3.6 ± 0.6 0.9 ± 0.4 - - 

Clinoptilolite* - - - - 1.0 ± 0.5 - - 

Analcime (cubic)* - - - - - - 1.2 ± 0.8 

# In parenthesis the structure model used for Rietveld analysis is given. 

* Al2O3 containing phases. 

Obviously, the dissolution of the smectite phase resulted in a dissolution of the octahedral 

sheet and the release of aluminium, iron and magnesium. In addition, aluminium was 

removed from the tetrahedral sheet, which changed the electron density in the crystal 

structure and this affected peak intensities. Furthermore, acid treatment caused reduction of 

the crystallite size of the particles, which also affects peak intensities. The long range order 

was lastingly disturbed by acid treatment. 
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Figure 6.6 X-ray pattern (powder sample) of the raw and acid treated Indian Bentonite  

(5 M H2SO4 at 80 °C); 
Sm: characteristic Smectite peaks with increasing 2θ (001), (020,110,021), (060).

  

 
Figure 6.7 X-ray pattern (powder sample) of the raw and acid treated hectorite  

(5 M H2SO4 at 80 °C); 
Sm: characteristic Smectite peaks with increasing 2θ (001), (020,110,021), (060);

 Ca: Calcite. 

Short range order 

Changes in the short range order, caused by the successive dissolution of octahedral 

cations, can be observed in the FTIR-spectra. Figure 6.8 and 6.9 displays the FTIR spectra 

of the raw and acid treated dioctahedral smectites a) Indian Bentonite, b) EXM757, c) 

Calcigel and d) Volclay and Figure 6.13 depicts the FTIR spectra of natural and acid treated 
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hectorite (trioctahedral). The spectra of the other two bentonites (3_SWy-2 and 5_WYO) are 

given in the appendix.  

In general, dioctahedral smectites show sharp vibration bands in the region between 400 

and 1200 cm-1. Their assignments are listed in Table 6.11 (Farmer, 1974; Komadel et al., 

1990; Komadel et al., 1996; Madejová et al., 1998; Tyagi et al., 2006).  

  
              a) Indian Bentonite (6_IndBent)               b) EXM757 (2_EXM757) 

Figure 6.8 FTIR spectra of the raw and acid treated a) Indian Bentonite (6_IndBent) and b) 
EXM757 (2_EXM757), which were treated with 5 M H2SO4 at 80 °C for several hours.  
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In this region, Si-O bending vibrations (400 – 600 cm-1), OH bending vibrations or 

interactions with octahedral cations (600 – 950 cm-1) and Si-O stretching vibrations (700 -

1200 cm-1) occur (Farmer, 1974; Friedrich, 2004). Most of these bands are remarkably 

affected by acid treatment. 

 
              c) Calcigel (1_Calci)               d) Volclay (4_Vol) 
Figure 6.9 FTIR spectra of the raw and acid treated c) Calcigel (1_Calci) and d) Volclay (4_Vol), 

which were treated with 5 M H2SO4 at 80 °C for several hours.  
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Especially, the intensities of the bands related to aluminium in the octahedral sheet (920, 

883, 850, 624 and 524 cm-1) change. The band near 920 cm-1 can be assigned to an AlAlOH 

bending vibration and gives information on the content of aluminium in the octahedral sheet. 

Both vibrations at lower wavenumbers (883 and 850 cm-1) reflect a partial substitution of 

aluminium by iron (AlFeOH bending vibration) and magnesium (AlMgOH bending vibration). 

The absorption band around 624 cm-1 can be attributed to a R-O-Si (R = Al, Fe, Mg) vibration 

and indicates a perpendicular vibration of the octahedral cations. The band near 524 cm-1 

can be assigned to a Si-O-Al vibration of aluminium in the octahedral sheet. All the other 

bands near 1115 (shoulder), 1037 and 466 cm-1 are strong Si-O vibrations in the bending 

and stretching region. 

Table 6.11 Positions and assignments of the vibrational bands of the dioctahedral smectites. 

Wavenumbers [cm-1] 

a) 6_IndBent  b) 2_EXM757  c) 1_Calci d) 4_Vol  
Assignment* 

1115 1103 1091 1115 Si-O stretching vibration (out-of-plane) 

1018 1037 1020 1037 Si-O stretching vibration (in-plane) 

923 923 921 917 AlAlOH bending  

883 885 885 883 AlFeOH bending 

840 850 842 850 AlMgOH bending 

626 622 622 624 R-O-Si with R = Al, Mg, Fe  

526 526 524 524 Si-O-Al vibration (Al octahedral cation) 

468 470 470 466 Si-O-Si bending vibration 

* Komadel et al., 1990; Madejová et al., 1998; Tyagi et al., 2006 

Acid treatment caused changes in the intensity of all bands, which are related to 

octahedral cations. The intensity of the bands near 624 and 524 cm-1 decreased with 

increasing acid treatment. The band near 624 cm-1 completely disappeared for the Indian 

Bentonite after 1.5 h, for the Calcigel after 5 h and for the Volclay after 96 h. In contrast, a 

small band still existed for the EXM757 after 96 h. The band near 524 cm-1 completely 

disappeared after 96 h for the Calcigel and for the EXM757 and after 20 h for the Indian 

Bentonite. In the FTIR spectra of the Volclay, a small band near 524 cm-1 remained.  

The intensities of the OH bending vibrations near 920, 883 and 850 cm-1 decreased with 

increasing acid treatment (Figure 6.8a - b and 6.9c - d). All FTIR spectra of the dioctahedral 

smectites show that the AlMgOH vibrations disappeared after a short treatment time. The 

AlMgOH band disappeared after 1.5 h for the Indian Bentonite (Figure 6.8a) and after 5 h for 

the Calcigel (Figure 6.9c). In the spectra of EXM757 (Figure 6.8b) and Volclay (Figure 6.9d), 

a small AlMgOH band still existed after 5h, which disappeared completely after 20 h. 
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Figure 6.10 Comparison between the unreacted Mg content and the area of the AlMgOH vibration 
near 850 cm-1. Dioctahedral smectites were treated with 5 M H2SO4 at 80 °C at 1.5, 5, 
20, 72 and 96 h.  

  

Figure 6.11 Comparison between the unreacted Fe content and the area of the AlFeOH vibration 
near 885 cm-1. Dioctahedral smectites were treated with 5 M H2SO4 at 80 °C at 1.5, 5, 
20, 72 and 96 h. 

Figures 6.10 and 6.11 show the content of undissolved magnesium and unreacted iron 

compared to the area of the AMgOH band and of the AlFeOH band of Calcigel (1-Calci), 

Volclay (4_Vol); Indian Bentonite (6_IndBent) and EXM757 (2_EXM757). In comparison to 
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the AlMgOH band, the intensity of the AlFeOH band decreased more slowly. The AlFeOH 

vibration disappeared after 5 h for the Indian Bentonite and after 20 h for the Calcigel. In the 

spectra of EXM757 and Volclay, a small AlFeOH band still existed after 20 h, which 

disappeared completely after 96 h. 

The release of aluminium occurred continuously (Figure 6.12). They display the content of 

unreacted aluminium in comparison to the area of the AlAlOH band for the Calcigel (1_Calci), 

Volclay (4_Vol), Indian Bentonite (6_IndBent) and for smectite in the bentonite EXM757 

(2_EXM757). The AlAlOH band disappeared completely for the Indian Bentonite after 20 h 

and for the two dioctahedral smectites (Calcigel, EXM757) between 20 and 96 h; while in the 

Volclay spectra, a small AlAlOH vibration still existed. The decrease of intensity shows the 

release of octahedral cations. The dissolution of the octahedral cations occurred in the 

following order: Mg2+ > Fe3+ > Al3+. The occurrence of a small AlAlOH band after 96 h 

indicates that the smectite was not fully dissolved.  

  
Figure 6.12 Comparison between the unreacted aluminium content and the area of the AlAlOH 

vibration near 920 cm-1. Dioctahedral smectites were treated with 5 M H2SO4 at 80 °C 
at 1.5, 5, 20, 72 and 96 h. 

The leaching of the octahedral cations caused a relative increase in the intensity of Si-O 

vibrations. The strong Si-O band near 466 cm-1 increased with increasing treatment and after 

96 h a broad vibration still exists. This absorption band is characteristic for amorphous silica. 

Another vibration near 800 cm-1, which overlapped the Si-O vibration of quartz, indicates the 

formation of amorphous silica with a three-dimensional framework (Komadel et al., 1990; 

Madejová et al., 1998). Between 20 h and 96 h a broad vibration near 979 cm-1 appeared in 

the spectra of the dioctahedral smectites. This band can be assigned to Si-O stretching of 
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SiOH groups, which are present in the three dimensional product formed, while the 

octahedral sheet in the smectite layers becomes substantially dissolved (Madejová et al., 

1998). The bands in the SiO stretching region (700 – 1200 cm-1) disappeared and a strong 

and broad vibration around 1091 cm-1 with a broad shoulder at higher wavenumber arose. 

Both bands are typical for the presence of amorphous silica (Friedrich, 2004). The changes 

in the SiO stretching region show the partial transformation of the layered tetrahedral sheet 

to a three dimensional framework of protonated amorphous silica (Madejová et al., 1998). 

The FTIR spectra (Figure 6.13) of the trioctahedral smectites generally show broad and 

rounded absorption bands (Wilson, 1994). Their assignments are listed in Table 6.12 

(Farmer, 1974; Komadel et al., 1990; Komadel et al., 1996; Madejová et al., 1998; Tyagi et 

al., 2006). 

 
Figure 6.13 FTIR spectra of the raw and acid treated hectorite (1.5 h). 

The natural hectorite (7_NHec) was treated with 5 M H2SO4 at 80 °C. 

In the OH bending region from 550 – 900 cm-1, a broad band occurred with two maxima 

(696 and 659cm-1). The band at lower wavenumbers can be assigned to a OH bending 

vibration (Komadel et al. 1990; Madejová et al., 1996). The vibration at 696 cm-1 can be 

attributed to a Si-O (out of plane) bending vibration. The strong band at 462 cm-1 can be 

assigned to a Si-O (in plane) bending vibration and to a Si-O-Mg band. The Si-O-Mg band is 
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overlapped by the strong Si-O-Si vibration (462 cm-1). In the stretching region, one sharp 

band with a shoulder to higher wavenumbers existed. This band near 1000 cm-1 is attributed 

to a SiO stretching vibration. The band at 879 cm-1 supports the presence of calcite in the 

sample. 

Table 6.12 Positions and assignment of the vibrational bands of the trioctahedral smectite. 

Wavenumber [cm-1] Assignment  

1124 Si-O stretching vibration (out-of-plane) 

1000 Si-O stretching vibration (in-plane) 

696 SiO bending vibration (out of plane) 

659 OH bending vibration  

526 MgO 

460 SiO bending vibration (in plane) 

463 Si-O-Mg vibration  

*  Farmer, 1974; Komadel et al., 1996; Madejová et al., 1998  

The vibrations at 696 and 659 cm-1 disappeared completely after 1.5 h in 5 M H2SO4 at 

80 °C (Figure 6.13). This implies that the cations from the octahedral sheet were dissolved 

completely. The strong OH stretching vibration at 1000 cm-1 disappeared completely and five 

new absorption bands at 1193, 1087, 973, 931 and 804 cm-1 appeared after acid treatment. 

Similar to dioctahedral smectites, the new vibrations are characteristic for amorphous silica 

(Komadel et al., 1990; Madejová et al., 1998; Makó et al., 2006). The vibration at 931 cm-1 

can be assigned to SiO-stretching of SiOH groups (Farmer, 1974; Komadel et al., 1996). The 

intensity of the broad Si-O band at 460 cm-1 increased with acid treatment and the band 

width narrowed. The Si-O-Mg band, which was overlapped by the strong Si-O band, 

completely disappeared. The overlapping of these both bands was detected by band fitting 

using PeakFit program 4.0 from Jandel Scientific. The disappearance of the Si-O-Mg band 

implies that the cations were dissolved from the octahedral sheet. The band at 460 cm-1 is 

also characteristic for the presence of amorphous silica. With further acid treatment, the 

intensity of SiO vibrations characteristic for amorphous silica increased even more, but no 

other changes in the FTIR spectra were observed. 

According to these spectroscopic results, we conclude that trioctahedral smectites 

dissolve in acids much faster than dioctahedral smectites. The dissolution of dioctahedral 

smectites was not complete, because vibrations attributed to octahedral cations were 

observed in the FTIR spectra of the residue. The acid treatment of both dioctahedral and 

trioctahedral smectites leads to the formation of a hydrous amorphous silica phase (Komadel 

et al., 1990; Komadel et al., 1996; Madejová et al., 1998). 
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Layer charge and exchange reactions 

The raw bentonites have a CEC between 60 and 95 meq/100g. The measured CEC is 

only caused by the existence of the smectite phase. The CEC decreased with increasing 

acid treatment (Figure 6.14), but after 96 h some dioctahedral bentonites like Volclay and 

SWy-2 still exhibited a CEC. The natural hectorite (7_Nhec) has a CEC of 90 meq/100g. This 

CEC decreased faster than that of the dioctahedral bentonites. After 90 min the measured 

CEC is about 20 meq/100g. The CEC of the Indian Bentonite (6_IndBent) and of Calcigel 

decreased faster than those of the Wyoming bentonites like Volclay, SWy-2 and WYO-

Bentonite. After 20 h, both had a CEC below 10 meq/100g. The Wyoming bentonites have a 

CEC near 10 meq/100g after 96 h.  

The low CEC and the high AS caused a lower charge density. The decrease of the charge 

density was corroborated by the exchange with large molecules like alkylammonium ions 

while measuring layer charge (Lagaly and Weiss, 1970; Lagaly, 1989 and 1994; Wolters et 

al., 2008). The raw and acid treated smectites were intercalated with alkylammonium ions 

such as dodecylamine (C12 chain). The intercalation of the alkylammonium ions resulted in 

an expansion of the interlayer and a shift of the characteristic basal XRD peaks.  

 

Figure 6.14 Changes in measured CEC with time of acid treatment for the bentonites investigated 
 (5M H2SO4). 

Low to medium charged smectites show monolayer (1.36 nm) and bilayer (1.77 nm), as 

well as the transition from monolayer to bilayer after the intercalation with alkylammonium 
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ions. Higher charged samples produced pseudotrimolecular layer (2.17 nm) and paraffin-type 

configurations (> 2.2 nm) (Lagaly, 1994). Most of the crude smectites had a basal reflection 

around 1.5 nm after the intercalation with dodecylamine (Table 6.13). Thus, these 

intercalated smectites can be regarded as mixed layers with monolayers and bilayers. Only 

the montmorillonite of the Indian bentonite produced bilayer due to its higher layer charge. 

After acid treatment, most of the smectite residuals intercalated dodecylamine in a planar 

alignment. The portion of bilayers was reduced. 

Table 6.13 Basal reflection (d001) of the raw and acid treated smectites  
after the intercalation with dodecylamine. 

Sample Crude [nm] 1.5 h [nm] 20 h  [nm] 96 h [nm] 

1_Calci 1.53 n.m. n.m. n.m. 

2_EXM757 1.54 1.38 1,36 n.m. 

3_SWy-2 1.51 n.m. 1.36 n.m. 

4_Vol 1.51 1.38 1.36 1.36 

5-WYO 1.54 n.m. 1.36 n.m. 

6_IndBent 1.79 1.37 n.m. n.m. 

n.m. not measured. 

The raw Calcigel had predominantly mono- and bilayer, but also small amounts of 

pseudotrilayer were observed. The acid treated Calcigel showed ordered pseudotrilayer 

(1.16 and 2.34 nm) after the intercalation. 

The CEC and the adjusted Al2O3 content was used to estimate the residual smectite 

content after acid treatment. The values of the residual smectite content after 96 h are shown 

in Table 6.14. 

Table 6.14 Smectite content estimated from CEC and from the adjusted Al2O3 content  
after 5 M H2SO4 at 80 °C for 96 h. 

Smectite content from  
[%] Sample 

CEC  Al2O3 

1_Calci 5 5 

2_EXM757 5 5 

3_Swy-2 7 8 

4_Vol 10 10 

5_WYO 12 11 

These smectite contents were compared with the calculated contents from quantitative 

XRD analysis. An internal standard (ZnO) was used to quantify the amorphous SiO2. For the 

sample 4_Vol after 96 h (5 M H2SO4, 80 °C), Rietveld calculation yielded a smectite content 

of 24%. The reason for the deviation in smectite content is the correlation between the 
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smectite model (Ufer et al., 2004) and the high content of amorphous silica phase. This 

correlation led to a reduced dimensioning of the smectite content. 

The exchange of interlayer cations against H+ ions occurred upon acid treatment, which 

was proved by the determination of the sum of the exchangeable cations. The sum of the 

exchangeable cations was lower than the CEC value. This difference can be explained by 

the existence of H+, which were exchanged against Cu-trien, but cannot be measured by 

ICP-OES. Further acid treatment caused the release of octahedral cations and the 

protonation of the SiO groups, which showed a weak cross-linking. These factors resulted in 

a decrease of the layer charge, which led to a reduction of the CEC. 

6.4.2 Vermiculite 

The vermiculite (8_Verm) is a trioctahedral mineral, with high magnesium content in the 

octahedral sheet. In comparison to the smectites in bentonites, the vermiculite has a higher 

layer charge due to substitutions in the octahedral and tetrahedral sheets.  

Composition, colour, morphology and surface 

The chemical composition of the natural and residual vermiculite is shown in Table 6.15. 

After 1.5 h of acid treatment, the chemical composition strongly changed. All elements 

except Si were nearly completely dissolved and their concentrations were below 0.5%. 

Table 6.15 Chemical composition (XRF) of the raw and residual vermiculite (5 M H2SO4, 80 °C). 

Vermiculite (8_Verm) 
Oxides 

untreated 1.5h 

SiO2 [%] 46.23 99.50 

Al2O3 [%] 12.81 0.28 

MgO [%] 32.68 0.01 

Fe2O3 [%] 6.45 0.11 

TiO2 [%] 0.69 0.02 

MnO [%] 0.08 0.01 

Na2O [%] 0.00 0.00 

CaO  [%] 0.71 0.05 

K2O  [%] 0.33 0.01 

P2O5 [%] 0.02 0.00 

The total weight of solid vermiculite was significantly reduced after 1.5 h acid treatment. Only 

35% of the material remained. With increasing treatment time, the weight of the residual 

material was the same. The decrease of weight proved the partial dissolution of the 



6 Structural modifications during acid treatment of several clay minerals 
 

 
 133 

 

materials. The same weight after 1.5 h and after 96 h showed that a part of the material is 

stable against acid. According to the chemical data, the residual material consisted of silicon.  

The vermiculite sample is light brown (Figure 6.15), which was caused by the octahedral 

cations, especially by the content of iron. The vermiculite was completely white after 1.5 h 

(Figure 6.15). The lightening of the material proved the partial release of the octahedral 

cations. 

 
Figure 6.15 Colour of the material before (left) and after (right) acid treatment (5 M H2SO4, 80 °C). 

The raw vermiculite consisted of thick agglomerates with a layered appearance and with 

irregular shape (Figure 6.16a). After acid treatment, the layered appearance is still present 

(Figure 6.16b). 

 
Figure 6.16 ESEM images of the a) raw and b) acid treated vermiculite (8_Verm).  

The material was treated with 5 M H2SO4 at 80 °C for 20 h. 

The vermiculite had an AS value of 36 m2/g. This value is similar to that of the bentonites. 

Acid treatment caused an increase in As (Figure 6.17). After 90 min of treatment, the 

vermiculite had an AS of 615 m2/g. With further acid treatment, the AS decreased but 

remained higher than that of the untreated material (Figure 6.17). After 20 h, the acid treated 

vermiculite had an AS of 387 m2/g. The AS of vermiculite was higher than that of smectite. 
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Figure 6.17 The influence of the acid treatment on the specific surface area of the vermiculite. The 

material was treated with 5 M H2SO4 at 80 °C. 

From the gas adsorption data (N2), the external specific surface area (AE) and the 

micropore area (AMP) can be estimated by using the t-plot according to De Boer et al. (1966). 

In Table 6.16, the percentages of the AMP relative to the AS for the starting vermiculite 

material and for the acid treated vermiculite are presented. 

Table 6.16 External specific surface area (AE), micro-pore area (AMP) and specific surface area 
(AS) of the starting (8_Verm) and acid treated vermiculite (5 M H2SO4, 80 °C). 

Vermiculit (8_Verm) 
Time         

[h] 
AS          

[m2/g] 
AE         

[m2/g] 
AMP     

[m2/g] 
AMP / AS  

[%] 
0 36 12 24 67 

1.5 615 503 111 18 

5 520 442 76 15 

20 387 366 21 5 

72 236 218 18 7 

The starting material has a high content of micropores (< 2 nm) and a small specific 

surface area (Figure 6.18a) due to the grinding procedure (see Chapter 4.3.2). The 

percentage of micropores decreased with increasing acid treatment (Table 6.16).  

The starting material had more macropores (> 50 nm) than the 90 min acid treated 

material (Table 6.17). With further acid treatment, the content of macropores increased.  
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Figure 6.18 Schematic representation of the particle arrangement a) of the starting, b) of the 1.5 h 

acid treated and c) of the 20 h acid treated material. 

Table 6.17 Amount of macropores of the starting (8_Verm) and acid treated vermiculite (5 M 
H2SO4, 80 °C) for varying treatment times. 

Vermiculite (8_Verm) 
Time           

[h] 
Macro-pores 

[%]  
0 9 

1.5 3 

5 4 

20 5 

72 7 

The AS maximum was calculated according to Müller-Vonmoos & Kahr (1983). This value 

represented the complete delamination of the particles. The calculated AS was 647 m2/g and 

agreed well with the measured specific surface area (615 m2/g) after 1.5 h acid treatment. 

The agreement of both values, as well as the low content of micro and macropores, implied 

that the vermiculite particles were delaminated almost completely by acid treatment (Figure 

6.18b). With ongoing acid treatment, the external specific surface area and the micro-

porosity decreased. This means that the particles were still delaminated, but some particles 

started to accumulate again (Figure 6.18c). This was supported by the associated observed 

increase in macropore content (Table 6.17). 

Long range order 

The vermiculite sample (8_Verm) consisted of 84% vermiculite and contained the 

following impurities: calcite (2%) and phlogopite (14%). Phlogopite is a trioctahedral mica, 

which also has a high content of magnesium in the octahedral sheet. 

The X-ray pattern (Figure 6.19) showed the changes in the long range order of the acid 

treated vermiculite and of the impurities. Already, after 1.5 h, the X-ray pattern showed no 

longer any significant peak. In this case, the vermiculite and all impurities are completely 

dissolved. A hydrous X-ray amorphous silica phase was formed.  
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Figure 6.19 X-ray pattern (powder sample) of the raw and acid treated vermiculite   

 (5 M H2SO4, 80 °C); 
  Ph: Phlogopite; Ca: Calcite; all not indexed peaks originated from vermiculite. 

Short range order 

The influence of acid on the structure of vermiculite is also shown in the FTIR spectrum 

(Figure 6.20). All trioctahedral clay minerals like vermiculite show broad and rounded 

absorption bands (Wilson, 1994). They had a distinctive OH-band, which is broad, strong and 

at lower frequency (995 cm-1) compared to dioctahedral clay minerals like montmorillonite. In 

the region from 550 – 900 cm-1, very small (823 cm-1) and very broad bands (736 and 665 

cm-1) are observed, which can be assigned to OH bending vibrations, whose band positions 

are influenced by the kind of octahedral cation (Farmer, 1974; Wilson, 1994; Ravichandran 

and Sivasankar, 1997). Thus, these vibrations give information on the amount of the various 

octahedral cations. The other strong band at 466 cm-1 can be attributed to a Si-O bending 

vibration. 

The OH vibrations, which are associated with octahedral cations, disappeared completely 

(Figure 6.20) during acid treatment of vermiculite. This implies that the octahedral cations 

were completely dissolved from the octahedral sheet. The strong OH stretching vibration at 

995 cm-1 disappeared completely and four new absorption bands at 1176, 1089, 944 and 806 

cm-1 appeared after acid treatment. The intensity of the Si-O band at 466 cm-1 increased with 

acid treatment. The increase of these vibrations is characteristic for the presence of 

amorphous silica (Komadel et al., 1990; Madejová et al., 1998; Makó et al., 2006). The 

vibration at 944 cm-1 can be assigned to SiO-stretching of SiOH groups (Farmer, 1974; 

Komadel et al., 1996). 
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Figure 6.20 FTIR spectra of the raw and acid treated vermiculite (1.5 h). 

Vermiculite (8_Verm) was treated with 5 M H2SO4 at 80 °C. 

Layer charge and exchange reactions 

The CEC of the vermiculite was measured with ammonium acetate because the molecules of 

Cu-triethylenetetramine cannot be exchanged due to their size (4.0 to 4.5 nm2) and the 

influence of the interlayer cations (see Chapter 4.3.2). The raw vermiculite had a CEC of 160 

meq/100g and it was remarkably reduced by acid treatment to about 16% of the starting 

value (25 meq/100g). 

6.4.3 Illite 

Illite is a dioctahedral 2:1 layer silicate with a small particle size (< 2 µm). Illite is 

characterised by a layer charge between 0.6 and 0.9 eq/FU, which is higher than that of 

smectites but lower than that of muscovite. Illite has lower potassium contents in the 

interlayer than muscovite, because the potassium is partly substituted by H3O+ ions. Its layer 

charge is in the same range as vermiculite. The difference between illite and vermiculite are 

the different interlayer cations and the content of octahedral cations. Illite has only potassium 

cations in its interlayer sheets and is not swellable, while vermiculite is swellable. The 

negative charge of both is caused by substitutions in the octahedral and tetrahedral sheets. 
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Composition, colour, morphology and surface 

The chemical composition of the natural and two acid treated illite samples is given in 

Table 6.18. After 20 h, the magnesium and iron content decreased down to 0.5%. The data 

reveal that magnesium and iron were removed faster than aluminium.  

Table 6.18 Chemical composition of the raw and residual illite (5 M H2SO4, 80 °C). 

Illite (9_Illite) 
Oxides 

Untreated 20 h 96 h 

SiO2 [%] 53.09 92.30 95.88 

Al2O3 [%] 24.58 4.86 2.10 

MgO [%] 3.65 0.00 0.00 

Fe2O3 [%] 8.85 0.21 0.16 

TiO2 [%] 0.89 0.52 0.27 

MnO [%] 0.01 0.01 0.00 

Na2O [%] 0.00 0.00 0.00 

CaO  [%] 0.05 0.00 0.00 

K2O  [%] 6.82 2.08 1.35 

P2O5 [%] 0.41 0.01 0.01 

Magnesium and iron were dissolved from the octahedral sheet of illite and phlogopite 

(Table 6.24). 76% of the total iron is associated with illite. 24% of iron belongs to phlogopite. 

70% of the total magnesium comes from illite and 30% from phlogopite. These values were 

calculated from the oxide composition of each mineral and the total oxide composition 

relating to the quantification. The adjustment of both values was not necessary, because no 

other magnesium and iron containing phases occurred in the bulk material (Table 6.24) and 

after 20 h both elements had completely disappeared. 

The Al2O3 content was adjusted because several other Al-containing minerals are present 

in the bulk material (kaolinite and feldspars, Table 6.24). After 20 h, the aluminium content is 

about 5%. After 96 h, the aluminium content still is higher than 2%. For this reason, the Al2O3 

content was subtracted from the total amount of Al2O3 (Table 6.18). The adjusted Al2O3 value 

(Table 6.19) was used to estimate the content of residual illite.  

Table 6.19 Adjusted Al2O3 contents of the natural and residual illite. 

Illite (9_Illite) 
Elements 

Untreated 20 h 96 h 

Al2O3 [%] 19.76 2.81 1.04 
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The total weight of the solid illite was significantly reduced after 20 h. Only 40% of the illite 

sample remained. The illite was dark brown, which was caused by iron in the octahedral 

sheet. After 20 h, the residual solid was completely white (Figure 6.21). 

 
Figure 6.21 Colour of the material before and after acid treatment (5 M H2SO4 at 80 °C). 

The raw illite consisted of small agglomerates with slat-shaped crystals (Figure 6.22a). 

After acid treatment, the particles are agglomerated (Figure 6.22b) and the slat-like 

appearance is still observable. 

  
Figure 6.22 ESEM image of the a) raw and b) acid treated illite (9_Illite).  

The material was treated with 5 M H2SO4 at 80 °C for 96 h. 

The untreated illite had a larger specific surface area (95 m2/g) than vermiculite (36 m2/g) 

and smectite (nearly 30 m2/g) due to its small particle size (Table 6.20). 

Table 6.20 Grain size distribution of the natural illite. 

Sample d10 d50 D90 

9_Illite     [nm] 51 144 420 

The AS was affected by the acid treatment (Table 6.21). After 20 h, an AS of 193 m2/g was 

measured. After 96 h, the treated illite had an AS of 161 m2/g, which was higher than the AS 

of the raw material. The high specific surface area and the content of micropores implied the 

delamination of the particles until 20 h (Table 6.21).  
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Table 6.21 External specific surface area (AE), micro-pore area (AMP) and specific surface area 
(AS) of the starting (9_Illite) and acid treated illite (5 M H2SO4, 80 °C). 

Illite (9_Illite) 
Time     
 [h] 

AS        
 [m2/g] 

AE         
[m2/g] 

AMP      
[m2/g] 

AMP / AS  
[%] 

0 94 81 13 14 

20 193 169 24 12 

96 161 132 29 18 

In this case the delamination of the particles caused a decreasing number of layers per 

stack. The maximum of the theoretical AS, which was related to the calculated illite content, 

was calculated according to Müller-Vonmoos and Kahr (1983) (Table 6.22). The value 

indicates the complete delamination of the particles into single layers, but the calculation of 

the layers per stack does not indicate the thickness of the coherently scattering domains for 

XRD. The maximum of the measured AS for the illite is reached until 20 h and is 

approximately 35% of the theoretical AS (541 m2/g) (Table 6.23). The number of layers per 

stack is reduced from 6 to 4 by acid treatment. 

Table 6.22 Calculation of the theoretical surface area in relation to the illite content. 

Sample a       
[nm] 

b       
[nm] 

A*    
[nm2] 

M** 
[g/mol] 

As(max)*** 
[m2/g] 

millite
#    

[%] 
AS

##    
[m2/g] 

9_Illite 0.5208 0.8995 0.4685 395.05 790 76 541 

* Area of the base plane of the unit cell.  
** Molecular weight per unit cell. 

*** Calculated specific surface area, if the illite content is 100%.  
# Smectite content obtained from Rietveld quantification. 
## Calculated specific surface area referring to the illite content.  

Table 6.23 Comparison between the theoretical and measured AS and rate of delamination, as 
well as the number of layers per stack. 

Sample Maximum of As [m2/g] 

 theoretical measured 

As of the crude 
material  
[m2/g] 

Number 
of layers 
per stack  

Degree of 
Delamination 

[%] 

9_Illite 541 194 94 6 35 

With ongoing acid treatment, AE and AS decreased; the content of micropores, as well as 

the ratio between micropores and specific surface area increased. After 96 h, the 

delaminated particles started to reaccumulate. 
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Long range order 

Rietveld quantification showed that the illite sample revealed 76% illite (Table 6.24). The 

main impurity is phlogopite (7.8%); further minerals are kaolinite (5.4%), feldspars (5.5%) 

and calcite (2.4%). 

Table 6.24 Phase content of the illite sample. 

Sample 9_Illite 
[%] 

Illite 76.4 ± 2.0 

Phlogopite 7.8 ± 1.2 

Kaolinite  5.4 ± 0.7 

K-feldspar (Orthoclase) 4.4 ± 0.6 

Plagioclase (Anorthite) 1.1 ± 0.9 

Calcite 2.4 ± 0.4 

Anhydrite 1.4 ± 0.3 

Apatite 0.7 ± 0.4 

Quartz 0.4 ± 0.3 

Due to the acid treatment, the intensity of the basal reflection (d001) of the illite (1.01 nm) 

and its d060 peak at 0.1498 nm decreased with increasing time (Figure 6.23).  

 
Figure 6.23 X-ray pattern (powder sample) of the raw and acid treated illite (5 M H2SO4, 80 °C); 

It: characteristic illite peaks with increasing 2θ (001), (002), (130), (060);  
 Qz: Quartz; Kao: Kaolinite; Ph: Phlogopite (060). 

But after 20 h, a small d001 reflection still remained, i.e. the illite was not completely dissolved. 

Similar to the smectite and vermiculite samples, the accessory minerals phlogopite and 

calcite were dissolved, because their diffraction peaks, e.g., the d060 peak of the phlogopite at 
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0.1538 nm (~ 60° 2θ) disappeared. As for the smectites and vermiculite, the background 

increased with increasing acid treatment because of the increasing content of X-ray 

amorphous silica phases (Opal-A). 

Short range order 

The dissolution of aluminium and iron was observed with FTIR. Figure 6.24 illustrates the 

FTIR spectra of the raw illite (9_illite) and of the acid treated samples after 20 and 96 h. The 

spectra show distinctive changes, especially in the region between 400 and 1200 cm-1.  

The FTIR spectrum of the raw illite showed a number of sharp bands in the region between 

400 and 1200 cm-1. Their assignments are listed in Table 6.25 (Farmer, 1974; Komadel et 

al., 1996; Liu, 2001).  

Table 6.25 Positions and assignments of the vibrational bands of the illite. 

Wavenumber [cm-1] Assignment* 

1101 Si-O stretching vibration (out-of-plane) 

1031 Si-O stretching vibration (in-plane) 

912 AlAlOH bending  

877 AlFeOH bending 

823 AlMgOH vibration 

750 Al-O-Si vibration 

700 OH bending  

538 Si-O bending  

472 Si-O-Si vibration 

431 Si-O bending 

* Farmer, 1974; Wilson, 1994; Liu, 2001. 

Especially, the bands at 912, 877 and the weak absorption bands near 825 and 750 cm-1 

were remarkably affected upon acid treatment. Acid treatment caused the loss and the 

formation of bands and changes in the intensity of vibrations. The intensity of the OH bands 

at 912 and 877 cm-1 decreased with increasing acid treatment (Figure 6.24) and after 96 h 

the bands nearly disappeared. This implies the dissolution of the octahedral sheet by acid 

treatment. All these bands are connected to cations (aluminium, magnesium, iron) in 

octahedral positions. The band at 912 cm-1 is assigned to OH deformation vibration, which 

gives information on the content of aluminium in the octahedral sheet. The absorption bands 

at 825 and 750 cm-1 originate from AlMgOH deformations or, by analogy with muscovite, 

from Al-O-Si vibrations (Famer, 1974; Wilson, 1994).  

The weak band in the raw illite spectrum at 700 cm-1 can be assigned to an OH bending 

vibration. The vibration at 538 cm-1 is attributed to a Si-O-Al bending vibration of aluminium 
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within the tetrahedral sheet. All the other bands at 1031, 472 and 431 cm-1 are strong Si-O 

vibrations. The vibration at 1031 cm-1 had a weak shoulder at 1101 cm-1, which also is a Si-O 

stretching vibration. The intensity of the tetrahedral Si-O-Al vibrations at 538 cm-1 decreased 

with increasing acid treatment. After 96 h, a small and broad band at 538 cm-1 still existed. 

This weak band implies that small amounts of aluminium still remain, whereas most of the 

octahedral aluminium is dissolved. All the changes indicate the modification of the tetrahedral 

and octahedral sheet. The intensity of the Si-O bands increased with increasing acid 

treatment. New absorption bands appeared at 802, 1101 and 1220 cm-1, which are 

characteristic for amorphous silica (Komadel et al., 1990; Madejová et al., 1998; Makó et al., 

2006). 

 
Figure 6.24 FTIR spectra of the raw and acid treated illite (20 h, 96 h).  

Illite (9_Illite) was treated with 5 M H2SO4 at 80 °C. 
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6.4.4 Sepiolite 

Sepiolite is a hydrous Mg-bearing silicate with a fibrous morphology and distinctive 

layered appearance. Sepiolite belongs to the layer silicates, but has also structural affinities 

with inosilicates (Vivaldi and Hach-Ali, 1970). The sepiolite contains a high content of 

magnesium in the octahedral sheet. In comparison to the other clay mineral groups like 

smectites, vermiculite, and micas, sepiolite has only few substitutions in the octahedral and 

tetrahedral sheet. Therefore, layer charge and cation exchange capacity are relatively low 

(15 meq/100g). 

Composition, colour, morphology and surface 

The chemical composition of the natural and acid treated sepiolite sample is shown in 

Table 6.26. After 1.5 h treatment with 5 M H2SO4 at 80 °C, the content of magnesium and 

iron decreased below 0.5%. At the same time 14% of the total Al2O3 content was dissolved. 

The aluminium mainly comes from the octahedral and tetrahedral sheet of the muscovite, 

while magnesium is dissolved only from the octahedral sheet of the sepiolite. The low iron 

content is associated with the muscovite and sepiolite in the sample (10_PangelS9) (Figure 

6.27), because both minerals can contain up to 8 % iron in the structure. 

Adjustment of both values was not necessary, because no other phases in the bulk 

material contained magnesium and iron. The Al2O3 content was not adjusted, because nearly 

all the aluminium is associated with muscovite. 

Table 6.26 Chemical composition (XRF) of the raw and residual sepiolite after 1.5 h  
(5 M H2SO4, 80 °C). 

Sepiolite (10_PangelS9) 
Oxides 

Untreated 1.5 h 

SiO2 [%] 66.07 95.97 

Al2O3 [%] 3.09 2.66 

MgO [%] 28.28 0.00 

Fe2O3 [%] 1.00 0.19 

TiO2 [%] 0.15 0.11 

MnO [%] 0.04 0.01 

Na2O [%] 0.12 0.00 

CaO  [%] 0.42 0.01 

K2O  [%] 0.77 0.97 

P2O5 [%] 0.06 0.00 
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The weight of the sepiolite sample was significantly reduced after 1.5 h acid treatment. 

Approximately, 50% of the material was dissolved. The sepiolite sample had a creamy 

colour. After 1.5 h of acid treatment, the residual material was completely white (Figure 6.25). 

 
Figure 6.25 Colour of the material before (left) and after (right) acid treatment (5 M H2SO4, 80 °C). 

The raw sepiolite consisted of thin agglomerates with a fibrous morphology (Figure 6.26a). 

After acid treatment the fibrous morphology was still present (Figure 6.26b). 

  
Figure 6.26 ESEM image of the a) raw and b) acid treated sepiolite (10_PangelS9).  

The material was treated with 5 M H2SO4 at 80 °C for 20 h. 

In contrast to the other clay minerals (smectite, vermiculite, illite), sepiolite had a very high 

specific surface area (300 m2/g) and a high content of micropores (167 m2/g) due to its 

channel-like structure. The acid treatment caused a decrease of the AS (138 m2/g), as well as 

a strong reduction of the micropores (18 m2/g). This decrease is associated with a decrease 

of the surface roughness (described by the number of micropores). With further acid 

treatment, both values increased again, but did not attain starting values (Table 6.27). This 

increase was caused by the formation of new pores increasing the roughness of the surface.  
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Table 6.27 External specific surface area (AE), micro-pore area (AMP) and specific surface area 
(AS) of the starting (10_PangelS9) and acid treated sepiolite (5 M H2SO4, 80 °C). 

Sepiolite (10_PangelS9) 

Time         
[h] 

AS        
[m2/g] 

AE         
[m2/g] 

AMP      
[m2/g] 

AMP / AS  
[%] 

300 300 133 167 56 

138 138 120 18 13 

154 154 138 16 10 

166 166 110 56 34 

185 185 148 36 19 

Long range order 

The sepiolite sample consisted of 91% sepiolite and the following impurities: calcite (1%) 

and muscovite/illite (8%). The X-ray patterns (Figure 6.27) revealed the strong influence of 

the acid treatment on the structure of sepiolite. After 1.5 h the sepiolite is completely 

dissolved. In contrast, the basal spacing d001 of the muscovite is still present after 1.5 h 

treatment with 5 M H2SO4 at 80 °C. Furthermore a hydrous amorphous X-ray silica phase is 

formed. The formation of the silica phases was indicated by the increasing background.  

 
Figure 6.27 X-ray pattern (powder sample) of the raw and acid treated sepiolite  

(5 M H2SO4, 80 °C); 
M: Muscovite; Qz: Quartz; Fsp: Feldspars;  
all not indexed peaks originated from sepiolite. 
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Short range order 

The dissolution of sepiolite can be observed in the FTIR spectra as well. The spectral 

changes occurred especially around 1200 and 400 cm-1 (Figure 6.28).  

 
Figure 6.28 FTIR spectra of the raw and acid treated sepiolite (5 M H2SO4, 1.5 h, 80 °C). 

The vibrations of the raw sepiolite sample (10_PangelS9) at 694 and 655 cm-1 can be 

assigned to OH translations reflecting the water molecules bonded to the Mg-O sites (Table 

6.28). The band at 445 cm-1 is attributed to a Si-O-Mg bending vibration, which showed the 

linkage between the octahedral and tetrahedral sheet. This band is superimposed with the 

strong Si-O-Si vibrations at 505 and 464 cm-1. The other bands at 1195, 1103, 1076, 1024 

and 981 cm-1 are strong Si-O vibrations (Table 6.28) (Wilson, 1994; Vicente-Rodríquez et al., 

1996; Frost et al., 2001). 

Acid treatment caused changes in the intensity of all vibrations. The OH bands at 694 and 

655 cm-1 disappeared after 1.5 h (Figure 6.23). This implies the release of magnesium from 

the octahedral sheet. Furthermore, the vibration at 445 cm-1 disappeared after 1.5 h, which 

can be associated with distortions and weakening of the Si-O-Mg bonds between the 

tetrahedral and octahedral sheets. 
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Table 6.28 Positions and assignment of the vibrational bands of the raw sepiolite. 

Wavenumber [cm-1] Assignment*  

1195 Si-O stretching vibration 

1103 Si-O stretching vibration 

1076 Si-O stretching vibration  

1024 Si-O stretching vibration 

981 Si-O stretching vibration 

694 OH translation 

655 OH translation 

505 O-Si-O bending vibration 

464 Si-O bending vibration 

445 Si-O-Mg bending vibration 

* Wilson, 1994; Vicente-Rodríquez et al., 1996; Frost et al., 2001.  

The Si-O vibrations at 1103 and 1024 cm-1 disappeared in the asymmetric Si-O band at 

1076 cm-1, which has a broad shoulder at higher wavenumbers (1195 cm-1). Also the Si-O 

band at 505 cm-1 disappeared into the broad band at 464 cm-1. The results reveal that the Si-

O stretching vibrations are very sensitive to acid attack. The dissolution of the octahedral 

sheet in acid treated sepiolite also caused changes in the Si-O vibration bands. The changes 

can be related to the conversion of the tetrahedral sheets into silanol groups (McKeown et 

al., 2002). 

Besides the Si-O bands at 1195, 1076 and 464 cm-1, two new vibrations at 931 and 800 cm-1 

existed after acid treatment (1.5 h). These five bands are characteristic for amorphous silica 

(Komadel et al., 1990; Vicente-Rodríquez et al., 1996; Madejová et al., 1998; Myriam et al., 

1998). 

6.4.5 Kaolin and Kaolinite 

Three kaolin samples were used for the investigations. The samples varied in their 

composition and particle sizes. Polwhite had 40% < 2 µm fraction, whereas the other two 

kaolin samples had about 80% < 2 µm fraction. The d10, d50 and d90 values of the three kaolin 

samples are given in Table 6.29.  

Table 6.29 Grain size distribution of the natural kaolin samples. 

Sample d10 d50 d90 

13_Pol          [nm] 244 1109 2022 

14_Kaolex    [nm] 104 314 1317 

15_Rogers   [nm] 97 390 1377 
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Composition, colour, morphology and surface 

The chemical composition of the kaolin samples is listed in Table 6.30. Figure 6.29 

reveals the Al2O3 content (XRF) of the residual solid of the used kaolinites in dependence on 

acid reaction time. The graph on the left side shows the part of unreacted Al2O3 in %, while 

the graph on the right side presents the part of unreacted Al2O3 in [g·mol-1] related to the 

molecular weight of the formula unit (half unit cell). 

Table 6.30 Chemical composition (XRF) of the kaolin samples. 

Oxides 13_Pol 14_Kaolex 15_Rogers 

SiO2 [%] 49.72 44.72 45.69 

Al2O3 [%] 33.85 36.34 35.98 

MgO [%] 0.30 0.08 0.33 

Fe2O3 [%] 0.96 1.58 0.97 

TiO2 [%] 0.04 1.58 1.39 

MnO [%] 0.02 0.00 0.00 

Na2O [%] 0.00 0.00 0.00 

CaO  [%] 0.03 0.00 0.16 

K2O  [%] 3.02 0.47 0.27 

P2O5 [%] 0.16 0.10 0.07 

LOI [%] 11.9 14.2 15.1 

 

  
          Error: ± 2 %          Error: ± 0.006 g·mol-1 

Figure 6.29 Chemical composition of the residual solid with unreacted oxides in % determined by 
XRF (left) and in [g ·mol-1] related to the molecular weight of the formula unit (half unit 
cell) (right). The material was treated with 5 M H2SO4 for 0, 1.5, 5, 20, 72 and 96 h at 
80 °C. 
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The Al2O3 content was adjusted, because other Al2O3 containing phases were in the bulk 

material (Table 6.35). For this reason, the Al2O3 content of the impurities was subtracted from 

the total amount of Al2O3 (Table 6.30). This Al2O3 content gives information on the stability of 

the kaolinites against acid attack. 

After 96 h, the kaolinite (13_Pol) is more resistant to acid, as it has a higher Al2O3 content 

compared to the other two kaolinites. Kaolex and Rogers have a similar Al2O3 content after 

96 h. 

The value of the adjusted Al2O3 content can be used to estimate the residual kaolinite. 

This kaolinite content can be compared with the calculated content of the X-ray diffraction 

analysis. An internal standard (ZnO) was used to quantify the amorphous SiO2. In contrast to 

the smectite samples, there was no correlation between the kaolinite model and the 

amorphous silica content observed during Rietveld analysis (Table 6.31). 

Table 6.31 Kaolinite content estimated by XRD analysis and by the adjusted Al2O3 content. 

Kaolinite content estimated by 

20 h 96 h Samples 

XRD Al2O3 XRD Al2O3 

13_Pol         [%] 55 54 12 10 

14_Kaolex   [%] 51 49 8 4 

15_Rogers  [%] 60 61 6 6 

The kaolin Polwhite (13_Pol) was creamy. The kaolin Kaolex (14_Kaolex) was yellowish 

and the kaolin Rogers (15_Rogers) was reddish. After acid treatment the residual kaolin 

were white (Figure 6.30). 

 
Figure 6.30 Colour of the material before (left) and after (right) acid treatment (5 M H2SO4, 80 °C). 

The weights of the solid kaolin were significantly reduced after 20 h acid treatment. Only 65 

to 80% of the kaolin samples remained. After 96 h, the weight averaged between 45 and 

55% of the net weight.  

All crude kaolinites consist of platy particles with a pseudohexagonal habit (Figure 6.31a, 

13_Pol). The agglomerates after acid treatment have the same pseudohexagonal habit 
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(Figure 6.31b). The ESEM images of the other kaolinites (14_Kaolex, 15_Rogers) are given 

in the appendix. 

  
Figure 6.31 ESEM image of the a) raw and b) acid treated kaolin Polwhite (13_Pol).  
   The material was treated with 5 M H2SO4 at 80 °C for 96 h. 

The specific surface area (AS) of the raw kaolin ranged from 10 to 25 m2/g. Due to the acid 

treatment, the AS increased and reached a constant value (Figure 6.32). After 96 h, the 

specific surface area ranged from 55 to 125 m2/g. Both kaolin samples Kaolex (14_Kaolex) 

and Rogers (15_Rogers) had a higher AS than the Polwhite (13_Pol), which can be explained 

by their different particle size. The AS increased with decreasing particle size.  

 
Figure 6.32 The influence of the acid treatment on the specific surface area of the used kaolinits. 

The material was treated with 5 M H2SO4 for 0, 1.5, 5, 20, 72 and 96 h at 80 °C. 
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The ratio between AMP and AS increased slowly with increasing acid treatment (Table 6.32, 

appendix). These observations imply that the particles were delaminated and the porosity did 

not increase.  

Table 6.32 External specific surface area (AE), micro-pore area (AMP) and specific surface area 
(AS) of the starting and acid treated kaolinite Polwhite (13_Pol) (5 M H2SO4, 80 °C). 

Kaolinite Polwhite (13_Pol) 

Time         
[h] 

AS         
[m2/g] 

AE         
[m2/g] 

AMP       
[m2/g] 

AMP / AS  
[%] 

0 11 11 0 0 

1.5 21 17 3 14 

5 31 26 5 15 

20 46 40 6 13 

72 57 42 15 26 

96 58 42 16 31 

The delamination of the particles results in a reduction of the layers per stack. The theoretical 

AS related to the calculated kaolinite content ranged between 804 and 965 m2/g (Müller-

Vonmoos and Kahr, 1983) (Table 6.33). Delamination of kaolinite particles occurred more 

slowly compared to smectites in bentonites. Between 15 and 27% of the particles are 

delaminated (Table 6.34). The layers per stack are reduced from 33 to 28 (13_Pol), from 18 

to 13 (14_Kaolex) and from 19 to 14 (15_Rogers) by acid treatment (up to 20 h). The reason 

for the delamination of the kaolinite particles may be the protonation of the SiO-groups of the 

tetrahedral sheet at low pH (< 2). The protons cause a positive charge of the layers, which 

tend to reject each other 

Table 6.33 Calculation of the theoretical surface area in relation to the kaolinite content. 

Sample a       
[nm] 

b       
[nm] 

A*    
[nm2] 

M** 
[g/mol] 

AS(max)*** 
[m2/g] 

Mkaolinite
# 

[%] 
AS

##    
[m2/g] 

13_Pol 0.5160 0.8940 0.4613 258.20 516 71 368 

14_Kaolex 0.5160 0.8940 0.4613 258.20 516 85 440 

15_Rogers 0.5160 0.8940 0.4613 258.20 516 86 444 

* Area of the base plane of the unit cell. 
** Molecular weight per unit cell. 
*** Calculated specific surface area, if the kaolinite content is 100%. 
# Kaolinite content obtained from Rietveld quantification (of Table 6.35). 
## Calculated specific surface area referring to the kaolinite content. 
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Table 6.34 Comparison between the theoretical and measured AS and rate of delamination,
  as well as the number of layers per stack. 

Sample Maximum of AS [m2/g] 

 theoretical measured 

AS of the crude 
material  
[m2/g] 

Number 
of layers 
per stack  

Degree of 
Delamination 

[%] 

13_Pol 368 58 11 33 15 

14_Kaolex 440 120 24 18 27 

15_Rogers 444 111 24 19 27 

Long range order 

The mineralogy of the kaoline is shown in Table 6.35. The kaolinite content of the raw 

materials ranged from 71 to 87%. Beside kaolinite, there were further phases, which 

contained Al2O3 in the structure (Table 6.35). 

Table 6.35 Quantification of the natural kaolin samples from Rietveld analysis of XRD patterns. 

Sample 13_Pol [%] 14_Kaolex [%] 15_Rogers [%] 

Kaolinite  71.4 ± 1.4 85.3 ± 1.3  86.1 ± 2.6 

Muscovite \ Illite 9.2 ± 0.7 - - 

Fe-rich Muscovite \ Illite - 6.6 ± 1.1 3.3 ± 1.0 

Smectite 6.9 ± 1.1 5.1 ± 1.0 9.1 ± 2.9 

Orthoclase 10.8 ± 0.6 - - 

Quartz 1.7 ± 0.4 1.5 ± 0.3 - 

 * Al2O3 containing phases. 

All kaoline had similar impurities including quartz, mica, smectite and anatase. The 

existence of smectite was verified by the measured CEC (Table 6.36) using a CEC of 

82 meq/100g for the calculation. 

Table 6.36 CEC of kaolin samples. 

Sample 13_Pol 14_Kaolex 15_Rogers 

CEC        [meq/100g] 6 4 10 

Smectite  [%] 7 5 12 

In the X-ray pattern the intensity of the basal reflections decreased with increasing acid 

treatment (Figure 6.33). After 96 h, all three kaolin samples still had a small d001 peak, which 

indicated that the kaolinite was not completely dissolved. In the X-ray pattern, the peaks of 

the impurities (quartz, feldspar, mica) were also still partly detected following acid treatment. 

The dissolution of some impurities was much slower than that of the kaolinite itself. 
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Additionally, the background increased with increasing acid treatment, which means that the 

content of X-ray amorphous silica phases increased. 

Acid treatment caused a decrease of the octahedral cation amount like aluminium and the 

removal of aluminium from the tetrahedral sheet and the decrement of the crystallite size of 

the particles, which changed the electron density in the crystal structure and this affected the 

peak intensities. The long range order was permanently changed by acid treatment. 

 
Figure 6.33 X-ray pattern (powder sample) of the raw and acid treated kaolin Polwhite (13_Pol) (5 

M H2SO4, 80 °C);  
Kao: characteristic kaolinite peaks with increasing 2θ (001), (002);  
 Qz: Quartz; M: Muscovite. 

Short range order 

The successive dissolution of aluminium can be observed in the FTIR spectra of the 

kaolin samples. Figure 6.34 illustrates the FTIR spectra of the raw kaolin (Polwhite, 13_Pol) 

and the acid treated samples after 5, 20 and 96 h. The spectra of the other two kaolin 

samples (14_Kaolex, 15_Rogers) are given in the appendix. The spectrum of the raw 

kaolinite presented sharp vibration bands in the region between 400 and 1200 cm-1. Their 

assignments are listed in Table 6.37 (Farmer, 1974; Makó et al., 2006). 

Especially, the bands at 939, 917, 792, 754 and 539 cm-1 are remarkably affected by acid 

treatment. All these bands are connected to aluminium in the octahedral and tetrahedral 

position. The vibrations at 939 and 917 cm-1 can be assigned to OH deformations, which also 

give information on the content of aluminium in the octahedral sheet. 
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Figure 6.34 FTIR spectra of the raw and acid treated kaolin (5, 20 and 96 h).  
Kaolin sample Polwhite (13_Pol) was treated with 5 M H2SO4 at 80 °C. 
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Table 6.37 Positions and assignments of the vibrational bands in the lattice region 
of the raw kaolinite. 

Wavenumber [cm-1] Assignment* 

1110 (apical) Si-O out-of-plane 

1030 Si-O in-plane 

939 inner surface OH deformation  

917 inner OH deformation  

792 Si-O-Al vibrations 

754 Si-O-Al vibrations 

698 OH translation  

644 inner surface OH vibration  

539 Si-O-Al (out-of-plane) bending (Al in the tetrahedral sheet) 

472 Si-O (in-plane) bending associate with OH 

431 Si-O bending 

* Farmer, 1974; Makó et al., 2006. 

The lower bands at 792 and 754 cm-1 are assigned to Si-O-Al vibrations. The bands mirrored 

the linkage of octahedral aluminium with tetrahedral silicon via an oxygen atom. The vibration 

at 539 cm-1 is attributed to a Si-O-Al bending vibration within the tetrahedral sheet. All the 

other bands at 1110, 1030, 472 and 431 cm-1 are strong Si-O vibrations. 

Acid treatment caused changes in the intensity of the Si-O-Al bands and the OH vibrations. 

The intensity of the OH bands at 939 and 917 cm-1, as well as the area of the vibrations, 

decreased with increasing acid treatment (Figure 6.35) and after 96 h, the bands nearly 

disappeared. This implied that the release of aluminium from the octahedral sheet occurred 

continuously. 

Figure 6.35 shows the content of unreacted aluminium compared to the area of the OH 

deformation bands at 939 and 917 cm-1. The diagrams of the other used kaolin samples 

(14_Kaolex, 15_Rogers) are given in the appendix. These data support the continuous 

release of aluminium from the octahedral sheet. After 96 h small amounts of aluminium are 

still present in the structure of the   (13_Pol). The kaolinite was not completely dissolved as 

indicated by XRD. 
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Figure 6.35 Comparison between the unreacted aluminium content and the area of the OH 

vibrations at 939 and 917 cm-1. Kaolin Polwhite (13_Pol) treated with 5 M H2SO4 at 
80 °C at 0, 5, 20, 72 and 96 h. 

The intensities of the bridging Si-O-Al vibrations at 792 and 754 cm-1, as well as the 

intensity of the tetrahedral Si-O-Al vibration at 539 cm-1 decreased with increasing acid 

treatment. The vibration at 792 cm-1 disappeared into the new absorption band at 798 cm-1, 

while the band at 754 cm-1 disappeared completely. Only a small band at 539 cm-1 still 

existed after 96 h. All these changes indicate the modification of both, the tetrahedral and the 

octahedral sheet. The weak band at 539 cm-1 implies that small amounts of aluminium still 

remain in the tetrahedral sheet, whereas most of the octahedral aluminium is dissolved. 

The intensity of the Si-O bands increased with increasing acid treatment. New absorption 

bands appeared at 798 and 1097 cm-1, which are characteristic for amorphous silica 

(Komadel et al., 1990; Madejová et al., 1998; Makó et al., 2006). 
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6.4.6 Magadiite 

The Magadiite (16_Mag) in this work is a synthesised silicic acid with a layered 

appearance. This sample was used to elucidate the behaviour of silicic acid against acid 

treatment.  

Composition, colour, morphology and surface 

The chemical composition of the natural and acid treated magadiite is given in Table 6.38. 

Magadiite had high contents of sodium and low amounts of aluminium and iron. Its formula is 

NaSi7O13(OH)3·3H2O (Eugster, 1967) or NaSi7O13(OH)3·4H2O (Brindley, 1969). After 72 h 

treatment with 5 M H2SO4 at 80 °C, sodium was completely dissolved. The impurities like iron 

and aluminium are partly dissolved, but more iron than aluminium was dissolved.  

Table 6.38 Chemical composition (XRF) of the crude and residual magadiite   
  (5 M H2SO4, 72 h, 80 °C) 

Magadiite (16_Mag) 
Oxides 

untreated 72h 

SiO2 [%] 92.10 99.46 

Al2O3 [%] 0.42 0.40 

MgO [%] 0.00 0.00 

Fe2O3 [%] 0.24 0.12 

TiO2 [%] 0.03 0.02 

MnO [%] 0.00 0.00 

Na2O [%] 7.19 0.00 

CaO  [%] 0.00 0.00 

K2O  [%] 0.02 0.00 

P2O5 [%] 0.00 0.00 

In contrast to the other materials, the total weight of the magadiite sample was not 

significantly reduced (20%) after 72 h treatment. This 80% remaining material is equivalent to 

the SiO2 content (78%, in consideration of the loss of ignition) of the untreated magadiite. 

This implies that silicate hydroxide is stable against acid. The colour of magadiite was white 

before and after acid treatment. 

The magadiite consists of thick agglomerates with an irregular shape and partly sharp 

grain boundaries (Figure 6.36a). The morphology of the magadiite is similar to that of 

smectite in bentonites. The particle agglomerates after acid treatment still had an irregular 

shape, but the grain boundaries are blurred compared to those of the raw particles (Figure 

6.36b). 
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Figure 6.36 ESEM image of the a) raw and b) acid treated magadiite (16_Mag).  

The material was treated with 5 M H2SO4 at 80 °C for 72 h. 

The raw magadiite had an AS of 30 m2/g, which is similar to that of smectites, but 

magadiite had a higher rate of AMP (Table 6.39). The AS and the amount of AMP increased 

after acid treatment.  

Table 6.39 External specific surface area (AE), micro-pore area (AMP) and specific surface area 
(AS) of the starting (16_Mag) and acid treated magadiite (5 M H2SO4, 80 °C). 

Magadiite (16_Mag)  

Time        
[h] 

AS        
[m2/g] 

AE         
[m2/g] 

AMP     
[m2/g] 

AMP / AS  
[%] 

0 30 16 14 47 

72h 64 29 35 55 

Figure 6.37 demonstrates the XRD pattern of the natural and acid treated magadiite under 

air dry conditions. The XRD powder data of a sodium silicate hydroxide hydrate were  

published by Brindley (1969); they correspond to the data of this work. The d001 peak is the 

strongest line in the XRD pattern with a basal spacing of 0.156 nm. After acid treatment this 

basal spacing collapsed to 0.132 nm. These XRD data are identical with that of Lagaly et al. 

(1973). The acid treated magadiite has the following structural formula H2Si14O29·5.4H2O, 

which was published by Lagaly et al. (1973). The acid treatment caused the formation of a 

hydrogen silicate hydrate, which can be also described as H-Magadiite. The XRD 

measurements proved that magadiite is crystalline before and after acid treatment, but the 

basal reflections shifted, indicating that the linking of SiO4 tetrahedral has changed. 
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Figure 6.37 X-ray pattern (powder sample) of the raw and acid treated (5 M H2SO4 at 80 °C) 

magadiite (16_Mag). All peaks originated from magadiite. 

Short range order 

The FTIR spectra in the region from 400 – 1300 cm-1of the untreated and treated 

magadiite are shown in Figure 6.38. According to previous studies (Eypert-Blaison et al., 

2001; Superti et al., 2007), the infrared spectra of magadiite can be divided into three parts. 

In the first region (1000 – 1300 cm-1), four absorption bands at 1236, 1201, 1172 and 1081 

cm-1 are observed, which are assigned to antisymmetric stretching vibrations of Si-O-Si 

bridges. In the second region 700 – 1000 cm-1, four vibrations at 941, 817, 788 and 705 cm-1 

occur. These bands can be attributed to symmetric stretching vibrations of the Si-O-Si 

bridges. In the third region (400 – 700 cm-1), Si-O-Si and O-Si-O bending vibrations at 617, 

578 and 541 cm-1 can be observed.  

In contrast to the other clay minerals, the acid treatment of magadiite caused only a few 

changes in the FTIR spectra. The positions of most of the absorption bands did not shift. The 

intensity of the bands in the second and third region decreased after acid treatment. 

Furthermore, the acid treatment caused the break of Si-O bonds. This implies that the 

number of symmetric stretching vibrations of the Si-O-Si bridges and Si-O-Si and O-Si-O 

bending vibrations decreased. The broad absorption band at 1081 cm-1 was sharper after 

acid treatment, but no shift was observed. This means that more antisymmetric stretching 

vibrations of Si-O-Si bridges existed. One new vibration appeared in the FTIR spectra after 

acid treatment. The band is located at 979 cm-1. The shoulder at 1193 cm-1 increased with 

acid treatment.  
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Figure 6.38 FTIR spectra of the raw and acid treated magadiite.  

Magadiite (16_Mag) was treated with 5 M H2SO4 at 80 °C for 72 h. 
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6.5 Effects of H2SO4 compared to HCl  

The results of the XRF analysis were used to compare the effects on the clays that 

different kinds of acid have at varying concentrations and several reaction times. 

The sepiolite and the vermiculite treated with 5 M sulphuric acid or HCl for 20 h at 80 °C 

showed the same results. Different effects of H2SO4 and HCl were observed for the smectites 

in the bentonite (Volclay) and for the kaolin sample (Polwhite).  

The dissolution of the octahedral cations like aluminium, magnesium and iron was more 

effective with 5 M H2SO4 than with HCl. In Figure 6.39, the differences are displayed for the 

Volclay sample.  

  
Figure 6.39 Total content of unreacted oxides of the residual solid in % determined with XRF for 

Al2O3 of the Volclay (left) and for MgO and Fe2O3 of the Volclay (right) after treatment 
with 5 M H2SO4 and 5 M HCl for 0, 1.5, 5, 20, 72 and 96 h at 80 °C. 

The kaolin Polwhite shows the same differences in reaction with H2SO4 and HCl. After 72 

h, the Al2O3 content of the residual kaolinite averages 25.98% for treatment with 5 M HCl and 

10.15% for treatment with 5 M H2SO4.  

In Table 6.40, the values of the unreacted aluminium, magnesium and iron after the 

treatment with 1, 5, and 10 M H2SO4 and HCl for 96 h at 80 °C are given. Most of the 

octahedral cations were dissolved by the treatment with 5 M H2SO4. Similar results were 

achieved with 10 M HCl and 1 M H2SO4. 1 and 5 M HCl can also be used to dissolve cations 

from the octahedral sheet, but the concentration was to low for a complete dissolution. 
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Table 6.40 Content of unreacted Al2O3, MgO and Fe2O3 of the residual Volclay after treatment 
with 1, 5 and 10 M H2SO4 and HCl for 96 h at 80 °C. 

Concentration Unreacted Al2O3 [%] Unreacted MgO [%] Unreacted Fe2O3  [%] 

M H2SO4 HCl H2 SO4 HCl H2SO4 HCl 

1 6.57 20.32 0.29 1.99 1.03 3.29 

5 4.45 11.32 0.12 0.91 0.50 1.67 

10 22.08 6.75 2.20 0.46 3.85 0.90 

Bold value: H+ concentration of the H2SO4 and HCl solution is equal during the reaction. 

The investigations show that 1 M and 5 M H2SO4 and 10 M HCl gave the best results, but 

5 M H2SO4 was more effective than either 10 M HCl or 1 M H2SO4. 10 M H2SO4 and 1 M HCl 

were too weak to dissolve the cations from the octahedral sheet. The reason for the lower 

reactivity of 10 M H2SO4 is the lower water content with increasing acid concentration. In 

comparison to H2SO4, the reactivity of HCl is weaker because of the lower concentration of 

protons (1 mol HCl contains 1 mol H+ and 1 mol H2SO4 contains 2 mol H+). Therefore, 5 M 

H2SO4 have the same H+ concentration as 10 M HCl; only these values are comparable. 

However, with 5 M H2SO4 more cations were dissolved from the octahedral sheet than with 

10 M HCl (bold value in Table 6.40). 
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6.6 Summary and conclusions 

The effects of acid treatment on bulk material of seven bentonites with a high content of 

smectites, one vermiculite, one illite, one sepiolite, three kaolin samples and of one 

magadiite were studied. Bulk material was used for most of the industrial applications 

purification and separation of the clay fraction (< 2 µm) is too time consuming and too 

expensive. The bulk materials contain other Al2O3 containing phases than clays; therefore 

the Al2O3 content of the impurities was subtracted from the total amount of Al2O3. For the 

adjustment of the Al2O3 content, four assumptions were made from the results of this 

chapter. 

1) Feldspars like orthoclase and plagioclase albite were stable over the whole period of 

acid treatment studied. Only Ca-rich feldspars like anorthite started to dissolve after 20 h.  

2) The dissolution of kaoline impurities was constant and independent of the matrix. This 

was corroborated by the investigated pure kaolin samples. After 20 h, between 25 and 50% 

of kaolinite was dissolved that equals between 1 and 2 g kaolinite if the total weight of the 

sample was 4 g and the kaolinite content averaged 90%. In a sample with 3.2 g (80%) 

kaolinite (main phase), between 1.2 and 2.2 g kaolinite remained, while in a sample with 

0.4 g (10%) kaolinite (impurity) the kaolinite was completely dissolved. 

3) The dissolution of mica depends on its chemical composition such as iron and 

magnesium content (up to 8.5% iron can be incorporated into the mica structure (Rösler, 

1979)). Dioctahedral micas with low iron content were stable up to 96 h. The kaoline samples 

Kaolex and Rogers contained iron-rich dioctahedral micas, which were identified by XRD. 

After 96 h, up to 50% of this mica was dissolved. In the samples with smectite as main 

phase, the dioctahedral micas started to dissolve so that after 20 h 20%, after 72 h 50% and 

after 96 h 65% mica dissolved.  

4) The dissolution of smectite also depends on its chemical composition. Therefore the 

following assumption was dissipated for samples with smectite as impurity. After 5 h 20% 

smectite and after 20 h up to 80% are dissolved. 

The solubility of aluminium in H2SO4 and HCl at concentrations of 1, 5 and 10 M was 

checked with aluminium sulphate (Al2(SO4)3·18H2O, M = 666.3 g·mol-1). The test was 

performed to check the saturation level under the selected conditions. Kaolinite has the 

highest concentration of aluminium in the structure compared to the other clay minerals 

smectite, vermiculite and sepiolite. A portion of 4 g kaolin Polwhite contain 38.5% Al2O3 that 

is 0.815 g Al3+ (M = 27 g·mol-1); 12.4 g of Al2(SO4)3·18H2O in 400 ml acid and 6.2 g in 200 ml 

acid were used to achieve an aluminium concentration of 0.81 g in the solution. This amount 
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of aluminium sulphate was completely dissolved in 1, 5 and 10 M HCl, before the reaction 

temperature of 80 °C was reached. In 1 and 5 M H2SO4, the calculated amount of aluminium 

sulphate was completely dissolved, too. Only in 10 M H2SO4, the used aluminium sulphate 

was not completely dissolved. In this case, the saturation of the solution was reached. The 

reason was the low water content. 

The results of these investigations show that the dissolution of the octahedral cations 

occurs in the following order: Mg2+ > Fe3+ > Al3+. The investigations of several clay mineral 

groups show that independent of the clay mineral group trioctahedral clay minerals such as 

hectorite, vermiculite, phlogopite and sepiolite, which have a high content of magnesium, are 

less stable than dioctahedral clay minerals with a high content of iron. The reason is that the 

bond between trivalent aluminium and oxygen is stronger than between divalent magnesium 

and oxygen. Aluminium is also more electropositive than magnesium, which also strengthen 

its bond to oxygen. As a result, the oxygen atoms bound to magnesium have a comparatively 

higher negative charge and, hence, are more easily protonated. The protonation causes a 

weakening of the Mg-O bond and finally a break of the linkage. Another reason is the smaller 

crystal radius (Bloss, 1994) of aluminium (0.675 Å) than those of magnesium (0.860 Å) and 

iron (0.69 Å low spin and 0.785 Å high spin) in the same coordination (6-fold), which leads to 

a shorter, more stable bond to oxygen. 

The stability of the dioctahedral clay minerals like montmorillonite was also found to be 

dependent on number of substitutions in the octahedral and tetrahedral sheet. These 

substitutions cause deformations and distortions within the crystal structure resulting in a 

better solubility. 

The investigations reveal that the acid treated smectites retain the capability to exchange 

cations. The value of the measured cation exchange capacity and the adjusted value of the 

measured Al2O3 content can be used to obtain a reliable estimation of the residual smectite 

content (see Chapter 6.4.1). The adjusted value of the measured Al2O3 content can be used 

to estimate the residual kaolinite (see Chapter 6.4.5). These contents can be compared with 

the calculated values of the X-ray diffraction analysis. The results indicate, there are two 

independent methods to estimate the residual smectite and kaolinite content. 

The results show that acid treatment of layer silicates can be used to produce materials 

with a simple chemical composition that retained their layered structure. These materials 

have a low cation exchange capacity and a high specific surface area resulting in a lower 

charge density compared to the raw materials. Thus, these materials possess the ability to 

adsorb very large organic molecules (e.g., dodecylamine), which can be used as precursor 

for clay-polymer nanocomposites. Polymer incorporation will be investigated in the near 

future. 
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1 Instructions to the program “PeakFit”      
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Instructions to the “PeakFit” program 4.0 from Jandel Scientific 

The “PeakFit” program can be applied to determine the peak area in a certain range of FTIR 

spectra or STA curves, especially MS curve (H2O). 

FTIR spectroscopy 

The program “PeakFit” was used to determine the peak areas of selected vibrations to 

approve the release of the octahedral cations (Al3+, Fe3+, Mg2+). Certain vibrations like 

AlAlOH, AlFeOH and AlMgOH give information about the content of octahedral cations. The 

release of these cations is combined with a reduction of the peak intensity and peak area.  

The calculated peak areas were displayed in dependency of the chemical composition after a 

certain reaction time (Petrick, 2007). 

Simultaneous thermal analysis   

The program “PeakFit” was applied to determine the peak areas in a selected temperature 

range to estimate the cis- and trans-vacant character of the dioctahedral smectites. The 

border between both varieties was defined by 600 °C. All peak areas below 600 °C were 

added together and all peak areas above 600 °C. The two results reflected the content of cis- 

and trans-vacant portions (Wolters and Emmerich, 2007).    

For the application of “PeakFit”, the original data have to be transformed in a “TXT” format.  

Approach of the “PeakFit” program 

1. Load file  

File  Import 

2. Define the “PeakFit” range 

 Prepare  Section (Section Data)   

“PeakFit” range: Simultaneous thermal analysis:  from 350 to 900 °C  

    FTIR spectroscopy:   from 400 to 1100 cm-1 

3. Adjustment of the background 

 AutoFit   AutoFit and Subtract baseline (Automatic baseline subtraction) 

 Several background corrections can be choosing. 



Appendix: Instructions to the program “PeakFit”    
 

 
 173 

4. Select the fitting mode (Automatic peak detection and fitting) 

 AutoFit   AutoFit Peaks I Residuals 

    AutoFit Peaks II Second derivative 

    AutoFit Peaks III Deconvolution 

It is important that the function “vary widths” was selected. Consequently, the broadness of 

the peaks was varied. In the fitting mode, the several peaks can be superimposed, deleted or 

shifted according to the measured curve. The realisation of the fit was done by the button 

“Full Peak Fit with Graphical Update”.  

5. Presentation of the calculation 

 Select the following button:  

1. “Review Fit” 

2. “Numeric” 

  Graphical presentation and designation of r2 as well as the number of peaks 

  Peak Summary (Description of the fitting parameter) 

In the peak summary, there are listed the maxima of the selected peaks and the calculated 

peak area in % of the several peaks. For the modulation, the number of selected peaks 

should not vary extremely. 
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2. Data sheets “Mineralogical characterisation”      

2.1 Bulk material          
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Sample: Bentonite Calcigel (1_Calci) 

Figure 1      ESEM image. 

XRF-Analysis 

 

    
 SiO2 [%] 49.35
 Al2O3 [%] 16.61
 MgO [%]   4.15
 Fe2O3 [%]   5.09
 TiO2 [%]   0.38
 MnO [%]   0.05
 Na2O [%]   0.26
 CaO  [%]   4.26
 K2O  [%]   1.52
 P2O5 [%]   0.06
 LOI [%] 17.7 

  

 

 
Figure 2 X-ray diffraction analysis (powder sample). 
                         Sm: Smectite (001); Qz: Quartz; Fsp: Feldspar;                    
                         Ca: Calcite; M: Muscovite; D: Dolomite. 
 

  

 

Phase % 

Smectite 63.5 

Kaolinite 3.8 

Muscovite 13.7 

Quartz 5.9 
Plagioclase 
(Albite) 2.5 

Calcite 3.3 

Dolomite 7.3  
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 99.29%. 

 

 
 
Grain size distribution 
 

Fraction % 
> 63 µm 2 
63 – 20 µm 14 
20 – 2 µm 22 
< 2 µm 61  

 
 
Chemical and physical parameters 
 

Method  Value 
CEC 63 meq / 100g 
ξ (nc=12)          0.30 eq/FU 
BET  64 m2/g 

 
 

 

 
        Figure 4       FTIR-spectrum. 
 

Composition of the interlayer  
 
Interlayer composition / FU Na+ Ca2+ Mg2+ K+ 

[mol] 0.03 0.09 0.045 0.01 
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Sample: Bentonite EXM757 (2_EXM757) 

 
Figure 1      ESEM image. 

XRF-Analysis 

 

    
 SiO2 [%] 61.01
 Al2O3 [%] 17.15
 MgO [%]   2.08
 Fe2O3 [%]   3.76
 TiO2 [%]   0.16
 MnO [%]   0.01
 Na2O [%]   2.95
 CaO  [%]   0.74
 K2O  [%]   0.17
 P2O5 [%]   0.52
 LOI [%] 11.4 

 
 
 
 

 
Figure 2 X-ray diffraction analysis (powder sample). 
                         Sm: characteristic smectite peaks with increasing 2θ (001),     
                         (020,110,021), (060); 
  Qz: Quartz; Ct: Cristobalite. 

  

 

Phase % 

Smectite 86.5 

Cristobalite 11.2 

Quartz 2.3  
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 98.61%. 

 
 
Grain size distribution 
 

Fraction % 
> 63 µm - 
63 – 20 µm - 
20 – 2 µm 4 
< 2 µm 96  

 
 
Chemical and physical parameters 
 

Method  Value 
CEC 84 meq / 100g 
ξ (nc=12)          0.30 eq/FU 
BET  28 m2/g 

 
 

 
 

 
        Figure 4       FTIR-spectrum. 
 

Composition of the interlayer 
 
Interlayer composition / FU Na+ Ca2+ Mg2+ K+ 

[mol] 0.25 0.02 0.005 - 
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Sample: Bentonite SWy-2 (3_SWy-2) 

 
Figure 1      ESEM image. 

XRF-Analysis 

 

    
 SiO2 [%] 61.26
 Al2O3 [%] 17.98
 MgO [%]   2.41
 Fe2O3 [%]   3.79
 TiO2 [%]   0.15
 MnO [%]   0.03
 Na2O [%]   1.34
 CaO  [%]   1.54
 K2O  [%]   0.59
 P2O5 [%]   0.04
 LOI [%] 10.3 

 
 
 

 
Figure 2 X-ray diffraction analysis (powder sample). 
                         Sm: Smectite (001); 
  Qz: Quartz; Fsp: Feldspar; Ca: Calcite; M: Muscovite. 

  

 

Phase % 

Smectite 79.4 

Quartz 10.5 

Muscovite 3.7 
K-Feldspar 
(Orthoclase) 4.2 

Calcite 2.2  
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 99.30%. 
 

 
Grain size distribution 
 

Fraction % 
> 63 µm 1 
63 – 20 µm 6 
20 – 2 µm 7 
< 2 µm 86  

 
 
Chemical and physical parameters 
 

Method  Value 
CEC 78 meq / 100g 
ξ (nc=12)          0.29 eq/FU 
BET  24 m2/g  

 

 
       Figure 4       FTIR-spectrum. 
 

 
Composition of the interlayer 
 
Interlayer composition / FU Na+ Ca2+ Mg2+ K+ 

[mol] 0.14 0.045 0.03 - 
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Sample: Bentonite Volclay (4_Vol) 

 
Figure 1      ESEM image. 

XRF-Analysis 

 

    
 SiO2 [%] 56.50
 Al2O3 [%] 18.56
 MgO [%]   2.26
 Fe2O3 [%]   3.56
 TiO2 [%]   0.15
 MnO [%]   0.01
 Na2O [%]   1.88
 CaO  [%]   1.14
 K2O  [%]   0.52
 P2O5 [%]   0.04
 LOI [%] 15.4 

  
 
 

 
Figure 2 X-ray diffraction analysis (powder sample). 
                         Sm: Smectite (001); Qz: Quartz; Fsp: Feldspar; Ca: Calcite;   
                         M: Muscovite; Gy: Gypsum. 

 

 

Phase % 

Smectite 79.8 

Muscovite 2.8 

Quartz 4.4 
K-Feldspar 
(Orthoclase) 4.0 

Plagioclase 
(Albite) 

4.1 

Calcite 1.2 

Gypsum 3.6  
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 99.22%. 
 

 
Grain size distribution 
 

Fraction % 
> 63 µm 2 
63 – 20 µm 5 
20 – 2 µm 5 
< 2 µm 88  

 
Chemical and physical parameters 
 

Method  Value 
CEC 85 meq / 100g 
ξ (nc=12)          0.27 eq/FU 
BET  30 m2/g 

 
 

 

 
        Figure 4       FTIR-spectrum. 
 

Composition of the interlayer 
 
Interlayer composition / FU Na+ Ca2+ Mg2+ K+ 

[mol] 0.16 0.04 0.01 - 
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Sample: Bentonite WYO (5_WYO) 

 
Figure 1      ESEM image.  

XRF-Analysis 

 

    
 SiO2 [%] 59.85
 Al2O3 [%] 15.21
 MgO [%]   5.41
 Fe2O3 [%]   1.61
 TiO2 [%]   0.17
 MnO [%]   0.33
 Na2O [%]   2.17
 CaO  [%]   2.37
 K2O  [%]   0.52
 P2O5 [%]   0.07
 LOI [%] 12.3 

 
 
 

 
Figure 2 X-ray diffraction analysis (powder sample). 
                         Sm: Smectite (001); Qz: Quartz; Fsp: Feldspar; Ca: Calcite;  
                         M: Muscovite; Gy: Gypsum; Ct: Cristobalite. 
 

  

 

Phase % 

Smectite 67.2 

Cristobalite 3.6 

Quartz 6.6 

Muscovite 2.8 
K-Feldspar 
(Microcline) 3.9 

Plagioclase 
(Oligoclase) 

8.0 

Calcite 3.5 

Gypsum 0.9 

Clinoptilolite 1.0  
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 98.66%. 
 

 
Grain size distribution 
 

Fraction % 
> 63 µm 4 
63 – 20 µm 3 
20 – 2 µm 15 
< 2 µm 78  

 
 
Chemical and physical parameters 
 

Method  Value 
CEC 68 meq / 100g 
ξ (nc=12)          0.28 eq/FU 
BET  32 m2/g 

 
 

 

 
        Figure 4       FTIR-spectrum. 
 

Composition of the interlayer 
 
Interlayer composition / FU Na+ Ca2+ Mg2+ K+ 

[mol] 0.19 0.04 0.005 - 
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Sample: Indian Bentonite (6_IndBent) 

 
Figure 1      ESEM image.  

XRF-Analysis 

 
 

    
 SiO2 [%] 43.08
 Al2O3 [%] 15.59
 MgO [%]   2.40
 Fe2O3 [%] 13.74
 TiO2 [%]   0.94
 MnO [%]   0.12
 Na2O [%]   3.39
 CaO  [%]   1.23
 K2O  [%]   0.10
 P2O5 [%]   0.06
 LOI [%] 18.8 

 
 
 
 

 
Figure 2 X-ray diffraction analysis (powder sample). 
                         Sm: characteristic smectite peaks with increasing 2θ (001),     
                         (020,110,021), (060); 
  Kao: Kaolinite; Mh: Maghemite; H: Hematite. 
 

  

 

Phase % 

Smectite 88.9 

Kaolinite 4.4 

Quartz 1.1 
Plagioclase 
(Oligoclase) 3.9 

Maghemite 0.9 

Hematite 0.8  
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 99.23%. 
 
 
 
Grain size distribution 
 

Fraction % 
> 63 µm 3 
63 – 20 µm 3 
20 – 2 µm 5 
< 2 µm 89  

 
 
Chemical and physical parameters 
 

Method  Value 
CEC 91 meq / 100g 
ξ (nc=12)          0.38 eq/FU 
BET  29 m2/g 

 
 

 

 
        Figure 4       FTIR-spectrum. 
 

Composition of the interlayer 
 
Interlayer composition / FU Na+ Ca2+ Mg2+ K+ 

[mol] 0.30 0.015 - - 
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Sample: Natural Hectorite (7_NHec) 

 
Figure 1      ESEM image.  

XRF-Analysis 

 

    
 SiO2 [%] 55.03
 Al2O3 [%]   1.61
 MgO [%] 22.84
 Fe2O3 [%]   0.81
 TiO2 [%]   0.08
 MnO [%]   0.02
 Na2O [%]   3.31
 CaO  [%]   1.88
 K2O  [%]   0.42
 P2O5 [%]   0.87
 LOI [%] 12.7 

  
 
 

 
Figure 2 X-ray diffraction analysis (powder sample). 
                         Sm: characteristic smectite peaks with increasing 2θ (001),     
                         (020,110,021), (060); 
  Ca: Calcite; Ak: Ankerite; A: Analcime. 
 
 

  

 

Phase % 

Smectite 93.9 

Calcite 3.1 

Ankerite 0.7 

Analcime 2.1  
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 98.92%. 
 

 
 
Grain size distribution 
 

Fraction % 
> 63 µm - 
63 – 20 µm - 
20 – 2 µm 2 
< 2 µm 98  

 
 
Chemical and physical parameters 
 

Method  Value 
CEC 89 meq / 100g 
ξ (nc=12)          0.29 eq/FU 
BET  48 m2/g 

 
 

 

        Figure 4       FTIR-spectrum. 
 

Composition of the interlayer 
 
Interlayer composition / FU Na+ Ca2+ Mg2+ K+ 

[mol] 0.24 0.015 0.005 - 
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Sample: Vermiculite (8_Verm) 

 
Figure 1      ESEM image.  

XRF-Analysis 

 

    
 SiO2 [%] 36.89
 Al2O3 [%] 10.21
 MgO [%]  26.08
 Fe2O3 [%]   5.14
 TiO2 [%]   0.55
 MnO [%]   0.06
 Na2O [%]   0.00
 CaO  [%]   0.57
 K2O  [%]   0.26
 P2O5 [%]   0.02
 LOI [%] 20.2 

 

 

 
Figure 2 X-ray diffraction analysis (powder sample).  
                         Ph: Phlogopite; Ca: Calcite;  
                         all not indexed peaks originated from vermiculite. 

  

 

Phase % 

Vermiculite 84.0 

Phlogopite 14.0 

Calcite 2.0  
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 97.94%. 
 

 
Grain size distribution 
 

Fraction % 
> 63 µm 74 
63 – 20 µm 5 
20 – 2 µm 11 
< 2 µm 10  

 
 
Chemical and physical parameters 
 

Method  Value 
CEC 159 meq / 100g 
ξ (nc=12)          0.70 eq/FU 
BET  36 m2/g 

 
 

 

 
        Figure 4       FTIR-spectrum. 
 

Composition of the interlayer 
 
Interlayer composition / FU Na+ Ca2+ Mg2+ K+ 

[mol] - 0.05 0.33 0.01 
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Sample: Illite (9_Illite) 

 
Figure 1      ESEM image.  

XRF-Analysis 

 

    
 SiO2 [%] 47.56
 Al2O3 [%] 22.02
 MgO [%]   3.65
 Fe2O3 [%]   7.93
 TiO2 [%]   0.80
 MnO [%]   0.06
 Na2O [%]   0.00
 CaO  [%]   1.46
 K2O  [%]   6.82
 P2O5 [%]   0.41
 LOI [%] 11.1 

 
 
 

 
Figure 2 X-ray diffraction analysis (powder sample).  
                         It: characteristic illite peaks with increasing 2θ (001), (002), 

(130), (060);  
                         Qz: Quartz; Kao: Kaolinite; Ph: Phlogopite (060). 

  

 

Phase % 

Illite 76.4 

Phlogopite 7.8 

Kaolinite 5.4 
K-Feldspar 
(Orthoclase) 4.4 

Plagioclase 
(Anorthite) 1.1 

Quartz 0.4 

Calcite 2.4 

Anhydrite 1.4 

Apatite 0.7  
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 98.68%. 
  
 
Grain size distribution 
 

Fraction % 
> 63 µm - 
63 – 20 µm 6 
20 – 2 µm 2 
< 2 µm 92  

 
 
Chemical and physical parameters 
 

Method  Value 
CEC - 
ξ (nc=12)          - 
BET  94 m2/g 

 
 

 

 
        Figure 4      FTIR-spectrum. 
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Sample: Sepiolite PangelS9 (10_PangelS9) 

Figure 1      ESEM image. 

XRF-Analysis 

 

    
 SiO2 [%] 53.59
 Al2O3 [%]   2.51
 MgO [%]  22.93
 Fe2O3 [%]   0.81
 TiO2 [%]   0.12
 MnO [%]   0.03
 Na2O [%]   0.09
 CaO  [%]   0.34
 K2O  [%]   0.63
 P2O5 [%]   0.05
 LOI [%] 18.9 

  
  
 
 

 
Figure 2 X-ray diffraction analysis (powder sample). 
                         Sep: characteristic sepiolite peak (110); 
                     M: Muscovite/Illite; Ca: Calcite. 

  

 

Phase % 

Sepiolite 90.7 

Muscovite 8.2 

Calcite 1.1  
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 96.53%. 
 

 
 
Grain size distribution 
 

Fraction % 
> 63 µm 1 
63 – 20 µm 1 
20 – 2 µm 12 
< 2 µm 86  

 
 
Chemical and physical parameters 
 

Method  Value 
CEC 14 meq / 100g 
ξ (nc=12)          - 
BET  300 m2/g 

 
 

 

 
        Figure 4       FTIR-spectrum 
 

Composition of the interlayer 
 
Interlayer composition / FU Na+ Ca2+ Mg2+ K+ 

[mol] 0.01 0.045 0.035 0.01 
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Sample: Sepiolite Pansil (11_Pansil) 

 
Figure 1      ESEM image.  

XRF-Analysis 

 

    
 SiO2 [%] 57.51
 Al2O3 [%]   3.17
 MgO [%]  19.23
 Fe2O3 [%]   0.59
 TiO2 [%]   0.12
 MnO [%]   0.01
 Na2O [%]   0.36
 CaO  [%]   0.90
 K2O  [%]   1.07
 P2O5 [%]   0.04
 LOI [%] 17.0 

 
 
 

 
Figure 2 X-ray diffraction analysis (powder sample) 
                         Sep: characteristic sepiolite peak (110); 
                     Qz: Quartz; Fsp: Feldspar 

  

 

Phase % 

Sepiolite 71.6 

Muscovite 8.6 
K-Feldspar 
(Orthoclase) 6.9 

Plagioclase 
(Albite) 

7.1 

Quartz 4.1 

Calcite 1.7  
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 96.51%. 
 

Grain size distribution 

Fraction % 
> 63 µm - 
63 – 20 µm 1 
20 – 2 µm 30 
< 2 µm 69 

 

Chemical and physical parameters 

Method  Value 
CEC 11 meq / 100g 
ξ (nc=12)          - 
BET  261 m2/g 

 
 
Composition of the interlayer 
 
Interlayer composition / FU Na+ Ca2+ Mg2+ K+ 

[mol] 0.01 0.04 0.02 0.01 
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Sample: Palygorskite Smectagel (12_Palygorskite) 

Figure 1      ESEM image.  

XRF-Analysis 

 

    
 SiO2 [%] 52.76
 Al2O3 [%]   8.54
 MgO [%]   8.62
 Fe2O3 [%]   2.79
 TiO2 [%]   0.52
 MnO [%]   0.09
 Na2O [%]   0.12
 CaO  [%]   2.83
 K2O  [%]   0.80
 P2O5 [%]   0.02
 LOI [%] 22.9 

 
 
 
 

 
Figure 2 X-ray diffraction analysis (powder sample). 
                         Pal: characteristic palygorskite peak (110); 
                     Qz: Quartz; Fsp: Feldspar; D: Dolomite. 

  

 

Phase % 

Palygorskite 47.0 

Kaolinite 2.9 

Chlorite 8.1 
K-Feldspar 
(Orthoclase) 5.9 

Quartz 22.6 

Dolomite 10.5 

Jarosite 3.1  
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 98.80%. 

 

Grain size distribution 

Fraction % 
> 63 µm 5 
63 – 20 µm 13 
20 – 2 µm 12 
< 2 µm 71 

 

Chemical and physical parameters 

Method  Value 
CEC 5 meq / 100g 
ξ (nc=12)          - 
BET  321 m2/g 

 
 
Composition of the interlayer  
 
Interlayer composition / FU Na+ Ca2+ Mg2+ K+ 

[mol] 0.003 0.085 0.01 - 
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Sample: Kaolinite Polwhite (13_Pol) 

 
Figure 1      ESEM image.  

XRF-Analysis: 

 

    
 SiO2 [%] 49.72
 Al2O3 [%] 33.85
 MgO [%]   0.30
 Fe2O3 [%]   0.96
 TiO2 [%]   0.04
 MnO [%]   0.02
 Na2O [%]   0.00
 CaO  [%]   0.03
 K2O  [%]   3.02
 P2O5 [%]   0.16
 LOI [%] 11.9 

 
 
 

 
Figure 2 X-ray diffraction analysis (powder sample) 
                         Kao: characteristic kaolinite peaks with increasing 2θ (001),    
                         (002); Qz: Quartz; M: Muscovite/Illite. 

  

 

Phase % 

Kaolinite 72.2 

Muscovite 8.4 

Smectite 6.8 

Quartz 1.7 
K-Feldspar 
(Orthoclase) 10.5 
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 99.03%. 
 

 

 
Grain size distribution: 
 

Fraction % 
> 63 µm - 
63 – 20 µm 6 
20 – 2 µm 55 
< 2 µm 39  

 
 
Chemical and physical parameters: 
 

Method  Value 
CEC 6 meq / 100g 
ξ (nc=12)          - 
BET  11 m2/g 

 
 

 

 
 
       Figure 4        FTIR-spectrum. 
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Sample: Kaolinite Kaolex (14_Kaolex) 

 
Figure 1      ESEM image. 

XRF-Analysis 

 

    
 SiO2 [%] 44.72
 Al2O3 [%] 36.34
 MgO [%]   0.08
 Fe2O3 [%]   1.58
 TiO2 [%]   1.58
 MnO [%]   0.00
 Na2O [%]   0.00
 CaO  [%]   0.00
 K2O  [%]   0.47
 P2O5 [%]   0.10
 LOI [%] 14.2 
    

  
 

 
Figure 2 X-ray diffraction analysis (powder sample). 
                         Kao: characteristic kaolinite peaks with increasing 2θ (001),    
                         (002); Qz: Quartz; M: Muscovite/Illite. 

  

 

Phase % 

Kaolinite 89.9 

Muscovite 7.1 

Quartz 1.4 

Anatase 1.6  
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 99.31%. 
 

 

 
Grain size distribution 
 

Fraction % 
> 63 µm - 
63 – 20 µm - 
20 – 2 µm 12 
< 2 µm 88  

 
 
Chemical and physical parameters 
 

Method  Value 
CEC 4 meq / 100g 
ξ (nc=12)          - 
BET  24 m2/g  

 

 
        Figure 4       FTIR-spectrum. 
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Sample: Kaolinite Rogers (15_Rogers) 

 
Figure 1      ESEM image. 

XRF-Analysis 

 

    
 SiO2 [%] 45.69
 Al2O3 [%] 35.98
 MgO [%]   0.33
 Fe2O3 [%]   0.97
 TiO2 [%]   1.39
 MnO [%]   0.00
 Na2O [%]   0.00
 CaO  [%]   0.16
 K2O  [%]   0.27
 P2O5 [%]   0.07
 LOI [%] 15.1 

 

 

 
Figure 2 X-ray diffraction analysis (powder sample). 
                         Kao: characteristic kaolinite peaks with increasing 2θ (001),    
                         (002), (060); Qz: Quartz; M: Muscovite/Illite; Sm: Smectite. 

  

 

Phase % 

Kaolinite 84.4 

Muscovite 3.5 

Smectite 10.7 

Anatase 1.4  
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 99.18%. 
 

 
 
Grain size distribution 
 

Fraction % 
> 63 µm - 
63 – 20 µm - 
20 – 2 µm 14 
< 2 µm 86  

 
 
Chemical and physical parameters 
 

Method  Value 
CEC 10 meq / 100g 
BET  24 m2/g 

 
 

 

 
       Figure 4       FTIR-spectrum. 
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Sample: Magadiite (16_Mag) 

 
Figure 1      ESEM image. 

XRF-Analysis 

 

    
 SiO2 [%] 77.91
 Al2O3 [%]   0.36
 MgO [%]   0.00
 Fe2O3 [%]   0.20
 TiO2 [%]   0.03
 MnO [%]   0.00
 Na2O [%]   6.09
 CaO  [%]   0.00
 K2O  [%]   0.02
 P2O5 [%]   0.00
 LOI [%] 15.4 

 
 
 

 
Figure 2 X-ray diffraction analysis (powder sample). 
                         All peaks originated from magadiite.  

 

Phase % 

Magadiite 100.0  
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Figure 3 Simultaneous thermal analysis; starting mass of TG: 98.68%. 

 

 

 
 
Chemical and physical parameters 
 

Method  Value 
CEC 53 meq / 100g 
ξ (nc=12)          - 
BET  30 m2/g 

 
 

 

 
        Figure 4       FTIR-spectrum. 
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Appendix 

 

2 Data sheets “Mineralogical characterisation”      

2.2 Fraction < 2 µm and < 0.2 µm       
   

 



Appendix: Mineralogical characterisation   Calcigel < 2 µm 
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Sample: Calcigel < 2 µm 

])()[)(( 210
2

43.0
3

30.0
3

38.1
3

16.084.326.0 OHOMgFeAlAlSiMe +++++  

 
   Figure 1      X-ray pattern (texture sample). 

 
        Figure 2        Simultaneous thermal analysis; 
                              starting mass of TG: 99.22%.    
 

Basal spacing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Layer charge and exchange capacity 
 

Measured Calculated 
nc = 12 Cu-trien Köster (1977) 

ξ          
[eq/FU] 

CEC 
[meq/100g] 

ξ          
[eq/Fu] 

CEC 
[meq/100g] 

0.31 88 0.26 83  

d(00l) air dried 
[Å] 

EG       
[Å] 

d(001) 14.7 17.1 

d(002)  8.6 

d(003) 4.9 5.6 

d(004)   

d(005) 3.3 3.5 

d(006)   

Interlayer composition 

 
 
 
Charge location according to Köster (1977) 
 

Charge location          
[eq/FU] 

tetrahedral octahedral 

Tetrahedral 
charge        

[%] 

0.16 0.10 62 
 
 
 
 

Interlayer composition / FU mol 

Na+ 0.05 

Ca2+   0.085 

Mg2+ 0.04 

K+ 0.01 
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Sample: EXM757 < 2 µm 

])()[)(( 210
2

24.0
3

22.0
3

53.1
3

05.095.332.0 OHOMgFeAlAlSiMe +++++  

 
   Figure 1      X-ray pattern (texture sample). 

  
        Figure 2        Simultaneous thermal analysis;           
                              starting mass of TG: 98.65%.    

 
Basal spacing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Layer charge and exchange capacity 
 

Measured Calculated 
nc = 12 Cu-trien Köster (1977) 

ξ          
[eq/FU] 

CEC 
[meq/100g] 

ξ          
[eq/Fu] 

CEC 
[meq/100g] 

0.30 84 0.32 81  

d(00l) air dried 
[Å] 

EG       
[Å] 

d(001) 12.5 17.2 

d(002) 6.2 8.6 

d(003)  5.7 

d(004) 3.13 4.3 

d(005)  3.4 

d(006)  2.85 

Interlayer composition 

 
 
 
Charge location according to Köster (1977) 
 

Charge location          
[eq/FU] 

tetrahedral octahedral 

Tetrahedral 
charge        

[%] 

0.05 0.27 16 
 
 
 
 

Interlayer composition / FU mol 

Na+ 0.26 

Ca2+ 0.02 

Mg2+ - 

K+ - 
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Sample: SWy-2 < 0.2 µm 

])()[)(( 210
2

32.0
3

23.0
3

53.1
3

21.079.329.0 OHOMgFeAlAlSiMe +++++  

 
   Figure 1      X-ray pattern (texture sample). 

  
        Figure 2        Simultaneous thermal analysis; 
                              starting mass of TG: 99.23%.    

 
Basal spacing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Layer charge and exchange capacity 
 

Measured Calculated 
nc = 12 Cu-trien Köster (1977) 

ξ          
[eq/FU] 

CEC 
[meq/100g] 

ξ          
[eq/Fu] 

CEC 
[meq/100g] 

0.31 91 0.29 83 

d(00l) air dried 
[Å] 

EG       
[Å] 

d(001) 12.3 16.9 

d(002) 6.15 8.5 

d(003)  5.6 

d(004) 3.1 4.3 

d(005)  3.4 

d(006)  2.8 

 
Interlayer composition 

 
 
 
Charge location according to Köster (1977) 
 

Charge location          
[eq/FU] 

tetrahedral octahedral 

Tetrahedral 
charge        

[%] 

0.21 0.08 72  

Interlayer composition / FU mol 

Na+ 0.21 

Ca2+   0.025 

Mg2+   0.015 

K+ 0.01 



Appendix: Mineralogical characterisation   Volclay < 2 µm 
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Sample: Volclay < 2 µm 

])()[)(( 210
2

22.0
3

19.0
3

58.1
3

03.097.328.0 OHOMgFeAlAlSiMe +++++  

 
   Figure 1      X-ray pattern (texture sample). 

  
        Figure 2        Simultaneous thermal analysis; 
                              starting mass of TG: 99.04%.    

 
Basal spacing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Layer charge and exchange capacity 
 

Measured Calculated 
nc = 12 Cu-trien Köster (1977) 

ξ          
[eq/FU] 

CEC 
[meq/100g] 

ξ          
[eq/Fu] 

CEC 
[meq/100g] 

0.26 85 0.28 70  

d(00l) air dried 
[Å] 

EG       
[Å] 

d(001) 11.9 17.2 

d(002)  8.6 

d(003)  5.6 

d(004) 3.1 4.3 

d(005)  3.4 

d(006)  2.8 

Interlayer composition 

 
 
 
Charge location according to Köster (1977) 
 

Charge location          
[eq/FU] 

tetrahedral octahedral 

Tetrahedral 
charge        

[%] 

0.03 0.25 11 
 
 
 
 

Interlayer composition / FU mol 

Na+ 0.26 

Ca2+ - 

Mg2+ - 

K+ - 
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Sample: Volclay < 0.2 µm 

])()[)(( 210
2

23.0
3

20.0
3

58.1
3

05.095.325.0 OHOMgFeAlAlSiMe +++++  

 
   Figure 1      X-ray pattern (texture sample). 

  
        Figure 2        Simultaneous thermal analysis; 
                              starting mass of TG: 98.76%.    

 
Basal spacing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Layer charge and exchange capacity 
 

Measured Calculated 
nc = 12 Cu-trien Köster (1977) 

ξ          
[eq/FU] 

CEC 
[meq/100g] 

ξ          
[eq/Fu] 

CEC 
[meq/100g] 

0.26 90 0.25 70  

d(00l) air dried 
[Å] 

EG       
[Å] 

d(001) 12.1 17.2 

d(002)  8.6 

d(003)  5.6 

d(004) 3.1 4.3 

d(005)  3.4 

d(006)  2.85 

Interlayer composition 

 
 
 
Charge location according to Köster (1977) 
 

Charge location          
[eq/FU] 

tetrahedral octahedral 

Tetrahedral 
charge        

[%] 

0.05 0.20 20 
 
 
 
 

Interlayer composition / FU mol 

Na+ 0.26 

Ca2+ - 

Mg2+ - 

K+ - 
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Sample: WYO < 2 µm 

])()[)(( 210
2

23.0
3

26.0
3

53.1
3

11.089.328.0 OHOMgFeAlAlSiMe +++++  

 
   Figure 1      X-ray pattern (texture sample). 

  
        Figure 2        Simultaneous thermal analysis; 
                              starting mass of TG: 99.27%.    

 
Basal spacing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Layer charge and exchange capacity 
 

Measured Calculated 
nc = 12 Cu-trien Köster (1977) 

ξ          
[eq/FU] 

CEC 
[meq/100g] 

ξ          
[eq/Fu] 

CEC 
[meq/100g] 

0.27 80 0.28 73  

d(00l) air dried 
[Å] 

EG       
[Å] 

d(001) 12.4 17.2 

d(002) 6.2 8.6 

d(003)  5.6 

d(004) 3.1 4.3 

d(005)  3.4 

d(006)  2.8 

Interlayer composition 

 
 
 
Charge location according to Köster (1977) 
 

Charge location          
[eq/FU] 

tetrahedral octahedral 

Tetrahedral 
charge        

[%] 

0.11 0.17 39 
 
 
 
 

Interlayer composition / FU mol 

Na+ 0.20 

Ca2+   0.035 

Mg2+   0.005 

K+ - 
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Sample: Indian Bentonite < 2 µm 

])()[)(( 210
2

26.0
3

53.0
3

29.1
3

31.069.333.0 OHOMgFeAlAlSiMe +++++  

 
   Figure 1      X-ray pattern (texture sample). 

  
        Figure 2        Simultaneous thermal analysis; 
                              starting mass of TG: 98.78%.    

 
Basal spacing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Layer charge and exchange capacity 
 

Measured Calculated 
nc = 12 Cu-trien Köster (1977) 

ξ          
[eq/FU] 

CEC 
[meq/100g] 

ξ          
[eq/Fu] 

CEC 
[meq/100g] 

0.33 96 0.33 86  

d(00l) air dried 
[Å] 

EG       
[Å] 

d(001) 12.4 16.8 

d(002) 6.2 8.4 

d(003)  5.6 

d(004) 3.1 4.2 

d(005)  3.4 

d(006)  2.8 

Interlayer composition 

 
 
 
Charge location according to Köster (1977) 
 

Charge location          
[eq/FU] 

tetrahedral octahedral 

Tetrahedral 
charge        

[%] 

0.31 0.02 94 
 
 
 
 

Interlayer composition / FU mol 

Na+ 0.33 

Ca2+ - 

Mg2+ - 

K+ - 
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Sample: Indian Bentonite < 0.2 µm 

])()[)(( 210
2

26.0
3

49.0
3

32.1
3

29.071.334.0 OHOMgFeAlAlSiMe +++++  

 
   Figure 1      X-ray pattern (texture sample). 

  
        Figure 2        Simultaneous thermal analysis; 
                              starting mass of TG: 98.54%.    

 
Basal spacing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Layer charge and exchange capacity 
 

Measured Calculated 
nc = 12 Cu-trien Köster (1977) 

ξ          
[eq/FU] 

CEC 
[meq/100g] 

ξ          
[eq/Fu] 

CEC 
[meq/100g] 

0.33 98 0.34 86  

d(00l) air dried 
[Å] 

EG       
[Å] 

d(001) 12.6 17.2 

d(002) 6.2 8.6 

d(003)  5.6 

d(004) 3.1 4.3 

d(005)  3.4 

d(006)  2.85 

Interlayer composition 

 
 
 
Charge location according to Köster (1977) 
 

Charge location          
[eq/FU] 

tetrahedral octahedral 

Tetrahedral 
charge        

[%] 

0.29 0.05 85 
 
 
 
 

Interlayer composition / FU mol 

Na+ 0.33 

Ca2+ - 

Mg2+ - 

K+ - 
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Sample: Natural Hectorite < 2 µm 

])()[)(( 210
3

04.0
3

05.029.0
2

64.2
3

10.090.326.0 OHOFeAlLiMgAlSiMe ++++++  

 
   Figure 1      X-ray pattern (texture sample). 

  
        Figure 2        Simultaneous thermal analysis; 
                              starting mass of TG: 99.13%.  

 
Basal spacing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Layer charge and exchange capacity 
 

Measured Calculated 
nc = 12 Cu-trien Köster (1977) 

ξ          
[eq/FU] 

CEC 
[meq/100g] 

ξ          
[eq/Fu] 

CEC 
[meq/100g] 

0.27 90 0.26 71  

d(00l) air dried 
[Å] 

EG       
[Å] 

d(001) 12.5 17.2 

d(002)  8.6 

d(003)  5.6 

d(004) 3.2  

d(005)  3.4 

d(006)   

Interlayer composition 

 
 
 
Charge location according to Köster (1977) 
 

Charge location          
[eq/FU] 

tetrahedral octahedral 

Tetrahedral 
charge        

[%] 

0.10 0.16 38 
 
 
 
 

Interlayer composition / FU mol 

Na+ 0.24 

Ca2+ 0.01 

Mg2+   0.005 

K+ - 
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Sample: Vermiculite < 2 µm 

])()[)(( 210
3

01.0
3

31.0
2

65.2
3

96.004.370.0 OHOAlFeMgAlSiMe +++++  

 
   Figure 1      X-ray pattern (texture sample). 

  
        Figure 2        Simultaneous thermal analysis;    
                              starting mass of TG: 98.58%.   

 
Basal spacing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Layer charge and exchange capacity 
 

Measured Calculated 
nc = 12 Ammonium Köster (1977) 

ξ          
[eq/FU] 

CEC 
[meq/100g] 

ξ          
[eq/Fu] 

CEC 
[meq/100g] 

0.70 176 0.70 174 

d(00l) air dried 
[Å] 

EG       
[Å] 

d(001) 14.8 14.8 

d(002) 7.4 7.4 

d(003) 4.93 4.93 

d(004) 3.7 3.7 

d(005) 2.96 2.96 

d(006) 14.8 14.8 

Interlayer composition 

 
 
 
 
 
 

Interlayer composition / FU mol 

Na+ 0.68 

Ca2+ 0.01 

Mg2+ - 

K+ - 
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Sample: Sepiolite Pangel S9 < 2 µm 

OHOHOHOFeAlMgAlSiMe 22215
3

07.0
3

23.0
2

55.3
3

10.090.510.0 42])()[)(( +⋅+++++  

 
   Figure 1      X-ray pattern (texture sample). 

 
        Figure 2        Simultaneous thermal analysis; 
                              starting mass of TG: 95.38%.  

 
 
Interlayer composition 
 
 
 
 
 
 
 
 
 
 
 
Layer charge and exchange capacity 
 

Measured Calculated 
nc = 12 Cu-trien Stevens (1945) 

ξ          
[eq/FU] 

CEC 
[meq/100g] 

ξ          
[eq/Fu] 

CEC 
[meq/100g] 

- 19 0.10 22 

Interlayer composition / FU mol 

Na+ 0.07 

Ca2+ - 

Mg2+   0.015 

K+ - 

Charge location according to Stevens (1945) 
 

Charge location          
[eq/FU] 

tetrahedral octahedral 

Tetrahedral 
charge        

[%] 

0.10 0.00 100 
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Sample: Sepiolite Pangel S9 < 0.2 µm 

OHOHOHOFeAlMgAlSiMe 22215
3

06.0
3

18.0
2

63.3
3

09.091.511.0 42])()[)(( +⋅+++++  

 
   Figure 1      X-ray pattern (texture sample). 

 
        Figure 2       Simultaneous thermal analysis;      
                             starting mass of TG: 96.15%.  

 
 
Interlayer composition 
 
 
 
 
 
 
 
 
 
 
 
Layer charge and exchange capacity 
 

Measured Calculated 
nc = 12 Cu-trien Stevens (1945) 

ξ          
[eq/FU] 

CEC 
[meq/100g] 

ξ          
[eq/Fu] 

CEC 
[meq/100g] 

- 16 0.11 24 

Interlayer composition / FU mol 

Na+ 0.07 

Ca2+ - 

Mg2+   0.015 

K+ - 

Charge location according to Stevens (1945) 
 

Charge location          
[eq/FU] 

tetrahedral octahedral 

Tetrahedral 
charge        

[%] 

0.09 0.02 82 
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Appendix 

 

3 Data sheets “Acid treatment”      

3.1 Bulk material          

 



Appendix: Acid treatment   Bentonite Calcigel 
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Sample: Bentonite Calcigel (1_Calci) 

Treatment conditions: 5 M H2SO4 at 80 °C for 0, 1.5, 5, 20, 72 and 96 h 

 

  

Figure 1 ESEM image of the raw (A) and acid treated (96 h) Calcigel (1_Calci) (B).  

  
Figure 2 Both graphs show the chemical composition of the residual solid. The graph A shows 

the unreacted oxides in %. The graph B shows the unreacted oxides [g·mol-1] related to 
the molecular weight of the formula unit (half unit cell).  
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Figure 3 X-ray diffraction analysis (powder sample) of the raw and acid treated material. 

Sm: characteristic Smectite peaks with increasing 2θ (001), (020,110,021), (060);
 M: Muscovite; Qz: Quartz. 

 
Figure 4 CEC in dependency of the time. 

 
Figure 5 FTIR-spectra. 
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Sample: Bentonite EXM757 (2_EXM757) 

Treatment conditions: 5 M H2SO4 at 80 °C for 0, 1.5, 5, 20, 72 and 96 h 

Figure 1 ESEM image of the raw (A) and acid treated (96 h) bentonite EXM757 (2_EXM757) (B).  

  
Figure 2 Both graphs show the chemical composition of the residual solid. The graph A shows 

the unreacted oxides in %. The graph B shows the unreacted oxides [g·mol-1] related to 
the molecular weight of the formula unit (half unit cell). 
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Figure 3 X-ray diffraction analysis (powder sample) of the raw and acid treated material. 

Sm: characteristic Smectite peaks with increasing 2θ (001), (020,110,021), (060);
 Qz: Quartz; Ct: Cristobalite. 

 
Figure 4 CEC in dependency of the time. 

 
Figure 5 FTIR-spectra. 
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Sample: Bentonite SWy-2 (3_SWy-2) 

Treatment conditions: 5 M H2SO4 at 80 °C for 0, 20 and 96 h 

  

Figure 1 ESEM image of the raw (A) and acid treated (96 h) bentonite SWy-2 (3_SWy-2) (B).  

  
Figure 2 Both graphs show the chemical composition of the residual solid. The graph A shows 

the unreacted oxides in %. The graph B shows the unreacted oxides [g·mol-1] related to 
the molecular weight of the formula unit (half unit cell).  
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Figure 3 X-ray diffraction analysis (powder sample) of the raw and acid treated material. 

Sm: characteristic Smectite peaks with increasing 2θ (001), (020,110,021), (060);
 Qz: Quartz; Fsp: Feldspars. 

 
Figure 4 CEC in dependency of the time. 

 
         Figure 5        FTIR-spectra. 
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Sample: Bentonite Volclay (4_Vol) 

Treatment conditions: 5 M H2SO4 at 80 °C for 0, 1.5, 5, 20, 72 and 96 h 

Figure 1 ESEM image of the raw (A) and acid treated (96 h) Volclay (4_Vol) (B).  

  
Figure 2 Both graphs show the chemical composition of the residual solid. The graph A shows 

the unreacted oxides in %. The graph B shows the unreacted oxides [g·mol-1] related to 
the molecular weight of the formula unit (half unit cell).  
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Figure 3 X-ray diffraction analysis (powder sample) of the raw and acid treated material. 

Sm: characteristic Smectite peaks with increasing 2θ (001), (020,110,021), (060);
 Qz: Quartz; Fsp: Feldspars. 

 
Figure 4 CEC in dependency of the time. 

 
Figure 5 FTIR-spectra. 
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Sample: Bentonite WYO-Bent (5_WYO) 

Treatment conditions: 5 M H2SO4 at 80 °C for 0, 20 and 96 h 

Figure 1 ESEM image of the raw (A) and acid treated (96 h) bentonite WYO-Bent (5_WYO) (B).  

  
Figure 2 Both graphs show the chemical composition of the residual solid. The graph A shows 

the unreacted oxides in %. The graph B shows the unreacted oxides [g·mol-1] related to 
the molecular weight of the formula unit (half unit cell).  
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Figure 3 X-ray diffraction analysis (powder sample) of the raw and acid treated material. 

Sm: characteristic Smectite peaks with increasing 2θ (001), (020,110,021), (060);
 Qz: Quartz; Fsp: Feldspars. 

 
Figure 4 CEC in dependency of the time. 

 
         Figure 5        FTIR-spectra. 
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Sample: Bentonite Indian Bentonite (6_IndBent) 

Treatment conditions: 5 M H2SO4 at 80 °C for 0, 1.5, 5, 20 and 96 h 

 

  

Figure 1 ESEM image of the raw (A) and acid treated (96 h) Indian Bentonite (6_IndBent) (B).  

  

Figure 2 Both graphs show the chemical composition of the residual solid. The graph A shows 
the unreacted oxides in %. The graph B shows the unreacted oxides [g·mol-1] related to 
the molecular weight of the formula unit (half unit cell).  
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Figure 3 X-ray diffraction analysis (powder sample) of the raw and acid treated material. 

Sm: characteristic Smectite peaks with increasing 2θ (001), (020,110,021), (060). 

 
Figure 4 CEC in dependency of the time. 

 
Figure 5 FTIR-spectra. 
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Sample: Natural Hectorite (7_NHec) 

Treatment conditions: 5 M H2SO4 at 80 °C for 0, 1.5, 5, 20 and 96 h 

 

Figure 1 ESEM image of the raw (A) and acid treated (96 h) hectorite (7_NHec) (B).  

 
Figure 2 X-ray diffraction analysis (powder sample) of the raw and acid treated material. 

 Sm: characteristic Smectite peaks with increasing 2θ (001), (020,110,021), (060);
 Ca: Calcite. 
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   Figure 3    FTIR-spectra. 
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Sample: Vermiculite (8_Verm) 

Treatment conditions: 5 M H2SO4 at 80 °C for 0, 1.5, 5, 20 and 72 h 

Figure 1 ESEM image of the raw (A) and acid treated (20 h) vermiculite (8_Verm) (B).  

 
Figure 2 X-ray diffraction analysis (powder sample) of the raw and acid treated material. 

Ph: Phlogopite; Ca: Calcite; all not indexed peaks originated from vermiculite. 
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   Figure 3    FTIR-spectra. 
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Sample: Illite (9_Illite) 

Treatment conditions: 5 M H2SO4 at 80 °C for 0, 20 and 96 h 

 

Figure 1 ESEM image of the raw (A) and acid treated (96 h) illite (9_Illite) (B).  

 
Figure 2 X-ray diffraction analysis (powder sample) of the raw and acid treated material. 

It: characteristic illite peaks with increasing 2θ (001), (002), (130), (060);  
 Qz: Quartz; Kao: Kaolinite; Ph: Phlogopite (060). 
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        Figure 3         FTIR-spectra. 
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Sample: Sepiolite Pangel S9 (10_PangelS9) 

Treatment conditions: 5 M H2SO4 at 80 °C for 0, 1.5, 5, 20 and 72 h 

Figure 1 ESEM image of the raw (A) and acid treated (20 h) sepiolite (10_PangelS9) (B). 

 
Figure 2 X-ray diffraction analysis (powder sample) of the raw and acid treated material. 

M: Muscovite; Qz: Quartz; Fsp: Feldspars; all not indexed peaks originated from 
sepiolite. 
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   Figure 3    FTIR-spectra. 
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Sample: Kaolinite Polwhite (13_Pol) 

Treatment conditions: 5 M H2SO4 at 80 °C for 0, 1.5, 5, 20, 72 and 96 h 

Figure 1 ESEM image of the raw (A) and acid treated (96 h) kaolinite Polwhite (13_Pol) (B).  

 
Figure 2 X-ray diffraction analysis (powder sample) of the raw and acid treated material. 

Kao: characteristic kaolinite peaks with increasing 2θ (001), (002);  
 Qz: Quartz; M: Muscovite. 
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         Figure 3          FTIR-spectra. 

 
  Figure 4        Comparison between the    
                        unreacted aluminium content and  
                        the area of the OH vibrations.   
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Sample: Kaolinite Kaolex (14_Kaolex) 

Treatment conditions: 5 M H2SO4 at 80 °C for 0, 20 and 96 h 

Figure 1 ESEM image of the raw (A) and acid treated (96 h) kaolinite Kaolex (14_Kaolex) (B).  

 
Figure 2 X-ray diffraction analysis (powder sample) of the raw and acid treated material. 

Kao: characteristic kaolinite peaks with increasing 2θ (001), (002);  
 Qz: Quartz; M: Muscovite. 
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         Figure 3          FTIR-spectra. 

  Figure 4 Comparison between the    
                         unreacted aluminium content and  
                         the area of the OH vibrations.   
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Sample: Kaolinite Rogers (15_Rogers) 

Treatment conditions: 5 M H2SO4 at 80 °C for 0, 20 and 96 h 

Figure 1 ESEM image of the raw (A) and acid treated (96 h) kaolinite Rogers (15_Rogers) (B).  

 
Figure 2 X-ray diffraction analysis (powder sample) of the raw and acid treated material. 

Kao: characteristic kaolinite peaks with increasing 2θ (001), (002);  
 Sm: Smectite; M: Muscovite. 
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         Figure 3          FTIR-spectra. 

 
  Figure 4 Comparison between the    
                         unreacted aluminium content and  
                         the area of the OH vibrations.   
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Sample: Magadiite (16_Mag) 

Treatment conditions: 5 M H2SO4 at 80 °C for 0, 1.5, 5, 20 and 72 h 

Figure 1 ESEM image of the raw (A) and acid treated (72 h) magadiite (16_Mag) (B). 

 
Figure 2 X-ray diffraction analysis (powder sample) of the raw and acid treated material. 

All peaks originated from magadiite.  
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   Figure 3    FTIR-spectra. 
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3 Data sheets “Acid treatment”      

3.2 Nitrogen adsorption / surface properties      
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Overview about the surface properties 

1. Smectites in Bentonites 
 
 

Calcigel (1_Calci) 
Time      

[h] 
AE       

[m2/g] 
AMP     

[m2/g] 
AS     

[m2/g] 
AMP / AS 

[%] 
0 38 26 64 41 

1.5 134 38 172 22 

5 237 11 248 4 

20 183 32 215 15 

72 159 25 184 14 

96 153 27 180 15  

 
EXM757 (2_EXM757) 

Time      
[h] 

AE       
[m2/g] 

AMP     
[m2/g] 

AS     
[m2/g] 

AMP / AS 
[%] 

0 26 2 28 7 

1.5 102 29 131 22 

5 134 41 175 23 

20 141 40 180 22 

72 126 34 159 21 

96 123 30 153 20 

 
 
 

  
SWy-2 (3_SWy-2) 

Time      
[h] 

AE       
[m2/g] 

AMP     
[m2/g] 

AS     
[m2/g] 

AMP / AS 
[%] 

0 17 7 24 29 

20 102 25 127 20 

96 105 30 135 22 

 
 

WYO (5_WYO) 
Time      

[h] 
AE       

[m2/g] 
AMP     

[m2/g] 
AS     

[m2/g] 
AMP / AS 

[%] 
0 24 8 32 25 

20 75 12 88 14 

96 67 18 85 21 

 
 

Volclay (4_Vol) 
Time      

[h] 
AE       

[m2/g] 
AMP     

[m2/g] 
AS     

[m2/g] 
AMP / AS 

[%] 
0 20 10 30 33 

1.5 63 14 77 18 

5 93 7 100 7 

20 119 26 145 18 

72 110 38 148 26 

96 131 21 152 14 

 
 
 

 
 

Indian Bentonite (6_IndBent) 
Time      

[h] 
AE       

[m2/g] 
AMP     

[m2/g] 
AS     

[m2/g] 
AMP / AS 

[%] 
0 27 2 29 7 

1.5 340 37 378 10 

5 396 56 452 12 

20 391 40 431 9 

96 250 62 312 20 

 
 
 

 
Natural hectorite (7_NHec) 

Time      
[h] 

AE       
[m2/g] 

AMP     
[m2/g] 

AS     
[m2/g] 

AMP / AS 
[%] 

0 34 15 48 31 

1.5 235 45 280 16 

5 168 33 201 16 

20 111 32 143 22 

96 95 27 122 22 
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2. Kaolinites 
 

  
Kaolinite Polwhite (13_Pol) 

Time      
[h] 

AE       
[m2/g] 

AMP     
[m2/g] 

AS     
[m2/g] 

AMP / AS 
[%] 

0 11 0 11 0 

1.5 17 3 21 14 

5 26 5 31 15 

20 40 6 46 13 

72 42 15 57 26 

96 42 16 58 31  

Kaolinite Kaolex (14_Kaolex) 
Time      

[h] 
AE       

[m2/g] 
AMP     

[m2/g] 
AS     

[m2/g] 
AMP / AS 

[%] 
0 22 2 24 8 

20 94 20 114 17 

96 97 23 120 19 

 
 

Kaolinite Rogers (15_Rogers) 
Time      

[h] 
AE       

[m2/g] 
AMP     

[m2/g] 
AS     

[m2/g] 
AMP / AS 

[%] 
0 23 1 24 4 

20 77 15 92 16 

96 87 24 111 22  
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Appendix 

 

3 Data sheets “Acid treatment”      

3.2 Peak area in dependence on the chemistry      
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Comparison between peak area and chemistry of the bentonites  
SWy-2 and WYO 

Treatment conditions:  5 M H2SO4 at 80 °C at 20 h and 96 h 

 

 
  Figure 1      Comparison between unreacted Al  
                      content and area of the AlAlOH band    
                      (920 cm-1).  

 
  Figure 2      Comparison between unreacted Fe   
                     content and area of the AlFeOH band      
                      (885 cm-1). 

  

 
  Figure 3     Comparison between unreacted Mg      
                      content and area of the AlMgOH band   
                      (850 cm-1). 
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