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Chapter 1

Introduction

The search for new states of matter is one of the oldest motives to conduct physical
research. For instance, the realization of low temperature laboratories at the begin-
ning of the previous century has led to the discovery of superconductivity and su-
perfluidity. In the last two decades, the combination of atomic physics and quantum
optics has led to pioneering discoveries by searching for new states of matter. The
development of cold atom experiments and the achievement of optical lattices have
opened a wide perspective for the discovery of new states of matter. The successful
generation of a Bose–Einstein condensate of rubidium [18] and sodium atoms [41],
respectively, was certainly the most prominent example. Meanwhile, also molecules
consisting of two fermionic lithium atoms were demonstrated to form a Bose–Einstein
condensate [158]. Even more spectacular was the experimental confirmation of the
so–called BEC–BCS crossover at which the interactions between the lithium atoms
was continuously varied from repulsive to attractive [157]. In another remarkable
experiment, the quantum phase transition from a bosonic superfluid to a Mott insu-
lating state was observed in a gas of rubidium atoms loaded into a three–dimensional
optical lattice [59].

In this thesis, we follow the motive to search for new states of matter. We consider
physical situations which have not been observed so far, neither experimentally nor
theoretically. In fact, we will consider different lattice models which exhibit exotic
states of matter. Although both systems seem to be different, they are interrelated
by the hope that we can experience their experimental realization by cold atom
experiments within the next decade.

In the first part of this thesis, we consider bosonic atoms in a two–dimensional
optical lattice. The uncharged, bosonic atoms are assumed to be exposed to an
artificial magnetic field. This magnetic field might be realized through rotation of
the optical lattice. Recently, it was demonstrated how to co–rotate an optical lattice
to a rotating gas of atoms [146]. The effect of the rotation to the neutral atoms is
comparable to the effect of a magnetic field to Bloch electrons. In case, the effective
magnetic field is very strong, we will meet situations of fragmented Bose–Einstein
condensation – situations where not only a single condensate is present. One of these
scenarios is even associated with an antiferromagnetically ordered current pattern on
the lattice [63].
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In the second part of this thesis, we deal with low–dimensional antiferromag-
netism. A long–standing theory about the properties of one–dimensional spin models
leads us to spin chains where the symmetry group SU(2) of the quantum mechanical
spin is replaced by the symmetry groups SU(3) and SU(4). While the projected elec-
tron spin is characterized by two different values, say “↑” and “↓”, the spin can take
three different values in case of the symmetry group SU(3), say “blue”, “red”, and
“green”. Such antiferromagnets have so far never been observed in nature. The avail-
ability of cold atom “engineering”, however, might principally provide the chance to
observe an SU(3) antiferromagnet. Thereby, the atoms might be prepared in three
different internal states and loaded into an optical lattice. The fine–tuning of inter-
actions could realize an approximate SU(3) symmetry. Very recently, the trapping of
a three component degenerate Fermi gas was realized [74, 118] and the stabilization
of an SU(3) Fermi gas seems now to be feasible. This success supports the hope for
the realization of SU(3) and SU(4) antiferromagnetism in the future. Our investi-
gation of SU(3) and SU(4) spin chains will bring a new kind of topological phase
transition to light. This phase transition is characterized by an abrupt change of the
confinement forces between the elementary spin excitations: from free elementary
spin excitations to strongly confined spin excitations [62,122].



Chapter 2

Ultracold bosons in a π–flux lattice

2.1 Introduction

The original observation of the phenomenon known as “superfluidity” was made si-
multaneously in liquid 4He in 1938 by two groups, Kapitza in Moscow [82] and Allen
and Misener in Cambridge [16]. At this time, it was already known that liquid he-
lium1 was not observed to freeze under its own vapor pressure. During the 1930s it
became clear that curious things happened at and below a characteristic tempera-
ture (∼ 2.17 K) which was called “lambda temperature”. Both experimental groups
found that below the lambda temperature the liquid flowed so easily that the vis-
cosity would have to be at least a factor of 1500 smaller than in the phase above
the lambda temperature. It was this tremendous difference in the viscosity (or even
the possible absence of viscosity) that brought Kapitza to coin this phenomenon
“superfluidity”. A few months after the experimental observation of superfluidity,
Fritz London came up with a qualitative explanation [99] that is nowadays still valid.
The isotope 4He is composed of an even number of elementary particles (two pro-
tons, two neutrons, two electrons) and thus, the many particle wavefunction of the
system should be symmetric under the exchange of two He atoms. In the language
of statistical physics, 4He atoms obey “Bose–Einstein statistics”. London realized
that the “lambda transition” of 4He might be related with the phase transition of
the noninteracting Bose gas predicted in 1925 by Einstein [45, 46]. Motivated by
a paper by Satyendra N. Bose from 1924 [32], Einstein had studied the thermody-
namic behavior of the noninteracting Bose gas, and had shown that below a certain
temperature (depending on the mass and density of the gas) a macroscopic number
of atoms should occupy a single one–particle state. This peculiar phenomenon is
nowadays called “Bose–Einstein condensation” (BEC). But at the time of Einstein’s
suggestion, the revailing view was that BEC is a pathology of the noninteracting gas
which would disappear in the presence of interactions. Very soon thereafter, Las-
zlo Tisza acted on London’s suggestion by proposing the “two–fluid” model [144].
While the “condensate” behaves completely without friction, the rest of the system

1The production of the light isotope 3He started in the early 1950s, prior liquid helium was
synonymous with 4He.
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behaves like an ordinary liquid. Tisza’s “two–fluid” model contained one remark-
able prediction: the two fluids, i.e., the condensate and the rest, should oscillate out
of phase, which can be seen as a so far unknown type of collective excitations. In
1941, Lev Landau worked out the two–fluid model quantitatively [92]. In his pa-
per, which is a milestone in condensed matter theory, he introduced the concept of
“quasiparticles”. He identified the quasiparticles of a Bose liquid as of two types:
phonons and rotons. While Landau’s two–fluid hydrodynamics provides the concep-
tual framework of superfluidity, it is purely phenomenological in the sense that the
superfluidity itself and the excitations are postulated rather than derived rigorously
from a microscopic theory. Nikolai N. Bogoliubov was the first who investigated in
1947 the interacting Bose system within a microscopic theory [31] introducing the
field of research known today as the “many body problem”. Bogoliubov assumed a
weakly interacting, dilute Bose gas and made a few well–justified approximations,
based on the assumption that the Bose gas undergoes a phase transition into the
Bose–condensed phase. He derived easily the sound wave like excitations for small
momenta, while for large momenta he found the behavior of free particles (instead
of the roton branch postulated by Landau)2. In the 1950s, a better understanding of
the relationship between superfluidity and BEC was developed and Landau’s predic-
tions for the excitations spectrum of 4He was verified. First successful measurements
of the condensate fraction was done.

Much later, the experimental field of dilute atomic gases, starting in the 1970s,
were developed. This field benefited from the new techniques of atomic physics,
magnetical and optical trapping mechanism, and advanced cooling processing. Spin–
polarized hydrogen was the first element which was considered experimentally due to
its light mass. In these experiments, the hydrogen were cooled very close to (but not
below) the BEC transition temperature. In the 1980s laser–based cooling techniques
were used to trap and cool neutral atoms. Alkali atoms were very good candidates, as
their optical transition frequencies are in the range of available lasers. By combining
the various cooling and trapping methods being available, the experimental teams of
Eric Cornell and Carl Wieman at Boulder and Wolfang Ketterle at MIT eventually
succeeded in 1995 in observing BEC in vapors of 87Rb [18] and 23Na [41]. While
the field of cold atomic gases experienced an unprecedented hype, we wish to report
from a particular progress within this field, the achievement of optical lattices [78].
Two counter–propagating laser beams build a standing laser wave which cause an
effective periodic potential for neutral atoms with periodicity of half the laser wave-
length. Applying three of such laser pairs (one for each space direction) yields a
three–dimensional periodic potential, an optical lattice. In 2002, Markus Greiner et
al. demonstrated that a gas of 87Rb atoms, trapped in such an optical lattice and
cooled below the BEC–phase transition, can be driven from the superfluid phase to
a Mott insulator phase by tuning the interaction strength [50,59]. The phenomenon
of BEC turned out to be very robust and is nowadays well–established in atomic
gases both in magneto–optical traps and in optical lattices.

2This problem was later fixed by Lee, Huang, and Yang [96], and Girardeau [57] by extending
Bogoliubov’s original work.
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In certain situations, however, a system does not condense into a single conden-
sate. The physics of condensation can lead to the formation of several condensates,
to situations of fragmented condensation. As we reported above, the very concept
of BEC is the macroscopic occupation of a single–particle state, usually the single–
particle ground state. How does the condensation occur when the single–particle
ground state is degenerate, with two or more states competing for condensation?
How do the bosons distribute themselves in these competing levels? The best pos-
sible answer is that the condensation process, or more precise, the fragmentation
process highly depends on the interplay of degeneracies and interactions [110].

A system which generically possesses degeneracies in the single particle spectrum
is a simple hopping model, i.e., a kinetic energy term in the tight–binding approxi-
mation, on a square lattice subject to a strong magnetic field. For the first time, the
single particle spectrum of this model was discovered by Douglas R. Hofstadter [73].
He considered crystal electrons in a uniform magnetic field and discovered a recur-
sive or fractal structure in the single particle spectrum. The magnetic flux which
passes through a lattice cell, divided by a Dirac flux quantum, yields a dimensionless
parameter α whose rationality or irrationality strongly influences the nature of the
spectrum. For instance, the spectrum for irrational magnetic fields, i.e., irrational
values of α, is a Cantor set, i.e., it is an uncountable but measure–zero set of points.
For rational values of α = p/q, however, the single particle spectrum is q–fold degen-
erate. In the following we will call a lattice, where the flux in units of the Dirac flux
quantum through every lattice cell is of strength α, a “2πα flux lattice”. The Hof-
stadter butterfly, the energy–magnetic field phase diagram for single particle states,
is shown in Fig. 2.1.

Hofstadter originally considered crystal electrons, i.e., fermions, but a single par-
ticle property never depends on statistics3. Thus we know that the single particle
ground state of bosons on a 2πα flux lattice is degenerate for certain rational val-
ues of α. It will be the main concern of this thesis chapter to resolve the following
question which we can formulate in a fundamental and in a more specific way:

• What happens to bosons on a lattice subject to a magnetic field?

• How does the condensation or fragmentation process occur?

Before we will start to resolve these questions [63] in Sec. 2.3 we have to deal with
a very practical problem. The Hofstadter butterfly has so far never been observed
experimentally, as magnetic fields of the order of α = 1 are impossible to realize in
real crystals. For atoms loaded into an optical lattice with lattice constants 1000
times larger than in a real crystal this problem seems to be sorted out. However, the
atoms used in optical lattice experiments must be neutral. The use of charged atoms
would never be stable, any experimental setup would be destroyed by huge Coulomb
forces between the atoms. In a realistic situation, we remain, hence, with uncharged
bosons which do not feel the presence of a uniform magnetic field in the sense of the

3One should always keep in mind that the concept of statistics makes sense not until more than
one particle is considered, even though we are used to speak about one boson or one fermion . . .
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Figure 2.1: The Hofstadter butterfly: the single particle energies are plotted as a
function of the magnetic field (in dimensionless units α) as explained in the text.

quantum mechanical principle of “minimal coupling”. Confronted with this blind
alley, the field of “cold atoms” were responsive to it very creatively. In Sec. 2.2, we
briefly list the most promising proposals how to realize an artificial magnetic field
for bosons in an optical lattice.

This thesis chapter is organized as follows4: after reviewing the experimental
proposals for an artificial magnetic field in Sec. 2.2, we introduce in Sec. 2.3 the
microscopic model which describes bosons in a flux lattice. In the following, we
discuss as a paradigm the case of α = 1/2, i.e., a π–flux lattice. As the interacting
model is not analytically soluble, we aim to derive in Sec. 2.4 an effective model
which we are able to solve. It turns out that this effective model is a realization of
Noziéres Hamiltonian. For repulsive interactions, we find, as a main result, the many
particle ground state to be two–fold degenerate. Each ground state is associated
with an antiferromagnetically ordered current pattern in real space. We confirm in
Sec. 2.4.2, 2.4.3, and 2.6 the validity of this effective model numerically. It turns out
to be an exact description of the microscopic model in the weakly interacting regime.
The current patterns, however, remain for arbitrary filling and repulsive interaction
strength. We briefly review in Sec. 2.5 the phenomenon of fragmentation in BEC

4The main part of the presented results of this thesis chapter (“Cold bosonic atoms in a π–flux
lattice”) is contained in Ref. [63].
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and its relevance to the presented work. In particular, we show that the considered
model with attractive interactions exhibits a fragmented condensate, while the model
with repulsive interactions realizes a Schrödinger–cat. In the conclusion, Sec. 2.7, we
discuss after a concise summary the generalization from π–flux to arbitrary flux.

2.2 Experimental realization of artificial magnetic

fields

A major impediment to study models such as those describing the quantum Hall
effect, is the lack couplings to the neutral atoms in the same way as the electric
and magnetic fields couple to charged particles. In the late 1990s, there were al-
ready several, somewhat limited, implementations of electrical and magnetic fields
for neutral atoms. Experimentalists routinely use the Earth’s gravitational field as
an analog of a uniform electric field [17]. They also study systems in non-inertial
frames: uniform acceleration is equivalent to a constant electric field [102], while
circular motion corresponds to a uniform magnetic field [1, 69, 72, 103]. With the
rise of optical lattice experiments, the creation of artificial magnetic fields available
to neutral atoms loaded into optical lattices has been of great interest. So far, an
artificial magnetic field was not realized in optical lattice experiments. Nonetheless,
in the last years there have been a few promising proposals from theorists which
have shown a path to engineer such magnetic fields. The first proposal goes back to
Jaksch and Zoller [79] and makes use of laser–induced hopping of atoms with two
distinct internal states. Mueller [109] has developed this approach to atoms with
three distinct internal states. A completely different scheme to engineer effective
magnetic fields was suggested by Sørensen, Demler, and Lukin [138]. That work uses
time–dependent hopping matrix elements along with a large oscillating quadrupolar
potential. Meanwhile, the idea of realizing artificial magnetic fields was even ex-
tended to non–Abelian gauge potentials [117]. Most recently, the first experiment
with a rotating optical lattice succeeded. Even though the goal of this experiment
was the demonstration of vortex pinning in an optical lattice, a similar setup could
be used to realize flux lattices, as discussed in this thesis. In the following, we will
focus onto the relation of rotation and availability of a vector potential to neutral
atoms.

2.2.1 Rotation of the optical lattice

As mentioned above, a circular motion corresponds to a uniform magnetic field.
Consider the many–particle Hamiltonian of an atomic gas with arbitrary interaction
in a rotating frame,

H =
∑

p

p2

2m
+
∑

ri,rj

V (ri, rj) − ΩLz (2.1)
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where Ω is the rotation frequency and the rotation axis is assumed to be parallel to
ẑ. By use of the identity

−ΩLz = −ΩL = −Ω(r × p) = −p(Ω × r) ≡ −pA, (2.2)

the Hamiltonian (2.1) is equivalent to

∑

p

(p − A)2

2m
+
∑

ri,rj

V (ri, rj) −
m

2
Ω2
(
x2 + y2

)
(2.3)

where r = (x, y, z)t and the effective vector potential is defined as

A = Ωm





−y
x
0



 = m(Ω × x).

It corresponds to a magnetic field in symmetric gauge, B = B̃z with B̃ = 2Ωm.
The essence is that B̃ ∝ Ω. To compensate the additional last term in Eq. (2.3)
which represents the centrifugal effects of rotation, one assumes an applied confining
potential Vconf = m/2ω2(x2 +y2). For ω = Ω, the centrifugal effect cancels. We shall
therefore use “rotation” and “magnetic field” interchangeably.

In the presence of a lattice, one additionally has to regard lattice potential, trap-
ping potential, and a proper way of expanding the bosonic field operators. In the
following, we will sketch the way from the continuum Hamiltonian to the lattice
Hamiltonian [27, 28] which turns out to be similar to a magnetic Bose–Hubbard
Hamiltonian.

The system we wish to describe is an atomic cloud with fixed number of bosons
rotating with an angular velocity or rotation frequency Ω about the z axis. This cloud
is trapped in a two–dimensional optical lattice corotating with the same frequency
in the presence of an additional superimposed two–dimensional harmonic confining
potential with characteristic frequency ω. The non–rotating Hamiltonian H0 consists
of the kinetic energy term, the harmonic confining potential V t(x), the optical lattice
V latt(x), and a contact interaction with coupling constant g. The effect of rotation
is included by time–independent rotating–frame coordinates. This is done by the
transformation H = H0 −

∫
dxΦ†ΩLzΦ, where Φ is a bosonic annihilation field

operator. The Hamiltonian in the rotating frame coordinates is then given by

H =

∫

dxΦ†
(

− ~
2

2m
∇2 + V latt(x) + V t(x) +

g

2
Φ†Φ − ΩLz

)

Φ, (2.4)

where m is the mass of a single boson. We assume a square lattice potential de-
scribed by V latt(x) = V0(sin

2 (πx/d) + sin2 (πy/d)), the trapping potential has to be
rotationally invariant under rotations around the z axis, V t(x) = m/2ω2r2, where
r = |x|. Now Eq. (2.4) becomes

H =

∫

dxΦ†
(

Π2

2m
+ V latt(x) +

1

2
m
(
ω2 − Ω2

)
r2 +

g

2
Φ†Φ

)

Φ , (2.5)
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where Π = −i~∇ + mA(x) is the covariant momentum and A(x) = x × Ω is the
equivalent of a magnetic vector potential in symmetric gauge stemming from the
rotation. The important step is now to expand the field operators Φ such that it
meets the requirements of large angular velocities, i.e., ~Ω ∼ 0.1ER with the recoil
energy ER = ~

2π2/2md2. For lower angular velocities it is sufficient to retain only
Wannier orbitals W l=0

S (x − xi) constructed from the lowest Bloch band l = 0 [151].
Due to this approximation, the phase description of the single particle wave function
is flat within a particular lattice site with sharp gradients at site boundaries. For
larger rotation frequencies, however, the ΩLz term mixes into higher bands to a
non-negligible extent. This mixing causes the modification of phase structure within
sites. We are able to overcome this problem by using a modified Wannier basis given
by

WR(x − xi) = exp

(

−im
~

∫ x

xi

A(x′)dx

)

W 0
S(x − xi) , (2.6)

where the azimuthal phase gradient within a site is proportional to Ω. We have
chosen xi to coincide with the site center in order to ensure that at x = xi the
Wannier orbital is real, WR(0) = WS(0)5. By means of the modified Wannier basis
set we can express the field operators as

Φ(x) =
∑

i

aiWR(x − xi) (2.7)

where ai is a bosonic annihilation operator at site i. When substituting (2.7) in the
Hamiltonian (2.5) we obtain by use of the tight–binding approximation the following
Bose–Hubbard Hamiltonian which can be seen analogously to that of Bloch electrons
in a magnetic field:

H = −
∑

〈i,j〉
t̃(Ω, ω)

(

a†ie
−iφijaj + h.c.

)

+
∑

i

ǫi(Ω, ω)ni +
U

2
ni(ni − 1) (2.8)

The essence is that the magnetic phases φij are connected with the rotation as

φij =
m

~

∫ xi

xj

A(x′)dx′ =
mΩ

~
(xiyj − xjyi) ∝ Ω. (2.9)

The definitions for t̃ and ǫi are evaluated [28] as

t̃(Ω, ω) = t+
m(Ω2 − ω2)

2
A1 ,

ǫi(Ω, ω) = ε− m(Ω2 − ω2)

2
(r2

i + A2) .

5In Ref. [29] it was shown by means of imaginary–time propagation techniques that the modified
Wannier basis set WR describes the phase gradient within a site better than the regular Wannier
basis WS and captures the for our purposes important parts of the Hilbert space satisfyingly.
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The parameters t and ε are identical to the hopping and onsite zero–point ener-
gies associated with the standard Bose–Hubbard model [50], and are obtained by
evaluating the integrals

t =

∫

dxW ⋆
S(x − xi)

(

− ~
2

2m
∇2 + V latt(x)

)

WS(x − xj) ,

ε =

∫

dxW ⋆
S(x − xi)

(

− ~
2

2m
∇2 + V latt(x)

)

WS(x − xi) .

The modifications to these terms coming from the rotation are proportional to (Ω2−
ω2) and to the overlap parameters defined as

A1 ≡
∫

dxW ⋆
S(x− xi)(x− xi)

2WS(x− xj),

A2 ≡ 2

∫

dxW ⋆
S(x− xi)(x− xi)

2WS(x− xi),

where WS(x− xi) is a one–dimensional Wannier function. Finally, the onsite energy
U is for an s-wave scattering length as given by [78]

U =
4πas~

2

m

∫

dx|WS(x − xi)|4.

Note that the scattering length as can be tuned to negative values by means of a
Feshbach resonance [30, 55, 126] which results in an attractive onsite potential. For
the discussion of the stability of an attractive bosonic gas see Sec. 2.4.

So far we have shown that the rotation of the optical lattice would realize an
effect to the neutral atoms which is identical to the effect of a magnetic field to
charged particles. It sounds impossible to rotate an optical lattice. Nonetheless,
in a recent experiment the JILA group has demonstrated the rotation of an optical
lattice [146]. The experimental setup is shown in Fig. 2.2 (a). A mask with a set
of holes is mounted onto a motor–driven rotary stage, and a laser beam (532nm) is
expanded, collimated, and passed through the mask. After the mask, there are three
beams which are focussed by a convex lens onto the Bose–condensed rotating cloud
of 87Rb.

The interference pattern at the focus constructs a quasi-2D optical lattice. The
geometry and spatial extent of the triangular or the square optical lattice is deter-
mined by the size and layout of the holes of the mask and the focal length of the
second lens. The diameter of the holes in Fig. 2.2 (b) and (c) is φ1 = φ2 = 2.5mm and
d1 = 11.5mm, and d2 = 13.5mm. This results in a lattice constant for the triangular
lattice of 7.8µm and for the square lattice of 7µm [146]. Note that the goal of this
experiment was the pinning of vortices of the vortex lattice (i.e., the rotating BEC)
to columnar sites of the corotating optical lattice. This goal of this experiment is,
hence, very different from our purpose. Nonetheless, in this experiment the rotation



2.3 Magnetic Bose–Hubbard model 19

Figure 2.2: (a) Schematic diagram of the setup for the rotating quasi-2D optical
lattice. Layouts for the masks for a triangular (b) and square (c) optical lattices.
(d) and (e) are pictures of triangular and square optical lattices, respectively. The
figure is taken from Ref. [146].

of an optical lattice is realized. Hence, with the results obtained above we can con-
sider this experiment as the first successful creation of an artificial magnetic field.
The regime which was obtained in this experiment is α ∼ 1, i.e., a flux lattice with a
Dirac flux quantum per lattice cell was realized [135]. The “Bose–Hubbard physics”
breaks down at lattice constants larger than 1 ∼ 2µm, i.e., in this experiment the
Bose–Hubbard model was not realized. In principle, by modifying the mask and the
lens shown in Fig. 2.2, within this experimental setup a lattice constant of about 1µm
might be feasible [135]. In this case, however, α is fifty times smaller than one as the
flux per lattice cell scales obviously with the square of the lattice constant. A fifty
times faster rotation is technically extremely hard to stabilize and control. Imper-
fections of the rotation, e.g., vibrations, have to be controlled much better than in
this experiment. Additionally, the laser intensity V0 has to be increased drastically
to obtain adequate tunneling rates. We wish to emphasize that there are no fun-
damental reasons why an experiment in the Bose–Hubbard regime with sufficiently
fast rotations could not be realizable. There are, however, purely technical reasons
why we have to wait for those experiments.

2.3 Magnetic Bose–Hubbard model

In the previous sections we have mentioned several possibilities how an artificial
magnetic field or vector potential may be realized in optical lattice experiments. We
have figured out that the realization of the magnetic phases Λ in the kinetic energy,

Hkin =
∑

〈i,j〉
−t
(

c†i e
iΛij cj + h.c.

)

, (2.10)
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which represent the artificial magnetic field, could be achieved in principle6. We
further assume a contact or on–site (Hubbard) interaction for the bosons with am-
plitude U which is the natural interaction in optical lattice experiments. Note that
U might be tuned continuously from large negative values to large positive values
by means of a Feshbach resonance [30, 55, 126]. Altogether we arrive the magnetic
Bose–Hubbard model (mBHM) on the square lattice,

HmBHM =
∑

〈i,j〉
−t
(

c†i e
iΛij cj + h.c.

)

+
U

2

∑

i

ni (ni − 1) , (2.11)

where the brackets under the sum indicate nearest neighbor hopping. The bosonic
creation and annihilation operators fulfill the standard commutation relation, [cj, c

†
i ] =

δij , and ni = c†ici counts the boson number on site i. The magnetic phases Λij are
related with the vector potential A as

Λij =
2π

Φ0

∫ i

j

A ds (2.12)

where Φ0 = hc/e is the Dirac flux quantum. We assume an applied vector potential
A of strength α = 1/q being the number of Dirac flux quanta per lattice cell chosen
in Landau gauge,

A(r) =
Φ0

q

1

a2
y x̂, (2.13)

which corresponds to a magnetic field B(r) = −Φ0/(qa
2)ẑ in z–direction. This

causes a total phase of 2π/q, when integrating around a plaquette,
∮

Ads = 2π/q,
and thus gives rise to the name 2π/q–flux lattice. In the following we set the lattice
spacing a to unity. While the ordinary Bose–Hubbard model (BHM) [50, 78] has
only one free parameter t/U , the mBHM has two free parameters, besides t/U the
magnetic field represented by q. In what follows, we focus onto the special case q = 2
where the magnetic field reaches its maximum value7. In Sec. 2.7, we discuss possible
paths to generalize the results we obtained for q = 2 to arbitrary q.

Ultracold bosonic atoms in a π–flux lattice

In the following, we assume the vector potential (2.13) of the strength of half a Dirac
flux quantum per lattice cell, q = 2,

A(r) =
Φ0

2

1

a2
y x̂. (2.14)

Substituting the vector potential (2.14) in the magnetic phases (2.12) , we find in
vertical direction vanishing magnetic phases, Λv = 0, whereas in horizontal direction

6In what follows we do not specify the origin of the magnetic phases and assume that their
realization does not cause additional problems or peculiarities.

7As the magnetic field is proportional to a phase in the Hamiltonian, it possesses a natural 2π
periodicity. In this sense, the magnetic field represented by q = 2, which corresponds to a phase of
π in the Hamiltonian, is the “maximum” magnetic field.
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we find the phases alternating between Λh,1 = 0 and Λh,2 = π. This yields in ev-
ery second “row” a sign–change of the hopping amplitude t as illustrated in Fig. 2.3.
The alternation of the sign of the hopping amplitude in horizontal direction explicitly

r r r r

r r r r

r r r r

r r r r−t
t

t

1

1

2

2

Figure 2.3: The dots correspond to the sites, the lines between the dots to near-
est neighbor bonds. A simple line denotes the hopping amplitude t with positive
sign, while a double line the hopping amplitude with negative sign, −t. The applied
magnetic field causes explicit breaking of translational symmetry in y–direction (de-
pending on the chosen gauge). We label the sublattice with horizontal hopping t by
1 and with horizontal hopping −t by 2. The dashed box indicates a primitive unit
cell.

breaks translation symmetry in y-direction8. In order to restore translational invari-
ance, we introduce two sublattices α = 1 and α = 2 and, hence, double the primitive
unit cell. The new primitive unit cell is illustrated by a dashed box in Fig. 2.3. In the
following we label the primitive unit cell by i and thus an individual site by iα. Note
that a doubled primitive unit cell causes a halved Brioullin zone (BZ). Depending on
the chosen gauge (2.13) the BZ is halved in ky–direction (as illustrated in Fig. 2.4)
and, as a consequence, ky is not a good quantum number anymore. In the following
we denote the in ky–direction halved Brioullin zone as BZ⋆ = [−π, π[× [−π

2
, π

2
[.

The Hamiltonian now reads

Hkin =
∑

〈αi,α′j〉
tαα′ c†iαcjα′ +

U

2

∑

iα

niα(niα − 1) (2.15)

where t11 = t12 = t and t22 = −t. Before we concentrate on the many particle
Hamiltonian, we wish to get some insides by studying the single particle Hamiltonian.
In particular, we should recover its spectrum as the vertical line at α = 1/2 in the
Hofstadter butterfly Fig. 2.1. In order to diagonalize the single particle Hamiltonian,
i.e., the kinetic energy term in (2.15), we Fourier transform it to momentum space
by means of

ciα =

√
2

Ns

∑

k∈BZ⋆

e−ikRiα ckα. (2.16)

8Note that this explicit symmetry breaking depends on the chosen gauge (2.14). Thus we should
think of a broken symmetry in our description rather than in the model itself. As we will see later,
the applied (artificial) magnetic field breaks certain symmetries. We will continue this discussion
when we have have found the ground state of the model.
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(a)r kx

ky
π

π

(b)
r

r
kx

ky

π
2

π

Figure 2.4: (a) Primitive unit cell and the Brillouin zone (BZ) of an ordinary square
lattice. (b) π–flux square lattice where the applied magnetic field causes a doubled
primitive unit cell and a halved Brioullin zone (BZ⋆). See the discussion in the text.

Here Ns is the number of lattice sites and, hence, Ns/2 the number of primitive unit
cells. Riα is the coordinate of the lattice site in the ith unit cell on sublattice α.
Using the relations

∑

j

ei(k−k′)Rjα =
Ns

2
δkk′ and

∑

k∈BZ⋆

=
Ns

2
(2.17)

we obtain

Hkin = −2t
∑

k

(

c†k1, c
†
k2

)

Hk

(

ck1

ck2

)

(2.18)

with
Hk = σ̂z cos (akx) + σ̂x cos (aky), (2.19)

where σx and σz are Pauli matrices. Whereas for an ordinary hopping model without
applied magnetic field the Fourier transform diagonalizes the Hamiltonian, here we
end up with a block–diagonal form of the Hamiltonian. Each block is the two–
dimensional matrix Hk reflecting the fact that the primitive unit cell contains two
lattice sites. We are able to transform from the crystal momentum operators ckα

to band operators bk± belonging to an upper (+) and lower band (−) by a unitary
transformation U such that

Hkin = −2t
∑

k∈BZ⋆

(

c†k1, c
†
k2

)

U tU Hk U tU
(

ck1

ck2

)

=

∑

k∈BZ⋆

(

b†k+, b
†
k−

)

σ̂z2t
√

cos2 akx + cos2 aky

(

bk+

bk−

)

.
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The unitary operator U contains in its rows both eigenvectors of the matrix (2.19).
It is explicitly given by

U =





u−1 (q) u+
1 (q)

u−2 (q) u+
2 (q)



 (2.20)

where

u−1 (q) =
cos (aqx) −

√

cos2 (aqx) + cos2 (aqy)
√

X(q)
(2.21)

u+
1 (q) =

cos (aqx) +
√

cos2 (aqx) + cos2 (aqy)
√

X(q)
(2.22)

u−2 (q) =
cos (aqy)
√

X(q)
(2.23)

u+
2 (q) =

cos (aqy)
√

X(q)
(2.24)

and

X(q) = cos2 (aqy) +

(

cos (aqx) +
√

cos2 (aqx) + cos2 (aqy)

)2

. (2.25)

Finally we obtain the diagonalized single particle Hamiltonian,

H =
∑

k∈BZ⋆

∑

ν∈{+,−}
(εν

k − µ) b†kνbkν (2.26)

with eigenenergies

ε±k = ±2t
√

cos2 (kx) + cos2 (ky). (2.27)

Note that a π–flux lattice has a continuous single particle spectrum between εmin =
−2

√
2t and εmax = 2

√
2t. At ε = 0 there are Dirac points where the upper band ε+

k

and the lower band ε−k touch each other, see Fig. 2.5. As the single particle spectrum
behaves in kx = ky = k direction as ε(k,k) ∼ |k − kD| the spectrum is sometimes
called relativistic or Dirac spectrum.

As a main result, the lower band has two minima, one at kmin = (0, 0) and the
other at kmin = (π, 0) in the Brioullin zone BZ⋆. We have illustrated the two minima
in the following figure with black dots, in the reduced BZ (left) as well as in the
lower single particle band (right):

tt

tt

kx

ky

π
2

π
0

+

π

−

kx

Eky=0
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Figure 2.5: (Color online) Upper and lower band ε±k of the one–particle spectrum
of the BHM on a π–flux lattice. The Brioullin zone in ky–direction is halved as
motivated in Fig. (2.4b). Upper and lower band touch each other at the Dirac points.

As stressed in the introduction, immediately the question appears how the conden-
sation of the many boson system occurs.

As a last consideration of the single particle states, we focus onto the density
distribution in real space. We expect for an ordinary (i.e., no external potential, no
magnetic field etc.) single particle state a homogenous density distribution in real
space. Let |ψ0〉 = c† | 0 〉 be such a single particle state on an arbitrary lattice, then
we expect the expectation value 〈ψ0| n̂i |ψ0〉 to be homogenous, i.e., this expectation
value is identical on every lattice site. For the Bose liquid in the condensed phase,
all particles occupy the lowest single particle state macroscopically (at least at T =
0). This lowest single particle state is usually the momentum eigenstate with zero
momentum, |k = 0〉. All particles are, hence, localized in momentum space at k = 0.
Due to Heisenberg’s uncertainty relation, the particles must be totally delocalized
in real space associated with the “real space density” 〈Ψ0| n̂i |Ψ0〉 = const., where
|Ψ0〉 is the many particle ground state. We conclude that simple BEC is associated
with a homogenous density profile in real space (at least at T = 0). In presence of
π–flux, the density profile of the single particle ground state changes drastically. The
two-fold degenerate ground state of the π–flux lattice is

b†0 | 0 〉 ≡ b†kx=0,− | 0 〉 =
(

−u c†kx=0,1 + v c†kx=0,2

)

| 0 〉 (2.28)

b†π | 0 〉 ≡ b†kx=π,− | 0 〉 =
(

−v c†kx=π,1 + u c†kx=π,2

)

| 0 〉 , (2.29)

where the crystal momentum operators ckα (defined in Eq. (2.16)) and the band
operators bk± are connected by the unitary transformation (2.20). The coefficients
are explicitly given by u = (1 −

√
2)/N and v = 1/N with the normalization

constant N 2 = 2(2 −
√

2). As the single particle groundstates b†0 | 0 〉 and b†π | 0 〉,
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(a) b†0 | 0 〉
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(b) b†π | 0 〉
Figure 2.6: Density distributions of the one–particle ground states (a) b†0 | 0 〉 and
(b) b†π | 0 〉 in position space for the π–flux lattice. The density is strongly varying
between both sublattices. The area of the dots corresponds to |u|2 ≈ 0.15/(Ns/2) or
|v|2 ≈ 0.85/(Ns/2), respectively.

respectively, are linear combinations of the crystal momentum operators belonging
to the sublattices α = 1 and α = 2, we expect a non–uniform density distribution in
real space. In fact, we find

〈 0 | b0 ni,α=1 b
†
0 | 0 〉 = |u|2 ≈ 0.15/(Ns/2)

〈 0 | b0 ni,α=2 b
†
0 | 0 〉 = |v|2 ≈ 0.85/(Ns/2) .

(2.30)

For the second single particle ground state, b†π | 0 〉, we find for the expectation values
the same but interchanged results. The density patterns are illustrated in Fig. 2.6.

As we have seen, in momentum space the kinetic energy term can be diagonalized
by an additional unitary transformation according to the doubled primitive unit cell.
Indeed, the Brioullin zone is halved but we have a lower and an upper band. In order
to investigate the full interacting many body Hamiltonian, we have to transform the
Hubbard interaction into the band operators b†k±. First, we Fourier transform it to
momentum space via (2.16):

Hint =
U

2

Ns/2
∑

i=1

∑

α=1,2

niα (niα − 1)

=
U

Ns

∑

α=1,2

′∑

k , k′ , q

c†k+q,αc
†
k′−q,α

c
k′,α

ck,α (2.31)

The prime at the sum indicates that the summation is restricted to momenta of
the halved Brioullin zone BZ⋆. Now, we have to transform the crystal momentum
operators to band operators by means of the transformation

(

ck,1

ck,2

)

= U t

(

bk,+

bk,−

)

. (2.32)

where U was defined in (2.20). The Hubbard interaction (2.31) in terms of the band
operators is already an expression with many terms and, hence, very unpractical to
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handle. As we are interested in the low–energy behavior of the mBHM, we drop
all terms containing b†k,+ operators, i.e., all operators belonging to the upper band.
Then we end up with an effective interaction,

Heff
int =

U

Ns

′∑

k , k′ , q

A(k,k′, q) b†k+q,−b
†
k′−q,−bk′,−bk,− (2.33)

The factor A(k,k′, q) appears due to the transformation from the crystal momentum
operators to the band operators, it is explicitly given by

A(k,k′, q) =
∑

α=1,2

u−α (k + q) u−α (k′ − q) u−α (k′) u−α (k). (2.34)

The effective interaction (2.33) is still too complicated and cannot solved analytically.
In the following section, we will consider a more simplified version of the effective
interaction. The exact solution of this effective model sheds light on the ground state
properties of the many boson system in the π–flux lattice.

2.4 Effective model

In the previous section, we have investigated the single particle properties of the
π–flux lattice. In this section, we are mainly interested in the properties of the many
boson system. As long as we are considering the non–interacting case (U = 0),
we expect the many particle ground state to be (Nb + 1)–fold degenerate where
Nb is the number of bosons. The Nb + 1 ground states correspond to the states
|Nb, 0〉, |Nb − 1, 1〉, |Nb − 2, 2〉, . . . , and |0, Nb〉. In these kets, the first entry denotes
the number of particles occupying the kx = 0 single particle ground state and the
second entry the number of particles occupying the kx = π single particle ground
state. In the following, we consider the effective Hubbard interaction (2.33) and
keep only the operators belonging to the macroscopically occupied states, i.e., only
terms containing operators at kx = 0 or kx = π, respectively. Doing so, we find the
following effective Hamiltonian

H̃ =
U

Ns

[
3

4

(

b†0b
†
0b0b0 + b†πb

†
πbπbπ

)

+ b†0b0b
†
πbπ +

1

4

(

b†0b
†
0bπbπ + h.c.

)]

. (2.35)

An appropriate basis set is provided by the states

|m〉 ≡ 1
√

(Nb −m)!m!
(b†0)

Nb−m(b†π)m | 0 〉 (2.36)

with m = 0, . . . , Nb. The first three terms in (2.35) are diagonal in this basis while
the fourth and fifth term are scattering elements. The diagonal terms play the role
of a potential,

〈m|
[
3

4

(
b†0b

†
0b0b0 + b†πb

†
πbπbπ

)
+ b†0b0b

†
πbπ

]

|m〉 =
1

2

(

m− Nb

2

)2

+
5Nb(Nb − 5/6)

8



2.4 Effective model 27

The non–diagonal term plays the role of hopping on this virtual chain with Nb + 1
sites. We find

〈m|
[
1

4

(

b†0b
†
0bπbπ + h.c.

)]

|m± 2〉 ≈ 1

4
m (Nb −m). (2.37)

As the effective Hamiltonian (2.35) seems to be insoluble, one might approximate
the hopping (2.37) to be constant. This approximation reduces the effective Hamil-
tonian (2.35) to a harmonic oscillator. When solving this oscillator, the study of its
eigenenergies and eigenfunctions might help to understand the physical properties of
the magnetic BHM at α = 1/2.

At this point, we will dispense with the investigation of this approximate har-
monic oscillator, since we have eventually found the exact solution of the effective
Hamiltonian (2.35). Its spectrum and eigenstates will shed light on the underlying
physical mechanism of the bose liquid in a π–flux lattice.

2.4.1 Exact solution for U > 0 and U < 0

In order to derive the exact solution of the effective model (2.35) we rewrite it as
follows:

H̃Ns

U
=

3

4

(

b†0b
†
0b0b0 + b†πb

†
πbπbπ

)

+ b†0b0b
†
πbπ +

1

4

(

b†0b
†
0bπbπ + h.c.

)

=
1

4

(

b†0
2
+ b†π

2
)(

b0
2
+ bπ

2
)

+
1

2

(

b†0b0 + b†πbπ
︸ ︷︷ ︸

Nb

)2

− 1

2

(

b†0b0 + b†πbπ
︸ ︷︷ ︸

Nb

)

=

(
1√
2

)4 (

b†0 + ib†π

)(

b†0 − ib†π

)(

b0 − ibπ

)(

b0 + ibπ

)

+
Nb(Nb − 1)

2

= c†d†c d +
Nb(Nb − 1)

2

(2.38)

In the new operators c and d, the effective model becomes diagonal. For convenience,
we skip the constant term in (2.38),

H′ =
U

Ns
c†c d†d =

U

Ns
nc nd . (2.39)

This is exactly Noziéres model, see for a discussion Sec. 2.5.1. The new operators are
defined as

c† =
1√
2

(

b†0 + ib†π

)

(2.40)

c =
1√
2

(

b0 − ibπ

)

(2.41)
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d† =
1√
2

(

b†0 − ib†π

)

(2.42)

d =
1√
2

(

b0 + ibπ

)

. (2.43)

They fulfill the standard commutation relations, [c, c†] = 1, [d, d†] = 1, and [c, d†] = 0,
as they are connected with the operators b†0 and b†π by a unitary transformation

T =
1√
2

(
1 i
1 −i

)

.

The eigenstates of our effective model are easily given by

|Nb, m〉 =
1

√

m!(Nb −m)!
c†

m
d†

Nb−m | 0 〉 (2.44)

for m = 0, 1, . . . , Nb. The corresponding eigenenergies are

Em =
U

Ns
m(Nb −m). (2.45)

So far, we have not specified the sign of the interaction parameter U . All results
we have obtained are independent of the sign of U . The spectrum for repulsive
U > 0 is shown in Fig. 2.7 and for attractive U < 0 in Fig. 2.8. The spectrum

NbNb / 20

+
 E

m
 N

s 
/ 

| U
 |

m

repulsive U

Figure 2.7: Spectrum of the effective Hamiltonian (2.35) for repulsive U > 0.

of the repulsive model is linear for small m and small Nb − m. The states with
lowest energy are |Nb, 0〉 and |Nb, Nb〉. The ground state of our model is two–fold
degenerate, independent of Nb being even or odd. The ground state corresponds
to a simple condensate where all particles occupy the single particle state c† | 0 〉,
|Nb, Nb〉, or the single particle state d† | 0 〉, |Nb, 0〉, respectively. The ground states
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of the mBHM at α = 1/2, however, are superpositions of |Nb, Nb〉 and |Nb, 0〉 in
order to be momentum eigenstates:

∣
∣0̃
〉

=
∣
∣ktot

x = 0
〉

=
1√
2

(

|Nb, Nb〉 + |Nb, 0〉
)

(2.46)

|π̃〉 =
∣
∣ktot

x = π
〉

=
1

i
√

2

(

|Nb, Nb〉 − |Nb, 0〉
)

(2.47)

The states
∣
∣0̃
〉

and |π̃〉 are superpositions of two distinct Bose–Einstein condensates.
As a BEC is seen as a macroscopic quantum object, our ground states are superpo-
sitions of macroscopic objects or states. Therefore,

∣
∣0̃
〉

and |π̃〉 are refereed to as
“Schrödinger cat states”.

NbNb / 20

- 
E

m
 N

s 
/ 

| U
 |

m

attractive U

Figure 2.8: Spectrum of the effective Hamiltonian (2.35) for attractive U < 0.

For the effective Hamiltonian (2.35) with attractive interactions U < 0 the situ-
ation changes significantly. The spectrum (2.45) changes its sign, and the resulting
spectrum has the shape of a parabola rather than an inverted parabola, see Fig. 2.8.
The ground state of the attractive model is now given by

|Nb, Nb/2〉 =
1

(Nb/2)!
c†

Nb/2
d†

Nb/2 | 0 〉 . (2.48)

It corresponds to the evenly distributed occupation of the “c–condensate” and the
“d–condensate”. We will say that the attractive model possesses a fragmented con-
densate. We will stress the issue of fragmentation in Sec. 2.5.

The reader may notice that the consideration of a model with attractive inter-
actions is principally delicate. The stability of an attractive Bose gas was discussed
controversly. In the nineties, however, the stability of 7Li which possesses attractive
interactions was predicted for a certain parameter regime [81, 128] and eventually
measured [34,35] (attractive interactions correspond to negative scattering lengths).
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A sufficiently small number of particles and sufficiently weak interactions [81, 128]
are required. The instability to collapse when these conditions are not fulfilled has
also been discussed by several authors [25, 120, 137]. Meanwhile, the use of a Fesh-
bach resonance to tune the scattering length by changing the magnetic field allows
atom–atom interaction from repulsive to attractive9. This was demonstrated in a
85Rb BEC [126]. At a critical value of the scattering length ac < 0, an abrupt
transition was observed in which atoms were ejected from the condensate. Below
ac, the condensate remains stable. Already in 1998, it was pointed out by Wilkin,
Gunn, and Smith that bosonic models with attractive interactions prefer to fragment
rather than condense as repulsive models do [153]. Even though, this discussion was
restricted to atomic gases, for our lattice model with effective magnetic field we find
fragmentation as well. We wish to emphasize that the only requirement for the sta-
bility of attractive Bose models are weak interactions and diluteness of the gas. This
should apply for the magnetic BHM as well. In the two following subsections we will
test the validity of the effective model for repulsive and attractive interactions. We
compare it on small clusters with the original microscopic model (2.11) by means of
exact diagonalization studies.

2.4.2 Gap scaling and comparison with effective model

The effective model (2.35) is a rude approximation of the magnetic BHM (2.11) at
α = 1/2. The main assumption is that for weak interactions the many particle
physics of the magnetic BHM is dominated by the interplay and interaction of the
two macroscopically occupied single particle ground states. The only justification
comes from the experience that a many boson system tends to occupy its single
particle groundstate(s) macroscopically. In what follows, we wish to test the made
approximations. The spectrum of the effective model for repulsive interactions U > 0
was derived in the previous section. The energy gap between the ground state and
the first excited state is

∆ = E1 −E0 =
U

Ns

(
Nb − 1

)
≈ UNb

Ns

(2.49)

where the approximation in (2.49) becomes exact for Nb ≫ 1. The gap in the
spectrum of the effective model should correspond to an energy gap in the spectrum
of the magnetic BHM at ktot

x = 0 or ktot
x = π, respectively, if the effective model

is an adequate description of the magnetic BHM. To test this prediction, we have
performed numerical studies on finite clusters containing 4×4 and 6×6 sites. We have
computed the gap size at ktot

x = 0 for several values of U > 0 and for different particle
numbers Nb. In Fig. 2.9 we have plotted the gap sizes versus UNb/Ns. On the first
view, this seems not to fit very well. However, as we are considering particle numbers
Nb < 10, we are far away from the limit Nb ≫ 1. Hence the approximation in (2.49)
is not valid. Instead, we use the exact result from (2.49). In Fig. 2.10, we have plotted

9Note that a uniform magnetic field is used to tune the scattering length as it is sensitive to the
magnetic field. This has nothing to do with the artificial magnetic field required for the π–flux.
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Figure 2.9: The gap size is plotted vs. interaction U times particle density Nb/Ns.
The pluses corresponds to data points taken from a 4×4 lattice and the squares with
the dot in the middle to data points taken from a 6×6 lattice. Red data corresponds
to Nb = 2, green to Nb = 3, dark blue to Nb = 4, pink to Nb = 5, light blue to
Nb = 6, yellow to Nb = 7, black to Nb = 8, and grey to Nb = 9. The blue solid
line corresponds to the slope of one which is expected from the effective model, see
Eq. (2.49).

the rescaled gap size ∆Nb/(Nb − 1) vs. interaction times density UNb/Ns. Now the
numerical data matches perfectly with the predictions of the effective model. We
conclude that for weak repulsive interactions the effective model (2.35) describes at
least the gap scaling at ktot

x = 0 perfectly. It is worth mentioning that this energy
gap should experimentally be observable within the standard spectroscopy methods.
This energy gap corresponds to a massive mode in the excitation spectrum and is
a single particle excitation rather than a collective excitation. Additionally, the c–
condensate as well as the d–condensate exhibit a gapless Goldstone mode. Within
a Bogoliubov–like approach, we have calculated the low–lying excitation spectrum
and found for small momenta k that the Goldstone mode obeys for small momenta
the dispersion law ǫexc = vc|k| with the critical velocity

vc =
∂εk

∂k

∣
∣
∣
∣
k→0

=

(√
2t U Nc

Ns

) 1
2

. (2.50)

The complete Bogoliubov calculation is presented in Appendix A.2.
Now we turn to the effective model with attractive interactions. Its spectrum

has the minimum (or minima) around m = Nb. We have to distinguish the cases of
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Figure 2.10: The rescaled gap size is plotted vs. interaction U times particle density
Nb/Ns. The original gap size was rescaled by the factor Nb/(Nb − 1) which comes
from Eq. (2.49). The dark blue solid line corresponds to the prediction from the
effective model. The data points are identical to those of Fig. 2.49.

even and odd particle numbers. For even particle numbers we find a finite size gap
between ground state and first excited state as

δeven = ENb
2

±1
− ENb

2

= −|U |
Ns

((
Nb

2
± 1

)(
Nb

2
∓ 1

)

−
(
Nb

2

)2
)

=
|U |
Ns

.

(2.51)

For odd particle numbers we find the finite size gap as

δodd = ENb±3

2

−ENb±1

2

= − |U |
4Ns

(
(Nb ± 3)(Nb ∓ 3) − (Nb ± 1)(Nb ∓ 1)

)

= 2
|U |
Ns

.

(2.52)

We notice that the gap is predicted to be independent of the particle number Nb

apart from the even–odd–alternation. In Fig. 2.11, we show the numerical data taken
from 4 × 4 clusters for various particle numbers. The numerical data fits for small
interactions U perfectly the predicted values. On the 4 × 4 cluster, there is up to
U/t ≈ 0.15 perfect agreement between effective and microscopic model. We find for
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Figure 2.11: The gap size is plotted vs. interaction U/Ns. As predicted by the
effective model, the gap alternates between even and odd particle numbers. The
data points lay on top of each other for different particle numbers. The “even” data
points correspond to Nb = 2, 4, and 6, and the “odd” data points to Nb = 3, 5, and
7. The solid lines represent the predicted values of the effective model.

6 × 6 clusters comparable results, in the weakly interacting regime the numerical
studies confirm the prediction of the effective model perfectly. We conclude that the
effective model (2.35) describes the gap scaling at ktot

x = 0 of the magnetic BHM
at α = 1/2 not only for weak repulsive interactions very well but also for weak
attractive interactions. The reader may notice that the gap would be in case of
repulsive interactions observable via standard spectroscopy methods. The gap of the
attractive model is, however, a finite size gap and physically meaningless. It is useful
only as a test or for comparison, respectively, as it can be “measured” numerically.

2.4.3 Overlap of trial wave functions

The proposed effective model has stood the first test in the previous section. The
next test is much harder. The exact solution (2.38) of the effective model provided us
the eigenstates and, in particular, the ground state wavefunctions. In the following
we will call these ground states of the effective model trial wave functions while the
ground states of the full Hamiltonian exact ground states. We will briefly explain the
explicit construction of the trial wave functions. We start with the single particle
states b†0 | 0 〉 and b†π | 0 〉 defined on a

√
Ns ×

√
Ns square lattice and use them to

construct the single particle states 1√
2
(b†0+ib

†
π) | 0 〉 ≡ |ϕ0〉 and 1√

2
(b†0−ib†π) | 0 〉 ≡ |ϕπ〉.

We obtain the many–particle trial wave function as follows. First, we create the c–
condensate,

∣
∣ΨNb

c

〉
= |ϕ0〉 ⊗ |ϕ0〉 ⊗ · · · ⊗ |ϕ0〉
︸ ︷︷ ︸

Nbtimes

,



34 Chapter 2 Ultracold bosons in a π–flux lattice

and d–condensate,
∣
∣ΨNb

d

〉
= |ϕπ〉 ⊗ |ϕπ〉 ⊗ · · · ⊗ |ϕπ〉
︸ ︷︷ ︸

Nb times

Second, we build superpositions

∣
∣ψtrial

0,Nb

〉
=

1√
2

( ∣
∣ΨNb

c

〉
+
∣
∣ΨNb

d

〉)

, (2.53)

∣
∣ψtrial

π,Nb

〉
=

1

i
√

2

( ∣
∣ΨNb

c

〉
−
∣
∣ΨNb

d

〉)

. (2.54)

The exact ground states are obtained from exact diagonalization of the magnetic
BHM at α = 1/2 with repulsive interactions U on a

√
Ns ×

√
Ns square lattice

with periodic boundary conditions. We denote the two ground states for a given U
by
∣
∣ζU

0,Nb

〉
or
∣
∣ζU

π,Nb

〉
, respectively. The subscripts 0 and π correspond to the total

momentum ktot
x . In Tab. 2.1, we have listed a few overlaps for wavefunctions defined

on a 4×4 lattice. We find grandiose overlaps: for low particle densities the trial wave

Overlaps
〈
ψ0,Nb

∣
∣ζU

0,Nb

〉
for 4 × 4 lattice

U/t Nb =2 Nb =3 Nb =4 Nb =5 Nb =6 Nb =7 Nb =8

10−5 1.0 1.0 1.0 1.0 1.0 1.0 1.0

10−3 1.0 1.0 1.0 1.0 1.0 1.0 1.0

10−2 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.1 1.0 1.0 1.0 1.0 1.0 1.0 0.999

0.2 1.0 1.0 1.0 0.999 0.999 0.999 0.998

0.3 1.0 1.0 0.999 0.998 0.998 0.997 0.996

0.4 1.0 0.999 0.998 0.997 0.996 0.995 0.993

0.5 1.0 0.999 0.998 0.996 0.994 0.992 0.990

0.75 0.999 0.997 0.995 0.992 0.989 0.985 0.981

1.0 0.998 0.996 0.992 0.988 0.983 0.977 0.971

2.0 0.996 0.988 0.977 0.966 0.953 0.939 0.981

5.0 0.986 0.962 0.925 0.899 0.863 0.824 0.781

10.0 0.976 0.933 0.861 0.822 0.761 0.695 0.621

50.0 0.957 0.877 0.742 0.685 0.592 0.490 0.379

∞ 0.950 0.854 0.697 0.633 0.531 0.423 0.306

ν = Nb

Ns
0.125 0.1875 0.25 0.3125 0.375 0.4375 0.5

Table 2.1: Overlaps between trial wave functions and exact ground states of the
magnetic BHM at α = 1/2 for the 4 × 4 lattice.

functions are exact ground states up to interactions U ∼ 0.3. Even for half filling,
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i.e., 8 bosons on the 4 × 4 lattice, we find overlaps at interactions U ∼ 0.3 which
are very close to 1.0. Strong interactions, however, clearly decrease the overlaps and
render the trial wave functions as insufficient description. Particularly the hard–core
limit U → ∞ is not described by the effective model (2.35) anymore. As overlaps
decrease naturally when increasing the system size, it is important to look at larger
clusters. In Tab. 2.2, we have listed the overlaps calculated on a 6 × 6 lattice for
particle numbers Nb = 2, . . . , 6. We notice that the quality of overlaps remains valid

Overlaps
〈
ψ0,Nb

∣
∣ζU

0,Nb

〉
for 6 × 6 lattice

U/t Nb =2 Nb =3 Nb =4 Nb =5 Nb =6

10−5 1.0 1.0 1.0 1.0 1.0

10−3 1.0 1.0 1.0 1.0 1.0

10−2 1.0 1.0 1.0 1.0 1.0

0.1 1.0 1.0 1.0 1.0 1.0

0.2 1.0 1.0 1.0 0.999 0.999

0.3 1.0 1.0 0.999 0.999 0.998

0.4 1.0 0.999 0.999 0.998 0.997

0.5 1.0 0.999 0.998 0.997 0.996

0.75 0.999 0.998 0.996 0.994 0.992

1.0 0.999 0.997 0.994 0.991 0.987

2.0 0.997 0.992 0.984 0.975 0.965

5.0 0.992 0.977 0.957 0.932 0.905

10.0 0.987 0.962 0.928 0.888 0.843

50.0 0.978 0.937 0.881 0.815 0.741

∞ 0.975 0.928 0.862 0.786 0.702

ν = Nb

Ns
0.0556 0.0833 0.111 0.1389 0.1667

Table 2.2: Overlaps between trial wave functions and exact ground states of the
magnetic BHM at α = 1/2 for the 6 × 6 lattice.

on the 6 × 6 lattice. We conclude, that the effective model (2.35) approximates not
only the magnetic BHM at α = 1/2 but also describes the ground state properties
exactly in the weakly interacting regime.

We have also evaluated overlaps between the attractive models. In the weakly
interacting regime we have found excellent overlaps, comparable to those of the
repulsive models. In particular, in the limit of small |U | the trial wave functions
are the exact ground states of the magnetic BHM at α = 1/2. For larger values of
|U |, we have found a sudden decrease of the overlaps. In this regime where |U | > t,
the attractive interactions become dominant and the “Bose–Hubbard physics” breaks
down. Consequently, the effective model fails as a sufficient description in this regime.
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2.5 Fragmentation of BEC

Penrose and Onsager generalized the concept of BEC by defining condensation in
terms of the single particle density matrix [119]

ρ(1)(r, r′) = 〈Ψ†(r)Ψ(r′)〉 (2.55)

where Ψ†(r) creates a scalar boson at position r and 〈· · · 〉 is the usual thermal aver-
age at temperature T . As the matrix ρ(1)(r, r′) is hermitian, it can be diagonalized
as

ρ(1)(r, r′) =
∑

i

ni χ
⋆
i (r

′)χi(r) (2.56)

where the functions χi(r) are a complete orthogonal set and
∑

i ni = N , the total
number of particles. The eigenvalues are ordered such that n0 ≥ n1 ≥ n2 ≥ . . .. Note
that the eigenfunctions χi(r) must not coincide with the single particle eigenstates.
The wavefunctions χi as well as the eigenvalues ni are in general time dependent. For
simplicity, we skip the time dependence. We now state the following definitions [97,
110]:

• If all eigenvalues ni of ρ(1) are of order unity then we say that the system is
normal or not Bose–condensed.

• If there exists exactly one eigenvalue of order N and all other eigenvalues are
of order unity then we say the system exhibits a simple BEC.

• If there are two or more than two eigenvalues of order N and all other eigen-
values are of order unity, then we say the system exhibits fragmented BEC.

The definition implies that in case of simple BEC we can write the single particle
density matrix as

ρ(1)(r, r′) = n0 χ
⋆
0(r

′)χ0(r) + . . .

≡ Ψ(0)⋆(r′)Ψ(0)(r) + . . . ,

where Ψ(0)(r) is often referred to as the macroscopic wavefunction of the system.
As the given definition seems to be abstract we discuss a simple model where both
simple and fragmented BEC appear10 depending on the interactions.

2.5.1 Nozières model

The very basic example of fragmentation goes back to Nozières [110, 113, 114]. We
consider a system of N bosons which might occupy the orbitals 1 and 2. The Hamil-
tonian of Nozières model is simply given by

H =
g

2
a†1a1a

†
2a2 =

g

2
n1n2 (2.57)

10In the brief review of Nozières model and scalar bosons in a double well we follow the excellent
review of Baym et al. [110].
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which is form–equivalent to the effective model (2.39). The eigenenergies of (2.57)
are E = g/2n1n2 with N = n1 + n2, the eigenstates are given by

|f〉 =
1√
n1!n2!

a†1
n1
a†2

n2 | 0 〉 . (2.58)

For repulsive interactions g > 0, the ground state is two–fold degenerate with n1 = N

and n2 = 0 or with n1 = 0 and n2 = N . The ground states are |ψ1〉 = a†1
N
/
√
N ! | 0 〉

and |ψ2〉 = a†2
N
/
√
N ! | 0 〉; these states exhibit simple condensates and the eigenvalues

of the single particle density matrix are N and 0,

ρ(1) = 〈a†µaν〉 = 〈ψ1| a†µaν |ψ1〉 =

(
N 0
0 0

)

= N

(
1
0

)
(
1, 0
)
.

The macroscopic wavefunction of this simple condensate is thus Ψ(0) =
√
N(1, 0)t

(the superscript t stands for transpose). The single particle density matrix of |ψ2〉
has the interchanged eigenvalues than |ψ1〉. It is worth emphasizing that it is the
most convenient property of the single particle density matrix, that one can calculate
it in any basis.

For attractive interactions g < 0 the state with n1 = n2 = N/2 has the lowest
energy. The corresponding ground state,

|F 〉 =
a†1

N/2
a†2

N/2

(N/2)!
| 0 〉 ,

has a fragmented condensate which can be seen by considering the single–particle
density matrix exhibiting two macroscopic eigenvalues:

ρ(1) = 〈a†µaν〉 =
N

2

(
1 0
0 1

)

. (2.59)

To get a better understanding of fragmentation, we consider a more realistic model:
scalar bosons in a double–well.

2.5.2 Scalar bosons in a double–well

In the following, we briefly review a model with a fragmented ground state where
bosons are in a double–well potential with tunneling between the wells. Note that
we follow Baym’s review on fragmentation [110]. The model consists of a tunneling
term between the wells which we label by i = 1, 2. We assume that in each well
is only one relevant state. Bosons within a given well have an onsite interaction U
which can be positive or negative. We take the Hamiltonian to be

H = −t
(

a†1a2 + a†2a1

)

+
U

2

(

n1(n1 − 1) + n2(n2 − 1)
)

, (2.60)

where the bosonic creation operator a†i creates a boson in well i and ni = a†iai counts
the number of bosons being in well i. Note that ni(ni − 1) = a†ia

†
iaiai is the usual



38 Chapter 2 Ultracold bosons in a π–flux lattice

contact oder Hubbard interaction. For a fixed particle number n1 + n2 = N we
rewrite the interaction term as

Hint =
U

4

(

(n1 − n2)
2 +N2 − 2N

)

.

Note that this model, simple as it is, has wide applicability to many physical situa-
tions: atoms in a double–well potential [15,53], internal hyperfine states coupled by
electromagnetic fields [58, 111, 141], atoms in a rotating toroidal trap [147], or wave
packets in an optical lattice [108]. We now construct the exact solution of (2.60). As
we will see, the interaction will cause different types of fragmented states depending
on the sign of the interaction U . The single particle ground state of (2.60) is given
by (a†1 + a†2)/

√
2 with energy −t (we assume throughout the section t to be real and

positive). For the non–interacting system (U = 0) with N bosons, the ground state
is a coherent state

|C〉 =
1√

2NN !

(

a†1 + a†2

)N

| 0 〉

with energy −tN . The single particle density matrix of the non–interacting ground
state |C〉 is given by

ρ
(1)
C = 〈a†µaν〉 =

N

2

(
1 1
1 1

)

= N





1√
2

1√
2





(
1√
2
,

1√
2

)

.

ρ(1) has a single macroscopic eigenvalues N . The non–interacting system exhibits,
hence, a simple BEC with condensate wave function

√

N/2(1, 1)t. Note that we can
rewrite the coherent state |C〉 as follows:

|C〉 =
N∑

µ=0

1√
2NN !

(
N

µ

) (

a†1

)N−µ (

a†2

)µ

| 0 〉

ℓ= N
2
−µ

=

N
2∑

ℓ=−N
2

1√
2NN !

N !
(

N
2
− ℓ
)
!
(

N
2

+ ℓ
)
!

(

a†1

)N
2

+ℓ (

a†2

)N
2
−ℓ

| 0 〉

=

N
2∑

ℓ=−N
2

(

N !

2N
(

N
2
− ℓ
)
!
(

N
2

+ ℓ
)
!

) 1
2

|N/2 + ℓ, N/2 − ℓ〉

≡
N
2∑

ℓ=−N
2

Ψ
(0)
ℓ |ℓ〉 .

The coefficients Ψ
(0)
ℓ are Gaussian distributed,

Ψ
(0)
ℓ =

(

N !

2N
(

N
2
− ℓ
)
!
(

N
2

+ ℓ
)
!

)1
2

≈ e(−ℓ2/N)

(πN/2)
1
4

. (2.61)
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Since the ground state |C〉 is a linear combination of the Fock–states

|n1, n2〉 =
1√
n1!n2!

a†1
n1
a†2

n2 | 0 〉 (2.62)

the number of particles in each well fluctuates. We find the number fluctuations as

〈
(∆n1)

2
〉

= 〈(n1 − 〈n1〉)2〉 =
N

4
.

Now we consider the interacting case and start with U > 0. Repulsive interactions
suppress number fluctuations, meaning that the Gaussian distribution (2.61) of the
coherent state will be squeezed into an even narrower distribution. In the limit of
zero number fluctuations, 〈(∆n1)

2〉 = 〈(∆n2)
2〉 = 0, the ground state of the system

becomes the Fock state

|F 〉 =
a†1

N/2
a†2

N/2

(N/2)!
| 0 〉 . (2.63)

The single particle density matrix ρ
(1)
F = 〈F | a†µaν |F 〉 has two macroscopic eigenval-

ues λ1,2 = N/2, corresponding to independent condensation in each well.
For attractive interactions, U < 0, the potential energy in (2.60) favors a large

number difference in the two wells, |ℓ = N/2〉 ≡ |N, 0〉 and |ℓ = −N/2〉 ≡ |0, N〉
while the hopping favors a Gaussian distribution of number states around ℓ = 0.
The effect of the interaction is then to split the Gaussian peak of the coherent state,
(2.61), into two peaks. The ground state is then a so–called Schrödinger-cat state,

|CAT〉 =
1√
2

(
|N, 0〉 + |0, N〉

)
.

The Schrödinger–cat state is fragmented in the sense that its single–particle density
matrix has two macroscopic eigenvalues identical to that of the Fock state |F 〉. On
the other hand, contrary to the Fock state, it has a huge number fluctuations,

〈
(∆n1)

2
〉

=
〈
(∆n2)

2
〉

=
N2

4
. (2.64)

The double–well example should have demonstrated that the calculation of the single
particle density matrix is not sufficient in order to characterize the type of fragmen-
tation. So far we repeated parts from the excellent review on fragmentation by Baym
et al. [110].

2.5.3 Bosons in a π–flux lattice

Now we apply the acquired knowledge to the bosons in a π–flux lattice. As the ef-
fective model (2.39) is a realization of Noziéres model, we expect a single condensate
for the case of repulsive interactions and a fragmented condensate for the case of at-
tractive interactions. First we consider repulsive interactions U > 0. The eigenstates
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of the effective model (independent of the sign of U) have the form (2.44). Thus we
can easily calculate the single particle density matrix of these states,

ρ(1) = 〈Nb, m| γ†γ′ |Nb, m〉 =

(
m 0

0 Nb −m

)

(2.65)

where γ†, γ′† ∈ {c†, d†}. For the c–condensate (m = Nb) or for the d–condensate
(m = 0), the single particle density matrix has a single macroscopic eigenvalue Nb.
These states (|Nb, Nb〉 and |Nb, 0〉) are clearly not fragmented, they correspond to
a simple BEC. As pointed out in Sec. 2.4 the physical ground states of the effective
model are superpositions of the c– and d–condensate, see (2.46) and (2.47). When
calculating the single particle density matrix within these Schrödinger–cat states,
ρ(1) possesses two macroscopic eigenvalues λ1,2 = Nb/2,

ρ
(1)
Cat =

〈
0̃
∣
∣ γ†γ′

∣
∣0̃
〉

= 〈π̃| γ†γ′ |π̃〉 =





Nb

2
0

0 Nb

2



 . (2.66)

This coincides with numerical studies performed on finite clusters where we calculated
the single particle density matrix

ρ(1)
num. = 〈 c†icj〉

where ci is a bosonic creation operator in real space as defined in Eq. (2.10). Hence,
ρ(1) is a Ns–dimensional matrix where Ns is the number of lattice sites, for our
numerical studies we are restricted to Ns = 36. We have found the spectrum of ρ(1)

exhibiting two macroscopic eigenvalues λ1,2 = Nb/2− ε and Ns − 2 almost vanishing
eigenvalues λ3,...,Ns = O(10−5). The tiny quantity ε is approximately (Ns − 2) 10−5.
This numerical result matches with the result of the effective model (2.66) perfectly.
From the scalar bosons in the double–well, we have learned that the Schrödinger–cat
state has huge number fluctuations. We calculate, hence, these fluctuations and find
the expected huge value,

〈
(nc)

2〉 =
〈
(nd)

2〉 =
N2

b

4
.

Now we consider attractive interactions U < 0. Here we will find a more subtle
situation caused by an “even odd discrepancy”. Analytically, we find for even particle
numbers ordinary fragmentation, for odd particle numbers, however, it turns out that
one fragment contains 3/4 of the particles and the other fragment only 1/4 of the
particles - this somewhat strange fragmentation looks like an artefact. However,
numerically we confirm this analytical prediction within exact diagonalization on
clusters up to 36 sites with periodic boundary conditions (PBCs).

In case of an even particle number Nb the ground state is given by Eq. (2.48),

|Nb, Nb/2〉 = c†
Nb/2

d†
Nb/2 | 0 〉 /(Nb/2)!. The corresponding density matrix is given

by

ρ(1)
even =

( 〈
c†c
〉 〈

c†d
〉

〈
d†c

〉 〈
d†d

〉

)

=

( Nb

2
0

0 Nb

2

)

. (2.67)
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Numerically we find a one–to–one correspondence to this result. The evaluated
number fluctuations in case of attractive interactions are

〈
(nc)

2〉 =
〈
(nd)

2〉 = 0,

we find the same result as for the Fock state in Eq. (2.63). This supports our state-
ment that the attractive BHM at α = 1/2 exhibits a fragmented condensate. In
case of an odd particle number, we have two ground states. The reason is simple: if
one has to evenly distribute N = particles onto two condensates, one ends up with
N/2 particles in each condensate as long as N is even. If one repeats this procedure
with an odd particle number, one finds two possibilities in distributing the particles
evenly onto both condensates: either (N+1)/2 to the first and (N−1)/2 particles to
the second condensate or vice versa. Here we have the same situation. The physical
ground states are then superpositions in order to be momentum eigenstates:

∣
∣ψ1

odd

〉
=

1
√

2
√

Nb+1
2

√
Nb−1

2

(

c†
Nb+1

2 d†
Nb−1

2 + c†
Nb−1

2 d†
Nb+1

2

)

| 0 〉 (2.68)

∣
∣ψ2

odd

〉
=

1

i
√

2
√

Nb+1
2

√
Nb−1

2

(

c†
Nb+1

2 d†
Nb−1

2 − c†
Nb−1

2 d†
Nb+1

2

)

| 0 〉 (2.69)

The corresponding single particle density matrix is given by

ρ
(1)
odd =

( 〈
c†c
〉 〈

c†d
〉

〈
d†c

〉 〈
d†d

〉

)

=

( Nb

2
Nb+1

4

Nb+1
4

Nb

2

)

;

( 3Nb+1
4

0

0 Nb−1
4

)

(2.70)

We find for both ground states two macroscopic eigenvalues, they are, however,
different. In the formal definition of fragmentation, the only requirement was to
have two or more macroscopic eigenvalues. Before we continue this discussion, we
look at the number fluctuations, we find

〈
(nc)

2〉 =
〈
(nd)

2〉 =
1

4
.

Compared to the number fluctuations of a coherent state (〈(n1)
2〉 ∼ N) or even

a Schrödinger–cat state (〈(n1)
2〉 ∼ N2), these fluctuations are very small. Our

result supports, hence, the statement that the condensate is fragmented apart from
the strange “even odd behavior”. We have found a situation which seems to be
highly unphysical, a qualitative difference between even and odd particle numbers
which survives in the thermodynamic limit. Note that this cannot be an artefact
of the effective model, as we find the same discrepancy in our numerical studies
on square lattices with up to 36 sites. Nonetheless, we suggest that in a realistic
situation the system will behave as pointed out for the “even” case. We notice
that fragmentation remains a delicate topic. Summarizing, we have found that the
condensate fragments in the presence of interactions. For repulsive interactions,
the ground state is a Schrödinger cat state. For attractive interactions, the system
exhibits a real fragmented condensate.
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2.6 The current pattern

In the previous sections we have solved an effective model which turned out to de-
scribe the original model, the magnetic BHM subject to π–flux, very well. The results
obtained in Sec. 2.3 appear in the light of the exact results of Sec. 2.4 unsatisfactory.
We wish to emphasize that the results are not wrong. The proceeding in Sec. 2.3
represents an educated guess and all results are correct. Nonetheless, the original
proceeding has concealed the real nature of the ground state of the considered model.
A priori, every other proceeding, however, would have seemed to be arbitrary. Now
we will rectify a few results according to our new insights, i.e., that the physical
unit cell contains a whole plaquette rather than two sites only. These rectifications,
however, shed light on the hidden nature of the ground state of this model. We will
see that for the ground state a global Z2 symmetry is spontaneously broken.

Due to the chosen gauge (2.14) the Hamiltonian (2.11) breaks translational sym-
metry in y–direction. To restore this problem we have doubled the primitive unit cell
now containing two atoms. Consequently, we obtained a halved Brioullin zone and ky

was not a good quantum number anymore, i.e., the y–component of the momentum
operator does not commute with the Hamiltonian. In Sec. 2.4, we have eventually
learned that the many boson system condenses in one of the single particle states
(b†0 ± ib†π) | 0 〉 rather than in b†0 | 0 〉 or b†π | 0 〉, respectively. Obviously, the single par-
ticle states, which will be occupied macroscopically, mix the momenta kx = 0 and
kx = π. Hence, also kx can no longer be a good quantum number. To overcome this
problem we have to double the unit cell again, now containing four atoms, i.e., a
whole plaquette. In opposite to Sec. 2.3 where we introduced two sublattices α = 1
and α = 2, we require now four sublattices α = 1, . . . , 4. The Brioullin zone is,
hence, a quarter of the full Brioullin zone. The single particle creation operator c†

(or d†, respectively) is a linear combination of the crystal zero–momentum operators
on the four sublattices,

c† =











1/2 exp (iπ
8
)

1/2 exp (i3π
8

)

1/2 exp (−iπ
8
)

1/2 exp (−i3π
8

)











T

.











c†k=0,α=1

c†k=0,α=2

c†k=0,α=3

c†k=0,α=4











. (2.71)

Note that all the amplitudes are equal 1/2 corresponding to a homogenous density
profile in real space as expected from a simple BEC. The phases on the four sub-
lattices are different. On sublattice α = 4 the phase is ϕ4 = −3π/8, on sublattice
α = 3 it is ϕ3 = −π/8, on sublattice α = 1 it is ϕ1 = π/8, and on sublattice α = 2
the phase is ϕ2 = 3π/8. Between sublattice α = 2 and α = 4 the π–flux phase is
applied and one can start again on sublattice α = 4 with ϕ4 = −3π/8. The operator
c† hence creates a state with a current going clockwise around the plaquette, from 4
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to 3, from 3 to 1, from 1 to 2, from 2 to 4 and so on, see the following figure:

v

v

v

v

1

2

3

4

A direct consequence of this observation is that for the ground state the whole π–flux
lattice has to be covered with local ring currents. The neighboring plaquettes of a
plaquette with a “+” current, i.e., a current in mathematical positive direction of
rotation, must have “–” currents etc. We expect, hence, a current pattern where
the directions of rotation of the currents are antiferromagnetically ordered. In or-
der to detect the expected current pattern, we have to look at the current–current
correlation rather than the current itself. The ground state of the c–condensate (d–

condensate), c†
N | 0 〉 (d†

N | 0 〉), shows this long range order in the expectation value
of the current operator,

〈
ĵαβ

〉
=

1

i

〈
c†αcβ − c†βcα

〉
. (2.72)

For the physical ground states, however, the current has to be zero, as we have
superpositions of the c– and d–condensates. By superposing the c– and the d–
condensate, “+” and “–” currents cancel out. The figure of merit is the current–
current correlation,

〈

ĵα′β′ ĵαβ

〉

= −
〈(
c†α′cβ′ − c†β′cα′

)(
c†αcβ − c†βcα

)〉

. (2.73)

We apply a particle current on a reference link and detect the response of all other
links. We have computed the current–current correlations within exact diagonaliza-
tion on a 4 × 4 lattice. The result for Nb = 3 bosons and interaction U = 0.1 is
shown in Fig. 2.12. We find an antiferromagnetically ordered current pattern, with
the same absolute value of all correlations (apart from the reference link).

In Tab. 2.3 we have listed the values of current–current correlations for various
parameter settings. As value for the correlations, we have taken the value of the link
which is most distant from the reference link which is normalized to have the value
1.00.

It is the main result of this thesis chapter, that the current pattern of the ground
state is present for arbitrary particle densities and arbitrary repulsive interactions.
We further observe that the values of the correlations start to fluctuate around a mean
value when the interaction U is increased. The ground state in the weakly interacting
regime has the current pattern as well as in the hard-core regime U → ∞. It is one of
the characteristics of these current patterns that the final value of the correlations is
reached within a few sites. In Fig. 2.13 we have shown the current pattern for 6×6 π–
flux lattice with Nb = 2 and U = 0.1. Again we find the long range ordered pattern.
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Figure 2.12: Pattern of current–current correlations of three bosons in a π–flux lattice
was computed within exact diagonalization. The shown square lattice contains 16
sites with imposed PBCs. The reference link (left bottom or left top, respectively)
was normalized to have the value 1.00. The absolute value of the links away from the
reference link is 0.112. The current directions on the plaquettes are alternating in
horizontal and vertical directions. The ground state is, hence, antiferromagnetically
orbital ordered.

We can conclude that this pattern remains in the thermodynamic limit. We wish to
stress again that the pattern remains stable when changing the particle density and
the interaction strength. In particular, the pattern exists in the hardcore limit where
double occupancy in real space is energetically suppressed. Notice that for very large
interactions U the system is expected to be in the Mott insulating phase [59], i.e.,
superfluid order will be absent while the orbital antiferromagnetic order remains.
The current pattern also resolves the question which we addressed at the beginning
of this thesis chapter: which symmetry is broken? Obviously, the broken symmetry
is translation symmetry modulo two lattice spacings, the corresponding group is Z2.
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Current–current correlations

U/t lattice Nb

〈

ĵα′β′ ĵαβ

〉

0.1 4 × 4 3 0.112

0.1 4 × 4 5 0.202

∞ 4 × 4 5 0.184

0.1 4 × 4 8 0.308

∞ 4 × 4 8 0.204

0.1 6 × 6 2 0.027

0.1 6 × 6 3 0.053

0.5 6 × 6 3 0.055

1.0 6 × 6 3 0.056

∞ 6 × 6 3 0.064

Table 2.3: For various interactions strength U/t, particle number Nb, and lattice size
Ns the value of the correlations are shown. The value corresponds to the absolute
value of the link which is most distant from the reference link (1.00).

2.7 Conclusion and Outlook

In this thesis chapter, we have discussed the properties of the many boson system in
a π–flux lattice, a square lattice which is threaded by a very strong magnetic field.
As the bosonic atoms are neutral, we have given an overview of ways how to achieve
artificial or effective magnetic fields for the neutral atoms. We discussed the most
promising candidate, the rotation of the optical lattice in detail. In the following, we
have focussed onto a magnetic field strength such that half a Dirac flux quantum goes
through every plaquette. We eventually obtained an effective model which has taken
into account only operators belonging to the single particle ground states which
might be occupied macroscopically. We have solved this effective model exactly,
the solution provided us information about the nature of this model. We worked
out several properties which we could compare with the full interacting model on
finite clusters by means of exact diagonalization. We have found excellent agreement
between numerical results and predictions of the effective model. Amongst these
predictions, most remarkable is the presence of an antiferromagnetically ordered
current pattern in case of repulsive interactions. In case of attractive interactions,
the net current is zero. This orbital order is stable for arbitrary particle densities and
arbitrary repulsive interactions. We further could demonstrate that the bosons in a
π–flux lattice are one of the rare examples of fragmentation of BEC. For attractive
interactions (which we assumed to be weak to ensure stability of the system) we
found the condensate to be fragmented. For repulsive interactions, however, we have
shown that the ground state is a so–called Schrödinger–cat state.

Throughout the main part of this thesis chapter, we have considered a π–flux
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Figure 2.13: Current–current correlations of one of the ground states of bosons in a
π–flux lattice. The current pattern was evaluated within exact diagonalization of a
6 × 6 cluster with periodic boundary conditions. The particle density is 1/18 and
the interaction is U = 0.1.

lattice. So far it remains an open question, what will happen for bosons on an
2π/q–flux lattice. While the case of non–integer or non–rational q, respectively, is
hardly treatable within our approach, we will give an outlook for what might happen
when q = 3, 4, etc. Note that we consider only repulsive interactions U > 0 in the
following. There are a few possibilities to generalize the q = 2 case to q = 3. We will
first consider the analog of the effective model (2.35). It reads (neglecting additive
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constants)

Hq=3 = 2
√

3
(

b†0b
†
0b2b4 + b†2b

†
2b4b0 + b†4b

†
4b0b2 + h.c.

)

− 4
√

3
(

b†0b0b
†
2b2 + b†2b2b

†
4b4 + b†4b4b

†
0b0

)

,

where the subscripts 0, 2, and 4 denote the momenta kx = 0, kx = 2π
3

, and 4π
3

.
Solving this model exactly would solve the whole q = 3 problem. Alternatively, one
could numerically solve this Hamiltonian, as it represents a special oscillator. This
might shed light onto the nature of its ground state. We further evaluated the full
interacting model numerically. At least for particle numbers Nb = 3n where n is
integer, we found a three–fold degenerate ground state. We further calculated the
one–particle density matrix and found three macroscopic eigenvalues, for Nb = 3n
these macroscopic eigenvalues are Nb/3 = n. Hence, the q = 3 model exhibits a frag-
mented condensate, but it remains unclear, if we have again a Schrödinger cat state
or a real fragmented condensate. Nonetheless, we conjecture that again a global Z3

symmetry is broken. Another way of understanding the q = 3 model is to look at the
current–current correlations. The reader might imagine as a Gedankenexperiment a
current pattern which is at least invariant under translations by three lattice spacings
in x and y direction. Furthermore, this pattern is three–fold degenerate only. This
Gedankenexperiment remains unsolved. Nonetheless, we have computed on a 6 × 6
lattice (imposing PBCs) the current–current correlations for three bosons with weak
interactions U = 0.1. The result is shown in Fig. 2.14.

As expected, there is no current pattern comparable to that of bosons in a π–flux
lattice. However, we see a periodic cell containing 3 × 3 sites where at the edges
the currents are zero. The current on the link in the center of this periodic cell
has the highest absolute value. As expected, we find a physical unit cell containing
32 = 9 lattice sites. Even though, we have no complete understanding of the q = 3
model, we can conjecture, that the model with arbitrary q will exhibit a q–fold
degenerate ground state and a q×q unit cell, i.e., a global Zq symmetry will be broken.
We further assume the ground states to exhibit a fragmented condensate. This
assumptions are supported by numerical preliminary studies for q = 4, 5, 6, and 7.
Furthermore, there are two for experiments relevant questions. First, turning on the
effective magnetic field, i.e., small values of α, has to result in a q–fold fragmentation
of the condensate, which is for q = ∞, i.e., no magnetic field at all, clearly not–
fragmented. We conjecture, that there might be any critical value αc there the simple
condensate splits into a fragmented condensate, be it a real fragmented condensate
or a Schrödinger cat state. Second, by in– or decreasing the effective magnetic field
from α1 = 1/q1 to α2 = 1/q2 where the qi are integer, one passes a regime there a
crossover between the q1 and the q2 phase might occur. Alternatively, there might
be regions between q1 and q2, which are very different from the situations considered
in this thesis chapter.
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Figure 2.14: Current–current correlations of one of the ground states of bosons in a
2π/3–flux lattice. The current pattern was evaluated within exact diagonalization
of a 6 × 6 cluster with periodic boundary conditions. The particle density is 1/12
(Nb = 3) and the interaction is U = 0.1.



Chapter 3

Spinon confinement as origin of
Haldane’s gap

3.1 Introduction

With the rise of quantum mechanics in the late 20’s of the last century [71,131], quan-
tum magnetism emerged as a predominant area of research in theoretical condensed
matter physics. This was to a significant part induced by the notion of the electron
spin, i.e., the magnetically sensitive, internal degree of freedom of electrons, in the
early 20’s, which rendered the classical picture insufficient. In contrast to orbital
angular momentum, which is quantized in integer units of ~ in accordance with the
spatial rotation group SO(3), the internal spin is in accordance with the Lie group
SU(2) quantized in integer units of ~ (the generators of both groups are identical as
SU(2) is locally isomorphic to SO(3)). Ever since the invention of the Bethe ansatz
in 1931 as a method to solve the S = 1/2 Heisenberg chain with nearest-neighbor
interactions [26], spin models in (1+1) dimension, i.e., quantum spin chains, have
been a most rewarding subject of study. Bethe’s work eventually led to the discov-
ery of the Yang-Baxter equation in 1967 [155] and provides the foundation of the
field of integrable models. The notion of integrability rendered a plethora of models
amenable to exact and often rather explicit solution [47, 90]. Quantum spin chains
possess rich and deeply complex physical properties. For example, it took several
decades until Faddeev and Takhtajan [48] discovered in 1981 that the elementary
excitations of the S = 1/2 Heisenberg chain solved by Bethe carry spin 1/2 and not,
as previously assumed, spin 1. The excitations of the spin 1/2 chain hence provide
an instance of fractional quantization, as the Hilbert space for the chain is spanned
by spin flips, which carry spin 1. It was more surprising, when Haldane conjectured
in 1983 that the spin 1 Heisenberg chain has a dramatically different behavior from
the spin 1/2 Heisenberg chain solved by Bethe: Haldane proposed the existence of a
finite energy gap between the ground state and the lowest lying excitation. He fur-
ther proposed that all half–odd–integer spin chains are generically gapless, whereas
integer spin chains possess a gap in the excitation spectrum [8, 51, 67, 68]. This
leads to a strikingly different behavior in the magnetic susceptibility at low temper-
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atures. A gap leads to exponentially decaying spin-spin correlations and as such to
a vanishing susceptibility at temperature T = 0. In contrast, a gapless spectrum is
generically associated with correlations which decay as a power law with the distance,
and a finite susceptibility at low temperatures. Haldane’s at that time astonishing
prediction was confirmed experimentally in the spin 1 materials CsNiCl3 [37] and
Ni(C2H8N2)2NO2(ClO4) which is abbreviated NENP [14,83, 100,125].

Haldane’s prediction based on the mapping from the Heisenberg antiferromag-
net in the large–S limit to the O(3) non–linear σ model which is exactly solvable.
While the Heisenberg antiferromagnet is thus solvable in the large–S limit, Haldane
proposed that the solution remains valid for small values of S [67, 68]. Haldane ar-
gued that chains with integral spin possess a gap in the excitation spectrum while a
topological term renders half–integral spin chains gapless.

In this thesis chapter, we present a picture of the physical mechanism responsible
for the Haldane gap. We further present a consistent approach to figure out whether
or not an antiferromagnetic spin chain with a certain spin representation is critical
or exhibits a gap between ground state and excitation spectrum.

As already mentioned, the elementary excitation of the spin 1/2 Heisenberg model
carries spin 1/2, while the Hilbert space is spanned by spin flips which carry spin 1.
As the spin quantum number sz can be changed by any excitation in integers only,
one will always create pairs of spinons in a realistic situation. The spinons of such
a pair are free in the sense that they do not feel a force confining them together.
The spinons are deconfined and as a consequence, the excitation spectrum is gapless.
As we will see below, this holds for all spin chains with half–integer spin S. In the
spin 1 Heisenberg model, the situation is fundamentally different: the elementary
excitation is still a spinon pair, but now the spinons feel a linear confining force.
When transforming to relative coordinates of the two spinons, one obtains a linear
oscillator describing the spinon–spinon bound state (which corresponds to the spin
1 magnon). The zero point energy of this oscillator coincides with the Haldane
gap. This situation applies to all spin chains with integer spin S. In order to
decide whether or not a confining force between the spinons is present, we consider
the valence bond solid (VBS) state, i.e., a state where the lattice is covered by
local singlet bonds, of the spin representation rather than the original Heisenberg
model. We use an instructive method to illustrate the VBS state and can finally
decide whether the spinons are free or confined. Deconfined spinons result in a
gapless excitation spectrum of the corresponding Heisenberg model, while confined
spinons cause a Haldane gap in the excitation spectrum. The main advantage of
this method is the straightforwardness and the predictive value. To demonstrate
both, straightforwardness and predictive power, we apply our approach to arbitrary
SU(n) spin representation and generalize Haldane’s conjecture which turns out to
be non–trivial. In particular, we find a new type of topological phase transition
from a phase with deconfined spinons to confined spinons. Finally, we confirm both
the generalization of Haldane’s conjecture and our whole approach numerically by
calculating the low energy behavior of the Heisenberg models of all achievable SU(n)
spin representations.
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Our results directly lead to the following observations [122]: If for a given SU(n)
representation (represented by a Young tableau with λ boxes) the ratio λ/n is integral
then the nearest neighbor Heisenberg model is in a massive phase. The associated
energy gap is the Haldane gap. If the ratio λ/n is not integral then the nearest
neighbor Heisenberg model is gapless and critical, the corresponding conformal field
theory (CFT) is expected to be a SU(n)1 Wess–Zumino–Witten non–linear σ model.
Applying a next–nearest neighbor interaction leads for a certain parameter regime
J2/J1 to n–merization, i.e., lattice translation symmetry is broken while the ground
states are invariant under translations by n lattice spacings. If λ and n have a largest
common divisor q 6= n, the Heisenberg model with interactions to the (1 + n/q)-th
neighboring site is expected to undergo a phase transition to a n/q–merized phase
for abnormally small coupling J2 (for the special case n/q = 2, the model does not
n–merize at all; it directly undergoes the phase transition to the n/q–merized phase
already for the J1–J2 model). The origin of this phase transition is, however, not a
frustration effect (as in the spin 1/2 J1–J2 model). Instead, we have found a new
type of topological phase transition: the original representation of the spins per site is
changing to an effective representation placed on n/q adjacent sites. In the effective
model, the representation is characterized by a Young tableau with λ′ boxes, where
λ′ = λn/q. Since the ratio λ′/n is clearly an integer, the effective model is expected
to exhibit a Haldane gap.

This thesis chapter is organized as follows: In Sec. 3.2 we introduce and explain
the concept of spinon confinement. We further discuss the for our purposes important
properties of SU(2) spin chains and, in particular, of SU(2) VBS states. In Sec. 3.3,
we discuss first the experimental relevance of spin chains with a spin symmetry group
different from SU(2). Then we introduce several exact spin models with generalized
spin algebra SU(3), SU(4), and SU(n) whose ground states are VBS states. At the
end of this section we present and proof a general criterion for spinon confinement
which depends on the spin representation only. In Sec. 3.6 we specify our predictions
by studying a certain class of VBS states which yields a non–trivial categoriza-
tion of three different cases: models without spinon confinement, models exhibiting
spinon confinement, and models where the presence of spinon confinement depends
on the range of interactions. Sec. 3.7.2 we argue that besides the obligatory gap
exponentially decaying spin–spin correlations are always present when the spinons
are confined. In particular, we show rigorously that there are certain VBS states
breaking translational symmetry while exhibiting exponentially decaying spin–spin
correlations. In Sec. 3.9 we formulate our conjecture that the Heisenberg models
follow the constructed VBS states concerning spinon confinement, the Heisenberg
model and the corresponding VBS state are in the same universality class. This
yields the surprising situation that there are spin chains where the nearest neighbor
Heisenberg model is critical and gapless, while the next–nearest neighbor Heisenberg
model exhibits spinon confinement and a gap in the excitation spectrum. We will
point out that the situation is totally different from the usual behavior of J1–J2

models. We finally confirm our approach and our conjecture by applying the density
matrix renormalization group (DMRG) to all numerically achievable SU(n) Heisen-
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berg models. We complete this chapter with a conclusion and a discussion about
this work.

3.2 Concept of spinon confinement and valence

bond solids

In this section, we present our approach which is purely heuristic. We will see that
in certain situations a linear confining potential between spinons, the elementary
excitations in antiferromagnetic quantum spin chains, is present. These situations
occur when the spin representation S placed on each site is integral.

To begin with, we consider the antiferromagnetic1 nearest neighbor Heisenberg
model with fundamental representation S = 1/2 which is given by the Hamiltonian

H =
N∑

i=1

SiSi+1 (3.1)

where the spin 1/2 vector operator is defined as S = (Sx, Sy, Sz)T and the spin
operators consists of Pauli matrices, Sα

i =
∑

τ,τ ′=↑,↓ c
†
i,τσ

α
ττ ′ci,τ ′ for α = x, y, z. The

spin operators fulfill the angular momentum commutation relations

[

Sα
i , S

β
j

]

= iδijǫ
αβγSγ

i (3.2)

where we have set ~ ≡ 1. For convenience we introduce spin flip operators S±
i =

Sx
i ± iSy

i and work with {S±, Sz} rather than {Sx, Sy, Sz}. It allows to rewrite
the Heisenberg term as SiSj = 1/2(S+

i S
−
j + S−

i S
+
j ) + Sz

i S
z
j . Note that we assume

throughout the whole thesis periodic boundary conditions (PBC) unless specified oth-
erwise. Even though the Hamiltonian (3.1) is exactly solvable via Bethe ansatz [26]
and maybe the most studied spin Hamiltonian ever, we do not have an intuitive
understanding of the ground state of this model. Note that in one spatial dimension
neither long range order is present nor the classical Néel state ( ↑↓↑↓↑↓↑↓ ) is the
ground state. The Néel state is not even an eigenstate of (3.1)2. The ground state
is actually a quantum disordered spin liquid state.

Instead of the spin liquid state we consider a state vector where neighboring spins
tend to form a local singlet configuration. The state might be illustrated as follows:

d d d d d d d d d d (3.3)

Each circle denotes a spin 1/2 per site and the horizontal lines connecting two spins
denote the antisymmetrical coupling of the two connected spins into a singlet or a

1Throughout this thesis, we are considering antiferromagnetic spin chains only. Also when
generalizing to SU(n), we always assume the prefactor of the Heisenberg model to be positive.

2This can be seen easily: applying S1S2 = 1/2(S+
1 S

−
2 +S−

1 S
+
2 )+Sz

1S
z
2 to the spin configuration

|↑1↓2〉 on adjacent sites, one obtains 1/4 |↑1↓2〉+ 1/2 |↓1↑2〉. The Curie state |↑↑↑↑ . . .〉 is, however,
an exact eigenstate of the antiferromagnetic HM with eigenenergy JN/4.
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valence bond. The cartoon is thus only an abbreviation and the valence bonds may
be expressed by fermionic creation operators,

d d ≡ d d
i i+1

= c†i,↑c
†
i+1,↓ − c†i,↓c

†
i+1,↑ | 0 〉 . (3.4)

Note that the state (3.3) is two–fold degenerate since shifting the cartoon by one
lattice spacing to the right (or to the left, respectively) yields a new state. Shifting
by two lattice spacings to the right or to the left yields, however, the same state.
We label the two ground states |ψ1〉 = | d d d 〉 and |ψ2〉 = | d d d〉. They are
explicitely given by

∣
∣ψ 1

(2)

〉
=
∏

i even
(i odd)

(

c†i,↑c
†
i+1,↓ − c†i,↓c

†
i+1,↑

)

| 0 〉 . (3.5)

Now we construct a Hamiltonian in terms of a projection operator for which |ψ1〉
and |ψ2〉 are the exact and unique ground states. At this point we just assume that
three site interactions are sufficient. On three consecutive sites of the ground states,
there will be always a singlet ( d d ) and an individual spin 1/2 ( d), i.e., 0⊗ 1

2
= 1

2
.

The content of spin representations on three consecutive sites of the ground states
is thus just the doublet representation 1

2
. For arbitrary states, however, the content

on three consecutive sites is given by the tensor product 1

2
⊗ 1

2
⊗ 1

2
= 2 · 1

2
⊕ 3

2
. This

enables us to write a Hamiltonian as the operator projecting onto the subspace with
spin 3/2,

H =
∑

i

aiP3

2

(i, i+ 1, i+ 2)

with arbitrary constant ai > 0. The projection operator has to fulfill P3

2

∣
∣1
2

〉
= 0

and P3

2

∣
∣3
2

〉
=
∣
∣3
2

〉
. A proper choice for this operator is thus given in terms of spin

operators by

P3

2

(i, i+ 1, i+ 2) =
1

3

(

(Si + Si+1 + Si+2)
2 − 3

4

)

.

As the eigenvalue of S2 is S(S+1), one can easily convince oneself that this projector
is zero for total spin S = 1/2 on three consecutive sites and the identity for total
spin S = 3/2. Finally we end up with a spin Hamiltonian (for convenience we choose
ai = 3/4) which was first introduced by Majumdar and Ghosh [104,105] in 1969,

HMG =
∑

i

(

SiSi+1 +
1

2
SiSi+2 +

3

8

)

.

Per construction the Hamiltonian fulfills HMG |ψ1〉 = HMG |ψ2〉 = 0. Note that
the Majumdar–Ghosh (MG) model is a special point in the phase diagram of the
antiferromagnetic J1–J2 model we will discuss later (see Sec. 3.9.1). The only degree
of freedom in this model is the spin. Hence, the only possibility to excite the system
is to break a valence bond. Assuming that the remaining “free” spins can move we
are able to draw a cartoon as follows:
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d d d d d d d d d d d d d d d dt t6 6

|ψ1〉 |ψ2〉 |ψ1〉

What happens is that the freely moving “spin objects” are just domain walls between
the ground states |ψ1〉 and |ψ2〉. In the following, we call this individual spin objects
spinons. Note that the drawn cartoon does not correspond to an exact eigenstate
of the MG Hamiltonian, but we can see the essence of low–lying excitations in this
model: the spinons can move freely through the system – it does not matter whether
or not they are close to each other. We will say that the spinons are deconfined as
there is no confining potential between them. It is worth emphasizing that these
free (or deconfined) spinons are just domain walls between the two ground states,
but domain walls which carry spin. Although the excitation spectrum of the MG
model is separated from the ground states by a gap, we use the above cartoon to
argue that the spectrum of the Heisenberg model (3.1) must be gapless. The gap in
the MG model is due to the breaking of a valence bond which costs a finite energy
and this energy cost remains in the thermodynamic limit. When a valence bond
is once broken, the two resulting spinons can move independently from each other
through the chain. This behavior remains valid in the HM and gives an illustrative
explanation of the the two–spinon continuum which dominates the gapless low energy
spectrum of the HM. Assume, that the first spinon has momentum q1 and the second
has momentum q2. For fixed total momentum of the excitation, q = q1 + q2, the
constituents q1 and q2 must not be fixed. The energy as a function of q1 + q2 is given
by ǫ(q) = π|J |/2(cos q1 + cos q2) and provides, hence, a continuum, see Ref. [56]
for details. The two–spinon continuum which is sketched in Fig. 3.1 dominates the
excitation spectrum of the S = 1/2 HM antiferromagnet.

Figure 3.1: Two–spinon continuum of the antiferromagnetic HM. The spectrum is a
function of q1 + q2, where qi is the momentum of the ith spinon. The picture is taken
from Ref. [56].

So far we have used our approach to argue on a heuristic level that the spin 1/2
HM has a gapless excitation spectrum. Now we present the important step how to
apply our approach to higher dimensional spin representations. Again we will search
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for ground states which consist of local valence bonds only. For S = 1, there are only
two possibilities to obtain such a valence bond covering of the lattice3. One has to
lay a S = 1/2 VBS state, i.e., a MG state, in top of another S = 1/2 VBS state and
to project onto the symmetric representation on each site in order to obtain a spin 1
chain, i.e., S(1

2
⊗ 1

2
) = 1. This yields two possible states illustrated by the following

cartoons.

d d d d d d d d d dd d d d d d d d d d

projection onto S = 1

one site

(3.6)

The first possibility is to take twice the same S = 1/2 VBS state, say ψ1. The result-
ing state must be two–fold degenerate and breaks lattice translational symmetry.

d d d d d d d d d dd d d d d d d d d d

projection onto S = 1

one site

(3.7)

The other possibility is to glue |ψ1〉 and |ψ2〉 together and the resulting unique state
is translational invariant. This state was introduced in 1987 by Affleck, Kennedy,
Lieb, and Tasaki [11]. Meanwhile, this state is called AKLT state4. In the above
cartoons, the circles again represent individual spins S = 1/2, the horizontal lines
denote the antisymmetric coupling between spins and represent thus singlet bonds.
The circles in top of each other mean that two spins with fundamental representation
S = 1/2 are symmetrically coupled into a spin 1 per site. It is worth emphasizing
that in our approach, one has always to consider the most symmetric VBS state for
a given spin representation S, i.e., that the AKLT state (3.7) has to be subject of
consideration rather than the two–fold degenerate dimer states (3.6).

The construction of the spin 1 VBS states was very easy in the cartoon. Now
we wish to demonstrate that the explicit construction of the wave function is just as
easy. For that purpose, we introduce Schwinger bosons.

Schwinger bosons [20,21,136] constitute a way to formulate spin-S representations
of an SU(2) algebra. The spin operators

S+ = a†b, S− = b†a, Sz =
1

2
(a†a− b†b), (3.8)

are given in terms of boson creation and annihilation operators which obey the usual
commutation relations

[
a, a†

]
=
[
b, b†

]
= 1,

[
a, b
]

=
[
a, b†

]
=
[
a†, b

]
=
[
a†, b†

]
= 0.

(3.9)

3The reader might convince himself that there are only the possibilities shown in the cartoons
(3.6) (two–fold degenerate) and (3.7) (unique).

4Affleck et al. called this state valence bond solid state (VBS state). Throughout this thesis, we
will call any state a VBS state as long as only local singlet bonds are present. In particular, we will
consider the MG states as VBS states and also all states which breaks translational symmetry. If
we call a VBS state an AKLT state then this emphasizes translational invariance.
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It is readily verified with (3.9) that Sx, Sy, and Sz satisfy (3.2). The spin quantum
number S is given by half the number of bosons,

2S = a†a+ b†b, (3.10)

and the usual spin states (simultaneous eigenstates of S2 and Sz) are given by

|S, sz〉 =
(a†)S+sz

√

(S + sz)!

(b†)S−sz

√

(S − sz)!
| 0 〉 . (3.11)

In particular, the spin-1/2 states are given by

|↑〉 = c†↑ | 0 〉 = a† | 0 〉 , |↓〉 = c†↓ | 0 〉 = b† | 0 〉 , (3.12)

i.e., a† and b† act just like the fermion creation operators c†↑ and c†↓ in this case. The
difference shows up only when two (or more) creation operators act on the same site
or orbital. The fermion operators create an antisymmetric or singlet configuration
(in accordance with the Pauli principle),

|0, 0〉 = c†↑c
†
↓ | 0 〉 , (3.13)

while the Schwinger bosons create a totally symmetric or triplet (or higher spin if
we create more than two bosons) configuration,

|1, 1〉 =
1√
2
(a†)2 | 0 〉 , |1, 0〉 = a†b† | 0 〉 , |1,−1〉 =

1√
2
(b†)2 | 0 〉 . (3.14)

Using the SU(2) Schwinger bosons, we may rewrite the Majumdar–Ghosh states
(3.5) as

∣
∣ψ 1

(2)

〉
=
∏

i even
(i odd)

(

a†ib
†
i+1 − b†ia

†
i+1

)

| 0 〉 ≡ Ψ
even
(odd)

[
a†, b†

]
| 0 〉 . (3.15)

In the cartoon we could glue together two MG states and ask for the symmetric
projection on each site. In terms of Schwinger bosons, we can just multiply both
MG states and the Schwinger bosons ensure the symmetric projection automatically5.

|ψAKLT〉 =
∏

i

(

a†ib
†
i+1 − b†ia

†
i+1

)

| 0 〉 = Ψeven
[
a†, b†

]
· Ψodd

[
a†, b†

]
| 0 〉

=
∣
∣
∣

c c c c c c c c c
c c c c c c c c c

projection onto spin S = 1

〉

(3.16)

5We further wish to mention that this formalism allows us to write down all SU(2) VBS states

easily as |ψSU(2)
(m,n)〉 ≡ |(m,n)〉 = (Ψeven

[
a†, b†

]
)m(Ψodd

[
a†, b†

]
)n | 0 〉 with the constraint that m+ n =

2S. For |(1, 0)〉 and |(0, 1)〉 we find the MG states, while we recover the spin 1 dimer states for
|(2, 0)〉 and |(0, 2)〉. The spin S AKLT states are given by |(S, S)〉.
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AKLT also introduced a parent Hamiltonian which was constructed similarly to
the MG-Hamiltonian. The idea is the following: due to the translational symmetry
of the AKLT state we assume that nearest neighbor interactions are sufficient to
describe this state where only the following situation occurs:

d dd d ≡ d dd d =
1

2
⊗ 0 ⊗ 1

2
= 0 ⊕ 1.

When looking at two adjacent sites of the AKLT state, only the spin representations
0 and 1 are present while on two adjacent sites of an arbitrary spin 1 state the spin
representations 1⊗1 = 0⊕1⊕2 are present. The sum over the projection operator
P2(i, i + 1) which projects onto the spin 2 subspace on adjacent sites annihilates
the AKLT state while all other possible states are lifted to a finite energy since the
projection operator has to fulfill

P2

∣
∣

d dd d
〉

= 0 and P2

∣
∣

d dd d
〉

=
∣
∣

d dd d
〉
.

A proper choice of the projection operator in terms of spin 1 operators is given by

P2(i, i+ 1) =
1

24

(

(Si + Si+1)
2 − 2

)(

(Si + Si+1)
2
)

.

Note that the spin 1 operators S±
i and Sz

i consists now of three–dimensional matrices
rather than two–dimensional Pauli matrices. The parent Hamiltonian is finally given
by

HAKLT =
∑

i

2P2(i, i+ 1) =
∑

i

(

SiSi+1 +
1

3
(SiSi+1)

2 +
2

3

)

(3.17)

and annihilates the AKLT state, HAKLT
∣
∣

d d dd d d
〉

= 0. The only possibility to
excite the system is again the breaking of a valence bond. When we do so and pull
the remaining spinons apart we obtain the following cartoon situation6:

d d d d d d d d d d d d d dd d d d d d d d d d d d d dt t6 6

︸ ︷︷ ︸

distance ∝ energy cost

Note that this cartoon is neither an exact eigenstate of HAKLT nor the spinons are
localized at a certain site, nonetheless, the essence what spinon confinement means

can be well understood. As pointed out above, whenever the configuration | d dd d 〉
occurs, the projection operator P2 lifts the state to higher energy. In the cartoon,
this situation occurs exactly once between the two spinons (apart from the two
sites where the spinons are). Now it is obvious that pulling apart the two spinons
from each other results in additional energy costs which are proportional to the
distance of the two spinons. Between the spinons, there is a string (the AKLT-
cartoon makes this string visible) which is energetically unfavorable. We say, hence,

6The cartoon and the corresponding idea was for the first time mentioned in Ref. [61]



58 Chapter 3 Spinon confinement as origin of Haldane’s gap

that there is a linear confinement force between both spinons which cause that the
two spinons are relatively close together. This total object, i.e., the two spinons
and “something inbetween”, is in the literature usually refered to as the spin 1
magnon [56]. In our understanding, however, is the magnon nothing but the two
confined spinons; we say that spinon confinement is present in the AKLT chain [62].
Finally we have to explain why spinon confinement is the origin of Haldane’s gap.
The idea is very illustrative: we transform the coordinates of the two spinons to
center–of–mass and relative coordinates. Then we consider the relative motion of
the two spinons and obtain a linear oscillator, as there is a linear confining potential
between the spinons. The potential is V (x) = Fconf |x| where x is the distance between
the spinons, and the oscillator might be solved exactly. The zero energy of this linear
oscillator corresponds to the Haldane gap. Finally we argue that the S = 1 HM must
also have a gap in the spectrum since the spinons are still confined.

At this point, the mindful reader will have noticed that the connection between
the AKLT model and the S = 1 HM is different from the connection between the
S = 1/2 HM and the MG model. When adding a biquadratic term to the S = 1
HM, α(SiSi+1)

2, and increasing α from zero to 1/3, one reaches the AKLT model.
Both models are continously connected, there is no qualitative change concerning
gap, spin–spin correlations etc. and, in particular, both models are in the same
phase. When adding to the S = 1/2 HM a next–nearest neighbor term, βSiSi+2,
and increasing β from zero to 1/2, one reaches the MG point. While for β = 0 the
system is in a critical spin liquid phase it undergoes a continous phase transition7

to a dimerized phase at βc = 0.2411 [44, 115]. While the correlations decay below
βc with a power law, they decay much faster above the transition and abruptly
at βMG = 1/2. This can be understood by considering Eq. (3.3) which illustrates
β = 1/2: the dimers are totally uncorrelated with each other and the correlations
are zero when the distance becomes larger than two lattice sites. As we have seen,
the situations between Heisenberg model and its corresponding VBS model might be
very different, but presence or absence of spinon confinement remains unchanged in
HM and VBS models. This statement is purely heuristic and as such it is our main
conjecture.

When we apply our method to higher representations of SU(2) we recover the
well–known result predicted by Haldane that spin chains with integer spin S exhibit
spinon confinement while spin chains with half–integer spin S support deconfined
spinon excitations. Note that this statement is fully consistent with Haldane’s orig-
inal work even though he never formulated his conjecture in the context of spinon
confinement. About ten years ago, there were a few attempts to describe the gapped
phase in spin chains within a similar concept: Affleck [9] mentioned soliton confine-
ment as origin of the gapped phase in the alternating spin 1/2 chain. This concept
was extended by Augier et al. [22] and Sørensen et al. [139]. A similar concept was
followed in Brehmert et al. [36] where generalized spin 1/2 ladders and their relation
to the Haldane phase was studied by means of two–spinon “composite–particles”.

In the last 25 years, spin S chains were extensively studied by means of exact

7The phase transition is of Kosterlitz–Thouless type.
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analytical methods, numerical simulations, and experiments. Thus it is very difficult
to discover new physics related to Haldanes conjecture. One can only test whether
or not a theory or an approach explaining the mechanism of Haldane’s gap fits the
analytical, numerical, and experimental results. Frankly speaking, a theory has only
to reproduce that half–odd–integral spin chains are gapless while integral spin chains
are gaped. To overcome this dilemma, we introduce several exact VBS models where
the “spin group” SU(2) is replaced by SU(n), n = 3, 4, . . .. We then apply our
approach in order to decide whether or not the spinons are confined in these models.
We predict the corresponding Heisenberg models to behave accordingly.

3.3 Exact SU(n) models

3.3.1 Motivation and Experimental relevance

The motivation to discover the wide field of SU(n) spin chains is at least two–fold.
First, more than 25 years later, the generalization of Haldane’s original conjecture
to SU(n) spin chains is still an open problem8. There have been a few attempts by
Affleck [4–7] and Affleck and Lieb [13], however, they never completed the classifica-
tion of all SU(n) representations. Second, with the development of ultracold atom
gases in the last decade, spin chains with a spin symmetry beyond SU(2) becomes
experimentally relevant. The reader may notice that first experiments with three
species Fermi gases have succeeded [123]. In these experiments with 40K, the third
state representing the third species was used for some thermometry only as a tool.
In principle, the symmetry could be tuned close to the SU(3) symmetric point. This
is challenging, but already an approximate SU(3) symmetry is sufficient to describe
SU(3) physics [107]. It is unresolved, however, whether it is possible to have a stable
enough three species mixture near a Feshbach resonance with 40K [124]. Further-
more, the stability of a three species mixture was demonstrated most recently in a
gas of 6Li atoms [74, 118]. In these experiments, the three lowest hyperfine states
were equally populated (by means of radio–frequency transitions) and the pairwise
scattering lenghts between the three states were tuned across the Feshbach reso-
nances. In the limit of large magnetic fields, all scattering lengths asymptote to the
triplet scattering lengths. In this limit, the model should become invariant under
global SU(3) transformations.

In the following, we wish to describe on a more sophisticated level how to realize

8The reader may notice that the group SU(2) is isomorphic to the symplectic group SP(2). The
difference for n > 2 is that one can always couple two SP(n) spins into a singlet, while this is in
general not possible for two SU(n) spins. Hence, we could generalize quantum spin chains to SP(n)
rather than SU(n). In fact, we have recently proposed SP(n) dimer states as well as SP(n) VBS
states [134] which reduce for n = 2 to the MG states and the spin 1 AKLT states, respectively.
Nonetheless, the consideration of gapped and gapless models in the context of spinon confinement
turned out to be trivial. We wish to refer the interested reader to Ref. [134]. As SU(2) is also
locally isomorphic to SO(3), one could generalize to SO(n) spin chains [145]. In this thesis, we will
restrict ourself to SU(n) generalizations, as it appears to us as the most exciting and challenging
generalization.
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Figure 3.2: Effective lifting of the F z = −1
2

state.

a three species Fermi gas in principle [62,156]. In a most naive approach, one might
expect to realize an SU(3) spin by using atoms with three internal states, like an
atom with spin S = 1. If we now were to interpret the Sz = +1 state as SU(3) spin
“blue”, the Sz = 0 state as ”red”, and the Sz = −1 state as “green”, however, the
SU(3) spin would not be conserved. The SU(2) algebra would allow for the process
|+1,−1〉 → |0, 0〉, which in SU(3) language corresponds to the forbidden process
|b, g〉 → |r, r〉.

A more sophisticated approach is hence required. One way to obtain a system
with three internal states in which the number of particles in each state (i.e., of each
color) is conserved is to manipulate an atomic system with total angular momentum
F = 3/2 (where F = Sel +Lorb +Snuc includes the internal spin of the electrons, the
orbital angular momentum, and the spin of the nucleus) to simulate an SU(3) spin.
The important feature here is that the atoms have four internal states, correspond-
ing to F z = −3

2
,−1

2
,+1

2
,+3

2
. For such atoms, one has to suppress the occupation

of one of the “middle” states, say the F z = −1
2

state, by effectively lifting it to a
higher energy while keeping the other states approximately degenerate. This can be
accomplished through a combination of an external magnetic field and two carefully
tuned lasers with frequencies Ω1 and Ω2, which effectively push down the energies of
the F z = −3

2
and the F z = +1

2
states by coupling these states to states of (say) the

energetically higher F = 5/2 multiplet (see Fig. 3.2). At sufficiently low tempera-
tures, we are hence left with a system with three internal states F z = −3

2
,+1

2
,+3

2
,

which we may identify with the colors “blue”, “red”, and “green” of an SU(3) spin.
In leading order, the number of particles of each color is now conserved, as required
by SU(3) symmetry. For example, conservation of F z forbids processes in which
a “blue” and a “green” particle turn into two “red” ones, |b, g〉 → |r, r〉. Higher
order processes of the kind |b, g, g〉 → |r, r, r〉 are still possible, but negligible if the
experiment is conducted at sufficiently short time scales.

If one places fermionic atoms such as 6Li with an artificial SU(3) spin engineered
along the lines of this or a related proposal in an optical lattice and allows for a weak
hopping of the atoms on the lattice, one has developed an experimental realization
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of an SU(3) Hubbard model. If the energy cost U of having two atoms on the same
lattice site is significantly larger than the hopping t, and the density is one atom per
site, the system will effectively constitute an SU(3) antiferromagnet. The dimension
of this antiferromagnet will depend on the optical lattice, which can be one-, two-,
or three-dimensional.

Apart from this idea, there was a recent proposal to realize an approximate
SU(4) symmetry within cold atoms experiments with spin 3/2 atoms [150,154]. The
SU(4) symmetry should be reached by fixing the ratio of four effective spin 3/2
particles per site. Assuming one would confine eight particles per site, one effectively
obtained the antisymmetric representation 6 of SU(4). Replacing the SU(4) fermions
in this experiment by SU(4) bosons, one would obtain an effective representation
10 on each lattice site. These proposed cold atoms experiments might sound as
being far away or even unrealistic. The simple understanding of SU(3) and SU(4)
spin representations, however, is definitely important for coming discussions and
proposals. In the following, we will introduce several exact SU(3) and SU(n) spin
models [62, 64] in order to apply our approach and test whether or not the models
exhibit spinon confinement.

3.3.2 SU(3) Trimer chain

Consider a chain with N lattice sites, where N has to be divisible by three, and
periodic boundary conditions (PBCs). On each lattice site we place an SU(3) spin
which transforms under the fundamental representation 3, i.e., the spin can take the
values (or colors) blue (b), red (r), or green (g). The trimer states are obtained by
requiring the spins on each three neighboring sites to form an SU(3) singlet, which
we call a trimer and sketch it by c c c . The three linearly independent trimer
states on the chain are given by

∣
∣
∣ψ

(µ)
trimer

〉

=







| c c c c c c 〉 ≡
∣
∣
∣ψ

(1)
trimer

〉

,

| c c c c c c 〉 ≡
∣
∣
∣ψ

(2)
trimer

〉

,

| c c c c c c 〉 ≡
∣
∣
∣ψ

(3)
trimer

〉

.

(3.18)

Introducing operators c†iσ which create a fermion of color σ (σ = b, r, g) at lattice
site i, the trimer states can be written as

∣
∣
∣ψ

(µ)
trimer

〉

=
∏

i

( i−µ
3

integer)

( ∑

(α,β,γ)=
π(b,r,g)

sign(π) c†i α c
†
i+1 β c

†
i+2 γ

)

| 0 〉,

where µ = 1, 2, 3 labels the three degenerate ground states, and i runs over the
lattice sites subject to the constraint that i−µ

3
is integer. The sum extends over all
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six permutations π of the three colors b, r, and g, i.e.,

∑

(α,β,γ)=π(b,r,g)

sign(π) c†i α c
†
i+1 β c

†
i+2 γ = c†i bc

†
i+1 rc

†
i+2g + c†i rc

†
i+1gc

†
i+2b

+ c†i gc
†
i+1bc

†
i+2 r − c†ibc

†
i+1gc

†
i+2 r − c†i gc

†
i+1 rc

†
i+2b − c†i rc

†
i+1bc

†
i+2g.

The SU(3) generators at each lattice site i are in analogy to the SU(2) case defined
as

Ja
i =

1

2

∑

σ,σ′=b,r,g

c†iσλ
a
σσ′ciσ′ , a = 1, . . . , 8, (3.19)

where the λa are the Gell-Mann matrices (see App. B.2.4). The operators (3.19)
satisfy the commutation relations

[
Ja

i , J
b
j

]
= δij f

abcJc
i , a, b, c = 1, . . . , 8, (3.20)

(we use the Einstein summation convention) with fabc the structure constants of
SU(3) (see App. B.2). We further introduce the total SU(3) spin of ν neighboring
sites i, . . . , i+ ν − 1,

J
(ν)
i =

i+ν−1∑

j=i

J j , (3.21)

where J i is the eight-dimensional vector formed by its components (3.19). The
parent Hamiltonian for the trimer states (3.19) is given by

Htrimer =
N∑

i=1

((

J
(4)
i

)4

− 14

3

(

J
(4)
i

)2

+
40

9

)

. (3.22)

The J iJ j terms appear complicated in terms of Gell-Mann matrices, but are rather
simply when written out using the operator Pij , which permutes the SU(n) spins
(here n = 3) on sites i and j,

J iJ j =
1

2

(

Pij −
1

n

)

. (3.23)

Eq. (3.23) reduces for n = 2 to the famous Dirac identity [43]. Note that the
Heisenberg terms is in analogy to SU(2) given by J iJ j =

∑8
a=1 J

a
i J

a
j .

In the following, we make extensive use of SU(n) representation for n > 2. We
will just label them “m” where m is the dimension of the representation. In some
cases, we give additionally the Dynkin labels of the representation, at least when
we introduce a representation for the first time. We refer the reader to App.B.2 for
details.

We will now proceed with the verification of the trimer Hamiltonian (3.22). Since
the spins on the individual sites transform under the fundamental representation 3,
the SU(3) content of four sites is

3 ⊗ 3 ⊗ 3 ⊗ 3 = 3 · 3 ⊕ 2 · 6̄ ⊕ 3 · 15 ⊕ 15′, (3.24)
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i.e., we obtain representations 3, 6̄, and two non-equivalent 15-dimensional represen-
tations with Dynkin coordinates (2, 1) and (4, 0), respectively. All these represen-
tations can be distinguished by their eigenvalues of the quadratic Casimir operator,

which is given by
(

J
(4)
i

)2

if the four spins reside on the four neighboring lattice sites

i, . . . , i+ 3.
For the trimer states (3.18), the situation simplifies as we only have the two

possibilities
c c c c =̂ 1 ⊗ 3 = 3,

c c c c =̂ 3̄ ⊗ 3̄ = 3 ⊕ 6̄,

which implies that the total SU(3) spin on four neighboring sites can only transform
under representations 3 or 6̄. The eigenvalues of the quadratic Casimir operator for
these representations are 4/3 and 10/3, respectively. The auxiliary operators

Hi =

((

J
(4)
i

)2

− 4

3

)((

J
(4)
i

)2

− 10

3

)

(3.25)

hence annihilate the trimer states for all values of i, while they yield positive eigen-
values for 15 or 15′, i.e., all other states. Summing Hi over all lattice sites i yields
(3.22). We have numerically confirmed by exact diagonalization of (3.22) for chains
with N = 9 and 12 lattice sites that the three states (3.18) are the only ground
states. In Fig. 3.3 we have shown the spectrum of the trimer model on a chain with
N = 18 sites [121].
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Figure 3.3: Spectrum of the trimer model (3.22) on a chain with N = 18 sites. The
zero energy ground states (labeled by thick lines in the spectrum) are at k = 0, 2π

3
,

4π
3

in the Brioullin zone.

Elementary excitations

Before we will consider the cartoon for the trimer model and decide whether or not
spinon confinement is present, we will investigate the low–lying excitations of (3.22),
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J J

J J J

J J J J

(a)

J J

J J

J J J

J
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(b)

Figure 3.4: Couplings used in the numerical studies to create (a) the localized rep.
3 trial state and (b) the localized rep. 3̄ trial state.

the SU(3) spinons. In analogy with the MG model, it is evident that the SU(3) spinon
or “coloron” excitations correspond to domain walls between the degenerate ground
states9. For the trimer model, however, there are two different kinds of domain walls,
as illustrated by:

c c c c3 c c c (3.26)

c c c c3̄ c c c c (3.27)

The first domain wall (3.26) connects ground state µ to the left to ground state µ+1
to the right, where µ is defined modulo 3 (see (3.19)), and consists of an individual
SU(3) spin, which transforms under representation 3. The second domain wall (3.27)
connects ground state µ with ground state µ+2. It consists of two antisymmetrically
coupled spins on two neighboring sites, and hence transforms under representation
3̄. As we take momentum superpositions of the localized domain walls illustrated
above, we expect one of them, but not both, to constitute an approximate eigenstate
of the trimer model. The reason we do not expect both of them to yield a valid
excitation is that they can decay into each other, i.e., if the rep. 3 excitation is valid
the rep. 3̄ domain wall would decay into two rep. 3 excitations, and vice versa. The
question which of the two excitations is the valid one, i.e., whether the elementary
excitations transform under 3 or 3̄ under SU(3) rotations, can be resolved through
numerical studies. We will discuss the results of these studies now.

The rep. 3 and the rep. 3̄ trial states require chains with N = 3 · integer + 1
and N = 3 · integer + 2 sites, respectively; we chose N = 13 and N = 14 for our
numerical studies. To create the localized domain walls (3.26) and (3.27), we numer-
ically diagonalized auxiliary Hamiltonians with appropriate couplings, as illustrated
in Fig. 3.4. From these localized excitations, we constructed momentum eigenstates
by superposition, and compared them to the exact eigenstates of our model Hamil-
tonian (3.22) for chains with the same number of sites. The results are shown in
Tab. 3.1 and Fig. 3.5 for the rep. 3 trial state, and in Tab. 3.2 and Fig. 3.5 for the
rep. 3̄ trial state.

The numerical results clearly indicate that the rep. 3̄ trial states (3.27) are valid
approximations to the elementary excitations of the trimer chain, while the rep. 3
trial states (3.26) are not. We deduce that the elementary excitations of the trimer
chain (3.22) transform under 3̄, that is, under the representation conjugated to the

9The SU(3) spinon was in Refs. [132, 133] called coloron. In the following sections, we will use
“coloron” and “SU(3) spinon” synonymously.
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mom Etot % over-
[2π/N ] exact trial off lap

0 2.9735 4.5860 54.2 0.9221
1, 12 6.0345 10.2804 70.4 0.5845
2, 11 9.0164 17.2991 91.9 0.0
3, 10 6.6863 13.1536 96.7 0.0
4, 9 3.0896 5.0529 63.5 0.8864
5, 8 4.8744 7.5033 53.9 0.8625
6, 7 8.5618 16.6841 94.9 0.1095

Table 3.1: Energies of the rep. 3 trial states (3.26) in comparison to the exact
excitation energies of the trimer model (3.22) and their overlaps for an SU(3) spin
chain with N = 13 sites.

mom Etot % over-
[2π/N ] exact trial off lap

0 2.1013 2.3077 9.8 0.9953
1, 13 4.3677 4.8683 11.5 0.9864
2, 12 7.7322 8.7072 12.6 0.9716
3, 11 6.8964 7.7858 12.9 0.9696
4, 10 3.2244 3.5415 9.8 0.9934
5, 9 2.2494 2.4690 9.7 0.9950
6, 8 5.4903 6.1016 11.1 0.9827
7 7.4965 8.5714 14.3 0.9562

Table 3.2: Energies of the rep. 3̄ trial states (3.27) in comparison to the exact
excitation energies of the trimer model (3.22) and their overlaps for an SU(3) spin
chain with N = 14 sites.

original SU(3) spins localized at the sites of the chain. Using the language of colors,
one may say that if a basis for the original spins is spanned by blue, red, and green,
a basis for the excitations is spanned by the complementary colors yellow, cyan, and
magenta. This result appears to be a general feature of SU(3) spin chains, as it was
recently shown explicitly to hold for the Haldane–Shastry model as well [33,132,133].

Note that the elementary excitations of the trimer chain are deconfined, meaning
that the energy of two localized representation 3̄ domain walls or colorons (3.27)
does not depend on the distance between them. The reason is simply that domain
walls connect one ground state with another, without introducing costly correlations
in the region between the domain walls.

c c c c c c c c c c c c c c c c c c c c c cs s s s3̄ 3̄

|ψ(1)
trimer〉 |ψ(3)

trimer〉 |ψ(2)
trimer〉

In the case of the MG model and the trimer model introduced here, however, there
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Figure 3.5: Left: Dispersion of the rep. 3 trial states (3.26) in comparison to the
exact excitation energies of (3.22) for a chain with N = 13. Right: Dispersion of the
rep. 3̄ trial states (3.27) in comparison to the exact excitation energies of (3.22) for
a chain with N = 14. The lines are in both plots a guide to the eye.

is still an energy gap associated with the creation of each coloron, which is simply
the energy cost associated with the domain wall. We will consider this extensive
discussion as a paradigm for SU(n) spinon excitations: SU(n) spinon excitations are
fractionally quantized objects as the SU(2) spinon is. The SU(n) spin chain with
fundamental representation favors the n̄ spinon rather than the n spinon. For higher–
dimensional representations, the discussion has to be repeated carefully. Now we
turn to the higher–dimensional VBS states of SU(3). For that reason, we generalize
Schwinger bosons introduced in Sec. 3.2 to SU(3) and SU(n).

SU(3) Schwinger bosons

The generalization to SU(n) proceeds without incident. We content ourselves here
by writing the formalism out explicitly for SU(3). In analogy to (3.8), we write the
SU(3) spin operators (3.19)

J1 + iJ2 = I+ = b†r,

J1 − iJ2 = I− = r†b,

J3 = 1
2
(b†b− r†r),

J4 + iJ5 = V + = b†g,

J4 − iJ5 = V − = g†b,

J6 + iJ7 = U+ = r†g,

J6 − iJ7 = U− = g†r,

J8 = 1
2
√

3
(b†b+ r†r − 2g†g),

(3.28)

in terms of the boson annihilation and creation operators b, b† (blue), r, r† (red), and
g, g† (green) satisfying

[
b, b†

]
=
[
r, r†

]
=
[
g, g†

]
= 1 (3.29)



3.3 Exact SU(n) models 67

while all other commutators vanish. Again, it is readily verified with (3.29) that the
operators Ja satisfy (3.20). The basis states spanning the fundamental representa-
tion 3 may in analogy to (3.12) be written using either fermion or boson creation
operators:

|b〉 = c†b | 0 〉 = b† | 0 〉 , |r〉 = c†r | 0 〉 = r† | 0 〉 , |g〉 = c†g | 0 〉 = g† | 0 〉 . (3.30)

We write this abbreviated

3 = (1, 0) = =̂ c†α | 0 〉 = α† | 0 〉 . (3.31)

The fermion operators can be used to combine spins transforming under the funda-
mental representation 3 antisymmetrically, and hence to construct the representa-
tions

3̄ = (0, 1) = =̂ c†αc
†
β | 0 〉 ,

1 = (0, 0) = =̂ c†bc
†
rc

†
g | 0 〉 .

(3.32)

The Schwinger bosons, by contrast, combine fundamental representations 3 sym-
metrically, and hence yield representations labeled by Young tableaux in which the
boxes are arranged in a horizontal row, like

6 = (2, 0) = =̂ α†β† | 0 〉 ,
10 = (3, 0) = =̂ α†β†γ† | 0 〉 ,
15′ = (4, 0) = =̂ α†β†γ†δ† | 0 〉 ,

(3.33)

where α, β, γ, . . . ∈ {b, r, g}. Unfortunately, it is not possible to construct represen-
tations like

8 = (1, 1) =

by simply taking products of anti-commuting or commuting creation or annihilation
operators.

Now we are prepared to rewrite the trimer states (3.19) as
∣
∣
∣ψ

(µ)
trimer

〉

=
∏

i

( i−µ
3

integer)

( ∑

(α,β,γ)=
π(b,r,g)

sign(π)α†
i β

†
i+1γ

†
i+2

)

| 0 〉 ≡ Ψµ
[
b†, r†, g†

]
| 0 〉 , (3.34)

where, as in (3.19), µ = 1, 2, 3 labels the three degenerate ground states, i runs over
the lattice sites subject to the constraint that i−µ

3
is integer, and the sum extends

over all six permutations π of the three colors b, r, and g. This formulation can be
used directly to construct VBSs for SU(3) spin chains with spins transforming under
totally symmetric representations as the rep. 6 and 10 on each site. These VBS
states are given by

|ψa,b,c〉 =
(
Ψ1
[
b†, r†, g†

])a (
Ψ2
[
b†, r†, g†

])b (
Ψ3
[
b†, r†, g†

])c | 0 〉 (3.35)

where the constraint a+ b+ c = λ, the number of boxes in the Young tableau, fixes
the representation.
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3.3.3 SU(3) representation 6 VBS model

We obtain a representation 6 VBS from two trimer states by projecting the tensor
product of two fundamental representations 3 onto the symmetric subspace, i.e., onto
the 6 in the decomposition 3 ⊗ 3 = 3̄ ⊕ 6. Graphically, this is illustrated as follows:

c c c c c c c c c
c c c c c c c c c

projection onto rep. 6 = (2, 0)

one site

(3.36)

This construction yields three linearly independent 6 VBS states, as there are three
ways to choose two different trimer states out of a total of three. These three VBS
states are readily written out using (3.34),

∣
∣
∣ψ

(µ)
6VBS

〉

= Ψµ
[
b†, r†, g†

]
· Ψµ+1

[
b†, r†, g†

]
| 0 〉 (3.37)

for µ = 1, 2, or 3. Alternatively, we could write them as |ψ1,1,0〉, |ψ1,0,1〉, and |ψ0,1,1〉
using the notation of Eq. (3.35) If we pick four neighboring sites on a chain with any
of these states, the total SU(3) spin of those may contain the representations

c c c c
c c c c =̂ 3 ⊗ 3 = 3̄ ⊕ 6

or the representations

c c c c
c c c c =̂ 3̄ ⊗ 3̄ ⊗ 3 = 2 · 3̄ ⊕ 6 ⊕ 15,

i.e., the total spin transforms under 3̄, 6, or 15 = (1, 2), all of which are contained
in the product

6 ⊗ 6 ⊗ 6 ⊗ 6 = 3 · 3 ⊕ 6 · 6 ⊕ 7 · 15 ⊕ 3 · 15
′ ⊕ 3 · 21

⊕ 8 · 24 ⊕ 6 · 42 ⊕ 45 ⊕ 6 · 60 ⊕ 3 · 63
(3.38)

and hence possible for a representation 6 spin chain in general. The corresponding
Casimirs are given by C2

SU(3)(0, 1) = 4
3
, C2

SU(3)(2, 0) = 10
3
, and C2

SU(3)(1, 2) = 16
3
. This

leads us to propose the parent Hamiltonian

H6VBS =

N∑

i=1

Hi (3.39)

with

Hi =

((

J
(4)
i

)2

− 4

3

)((

J
(4)
i

)2

− 10

3

)((

J
(4)
i

)2

− 16

3

)

. (3.40)

Note that the operators Ja
i , a = 1, . . . , 8, are now given by 6×6 matrices, as the Gell-

Mann matrices only provide the generators (3.19) of the fundamental representation
3. Since the representations 3̄, 6, and 15 possess the smallest Casimirs in the
expansion (3.38), Hi and hence also H6VBS are positive semi-definite (i.e., have only
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non-negative eigenvalues). The three linearly independent states (3.37) are zero-
energy eigenstates of (3.39).

To verify that these are the only ground states, we have numerically diagonalized
(3.39) for N = 6 and N = 9 sites. For N = 9, we find zero-energy ground states at
momenta k = 0, 3, and 6 (in units of 2π

N
with the lattice constant set to unity). Note

that for N = 6 we found two additional finite size zero–energy ground states. This is
not surprising as the Hamiltonian involves four site interactions which is very large
compared to the total chain length of N = 6 sites.

Excitations of the 6 VBS model are given by domain walls between two of the
ground states (3.37). As in the trimer model, two distinct types of domain walls
exist, which transform according to representations 3̄ and 3:

c c c s s c c c c c c s c c c
c c c c c c c c c c c c c c c

Ψ1 ·Ψ2 Ψ2 ·Ψ3 Ψ1 ·Ψ2

3̄ 3

(3.41)

It is not clear which excitation has the lower energy, and it appears likely that both
of them are stable against decay. Let us first look at the rep. 3̄ excitation. The
four-site Hamiltonian (3.40) annihilates the state for all i’s except the four sites in
the dashed box in (3.41), which contains the representations

3̄ ⊗ 3̄ ⊗ 3̄ ⊗ 3 ⊗ 3 = 6 · 3̄ ⊕ 5 · 6 ⊕ 6 · 15 ⊕ 15
′ ⊕ 2 · 24 ⊕ 42

i.e., the representations 15
′

= (0, 4), 24 = (3, 1) twice, and 42 = (2, 3) with Casimirs
28
3
, 25

3
and 34

3
, respectively, in addition to representations annihilated by Hi. For the

rep. 3 excitation sketched on the right in (3.41), there are two sets of four neighboring
sites not annihilated by Hi as indicated by the dashed and the dotted box. Each set
contains the representations

3̄ ⊗ 3 ⊗ 3 ⊗ 3 = 3 · 3̄ ⊕ 3 · 6 ⊕ 2 · 15 ⊕ 24

i.e., only the rep. 24 in addition to representations annihilated by Hi. For our parent
Hamiltonian (3.39), it hence may well be that the rep. 3 anti-coloron has the lower
energy, but it is all but clear that the rep. 3̄ has sufficiently higher energy to decay.
For general representation 6 spin chains, it may depend on the specifics of the model
which excitation is lower in energy and whether the conjugate excitation decays or
not.

Since the excitations of the rep. 6 VBS chain are merely domain walls between
different ground states, there is no confinement between them. We expect the generic
antiferromagnetic rep. 6 chain to be gapless, even though the model we proposed here
has a gap associated with the energy cost of creating a domain wall.

3.3.4 SU(3) representation 10 VBS model

Let us now turn to the 10 VBS chain, which is a direct generalization of the
AKLT chain to SU(3). By combining the three different trimer states (3.34) for
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µ = 1, 2, and 3 symmetrically,

|ψ10VBS〉 = Ψ1
[
b†, r†, g†

]
·Ψ2
[
b†, r†, g†

]
·Ψ3
[
b†, r†, g†

]
| 0 〉

=
∏

i

( ∑

(α,β,γ)=
π(b,r,g)

sign(π)α†
i β

†
i+1γ

†
i+2

)

| 0 〉 , (3.42)

we automatically project out the rep. 10 in the decomposition 3⊗3⊗3 = 1⊕2·8⊕10
generated on each lattice site by the three trimer chains. This construction yields a
unique state, as illustrated:

c c c c c c c c c c c c
c c c c c c c c c c c c

c c c c c c c c c c c c

projection onto 10 = (3, 0)

one site

(3.43)

In order to construct a parent Hamiltonian, note first that the total spin on two
(neighboring) sites of a rep. 10 chain is given by

10 ⊗ 10 = 10 ⊕ 27 ⊕ 28 ⊕ 35. (3.44)

On the other hand, the total spin of two neighboring sites for the 10 VBS state can
contain only the representations

3̄ ⊗ 3̄ ⊗ 3 ⊗ 3 = 2 · 1 ⊕ 4 · 8 ⊕ 10 ⊕ 10 ⊕ 27, (3.45)

as can be seen easily from the dashed box in the cartoon above. (Note that this result
is independent of how many sites we include in the dashed box.) After the projection
onto rep. 10 on each lattice site, we find that only reps. 10 = (0, 3) and 27 = (2, 2)
occur for the total spin of two neighboring sites for the 10 VBS state. With the
Casimirs C2

SU(3)(0, 3) = 6 and C2
SU(3)(2, 2) = 8 we obtain the parent Hamiltonian

H10VBS =
N∑

i=1

(

J iJ i+1 +
1

5

(
J iJ i+1

)2
+

6

5

)

, (3.46)

the operators Ja
i , a = 1, . . . , 8, are now 10 × 10 matrices, and we have used J2

i = 6.
H10VBS is positive semi-definite and annihilates the 10 VBS state (3.42).

The Hamiltonian (3.46) provides the equivalent of the AKLT model [11,12], whose
unique ground state is constructed from dimer states by projection onto spin 1, for
SU(3) spin chains. Note that as in the case of SU(2), it is sufficient to consider linear
and quadratic powers of the total spin of only two neighboring sites. This is a general
feature of the corresponding SU(n) models, as we will elaborate in Sec. 3.3.7.

Since the 10 VBS state (3.42) is unique, we cannot have domain walls connecting
different ground states. We hence expect the coloron and anti-coloron excitations
to be confined in pairs, as illustrated below. The state between the excitations is
no longer annihilated by (3.46), as there are pairs of neighboring sites containing
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higher-dimensional representations, as indicated by the dotted box below. As the
number of such pairs increases linearly with the distance between the excitation, the
confinement potential depends linearly on this distance.

c c c c c c c c c c c c c c cs s s
c c c c c c c c c c c c c c c

c c c c c c c c c c c c c c cc c c
� -

energy cost ∝ distance

3̄ 3
coloron anti-coloron

(3.47)

In principle, it would also be possible to create three colorons (or three anti-colorons)
rather than a coloron–anti-coloron pair, but as all three excitations would feel strong
confinement forces, we expect the coloron–anti-coloron pair to constitute the domi-
nant low energy excitation. The confinement force between the pair induces a linear
oscillator potential for the relative motion of the constituents. The zero-point energy
of this oscillator gives rise to a Haldane-type energy gap, which is independent of the
model specifics. We expect this gap to be a generic feature of rep. 10 spin chains
with short-range antiferromagnetic interactions.

3.3.5 SU(3) representation 8 VBS model

To construct a representation 8 VBS state, consider first a chain with alternating
representations 3 and 3̄ on neighboring sites, which we combine into singlets10. This
can be done in two ways, yielding the two states

c c ce e e c c ce e eand .
3 3̄

We then combine a 3–3̄–singlet with another 3–3̄–singlet which is shifted by one
lattice spacing to the right or the left, respectively. This yields representations 3⊗3̄ =
1 ⊕ 8 at each site. The 8 VBS state is obtained by projecting onto representation
8. Corresponding to the two 3–3̄ states illustrated above, we obtain two linearly
independent 8 VBS states, ΨL and ΨR, which may be visualized as

c c ce e e c c ce e e
e e ec c c e e ec c cand .

projection onto 8 = (1, 1)

one site

(3.48)

These states transform into each other under space reflection (parity) or color con-
jugation (interchange of 3 and 3̄). Note that the representation 8 VBS state might

10We emphasize that we are not considering spin chains with alternating representations, i.e., the
3–3̄ chain is not subject of our interest. Here we just explain that one can use these alternating
singlet bonds to construct a representation 8 VBS state which is subject of our consideration.
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be defined on arbitrary chain length N , i.e., for both even and odd N . To make this
clear one could prefer another way of drawing the cartoon,

c c c c c c c c ce e e e e e e e en n n n n n n n n

one site

The S = 1 AKLT chain supports the same feature which is clearly a property of the
adjoint representation (1, 0, . . . , 0, 1) of SU(n): (1, 0, . . . , 0, 1)⊗N = Singlet ⊕ . . . for
arbitrary N . Note that this is the only advantage of the alternative cartoon and, in
particular, it is not convenient to get informations about spinon confinement.

We are able to write down the states by use of matrix products which allows us
to calculate the static spin–spin correlation functions explicitly. We will present the
matrix product states as well as the correlations in Sec. 3.8.

Let us now formulate a parent Hamiltonian for these states. If we consider two
lattice sites on an SU(3) chain with a representation 8 on each lattice site in general,
we find the full SU(3) content

8 ⊗ 8 = 1 ⊕ 2 · 8 ⊕ 10 ⊕ 10 ⊕ 27 (3.49)

with 10 = (3, 0), 10 = (0, 3), and 27 = (2, 2). On the other hand, for the 8 VBS
states only the representations 3 ⊗ 3̄ = 1 ⊕ 8 can occur for the total spin of two
neighboring sites, as the two sites always contain one singlet (see dashed box in
(3.48) on the right above). With the Casimirs C2

SU(3)(0, 0) = 0 and C2
SU(3)(1, 1) = 3

for representations 1 and 8, respectively, we construct the parent Hamiltonian

H8VBS =
N∑

i=1

(

J iJ i+1 +
2

9

(
J iJ i+1

)2
+ 1

)

, (3.50)

where the operators Ja
i , a = 1, . . . , 8, are now 8 × 8 matrices, and we have used the

Casimir J2
i = 3 on each site. H8VBS is positive semi-definite, and annihilates the

states ΨL and ΨR. We have numerically verified for chains with N = 3, 4, 5, and 6
lattice sites that ΨL and ΨR are the only ground states of (3.50).

Naively, one might assume the 8 VBS model to support deconfined spinons or
colorons, which correspond to domain walls between the two ground states ΨL and
ΨR. A closer look at the domain walls, however, shows that this is highly unlikely,
as each domain wall is a bound state of either two anti-colorons or two colorons, as
illustrated below.

c c c c c c ce e e e e e e
e e e e e e ec c c c c c c

s
s

u
u

ΨL ΨR ΨL

3 3 3̄ 3̄

anti-colorons colorons

(3.51)

There is no reason to assume that the domain wall depicted above as two anti-
colorons in fact corresponds to a single coloron, as it appears to be the case for the



3.3 Exact SU(n) models 73

trimer chain. There we created a domain wall corresponding to a single coloron by
removing one of the rep. 3 spins from a trimer, leaving the remaining rep. 3 spins
coupled antisymmetrically as in the ground state. If we were to combine the two
reps. 3 into a rep. 3̄ in (3.51), we would not reproduce a correlation present in the
ground state, but enforce a new correlation. The correct interpretation of the domain
wall between ΨL and ΨR is hence that of a bound state between two linearly confined
anti-colorons. The origin of the confining potential is illustrated below.

c c c c c ce e e e e
e e e e ec c c c c c

s
s

ΨL ΨR

3 3

anti-coloron anti-coloron

� -
energy cost ∝ distance (3.52)

As in the 10 VBS, the confinement induces a linear oscillator potential for the relative
motion of the anti-colorons. The zero-point energy of this oscillator corresponds to a
Haldane-type gap in the spectrum. The ground state wave function of the oscillator
is symmetric, and hence corresponds to a symmetric combination of 3⊗ 3, i.e., rep.
6. The antisymmetric combination 3̄ corresponds to the first excited state of the
oscillator, which we expect to cost more than twice the energy of the symmetric
state [60]. This statement holds for the pair of colorons in (3.51) as well.

The domain walls, however, are not the only low energy excitations. In either of
the ground states, we can create coloron–anti-coloron bound states, which make no
reference to the other ground state, as illustrated below.

c c c c c ce e e e e e
e e e e ec c c c cus

ΨL ΨL

3 3̄

anti-coloron coloron

� -
energy cost ∝ distance (3.53)

The oscillator model tells us again that the “symmetric” combination of 3 ⊗ 3̄, i.e.,
rep. 8, has the lowest energy, which we expect to be comparable, if not identical, to
the energy required to create each of the domain walls above. The singlet 1 will have
an energy comparable to that of a domain wall transforming under either 3̄ or 3. In
any event, we expect the 8 VBS model to display a Haldane gap due to coloron or
spinon confinement.

The excitation spectrum of (3.50) for a chain with N = 8 sites and PBCs is shown
in Fig. 3.6. While the ground state energy is zero, the spectrum shows that the lowest
excitation transforms under rep. 8, as expected from (3.53), with a singlet and then
another rep 8 following at slightly higher energies. It is tempting to interpret those
three levels as the lowest levels of the coloron–anti-coloron oscillator (3.53), but
then there should be another singlet at a comparable spacing above. The fact that
the spacings between these excitations are significantly smaller than the energy of
the first exited state, however, would be consistent with such an interpretation, as
the spinons in VBS models always have a local energy cost associated with their
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Figure 3.6: Spectrum of the 8 VBS Hamiltonian (3.50) for N = 8 sites obtained
by exact diagonalization. (The lines are merely guides to the eye.) The “magnon”
excitation transforming under rep. 8 of SU(3) has the lowest energy, followed by
a singlet excitation, as expected from the discussion in the text. The well defined
modes at low energies provide strong evidence of coloron–anti-coloron bound states
as compared to deconfined domain walls, and hence support our conclusion that the
8 VBS exhibits a Haldane gap due to spinon confinement.

creation, which is specific to these models and not related to the universal Haldane
gap stemming from confinement forces.

Most importantly, the spectrum provides strong evidence in favor of our assump-
tion that the domain walls are not elementary excitations, but bound states of either
two colorons or two anti-colorons, and hence that the lowest energy excitations of
finite chains are coloron–anti-coloron bound states as illustrated in (3.53). The as-
sumption is crucial for our conclusion that the model exhibits a Haldane gap. If
the low energy sector of the model was determined by two deconfined domain walls,
we would see a continuum of states in the spectrum, similar to the spectrum seen
in spin S = 1

2
chains of SU(2), see Fig. 3.1. The well defined low-energy modes in

Fig. 3.6, however, look much more like the spinon–spinon bound state excitations
seen in S = 1 chains or two-leg S = 1

2
Heisenberg ladders. In particular, if we

assume that the individual domain walls transform under reps. 6 and 6̄, we expect
excitations transforming under the representations contained in 6⊗ 6̄ = 1 ⊕ 8⊕ 27
to be approximately degenerate. Fig. 3.6 shows clearly that such a multiplet is not
present a the lowest energies.

In the following sections, we generalize three of the models proposed for SU(3)
spin chains, the trimer model, the symmetric representation 10 VBS, and the matrix
product state 8 VBS to the case of SU(n) spin chains.
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3.3.6 SU(4) tetramer chain and SU(n) generalization

After generalization of the MG model to SU(3), we ask for the SU(4) case. To
build an SU(4) singlet, one has to antisymmetrize four SU(4) spins which transform
according to the fundamental representation 4. The four–fold degenerate tetramer
states are in analogy to (3.18) given by

∣
∣
∣ψ

(µ)
tetramer

〉

=







| c c c c c c c c 〉 ≡ Ψ(1) | 0 〉 ,
| c c c c c c c c 〉 ≡ Ψ(2) | 0 〉 ,
| c c c c c c c c 〉 ≡ Ψ(3) | 0 〉 ,
| c c c c c c c c 〉 ≡ Ψ(4) | 0 〉 .

(3.54)

The Ψ(µ) are given by SU(4) Schwinger bosons and are the generalization of (3.34).
Note that this formulation allows us directly to write down all SU(4) VBS states for
totally symmetric representations.

Ψ(i)Ψ(j) | 0 〉 (i 6= j) (3.55)

for i, j ∈ {1, 2, 3, 4} are the six SU(4) representation 10 VBS state.
The Hamiltonian of the SU(4) tetramer chain [121] can be written as

Htetramer =

N∑

i=1

((

J
(5)
i

)2

− 15

8

)((

J
(5)
i

)2

− 39

8

)

(3.56)

where J i is now the 15-component SU(4) spin operator, see also Eq. 3.58. The same
line of arguments as for the trimer model yields three antisymmetrically coupled
representations 4 on consecutive sites as the elementary excitation, the SU(4) spinon
carrying spin representation 4̄. Thus we find again a situation where the spinons are
just domain walls between the ground states, as illustrated below.

c c c c c c c c c c c c c c c c c c cs s s4̄

|ψ(1)
tetramer〉 |ψ(4)

tetramer〉
The generalization from SU(3) to SU(4) was trivial and, hence, we wish to treat the
general problem for SU(n).

Consider an SU(n) spin chain with N sites, where N is a multiple of n, with a
spin transforming according to the fundamental representation n of SU(n) at each
lattice site,

n = (1, 0, . . . , 0) = =̂ c†σ | 0 〉 , (3.57)

where σ denotes a “flavor”, σ ∈ {f1, . . . , fn}, and c†σ creates a fermion of flavor σ.
The SU(n) generators at site i are in analogy to (3.19) defined as

Ja
i =

1

2

∑

σ,σ′=f1,...,fn

c†iσV
a
σσ′ciσ′ , a = 1, . . . , n2 − 1, (3.58)
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where the V a denote the n2−1 SU(n) Gell-Mann matrices [101]. The generators
are normalized through the eigenvalue the quadratic Casimir operator takes in the
adjoint representation, J2 = C2

SU(n)(1, 0, . . . , 0, 1) = n. The SU(n) Heisenberg term

for SU(n) is defined as J iJ j =
∑n2−1

a=1 Ja
i J

a
j .

To determine the eigenvalues of the quadratic Casimir for general representations
of SU(n), a significant amount of representation theory is required [75]. We content
ourselves here by providing the formulas up to n = 6 in App. B.2.

In analogy to the trimer states (3.19) and the tetramer states (3.54), we construct
the n-mer states of an SU(n) spin chain by combining sets of n neighboring spins
into a singlet,

∣
∣ψ(µ)

n-mer

〉
=
∏

i

( i−µ
n

integer)

( ∑

(σ1,...,σn)=
π(f1,...,fn)

sign(π)
n∏

κ=1

c†i−1+κ,σκ

)

| 0 〉, (3.59)

where µ = 1, . . . , n labels the n degenerate ground states, and i runs over the lattice
sites subject to the constraint that i−µ

n
is integer. The sum extends over all n!

permutations π of the n flavors f1, . . . , fn.
In order to identify a parent Hamiltonian, consider the total SU(n) spin on n+1

neighboring sites for the n-mer states. Following the rules of combining representa-
tions labeled by Young tableaux (see e.g., [40, 54]), it is not difficult to see that the
total spin will only contain representations given by tableaux with n + 1 boxes and
two columns, i.e., tableaux of the form

}

ν rows

with 1 ≤ ν ≤ n+1
2

. The eigenvalues of the quadratic Casimir operator for these
representations are

fn(ν) =
1

2n

(

n2(2ν − 1) − 2n(ν − 1)2 − 1
)

. (3.60)

An educated guess for a parent Hamiltonian for the n-mer chain hence appears to
be

Htrial =

N∑

i=1

Hi (3.61)

with

Hi =

⌊n+1
2

⌋
∏

ν=1

((

J
(n+1)
i

)2

− fn(ν)

)

, (3.62)

where ⌊ ⌋ denotes the floor function, i.e., ⌊x⌋ is the largest integer l ≤ x, and we use
the notation introduced in (3.21).
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This construction yields the MG model [105] for SU(2), the trimer model (3.22)
for SU(3), and the tetramer model (3.56) for SU(4). For n ≥ 5, however, the de-
composition of the tensor product n⊗(n+1) contains irreducible representations corre-
sponding to Young tableaux with more than two columns, whose Casimirs are equal
or smaller than a number of Casimirs included in the list fn(ν), ν = 1, 2, . . . , ⌊n+1

2
⌋.

If the Casimir of such an “undesired” representation not included in the list is smaller
than an odd number of Casimirs included in the list, we obtain negative eigenvalues
for Hi, and it is not a priori clear any more that the Hamiltonian (3.61) is positive
semi-definite. An obvious cure to this problem is to write

Hn-mer =

N∑

i=1

H2
i , (3.63)

with Hi as in (3.62). This does, however, not cure potential problems arising from
undesired representations which share the eigenvalues of the Casimir with one of the
representations from the list, as it happens to be the case for n = 5. The Hamiltonian
(3.63) likewise annihilates these representations, giving rise to a remote possibility
that the n-mer states (3.59) are not the only ground states of (3.63). The potential
relevance of these problems has to be investigated for each n separately.

3.3.7 Symmetric SU(n) VBS model

As a generalization of the AKLT model for SU(2) and the 10 VBS model for SU(3)
discussed above, we now consider a VBS for an SU(n) chain of spins transforming
under the symmetric representation

(n, 0, . . . , 0) =
︸ ︷︷ ︸

n boxes

=̂ b†σ1
b†σ2

. . . b†σn
| 0 〉 ,

where each b†σ, σ ∈ {f1, . . . , fn}, is an SU(n) Schwinger boson. The VBS state is
obtained by combining n n-mer states (3.59), one for each µ = 1, . . . , n, in that
the total spin on each lattice site is projected onto the symmetric representation
(n, 0, . . . , 0). This yields

∣
∣ψ(n,0,...,0)VBS

〉
=
∏

i

( ∑

(σ1,...,σn)=
π(f1,...,fn)

sign(π)

n∏

κ=1

b†i−1+κ,σκ

)

| 0 〉. (3.64)

Let us now construct a parent Hamiltonian for the symmetric VBS (3.64). The
total SU(n) spin of two neighboring sites of a representation (n, 0, . . . , 0) spin chain
in general contains all the representations corresponding to Young tableaux with 2n
boxes and at most two rows, i.e., all tableaux of the form

︸ ︷︷ ︸

n− ν columns
︸ ︷︷ ︸

2ν boxes
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The eigenvalues of the quadratic Casimir operator for these representations are given
by

gn(ν) ≡ C2
SU(n)(2ν, n−ν, 0, . . . , 0) = 2n2 − 4n+ ν(ν + 1). (3.65)

On the other hand, the total SU(n) spin of two neighboring sites of the represen-
tation (n, 0, . . . , 0) VBS (3.64) has to be contained in the product

⊗n−1

⊗ ⊗ (3.66)

As we project the spin on each lattice site onto the representation (n, 0, . . . , 0), only
two these representations remain:

and

The eigenvalues of the quadratic Casimir operator are given by gn(0) = 2n(n − 2)
and gn(1) = 2(n − 1)2, respectively. Hence, using J2

i = n(n − 1), we obtain the
parent Hamiltonian

Hsym.VBS =

N∑

i=1

(

J iJ i+1 +
1

2n− 1

(
J iJ i+1

)2
+
n(n− 1)

2n− 1

)

. (3.67)

Since gn(0) ≥ 0 for n ≥ 2 and gn(ν) is a strictly increasing function of ν, the
Hamiltonian (3.67) is positive semi-definite. For n = 2, we recover the AKLT model
(3.17); for n = 3, we recover the 10 VBS model (3.46). It is worth mentioning
that the whole discussion concerning spinon confinement in the AKLT model and
in the representation 10 VBS model applies to the symmetric SU(n) VBS model for
arbitrary n.

3.3.8 Adjoint SU(n) VBS model

In principle, a matrix product VBS can be formulated on all SU(n) chains with
spins transforming under the symmetric combination of any representation m and
its conjugate representation m. Unless the rep. m is self-conjugate, we obtain two
inequivalent states, which transform into each other under space reflection. The
construction of these is analogous to the 8 VBS introduced above, and likewise best
illustrated as

m m mm m m

m m mm m m

m mm

m mmand .

projection onto the symmetric
combination in m ⊗ m

one site

(3.68)

The thick lines indicate that we combine pairs of neighboring representations m

and m into singlets. On each lattice site, we project onto the symmetric com-
bination of m and m, as indicated. By “symmetric combination” we mean that
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if representations m and m of SU(n) have Dynkin coordinates (µ1, µ2, . . . , µn−1)
and (µn−1, µn−2, . . . , µ1), respectively, we combine them into the representation with
Dynkin coordinates (µ1+µn−1, µ2−µn−2, . . . , µn−1+µ1). In other words, we align the
columns of both tableaux horizontally, and hence obtain a tableau with twice the
width, without ever adding a single box vertically to a column of the tableaux we
started with. The states (3.68) we obtain are translationally invariant and we expect
the parent Hamiltonians to involve nearest-neighbor interactions only.

In this subsection, we will formulate the simplest SU(n) model of this general
family. We take m to be the representation formed by antisymmetrically combining
κ ≤ n

2
fundamental representations,

m = [κ] ≡ (0, . . . , 0, 1, 0, . . . , 0) =

}

κ boxes ,

κ-th entry

which implies that we consider a model with the representation corresponding to a
Young tableaux with a column with n−κ boxes to the left of a column with κ boxes
at each lattice site:

[κ, n−κ] ≡

}

κ rows

The construction of the parent Hamiltonian is similar to the n-mer model above.
The total spin on two neighboring lattice sites can only assume representations con-
tained in m ⊗ m, i.e., representations corresponding to tableaux of the form

[ν, n− ν] =

}

ν rows

with 0 ≤ ν ≤ κ. The eigenvalues of the quadratic Casimir operator for these repre-
sentations are

hn(ν) = ν (n− ν + 1). (3.69)

The obvious proposal for a parent Hamiltonian is hence

H =

N∑

i=1

Hi, Hi =

κ∏

ν=0

((

J
(2)
i

)2

− hn(ν)

)

. (3.70)

This Hamiltonian singles out the matrix product state (3.68) as unique ground states
for n ≤ 5, but suffers from the same shortcomings as (3.61) with (3.62) for n ≥ 6.

Now we restrict ourself to the special case κ = 1 which yields a spin chain with
adjoint representation on each site. The adjoint representation is special as it has
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the same dimensionality like the Lie algebra itself. The parent Hamiltonian can now
be written (by use of J2

i = n) as

Hadj.VBS =
N∑

i=1

(

J iJ i+1 +
2

3n
(J iJ i+1)

2 +
n

3

)

. (3.71)

Note that the spin 1 representation is the adjoint representation of SU(2). Conse-
quently, the model considered here should be an alternative generalization of the
S = 1 AKLT model. And indeed, we recover for n = 2 the AKLT model (3.17) and
for n = 3 the representation 8 VBS model. As for SU(2) and SU(3), the Hamiltonian
(3.71) is valid for both even and odd number of sites. We further expect the spinon
excitations to be confined in pairs. Note that the ground state of the SU(n) model is
two–fold degenerate (spontaneously breakdown of parity) while for SU(2) the ground
state becomes unique due to the fact that the fundamental representation of SU(2)
is self–conjugate11. We wish to stress that the whole discussion of the AKLT model
and the representation 8 VBS model concerning spinon confinement applies to the
adjoint SU(n) VBS model for arbitrary n.

3.4 The Affleck–Lieb theorem

For the generic SU(2) spin chain, Haldane [67,68] identified the O(3) nonlinear sigma
model as the effective low energy field theory of SU(2) spin chains, and argued that
chains with integer spin possess a gap in the excitation spectrum, while a topological
term renders half-integer spin chains gapless [8, 51]. The exact models for SU(2)
spin chains we reviewed above, the MG and the AKLT chain, serve as paradigms to
illustrate the general principle. Unfortunately, the effective field theory description
of Haldane yielding the distinction between gapless half integer spin chains with
deconfined spinons and gapped integer spin chains with confined spinons cannot be
directly generalized to SU(n) chains, as there is no direct equivalent of the CP1

representation used in Haldane’s analysis.
Nonetheless, there is a rigorous and rather general result for antiferromagnetic

chains of SU(n) spins transforming under a representation corresponding to a Young
tableau with a number of boxes not divisible by n: Affleck and Lieb [13] showed
that if the ground state is non-degenerate, and the Hamiltonian contains nearest-
neighbor interactions only, than the gap in the excitation spectrum vanishes as 1/N
(where N is the number of sites) in the thermodynamic limit. This result is fully
consistent with the picture suggested by the models introduced above. Like the MG
model, the trimer model and the representation 6 VBS have degenerate ground states
and interactions which extend beyond the nearest neighbor, which implies that the
theorem is not directly applicable.

On physical grounds, however, the statement that a given model is gapless (i.e.,
the excitation gap vanishes in the thermodynamic limit) implies that the spinons

11All SU(2) representations are self–conjugate. As a consequence, one can always couple two
SU(2) representations S into a singlet, S ⊗ S = 0⊕ 1 ⊕ · · · ⊕ 2S.
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are deconfined. The reason is simply that if there was a confinement force between
them, the zero-point energy associated with the quantum mechanical oscillator of
the relative motion between the spinons would inevitably yield an energy gap. The
MG, the trimer and the 6 VBS model constitute pedagogically valuable paradigms of
deconfined spinons. Since the excitations in these models are literally domain walls
between different ground states, no long-range forces can exist between them.

As Affleck and Lieb restricted their self to nearest neighbor interactions, the com-
mon interpretation [127] that the half–integer spin S J1-J2 model is a nice paradigm
to demonstrate the AL theorem is not correct in our opinion. This interpretation is as
follows: For a small ratio J2/J1 the model is in a gapless phase (as stated by the AL
theorem) and undergoes for a certain ratio J2,c/J1 a phase transition to a dimerized
phase with two–fold degenerate ground states (due to the ground state degeneracy,
the AL theorem does not state anything anymore).

Our interpretation is different: The AL theorem means that for all representations
where the number of boxes λ of the Young tableau is not divisible by n the models
are gapless in the thermodynamic limit12. Additionally, there is a small number of
representations, where the HM dimerizes already for nearest neighbor interactions.
An example for that is the SU(4) representation 6 HM13. We think that the set of
representations with models which already dimerizes for nearest neighbor interactions
belongs to the set of representations for which we are unable to construct VBS states.
In this sense, Affleck and Lieb’s paper matches perfectly with our statements.

Affleck and Lieb do not make any statement about the spin chains with repre-
sentations where λ/n is an integer. From the SU(2), SU(3), and SU(n) VBS models
discussed above we have learned that the models with these representations are ex-
actly the models exhibiting spinon confinement. In the following section, we will
prove this statement in a somewhat exotic way.

3.5 General criterion for spinon confinement

The exact models we introduced above provide information about the models of
SU(n) spin chains with representations corresponding to Young tableaux with a
number of boxes divisible by n, i.e., models for which the Affleck–Lieb theorem
is not applicable. We have studied two SU(3) models belonging to this family in
Secs. 3.3.4 and 3.3.5, the rep. 10 VBS and the rep. 8 VBS, and found that both have
confined spinons or colorons and hence display a Haldane-type gap in the spectrum.

In this section, we will argue that models of antiferromagnetic chains of SU(n)
spins transforming under a representation corresponding to a Young tableau consist-
ing of a number of boxes λ divisible by n generally possess a Haldane-type gap due
to spinon confinement forces.

12Whether or not the model can be driven in a dimerized phase by applying a frustrating next–
nearest neighbor interaction is beyond the scope of the AL theorem.

13This is one of the examples where our categorization is not applicable as we cannot construct
a VBS. Our DMRG calculations show that the nearest neighbor HM is in a dimerized phase. The
same results were obtained by Marston and Affleck [106] within the large-n approach.
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We should caution immediately that our argument is based on several assump-
tions, which we consider reasonable, but which we are ultimately unable to prove.

The first, and also the most crucial, is the assumption that the question of whether
a given model supports free spinon excitations can be resolved through study of the
corresponding VBS state. This assumption definitely holds for SU(2) spin chains,
where the MG model for S = 1

2
indicates that the spinons are free, while the AKLT

model for S = 1 serves as a paradigm for spinon confinement and hence the Haldane
gap. The general conclusions we derived from our studies of the SU(3) VBSs above
rely on this assumption. The numerical results we reported on the rep. 8 VBS provide
evidence that this assumption holds at least for this model.

Let us consider an SU(n) spin chain with spins transforming under a representa-
tion corresponding to Young tableau consisting of L columns with κ1 ≤ κ2 ≤ . . . ≤
κL < n boxes each,

[κ1, κ2, . . . , κL] ≡

κL

κ3
κ2κ1

(3.72)

with a total number of boxes

λ =

L∑

l=1

κl

divisible by n. We denote the Dynkin coordinates of this representation by (µ1, µ2, . . . , µn−1),
which implies

n−1∑

i=1

µi = L.

Note that this representation is, by definition, given by the maximally symmetric
component of the tensor product of the individual columns,

[κ1, κ2, . . . , κL] = S
(
[κ1] ⊗ [κ2] ⊗ . . .⊗ [κL]

)
. (3.73)

For convenience, we denote the
(

n
κ

)
dimensional representation [κ] in this subsection

as κl ≡ [κl] = il .

Since λ is divisible by n, it will always be possible to obtain a singlet from the
complete sequence of representations κ1,κ2, . . . ,κL by combining them antisymmet-
rically. To be precise, when we write that we combine representations κ1 and κ2

antisymmetrically, we mean we obtain a new representation [κ1 +κ2] by stacking the
two columns with κ1 and κ2 boxes on top of each other if κ1 + κ2 < n, and a new
representation [κ1 + κ2 − n] if κ1 + κ2 ≥ n. In equations, we write this as

A
(
[κ1] ⊗ [κ2]

)
≡
{

[κ1 + κ2] for κ1 + κ2 < n

[κ1 + κ2 − n] for κ1 + κ2 ≥ n
(3.74)
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Following the notation used above, we indicate the antisymmetric combination of
representations κl by a line connecting them. In particular, we depict the singlet
formed by combining κ1,κ2, . . . ,κL on different lattice sites as

i i i i1 2 3 . . . L (3.75)

The understanding here is that we combine them in the order indicated by the line,
i.e., in (3.75) we first combine κ1 and κ2, then we combine the result with κ3, and so
on. Depending on the order of the representations κl on the line, we obtain different,
but not necessarily orthogonal, singlets. We assume that it is irrelevant whether we
combine the representations starting from the left or from the right of the line, as
the resulting state will not depend on it.

In general, it will be possible to construct a number ≤ λ/n of singlets out of
various combinations of the κ’s, one for each block of κ’s for which the values of
κ add up to n as we combine the representation in the order described above. In
this case, we will be able to construct one VBS for each singlet, and subsequently
combine them at each site symmetrically to obtain the desired representation (3.72).
The argument for spinon confinement we construct below will hold for each of the
individual VBSs, and hence for the combined VBS as well. It is hence sufficient
for our purposes to consider situations where the entire sequence κ1,κ2, . . . ,κL is
needed to construct a singlet.

A possible VBS “ground state” for a representation corresponding to a Young
tableau with L = 4 columns is depicted below.

h h h h h h h h h1 1 1 1 1 1 1 1 1
h h h h h h h h h2 2 2 2 2 2 2 2 2
h h h h h h h h h3 3 3 3 3 3 3 3 3
h h h h h h h h h4 4 4 4 4 4 4 4 4

HH HH HH HH HH HH HH HH
HH HH HH HH HH HH HH HH
HH HH HH HH HH HH HH HH

projection onto representation
[κ1, κ2, κ3, κ4]

one site

(3.76)

In general, there are as many inequivalent VBS “ground states” as there are inequiva-
lent ways to order the representations κ1,κ2, . . . ,κL, i.e., the number of inequivalent
VBS “ground states” is given by

L!

µ1! · µ2! · . . . · µn−1!
.

To give an example, the following VBS

h h h h h h h h h2 2 2 2 2 2 2 2 2
h h h h h h h h h1 1 1 1 1 1 1 1 1
h h h h h h h h h3 3 3 3 3 3 3 3 3
h h h h h h h h h4 4 4 4 4 4 4 4 4

HH HH HH HH HH HH HH HH
HH HH HH HH HH HH HH HH
HH HH HH HH HH HH HH HH

projection onto representation
[κ1, κ2, κ3, κ4]

one site

(3.77)
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is inequivalent to the one above if and only if κ1 6= κ2. Note that all these VBS
“ground states” states are translationally invariant. We expect some of these states,
but not all of them, degenerate in energy for the appropriate parent Hamiltonian,
and have accordingly written “ground states” in quotation marks. For example, if
we form a SU(4) VBS with representation [κ1, κ2, κ3] = [1, 1, 2], the combination

i i i1 3 2

might yield a state with a lower energy for the appropriate Hamiltonian than the
state formed by combining

i i i1 2 3 .

Simple examples where we have only two inequivalent VBS ground states are pro-
vided by the matrix product states discussed in Secs. 3.3.5 and 3.3.8.

We will now argue that the elementary excitations of the corresponding VBS
models are always confined. To this end, we first observe that any domain wall
between translationally invariant “ground states” consists of a total of m · n rep-
resentations κl (m integer). To illustrate this, consider a domain wall between the
“ground states” depicted in (3.77) and (3.76):

h h2 2 h h h h h h1 1 1 1 1 1
h h h1 1 1 h h h h h2 2 2 2 2
h h h h3 3 3 3 h h h h3 3 3 3
h h h h h4 4 4 4 4 h h h4 4 4

x
x

x
x

2

2

3

4

HH HH
HH HH
HH HH

HH
HH

HH HH HH HH HH
HH HH HH HH HH
HH HH HH HH HH

In the example, the domain wall consists of reps. κ2, κ2, κ3, and κ4. If the trans-
lationally invariant states on both sites are true ground states, the domain wall is
likely to correspond to two elementary excitations: a rep. κ̄1 spinon consisting of
an antisymmetric combination of a κ2, a κ3, and a κ4, as indicated by the line in
the drawing, and another rep. κ2 spinon. The reason we assume that κ2, κ3, and
κ4 form a rep. κ̄1 is simply that this combination is present in both ground states
on either side, and hence bound to be the energetically most favorable combination.
The second κ2, however, is not part of this elementary excitation, as combining it
antisymmetrically with the others (i.e., the κ̄1) would induce correlations which are
not present in the ground state. We hence conclude that the second κ2 is an el-
ementary excitation as well. The domain wall depicted above consists of a spinon
transforming under rep. κ̄1 and an anti-spinon transforming under rep. κ2.

The next step in our argument is to notice that the spinon and the complementary
particle created simultaneously which may either be its anti-particle or some other
spinon, are confined through a linear potential. To see this, we pull them apart and
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look at the state in between:

h2 h h h h h h h h1 1 1 1 1 1 1 1
h h1 1 h h h h2 2 2 2 h h h2 2 2
h h h h h h h3 3 3 3 3 3 3 h h3 3
h h h h h h h h4 4 4 4 4 4 4 4 h4

x
x

x
x

2

2

3

4

HH
HH

HH
HH HH
HH HH

HH HH HH
HH HH HH HH
HH HH HH HH







HH HH HH
HH HH HH
HH HH HH

κ2-spinon κ̄1-spinon

� -
energy cost ∝ distance (3.78)

The state between spinon and anti-spinon is not translationally invariant. In the
example, the unit cell of this state is depicted in red and consists of two regular
bonds with three “singlet lines” between the sites, one stronger bond with four lines
(which cross in the cartoon), and one weaker bond with only two lines. If we assume
that the two states (3.77) and (3.76) on both sides are true ground states, it is clear
that the irregularities in the strength of the bond correlations will cause the state
between the spinon and anti-spinon to have a higher energy than either of them. This
additional energy cost will induce a linear confinement potential between the spinons,
and hence a linear oscillator potential for the relative motion of the particles. As in
the models studied above, the Haldane gap corresponds to the zero-point energy of
this oscillator.

If one of the “ground states” to the left or to the right of the domain wall is not
a true ground state, but a translationally invariant state corresponding to a higher
energy than the ground state, there will be a confining force between this domain
wall and another domain wall which transforms the intermediate “ground state”
with a higher energy back into a true ground state. This force will be sufficient to
account for a Haldane gap, regardless of the strength or existence of a confinement
force between the constituent particles of each domain wall.

The lowest-lying excitations of a representation [κ1, κ2, . . . , κL] spin chain, how-
ever, will in general not be domain walls, but spinons created by breaking up one of
the singlets (3.75) in a ground state. This is illustrated below for the ground state
(3.76):

h h1 1 h h h h h h1 1 1 1 1 1
h h h2 2 2 h h h h h2 2 2 2 2
h h h h3 3 3 3 h h h h3 3 3 3
h h h h h4 4 4 4 4 h h h4 4 4

x
x

x
x

1

2

3

4

HH HH
HH HH
HH HH

HH
HH

HH HH HH HH HH
HH HH HH HH HH
HH HH HH HH HH

In the example, we have created a spinon transforming under rep. κ̄1 and its anti-
particle, a spinon transforming under rep. κ1. This is, however, irrelevant to the
argument—we may break the singlet in any way we like. The important feature is
that we obtain, by construction, at least two excitations, and that these are confined.
In our specific example, the confining potential is equivalent to the confining potential
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in (3.78) above:

h1 h h h h h h h h1 1 1 1 1 1 1 1
h h2 2 h h h h2 2 2 2 h h h2 2 2
h h h h h h h3 3 3 3 3 3 3 h h3 3
h h h h h h h h4 4 4 4 4 4 4 4 h4

x
x

x
x

1

2

3

4

HH
HH

HH
HH HH
HH HH

HH HH HH
HH HH HH HH
HH HH HH HH







HH HH HH
HH HH HH
HH HH HH

κ1-spinon κ̄1-spinon

� -
energy cost ∝ distance

We leave it to the reader to convince him- or herself that the conclusions regarding
confinement drawn from the simple examples studied here hold in general.

3.6 One step closer: Spinon confinement through

next nearest neighbor interactions

Let us briefly summarize the results obtained. The SU(n) models we have studied
so far fall into two categories. The models belonging to the first—the trimer chain,
the 6 VBS, and the n-mer chain—have n degenerate ground states, which break
translational invariance up to translations by n lattice spacings. The Young tableaux
describing the representations of SU(n) at each site consist of a number of boxes
λ which is smaller than n, and hence obviously not divisible by n. The models
support deconfined spinon excitations, and hence do not possess a Haldane gap in
the spectrum. The Hamiltonians of these models require interactions between n+ 1
neighboring sites along the chain. Even though the Affleck–Lieb theorem is not
directly applicable to the models we constructed above, it is applicable to SU(n)
spin chains with spins transforming under the same representations. Like the VBS
models, the theorem suggests that there is no Haldane gap in this family of models.

The models belonging to the second category—the 10 VBS, the 8 VBS, the
symmetric SU(n) VBS, and the adjoint SU(n) VBS—have translationally invariant
ground states. The ground states are unique for some models, like the 10 and the
(n, 0, . . . , 0) VBS, and degenerate for others, like the 8 VBS. The Young tableaux
describing the representations of SU(n) at each site consist of a number of boxes
λ which is divisible by n. The Affleck–Lieb theorem is not applicable to models
of this category. The spinon excitations for this category of models are subject to
confinement forces, which give rise to a Haldane gap. The parent Hamiltonians for
these models require interactions between nearest-neighbor sites only.

At first glance, this classification might appear complete. Further possibilities
arise, however, in SU(n) spin chains where number of boxes λ the Young tableau
consists of and n have a common divisor different from n, which obviously requires
that n is not a prime number. In this case, it is possible to construct VBS models in
which the ground state breaks translational invariance only up to translations by n/q
lattice spacings, where q denotes the largest common divisor of λ and n such that
q < n. This implies that the ground state of the appropriate, translationally invariant
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Hamiltonian will be n/q-fold degenerate. In the examples we will elaborate on below,
the parent Hamiltonians for these models require interactions between n

q
+ 1 sites,

a feature we conjecture to hold in general. The spinon excitations of these models
are confined, even though the Affleck–Lieb theorem states that the nearest-neighbor
Heisenberg chain of SU(n) spins transforming under these representations is gapless.
We will point out in Sec. 3.8.1 that this transition from a phase with deconfined to
confined spinons by applying a next nearest neighbor interaction represents a new
type of topological phase transition.

(We implicitly assume here that the ground states of the SU(n) nearest-neighbor
Heisenberg chains are non-degenerate.) Let us illustrate the general features of this
third category of models with a few simple examples.

(1) Consider an SU(4) chain with spins transforming under the 10-dimensional
representation

(2, 0, 0) = .

Following the construction principle of the 6 VBS of SU(3), we find that the two
degenerate VBS states Ψ(1)Ψ(3) | 0 〉 and Ψ(2)Ψ(4) | 0 〉 illustrated through

c c c c c c c c c c c c
c c c c c c c c c c c c

projection onto rep. (2, 0, 0)

one site

(3.79)

and the identical cartoon shifted by one lattice spacing to the right or the left,
respectively, are exact zero-energy ground states of

H(2,0,0) VBS =
N∑

i=1

((

J
(3)
i

)4

− 12
(

J
(3)
i

)2

+
135

4

)

, (3.80)

which contains next-nearest neighbor interactions. The notation Ψ(µ)Ψ(ν) was intro-
duced in Eq. (3.55).

The example illustrates the general rule stated above. The largest common di-
visor of n = 4 and λ = 2 is q = 2. This implies n/q = 2 and hence two degenerate
VBS states which break translational invariance up to translations by n/q = 2 lat-
tice spacings. The parent Hamiltonian requires interaction between 1 + n/q = 3
neighboring sites.

According to the Affleck–Lieb theorem, models of antiferromagnetic SU(4) chains
of representation (2, 0, 0) with nearest-neighbor Heisenberg interactions and non-
degenerate ground states are gapless in the thermodynamic limit, which implies that
the spinons are deconfined. In all the models we have studied in previous sections, the
conclusions drawn from the Affleck–Lieb theorem were consistent with those drawn
from our exact models. For the present model, however, they are not consistent.

Specifically, we strongly conjecture that the spinons in the (2, 0, 0) VBS are con-
fined. This conjecture is based on the reasonable assumption that the elementary ex-
citations of the model transform as either the fundamental representation 4 = (1, 0, 0)
of SU(4) or its conjugate representation 4̄ = (0, 0, 1). This assumption implies that a
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single domain wall in one of the 4-mer chains used to construct the VBS state (3.79)
shifts this chain by one lattice spacing. If we assume a ground state to the left of
the spinon, the state on to the right will have a higher energy for the next-nearest
neighbor Hamiltonian (3.80), as illustrated below.

c c c c c c c c c c c c c
c c c c c c c c c c c c c
s s s

s s s
� -

energy cost ∝ distance

4̄
spinon

4̄
spinon

(3.81)

To recover the ground state, a second domain wall is required nearby, which is bound
to the first by a linear potential.

Our conclusion is not in contradiction with the rigorous result of Affleck and Lieb,
as they explicitly restrict themselves to models with nearest-neighbor interactions. If
we had only nearest-neighbor interactions, the energy expectation value in the region
between the domain walls would not be higher than in the ground state, as one can
see easily from the cartoon above—the sequence of alternating links would merely
shift from (strong, weak, strong, weak) to (strong, strong, weak, weak).

(2) The situation is similar for an SU(6) chain with spins transforming under the
56-dimensional representation

(3, 0, 0, 0, 0) = .

With n = 6 and λ = 3, we have again n
q

= 2. Accordingly, we find that the two VBS
states illustrated through

c c c c c c c c c c c c
c c c c c c c c c c c c
c c c c c c c c c c c c

projection onto rep. (3, 0, 0, 0, 0)

one site

(3.82)

are exact ground states of a parent Hamiltonian containing up to next-nearest-
neighbor interactions only, and that the spinon excitations are confined.

(3) As a third example, consider an SU(6) spin chain with spins transforming
under the 21-dimensional representation

(2, 0, 0, 0, 0) = .

This implies n
q

= 3. We find that the three VBS states illustrated by

c c c c c c c c c c c c
c c c c c c c c c c c c

projection onto rep. (2, 0, 0, 0, 0)

one site

(3.83)

are exact ground states of a parent Hamiltonian involving the quadratic Casimir of
total spin of four neighboring sites,

H(2,0,0,0,0) VBS =

N∑

i=1

Hi (3.84)
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with

Hi =

((

J
(4)
i

)2

− 32

3

)((

J
(4)
i

)2

− 44

3

)((

J
(4)
i

)2

− 50

3

)

. (3.85)

These VBS states break translational symmetry only up to translations by three
lattice spacings. The spinons of this model are again confined through a linear
potential, as illustrated below.

c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c
s s s s s

s s s s s
� -

energy cost ∝ distance

6̄
spinon

6̄
spinon

(3.86)

The conclusions we have drawn for this VBS model rest on the assumption that the
quadratic Casimirs of the representations contained in the tensor product shown in
the dashed box in (3.83) as well as in the tensor product one obtains if one shifts
this box by one lattice spacing to the left or to the right are smaller than the largest
Casimir contained in the tensor product shown in the dotted box in (3.86). We have
verified the validity of this assumption for the (2,0,0,0,0) VBS model we considered
here, but not shown it to hold for similar models with larger n or λ.

(4) Finally, consider an SU(6) spin chain with spins transforming under the 70-
dimensional representation

(1, 1, 0, 0, 0) = .

Thus we have once again n
q

= 2. In a notation similar to the one introduced for the
8 VBS,

=̂ c, =̂ e,

the two degenerate VBSs are illustrated by

c c cc c c
c c cc c c
e e ee e e

e e ee e e

projection onto rep. (1, 1, 0, 0, 0)

one site

(3.87)

are exact ground states of a parent Hamiltonian involving the quadratic Casimir of
the total spin of three neighboring sites,

H(1,1,0,0,0) VBS =

N∑

i=1

Hi (3.88)

with

Hi =

((

J
(3)
i

)2

− 20

)((

J
(3)
i

)2

− 70

)((

J
(3)
i

)2

− 540

)

. (3.89)

The states (3.87) are not the only VBSs one can form. Other possibilities like

e e ee e e
e e ee e e
c c cc c c

c c cc c c
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or c c c c c ce e e e e e
e e e e e ec c c c c c ,

however, contain additional representations for the total SU(6) spin of three neigh-
boring sites, and are hence expected to possess higher energies.

Spinon excitations transforming under the 6-dimensional rep. (0, 0, 0, 0, 1) are
linearly confined to spinons transforming under the 15-dimensional rep. (0, 0, 0, 1, 0):

c c cc c c
c c cc c c
e e ee e e e

e e ee e e
s u u

us s

(0, 0, 0, 0, 1)
spinon

(0, 0, 0, 1, 0)
spinon

� -
energy cost ∝ distance (3.90)

The VBS configuration we have drawn between the two spinons in (3.90) constitutes
just one of several possibilities. We expect, however, that this possibility corresponds
to the lowest energy among them for the Hamiltonian (3.88). This concludes our list
of examples.

The models introduced in this subsection are interesting in that they provide us
with examples where spinon confinement, and with the confinement the existence of
a Haldane gap, is caused by interactions extending beyond nearest neighbors. The
conclusion drawn from the Affleck–Lieb theorem for SU(n) models with spins trans-
forming under representations we have labeled here as the “third category” hence
appear to hold for models with nearest-neighbor interactions only, to which the theo-
rem is applicable. For these models, the theorem states that the spectrum is gapless,
which according to our understanding implies that the models support deconfined
spinon excitations. The examples we have studied, by contrast, suggest that models
with longer-ranged interactions belonging to this category exhibit confinement forces
between the spinon excitations and hence possess a Haldane gap.

It is worth noting that even though in the examples we elaborated here λ < n,
we expect our conclusions to hold for models with λ > n as well. To see this, let
m > 0 be an integer such that nm < λ < n(m + 1). We can now construct a first
VBS with spinon confinement using nm boxes of the Young tableau and combine it
with a second by projection on each side with a second VBS constructed from the
remaining λ′ = λ−nm boxes. Since the spinons of the first VBS are always confined
and hence gapped, the final VBS will support deconfined spinons if and only if the
second VBS will support them, which in turn will depend on the largest common
divisor q′ of λ′ and n as well as the range of the interaction. Since the largest common
divisor q of n and λ is equal to q′, there is no need to think in terms of λ′ and q′.
The conclusions regarding confinement and the Haldane gap will not depend on the
distinction between λ and λ′.

3.7 Generalized Haldane scenario

In 1983 Haldane argued that there is a fundamental difference between integer and
half–integer spin chains. Certain quantum antiferromagnets with integral spin –
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including the isotropic Heisenberg chain – should have the following properties:

1. a unique ground state

2. a gap between the ground state and the first excited state

3. exponentially decaying static spin–spin correlations

This was called ‘Haldane scenario’ [87] and is in contrast to the behavior of the
isotropic HM with half–integral spin which is expected to have no gap and algebraic
decay of correlations. Our categorization is done by means of Young tableaux rather
than the spin quantum number(s). The connection between spin S representations
and Young tableaux is very easy: The Young tableaux of the SU(2) representations
consist of only one row, and the number of columns (i.e., the number of boxes) is
equal to 2S:

S = 1/2 S = 1 S = 3/2 S = 2
SU(2) :

In the following section, we will categorize spin chains with arbitrary SU(n) spin
representations. This categorization includes the SU(2) representations and, hence,
Haldane’s original conjecture. In Sec. 3.7.2, we formulate the generalized Haldane
scenario for SU(n) spin chains.

3.7.1 Categorization of all SU(n) representations

In this section, we used the rules emerging from the numerous examples we studied
to argue that models of SU(n) spin chains in general fall into three categories. The
classification depends on the number of boxes λ of the Young tableau corresponding
to the representation of the individual spins consists off, as follows:

1. If λ and n have no common divisor, the models will support free spin excitations
and hence not exhibit a Haldane gap.

The general reasoning here is simply that the VBS states in this category break
translational invariance up to translations by n lattice spacings, and that there
are (at least) n degenerate VBS ground states to each model. Spinons trans-
forming under representations of Young tableaux with an arbitrary number of
boxes can be accommodated in domain walls between these different ground
states. Consequently, the spinons are deconfined.

2. If λ is divisible by n, the general argument we have constructed in Sec. 3.5
indicates that the model will exhibit spinon confinement and hence a Haldane
gap.

3. If λ and n have a common divisor different from n, the examples studied
in Sec. 3.6 suggest that the question of whether the spinons are confined or
not depends on the details of the interactions. If q is the largest common
divisor of λ and n, interactions ranging to the n

q
-th neighbor were required for
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spinon confinement in the models we studied. The Affleck-Lieb theorem [13],
on the other hand, tells us that SU(n) chains with nearest-neighbor Heisenberg
interactions belonging to this category are gapless if the ground states are non-
degenerate.

Note that the second category is really just the special case q = n of the third:
with n

q
= 1, nearest-neighbor interactions are already sufficient for spinon confine-

ment and a Haldane gap. The third category reduces for nearest neighbor inter-
actions to the first one. Note that our categorization reduces for nearest neighbor
interactions and n = 2 to Haldane’s original conjecture.

The only restriction of our categorization is the that we allow representations
only if one is able to construct a VBS state. The SU(3) representation 8 VBS state,
the adjoint VBS state, and the SU(6) representation 70 VBS model are examples
for models with representations where the corresponding Young tableau consists of
more than one row. In principle, we are able to construct a VBS state for almost
every representation, with only a few exceptions: totally antisymmetric and/or self–
conjugate representations as e.g., the SU(4) representation 6, see also the footnote
in Sec. 3.5.

3.7.2 The Haldane scenario for SU(n) spin chains

In Sec. 3.7 we have listed the properties of SU(2) models which exhibit a Haldane
gap and support confined spinons: a unique ground state, a gap between ground
state and excitation spectrum, and exponentially decaying correlations.

These conditions are fulfilled by the nearest neighbor Heisenberg models (HM) for
integer S and the AKLT models. The generalization of VBS states to SU(n) seems
to violate this list of conditions. The SU(3) representation 8 VBS state is two–fold
degenerate, even though this model exhibits spinon confinement. We can fix this
problem as follows: In the above list, the requirement of a unique ground state can be
replaced by a translational invariant ground state. This holds for the representation
8 VBS state14. The next problem occurs with the third category of models, e.g.,
the SU(4) representation 10 VBS state: this state was proposed to exhibit spinon
confinement, but it breaks translational invariance (while translational symmetry by
two lattice spacings is conserved). That means that also translational invariance
might not be necessary for the generalized Haldane scenario. Only the gap in the
excitation spectrum and exponentially decaying correlations are requirements for a
Haldane–type gap. As long as we are considering VBS states, only the exponentially
decaying correlations are significant for the decision whether or not a model has a
Haldane–type gap because every VBS model is gapped by construction. This leads to
the next problem: in a VBS state where the spinons are deconfined the correlations
decay not exponentially but abruptly, i.e., faster than exponentially. In numerical
studies on finite chains it might be difficult to distinguish between exponentially

14The degeneracy is due to spontaneous breaking of parity. For SU(2) quantum spin chains, the
requirements of translation symmetry of the ground state and uniqueness of the ground state are
equivalent for isotropic spin interactions.
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and abruptly decaying correlations. In the following section we describe a method to
overcome this problem successfully. Therefore, we are able to formulate a generalized
Haldane scenario. Certain quantum antiferromagnets which belong to the second or
third category of Sec. 3.7.1 should have the following properties:

• a gap between the ground state(s) and the first excited state

• exponentially decaying static spin–spin correlations (even if translational sym-
metry is broken)

We conclude that SU(n) spin chains with deconfined spinons have correlations with
a power–law (Heisenberg models) or no correlations after a distance of more than n
lattice sites (VBS models).

3.8 Exact results

In this section, we introduce the matrix product state representation of valence bond
solids. When a state is written as a matrix product, one can calculate expectation
values as well as correlation functions via the transfer matrix method. This method
was used by Klümper et al. to evaluate ground state properties of the q–deformed
SU(2) model [85,86]. In particular, they investigated the AKLT model and obtained
the correlation length of spin–spin correlations. We will briefly review the evaluation
of the correlation function of the AKLT state. After that, we apply the transfer
matrix method to some of the introduced SU(3) [65] and SU(4) models.

SU(2) spin 1 AKLT model

The AKLT state
|ψAKLT〉 =

∏

i

(

a†ib
†
i+1 − b†ia

†
i+1

)

| 0 〉 (3.91)

can also be written as a matrix product [85–87]. We first rewrite the valence bonds
on sites i and i+ 1 as follows

a†ib
†
i+1 − b†ia

†
i+1 =

(

a†i , b
†
i

)
(

b†i+1

−a†i+1

)

. (3.92)

and then use the outer product to combine the two vectors at each site into a matrix

Mi ≡
(

b†i
−a†i

)(

a†i , b
†
i

)

| 0 〉i

=

(

|1, 0〉i
√

2 |1,−1〉i
−
√

2 |1, 1〉i − |1, 0〉i

)

.

(3.93)

Assuming PBCs, (3.91) may then be written as the trace of the matrix product

|ψAKLT〉 = tr

(
∏

i

Mi

)

. (3.94)
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Now one has to introduce the transfer matrix R on every site which is defined as

R = Rαβ = R(στ),(σ′τ ′) = M̃σσ′Mττ ′ (3.95)

where M̃ is the complex conjugated of M without transposing the matrix. Addi-
tionally the transfer matrix for the spin operators can be introduced which allows to
calculate quantities like 〈Sz

i 〉 and 〈S1Sr〉. Details of the transfer matrix method are
given in App.B.1. We will just give here the result for the AKLT model. The static
spin–spin correlation function in the thermodynamic limit is given by [20]

〈ψAKLT|Sa
0S

b
j |ψAKLT〉

〈ψAKLT|ψAKLT〉
= δab

4

3
(−1)j

(
1

3

)j

∼ e−j/ξ (3.96)

for a, b = x, y, z. The correlation length is ξ = 1/ ln 3 ≈ 0.91. In principle, static
spin–spin correlations can be evaluated within this method whenever a matrix prod-
uct description is at hand. Let us emphasize that the obtained result is exact.

The main challenge is, hence, the formulation of the VBS states as matrix product
states. In the following section, this is done for the representation 8 VBS state.

SU(3) representation 8 VBS model

In order to write down the states defined in (3.48) explicitly, it is convenient to
formulate the corresponding state vectors as a matrix product. Taking (b,r,g) and
(y,c,m) as bases for the reps. 3 and 3̄, respectively, the singlet bonds in ΨL above
can be written

(

|b〉i |y〉i+1 + |r〉i |c〉i+1 + |g〉i |m〉i+1

)

=
(

|b〉i , |r〉i , |g〉i
)





|y〉i+1

|c〉i+1

|m〉i+1



.

We are hence led to consider matrices composed of the outer product of these vectors
on each lattice site,

M1⊕8

i =





|y〉i
|c〉i
|m〉i





(

|b〉i , |r〉i , |g〉i
)

.

In the case of the AKLT model reviewed above, the Schwinger bosons take care of the
projection automatically, and we can simply assemble these matrices into a product
state. For the 8 VBS, however, we need to enforce the projection explicitly. This is
most elegantly accomplished using the Gell-Mann matrices, yielding the projected
matrix

Mi =
1

2

8∑

a=1

λa tr
(

λaM1⊕8

i

)

. (3.97)

Here we have simply used the fact that the eight Gell-Mann matrices, supplemented
by the unitary matrix, constitute a complete basis for the space of all complex 3× 3
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matrices. By omitting the unit matrix in the expansion (3.97), we effectively project
out the singlet state. Written out explicitly, we obtain

Mi =






2
3
|by〉i − 1

3
|rc〉i − 1

3
|gm〉i |ry〉i |gy〉i

|bc〉i −1
3
|by〉i + 2

3
|rc〉i − 1

3
|gm〉i |gc〉i

|bm〉i |rm〉i −1
3
|by〉i − 1

3
|rc〉i + 2

3
|gm〉i






.

(3.98)

Assuming PBCs, the 8 VBS state ΨL (illustrated in (3.48) on the left) is hence given
by the trace of the matrix product

∣
∣ψL

8VBS

〉
= tr

(
∏

i

Mi

)

. (3.99)

To obtain the state ΨR (illustrated on the right in (3.48)) we simply have to transpose
the matrices in the product,

∣
∣ψR

8VBS

〉
= tr

(
∏

i

MT
i

)

. (3.100)

Once we have obtained the matrix Mi we are able to calculate the transfer matrix
of the representation 8 VBS state. Using the definition (3.95) we obtain the transfer
matrix as well as the transfer matrix of the spin operators (for details see App.B.1).
We find for the state (3.99) the static correlation function in the thermodynamic
limit as

〈
ψL

8VBS

∣
∣ Ja

1 J
b
j

∣
∣ψL

8VBS

〉

〈ψL
8VBS|ψL

8VBS〉
= δab F (j) = δab

27

16
(−1)j 8−j ∝ e−j/ξ (3.101)

where ξ = 1/ ln 8 ≈ 0.48. The same result is obtained for the state (3.100). In the
same way, one can show that for the adjoint SU(n) VBS model (3.71) the static
spin–spin correlation function is in the thermodynamic limit N → ∞

F SU(n)(j) = δab
n3

2(n2 − 1)
(−1)−j(n2 − 1)−j,

which simplifies for n = 3 to (3.101) and for n = 2 to the well–known result (3.96)
of the AKLT chain. We note that the correlation length ξ = 1/ ln (n2 − 1) vanishes
for the large–n limit n→ ∞.

In the following, we will show exemplarily how to obtain a matrix product state
for VBSs which break translation symmetry. For this purpose, we revisit the con-
struction of the representation 6 VBS (3.37) as matrix product state. It is the main
idea thereby to reformulate the spin chain on effective sites such that the effective
valence bonds connect only adjacent sites. One obtains, hence, a matrix product
representation of the given state on an effective lattice which allows us to calculate
correlation functions.
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SU(3) representation 6 VBS model

We start with the representation 6 VBS state (3.37) which is depicted as a cartoon
as follows,

c c c c c c c c c
c c c c c c c c c

projection onto rep. 6 = (2, 0)

one site

(3.102)

We now regroup the sites such that each pair of sites connected by two “singlet lines”
becomes a single site in the new chain:

c c c c c c c c c
c c c c c c c c c

i = 1 2 3 4 5 6 7 8 9 10 (3.103)

Within each dashed box, we have representations

3̄ ⊗ 3̄ = 3 ⊕ 6̄

form the two singlet lines coming in from the left and from the right. At the same
time, as we have representations 6 on the original sites of the original SU(3) spin
chain, we can only have representations

6 ⊗ 6 = 6̄ ⊕ 15 ⊕ 15′.

Together, this implies that in each dashed box, we combine two representations 3̄
symmetrically such that we obtain the representation 6̄. In the re-grouped setting,
we may hence picture the states as

c c ce e e
c c ce e e

i = 1 4 7 10

ī = 1̄ 4̄ 7̄ (3.104)

where each small circle c represents a representation 3 and each large circle e a
representation 3̄.

The singlet bonds c e may hence in analogy to the bonds in the representation
8 VBS be written

(

|b〉i |y〉ī + |r〉i |c〉ī + |g〉i |m〉ī
)

=
(

|b〉i , |r〉i , |g〉i
)





|y〉ī
|c〉ī
|m〉ī



,

where i = 1, 4, 7, . . . for the state above, and ī is the newly introduced “site” to the
right of site i. The singlet bonds e c contracting the new site ī with the site i+ 3
to the right of it are given by

(

|y〉ī |b〉i+3 + |c〉ī |r〉i+3 + |m〉ī |g〉i+3

)

=
(

|y〉ī , |c〉ī , |m〉ī
)





|b〉i+3

|r〉i+3

|g〉i+3



.
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At each of the sites i = 1, 4, 7, . . . , we have to combine two representations 3
symmetrically, i.e., project out the symmetric combination 6 from the matrix

M 3̄⊕6

i =





|b〉i
|r〉i
|g〉i





(

|b〉i , |r〉i , |g〉i
)

.

This is most conveniently done with Schwinger bosons. We obtain

Mi =








b†i
2

b†ir
†
i b†ig

†
i

b†ir
†
i r†i

2
r†ig

†
i

b†ig
†
i r†i g

†
i g†i

2







. (3.105)

Similarly, if we introduce a second set of Schwinger bosons for the complementary
colors yellow, cyan, and magenta,

|y〉 = y† | 0 〉 , |c〉 = c† | 0 〉 , |m〉 = m† | 0 〉 , (3.106)

at each newly introduced site ī, we may write the matrices at these sites as

M ī =








y†
j̄

2
y†

ī
c†
ī

y†
ī
m†

ī

y†
ī
c†
ī

c†
ī

2
c†
ī
m†

ī

y†
ī
m†

ī
c†
ī
m†

ī
m†

ī

2







. (3.107)

Assuming periodic boundary conditions (PBCs), the three representation 6 VBS
states labeled by µ = 1, 2, 3 may be written as matrix product states,

∣
∣
∣ψ

(µ)
6VBS

〉

= tr

[
∏

i

( i−µ
3

integer)

MiM ī

]

. (3.108)

By use of the matrices Mi and M i, we are able to evaluate the static spin-spin
correlation function between sites i and i+3m (with m integer) and find for N → ∞

〈ψ6VBS| Ja
0J

b
j |ψ6VBS〉

〈ψ6VBS|ψ6VBS〉
= 0. (3.109)

By building effective sites, it turned out that neighboring valence bonds are totally
uncorrelated in the representation 6 VBS model. Thus we have found a situation as
in the Majumdar–Ghosh model.

At this point, we emphasize again the meaning of the static spin–spin correlation
functions. Within this framework, we are able to distinguish between abruptly de-
caying correlations (like in the MG model or the SU(3) representation 6 VBS model)
and exponentially decaying correlations (like in the AKLT or SU(3) representation
8 VBS model).

Within this framework, we obtain no correlations at all for models which we
expect to exhibit abruptly decaying correlations. For models with exponentially
decaying correlations, we obtain a well–defined correlation length. We hypothesize
that exponentially decaying correlations indicate spinon confinement.
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SU(4) representation 10 VBS model

Now we turn to the SU(4) representation 10 VBS model which plays a key role for
our generalization of Haldane’s conjecture. The ground state of this model is two–
fold degenerate due to spontaneous breaking of lattice translation symmetry. In our
understanding, this model exhibits spinon confinement and is a paradigm for the
third category of models, see Sect. 3.7.1. On the first view, this seems to be contra-
dictory. So far, we have seen that all SU(n) VBS states which breaks translational
symmetry support deconfined spinons and have no exponentially decaying correla-
tions. On the other side, all translational invariant SU(n) VBS states have been
proposed to exhibit spinon confinement and exponentially decaying correlations. In
this sense, it is the crucial question whether or not the SU(4) representation 10 VBS
state exhibits exponentially decaying correlations [122]. In order to force this issue
we calculate the static spin–spin correlations explicitly.

Recall the state (3.79) as a cartoon,

c c c c c c c c c c c c
c c c c c c c c c c c c

projection onto rep.10 = (2, 0, 0)

one site

This state is two–fold degenerate as shifting by one lattice spacing to the right or the
left, respectively, yields a new state. Both ground states are exact zero-energy ground
states of the Hamiltonian (3.80) which involves next-nearest neighbor interactions.

We now regroup the sites such that each pair of sites connected by two “singlet
lines” becomes a single site (dashed box) in the new chain:

c c c c c c c c c c c c
c c c c c c c c c c c c

i = 1 2 3 4 5 6 7 8 9 10 11 12 (3.110)

Within each dashed box, we have representations

6 ⊗ 6 = 1 ⊕ 15 ⊕ 20

form the two singlet lines coming in from the left and from the right. At the same
time, as we have representations 10 on the original sites of the original SU(4) spin
chain, we can only have representations

10 ⊗ 10 = 20 ⊕ 35 ⊕ 45.

Together, this implies that in each dashed box, we combine two representations 6
symmetrically such that we obtain a representation 20. In the re-grouped setting,
we may hence picture the states as

e e e e e e
e e e e e e

i = 1 3 5 7 9 11
(3.111)
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where each large circle e represents a representation 6.
In order to derive the matrix product representation we first rewrite the singlet

e e on the bond (i, i+ 2) as

b†1,ib
†
6,i+2 − b†2,ib

†
5,i+2 + b†3,ib

†
4,i+2 + b†4,ib

†
3,i+2 − b†5,ib

†
2,i+2 + b†6,ib

†
1,i+2 | 0 〉

=
(

b†1,i , b
†
2,i , b

†
3,i , b

†
4,i , b

†
5,i , b

†
6,i

)












b†6,i+2

−b†5,i+2

b†4,i+2

b†3,i+2

−b†2,i+2

b†1,i+2












| 0 〉
(3.112)

where we have chosen a local bosonic basis for the representation 6. Second, at each
second lattice site i we use the outer product to combine the two vectors originating
from rewriting Eq. (3.112) on the bonds (i− 2, i) and (i, i+ 2) into a matrix

Mi =












b†6,i

−b†5,i

b†4,i

b†3,i

−b†2,i

b†1,i












(

b†1,i , b
†
2,i , b

†
3,i , b

†
4,i , b

†
5,i , b

†
6,i

)

| 0 〉i . (3.113)

Assuming periodic boundary conditions the two–fold degenerate VBS state can then
be written as the trace of the matrix product

∣
∣ψSU(4)rep.10

even

〉
= tr





N∏

i=1
i even

Mi



 (3.114)

and
∣
∣
∣ψ

SU(4)rep.10
odd

〉

= tr





N∏

i=1
i odd

Mi



. (3.115)

In the following we use the state
∣
∣
∣ψ

SU(4)rep.10
even

〉

only and write for convenience |ψrep10〉.
By means of the transfer matrix method we have calculated the static spin–spin

correlation function with the result, that the correlations decay exponentially,

〈ψrep10| Ja
1J

b
j |ψrep10〉

〈ψrep10|ψrep10〉
∝ δab

(
1

7

)j

= e−j/ξ (3.116)

with the correlation length ξ = 1/ ln 7 ≈ 0.51. For details of the calculation see
App.B.1.
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We have shown that the SU(4) representation 10 VBS state possesses expo-
nentially decaying spin–spin correlations even though it breaks lattice translation
symmetry. This exact result is evident for our conjecture that this state exhibits
spinon confinement. In the following, we present another argument why spinon con-
finement is present in the SU(4) rep.10 VBS model and, more generally, in all models
belonging to the third category.

3.8.1 Effective mapping to translation invariant models

We wish to consider again the SU(4) representation 10 VBS model which we re-
grouped onto an effective lattice. Each effective site consists of two physical sites.
The cartoon for the effective chain is similar to (3.111):

e e e e e e e e
e e e e e e e e

projection onto rep.20 = (0, 2, 0)

one effective site

α = i i+1 i+2 . . .

(3.117)

Each large circle e denotes a representation 6 and we project onto each effective
site α onto the symmetric representation 20 = . A parent Hamiltonian involving
nearest neighbor interactions (on effective sites α) is easily given by

Hrep.20 =

N/2
∑

α=1

(

JαJα+1 +
13

54
(JαJα+1)

2 +
1

54
(JαJα+1)

3 +
4

3

)

. (3.118)

For several reasons, this model exhibits confined spinons:

1. the corresponding Young tableau consists of λ = 4 boxes

2. the ground state (defined on the effective lattice) is unique

3. the cartoon is AKLT-like

4. Affleck has shown [5,6] that the nearest neighbor Heisenberg model with repre-
sentation 20 on each site has a unique ground state and a gap in the excitation
spectrum. The VBS (3.118) is expected to be in the same phase as the HM.
This is plausible as the prefactor of the biquadratic term in (3.118) is small
(≈ 0.24) and the prefactor of the bicubic term is vanishing small (≈ 0.02).

Finally we can understand what the meaning of our “third category” is: in this
category are all those representations which describe models which can be mapped
(when considering (1 + n/q)–site interactions) to effective representations which be-
long to the second category. The fact, that the effective representations are placed
on n/q neighboring (physical) sites, explains why the models of the third category
can be expected to n/q–merize. The situation is, hence, totally different from that of
common J1–J2 models (e.g., spin 1/2). This further gives a possible explanation why
the phase transition occurs for such small values of J2,c as we will see in Sec. 3.9.9.
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In common J1–J2 models the system is frustrated, a critical frustration has to be
reached. In case of the models of the third category, the next–nearest neighbor cou-
pling (in case of the SU(4) representation 10) allows the system to build another
effective spin representation which is energetically more favorable.

The same line of argument applies to the models (3.82), (3.83), and (3.87) of
Sec. 3.6 and supports the drawn conclusion about the presence of spinon confinement.

3.9 Conjecture and its numerical confirmation

So far, we have introduced our approach how to decide which VBS states exhibit
spinon confinement. We have categorized all VBS states into three categories which
depend only on the given spin representation and, in case of the third category, on
the range of interaction of the parent Hamiltonian. We have shown analytically that
this categorization for valence bond solids is correct. Now we turn to the Heisenberg
models which are the generic spin models and conjecture the following:

For any SU(n) spin representation for which we are able
to construct a VBS state, the Heisenberg model falls

into the same category as the VBS state.

In case of the first category, we expect the nearest neighbor Heisenberg model to
be gapless and to exhibit power–law spin–spin correlations since the spinons are de-
confined. In case of the second category, we expect the nearest–neighbor Heisenberg
model to have an energy gap between ground state and excitation spectrum, the cor-
relations to decay exponentially since the spinons are confined. In case of the third
category, the behavior of the Heisenberg model will depend on the range of inter-
actions: the HM with interactions containing n/q neighboring sites will be gapless,
whereas the HM with interactions containing more than n/q neighboring sites will
exhibit confined spinons. As an example, we consider the SU(4) representation 10
HM. While the model with nearest–neighbor interactions is expected to be gapless,
to possess a unique ground state and power–law correlations, the next–nearest neigh-
bor Heisenberg model is expected to be gapped, should exhibit a degenerate ground
state and exhibit exponentially decaying correlations. In particular, we propose that
the transition from the critical phase to the Haldane phase will occur for abnormally
small next–nearest neighbor coupling J2. We notice that the next–nearest neighbor
HM might break translational invariance as the corresponding VBS does. We will see
below that there are clear indications, that this breaking of translational symmetry
is different from the known frustration effect in J1–J2 models.

In order to prove this conjecture, we present numerical results for all discussed
Heisenberg models with SU(3) and SU(4) spin symmetry. Before we will discuss one
representation after the other, we start with a brief review of the SU(2) Heisenberg
models in order to introduce the numerical method and discuss these results in the
context of known models.
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As numerical method, we use the density matrix renormalization group [152]
(DMRG)15 in order to investigate the Heisenberg models and figure out their prop-
erties. In particular, we are interested in the following questions:

• Is the model gapped or gapless?

• Is the ground state degenerate?

• Is the ground state translational invariant?

• How do the correlations decay?

To cover all these questions, one has to calculate at least the two lowest energies in
the spectrum (in case of degeneracy more than two), to detect correlation functions,
and perhaps dimer–dimer correlations. All things we mentioned are standard tools
within DMRG. Computing these quantities correctly can be very expensive: for
each quantity we want to look at, one has to do many calculations with varying
number of kept states in order to extrapolate the converged system. This has to be
repeated for different system sizes in order to extrapolate the thermodynamic limit.
As already mentioned, this has to be done for every quantity we wish to look at.
As we are interested in many systems with different spin representations, we had
to compute innumerable DMRG–calculations. Furthermore, the higher–dimensional
representations of SU(3) and SU(4) turn out to exhibit a very slow convergence
behavior. The above described procedure might fail for these representations due to
restrictions in computer time and computer memory.

To avoid these problems, we are looking for more modern quantities: the en-
tanglement entropy and the bond entropy. By partitioning an extended quantum
system into two blocks, the entanglement entropy is defined as the von Neumann
entropy of the reduced density matrix ρA of one of the two blocks,

SA = −tr(ρA ln ρA) .

The success of this quantity can be understood because it is a single number able to
capture the main features of the scaling behavior. In fact, in one–dimensional critical
ground states, when the block A is a segment of length ℓ in an infinite system, the
entanglement entropy diverges with the logarithm of the block size as [38, 149]

SA =
c

3
ln ℓ + c′1 (3.119)

where c is the central charge of the associated conformal field theory (CFT) and c′1 a
non–universal constant. Away from the critical point (i.e., when the gap opens up)
SA saturates to a constant value [149] proportional to the logarithm of the correlation
length [38]. It is one of the main advantages of the entanglement entropy, that we
have a finite–size formula available [38]. Eq. (3.119) becomes for a chain of length L

Sℓ,L =
c

3
ln

[(
L

π

)

sin

(
πℓ

L

)]

+ c1 (3.120)

15Recommendable reviews are Refs. [70, 112, 129]. For a specific discussion about critical SU(n)
spin chains and the DMRG method see Ref. [52].
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where c1 is again a non–universal constant. We will see later, that (3.120) will allow
us to figure out the corresponding CFT for very small systems. We further notice,
that the entanglement entropy of a gapless system must have a sine–shape. In case,
we find for a converged system derivations from the sine shape, this might indicate
the opening of the energy gap. The breaking of lattice translational symmetry can
also be detected by the entanglement entropy. In the following we use the terms
entanglement entropy and block entropy synonymously.

The other quantity we look at is the bond entropy. This is nothing but the
two–site entanglement entropy, i.e., the von Neumann entropy of the reduced density
matrix where all sites are traced out except of site α and α−1. It measures, hence, the
entanglement of the sites α and α− 1 with the remainder of the whole system. This
quantity is helpful in order to detect the breaking of lattice translational symmetry.

We wish to emphasize that these quantities have a huge advantage: Both quanti-
ties can be determined for finite system lengths which save pains to extrapolate the
thermodynamic limit. The quantities themselves give a measure of the convergence of
the calculations, i.e., sometimes it is sufficient to compute a given DMRG–calculation
only once. As a third advantage we can notice that the entanglement and the bond
entropy comes out quite naturally from the DMRG, as it is the underlying concept
to calculate the reduced density matrix for each DMRG step.

Conformal field theory and the central charge

In the following, we wish to establish the connection between the entanglement en-
tropy and the corresponding CFT.

The SU(n) Wess–Zumino–Witten (WZW) models have been found to capture the
low energy behavior of a family of critical quantum spin chains [10]. WZW models are
conformal field theories, meaning that the Lagrangians are invariant under conformal
mappings. These are all combinations of translation, rotation, and dilatation in two–
dimensional space-time. For field theories with conformal invariance, it suffices to
specify the scaling of the fields or rather the scaling of their correlation functions to
characterize the theory completely [42]. As such, once a CFT is identified, there is
no immediate need to work with the associated Lagrangian. As a general structure,
a WZW model consists of a non-linear sigma model term and k times a topological
Wess-Zumino term, where k is a non-zero positive integer [42]. The SU(n) WZW
model of level k (denoted SU(n)k WZW in the following) can be characterized by
the central charge.

The central charge c is defined in the framework of the Virasoro algebra of the
CFT [42]. Alternatively, c is also named conformal anomaly number. It appears in
the correlation function of the energy momentum tensor T (z) of the theory, where z
denotes a complex space-time variable. This correlation has a singularity as z → 0,
with a prefactor proportional to c, 〈T (z)T (0)〉 ∼ c/2

z4 . For the SU(n)k WZW, c is
given by

c =
k(n2 − 1)

k + n
. (3.121)

The for our purposes relevant feature of the central charge is that c appears as a
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universal scaling factor in the microscopically accessible entanglement entropy [89],
see (3.119) and (3.120).

3.9.1 SU(2) spin 1/2 Heisenberg model

To begin with, we consider the spin 1/2 nearest–neighbor Heisenberg model (3.1).
The output which is paradigmatic for a critical spin chain is shown in Fig. 3.7. We
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Figure 3.7: DMRG output of the spin 1/2 Heisenberg model shows a smooth bond
entropy indicating a translational invariant ground state. The sine shape of the
entanglement entropy clearly detects a gapless system. We have fitted the central
charge c = 1.00 ± 0.00.

have fitted the DMRG data (obtained for the HM with L = 120) with Eq. (3.120)
and find in very high accuracy the central charge c = 1.00. Note that all errors
are fitting errors. Errors due to discarding states in the reduced density matrix
are considered in the quantity called discarded entropy. By means of Eq. (3.121)
we detect the SU(2)1 WZW model as corresponding CFT. This first example shows
that we can successfully use entanglement and bond entropy to classify the HM: here
we have found that the ground state is unique and translational invariant and the
spectrum is gapless. Additionally, we have identified the corresponding CFT.

Now we add to the Hamiltonian (3.1) a next–nearest neighbor Heisenberg inter-
action

H(J2) = J2

∑

i

SiSi+2 (3.122)

and investigate what happens for different values of J2. Note that we have set the
prefactor J1 of the nearest–neighbor Heisenberg term to unity throughout the thesis
unless otherwise stated explicitly.

In Fig. 3.8 we have shown the entanglement entropy for five different values of
J2 (J2 ≡ V2). For J2 = 0.35 we find the sine shape which indicates criticality



3.9 Conjecture and its numerical confirmation 105

 0

 0.5

 1

 1.5

 2

 0  10  20  30  40  50  60  70  80  90

E
n

ta
n

g
le

m
en

t 
en

tr
o

p
y

Sites

V2=0.35
V2=0.40
V2=0.45
V2=0.50
V2=0.75

Figure 3.8: The entanglement entropy of the J1–J2 model for several values of J2 is
plotted. The system size of all considered models is 100 sites. The different curves
are discussed in the text.

of the system. The central charge is fitted to c = 0.98. Due to the fact, that the
central charge is underestimated by the DMRG (presumed convergence of the DMRG
calculation) this is a hint for the careful physicist that something might have changed
qualitatively in contrast to the J2 = 0 case. For J2 = 0.4, one sees that the fitted
sine shape does not match perfectly anymore. This might indicate the opening of a
gap. Moreover, the fitted value for the central charge is now c = 0.62. According to
Eq. (3.121) a value smaller than 1 is impossible for the central charge of an SU(n)k

WZW model16. We conclude that we have reached a gapped phase. For the value
J2 = 0.45 the entanglement entropy saturates after a few sites to a constant value
what is typical for a gapped phase. We further see the breaking of translational
invariance clearly indicated by the alternating of the entropy. This alternating has a
period of two sites. We conclude that the system is still invariant under translations
by two lattice sites. The gapped phase must be a dimerized phase. At the MG point
J2 = 0.5, the entanglement entropy oscillates between 0 and 0.7. As discussed at the
very beginning of this thesis, at the MG point neighboring dimers are completely
uncorrelated with its environment. This results in an entanglement entropy with
value 0 on every second site. Note that the dimerization causes a degeneracy of the
ground state. For J2 = 0.75 the system is still in a strong dimer phase, but the
dimerization is not exact anymore. One might think of that as a superposition of
the MG state and a liquid state.

In Fig. 3.9 we have plotted the bond entropy for the same values of J2 as in
Fig. 3.8. In this plot, we can also see the breaking of translational invariance with
increasing J2. For J2 = 0.35 and J2 = 0.4 the bond entropy still indicates a unique

16In general, critical SU(n) invariant quantum spin chains must correspond to an SU(n)k WZW
model as effective low–energy theory. Hence, the central charge must be c ≥ 1 according to (3.121).
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ground state, for J2 = 0.45, however, the ground state is degenerate. At the MG
point, the bond entropy is oscillating from 0 to 1.4 and behaves qualitatively as the
entanglement entropy. At J2 = 0.75 the bond entropy has still a strong oscillatory
behavior.
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Figure 3.9: The bond entropy of the J1–J2 model for several values of J2 is plotted.
The system size of all considered models is 100 sites. The bond entropies are discussed
in the text.

The J1–J2 model was very well studied within various techniques and we have,
hence, a good understanding of the phase diagram. In fact, the model undergoes
at J2,c = 0.2411 a continuous phase transition to a dimerized phase, reaches the
MG point where the dimerization becomes exact. At J2,max = 0.57 the maximum
dimerization is reached, i.e., that the dimer order parameter reaches its maximum
value. We realize that we overestimate the critical coupling J2,c when we proceed
as illustrated. To find phase transitions in higher accuracy, one has to compute
the system for several chain lengths L with open boundary conditions rather than
periodic ones and then to extrapolate L → ∞. As we are only interested in the
qualitative behavior of a given model this proceeding is sufficient for our purposes.

3.9.2 SU(2) spin 1 Heisenberg model

The spin 1 Heisenberg model was the first model proposed by Haldane to possess
an energy gap. As mentioned above, the AKLT model which is just the HM plus
an additional biquadratic Heisenberg term is the most important toy model in order
to study and understand Haldane–phase antiferromagnets. As a consequence, the
whole phase diagram for arbitrary values of the bilinear and biquadratic Heisenberg
term was studied intensively. For convenience, we consider the most general isotropic
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Figure 3.10: Phase diagram of Hamiltonian (3.123) as a function of θ.

spin Hamiltonian with nearest–neighbor interactions,

HS=1 =
∑

i

(

cos θSiSi+1 + sin θ (SiSi+1)
2
)

. (3.123)

The phase diagram of the model (3.123) as a function of θ has been investigated
by numerous authors [49, 77, 88, 95, 130,140] and is by now well understood.

The point θ = 0 on the circle shown in Fig. 3.10, the antiferromagnetic Heisenberg
point, is embedded in the so–called Haldane phase (−π/4 < θ < π/4) which is
characterized by a unique ground state, exponentially decaying correlations, and a
gap between the ground state and the excited states. The Haldane phase includes
at θVBS = arctan (1/3) the valence bond solid (VBS) or AKLT model. The AKLT
Hamiltonian shares the most properties of the isotropic Heisenberg Hamiltonian but,
in contrast to the isotropic Heisenberg model, possesses a ground state which can be
written out explicitly, see Eq. (3.16).

Above the Haldane phase in Fig. (3.10), there is a critical phase (π/4 < θ <
π/2) with spin nematic correlations [95]. The phase transition at θULS = π/4 was
proposed to be of Kosterlitz–Thouless type [49, 77]. At the transition point, the
Hamiltonian (3.123) reduces to the Uimin–Lai–Sutherland (ULS) model [91,142,148]
which exhibits explicit SU(3) symmetry. The ULS model is a sum of permutation
operators and exactly solvable via the nested Bethe ansatz.

At θ = π/2, the Hamiltonian (3.123) becomes ferromagnetic with gapless exci-
tations. It reaches the ferromagnetic Heisenberg point at θ = ±π and undergoes
a first order phase transition to a dimerized phase at θ = −3π/4 where (3.123) is
again SU(3) symmetric and has a highly degenerate ground state [24]. Close to
this point there was a long–standing discussion regarding the possible existence of a
small spin nematic phase. Recently, this was ruled out by numerical and analytical
arguments [66, 95]. In the dimerized phase (−3π/4 < θ < −π/4), the excitations
are gaped. At the Takhtajan–Babudjan point θTB = −π/4, the gap closes and the
model is again exactly solvable via the nested Bethe ansatz [23, 143], has gapless
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excitations, and a unique ground state. Finally, the phase transition to the Haldane
phase at θ = −π/4 is of second order [3, 6].
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Figure 3.11: Entanglement and bond entropy of models with different values of θ.
The isotropic HM (θ = 0), the AKLT model (θ = arctan 1/3), and another model
inside the Haldane phase (θ = −π/8). The chain length is 100 sites.

In the following, we investigate the Haldane and the dimer phase as well as ULS
and TB point. In Fig. 3.11 we have plotted the entropies for models with three
different values of θ inside the Haldane phase. The first model is the isotropic HM
(θ = 0) which corresponds to the curve in the middle of Fig. 3.11. The entanglement
entropy increases on the first ten sites and saturates then to a constant value. This
is the typical behavior of the entanglement entropy of a gaped system [149]. The
number of sites until reaching the saturation is related to the correlation length.
The lower curve in Fig. 3.11 shows the entanglement entropy of the AKLT model.
Obviously the correlation length in this model is so short that the saturation is
reached after a few sites. As the entanglement entropy is computed starting at the
fifth site, we see a homogenous entropy. The upper curve in Fig. 3.11 corresponds
to the Hamiltonian (3.123) with θ = −π/8. The entanglement entropy is very close
to the sine shape which is shown for comparison in the figure. It is distinguishable
from a critical model, but the gap in the spectrum must be small and the correlation
length very large. We can conclude that it might be difficult to distinguish between
spin chains with tiny gap (as the S = 3 Heisenberg model) and a critical model. The
explanation is simple: in case the gap is smaller than the finite–level splitting, the
gap cannot be detected. In such a case, one has to consider larger system lengths
in order to decrease the finite level splitting. We notice that tiny energy gaps in the
excitation spectrum are difficult to detect, but the problem is controllable.
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At the upper boundary of the Haldane phase in Fig. 3.10, at the Uimin–Lai–
Sutherland (ULS) point, the entanglement entropy shows the typical sine shape and
the central charge is found to be c = 2.00 which clearly indicates the SU(3)1 WZW
being the corresponding CFT. The critical phase above the Haldane phase, i.e., the
spin nematic phase, can easily be detected, while the central charge is c = 2 or
slightly above c = 2.00. The critical phase was investigated by means of CFT by
Itoi and Kato [77]. At the lower boundary of the Haldane phase in Fig. 3.10, at the
Takhtajan–Babudjan (TB) point, the entanglement entropy shows again the typical
sine shape but the central charge is found to be c = 3/2. According to (3.121)
we identify the SU(2)2 WZW model as corresponding CFT. The phase between
TB point and ferromagnetic phase is known to be a dimer phase. In Fig. 3.12 we
have plotted the entanglement entropy of (3.123) for θ = −π/2. In this plot, the
entanglement entropy does not fit the sine. The discrepancy is small. There might
be two reasons: either the entanglement entropy “feels” the opening of a gap or
the DMRG calculation is not converged. A second look to the bond entropy shows
a flickering. This might indicate the spontaneous breaking of translation symmetry
(i.e., the presence of a dimer phase) or a non–converged system. In our first attempt,
we had kept 1500 DMRG states only and saw a similar output. We repeated, hence,
this calculation with 2500 kept DMRG states resulting in a truncation error smaller
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Figure 3.12: Entanglement and bond entropy of the model (3.123) in the dimer
phase at θ = −π/2. The plot does not fit the sine shape perfectly. Moreover, the
bond entropy is flickering. This might indicate a spontaneous breaking of translation
symmetry. The chain length is 100 sites and we have kept 2500 DMRG states. Due
to the large number of kept DMRG states the truncation error is smaller than 10−5

indicating convergence of the system.
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than 10−5. The flickering in the bond entropy has remained. We conclude that our
entropy quantities feel the presence of a dimerized phase.

We have seen that the entanglement entropy as the quantity we look at provides
us in principle a qualitatively good understanding of the phase diagram. We have
seen, however, that this way of investigating a phase diagram hides some dangers.

3.9.3 SU(2) spin 3/2 Heisenberg model

While the phase diagram of the spin 1/2 chain with next–nearest neighbor inter-
actions and the spin 1 chain with bilinear and biquadratic Heisenberg term is very
well understood we have only little knowledge about the phase–diagram of the an-
tiferromagnetic spin 3/2 Heisenberg chain with next nearest neighbor interactions17

As a further demonstration of the usefulness of the entropy quantities for investi-
gating a phase diagram, we start to discover the spin 3/2 J1–J2 model. Again we
set J1 = 0 and vary J2. We start at the isotropic Heisenberg point, J2 = 0, and
find a critical model with a central charge slightly above c = 1. As discussed in the
1980s by several authors, there are logarithmic corrections present which vanishes in
the thermodynamic limit. For the finite system, these corrections cause an increased
central charge. The system remains critical up to J2 = 0.33 where the flickering
of the bond entropy indicates the breaking of translation symmetry, see Fig. 3.13.
The central charge at J2 = 0.33 is fitted to c = 0.986. In case of convergence, this
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Figure 3.13: Entanglement and bond entropy of the spin 3/2 J1–J2 model. Data for
J2 = 0.29, 0.33, and 0.35 is shown.

17Note that the phase diagram of the nearest neighbor HM with bilinear, biquadratic, and bicubic
interactions is unknown so far.
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indicates the opening of a gap. Even though, the entanglement entropy fits the sine
very well up to J2 = 0.35, the value of the central charge decreased below c = 1.0 as
well as the increasing alternation of the bond entropy shows that we have reached
a dimerized phase. For J2 = 0.38, we find already a strong oscillation between two
values in the bond and entanglement entropy. This oscillation in the entropies, i.e.,
the dimerization, reaches its maximum at J2 = 0.415 and decreases for larger values
of J2. For J2 = 0.38, J2 = 0.415, and J2 = 0.5, the entanglement entropy is plotted
in Fig. 3.14.
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Figure 3.14: Entanglement and bond entropy of the spin 3/2 J1–J2 model. Data for
J2 = 0.38, 0.415, and 0.5 is shown.

A further increase of J2 causes the vanishing of the dimerization. For J2 = 0.6,
the entanglement entropy indicates the presence of an energy gap, the dimerization
effect is, however, absent. Also the bond entropy for J2 = 0.6 is homogenous and
clearly indicates a translational invariant ground state. We notice that the system
with 1000 kept DMRG states converges well for 0 < J2 < 0.6, for larger values this
is not the case anymore. We find for J2 = 0.75 a bond entropy which indicates that
the system is not converged. We have plotted the bond and entanglement entropy
of the spin 3/2 J1–J2 model for J2 = 0.6 and J2 = 0.75 in Fig. 3.15. To ensure the
validity of our results for J2 = 0.75, we had to repeat the calculation with more kept
DMRG states.

The “little knowledge” about the phase diagram (we have mentioned above) is
due to the work by Roth and Schollwöck [127]. They investigated the phase diagram
of the next nearest neighbor model within DMRG. They used a conventional dimer
order parameter to detect the dimerization, the gap was measured by extrapolating
the difference between the two lowest energies in the spectrum. Their results of
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Figure 3.15: Entanglement and bond entropy of the spin 3/2 J1–J2 model. Data for
J2 = 0.38, 0.6, and 0.75 is shown.

Figure 3.16: Numerical results for the dimer order parameter obtained by Roth and
Schollwöck [127] within DMRG. The phase transition from the spin liquid phase to
the dimer phase is found at α = J2/J1 = 0.33. The dimerization reaches its maximum
at α = 0.415 and vanishes above α ≈ 0.6. The figure is taken from Ref. [127].
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the dimer order parameter coincides with our findings obtained by the entanglement
entropy. The plot of the dimer order parameter from Ref. [127] is shown in Fig. 3.16.
At this point, we end with the demonstration of the usefulness of the entanglement
and bond entropy in order to investigate phase diagrams. We wish to emphasize
that this method is restricted as we can only distinguish between gapless and non–
gapless phases as well as between translation invariant and non–invariant states. In
the following, we start to test our conjecture for the SU(3) and SU(4) Heisenberg
models.

3.9.4 SU(3) representation 3 Heisenberg model

We start our investigation of SU(n) HM with the SU(3) HM with fundamental rep-
resentation. The Hamiltonian reads

HHM =
∑

i

SiSi+1

where the representation of the spin operator Si corresponds to the considered Young
tableau. Here, in case of the fundamental representation of SU(3), the Young tableau
consists of one single box, λ = 1:

This model is expected to be gapless since the spinons are deconfined as they are in
the trimer model, see Sec. 3.3.2. In fact, the HM is gapless and the corresponding
CFT is SU(3)1 WZW. As we mentioned in the section about the spin 1 chain, at
the ULS point the bilinear–biquadratic Heisenberg model exhibits SU(3) symmetry.
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Figure 3.17: Entanglement and bond entropy of the SU(3) Heisenberg model with
nearest neighbor interactions. We have fitted a central charge c = 2.00 which cor-
responds to the SU(3)1 WZW model as corresponding CFT. The chain length is 60
sites.
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In this sense, the ULS model can be understood as the SU(3) HM. The difference
is only in the description of both models: while the internal structure of the ULS
model is characterized by the quantum number Sz, the internal structure of the
SU(3) HM is characterized by the quantum numbers J3 and J8. The entanglement
entropy of the SU(3) HM is shown in Fig. 3.17. The entanglement entropy fits the
sine very well; we have fitted a central charge c = 2.00 with high accuracy which
identifies by use of Eq. (3.121) the SU(3)1 WZW model as underlying field theory.
The bond entropy of the model is unique and indicates translation invariance. Very
recently, it was pointed out by Corboz et al. [39] that the SU(3) HM with next
nearest neighbor interactions undergoes a phase transition into a trimerized phase
for J2 > J2,c = 0.45. That means, translation symmetry is broken while translation
symmetry modulo three lattice spacings is conserved. We have tested the results of
Corboz et al. for J2 = J1 = 1.0. Our results are in agreement with their findings. We
find a 2− 1− 2− 1–alternation in both entanglement and bond entropy. The output
of the entanglement entropy is shown in Fig. 3.18.

Figure 3.18: Entanglement and bond entropy of the SU(3) Heisenberg model with
nearest and next nearest neighbor interactions (J1 = J2 = 1.0). Both entanglement
and bond entropy show the 2 − 1 − 2 − 1–alternation clearly indicating the broken
translation symmetry. The system remains invariant under translations by three
lattice sites. The system is in a trimerized phase. The chain length is 360 sites.
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3.9.5 SU(3) representation 6 Heisenberg model

In this section we investigate the HM for the first higher dimensional representation of
SU(3), the totally symmetric representation 6. The Young tableau which corresponds
to this representation consists of two boxes, λ = 2:

The study of the SU(3) representation 6 VBS model yields the result that the spinons
are deconfined. We expect, hence, the corresponding HM with nearest–neighbor
interactions to be gapless. The entanglement entropy of this model has the typical
sine shape of a critical model and bond entropy indicates translation invariance. The
fitted value of the central charge is in the interval 2 < c < 3. Increasing the system
length decreases the central charge. We can assume that the central charge reaches
the value c = 2.0 in the thermodynamic limit. The corresponding CFT is, hence, a
SU(3)1 WZW model. This might imply, that we have found the analogous situation
to SU(2). All gapless nearest neighbor Heisenberg models with SU(3) symmetry
correspond to the Wess–Zumino–Witten σ model with topological coupling k = 1.
The higher WZW models, i.e., with coupling k = 2, 3, . . . are realized by additional
terms containing higher powers of the Heisenberg terms. These models are referred
to as Andrei–Johannesson models in the literature [19,52,80] and represent the SU(n)
generalizations of the Takhtajan–Babudjan series [23, 143]. The DMRG output for
the SU(3) representation 6 HM is shown in Fig. 3.19.
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Figure 3.19: Entanglement and bond entropy of the SU(3) representation 6 HM. The
sine shape indicates the critical behavior of the model. The chain length is 60 sites.
Even though we have kept 5000 DMRG states, the system is not fully converged as
it can be seen by the discrepancy between sine and data points.
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3.9.6 SU(3) representation 10 Heisenberg model

Now we consider the SU(3) representation 10 HM. The representation 10 is totally
symmetric and the corresponding Young tableau consists of three boxes, λ = 3:

The HM is predicted to exhibit spinon confinement as λ = 3 and n = 3. Their ratio is
integer. Hence, we are looking for a unique ground state separated by a gap from the
excitation spectrum. For the corresponding VBS model, there is no doubt that the
model is a direct generalization of the AKLT model. As the VBS model is nothing
but a bilinear HM with additional biquadratic term, the situation should be clear
for the nearest–neighbor HM. In Fig. 3.20, we show the entanglement entropy for the
representation 10 VBS model and the HM. Both models have a unique ground state.
The entanglement entropy of the VBS reaches the saturation much faster than the
HM. We further note that the VBS model (3.46) converges much faster and behaves
as the AKLT model. From a computational point of view the representation 10 VBS
state is really a generalization of the AKLT model. The entanglement entropy of both
models equals the one of the S = 1 HM or AKLT chain. For the ten–dimensional
SU(3) representation, the conjecture is clearly fulfilled.
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Figure 3.20: Entanglement of the SU(3) representation 10 HM and VBS model is
shown. Additionally, the bond entropy of the HM is shown. The VBS was calculated
on a chain with 30 sites, while the HM on a chain with 48 sites. The essence can be
seen: both models saturate after a few sites. The VBS seems to exhibit a shorter
correlation length. The situation is, hence, analogous to the spin 1 HM and AKLT
model.
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3.9.7 SU(3) representation 8 Heisenberg model

Now we consider the SU(3) representation 8 HM. Note that the eight–dimensional
representation of SU(3) is the adjoint representation. As a consequence, the ground
state of the representation 8 chain can be reached for both even and odd chain
length. The Young tableau which corresponds to the this representation consists of
three boxes, λ = 3:

Here we have a situation where we expect spinon confinement as n = 3, λ = 3,
and their ratio is integer. For this representation, we have no DMRG calculations
available. Due to the degeneracy of the point (J3, J8) = (0, 0) in the weight diagram,
we could not implement the representation 8 in the DMRG code. Instead, we present
in Fig. 3.21 the gap size of chains with finite length obtained via exact diagonalization
(PBCs). The fits shown in Fig. 3.21 indicate the existence of a finite energy gap for
both the HM and VBS model in thermodynamic limit. For the HM, we are restricted
to the four data points shown in Fig. 3.21. As the gap size is very small, more
elaborate calculations have to be done in order to verify the gap size. Nonetheless,
the results of Fig. 3.21 are very plausible. The VBS has as usual a “huge” energy
gap, ∆VBS = 1.34 ± 0.04. Decreasing the biquadratic Heisenberg term β(J iJ i+1)

2

from βVBS = 2/9 = 0.222 to βHM = 0 decreases the gap size. The gap size at the
isotropic Heisenberg point, ∆HM = 0.10 ± 0.06, seems to be realistic. The errors
are fitting errors. Even though we cannot present extensive DMRG studies, the
conjecture seems to be valid for the representation 8 HM.
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Figure 3.21: Gap sizes from the representation 8 HM and VBS model. The data
points are obtained within exact diagonalization imposing periodic boundary condi-
tions. The extrapolated gap sizes are for the VBS ∆VBS = 1.34 ± 0.04 and for the
HM ∆HM = 0.10 ± 0.06.
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3.9.8 SU(4) representation 4 Heisenberg model

Now we consider the SU(4) HM. The fundamental representation of SU(4) is four–
dimensional. The Young tableau which corresponds to this representation consists
of a single box, λ = 1:

As for all fundamental representations of SU(n), the ratio λ/n = 1/n cannot be
integer and the HM must exhibit gapless excitations. The DMRG output which is
presented in Fig. 3.22 shows for the entanglement entropy the sine shape of a critical
model, the unique value of the bond entropy indicated a translation invariant ground
state. A closer look to the entanglement entropy shows a discrepancy between the
plot and the fitting curve. We have kept 8000 DMRG states for the shown calculation.
Nevertheless, the system is not perfectly converged as indicated by this discrepancy
in the entanglement entropy. The fitted value of the central charge c = 2.95 is very
close to the predicted value c = 3.0. The DMRG output is shown in Fig. 3.22. For
a more detailed discussion concerning this issue see Ref. [52]. Within a very small
error we identify the SU(4)1 WZW model as the underlying CFT.
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Figure 3.22: Entanglement and bond entropy of the SU(4) HM with fundamental
representation. One can see that the DMRG is not yet fully converged even though
we have kept 8000 DMRG states. Nevertheless, the fit of the central charge yields
c = 2.95. This is very close to the expected value c = 3. The length of the system is
60 sites.

The reader may notice that the SU(n) HM with fundamental representation must
be critical also from a mathematical point of view. The reason is that the Heisenberg
term can be rewritten as the permutation operator as defined in Eq. (3.23). This
ensures criticality [84, 142].
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3.9.9 SU(4) representation 10 Heisenberg model

Finally we consider the SU(4) representation 10 Heisenberg model. The Young
tableau that corresponds to this representation consists of two boxes, λ = 2:

This representation allows us to test our conjecture concerning the third category of
representations since λ = 2 and n = 4 have a largest common divisor q = 2. We ex-
pect, hence, spinon confinement through (1 + n/q)–site, i.e., next–nearest neighbor,
interactions. The ten–dimensional representation is the highest SU(n) representa-
tion which is numerically accessible18. Hence, this will be the only numerical test
available. First we consider the nearest neighbor Heisenberg model. Due to our
approach as well as due to the Affleck–Lieb theorem [13] the model is expected to be
gapless and possesses a unique ground state. Although we cannot rigorously rule out
the existence of a dimerization phase, it would not fit in the general understanding
of SU(n) representations: so far nearest neighbor Heisenberg models with totally
symmetric representation possess a unique ground state. Our DMRG calculations of
the nearest–neighbor model indicate criticality as it converges worse than all other
models ever considered. Note that the S = 3/2 chain converges much slower than
the S = 1/2 chain in case of SU(2). Moreover, the SU(3) representation 6 chain
converged much slower than the representation 3 chain. We are expecting, hence,
that the SU(4) representation 10 HM converges much slower than the SU(4) repre-
sentation 4 HM for which 8000 kept DMRG states turned out to be not sufficient19.
Even though we cannot reach perfect convergence, we tried to fit the central charge
by best means. The result is to be handled with care (as a non–converged DMRG
calculation can yield results which are completely nonsense), but the fitted central
charge is above 3. For higher dimensional representations of SU(n) the formula
(3.121) has to be modified by inverse logarithmic corrections ∼ O(lnL3) due to the
appearance of marginally irrelevant operators. This effectively yields a central charge
larger than the “quantized” value if one makes use of the formula (3.120). A central
charge c & 3, hence, indicates correspondence to the SU(4)1 WZW model.

Now we come to the model which plays the key role in this thesis chapter: the
SU(4) representation 10 Heisenberg model with next–nearest neighbor interactions.
Following our conjecture, this model should exhibit confined spinons. Spinon con-
finement must yield gapped excitations. Furthermore, the possibility of a broken
translation symmetry cannot be ruled out as the VBS model breaks the symmetry
itself. To begin with, we investigate the model for the value J2 = 0.5 as in this case

18At least, within the DMRG method we are at the limit regarding memory and computational
time. The next higher–dimensional representations of SU(3) and SU(4) are both 15–dimensional
which is illusive to calculate for adequate system length. To implement the fundamental represen-
tation of SU(5) is possible but we have seen that it was almost impossible to bring the fundamental
representation of SU(4) to convergence. Moreover, we do not expect something exciting for the
fundamental representation of SU(5).

19For a detailed discussion of convergence within DMRG, critical SU(n) spin models, and bound-
ary conditions see Ref. [52].
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the next–nearest neighbor HM approximates the VBS model (3.80) best possible,

H̃(2,0,0) VBS =

N∑

i=1

1

60

((

J i + J i+1 + J i+2

)2

− 9

2

)((

J i + J i+1 + J i+2

)2

− 15

2

)

=

N∑

i=1

(

J iJ i+1 +
1

2
J iJ i+2 +

2

15
(J iJ i+1)

2 +
1

15
(J iJ i+2)

2 + . . .
)

≈
N∑

i=1

J iJ i+1 +
1

2
J iJ i+2 .

The ellipses in the middle line represent three terms consisting of four spin operators
which appear with the same prefactor as the biquadratic nearest neighbor term. In
fact, the DMRG output for J2 = 0.5 shows the behavior of a system where the
ground state dimerizes as expected from the VBS state. The entanglement entropy
is shown in Fig. 3.23.

At this point, we wish to summarize our results obtained so far. In Sec. 3.3
we have presented several models and found a criterion which allows us to decide
whether or not the spinons are confined in a given model. Then we conjectured,
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Figure 3.23: Entanglement and bond entropy of the SU(4) representation 10 HM
with next–nearest neighbor interactions and J2/J1 = 0.5. The chain length is 100
sites. Both entropy quantities show a strong alternation between neighboring sites.
The plot corresponds to what we expect for the SU(4) representation 10 VBS model
which we approximated by the choice of J2/J1 = 0.5. This supports our conjecture
clearly.
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that the HM will fall into the same category as the corresponding VBS model. For
all HM considered so far this turned out to be true. Now, in case of the SU(4)
representation 10 HM, we have found the nearest neighbor model to be gapless while
the next–nearest neighbor model behaves like the VBS model which was shown to
exhibit spinon confinement. We conclude that the nearest–neighbor HM must exhibit
confined spinons as well and, hence, our conjecture turns out to be true (at least for
all representations which are numerically achievable).

3.9.10 J1–J2 models with and without spinon confinement

Now we want to consider J1–J2 models in more detail in order to give another
argument that a Haldane–type gap is present in the SU(4) representation 10 J1–
J2 model.

First we summarize our knowledge about SU(n) J1–J2 models. The SU(2) spin

1/2 model undergoes a second order phase transition at J
1/2
2,c = 0.2411 [44, 115] to a

dimerized phase, the spin 3/2 model at J
3/2
2,c = 0.33 [127]. Recently, it was shown that

the SU(3) representation 3 model undergoes the phase transition at J rep.3
2,c = 0.45 [39]

to a trimerized phase, for the SU(3) representation 6 model we know at least that
it starts to trimerize although we do not know for which J2 the transition occurs.
More important, the SU(4) representation 4 model undergoes a phase transition into
a tetramerized phase. At least for J2 = 1 this was shown within a level spectroscopy
of exact diagonalization data [94] and within DMRG [121]. In all the mentioned
SU(n) J1–J2 models the frustration caused by the next–nearest neighbor coupling
drives the model into an n–merized phase, see also Tab. 3.3. The exact values of the

Critical couplings of J1–J2 models

SU(2), dimer phase 0.2411 H 0.33 H

SU(3), trimer phase 0.45 ? H —

SU(4), tetramer phase > 0.6 <0.1
dimer

— H

Table 3.3: The critical couplings (J2/J1)c of several J1–J2 models are shown. The
“H” denotes the “Haldane phase”, i.e., the models are gapped (and remain gapped
for a next–nearest neighbor interaction, see e.g., [88]) and have a translation invariant
ground state. The critical coupling of SU(3) representation 6 is so far unknown while
the coupling for the SU(4) representation 4 J1–J2 model is a preliminary result which
have to be confirmed [122]. The SU(3) model with the λ = 4 and the SU(4) model
with λ = 3 are numerically not accessible.

critical couplings J2,c of all models listed in the table suggest for SU(4) representation
10 model that such a transition into a tetramerized phase should occur for a critical
coupling which is at least J̃2,c ≈ 0.5. This suggestion is, however, wrong:



122 Chapter 3 Spinon confinement as origin of Haldane’s gap

• The SU(4) representation 10 model dimerizes rather than tetramerizes.

• The phase transition into this dimerized phase occurs for an abnormally small
J rep.10

2,c < 0.1 as we will see below.

We wish to stress that the dimerization as well as the abnormally small criti-
cal coupling J2,c cannot be explained in the context of a frustration effect in J1–J2

models. In particular, it is worth mentioning that the dimerization in a chain with
representation 10 on each site is surprising as it is impossible to couple two neigh-
boring sites into a singlet, 10 ⊗ 10 = 20⋆ ⊕ 35 ⊕ 45. The effect of dimerization
can only be understood in the context of the VBS model (3.79) and, hence, in the
context of spinon confinement.

We have investigated the phase transition of the J1–J2 model more carefully. Go-
ing away from the approximate VBS–point J2,VBS = 0.5 to larger values of J2, the
dimerization remains. Going to smaller values of J2, the system is still in a dimer
phase. But the dimerization effect and the gap size decrease with decreasing J2. To
obtain meaningful DMRG results, we have to consider much longer system sizes. In
Fig. 3.24 we have plotted the entanglement entropy for J2 = 0.15 on a 200 site chain
where the dimerization can be well seen in the entanglement entropy. The reader
may notice that we are numerically at the limit concerning computer memory and
computing time. It is very difficult to obtain converged calculations. Nonetheless,
preliminary results for J2 = 0.1 on a 250 site chain show still the oscillatory behavior,
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Figure 3.24: Entanglement and bond entropy of the SU(4) representation 10 HM
with next–nearest neighbor interactions and J2/J1 = 0.15. The shown plot is only a
preliminary result.
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i.e., dimerization, in the entanglement entropy. As stressed in Sec. 3.8.1, in our think-
ing the next nearest neighbor interaction allows the system to group effective sites
with the higher dimensional representation 20 which clearly falls into the category of
Haldane-gap models. This assumption explains many things. First, the abnormally
small critical coupling can be understood since it is energetically favorable to build
these effective sites and reach the gapped phase. That means, it is only relevant
that the next–nearest neighbor coupling is present and not that it exceeds a critical
value. Second, we can understand why this system dimerizes rather than tetramer-
izes. The model on the effective sites is translation invariant. Due to the fact, that
each effective site consists of two physical sites, the model dimerizes as there are two
possibilities to place the effective sites onto the physical sites. Third, it provides an
additional reason that spinon confinement is present since the effective model with
representation 20 exhibits confined spinons as well. We conclude that the conjecture
is valid also for the SU(4) representation 10 Heisenberg models.

3.10 Conclusion

In this Thesis, we have presented a new picture in which the physical mechanism
behind the Haldane gap can be understood. We have further presented an approach
which allows us to decide whether or not a spin chain is critical. We have extended
our investigation to SU(n) spin chains. Their rising relevance from an experimen-
talists point of view has been discussed. By applying our approach to SU(n) spin
chains, our results directly lead to the following observation: If for a given SU(n)
spin representation (represented by a Young tableau with λ boxes) the ratio λ/n is
integral then the nearest–neighbor Heisenberg model is in a massive phase. If the
ratio λ/n is not integral when the nearest neighbor Heisenberg model is critical and
the corresponding CFT is supposed to be SU(n)1 WZW. Applying a next–nearest
neighbor interaction leads for a certain parameter regime J2/J1 to n–merization, i.e.,
lattice translational symmetry is broken while the ground states are invariant under
translations by n lattice spacings. For the cases, where λ and n have a common
divisor different from n, the model with (1 + n/q)–site interactions undergoes a new
type of topological phase transition from a phase with deconfined spinons into a
n/q–merized phase with confined spinons. For the cases, where n/q > 2, we expect
first a phase transition into a n–merized phase by applying a next–nearest neighbor
interaction. Applying then additional (1 + n/q)–site interactions drives the model
into the n/q–merized phase where the spinons are confined. We wish to stress that
this phase transition is not a frustration effect but of topological origin. The crit-
ical phase is characterized by deconfined spinons, while the gapped, n/q–merized
phase by confined spinons. We suggest that this transition occurs due to an effective
change of the spin representation. The original spin representation supports decon-
fined spinons, while the effective representation favors a Haldane–gap phase. Finally,
we think that the open problem of generalizing Haldane’s conjecture to SU(n) should
hereby be solved.



Appendix A

Cold bosonic atoms in a π–flux
lattice

A.1 Useful sums

For evaluating the norm, the single particle density matrix, and the number fluctu-
ations of the exact wave functions, the following formulas might be helpful.

0) S(0,M) =
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n

)(
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The general formula S(k,M) can also be evaluated [93] by means of the Stirling
numbers of the second kind S2(k, p) = 1

p!

∑p
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A.2 Bogoliubov calculation

In this appendix, we present the Bogoliubov approach applied to bosons in a π-flux
lattice. We start with a brief review of Bogoliubov’s original work from 1947 [31].
He considered a dilute gas of atoms obeying Bose statistics and interacting via an
inter-atomic interaction, which is weakly repulsive. The main idea was to replace the
creation and annihilation operators at k = 0 by their averages. He argued that these
averages are equal to the square root of the occupation number of the k = 0 state.
The remaining effective Hamiltonian (neglecting interactions of “excited particles”
with each other – or with other words, neglecting four–body interactions) can be
diagonalized by means of what is nowadays called a Bogoliubov transformation.
Then we repeat the calculation in the grand–canonical ensemble for bosonic atoms
loaded into an optical lattice (with arbitrary spatial dimension) and show that we
find qualitatively the same results. After reviewing the Bose gas and the Bose lattice
gas, we apply the Bogoliubov approach to the π-flux lattice scenario. The main
challenge is to “prepare” the Hamiltonian in such a basis, that we find at k = 0 either
the c–condensate or the d–condensate and not a superposition of both condensates,
i.e., that the ground state is not a Schrödinger–cat state. Once the Hamiltonian
is expressed in this c– and d–operators, we can follow Bogoliubov’s original work
straight forwardly. Finally we also discuss the Bogoliubov spectrum in presence of
attractive interactions, i.e., then the system exhibits a fragmented condensate. In
both cases, we find a gapless Goldstone mode which is linear in k for small momentum
k. The critical velocities of the repulsive and the attractive superfluid are, however,
different.

A.2.1 Bogoliubov’s original calculation for the Bose gas in

the canonical ensemble

Bogoliubov1 considered a weakly interacting Bose gas with repulsive interaction U >
0. Weakly interacting means that the gas is dilute and, hence, the relation U =
4πa/m, where a is the scattering length, is approximately valid. The many body
Hamiltonian is defined as

H = H0 + Hint =
∑

k

k2

2m
a†kak +

U

2V

∑

k,k′,q

a†k+qa
†
k′−q

a
k′ak (A.1)

where V is the volume of the gas, m the mass of the atoms, and ~ ≡ 1 throughout
the section. The creation and annihilation operators fulfill the bosonic commutation
relation

[
ak , a

†
k′

]
= δk,k′ . (A.2)

Formally we apply now perturbation theory to this Hamiltonian. Note that in the
ground state of ideal Bose gas all particles are condensed – or, equivalently, occupy

1Bogoliubov’s calculation which can be considered as the beginning of the many body problem

is illustrated in many textbooks. Nonetheless, we refer the reader to the classical textbooks of
Landau [98] and Abrikosov, Gorkov, and Dzyaloshinski [2].
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the condensed state. The condensed state is a state with vanishing energy. The
occupation number is Nk=0 ≡ N0 = N and Nk6=0 = 0. In a weakly interacting Bose
gas the situation changes slightly: N0 . N and Nk6=0 & 0. In particular, Nk6=0 ≪ N0

and, hence, we are able to write a†0a0 = N0 ≈ N . The commutator a0a
†
0−a†0a0 = 1 is

much smaller than the operators a†0 and a0 itself. That means, one can replace these
operators by their averages and neglect the operator character.

a†0 →
√

N0 and a0 →
√

N0 (A.3)

Applying perturbation theory is equivalent to the expansion of the sum in Hint in
powers of the small quantities a†k6=0, ak6=0. The zeroth order is given by

a†0a
†
0a0a0 = N2

0 . (A.4)

The first order vanishes since it is impossible to conserve momentum for terms like
a†k6=0a

†
0a0a0. The second order is given by

N0

∑

k6=0

(

a†ka
†
−k + aka−k + 4a†kak

)

. (A.5)

Since we are calculating in the canonical ensemble we have to replace N0 by the total
particle number N . N is, say, in the experiment given by the system, a parameter,
while N0 is a non–fixed number and not a sensible physical quantity to express other
quantities. The exact relation between N and N0 is

N = N0 +
∑

k6=0

a†kak. (A.6)

Thus we have terms of order O(N) and O(N2) and are allowed to neglect terms of
order O(N0). This means that we can replace N0 ≈ N and N2

0 ≈ N2−2N
∑

k6=0 a
†
kak

if we restrict ourself to the second order.

Substituting all these assumptions and considerations in the Hamiltonian (A.1)
we obtain the Bogoliubov mean field Hamiltonian

HBogo =
UN2

2V
+

1

2

∑

k6=0

[(
k2

2m
+
UN

V

)(

a†kak + a†−ka−k

)

+
UN

V

(

a†ka
†
−k + aka−k

)
]

.

(A.7)
The second term in (A.7) is not diagonal. To diagonalize it, we could carry out a lin-
ear transformation of the operators a†k and ak and follow the path as described in the
textbook by Abrikosov, Gorkov, and Dzyaloshinski [2] or Landau and Lifshitz [98],
respectively. Here we are presenting another way we find more elegant. We write
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the Hamiltonian (A.7) as a matrix equation by use of the commutation relations.

HBogo =
UN2

2V
− 1

2

∑

k6=0

(
k2

2m
− UN

V

)

+
1

2

∑

k6=0

(

a†k , a−k

)





ǫk + UN
V

UN
V

UN
V

ǫk + UN
V









ak

a†−k





=
κN

2
− 1

2

∑

k6=0

(
k2

2m
− κ

)

+
1

2

∑

k6=0

(

a†k , a−k

) [
(ǫk + κ)1 + κσx

]





ak

a†−k





Here we introduced the shortcut ǫk = k2

2m
and σx is the first Pauli matrix. We

further introduced in the second line the so-called microscopic coupling κ = UN
V

. The
bosonic Bogoliubov approximation can now be done via the operator U = exp (σxθk).
Note that U−1 = e−σxθk and UU−1 = U−1U = 1 and (U−1)

2
= exp (−2σxθk) =

cosh(2θk)1 + sinh(2θk)σx. Thus we obtain

HBogo = const. +
1

2

∑

k6=0

(

a†k , a−k

)

U U−1
[
. . .

]
U−1U





ak

a†−k



 (A.8)

with new operators
(

a†k , a−k

)

U =
(

α†
k , α−k

)

. The transformed matrix becomes

U−1
[
(ǫk + κ)1 + κσx

]
U−1

=
[
cosh(2θk)1 + sinh(2θk)σx

][
(ǫk + κ) 1 + κσx

]

=
(
cosh(2θk)(ǫk + κ) + sinh(2θk)κ

)
1 +

(
cosh(2θk)κ+ sinh(2θk)(ǫk + κ)

)
σx

In order to diagonalize the Hamiltonian we set the off–diagonal terms (i.e., the terms
∝ σx) to zero, determine θk for this equation and after doing so we substitute θk

into the diagonal part of the Hamiltonian (i.e., the terms ∝ 1). Finally we obtain
the Bogoliubov quasi–particle spectrum for the new operators α†

k and αk,

HBogo =
κN

2
− 1

2

∑

k6=0

(

ǫk + κ−
√

(ǫk + κ)2 − κ2

)

+
∑

k6=0

√

(ǫk + κ)2 − κ2 α†
kαk .

(A.9)

The expression (A.9) consists of three terms. The sum of the first two terms is a
certain constant. The third term represents a diagonal operator which can be written
in the form ∑

k6=0

εknk (A.10)
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where nk is the occupation number of the operator αk. The smallest value of the
energy is obtained when all the nk equal zero, and therefore (A.10) is the energy
of the excitation. This expression has the same form as the energy of a system of
noninteracting particles. It follows that the weakly excited states of a dilute Bose
gas can be described by using the model of elementary excitations, with an energy
spectrum

εk =

√
(

k2

2m
+
UN

V

)2

−
(
UN

V

)2

=

√
κ

m
k

√

1 + k2

(
V

2UN

)2

. (A.11)

which is plotted in Fig.A.1. Note that in Bogoliubov’s original work there is no trace
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Figure A.1: Quasi–particle spectrum of the dilute Bose gas in two dimensions. At
the x-axes we have plotted k, since the spectrum is in momentum space rotationally
invariant. At the y-axes we have plotted the repulsive interaction U . At U = 0
we see the spectrum for free particles, and for U > 0 the Bogoliubov quasi-particle
spectrum. Around k = 0 for U > 0 we see the linear slope representing the sound
mode of the superfluid.

of the second, “roton” branch of the excitation spectrum postulated by Landau. Since
we are only interested in the critical velocity vc of the superfluid we conclude this
chapter with a brief discussion of the spectrum and with the determination of vc.

From the right-hand side of equation (A.11) we can directly read the critical
velocity vc =

√

κ/m. That means for small momenta k the dispersion (A.11) reduces
to the phonon spectrum ε = vc|k| with speed of sound vc which is usually referred
to as the critical velocity in case of the superfluid. This phonon–like mode appears
due to the spontaneously broken U(1) symmetry and is a consequence of Goldstone’s
theorem. The formal definition of the critical velocity is given by

vc =
∂εk

∂k

∣
∣
∣
∣
k→0

Bose gas
=

√

UN

mV
. (A.12)
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If we consider large momenta k, it is convenient to consider the left–hand side of

(A.11). For large momenta the term
(

k2

2m

)2

dominates and the spectrum is that of

free particles.

A.2.2 Bogoliubov approach for bosons on the lattice in the

grand canonical ensemble

In this section we briefly repeat the calculation of the previous section in the grand
canonical ensemble and in the presence of a lattice. Since the calculation, partic-
ularly the diagonalization procedure, is the same as in the canonical ensemble, we
concentrate on the discussion of the difference between both ensembles and the de-
termination of the chemical potential µ. The difference between the Bose gas and
the Bose lattice model, is for the Bogoliubov calculation irrelevant. We only as-
sume that the single particle spectrum ǫk vanishes for the condensed state, ǫ0 = 0.
We further mention that the calculation is not influenced by the number of spatial
dimensionality d of the system.

Bosons on a d-dimensional lattice are most conveniently described by the Bose–
Hubbard model (BHM) [50], a tight–binding model plus a repulsive contact interac-
tion for lattice bosons,

H = −t
∑

〈i,j〉
c†icj − µ

∑

i

c†ici +
U

2

∑

i

c†ic
†
icici (A.13)

We stress that we consider now the “non–magnetic” case, i.e., there is no artificial
vector potential. The BHM in momentum space reads

H =
∑

k

[

2t
(

d−
d∑

j=1

cos (kja)
)

︸ ︷︷ ︸

=:ǫk

−µ
]

a†kak +
Uad

2Ns

∑

k,k′,q

a†k+qa
†
k′−q

a
k′ak, (A.14)

where a is the lattice spacing, Ns the number of sites (i.e., V = Nsa
d), and the kinetic

energy was shifted by +2td in order to have a vanishing single particle energy in the
condensed state, ǫ0 = 0. Note that the summation over k is restricted to the first
Brioullin zone. For the rest of this section we set the lattice spacing a ≡ 1.

In the canonical ensemble, there is no chemical potential and the particle number
N is fixed, i.e., N is an exterior parameter that can be chosen in an experiment. In
the grand canonical ensemble, N is not fixed anymore. Instead of N , the chemical
potential µ is the fixed quantity and plays the role of an exterior parameter. For
the Bogoliubov approximation, we determine the chemical potential in (A.14) by the
requirement that the linear contribution to the fluctuations in the condensate has to
be zero.

We replace the creation and annihilation operators of the condensed state by
their averages plus fluctuations,

a†0 →
√

N0 + δa†0 and a0 →
√

N0 + δa0. (A.15)
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The terms of the Hamiltonian for k = 0 are

H = − µ a†0a0 +
U

2Ns
a†0a

†
0a0a0

→− µ
(√

N0 + δa†0

)(√

N0 + δa0

)

+
U

2Ns

(√

N0 + δa†0

)2 (√

N0 + δa0

)2

= − µN0 +
UN0

2Ns
+

(

−µ+
U

Ns
N0

)
√

N0

(

δa†0 + δa0

)

+ second order terms.

(A.16)

The requirement that the terms linear in the fluctuations must be zero is fulfilled by

µ =
U

Ns
N0. (A.17)

More precise, we have not determined the chemical potential but the occupation
number of the condensate as a function of the chemical potential, N0 = Ns/Uµ. For
our purposes we wish to express µ through N0.

Following the line of derivation of the previous chapter, we obtain the mean field
Hamiltonian

HBogo =

(

−µ+
Un0

2

)

N0+
∑

k6=0

(ǫk−µ) a†kak+
1

2
Un0

∑

k6=0

(

a†ka
†
−k + aka−k + 4a†kak

)

,

where we introduced the shortcut n0 = N0/Ns. Making use of commutation relations
and substituting equation (A.17), the Hamiltonian becomes as a matrix equation

HBogo = −1

2
Un0N0 =

1

2

∑

k6=0

(ǫk + Un0) +
1

2

∑

k6=0

(

a†k , ak

)
(
ǫk + Un0 Un0

Un0 ǫk + Un0

)


ak

a†−k



 .

Again we diagonalize the Hamiltonian by a Bogoliubov approximation and obtain
the quasi–particle spectrum

εk =
√

ǫ2k + 2Un0ǫk. (A.18)

For two dimensions, we have plotted the quasi-particle spectrum as a function of U in
Fig.A.2. For small momenta there is the Goldstone mode with dispersion ε = vc|k|
with the critical velocity

vc
Bose latt.

=

√

2UN0t

Ns
. (A.19)

The approximation in the grand canonical calculation for bosons on the lattice and
the discussion whether or not Bogoliubov’s approach can describe the quantum phase
transition from a superfluid to a Mott–Insulator [50,59,78] can be found in the nice
paper by van Oosten et al. [116].
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Figure A.2: Quasi–particle spectrum for the BHM in two dimensions. The spectrum
is rotationally invariant in the kx-ky-plane. Therefore at the x-axes we plotted kx =
|k| ∈ [−π, π], at the y-axes the interaction U is plotted. For U = 0 the spectrum
corresponds to the single particle spectrum and has the pure cosinus form. For U 6= 0
around k = 0 the spectrum has the phonon-like behavior, ε ∝ |k|.

A.2.3 Bogoliubov approach for bosons in the π-flux lattice

Naively, one could assume to start with the magnetic BHM in lower band approxi-
mation as defined in Eq. (2.33). As the ground state of this Hamiltonian is a super-
position of the c– and d–condensate for which we wish to obtain the critical velocities
and quasi–particle spectra, the straight ansatz of Bogoliubov might fail. Instead, we
have to rewrite the magnetic Bose–Hubbard model in the basis where the ground
state is either represented by the c–condensate or by the d–condensate.

As a first step, we have to enlarge the primitive unit cell to four sites in order to
contain a whole plaquette and to respect our new knowledge about the broken Z2

symmetry. The enlarged unit cell corresponds to a reduced Brioullin zone which is
only a quarter of the original unit cell. The kinetic energy term is then given by

Hkin =

′∑

k

(

c†k,1, c
†
k,2, c

†
k,3, c

†
k,4

)

X tP†PXHkX tP†PX








ck,1

ck,2

ck,3

ck,4








(A.20)

with the matrix

Hk =








0 0 cos kx cos ky

0 0 cos ky − cos kx

cos kx cos ky 0 0

cos ky − cos kx 0 0








. (A.21)

The unitary matrix X transforms the crystal momentum operators to the band
operators, similarly as the matrix U as defined in App. ?? does. The difference is,
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that the bands in the interval [(π
2
,−π

2
), (3π

2
, π

2
)] are now identified with the interval

[(−π
2
,−π

2
), (π

2
, π

2
)]. That means, we have two lower and two upper bands in the

reduced Brioullin zone. Finally, the transformation P rotates the basis such that the
two–fold degenerate single particle states at k = 0 corresponds to the states c† | 0 〉
and d† | 0 〉, respectively. We repeat this step:

PX








ck,1

ck,2

ck,3

ck,4








= P








αk,−

γk,−

αk,+

γk,+








=








αk,− − iγk,−

αk,− + iγk,−

αk,+ − iγk,+

αk,+ + iγk,+








=








ck,−

dk,−

ck,+

dk,+








(A.22)

In this notation, c†k=0,− | 0 〉 ≡ c† | 0 〉 and d†k=0,− | 0 〉 ≡ d† | 0 〉. Now we consider the
Hubbard interaction which we have already transformed to momentum space:

Hint =
2U

Ns

′∑

k,k′,q

4∑

α=1

c†k+q,αc
†
k′−q,α

c
k′,α

ck,α . (A.23)

Now we transform also the interaction to the new operators ck,− and dk,−, we neglect
again the upper bands represented by the operators ck,+ and dk,+. The transforma-
tions read

ck,1 =
+i cos kx + cos ky

2
√

cos2 kx + cos2 ky

ck,− +
−i cos kx + cos ky

2
√

cos2 kx + cos2 ky

dk,− + “upper bands” ,

ck,2 =
− cos kx + i cos ky

2
√

cos2 kx + cos2 ky

ck,− +
− cos kx − i cos ky

2
√

cos2 kx + cos2 ky

dk,− + “upper bands” ,

ck,3 =
i

2
ck,− − i

2
dk,− + “upper bands” ,

ck,4 =
1

2
ck,− +

1

2
dk,− + “upper bands” .

Now we have to substitute these transformations into the interaction term (A.23).
This causes a lot of book keeping. In the transformed interaction term, we neglect
all terms describing interactions between “excited states” as Bogoliubov did. So we
obtain the interaction term of the Bogoliubov mean field Hamiltonian for the π–flux
lattice:
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Heff
int =

U

2Ns

(

c†0c
†
0c0c0 + 4c†0c0d

†
0d0 + d†0d

†
0d0d0

)

(A.24)

+
U

4Ns

′∑

k6=0

(

8c†kckc
†
0c0 + 8c†kckd

†
0d0 + 8d†kdkc

†
0c0 + 8d†kdkd

†
0d0

+
(4 − 4i)(cos kx − cos ky)

cos kx + i cos ky

c†kdkc
†
0d0

+
(4 + 4i)(cos kx + cos ky)

cos kx + i cos ky
c†kdkd

†
0c0

+
(4 + 4i)(cos kx − cos ky)

cos kx − i cos ky
d†kckd

†
0c0

+
(4 − 4i)(cos kx + cos ky)

cos kx − i cos ky
d†kckc

†
0d0

+
[(
B(0, 0,k) + 1

)
c†kc

†
−kc0c0 +

(
P(0, 0,k) + 1

)
d†kd

†
−kd0d0

+
(
D(0, 0,k) + 1

)
c†kc

†
−kd0d0 +

(
M(0, 0,k) + 1

)
d†kd

†
−kc0c0

+4 c†kd
†
−kc0d0 + 4 d†kc

†
−kc0d0 + h.c.

]
)

Note that D(0, 0,k) = −B(0, 0,k) and M(0, 0,k) = −P(0, 0,k). Both B and P
consists of cosine-terms in a non–trivial way.

A.2.4 Result for the repulsive model

When we concentrate on the repulsive model, the ground state is given by the macro-
scopic occupation of the c–condensate or the d–condensate, respectively. Without
loss of generality, we assume the Bose liquid to be condensed in the single particle
state c†0 | 0 〉. Consequently, we can assume that the single particle state d†0 | 0 〉 is not
occupied (at least, not macroscopically occupied):

c†0 ≈ c0 ≈
√

N
(0)
c ≡

√

Nc (A.25)

and

d†0 ≈ d0 ≈ 0 (A.26)
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When we find the following mean field Hamiltonian2,

Heff = −µc†0c0 +
2U

Ns

c†0c
†
0c0c0 +

′∑

k6=0

(ξk − µ)
(

c†kck + d†kdk

)

+
′∑

k6=0

U

4Ns

{

8Ncc
†
kck + 8Ncd

†
kdk + (B(0, 0,k) + 1)Ncc

†
kc

†
−k + h.c.

+ (P(0, 0,k) + 1)Ncd
†
kd−k + h.c.

}

We determine the chemical potential as done in Sec.A.2.2 and find the result

µ =
U Nc

Ns
. (A.27)

We finally obtain the Hamiltonian in matrix form (neglecting additive constants) as

Heff =
1

2

′∑

k6=0

(

c†k, c−k, d
†
k, d−k

)











ξk + κc
κc

2
(B + 1) 0 0

κc

2
(B + 1) ξk + κc 0 0

0 0 ξk + κc
κc

2
(P + 1)

0 0 κc

2
(P + 1) ξk + κc






















ck

c†−k

dk

d†−k












where the microscopic coupling κc = U Nc

Ns
and ξk = −2t

(√
cos2 kx + cos2 ky +

√
2
)

is the single particle spectrum which is shifted such that ξk=0 = 0. In the limit
k → 0, the prefactors B(0, 0,k) → 1 and P(0, 0,k) → 1. We eventually obtain the
Bogoliubov quasi particle spectrum

ǫk =
√

ξ2
k + 2κcξk

k→0
= |k|

√√
2ta2κc

√

1 +
1

2
√

2

ta2

κc

|k|2 .
(A.28)

The critical velocity is given by

vc
rep.flux latt

=

√√
2tκc =

√√
2t U Nc

Ns
≡
√

tflux U Nc

Ns
(A.29)

This result is very plausible, as we find the same result as for the Bose liquid without
flux when replacing t by tflux = t/

√
2. Note that the quasi particle spectrum does not

2We consider the magnetic BHM in the grand–canoncial ensemble.
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change qualitatively when considering the prefactors B and P correctly. In particular,
the critical velocity is not influenced. When we consider the prefactors B and P, the
quasi particle spectrum becomes

ǫk =

√

ξ2
k + 2κcξk +

κ2
c(cos kx − cos ky)2

2(cos2 kx + cos2 ky)
. (A.30)

A.2.5 Result for the attractive model

Now we concentrate on the attractive model, the ground state is fragmented, i.e.,
both single particle ground states, c†0 | 0 〉 and d†0 | 0 〉, are occupied macroscopically:

c†0 ≈ c0 ≈
√

Nc (A.31)

and
d†0 ≈ d0 ≈

√

Nd . (A.32)

We further assume that Nc ≈ Nd ≈ N0/2 which is justified when considering the
solution of the effective model, see Sec. 2.4.1. Applying all these assumptions to
the Hamiltonian (A.24), we again obtain a matrix equation for the Hamiltonian
(neglecting additive constants):

Heff =
1

2

′∑

k6=0

(

c†k, c−k, d
†
k, d−k

)











ξk + κ0

2
κ0

2
κ0 κ0

κ0

2
ξk + κ0

2
κ0 κ0

κ0 κ0 ξk + κ0

2
κ0

2

κ0 κ0
κ0

2
ξk + κ0

2






















ck

c†−k

dk

d†−k












The microscopic coupling is now given by κ0 = UN0

Ns
≡ − |U |N0

Ns
. We eventually find

the Bogoliubov quasi particle spectrum for the fragmented condensate as

ǫattr.k =
√

ξ2
k + |κ0|ξk

k→0
= |k|

√

ta2
1√
2
|κ0|

√

1 +
ta2

√
2|κ0|

|k|2 ,
(A.33)

the critical velocity is now given by

vc
attr.flux latt

=

√

t√
2
|κ0| =

√

t |U |N0√
2Ns

. (A.34)
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Spinon confinement

B.1 Transfer matrix method

In the following we briefly show a sketch of the calculations for the correlations of the
SU(3) representation 8 VBS state, for the SU(3) representation 6 VBS state as well
as for the SU(4) representation 10 VBS state. The results were already presented in
Sec. 3.8.

B.1.1 SU(3) representation 8 VBS state

We begin with the matrix product representation of the states which we obtained in
Sec. 3.8. Actually, we only need the knowledge of the matrixMi which was introduced
in Eq. (3.107),

Mi=






2
3
|by〉i− 1

3
|rc〉i− 1

3
|gm〉i |ry〉i |gy〉i

|bc〉i −1
3
|by〉i+ 2

3
|rc〉i− 1

3
|gm〉i |gc〉i

|bm〉i |rm〉i −1
3
|by〉i− 1

3
|rc〉i+ 2

3
|gm〉i






We follow the calculation of the static correlation function in the q-deformed
SU(2) model studied by Klümper, Schadschneider, and Zittartz [86]. We wish to
calculate 〈

ψL
8VBS

∣
∣ Ja

i J
b
j

∣
∣ψL

8VBS

〉

〈ψL
8VBS|ψL

8VBS〉
= δab F (j − i), (B.1)

in the thermodynamic limit. Due to SU(3) invariance the correlation function (B.1)
is proportional to δab and does not depend on a. Therefore we can choose a diagonal
operator Ja, say J8. Here

〈
ψL

8VBS

∣
∣ = tr

(
∏

i

M̃i

)

, (B.2)

where

M̃i=






2
3
〈by|i− 1

3
〈rc|i− 1

3
〈gm|i 〈ry|i 〈gy|i

〈bc|i −1
3
〈by|i+ 2

3
〈rc|i− 1

3
〈gm|i 〈gc|i

〈bm|i 〈rm|i −1
3
〈by|i− 1

3
〈rc|i+ 2

3
〈gm|i





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First we calculate the norm of the state (we assume a chain with N sites):

〈
ψL

8VBS

∣
∣ψL

8VBS〉 = M̃ b1b2
1 Ma1a2

1 M̃ b2b3
2 Ma2a3

2 · · · M̃ bN b1
N MaN a1

N (B.3)

= Rb1b2
a1a2

Rb2b3
a2a3

· · ·RbN b1
aN a1

= tr
(

RN
)

, (B.4)

where

R =

















2
3

0 0 0 1 0 0 0 1
0 −1

3
0 0 0 0 0 0 0

0 0 −1
3

0 0 0 0 0 0
0 0 0 −1

3
0 0 0 0 0

1 0 0 0 2
3

0 0 0 1
0 0 0 0 0 −1

3
0 0 0

0 0 0 0 0 0 −1
3

0 0
0 0 0 0 0 0 0 −1

3
0

1 0 0 0 1 0 0 0 2
3

















and we use the notation for tensor products as given e.g., in Ref. [90]. R can be
diagonalized using

U =


















1√
3

1√
2

1√
6

0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1√
3

− 1√
2

1√
6

0 0 0 0 0 0

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1√
3

0 − 2√
6

0 0 0 0 0 0


















i.e.,

D = U †RU =
1

3
diag

(
8,−1,−1,−1,−1,−1,−1,−1,−1

)
.

This yields

〈
ψL

8VBS

∣
∣ψL

8VBS〉 = Tr
(

RN
)

= Tr
(

DN
)

=
1

3N

(

8N + (−1)N 7
)

→
(

8

3

)N

.

As a second step we need to evaluate

〈
ψL

8VBS

∣
∣ J8

i J
8
j

∣
∣ψL

8VBS

〉
= tr

(

J̃ Rj−i−1 J̃ RN+i−j−1
)

,
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where

J̃ =
(
J8
)b1b2

a1a2
= M̃ b1b2

i J8
i M

a1a2
i

=

√
3

2
M̃ b1b2

i





0 0 − |gy〉
0 0 − |gc〉

|bm〉 |rm〉 0





=

√
3

2

















0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0

















.

This yields

〈
ψL

8VBS

∣
∣ J8

i J
8
k

∣
∣ψL

8VBS

〉
= tr

(

U †J̃U Dj−i−1U †J̃U DN+i−j−1
)

=

(
8

3

)N
27

16

[

(−1)j−i 8−j+i +
(−1)N+i−j

8N+i−j

]

.

This yields for the correlation function

〈
ψL

8VBS

∣
∣ Ja

i J
b
j

∣
∣ψL

8VBS

〉

〈ψL
8VBS|ψL

8VBS〉
= δab

27

16

(−1)j−i 8−j+i + (−1)N+i−j

8N+i−j

1 + 7 (−1)N

8N

.

Hence, taking i = 0 and N → ∞ we find

F (j) =
27

16
(−1)j 8−j ∝ e−j/ξ, (B.5)

where ξ = 1/ ln 8 ≈ 0.48. The same result is obtained for
∣
∣ψR

8VBS

〉
.

In the same way one can show for the adjoint SU(n) VBS model (3.71) that the
correlation function (B.1) is in the thermodynamic limit N → ∞

δab
n3

2(n2 − 1)
(−1)−k (n2 − 1)−k,

which simplifies for n = 3 to Eq. (B.5) and for n = 2 to the SU(2) result [11]

〈ψAKLT| Sa
0 S

b
k |ψAKLT〉

〈ψAKLT|ψAKLT〉
= δab

4

3
(−1)−k 3−k .
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B.1.2 SU(3) representation 6 VBS state

Again we start with the matrix product representation of the SU(3) rep.6 VBS state
(see Sec. 3.8),

|ψ6VBS〉 = tr

(
∏

α

MαM̄α

)

= Ma1b1
1 M̄ b1a2

1 Ma2b2
2 M̄ b2a3

2 . . .M
aN/3bN/3

N/3 M̄
bN/3a1

N/3 ,

where α = 1, . . . , N/3 is an artificial index which stands for groups of three lattice
sites, i.e., α = 3 represents the lattice sites i = 7, 8, 9. The matrices are given by

Mα =







|bb〉i |br〉i |bg〉i
|br〉i |rr〉i |rg〉i
|bg〉i |rg〉i |gg〉i






, (B.6)

where i = 3(α− 1) + 1, and

M̄α =







|yy〉ī |yc〉ī |ym〉ī
|yc〉ī |cc〉ī |cm〉ī
|ym〉ī |cm〉ī |mm〉ī






, (B.7)

where ī stands for the coupled lattice sites 3(α − 1) + 2 and 3(α− 1) + 3. We wish
to calculate

〈ψ6VBS| Ja
0 J

b
k |ψ6VBS〉

〈ψ6VBS|ψ6VBS〉
, (B.8)

in the thermodynamic limit. Here

〈
ψL

6VBS

∣
∣ = tr

(
∏

α

M̃α
˜̄Mα

)

,

where the matrices M̃α and ˜̄Mα are obtained from (B.6) and (B.7) by replacing the
kets by bras. First we calculate the norm of the state (we assume a chain with
N = 3m sites):

〈ψ6VBS|ψ6VBS〉 = M̃ c1d1
1 Ma1b1

1
˜̄Md1c2

1 M̄1
b1a2 M̃ c2d2

2 Ma2b2
2

˜̄Md2c3
2 M̄2

b2a3

· · · M̃ cN/3dN/3

N/3 M
aN/3bN/3

N/3
˜̄M

dN/3c1

N/3
¯MN/3

bN/3a1

= Rc1d1

a1b2
R̄d1c2

b1a2
Rc2d2

a2b2
R̄d2c3

b2a3
· · ·RcN/3dN/3

aN/3bN/3
R̄

dN/3c1
bN/3a1

= Sc1c2
a1a2

Sc2c3
a2a3

· · ·ScN/3c1
aN/3a1 = Tr

(

SN/3
)

,
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where

R = R̄ =

















1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 1

















and

S = RR̄ =

















3 0 0 0 3 0 0 0 3
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
3 0 0 0 3 0 0 0 3
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
3 0 0 0 3 0 0 0 3

















S can be diagonalized using

U =


















1√
3

0 0 0 1√
2

0 0 0 1√
6

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
1√
3

0 0 0 − 1√
2

0 0 0 1√
6

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
1√
3

0 0 0 0 0 0 0 − 2√
6


















i.e.,
D = U †SU = diag

(
9, 1, 1, 1, 0, 1, 1, 1, 0

)
.

This yields

〈ψ6VBS|ψ6VBS〉 = Tr
(

DN/3
)

= 9N/3 + 6 → 9N/3.

Due to SU(3) invariance the correlation function (B.8) is proportional to δab and
does not depend on a, i.e.,

〈ψ6VBS| Ja
0 J

b
k |ψ6VBS〉

〈ψ6VBS|ψ6VBS〉
= δab F (k).

Therefore we can choose a diagonal operator Ja, say J3. We find

〈ψ6VBS| J3
i J

3
k |ψ6VBS〉 = Tr

(

J̃ Sk−i−1 J̃ SN/3+i−k−1
)

,
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where

J3 =
(
J3
)cd

ab
= M̃ cd

i J3
i M

ab
i

= M̃ cd
i





|bb〉i 0 1
2
|bg〉i

0 − |rr〉i −1
2
|rg〉i

1
2
|bg〉i −1

2
|rg〉i 0





=

















1 0 0 0 0 0 0 0 1/2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1/2 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 −1/2
0 0 0 0 0 0 0 −1/2 0
0 0 1/2 0 0 0 0 0 0
0 0 0 0 0 −1/2 0 0 0

1/2 0 0 0 −1/2 0 0 0 0

















and

J̃ = U †J3R̄U =

















0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

3
√

3/2 0 0 0 0 0 0 0 0
0 0 0 0 0 −1/2 0 0 0
0 0 0 0 0 0 1/2 0 0
0 0 0 0 0 0 0 −1/2 0
0 0 0 0 0 0 0 0 0

















.

This yields (we keep only the leading term)

〈ψ6VBS| J3
i J

3
k |ψ6VBS〉 = 1.

Hence, taking i = 0 and N → ∞ we find

F (k) = 0,

i.e., there are no correlations between more than three neighboring sites. The situa-
tion is, hence, similar to the one in the Majumdar–Ghosh model where neighboring
dimers (or valence bonds) are uncorrelated.
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B.1.3 SU(4) representation 10 VBS state

The matrix product representation of the SU(4) representation 10 VBS state was in
Sec. 3.8 derived as

Mi =















b†6b
†
1 b†6b

†
2 b†6b

†
3 b†6b

†
4 b†6b

†
5 b†6b

†
6

−b†5b†1 −b†5b†2 −b†5b†3 −b†5b†4 −b†5b†5 −b†5b†6
b†4b

†
1 b†4b

†
2 b†4b

†
3 b†4b

†
4 b†4b

†
5 b†4b

†
6

b†3b
†
1 b†3b

†
2 b†3b

†
3 b†3b

†
4 b†3b

†
5 b†3b

†
6

−b†2b†1 −b†2b†2 −b†2b†3 −b†2b†4 −b†2b†5 −b†2b†6
b†1b

†
1 b†1b

†
2 b†1b

†
3 b†1b

†
4 b†1b

†
5 b†1b

†
6















i

| 0 〉i .

Assuming periodic boundary conditions the two–fold degenerate VBS state can then
be written as the trace of the matrix product

∣
∣ψSU(4)rep.10

even

〉
= tr





N∏

i=1
i even

Mi





and
∣
∣
∣ψ

SU(4)rep.10
odd

〉

= tr





N∏

i=1
i odd

Mi



.

In the following we use the state
∣
∣
∣ψ

SU(4)rep.10
even

〉

only and write for convenience |ψrep10〉.
Now we wish to calculate

〈ψrep10| J3
1J

3
j |ψrep10〉

〈ψrep10|ψrep10〉
= F (j) (B.9)

and introduce the 36 × 36 transfer matrix R at any lattice site as

Rαβ = R(στ),(σ′ ,τ ′) = M̃σσ′Mττ ′

where we have introduced the complex conjugated matrix M̃ according to M̃σσ′ =
M⋆

σσ′ , i.e., by simply taking the complex conjugate of each matrix element in Eq.
(3.113) without transposing the matrix. The order of the indices is α, β = 1, 2, . . . , 36 ↔
(11), (12), . . . , (66). The reader may notice that we do not explicitly write out the
36 × 36 transfer matrices due to the page restrictions of this thesis. The evalua-
tion of these matrices, however, is equivalent to the previous cases and goes without
problems. The norm of the VBS state is now given by

〈ψrep10|ψrep10〉 = tr
(
RM
)

= 7M + 15(−1)M + 20

where we have evaluated the trace by diagonalization of R. M is half the number
of lattice sites, M = N/2. In the second step we calculate the expectation value
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〈ψrep10| J3
1J

3
j |ψrep10〉. We introduce the transfer–matrix representation of the spin

operator J3 defined as

Ĵαβ = Ĵ(σ,τ),(σ′ ,τ ′) = M̃σσ′J3Mττ ′ .

Here the operator J3 acts on the elements of M as

J3b†1 = J3b†6 = 0, J3b†2 = −1

2
b†2, J3b†3 =

1

2
b†3, J3b†4 = −1

2
b†4, J3b†5 =

1

2
b†5,

as J3 can defined in the bosonic basis as

J3 = 1/2
(

−b†2b2 + b†3b3 − b†4b4 + b†5b5

)

.

This yields
〈ψrep10| J3

1J
3
j |ψrep10〉 = tr

(
J1R

j−2JjR
M−j

)

which can be evaluated by diagonalization of R. Finally we arrive at

〈
Ja

1J
b
j

〉
=

〈ψrep10| Ja
1J

b
j |ψrep10〉

〈ψrep10〉ψrep10

= δab

7−j
(
− 1

144
− 31

3
(−1)j

)
− 1

7M

(
7j

7056
− 1

144
+ 65

12
(−1)j + (−1)M+j(65

12
+ 31

147
7j)
)

1 + 1
7M (20 + 15(−1)M)

M→∞−→ (−1)j−131

3

1

7j
− 1

144

1

7j
∼ 1

7j
∼ e−j/ξ

with the correlation length ξ = 1/ ln 7 ≈ 0.51.
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B.2 Representation theory of SU(n) for pedestri-

ans

Young tableaux and representations of SU(2)

1

t

t
Sz

|↑〉
|↓〉

⊗ 2

t

t
Sz

|↑〉
|↓〉

= 1
2

t
Sz

1√
2

(
|↑↓〉 − |↓↑〉

)

⊕ 1 2

t

t

t
Sz

|↓↓〉

1√
2

(
|↑↓〉 + |↓↑〉

)
|↑↑〉

Figure B.1: Tensor product of two S = 1
2

spins with Young tableaux and weight
diagrams of the occurring SU(2) representations. Sz is the diagonal generator.

Let us begin with a review of Young tableaux and the representations of SU(2).
The group SU(2) has three generators Sa, a = 1, 2, 3, which obey the algebra (3.2)
The representations of SU(2) are classified by the spin S, which takes integer or half-
integer values. The fundamental representation of SU(2) has spin S = 1

2
, it contains

the two states |↑〉 and |↓〉. Higher-dimensional representations can be constructed as
tensor products of fundamental representations, which is conveniently accomplished
using Young tableaux (see e.g. [76]). These tableaux are constructed as follows
(see Figs. B.1 and B.2 for examples). For each of the N spins, draw a box numbered
consecutively from left to right. The representations of SU(2) are obtained by putting
the boxes together such that the numbers assigned to them increase in each row
from left to right and in each column from top to bottom. Each tableau indicates
symmetrization over all boxes in the same row, and antisymmetrization over all boxes
in the same column. This implies that we cannot have more than two boxes on top
of each other. If κi denotes the number of boxes in the ith row, the spin is given by
S = 1

2
(κ1 − κ2).

To be more explicit, let us consider the tensor product 1

2
⊗ 1

2
⊗ 1

2
depicted in

1 ⊗ 2

︸ ︷︷ ︸

1
2

S = 0

⊕ 1 2

S = 1

⊗ 3 = 1
2
3

⊕ 1 3
2

S = 1
2

⊕ 1
3

2

S = 1
2

⊕ 1 2 3

S = 3
2

�
�
�
�A

A
A
A

Figure B.2: Tensor product of three S = 1
2

spins with Young tableaux. For SU(n)
with n > 2, the tableau with three boxes on top of each other exists as well.
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3J

J

8

3

b

g

r I
+

U
+ +

V

3J

J 3

8

cy

m

UV

I
+

++

Figure B.3: (Color online) a) Weight diagram of the fundamental SU(3) repre-
sentation 3 = (1, 0). b) Weight diagram of the complex conjugate representation
3̄ = (0, 1). J3 and J8 denote the diagonal generators, I+, U+, and V + the raising
operators.

Fig. B.2 in detail. We start with the state
∣
∣3
2
, 3

2

〉
= |↑↑↑〉, and hence find

∣
∣3
2
, 1

2

〉
=

1√
3
S− ∣∣3

2
, 3

2

〉
=

1√
3

(
|↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉

)
. (B.10)

The two states with S = Sz = 1
2

must be orthogonal to (B.10). A convenient choice
of basis is

∣
∣1
2
, 1

2
,+
〉

=
1√
3

(
|↑↑↓〉 + ω |↑↓↑〉 + ω2 |↓↑↑〉

)
,

∣
∣1
2
, 1

2
,−
〉

=
1√
3

(
|↑↑↓〉 + ω2 |↑↓↑〉 + ω |↓↑↑〉

)
,

(B.11)

where ω = exp
(
i2π

3

)
. The tableaux tell us primarily that two such basis states exist,

not what a convenient choice of orthonormal basis states may be.

The irreducible representations of SU(2) can be classified through the eigenvalues
of the Casimir operator given by the square of the total spin S2. The special feature
of S2 is that it commutes with all generators Sa and is hence by Schur’s lemma [40]
proportional to the identity for any finite-dimensional irreducible representation. The
eigenvalues are given by

S2 = C2
SU(2) = S(S + 1).

1 ⊗ 2
︸ ︷︷ ︸

1
2

3̄

⊕ 1 2

6

⊗ 3 = 1
2
3

1

⊕ 1 3
2

8

⊕ 1
3

2

8

⊕ 1 2 3

10

Figure B.4: Tensor product 3 ⊗ 3 ⊗ 3 with Young tableaux.
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︸ ︷︷ ︸︸ ︷︷ ︸

µ1 boxesµ2 columns

Figure B.5: Dynkin coordinates (µ1, µ2) for a given Young tableau. The columns con-
taining three boxes represent additional SU(3) singlet factors, which yield equivalent
representations and hence leave the Dynkin coordinates (µ1, µ2) unchanged.

B.2.1 Representation theory of SU(3)

The group SU(3) has eight generators Ja, a = 1, . . . , 8, which obey the algebra

[
Ja, J b

]
= fabcJc, (B.12)

where the structure constants fabc are given in App. B.2.4. For SU(3) we have two
diagonal generators, usually chosen to be J3 and J8, and six generators which define
the ladder operators I± = J1 ± iJ2, U± = J6 ± iJ7, and V ± = J4 ± iJ5, respectively.
An explicit realization of (B.12) is, for example, given by the Ja’s as expressed in
terms of Gell-Mann matrices in (3.19). This realization defines the fundamental
representation 3 of SU(3) illustrated in Fig. B.3a. It is three-dimensional, and we
have chosen to label the basis states by the colors blue (b), red (r), and green (g).
The weight diagram depicted in Fig. B.3a instructs us about the eigenvalues of the
diagonal generators as well as the actions of the ladder operators on the basis states.

All other representations of SU(3) can be constructed by taking tensor products
of reps. 3, which is again most conveniently accomplished using Young tableaux (see
Fig. B.4 for an example). The antisymmetrization over all boxes in the same column
implies that we cannot have more than three boxes on top of each other. Each
tableaux stands for an irreducible representation of SU(3), which can be uniquely
labeled by their highest weight or Dynkin coordinates (µ1, µ2) [40,54] (see Fig. B.5).
For example, the fundamental representation 3 has Dynkin coordinates (1,0). Note
that all columns containing three boxes are superfluous, as the antisymmetrization
of three colors yields only one state. In particular, the SU(3) singlet has Dynkin
coordinates (0,0). In general, the dimension of a representation (µ1, µ) is given by
1
2
(µ1+1)(µ2+1)(µ1+µ2+2). The labeling using bold numbers refers to the dimensions

of the representations alone. Although this labeling is not unique, it will mostly be
sufficient for our purposes. A representation m and its conjugated counterpart m

are related to each other by interchange of their Dynkin coordinates.

B.2.2 Examples of representations of SU(3)

We now consider some specific representations of SU(3) in detail. As starting point
we use the fundamental representation 3 spanned by the states |b〉, |r〉, and |g〉. The
second three-dimensional representation 3̄ is obtained by antisymmetrically coupling
two reps. 3. The Dynkin coordinates of the rep. 3̄ are (0,1), i.e., the reps. 3 and 3̄
are complex conjugate of each other. An explicit basis of the rep. 3̄ is given by the
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u u u

u u

u

6J8

J3

|bb〉|rr〉
1√
2

(
|br〉 + |rb〉

)

1√
2

(
|bg〉 + |gb〉

)
1√
2

(
|rg〉 + |gr〉

)

|gg〉

Figure B.6: Weight diagram of the representation 6 = (2, 0). The weight diagram of
the conjugate representation 6̄ = (0, 2) is obtained by reflection at the origin [40].

colors yellow (y), cyan (c), and magenta (m),

|y〉 =
1√
2

(
|rg〉 − |gr〉

)
,

|c〉 =
1√
2

(
|gb〉 − |bg〉

)
, (B.13)

|m〉 =
1√
2

(
|br〉 − |rb〉

)
.

The weight diagram is shown in Fig. B.3.b. The generators are given by (3.19) with λa

replaced by −(λa)∗, where ∗ denotes complex conjugation of the matrix elements [54].
In particular, we find I+ |y〉 = − |c〉, U+ |c〉 = − |m〉, and V + |y〉 = − |m〉.

The six-dimensional representation 6 has Dynkin coordinates (2,0), and can hence
be constructed by symmetrically coupling two reps. 3. The basis states of the rep.
6 are shown in Fig. B.6. The conjugate representation 6̄ can be constructed by
symmetrically coupling two reps. 3̄.

Let us now consider the tensor product 3 ⊗ 3̄ = 1 ⊕ 8. The weight diagram of
the so-called adjoint representation 8 = (1, 1) is shown in Fig. B.7. The states can
be constructed starting from the highest weight state |bm〉, yielding I− |bm〉 = |rm〉,
U− |bm〉 = − |bc〉, V − |bm〉 = |gm〉 − |by〉, and so on. This procedure yields two
linearly independent states with J3 = J8 = 0. The representation 8 can also be
obtained by coupling of the reps. 6 and 3, as can be seen from the Young tableaux in
Fig. B.4. On a more abstract level, the adjoint representation is the representation
we obtain if we consider the generators Ja themselves basis vectors. In the weight
diagram shown in Fig. B.7, the generators J3 and J8 correspond to the two states
at the origin, whereas the ladder operators I±, U±, and V ± correspond to the states
at the six surrounding points. In the notation of Fig. B.7, the singlet orthogonal to
8 is given by 1√

3

(
|by〉 + |rc〉 + |gm〉

)
.
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u u

u u uk

u u

Q
Q

Q
Q

Q
Q

QQ

8J8

J3

|bm〉|rm〉

|bc〉|ry〉

|gc〉|gy〉

1√
2

(
|by〉 − |rc〉

)

1√
6

(
|by〉 + |rc〉 − 2 |gm〉

)

Figure B.7: Weight diagram of the adjoint representation 8 = (1, 1). The state with
J3 = J8 = 0 is doubly degenerate [40]. Note that two reps. 8 can be constructed by
combining three fundamental reps. 3 (colors), just as two reps. 1

2
can be constructed

by combining three SU(2) spins (cf. (B.11)). The states in the diagram span a basis
for one of these representations.

The weight diagrams of four other representations relevant to our purposes below
are shown in Figs. B.8 to B.10.

It is known that the physical properties of SU(2) spin chains crucially depend on
whether on the lattice sites are integer or half-integer spins. A similar distinction
can be made for SU(3) chains, as elaborated in Sec. ??. The distinction integer
or half-integer spin for SU(2) is replaced by a distinction between three families of
irreducible representations of SU(3): either the number of boxes in the Young tableau
is divisible by three without remainder (e.g., 1, 8, 10, 27), with remainder one (e.g.,
3, 6̄, 15, 15′), or with remainder two (e.g., 3̄, 6, 15, 15

′

).
While SU(2) has only one Casimir operator, SU(3) has two. The quadratic

t t t t

t t t

t t

t

10J8

J3

|bbb〉|rrr〉

1√
3

(
|bgg〉 + |gbg〉 + |ggb〉

)

|ggg〉

Figure B.8: Weight diagram of the representation 10 = (3, 0). The weight diagram
of the conjugate representation 10 = (0, 3) is obtained by reflection at the origin [40].
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r r r
r r r rf f

r r rf
r r

15
r r r r r

r r r r
r r r

r r
r

15’

Figure B.9: Weight diagram of the representations 15 = (2, 1) and 15′ = (4, 0).

Casimir operator is defined as

J2 =
8∑

a=1

JaJa, (B.14)

where the Ja’s are the generators of the representation. As J2 commutes with all
generators Ja it is proportional to the identity for any finite-dimensional irreducible
representation. The eigenvalue in a representation with Dynkin coordinates (µ1, µ2)
is [40]

J2 = C2
SU(3)(µ1, µ2) =

1

3

(
µ2

1 + µ1µ2 + µ2
2 + 3µ1 + 3µ2

)
. (B.15)

We have chosen the normalization in (B.15) according to the convention

C2
SU(n)(adjoint representation) = n,

which yields C2
SU(3)(1, 1) = 3 for the representation 8. Note that the quadratic

Casimir operator cannot be used to distinguish between a representation and its
conjugate. This distinction would require the cubic Casimir operator [40], which we
will not need for our purposes.

r r r
r r r r

r r r r r
r r r r

r r r

f f
f f f

f f
h

27

Figure B.10: Weight diagram of the self-conjugate representation 27 = (2, 2). The
state with J3 = J8 = 0 is three-fold degenerate [40].
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B.2.3 Representation theory of SU(4) and examples of SU(4)
representations

The group SU(4) has fifteen generators V a, a = 1, . . . , 15. The three diagonal gen-
erators are V 3, V 8, and V 15 (SU(n) has n − 1 diagonal generators). The twelve
remaining generators form the ladder operators as in the SU(3) case. The weight di-
agrams are now three–dimensional, the SU(4) Young tableaux consists of up to three
rows, and the representations can be labeled by three Dynkin labels (µ1, µ2, µ3). The
weight diagram of the fundamental representation of SU(4) is shown in Fig. B.11. All

Figure B.11: Weight diagram of the fundamental representation of SU(4). The action
of the six ladder operators I+, U+, V +, W+, X+, and Y + are also shown.

other representations of SU(4) can be constructed by taking tensor products of rep-
resentations 4, which is again most conveniently accomplished by Young tableaux,
e.g.,

4 ⊗ 4 = 10 ⊕ 6 .

We have obtained a totally symmetric representation 10 = (2, 0, 0) and and totally
anti–symmetric representation 6 = (0, 1, 0). Note that the rep.6 is self–conjugate,

6 ⊗ 6 = singlet ⊕ . . . . (B.16)

The totally symmetric representation 10 is shown in Fig. B.12.

One can imagine the weight diagram of the rep.10 as the combination of four
tetrahedra. All corners are the states in its weight diagram, see Fig. B.12. The
inner “free” space forms an octahedron. Its corners form the states of the totally
anti–symmetric representation 6 of SU(4). The corresponding phase diagram of the
representation 6 is shown in Fig. B.13.
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Figure B.12: Weight diagram of the ten–dimensional representation 10 of SU(4).
The corners of the “small” tetrahedra form the ten states of the rep. 10.

Figure B.13: Weight diagram of the six–dimensional representation 6 of SU(4). The
inner octahedron forms the weight diagram of the rep.6.

The origin in the weight diagrams which are shown in Figs. B.11, B.12, and B.13
corresponds to the singlet. Thus we can see, that it is impossible to form a singlet
with two fundamental representation as well as with two representations 10. For the
representation 6, however, it is possible to form the singlet as stressed in Eq. (B.16).
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B.2.4 SU(3) Gell-Mann matrices

The Gell-Mann matrices are given by [40, 54]

λ1=





0 1 0
1 0 0
0 0 0



, λ2=





0 −i 0
i 0 0
0 0 0



, λ3 =





1 0 0
0 −1 0
0 0 0



,

λ4=





0 0 1
0 0 0
1 0 0



, λ5=





0 0 −i
0 0 0
i 0 0



, λ6 =





0 0 0
0 0 1
0 1 0



,

λ7=





0 0 0
0 0 −i
0 i 0



, λ8=
1√
3





1 0 0
0 1 0
0 0 −2



.

They are normalized as tr
(
λaλb

)
= 2δab and satisfy the commutation relations

[
λa, λb

]
= 2fabcλc. The structure constants fabc are totally antisymmetric and obey

Jacobi’s identity
fabcf cde + f bdcf cae + fdacf cbe = 0.

Explicitly, the non-vanishing structure constants are given by f 123 = i, f 147 = f 246 =
f 257 = f 345 = −f 156 = −f 367 = i/2, f 458 = f 678 = i

√
3/2, and 45 others obtained by

permutations of the indices.

B.2.5 SU(4) Gell-Mann matrices

The SU(4) Gell-Mann matrices are given by [54]

V 1 =







0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0







V 2 =







0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0







V 3 =







1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0







V 4 =







0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0







V 5 =







0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0







V 6 =







0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0







V 7 =







0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0







V 8 = 1√
3







1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0







V 9 =







0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0









B.2 Representation theory of SU(n) 153

V 10 =







0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0







V 11 =







0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0







V 12 =







0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0







V 13 =







0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0







V 14 =







0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0







V 15 = 1√
6







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3







.

B.2.6 Eigenvalues of the quadratic Casimir operator

The eigenvalues of the quadratic Casimir operator for representations of SU(n),
C2

SU(n)(µ1, µ2, . . . , µn−1), up to n = 6 are given by:

C2
SU(2)(µ) = 1

4
(µ2 + 2µ) = µ

2

(
µ
2

+ 1
)

C2
SU(3)(µ1, µ2) = 1

3

(
µ2

1 + µ1µ2 + µ2
2 + 3µ1 + 3µ2

)

C2
SU(4)(µ1, µ2, µ3) = 1

8
(3µ2

1 + 4µ2
2 + 3µ2

3 + 4µ1µ2

+2µ1µ3 + 4µ2µ3 + 12µ1 + 16µ2 + 12µ3)

C2
SU(5)(µ1, µ2, µ3, µ4) = 1

5
(2µ2

1 + 3µ2
2 + 3µ2

3 + 2µ2
4

+ 3µ1µ2 + 4µ2µ3 + 3µ3µ4 + 2µ1µ3 + µ1µ4

+2µ2µ4 + 10µ1 + 15µ2 + 15µ3 + 10µ4)

C2
SU(6)(µ1, µ2, µ3, µ4, µ5) =

1
12

(5µ2
1 + 8µ2

2 + 9µ2
3 + 8µ2

4 + 5µ2
5

+ 8µ1µ2 + 12µ2µ3 + 12µ3µ4 + 8µ4µ5

+ 4µ1µ4 + 6µ1µ3 + 8µ2µ4 + 6µ3µ5

+ 4µ2µ5 + 2µ1µ5 + 30µ1 + 48µ2

+54µ3 + 48µ4 + 30µ5)

The general method to obtain these and further eigenvalues for n > 6 requires a
discussion of representation theory [75] at a level which is beyond the scope of this
thesis.

The dimensionality of a representation (µ1, µ2, . . . , µn−1) is determined by the
so-called Hook formula [40]

dim =

∏n
i<j (λi − λj + j − i)
∏n

i<j (j − i)
, (B.17)
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where λi =
∑n−1

j=i µj for i = 1, . . . , n. In particular, it yields for n = 2, 3, 4:

dimSU(2)(µ) = µ+ 1

dimSU(3)(µ1, µ2) = 1
2
(µ1 + 1)(µ2 + 1)(µ1 + µ2 + 2)

dimSU(4)(µ1, µ2, µ3) = 1
12

(µ1 + 1)(µ2 + 1)(µ3 + 1)

(µ1 + µ2 + 2)(µ2 + µ3 + 2)(µ1 + µ2 + µ3 + 3)
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(Springer, New York, 1997).

[43] P. A. M. Dirac, in Proc. R. Soc. A, volume 123, 714 (1929).

[44] S. Eggert, Numerical evidence for multiplicative logarithmic corrections from
marginal operators, Phys. Rev. B 54, R9612 (1996).

[45] A. Einstein, Sitzungsber. Kgl. Preuss. Akad. Wiss. 1924, 261 (1924).

[46] —, Sitzungsber. Kgl. Preuss. Akad. Wiss. 1925, 3 (1925).

[47] L. Faddeev, Integrable models in 1+1-dimensional quantum field theory, in
J.-B. Zuber and R. Stora, eds., Recent advances in field theory and statisti-
cal mechanics, volume XXXIX of Les Houches lectures (Elsevier, Amsterdam,
1982).

[48] L. D. Faddeev and L. A. Takhtajan, What is the spin of a spin wave?, Phys.
Lett. A 85, 375 (1981).
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[129] U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77,
259 (2005).
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