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Abstract

The starting point for this thesis was the apparent contradiction between
the perception of rule bases as simple to create and the experience of rule
bases as hard to debug and difficult to create without faults. This contra-
diction was analyzed using data from a survey of developers, experiments
and experiences from three rule base development projects. From the ag-
gregation of this analysis using the developed fault lifecycle model, testing,
debugging, static analysis and visualization were chosen as concrete and
particularly promising approaches for tackling this fault prevention chal-
lenge. Each of these areas was further examined within the context of this
thesis.

In the area of testing, a formal account of the notions of the test entities
was developed, a novel test coverage measure based on least general gen-
eralization was conceived and a testing framework based on these notions
was implemented and evaluated. The evaluation over more than 100 hours
showed the usefulness and importance of the concepts and their implemen-
tation.

To better support the debugging of rule bases, Explorative Debugging was
proposed as a novel and purely declarative debugging paradigm for these
systems. An experiment comparing Explorative Debugging to the state of
the art procedural debugging paradigm showed a significant improvement
in the time needed to identify faults, while the accuracy increased.

To improve the static analysis for fault detection, an anomaly detection
framework for F-logic was developed. This framework is the first of its
kind for F-logic and it includes the first implementation of static type check-
ing for F-logic. It is mostly implemented in F-logic itself, integrated into a
rule engineering environment and easily extensible.

Finally, to support users in understanding the rule base and the conse-
quences of changes to it, a novel approach to the visualization of the struc-
ture of the rule base was developed. The novelty of this approach lies in
the use of runtime rule interactions to show the overall structure of the rule
base.
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Zusammenfassung

Ausgangspunkt dieser Arbeit war der scheinbare Widerspruch zwischen
der allgemeinen Meinung, dass Regelbasen einfach zu erstellen sind, und
der Beobachtung, dass diese tatsächlich nur schwer fehlerlos zu erstellen
und zu debuggen sind. Mittels unterschiedlicher Experimente, einer Um-
frage unter Entwicklern und Erfahrungen aus drei Projekten zur Erstel-
lung von Regelbasen wurde dieser Widerspruch analysiert. Unter Zuhilfe-
nahme des hierfür entwickelten Fehler-Lebenszyklus-Modells wurden die
Ergebnisse der Analyse aggregiert. Dadurch wurden Ansätze zu Tests,
Debugging, Statischer Analyse und Visualisierung als besonders vielver-
sprechend identifiziert. Jeder dieser Ansätze wurde im Rahmen dieser Ar-
beit genauer untersucht.

Um das Testen von Regelbasen besser zu unterstützen, wurden
formale Konzeptbeschreibungen von Testentitäten entwickelt, ein
Testvollständigkeitsmaß erstellt sowie auf deren Basis ein Testrah-
menwerk implementiert und evaluiert. Dessen mehr als 100 stündige
Evaluation zeigte die Nützlichkeit und Wichtigkeit dieser Konzepte und
ihrer Implementierung.

Zur besseren Unterstützung des Debuggings von Regelbasen, wurde
Exploratives Debugging als neues und rein deklaratives Debugging-
Paradigma vorgeschlagen. In einem mit dem Stand der Technik vergle-
ichenden Experiment konnte eine signifikante Zeitersparnis bei höherer
Genauigkeit zur Identifikation von Fehlern nachgewiesen werden.

Zur Verbesserung der statischen Analyse wurde ein Rahmenwerk zur
Erkennung von Anomalien für F-Logik entwickelt. Dieses Rahmenwerk
ist für F-Logik das erste seiner Art und enthält die erste Implementierung
einer statischen Typprüfung für F-Logik.

Zuletzt wurde ein neuer Visualisierungsansatz für Regelbasen entwickelt,
der dem Nutzer hilft, die Regelbasis leichter zu verstehen und Folgen von
Änderungen nachvollziehen zu können. Die Neuheit dieses Ansatzes liegt
in der Verwendung von Laufzeit-Regelinteraktionen, um die Gesamtstruk-
tur der Regelbasis anzuzeigen.
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Chapter 1

Introduction

1.1 Motivation

Rule based systems are computer programs built according to a paradigm
that stipulates to represent the program in IF-THEN structures (rules), to
strive to represent the program declaratively and to use an inference en-
gine that automatically combines the rules based on the task at hand. With
rule based systems comes the hope to build programs in a simpler, more
flexible and more modular way. These systems are assumed to be simpler
to create, because as (mostly) declarative languages they free the developer
from worrying about the how of the computation, because the IF-THEN
structure naturally resembles the way humans communicate a large part of
their knowledge and because the basic structure of rules is very simple and
easy to understand. The promise of increased flexibility and modularity
rests on the observation [107] that declarative sentences are true in a wider
context than program statements can be used.

Rule based systems have their roots in the research on Artificial Intelligence
and Expert Systems. In their development over more than 30 years hun-
dreds of different rule languages and environments have been developed
and have been used to create an untold number of computer programs,
performing a variety of tasks from computer games, over rating of credit
risks, to the diagnosis of bacterial infections. Recently, with the large-scale
practical use of business rule systems [150] and the interest of the Seman-
tic Web community in rule languages [91], the popularity of these kinds of
system has again started to increase.

Preventing, finding and removing faults in rule bases is - like in all software
development - and important and challenging task. Indeed, a survey of
developers found related problems such as debugging, determining test

7



8 CHAPTER 1. INTRODUCTION

coverage and determining completeness of the created rule base among the
issues most hindering the development of rule based systems (see section
3.1.1). Moreover, in three observed development projects, finding faults
posed such difficulties that it almost negated the advantages of simplicity
associated with rule based systems. A survey of developers also found, that
while developers see rule bases as indeed simpler to create, understand and
maintain, they say that debugging rule bases is actually more difficult than
the debugging of comparable procedural or object oriented programs (see
figure 1.1).

Figure 1.1: The aggregated results from the survey questions asking participants
to compare rule base and ’conventional’ software development

Changes in the way how rule bases are built are also posing challenges and
are offering new opportunities for the development process. The continued
rise of end-user programming, the embedded nature of many modern rule
bases, the rise of agile methods and the increasing interest in the Semantic
Web [16] are forces influencing modern rule base development and how
faults can be prevented, identified and removed.

From these observations follow the overall questions of this thesis: why
are faults in rule bases hard to find? How is that influenced by the intrinsic
properties of rule languages and by modern rule base development pro-
cesses? And finally and most importantly - what can be done about it?
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1.2 Approach

The overall goal of this thesis is an improvement in the effectiveness of
fault prevention, identification and removal for rule based systems. To-
wards this end it was carefully analyzed why this is currently problematic;
how the difficulty in finding faults can be explained. This analysis results in
a number of hypotheses explaining where practical problems lie; these hy-
pothesis are then used to derive areas that can most profit from better tool
support. For some of these areas several novel tools were then conceived,
developed and experimentally evaluated.

The scientific approach of this thesis rests on seven pillars. These pillars
comprise of qualitative observation in two rule base development projects,
systematic observation and experiments in another project and one dedi-
cated experiment. An important role is also played by literature research
and a survey of developers of rule based systems. An overview of the ap-
proach is shown in figure 1.2; the remainder of this section is dedicated to
a short explanation of all elements in this figure.

Figure 1.2: Methodological approach of this thesis

The fault identification challenge was identified based on qualitative obser-
vation in the two projects F-Verify and Online Forecast. Some hypotheses
for its explanation were also derived in these projects. Online Forecast was
a project to explore the potential of knowledge based systems with respect
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to maintainability and understandability. Towards this end an existing re-
porting application in a human resource department was re-created as a
rule based system. The goal of the project F-verify was to create a rule base
as support for verification activities. It models (mostly heuristic) knowl-
edge about anomalies in rule bases. It consists of anomaly detection rules
that work on the reified version of a rule base. These two projects are de-
scribed in detail in the section 3.1.3.

A third project, Project Halo, was used to derive further requirements and
as a test bed for the experimental evaluation for the developed testing tools.
Project Halo is a multistage project to develop systems and methods that
enable domain experts to model scientific knowledge. As part of the second
phase of Project Halo six domain experts were employed for 6 weeks each
to create rule bases representing domain knowledge in physics, chemistry
and biology. Project Halo is described in more detail in section 3.1.2.

A survey of developers of rule based systems (described in section 3.1.1)
is the fourth input to the identification of the fault identification challenge
and its explanation.

Further input comes from an exploration of global requirements that fol-
low from the shifting nature of rule base development (see section 3.2.4)
and an extensive literature study of relevant - often older and inactive -
research (see, in particular, section 5.4).

Based on the aggregation of the results from the analysis four choke points
were identified for further study: debugging, testing, static analysis and
mistakes stemming from limited knowledge about the overall structure of
the rule base. One tool each was developed to address these areas.

A regression testing framework for F-logic was conceived and developed to
better support the testing challenge. It contains graphical interfaces to en-
able end user programmers to create tests and further a novel test coverage
metric for rule base was developed to support users in creating complete
test sets. This testing framework was evaluated within Project Halo.

Explorative Debugging was developed as a new debugging paradigm to
improve the efficiency of fault identification in rule based systems. Novel
ways to understand and show the inference process in rule bases were de-
veloped in support of this debugger. Explorative Debugging and its com-
ponents were evaluated in a dedicated debugging experiment. In this ex-
periment random faults were introduced into the rule base and two differ-
ent kinds of debugger were compared in their efficiency in finding these
faults.

To support users in understanding the overall structure of the rule base
a new visualization approach was developed. This approach uses the run-
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time rule interactions of the rule during query answering and tests to derive
the relations between the rules. Finally a collection of anomaly heuristics
was created to support the static analysis of rule bases, also profiting from
the availability of ontologies.

1.3 Contribution

The main contribution of this thesis is the comprehensive treatment of the
question what can be done about the difficulty of fault prevention, identifi-
cation and removal in rule based systems. This answer is based on experi-
ences and empirical data from multiple project, experiments and a survey
of developers. The main result is an - albeit incomplete - overall answer
to the question ”What can be done about the debugging challenge of rule
based systems?”

Within this comprehensive framework a number of individual, delimitable
contributions were made. Conceptually Explorative Debugging (section
5.1) was developed as a new way to approach the debugging of rule based
systems. It includes the novel notions of mutation extended depends-on
graph and mutation extended prooftree, new concepts that can be used for
the declarative debugging of rules. Its realization as an open source debug-
ger includes the implementation of these concepts and is unique in many
aspects. A second implementation of the Explorative Debugging paradigm
is more limited in its functionality, but is included in a commercial devel-
opment environment and was the first graphical debugger for F-logic.

In the context of testing, the first testing framework for F-logic was de-
signed and implemented; a new test coverage measure for normal logic
programs was conceived. The evaluation of this framework showed its
suitability for end users.

In further conceptual work a new approach for the overall visualization
of rule bases was conceived and implemented. It is unique because of its
utilization of actual runtime rule interactions for the creation of the visual-
ization.

In a further development the first set of anomaly detection heuristics was
implemented in and for F-logic. The verification support for the DarkMat-
terStudio system (section 3.1.2) was conceived and implemented as part of
this work.

New empirical data was created in particular through a survey of develop-
ers of rule based systems, in a debugging experiment and through action
research in two rule base development projects.
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A further contribution is the only current state of the art survey in rule
debugging - bringing together work from very different and sometimes
stale areas of research (section 5.4), and the only systematic account of the
syntax and semantics of F-logic/LP-O; the commercially most important
dialect of F-logic (section 2.2).

1.4 Overview

This thesis is structured in six main parts: (2) Fundamentals, (3) Analysis
and Design, (4) Testing, (5) Debugging, (6) Visualization and (7) Anomalies.

1. The second chapter, Fundamentals, gives a precise characterization of
the concepts necessary for understanding this text. It introduces nor-
mal logic programs as the theoretical basis for all subsequent chap-
ters. F-logic and horn rules on top of RDF - two formalisms which
are used in implementations presented in this thesis - are described
and it is shown how they can be reduced to normal logic programs.

2. In the beginning of the Analysis and Design chapter the main body of
empirical evidence is introduced. This chapter starts with a descrip-
tion of the three projects that formed the basis for the identification
and explanation of the verification challenge. Also the survey of de-
velopers and its results are presented. Based on the results from the
survey, the experiences and the data from the projects a number of
explanation hypotheses are developed, aggregated and then used to
decide on the approach taken.

3. The testing chapter introduces a regression testing framework for
F-logic and describes its subject matter tailored user interface. The
chapter further describes an novel test coverage measure for normal
logic programs and the evaluation of the test framework.

4. The debugging chapter first gives a extensive overview over the state
of the art in debugging rule based systems. Based on the deficiencies
in the existing systems and the requirements and design principles
identified in chapter 3 Explorative Debugging is presented. The de-
scription of Explorative Debugging first focuses on the conceptual
level and then describes two implementations and an evaluation.

5. The visualization chapter discusses how the runtime interactions of
the rules can be used to derive an overall picture of the rule base that
can aid the user in making correct changes.

6. The seventh chapter introduces a set of anomaly heuristics and their
embedding into an application that can support the user in finding
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faults through static analysis of the source code.

In the last chapter the conclusions summarize the content of the thesis, its
contribution and discuss possible future work.

1.5 Publications

The work presented in this thesis is partly published in the following pub-
lications:

• Valentin Zacharias, Imen Borgi: Exploiting Usage Data for the Visu-
alization of Rule Bases, Proceedings of the 3rd International Seman-
tic Web User Interaction Workshop, SWUI 2006 at the International
Semantic Web Conference (ISWC), 2006.

• Mark Hefke, Valentin Zacharias, Ernst Biesalski, Andreas Abecker,
Qingli Wang, Marco Breiter: An extendable Java Framework for In-
stance Similarities in Ontologies, Proceedings of the 8th Interna-
tional Conference on Enterprise Information Systems, 2006.

• Valentin Zacharias, Andreas Abecker: Explorative Debugging For
Rapid Rule Base Development, Proceedings of the 3rd Workshop on
Scripting for the Semantic Web at the 4th European Semantic Web
Conference (ESWC), 2007.

• Valentin Zacharias, Andreas Abecker: On Modern Debugging For
Rule-Based Systems, Proceedings of the The Nineteenth Interna-
tional Conference on Software Engineering and Knowledge Engi-
neering (SEKE), 2007.

• Valentin Zacharias: Visualization of Rule Bases - The Overall Struc-
ture, Proceedings of the 7th International Conference on Knowledge
Management (I-Know), Special Track on Knowledge Visualization
and Knowledge Discovery, 2007.

• Valentin Zacharias: The Agile Development of Rule Bases, Proceed-
ings of the 16th International Conference on Information Systems De-
velopment (ISD), 2007.

• Valentin Zacharias: Rules As Simple Way to Model Knowledge
- Closing the Gap between Promise and Reality, Proceedings of
the 10th International Conference on Enterprise Information Systems
(ICEIS), 2008.

• Valentin Zacharias: Development and Verification of Rule Based
Systems - a Survey of Developers, Proceedings of the International
RuleML Symposium on Rule Interchange and Applications, 2008.
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• Andreas Abecker, Valentin Zacharias: Comprehensive Developer
Support for Rule-Based Programming, Proceedings of the eChal-
lenges Conference, 2008.

• Valentin Zacharias: The Debugging of Rule Bases, to appear in
Handbook of Research on Emerging Rule-Based Languages and
Technologies, IGI Global, Hershey (USA) 2009.

• Valentin Zacharias: Tackling the Debugging Challenge of Rule
Based Systems, to appear in Enterprise Information Systems X,
Springer-Verlag, Berlin (Germany) 2009.



Chapter 2

Fundamentals

This chapter introduces and defines the formal basis for this thesis; it in-
troduces the rule languages used for definitions and in implementations.
Altogether three rule languages are introduced.

Figure 2.1: The three rule languages discussed in this chapter

The three languages and their role are (see also figure 2.1):

1. Normal Logic Programs [66, 164] are used as the common basis for
all chapters. Definitions are given with respect to this language to
make them applicable as widely as possible. Normal logic programs
and their semantics are described in section 2.1

2. F-logic/LP-O [92, 3] is used in some implementations, in particular in
the testing and anomaly chapters. Doing these implementations in
F-logic/LP-O was necessary to integrate the applications into a com-
mercial ontology engineering environment. F-logic/LP-O is a syn-

15
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tactic variant of normal logic programs in the sense that every F-logic
program can be transformed into a normal logic program. The F-logic
Syntax as well as the details of this transformation are described in
section 2.2.

3. RDF + Rules [29, 30], a rule language on top of RDF is used in other
implementations and is described in section 2.3. This rule language
was chosen because of its importance to the Semantic Web. This rule
language too can be transformed into a normal logic program.

In summary: because of project and implementation context all implemen-
tations in this thesis were done for either F-logic/LP-O or RDF Rules; both
variants of normal logic programs. To describe all concepts in a unified way
and to make them applicable in a wider context, normal logic programs are
used as basis for the conceptual work in this thesis.

In this section the three languages and the transformations to normal logic
programs are described. Considerable time is spend on the description of
the F-logic/LP-O and its transformation to normal logic programs - to the
authors knowledge the only such description of the syntax and semantics
of an actual F-logic implementation.

Not everything in this chapter is needed to understand the remaining chap-
ters; the precise characterization of F-logic and the description of the trans-
formation to normal logic programs is a contribution in its own right and
are needed only to establish normal logic programs as common basis. A
reader will be able to understand the remaining chapters with an under-
standing of the least Herbrand model for normal logic programs and the
ability to read simple F-logic and RDF rules, something that can be learned
from the examples in section 2.2.1 and at the beginning of section 2.3.4.

2.1 Normal Logic Programs

A normal logic program is a finite set of rules. An example for a rule would
be

p(A)← q(B),¬ r(A, d)

The part to the left of the← symbol is the goal, head or consequent of the rule;
the part to the right the body, antecedent, consisting of the subgoals. A rule
without a body is called a fact; a rule without head a query. A rule is read
as if something then something else and encodes conditional knowledge. All
the rules in a rule set are combined to derive answers to queries.
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The following is a simple example rule base:

father(A)← male(A), child(A,X)
ancestor(A,X)← child(A,X)
ancestor(A,X)← ancestor(A, Y ), ancestor(Y,X)
male(peter)
child(peter,mike)

The first rule can be read as A is a father if A is male and A has a child. All
words starting with an uppercase letter, like the A in this rule, stand for
variables. The second and third rule define the ancestor relationship - stat-
ing that A is the ancestor of X, if X is her child; and that A is the ancestor
of X if A is the ancestor of Y and Y is the ancestor of X. Two facts state that
Peter is male and has the child mike. A query to this rule base could ask
for all instances known to be father:

← father(A)

With the facts and rules above the evaluation of this query would return
A = Peter.

This section gives a precise characterization of the syntax and the semantics
of normal logic programs. It starts with the syntax (Section 2.1.1) and the
definition of unification (Section 2.1.2). Afterwards the semantics of logic
programs is described without (Section 2.1.3) and with considering nega-
tion (Section 2.1.4). Stratifiability is presented as a property of normal logic
programs that determines whether the presented semantics can be applied
(Section 2.1.5). In the last part built-ins and their integration into normal
logic programs are presented (Section 2.1.6).

2.1.1 Syntax

The alphabet of a normal logic program consists of:

• A set of variables, V ar, of all finite alphanumeric strings.

• A set of predicate symbols, Pred, of all finite alphanumeric strings.
There is a mapping arity : Pred → N+ from the set of predicates to
the set of all positive integers greater than 0. If there is a mapping for
a predicate p, arity(p) = n, then p is an n-ary predicate.

• A set of function symbols, Func, of all finite alphanumeric strings.
There is a mapping arity : Func → N0 from the set of function sym-
bols to the set of all positive integers. If there is a mapping for a
function f , arity(f) = n, then f is an n-ary function symbol. We also
call all 0-ary function symbols constants.
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• Auxiliary symbols and logical connectives such as←,¬,,,(, )1

The sets V ar, Pred and Func are disjoint. Throughout this text the follow-
ing conventions are observed: variables are written as strings beginning
with an uppercase character. Both functions and predicates are written be-
ginning with a lowercase character.

A term is defined inductively as:

• A variable is a term.

• A 0-ary function symbol (a constant) is a term.

• If (a1, ..., an) are terms and f is an n-ary function symbol, then
f(a1, ..., an) is a term.

A ground term is a term that contains only constants and function symbols.
An atom p(a1, ..., an) is defined as a n-ary predicate symbol p and a list of
n terms as arguments. A ground atom is an atom with only ground terms
as arguments. A literal is an atom that may be negated, it is called positive
literal when the atom is not negated, negative literal if it is. A negative
literals is written as notp(a1, ..., an) A ground literal consists of a ground
atom.

A rule is a structure of the form A ← L1, ..., Ln where A is an atom and
L1, ..., Ln is a set of literals. The atom is called the head and the set of literals
is called the body of the rule. A rule expresses conditional knowledge and
is read as A if L1 and L2 and .. and Ln. A rule without a body is expressing
unconditional knowledge and is called a fact. A goal or query is a rule
consisting only of a body.

A normal logic program is a set of rules.

2.1.2 Substitution and Unification

A substitution θ is a set θ = {V1/t1, ...Vn/tn}, where V1, ..., Vn are distinct
variables and t1, ..., tn are terms such that tx 6= Vx for all x in 1...n. An
element Vx/tx of a substitution is called a binding for Vx. A substitution
where all t1, ..., tn are ground terms is a ground substitution.

An instance of a rule or atom Eθ is defined as the simultaneous replace-
ment of all variables Vx in the rule/atom with the terms in their bindings;
i.e. Vx is replaced by tx where Vx/tx ∈ θ. This process is called the applica-
tion of θ to E. Eθ is a ground instance of E iff it contains no variables.

1Note that komma is used both as auxiliary symbol and to delimate the elements
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The composition of two substitutions θ = {V1/t1, ...Vn/tn}
and σ = {W1/u1, ...,Wm/um} is defined as θσ =
{V1/t1σ, ..., Vn/tnσ,W1/u1, ...,Wm/um}, where identity substitutions
(i.e. Vk/tkσ where Vk = tkσ) and all Wk/uk, where Wk is equal to some Vj

are removed. The application of θσ to a rule E is exactly the same as the
application of first θ and then σ; i.e. Eθσ = (Rθ)σ.

Two rules or atoms E and F are variants of each other, iff substitutions θ
and σ exist, such that Eθ = F and Fσ = E.

Two rules or atoms E and F are unifiable, iff there is a substitutions θ such
that Eθ = Fθ, θ is the unifier of E and F . A substitution θ is more general
than another substitution σ iff there is a substitution τ such that θτ = σ. A
unifier of two expressions is called most general unifier mgu iff it is more
general than all other unifiers of these two rules or atoms. However, note
that the mgu is not unique and that there exist unifiers θ, σ such that θ 6= σ,
θ is more general than σ and σ is more general than θ.

2.1.3 Semantics

This section describes the semantics first for rules restricted to only positive
literals in the rule body. The semantics are extended with negations and
built-ins in the following sections.

The Herbrand base HB is the set of all atoms that can be formed with the
set of constants, functions symbols and predicates. A Herbrand interpreta-
tion I is a subset of the Herbrand base. We define the truth of a rule under
an Herbrand interpretation I as follows: A rule R = A ← L1, ..., Ln is true
under I iff for all substitutions θ such that L1θ ∈ I, ..., Lnθ ∈ I it holds that
Aθ ∈ I . This implies that in particular a fact F is true under I iff all its
ground instances Fθ ∈ HB are in I .

If a ruleE is true under an Herbrand interpretation I , we say that I satisfies
E. A Herbrand Interpretation I is a Herbrand model for a logic program
P iff I satisfies all rules E ∈ P . A set of rules S is a consequence of a
logic program P iff all models for P are also models for S; this entailment
relation is denoted as P |= S.

The least Herbrand model LHM of a logic program P is the intersection of
all models of P . The least Herbrand model LHM(P ) is also a model for P
[31]. The least Herbrand model is one distinguished model that defines the
consequences of a logical program. The result of a query G :← L1, ..., Ln

to a logic program P is defined as the set of all ground instances of G that
are satisfied by the least Herbrand model of P .
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2.1.4 Semantics with Negation

The previous section restricted the discussion of the semantics to rules with
only positive literals. In this section the Closed World Assumption CWA
is adopted [137] to allow conclusions from negative facts. The CWA states
that when a ground fact is not known to be true, it is assumed to be false.

Negative facts consisting of an atom A are written as ¬A. The nota-
tion |¬A| is used to describe the positive equivalent to negative facts, e.g.
|¬pred(a, b)| = pred(a, b).

The definition for the truth of a rule R under a Herbrand interpretation I
is extended by stating that a negative literal Lx is true if its positive coun-
terpart |Lx| isn’t. I.e. a rule R = A ← L1, ..., Ln is true under I iff for all
substitutions θ and

all literals Li ∈ L1, ...Ln

{
Liθ ∈ I , if Li is a positive literal
|Li| θ /∈ I , if Li is a negative literal

A negative fact F is true, iff for all substitutions θ it holds that |F | θ /∈ I .

Based on this definition of truth, consequence under CWA can be defined:
A set of rules and facts S is a consequence of a logic program P , iff all
models for P are also models for S, this is written as P |=CWA S.

Defining a distinguished model is more difficult, because logic programs
with negation do not have the property that the intersection of all models
is itself always a model; for many programs there is not even a unique
least model. Different semantics have been proposed and are employed
to deal with this problem (e.g. [164, 66]). Here the semantics based on
globally stratified models is presented, a straight forward extension of the
least model semantics that was used in many implementations described
later.

The intuition behind stratified semantics is, that it is possible to find an or-
dering of the predicates in a program that can be used to identify a distin-
guished model that usually matches the intuition of the person that created
a program. An added advantage is that this ordering of the predicates can
be used in the efficient computation of answers to queries against such a
program. The big disadvantage is that not all programs are globally strati-
fiable; programs have to be changed or a different semantics has to be used
for programs not within this class.

We define the ground expansion P0 of a logic program P as the set of
ground instantiations that can be formed from the rules in the logic pro-
gram P and the Herbrand base HB. We define the relation ↼ between two
elements A and B of the Herbrand base as: A ↼ B iff there is a ground
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instance in P0 where A appears in the head and B (positively or negatively)
in the body. A ↼ B can be read as: B is used to conclude A. We say that a
A←↩ B iff there is a sequence such thatA = E1 ↼ E2, E2 ↼ E3, ..., En−1 ↼
En = B and at least one of the Ei appears negatively in the rule body.
A ←↩ B is read as: B has a higher priority than A and can be understood
as: B should be computed before A. If M1 and M2 are two Herbrand mod-
els, then M1 is preferable to M2, iff for each element E ∈ (M1 −M2) there
exists an element F ∈ (M2−M1) such that E ←↩ F . Or, intuitively, a model
is preferable to another model, iff it can be obtained by replacing higher
priority atoms with lower priority ones. A Herbrand model HMp for a
logic program P is perfect, iff there is no model for P that is preferable to
HMp. This perfect model defines the result of queries to the program in the
same way the least Herbrand model does for programs without negation.
A perfect model exists for all stratified logic programs [31].

2.1.5 Stratification

An extended dependency graph EDG for a logic program P is a directed
graph G = (V,E) and a function fp : E → {positive, negative}. The
vertices of the graph are the predicate symbols Pred. There is an edge
e = (p, q) with p ∈ V and q ∈ V , iff there is a rule R ∈ P such that p is in
the rule body and q is in the rule head. fp(e) = negative, iff there is at least
one rule with q in the head that contains p in a negative literal in the body;
otherwise fp(e) = positive.

A stratification of a logic program is a partition of Pred into disjoint subsets
S1, ..., Sn such that for each e = (p, q) ∈ E:

iffp(e) = positive and p ∈ Si and q ∈ Sj then j ≥ i.
iffp(e) = negative and p ∈ Si and q ∈ Sj then j > i.

A program is stratifiable, iff a stratification exists.

2.1.6 Built-ins

Built-ins are special predicates such as <, 6= or ≥ that are defined neither
by rules nor storing their (usually infinite) extension as ground facts; rather
built-ins are implemented as procedures that evaluate the truth of the pred-
icate for ground parameters at runtime. Built-ins must appear only in rule
bodies, never in rule heads.

Built-ins can be viewed as a special kind of ground facts that are stored in
a different way: not explicitly but implicitly in program code; hence the
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discussion of semantics in the preceding sections stands without needing
to be changed. However, because built-ins correspond to infinite relations
and because the procedures are usually not able to generate their exten-
sions, safeness constraints need to be imposed on the rules using built-ins.
For example an implementation for the built-in < is usually not able to
even start enumerating all numbers larger than 3, when called as < (3, X) -
it can only evaluate whether the relations holds for two concrete numbers.
For each built-in there is a safeness constant sc that reflects the minimal
number of parameters that have to be bound to ground terms. Often the
safeness constant is equivalent to the arity of the built-in (as in the exam-
ple of <), but sometimes it is smaller (e.g. for the = built-in the safeness
constant is one). A rule is safe with respect to built-ins, iff at least sc of its
parameters also appear in positive literals in the rule body. We require a
logic program to consist only of rules that are safe in this respect.

2.2 F-logic

F-logic [92] or Frame Logic was developed as an attempt to create a clearly
defined declarative semantic for deductive object oriented databases.
Two versions of F-logic were defined, one based on first order logic (F-
logic/FOL), the other based on logic programming languages (F-logic/LP).
Only F-logic/LP is of continued practical relevance and is discussed in this
section. This section is further based on the dialect of F-logic/LP imple-
mented in the inference engine Ontobroker. (F-logic/LP-O)[59, 50] - the
only commercial implementation of F-logic. F-Logic/LP-O together with
the inference engine Ontobroker was used in many implementations de-
scribed later. A short discussion how the F-Logic/LP and F-logic/LP-O
differ is given at the end of this section. F-logic/LP-O is a dialect of nor-
mal logic programs in the sense that it can be syntactically transformed to
a (subset) of normal logic programs.

This section starts with a short example for the use of F-logic/LP-O, fol-
lowed by a detailed description of its syntax. The next sections then present
the syntactic transformations of F-logic/LP-O into normal logic programs
that also define the semantics. The final section gives a short overview of
the differences between F-logic/LP-O and F-Logic/LP as defined in [92].
This section is only meant to define and give an overview of F-logic. Read-
ers interested in learning F-logic for practical use should also consult [2, 63].

2.2.1 Example

/* facts */
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man::person.
woman::person.
Abraham:man.
Sarah:woman.
Isaac:man[father->Abraham; mother->Sarah].
/* rules */
FORALL X,Y

X[son->>Y]
<-
Y:man[father->X].

FORALL X,Y
X[son->>Y]
<-
Y:man[mother->X].

/* query */
FORALL X,Y <-X:woman[son->>Y] AND Y[father->Abraham].

The first part of this example consists of a set of facts. The first two lines
state that man and woman are subclasses of person. A subclass of relation
means that the signature of the superclass is inherited and that all instances
of the subclass are also instances of the superclass.

The next two lines assert that Abraham and Sarah are instances of man and
woman respectively. Through inheritance they are then also instances of
person. Intuitively the main purpose of the instance-of relation is that rules
can be built that apply to all instances of a particular class. In F-logic classes
and instances are both terms and a class can itself be again an instance of
another class.

The last line of the facts states that Isaac is also a man and that there is a rela-
tion father from Isaac to Abraham and a relation mother from Isaac to Sarah.
In F-logic, based on the language from object-oriented programming, this
is understood as stating: the application of the method father to the object
Isaac yields the result object Abraham.

The rules in the second part of the example derive new information from
the given object base. On the evaluation of these rules new relationships
between objects, denoted by the method ”son” are inferred. In English the
first rule reads: for all objects X and Y, X has the son Y, if Y is a man and his
father is X.

The third part of the example contains a query to the object base. It asks for
all the women who have sons whose father is Abraham; both the women
and the sons will be returned as result.
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2.2.2 Syntax

The alphabet of F-logic/LP-O consists of the following (except for the aux-
iliary symbols it is identical to the alphabet for normal logic programs):

• A set of variables, V ar, of all finite alphanumeric strings.

• A set of predicate symbols, Pred, of all finite alphanumeric strings.
There is a mapping arity : Pred → N+ from the set of predicates to
the set of all positive integers greater than 0. If there is a mapping for
a predicate p, arity(p) = n, then p is an n-ary predicate.

• A set of function symbols, Func, of all finite alphanumeric strings.
There is a mapping arity : Func → N0 from the set of function sym-
bols to the set of all positive integers. If there is a mapping for a
function f , arity(f) = n, then f is an n-ary function symbol. We also
call all 0-ary function symbols constants.

• Auxiliary symbols and logical connectives:
AND,OR,FORALL,EXISTS,
RULE,<-,->,->>,=>,=>>,.,,,[,],{,},:,@ 2

Analog to normal logic programs, a term is defined as:

• A variable is a term.

• A 0-ary function symbol (a constant) is a term.

• If (a1, ..., an) are terms and f is an n-ary function symbol, then
f(a1, ..., an) is a term.

Note that both classes and instances are terms and that - depending on the
statement - a term may be treated both as an instance and a class.

Figure 2.2: F-Logic syntax terminology

2Note that comma is used both as auxiliary symbol and to delimit the elements



2.2. F-LOGIC 25

In order to aid the understanding of the F-logic syntax, the most impor-
tant terms will are introduced in an example in figure 2.2. This example
shows a MF-molecule (a ’modularized f-molecule’) that states that: Isaac
is a man and that the method son with the parameter Maria returns Janus.
This information is stated in the module with the name DefaultModule.
Note in particular that the symbol ’@’ serves two purposes - as a delimeter
before the module and as a delimiter between the method name and the
parameters. An MF-Molecule without the module is called F-Molecule, it
consists of an F-atom and zero or more method expressions. It is important
to note that the method expressions describe the application of methods to
the term in the F-atom preceding them, e.g. in the example the value of the
method application son@maria to the instance Isaac is defined.

A method expression is a statement of the form B@{E1...En}˜>C, where
B is an n-ary function symbol, C and all E’s are terms, and ˜> is a place-
holder for one of the following:

• ->, i.e. B@{E1...En}->C. A scalar data expression, read as: the
application of the method B with the arguments E1...En returns the single
value C.

• ->>, i.e. B@{E1...En}->>C. A set valued data expression, read as:
the application of the method B with the arguments E1..En returns the value
C (and may also return other values that are defined through other method
expressions).

• =>, i.e. B@{E1...En}=>C. A scalar signature expression, read as:
there is a a scalar method whose arguments are from E1...En respectively
and whose range are the instances of C.

• =>>, i.e. B@{E1...En}=>>C. A set valued signature expression,
read as: there is a set valued method whose arguments are from E1...En
respectively and whose range are the instances of C.

A method expression where the list of arguments {E1,...En} is empty
can be written as B˜>C.

F-atoms are constructed from method expressions and auxiliary symbols.
The following types are distinguished:

• Subclass assertions A::B, where A and B are terms. The meaning of
these statements can be intuitively understood as: A is a subclass of B.

• Is-a assertions A:B, where A and B are terms. This can be read as: A
is an instance of B.

• Object atoms A[B@{E1...En}˜>C], where A,B,C and all E’s are
terms and ˜> is a placeholder as defined above.
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For relationships that are best defined in predicate syntax, F-logic includes
P-atoms. A P-atom is a structure p(A1...An), where p is a predicate sym-
bol and A1...An are terms.

Out of atoms (F-atoms and P-atoms), F-molecules are constructed. Atomic
molecules can be combined into complex molecules according to the fol-
lowing rules:

• Every atom is also an atomic molecule.

• Atomic object molecules A[Me1],A[Me2],...,A[Men], where A
is a term and all ME’s are arbitrary method expressions, can be com-
bined into a complex F-molecule A[Me1;Me2;...;Men].

• An Is-a assertion A:B and an object molecule
B[Me1;Me2;...;Men], where A and B are terms and all ME’s
are arbitrary method expressions, can be combined into a complex
F-molecule
A:B[Me1;Me2;...;Men].

• A subclass assertion A::B and an object molecule
B[Me1;Me2;...;Men], where A and B are terms and all ME’s
are arbitrary method expressions, can be combined into a complex
F-molecule
A::B[Me1;Me2;...;Men].

If F is an F-molecule, then F@A is an MF-molecule, where A is a term.
This can be read as The molecule F stated in module A. As shorthand a MF-
molecule can be written as A, which is equivalent to A@DefaultModule,
where DefaultModule is a designated term standing for the default mod-
ule.

F-logic literals are MF-molecules that may be negated, i.e. if A is a MF-
molecule than A and NOT A are literals.

F-formulae are created from literals by the following rules:

• All literals are F-formulae.

• if A and B are F-formulae, then so are A OR B and A AND B.

• if A is a F-Formulae and V is a variable, then FORALL V A and
EXISTS V E are formulae. FORALL and EXISTS are the quantifiers
for the variable V.

An F-logic fact is a MF-molecule that is ground. A fact is written as A.,
where A is the MF-molecule.

An F-logic rule is a structure of the form A <- B, where the head A is a
conjunction of MF-molecules and the body B is a F-formulae and the fol-
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lowing conditions are met:

• All variables appearing in A or B are bound to exactly one quantifier.

• All variables appearing in A also appear in at least one positive literal
in B.

By convention a rule is written as FORALL V1,V2,...Vn A<-B, where
V1,...Vn are all all-quantified variables appearing in A and B. The syntax
also allows to name a rule by prefixing its declaration with Rule name:.

A F-logic query is a rule without a head, i.e. <-B.

A F-logic program is a set of f-logic facts and rules.

2.2.3 Translating F-logic/LP-O Programs to Normal Logic Pro-
grams

The semantics of F-logic/LP-O is defined by a syntactic mapping between
the language and (a subset of) normal logic programs. This translation is
also the basis for the query evaluation in the F-logic/LP-O implementa-
tions described in later sections.

This translation consists of the following steps:

1. Simplify complex formulae with Lloyd Topor transformation.

2. Decompose complex molecules into atomic MF-molecules.

3. Translate F-logic expressions to predicate syntax.

4. Add axiom rules to the knowledge base.

Step 2 directly follows from the construction of complex molecules as de-
tailed in the previous section. The other steps will be detailed in the fol-
lowing sections.

Before describing the details of the transformation, the example in figure
2.3 will give a quick overview.

The example uses the same MF-Molecule introduced earlier. The first step,
the application of the Lloyd Topor Transformation does not change it, since
it already has a simple structure. The second step, the decomposition into
atomic molecules results in two atomic molecules. Finally the last step re-
moves all F-logic specific syntax and creates two normal logic facts. The
fourth step, the adding of the axioms, does not change these statements
and is omitted.

Realizing F-logic in this way allows programs to be created using a syn-
tax and semantics matching peoples intuition about objects, classes and
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Figure 2.3: F-logic to normal logic progran transformation example

methods; and, at the same time, to evaluate these programs using the well
understood theory of normal logic programs.

2.2.4 Lloyd Topor Transformation

Before the Lloyd-Topor transformation can be applied, it has to be en-
sured that all rules have a head consisting of only an atomic MF-
molecule. For this reason all complex MF-molecules in rule heads are
decomposed into atomic ones (according to section 2.2.2) and each rule
A1 AND A2 AND ... AND A3 <- C (where all An’s are simple MF-
molecules and C is an arbitrary formulas) are replaced by n rules A1<-C,
A2<-C,...,An<-C.

J.W. Lloyd and R. W. Topor defined a series of transformations that al-
low to transform a rule base with arbitrary first order logic formulas as
body into a normal logic program [101, 100]. The Lloyd-Topor transfor-
mation is defined as the application of the rules detailed below until no
rule is applicable anymore; [101] proves that this process always terminates
and always results in a normal logic program. H is a simple MF-molecule,
A,B,C,V,W,X are arbitrary formulae. Note that for this presentation NOT
is binding stronger than AND.

• Replace H <-A AND NOT (V AND W) AND B with
H <-A AND NOT V AND B and H<-A AND NOT W AND B.

• Replace H <-A AND (FORALL X1...Xn W) AND B with
H <-A AND NOT (EXISTS X1...Xn) NOT W AND B.
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• Replace H <-A AND NOT (FORALL X1...Xn W) AND B with
H <-(EXISTS X1...Xn) NOT W AND B.

• Replace H <-A AND V OR NOT W AND B with
H <-A AND V AND B and H <-A AND NOT W AND B.

• Replace H <-A AND NOT (V OR NOT W) AND B with
H <-A AND NOT V AND W AND B.

• Replace H <-A AND (V OR W) AND B with
H <-A AND V AND B and H <-A AND W AND B.

• Replace H <-A AND NOT (V OR W) AND B with
H <-A AND NOT V AND NOT W AND B.

• Replace H <-A AND NOT NOT W AND B with
H <-A AND W AND B.

• Replace H <-A AND (EXISTS X1...Xn W) AND B with
H <-A AND W AND B.

• Replace H <-A AND NOT (EXISTS X1...Xm W) AND B with
H <- A AND NOT p(Y1...Yn) AND B and
p(Y1...Yn)<- (EXIST X1....Xn W) where y1,...,yk are vari-
ables in W and p is a new predicate not already appearing in the
program.

Note that all variables not explicitly quantified are understood as implicitly
universally quantified.

2.2.5 Predicate Syntax

In the second to last step, F-logic statements are translated into predicate
syntax. This transformation is defined at the level of atomic MF-molecules
as follows:

Simple FM-molecule predicate (when contained in an F-logic rule)
A[B@(E1...En)=>C]@D atttype(A,B(E1...En),C,D)
A[B@(E1...En)=>>C]@D setatttype(A,B(E1...En),C,D)
A[B@(E1...En)->C]@D att(A,B(E1...En,C,D)
A[B@(E1...En)->>C]@D setatt(A,B(E1...En,C,D)
A:B@C isa(A,B,C)
A::B@C sub(A,B,C)
p(E1...En)@B p(E1...En,B)

Directly asserted FM-molecules (i.e. facts) are translated differently, this
transformation is described in the table below. Handling these translations
differently enables the creation of queries such as ’what are the asserted
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concepts of an instance’; excluding all is-a relations that have been inferred
by rules. Such queries are important e.g. for the detection of potential
programming problems through anomaly detection heuristics (see section
6). The relation between the different predicate symbols used for asserted
and inferred atoms is defined by six axioms described below.

Simple FM-molecule predicate
A[B@(E1...En)=>C]@D directatttype(A,B(E1...En),C,D)
A[B@(E1...En)=>>C]@D directsetatttype(A,B(E1...En),C,D)
A[B@(E1...En)->C]@D directatt(A,B(E1...En),C,D)
A[B@(E1...En)->>C]@D directsetatt(A,B(E1...En),C,D)
A:B@C directisa(A,B,C)
A::B@C directsub(A,B,C)
p(E1...En)@B p(E1...En,B)

The transformation presented here is only one of different ones supported
by Ontobroker. It has been selected for presentation because it is the trans-
lation that preserves most of F-logic’s power - other transformations for-
sake some flexibility for speed.

2.2.6 F-logic Axioms

A set of rules is added to the rule base to realize those portions of the F-logic
language that are not directly supported by normal logic programs (such as
anything related to inheritance). In the following the indispensable axioms
are detailed3.

Attribute inheritance rules ensure that signature expressions are inherited,
e.g. that a class men being the subclass of human inherits the schema infor-
mation that it has a method child with the range person.

RULE attributeInheritance1:
FORALL M,C,A,R,C1,C2

atttype(C,A,R,C1,C2)@M
<- directatttype(C,A,R,C1,C2)@M.

RULE attributeInheritance2:
FORALL M,Sub,Sup,A,R,C1,C2

atttype(Sub,A,R,C1,C2)@M
<- sub(Sub,Sup)@M and atttype(Sup,A,R,C1,C2)@M.

RULE attributeInheritance3:

3In the actual implementations a number of additional convenience axioms is added, that
make certain operations a little simpler, e.g. to get a list of all modules used.
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FORALL M,C,A,R,C1,C2
setatttype(C,A,R,C1,C2)@M
<- directsetatttype(C,A,R,C1,C2)@M.

RULE attributeInheritance4:
FORALL M,Sub,Sup,A,R,C1,C2
setatttype(Sub,A,R,C1,C2)@M
<- sub(Sub,Sup)@M and setatttype(Sup,A,R,C1,C2)@M.

The sub set relationship axioms realize the relation between is-a and sub-
classes relations, e.g. that an instance of men is also an instance of all super-
classes of men.

RULE subSetRelationShip1:
FORALL M,X,Y

isa_(X,Y)@M <- directisa_(X,Y)@M.

RULE subSetRelationShip2:
FORALL M,El,Sub,Sup

isa_(El,Sup)@M
<- sub_(Sub,Sup)@M and isa_(El,Sub)@M.

The subclass transitivity rules realize the transitivity of the subclass rela-
tion, e.g. that men as a subclass of human is also a subclass of all super-
classes of human.

RULE subclassTransitivity1:
FORALL M,X,Y

sub_(X,Y)@M
<- directsub_(X,Y)@M.

RULE subclassTransitivity2:
FORALL M,X,Y,Z

sub_(X,Z)@M
<- directsub_(X,Y)@M and sub_(Y,Z)@M.

The asserted* rules define the relation between the predicate syntax used
to represent asserted molecules and the syntax used for inferred molecules.
E.g. an inferred is-a statement is represented as isa(A,B,C) while
an asserted one is represented as directisa(A,B,C) and the axiom
assertedIsa introduced below infers the first representation from the
second.

RULE assertedAtttype:
FORALL(A,B,C,D)

attype(A,B,C,D) <- directatttype(A,B,C,D).
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RULE assertedSetAtttype:
FORALL(A,B,C,D)

setattype(A,B,C,D) <- directsetatttype(A,B,C,D).

RULE assertedAtt:
FORALL(A,B,C,D)

att(A,B,C,D) <- directatt(A,B,C,D).

RULE assertedSetAtt:
FORALL(A,B,C,D)

setatt(A,B,C,D) <- directsetatt(A,B,C,D).

RULE assertedIsa:
FORALL(A,B,C)

isa(A,B,C) <- directisa(A,B,C).

RULE assertedSub:
FORALL(A,B,C)

sub(A,B,C) <- directsub(A,B,C).

Please note that none of these axioms use the signature expressions to en-
force or check the signature. Any checking of type constraints is not done
at the level of the language, but left to the developers of individual systems.
This is discussed in detail in chapter 6.2.

2.2.7 Comparing F-logic/LP-O and F-logic/LP

In the preceding section F-logic/LP-O was presented; the version of F-logic
implemented by Ontobroker that was the basis for implementations pre-
sented in later chapters. To allow the reader to put this choice into context,
the following section gives a short overview of the main differences be-
tween F-logic/LP-O and F-logic/LP.

1. Inheritable Data Expressions: In addition to the (scalar and set val-
ued) data expressions presented, F-logic/LP also supports inheritable
data expressions. Data expressions defined in this way are inherited
to all instances of the entity they are defined for.

2. Modules: The modules and MF-statements presented above have no
correspondence in F-logic/LP.

3. F-molecules involving is-a/subclass: Complex F-molecules involv-
ing is-a axioms are not defined in the F-logic/LP syntax, F-logic/LP
does not know modules.
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4. Equality in rule heads: F-logic/LP allows asserting equality be-
tween objects - something that is not allowed in F-logic/LP-O or Flora
[174], the other major F-logic implementation available today.

2.3 RDF and Logic Programming

RDF [29], the Resource Description Framework, is a universal data ex-
change language defined by the World Wide Web Consortium W3C. Its
model is that of a named graph that is defined through triples consisting
of a subject, a predicate and an object. Logic programming rules in con-
junction with RDF are also used in parts of the implementation described
in later chapters.

@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix zach: <http://www.fzi.de/ipe/zach/example#> .

zach:Abraham, rdf:type, zach:man.
zach:Sarah, rdf:type, zach:woman.
zach:Isaac, rdf:type, zach:man.
zach:Isaac, zach:father, zach:Abraham.
zach:Isaac, zach:mother, zach:Sarah.

In RDF entities are denoted by URIs. In order to still keep RDF files read-
able, however, URIs are usually split into the prefix and the name of the
entity, and the prefix is defined only once at the beginning of the file. In the
example two prefixes named rdf and zach are defined in the first three
lines.

All consecutive lines then define one triple each. The first
line defines that between the entity zach:Abraham (or actually
http://www.fzi.de/ipe/zach/example#Abraham, after the prefix
has been expanded) and the entity zach:Man there is a relation denoted
by rdf:type. The remaining lines then define Isaac to be of type man
and Sarah to be of type woman. It further states relations between these
entities, namely that Abraham and Sarah are father and mother of Isaac.

The model created by these statements is commonly shown as a graph as
shown in figure 2.4.

These RDF statements can also be understood as facts in a normal logic
program and rules can be used to infer additional information from them.
Consider the following rule as an example:

@prefix rdf:
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Figure 2.4: Example RDF Graph
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<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix zach:

<http://www.fzi.de/ipe/zach/example#> .

[ruleExample:
(?x zach:son ?y) <-

(?x rdf:type zach:man)(?y zach:father ?x)]

After the already familiar prefix declarations the rule starts with the decla-
ration of a name, ruleExample in this case. The next line is the head of the
rule; it defines the kind of RDF triples deduced by this rule. In this example
rule these triples have the form (?x zach:son ?y), were ?x and ?y are
variables, identified by their starting ?. The third line of the rule defines
the rule body. The body in the example consists of two triple patterns im-
plicitly connected through an conjunction. Altogether the rule can be read
as: x is the son of y, if x is of type man and y is the father of x.

Logic Programming rules on top of RDF are also used in some of the im-
plementations presented in later chapters and are hence detailed in the sec-
tions below.

2.3.1 The RDF Abstract Syntax

The semantics of RDF is defined over its abstract syntax [29].

An RDF graph is a set of RDF triples. Each RDF triple has three parts:

• A subject, which is a URI reference or a blank node.

• A predicate, which is a URI reference.

• An object, which is a URI reference, a blank node or an RDF literal.

A RDF triple is commonly written as subject,predicate,object. The
nodes in an RDF graph are the terms used as subject or object in a triple of
that graph.

An example triple could be the following:

http://www.fzi.de/ipe/zach/example#Abraham,
http://www.fzi.de/ipe/zach/example#age,
175

Intuitively it can be said that this triple defines the age of Abra-
ham to be 175. The subject of this triple is an URI represent-
ing the biblical Abraham (unlike the string ”Abraham”, which is the
first name for many thousand persons). The predicate is the uri
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http://www.fzi.de/ipe/uach/example#age and the object is the
literal 175.

A URI reference is a Unicode string that can be translated into a valid ab-
solute URI [14] by encoding it as UTF-8 and escaping symbols not corre-
sponding to valid US-ASCII symbols.

RDF literals are further discriminated into typed literals and plain literals.
Plain literals consist of a lexical form and an optional language identifier
[1] in lower case. Typed literals consist of a lexical form and a datatype URI
which is a URI reference. The lexical form of an RDF literal is a Unicode
string.

Examples for plain literals are "Esau" or "Kindergarten"@en; the first
only denoting the string itself and the second also indicating that the string
is a text in the language en; an acronym for English as defined in [1]. An
example for a typed literal is the following:

"2002-10-10Z"ˆˆhttp://www.w3.org/2001/XMLSchema#date.

It defines the string ”2002-10-10” and stipulates that this string needs to
be interpreted according to the rules associated with the datatype URI
http://www.w3.org/2001/XMLSchema#date. These rules are defined
in [17] and for this concrete URI specify that this string should be under-
stood as the duration starting on the 10th of october 2002 at 0:00 coordi-
nated universal time (UTC) and ending at, but not including 24:00 of the
same day.

Blank nodes are elements from an infinite set, disjoint with both literals
and URIs. Blank nodes can be intuitively understood as existentially qual-
ified variables.

_1 #father #Abraham. is an example for a RDF triple involving a blank
node, where _1 denotes the blank note and #father and #Abraham are
URIs that have been shortened for readability. Intuitively this triple can be
read as: there is some (unindentified) father of Abraham.

2.3.2 Turtle - Concrete RDF Syntax

Actual RDF data can be created using one of a number of different concrete
syntaxes [10, 15, 11, 73]. Throughout this thesis the Turtle syntax [11, 9] will
be used for its simplicity, conciseness, readability and its focus on pure RDF.
The complete specification of Turtle is given in [9], only a short overview is
given here.

The basic building block of the Turtle syntax are triples, with subject, pred-
icate and object enclosed in <, > and separated by whitespaces; the triple
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ending with a dot. For example:

<http://fzi.de/subject> <http://fzi.de/predicate>
<http://fzi.de/object>.

Prefixes can be defined with the @prefix element to shorten the URIs. For
example the following statements assert the same triple as example above,
but are better readable.

@prefix fzi: <http://fzi.de/>.
fzi:subject fzi:predicate fzi:object.

A default prefix can be defined by using @prefix :, e.g.

@prefix : <http://fzi.de/>.
:subject :predicate :object.

Multiple statements sharing the same subject and predicate can be com-
bined using commas, e.g. (prefix declaration omitted for conciseness)

:someSubject :somePredicate :someObject,
:anotherObject,
:evenMore.

Statements sharing only the subject can be combined using semicolons, e.g.

:someSubject :somePredicate :someObject;
:anotherPredicate :anotherObject;
:oneMorePredicate :oneMoreObject.

Blank nodes can be introduced using the _: prefix, e.g.

:someSubject :somePredicate _:blankNode.
_:blankNode :someRelation :otherObject.

The triples above can be defined equivalently using the [...] syntax that
can be used to introduce blank nodes only needed once:

:someSubject :somePredicate [
:someRelation :otherObject ].

Typed literals are written in double quotes followed by ˆˆ and the datatype
URI (that can be appreviated using prefixes), e.g.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
:someSubject :somePredicate "12"ˆˆxsd:integer.

Literals with a language identifier are written in double quotes followed by
@ and the language tag, e.g.

:someSubject :somePredicate "Some string"@en.
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2.3.3 The Semantics of RDF

The semantics of RDF [83] can be understood as consisting of two parts:
those directly associated with the abstract syntax and the semantics of the
RDF vocabulary. Only the first part is necessary for understanding the con-
tent of the thesis and hence only this part is presented. The RDF vocabulary
defines a number of reserved URIs such as type or list and their meaning.
Readers interested in the vocabulary may consult [83].

In this section the semantics of RDF is presented on the basis of Herbrand
models - as described by [43, 48]. Doing so makes it easier to see the corre-
spondence to normal logic programs.

Using the syntax of normal logic program as defined in section 2.1.1, we
can write a triple s, p, o as triple(s, p, o), where s and o are terms and p is a
ground term. A RDF graph then is a set of statements of this form. A Her-
brand interpretation of this graph (as defined in section 2.1.3) is a model, iff
all ground triples are in the interpretation and for each non-ground triple t
there exist a ground substitution θ such that tθ is in the interpretation.

To define the semantics we first obtain the canonical graph from an RDF
graph by

1. Completing it by adding the RDF axiomatic triples ([83] - section 3.1)
and applying the RDF entailment rules ([83] - section 7.2).

2. Replacing all typed literal values by their canonical representation as
defined in [17].

3. Removing all blank nodes through Skolemization; i.e. blank nodes
are replaced by ground terms not used otherwise.

The Herbrand model (as defined in section 2.1.3) of this canonical graph
is called the canonical model. According to [48] these canonical models
contain explicitly all information entailed by the normative RDF semantics
defined by [83] in the following way: An RDF graph R entails a graph E,
R |= E iff one model of E is a sub graph of the canonical model of R.
Because of this property this model can be used to define the results of
queries to the RDF graph - in the RDF query language SPARQL [48] or in
normal logic programs as described below.

Note that once the RDF graph is transformed into the canonical graph,
the Herbrand model is defined exactly as it is for normal logic programs.
Hence an RDF graph can be translated into ground facts for a normal logic
program.
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2.3.4 RDF Rules

Once the semantics of RDF is defined in a framework compatible with nor-
mal logic programs, the data can be further processed and queried using
the rules and queries defined in the beginning of this chapter. Doing so
gives a versatile tool and well understood framework for processing and
using this data. This has been done in the well known Jena semantic web
framework [30] that is also the basis of some of the implementations pre-
sented later. The Jena framework only implements a subset of normal logic
programs as presented earlier: it does not allow for function symbols4 nor
negation. A Jena-RDF rule consists of a head and a body, each consisting of
a set of triples. These rules are commonly written as:

@prefix fzi: <http://fzi.de/#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

[ruleExample:
(?x fzi:son ?y)
<-
(?y rdf:type fzi:man),
(?y fzi:mother ?x)]

This rule is stating that: if y is of type man and y has a mother x, then x
has a son y. Using the triple predicate (and omitting the URI prefixes for
brevity) this can be written as a normal logic rule:

triple(X, son, Y )← triple(Y, type,man), triple(Y,mother,X)

An RDF rule set and an RDF graph can then be seen as a normal logic pro-
gram consisting of a set of ground facts and a set of rules. The ground facts
are obtained by a syntactic translation of the triples defining the RDF graph
as defined in section 2.3.3. The rules are constructed by the rule translation
at the beginning of this section. The resulting normal logic program is re-
stricted in that it does only contains ground facts, only one predicate (triple)
and no function symbols. The semantics of this RDF rule set is defined by
the semantics of the normal logic program that results from this translation.

4The functor defined in the Jena rules syntax is only syntactic sugar allowing easier access
to data structures consisting of multiple triples, it is not a function symbol in the sense of
logic programming.
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Chapter 3

Analysis and Design

It is evident that no computer program of meaningful size can be con-
structed without faults. This is not due to sloppiness or lack of trying by
the programmers but because a program is a collection of arbitrarily com-
plex assumptions whose ultimate consequence cannot, in any finite time,
be foreseen [151]. It is for this reason that the correctness of a program can-
not - in general - be proven and that almost no software system is without
faults. Software quality assurance (SQA) - the process to ensure that a pro-
gram conforms to its specification - therefore centers to a great extent on
reducing the number of faults in a program.

Rule based systems are often presented

Figure 3.1: The Fault Lifecycle

as a simpler and more natural way to
build computer systems - compared to
both imperative programming and other
logic formalisms such as full first order
logic or desciption logics. It seems natu-
ral to assume that this simplicity also ap-
plies to finding and preventing faults; to
SQA in general. However, with respect
to debugging of rule bases this promise
of simplicity remains elusive. Indeed a
survey found (see section 3.1.1) that most
developers of rule based systems think
that the debugging of rule based systems
is more difficult than the debugging of
’conventional’ - object oriented and pro-
cedural programs. An observation that
the author also found corroborated in three rule base development projects
he participated in.

41
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Figure 3.2: Overview of the analysis and design chapter

The goal of this chapter then, is to analyse this debugging challenge; to gen-
erate hypotheses for its explanation and to derive a design for tool support
that can help tackle it.

Towards this end this chapter takes a broad view on the debugging chal-
lenge and considers the entire fault lifecycle (see figure 3.1). The fault life-
cycle is a conceptual model created in this thesis to order and prioritize
issues affecting the quality assurance in rule bases. In this chapter the fault
lifecycle is used to order and aggregate the results from the analysis at the
beginning of this chapter. The fault lifecycle starts with a developer doing
a mistake which may result in a fault in the rule base. This fault may then
later manifest itself in a computation, resulting in an error. Testing and
static analysis techniques can be used to identify these faults either based
on a error observed in testing or directly in the program code. The fault
lifecycle is presented in more detail in section 3.2.2.

The overall structure of this chapter is given in figure 3.2. This chapter is
structured in three main sections: the introduction of the empirical basis
for the analysis, the analysis itself and finally an overall design. The very
coarse design at the end of this section is then instantiated in the later chap-
ters of this thesis.

The empirical basis consists of a developer survey (section 3.1.1) and
mostly qualitative evidence and experience from three rule base develop-
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ment projects. The largest of these, Project Halo, is described in section
3.1.2, the two smaller ones jointly in section 3.1.3.

The Analysis starts with the evidence for the existence of the debugging
challenge (section 3.2.1) followed by a more thorough elaboration on the
fault lifecycle (section 3.2.2) that guides the rest of the analysis. The core
of the analysis then consists of six hypotheses that can explain (part of) the
debugging challenge (section 3.2.3). In addition, four properties that char-
acterize modern rule base development and also affect quality assurance
are presented (section 3.2.4).

In the design section the results from the analysis are aggregated to identify
choke points and requirements (section 3.3.1); to identify those parts of the
fault lifecycle that should be better supported with tools. Based on this,
four concrete approaches are sketched (section 3.3.3), each of which then is
the subject of a later chapter in this thesis. Design principles - orthogonal
to the actual tools - are also presented to address further issues from the
analysis (section 3.3.2).
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3.1 Empirical Basis

This section introduces the empirical basis for the analysis of the debug-
ging challenge. The empirical basis consists of the results from a survey of
developers of rule based systems and of experiences from three rule base
development projects.

This section starts with a description of the results from the developer sur-
vey. After that Project Halo is described as the largest of the development
projects followed by two smaller projects (F-Verify and Online Forecast)
that are jointly described in the last part of this section.

3.1.1 Developer Survey

Within literature there is little empirical data and overview about the way
rule bases are used, developed and which challenges developers of these
systems face; in sum there is little data that could be used to set priorities for
research and development. To address this shortcoming I conducted a sur-
vey of the methods and tools used and the issues facing the development of
rule based systems. Based on the results from older surveys [76, 123] ver-
ification and debugging issues had been identified as particular important
and I designed the survey to focus on these.

This section starts with a short related work section introducing two much
older studies that addressed similar questions: results from these surveys
are also cited throughout the text were similar questions were used. The
next sections introduce the survey and present data about the participants,
their experience and the rule based systems they develop. The core results
from the survey are then grouped into three sections, (1) Methods and Tools
Used for Development, (2) Verification, Bugs and Debugging and (3) Issues
and Comparison to Procedural Programming.

The goal of this section is to introduce the survey and its results in its en-
tirety. The conclusions from the survey and their influence on the design
of the verification architecture are discussed in the analysis section (section
3.2).

Related Surveys

In 1991, Hamilton et al. [76] questioned 70 people with respect to the state
of the practice in knowledge-based system verification and validation. The
goal of this survey was to document the state of the practice. The insight
gathered during the survey and follow up interviews was used to develop
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recommendations for further V&V research. The findings from this survey
included that 62% of developers judged the developed expert system to
be less accurate than the expert and 75% judged it to be less accurate than
expected.

Also published in 1991, O’Leary [123] used a mailed survey to query 34
developers of knowledge-based systems. This poll had the specific goal of
testing a number of hypotheses with respect to prototyping of knowledge
based systems. The core finding was that the prototyping development
methodology is found to lead to more robust models and that it does not
increase the validation difficulty.

In the broader world of conventional software engineering (i.e. using pro-
cedural or object-oriented languages) Cusumano et al. [42] compared the
practices used in software development across countries, finding in par-
ticular that Indian software development projects used the most elabo-
rate practices, combining traditional techniques such as specification and
reviews with modern ideas like pair programming. Zhao and Elbaum
[178, 179] explored the use of quality assurance tools and techniques in
open source projects. The most interesting findings from these studies in-
clude, that while over half of the projects spend more than 20% of the de-
velopment time on testing, only 5% compute any test coverage measures
and the use of regression testing is not widespread. Finally, Runeson et
al. [142] summarize the (mostly experimental) empirical data with respect
to quality assurance methods. Among other things they found that on av-
erage only 25% to 50% of faults are found during inspection and only a
slightly higher 30% to 50% during testing - concluding that on average half
of the faults remain.

Survey Construction

The goal of the survey was to be an exploratory study of the methods and
tools used, and the issues facing the developers of rule based systems. The
survey focused on verification and in particular debugging as very impor-
tant questions that in the author’s experience are particularly problematic
for the development of rule based systems. Some questions were also de-
rived from specific hypotheses, described in detail below together with the
results for the questions.

The survey was designed to be answerable in less than 15 minutes; in-
cluded 17 questions spread over three pages and was conducted using the
SurveyMonkey [157] service. The survey with all questions is included in
the appendix A. Participants were asked to answer all questions with re-
spect to the largest rule base in whose development they had been involved
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Mean Median Std. Deviation

Person Month Development
PM for entire software 59 15 148
PM for rule base 9 5.5 15

Size of Rule Base
Number of rules 1969 120 8693
Size of average rule 9.3 5 17
Size of largest rule 24 11 39

Developers involved
Rule developers 3 2 4
Other software developers 3 1 8
Domain experts that created rules 1.5 1 2
Domain experts as consultants 1.9 1 2.5
Domain experts for V&V 1.7 1 2.4
Others 0.6 0 1.6

Table 3.1: Measures of the size of the rule base

with in the past 5 years.

Participants

Participants were recruited through emails sent to public mailing lists con-
cerned with rule based systems1, Jess and mailing lists of academic insti-
tutes; invitations were also published on some blogs concerned with rule
based systems2 . A chance to win a camera was given as additional incen-
tive to motivate people to participate. 76 people opened the survey and 64
answered most questions; one reply was removed because it consisted of
obviously nonsensical answers.

For the purpose of analysis the wide variety of systems used by the respon-

1The mailing lists where the CLIPS mailing list, RuleML ’all’ mailing list, the RIF ini-
tiative mailing list, the JESS users mailing list, the GNU Prolog users mailing list, the SWI
Prolog mailing list, the TU Prolog users mailing list, the Pellet users mailing list, the XSB
users mailing list, the Jena developer mailing list, the Drools developer mailing list and the
Semantic Web mailing list of the W3C

2Smart Enough System at http://smartenoughsystems.com/wp/, James Taylors
Decision Management http://www.ebizq.net/blogs/decision_management/,
Enterprise Decision Management Blog http://www.edmblog.com/ and finally the
author’s own blog at http://vzach.de/blog

http://smartenoughsystems.com/wp/
http://www.ebizq.net/blogs/decision_management/
http://www.edmblog.com/
http://vzach.de/blog
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dents was grouped into five groups:

• Prolog: 7 results; consisting of tuProlog(2), SWI Prolog (2), Visual
Prolog (1), XSB (1) and Yap Prolog (1)

• Declarative Rules: 11 results; consisting of F-logic - ontoprise (3),
SWRL - KAON2 (2), SWRL - Protege SWRL Tab (2), SWRL - PELLET
(1), Jena Rules (1), WSML-Flight (1), Ontology Works Remote Knowl-
edge Server (1) and Iris (1)

• Business Rule Management Systems (BRMS): 17 results; consisting
of JBoss /Drools (8), Fair Isaac Blaze Advisor (3), Yasu Quick Rules
(SAP) (2), BizTalk (1), NxBre (1), Acumen Business-Rule Manager(1),
OpenRules (1) and Ilog JRules/.Net rules (1)

• Shells: 24 results, consisting of Jess (12), Clips (9), Mandarax (1),
Jamocha (1) and KnowledgeWorks/LispWorks (1)

• Other: 1 results, using a ’Proprietary IT software engine’

The size of the reported systems varied widely (see Table 3.1); the average
rule base consists of 2000 rules, has 9 conditions/body atoms per average
rule and is developed in 9 person months. However, the average size is
strongly influenced by a small number of very large systems, half of the
systems have not more than 120 rules. On average the rule base is part
of a much larger software system that takes almost 60 person months to
develop. The largest system in the survey has 63000 (partly learned) rules
and is used for disease event analysis. The most time consuming took 100
person months to develop and is used to determine parameters to operate
a medical imaging system. Slightly over 50% of the projects involve at least
one domain expert that creates rules herself.

On average the people filling out the survey had 6.6 years of experience
with rule based systems and 15 years experience with creating computer
programs in general.

The tasks of the rule bases (entered as free text) include workflow manage-
ment, diagnosis, scoring, ontology reasoning, tutoring and planning. The
rule bases are created for a multitude of different domains, including in-
surance, finance, health care, biology, computer games, travel and software
engineering.

38% of the rule bases are commercially deployed, 26% are deployed in a re-
search setting and 10% are under development with deployment planned.
The remaining 26% are prototypes, 10% are prototypes that are also used
by others than the developers.



48 CHAPTER 3. ANALYSIS AND DESIGN

Figure 3.3: The development methodology used, for all responses and for the 26
responses where the rule base development took at least 6 person months.

Methods and Tools Used for Development

Participants of the survey where given a multiple choice question to de-
scribe the methods used for the development of the rule base. The answers
(see figure 3.3) showed that indeed a large part of rule based systems are
created without any specific development process and that the rise of agile
and iterative methods [97, 102] is also visible for rule based systems. In
1991, Hamilton et al. [76] used a similar question and found that the most
used model was the cyclic model (41%) and that 22% of the respondents
followed no model3.

The next questions asked participants for the tools used for the develop-
ment. The results show that almost half of the respondants use an inte-
grated development environment (IDE)4 [124], . For editing rules the most
widely used tools are still textual editors, with 33% and 28% of respondents
stating that they use a simple text editor or a textual rule editor with syntax
highlighting. With 26% of respondents using them, graphical rule editors
are also widespread (see table 3.2).

The results show that the overwhelming majority of rule bases is still cre-
ated manually; is not learned or generated as some expect. Further it shows
that text editors - even simple ones without syntax highlighting - are still
used, meaning that even simple typos that could be prevented by more
elaborate tools will still happen in practice. Finally the questions about

3However, care should be taken when comparing these numbers, since the sample of
the surveys differs considerable: on average the projects discussed [76] were considerable
larger.

4Such as the Ontoprise’s Ontostudio [124], Ilog Rule Studio [85], the Visual Prolog IDE
[163] or the SWRL tab of Protege [70].
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% responses
Simple text editor 33%
Textual rule editor 28%
Constraint language, business language rule editor 10%
Graphical rule editor 26%
Spreadsheets based rule editor 12%
Decision trees rule editor 9%
Rule Learning 5%
An IDE that allows to edit, load, debug and run rules 46%

Table 3.2: Tools used for rule development

methods used revealed a preference for agile processes and even no devel-
opment process at all - meaning in particular that tools cannot rely on the
availability of formal specifications.

Verification, Bugs and Debugging

To gain an overview of the verification state of practice, the survey included
a multiple choice question that asked participants to check all V&V tools or
methods that they use in their project.

Figure 3.4: The verification and validation methods and tools used, in percent of
respondants

The results show (a summarize is shown in figure 3.4) that verification is



50 CHAPTER 3. ANALYSIS AND DESIGN

dominated by testing (used by 90%) and code review (used by 78%). 74%
of respondents do testing with actual data, 50% test with contrived data.
Advanced methods of test organization are used by a minority, with only
31% doing regression testing and 19% doing structural testing with test
coverage metrics. Code review is done equally by domain experts (53%)
and developers (57%), most projects combine both (73% of projects that
perform a code review, have both domain experts and developers do it).
The system is used parallel to development in 17% of the projects; in 16%
it is used by developers; in 14% by domain experts.

O’Leary [123] posed a similar question to the developers of expert systems
in 1991, asking about the validation effort spent on particular methods. In
the average over all responses, he found that most effort is spent on testing
with actual data (31% of validation effort), followed by testing with con-
trived data (17.9%), code review by domain expert (17.6%), code review by
developer (13%), parallel use by expert (12%) and parallel use of system by
non-expert (7%).

Debugging Tools

Debugging is dominated by procedural debuggers, i.e. debuggers similar
to the ones used in procedural programming; tools that allow to specify
breakpoints, to suspend the inference engine and to explore the stepwise
execution of the program5. 37% of the projects used a command line pro-
cedural debugger and 46% a graphical procedural debugger. Explanations
are used by almost a quarter (23%) of the respondents for debugging. An
overview of these results are shown in figure 3.5.

Surprisingly widespread is the use of Algorithmic Debugging [151] and
Why-Not Explanations (e.g. [32, 8]), considering that to the best knowl-
edge of the author there is no widely available and currently maintained
implementation of either of these debugging paradigms. For the systems
used by three of the five people that professed to use Algorithmic Debug-
ging (JBoss rules/Drools and Fair Isaac Blaze Advisor) no mentioning of
any such debugger could be found and it seems likely that the short ex-
planation for this debugging paradigm given in the survey (’system tries to
identify error by asking user for results of sub computations’) was insufficient to
convey the meaning of this concept. Similarly for Why-Not explanations
three of the four respondents use systems for which such no mentioning
of such debuggers could be found. The remaining two responses for Algo-
rithmic Debugging and the remaining one for Why-Not explanations use
Prolog dialects, where such debuggers have existed/exist.

5An overview and description of the different debugging paradigms for rule based sys-
tems can be found in [177].
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Figure 3.5: Tools used for debugging

Bugs, Symptoms of Faults in the Rule Base

Debugging is the process of tracking down a fault based on error revealing
values. The difficulty of this process and the kind of tools that can support
it, depends on the error revealing values and how well these allow for the
identification of the fault. In the author’s experience based on F-logic, most
faults in rule based systems cause a query to not return any result (the so
called no-result-case) or to return fewer results than expected. This stands in
contrast to the development with modern object-oriented languages where
in many cases at least a stack trace is available. This is problematic because
a no-result-case gives only very little information for fault localization and
means that most explanation approaches are not suitable for debugging
(because these rely on the existence of a result). A question was included in
the survey about the common symptoms of faults in the rule base to check
whether this patterns of error revealing values holds for rule based systems
in general.

The results (see table 3.3) show ’wrong results’ as the most frequent bug,
followed by ’no results’ and ’partial results’. Most participants encounter
not terminating tests and crashing rule engines only seldom. The results
show also that 60% of participants frequently and 34% sometimes en-
counter a fault showing itself in the failure of the rule base to conclude an
expected result/result part. For the developers of the system using declara-
tive rules (see section 4), the no-result case is the most frequent bug. These



52 CHAPTER 3. ANALYSIS AND DESIGN

frequent seldom never
A query/test would not terminate 7 57 30
A query/test did not return any result 38 47 11
A wrong result was returned 53 39 5
A part of the result missing 31 42 20
The rule engine crashed 9 47 38

Table 3.3: Bugs, symptoms of faults in the rule base in percent of responses. To
100% missing percent: respondents selected not applicable

Avg. Not an Issue Annoyance Hindrance

Debugging 1 12 28 12
Determining completeness 0.76 18 27 6
Supporting tools missing/immature 0.67 26 17 9
Editing of rules 0.66 24 23 6
Determining test coverage 0.65 25 19 7
Inexperienced developers 0.58 31 13 9
Rule expressivity 0.5 33 12 7
Keeping rule base up to date 0.5 30 19 4
Understanding the rule base 0.47 31 19 3
Runtime performance 0.41 35 14 4
Organizing collaboration 0.41 35 14 4

Table 3.4: Issues hindering the development of rule based systems. Numbers show
the actual number of participants that selected an option (except for the second
column that shows the overall average, computed as described in the text).

results underline the need for debugging approaches to support users in
diagnosing bugs based on missing conclusions.

Issues and Comparison to Procedural Programming

On the last page of the survey participants were asked to rank a number
of possible issues as Not an Issue, Annoyance or Hindered Development. An
average score was obtained for the issues by multiplying the annoyance an-
swers with 1, the hindrance answers with two and dividing by the number
of all answers. The aggregated answers for this question are shown in the
table 3.46.

6Please note that the Rule Expressivity option was phrased in a way that asked also for
things that could not easily be represented, not only things that could not be represented at
all.
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The results show the issues of debugging, validation and tool support as
the most important ones. The issues of probably the largest academic inter-
est - runtime performance and rule expressivity, are seen as lesser problem.
This is particulary interesting in the light of the fact that of the 7 survey par-
ticipants that stated they were hindered by rule expressivity, none used a
declarative rule system (for which these questions are debated the loudest).

Figure 3.6: Participants’ opinion about the strengths and weaknesses of rule base
development compared to that of ’conventional’ programs. Positive numbers in-
dicate that the majority thought rule bases to be superiour, negative numbers that
they thought conventional programs to be superior.

These findings of verification and validation issues as the most important
ones are similar to the finding of Leary [123]. He found that the potentially
biggest problems were determining the completeness of the knowledge base
and the difficulty to ensure that the knowledge in the system is correct.

In a final question participants were asked how a rule base development
process compares to the development of a conventional program (created
with procedural or object oriented languages) of similar size. A number of
properties was given to be ranked with Rule base superior, Comparable, Con-
ventional program superior and Don’t know. The aggregated score for each
property was determined by subtracting the the number of conventional pro-
gram superior answers from the rule base superior answers and dividing the
result by the number of answers other than don’t know.

The participants of the survey judged rule bases to be superior in most
respects. The largest consensus was that rule bases are indeed easier to
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change and to maintain. Easy of creation, ease of reuse, understandability
and reliability are also seen as the strong points of rule based systems. A
small majority saw conventional programs as superior in runtime perfor-
mance; most saw rule bases as inferior in ease of debugging support and
tool support for development.

3.1.2 Project Halo

This section describes the second phase of Project Halo, another important
part of the empirical basis for the analysis. The author participated almost
full time in the Halo project for more than 18 months. The requirements
from Project Halo inspired a large part of the approach of this thesis, a
considerable fraction of the implementations and some evaluations from
this thesis were done within project halo.

This section begins with a short summary of the overall goal and vision of
Project Halo. Next the scope of the second phase of this project is intro-
duced; this phase is the only one relevant for this thesis. This is followed
by a description of the implementation created there: Dark Matter Studio.
The remainder of this section is then dedicated to describing the evaluation
of Dark Matter Studio and its results.

Vision and Earlier Phases

The long term goal of Project Halo7 is to build a Digital Aristotle, a computer
system that stores a significant part of humankind’s scientific knowledge
and that is able to answer novel questions (i.e. questions not known or
foreseen during the creation of the system) about these parts of science.
This system should be able to act both as an interactive tutor for students
as well as a research tool for scientists. Project Halo is structured as a multi-
stage effort, the second stage of which forms the empirical basis for parts
of this dissertation.

The main goal of the first phase of Project Halo [62, 61] was to access the
current state of the art in applied knowledge representation and reasoning
(KR&R) systems; to establish whether existing KR&R systems could form
the foundation for a Digital Aristotle. The domain chosen for this experi-
ment was a subset of the questions from the introductory college-level Ad-
vanced Placement (AP) test8 test for chemistry. This phase showed that it is

7Project Halo is funded by Vulcan Inc.
8The Advanced Placement Tests can be taken by college students in the USA, normally

they are taken after a special course preparing for the test. Good grades on this test count as
credits on some universtites and some schools also allow AP test scores to override school
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indeed possible with current KR&R technology to match the performance
of students on the Advanced Placement test, however, it also showed that
the creation of the knowledge needed for this task is very expensive [62, 61].

Project Halo, Second Phase

Of the overall (and by the time of this writing, still running) Project Halo
only the second phase is relevant for this thesis. The goal of this phase
was to create and evaluate tools that allow domain experts to create the
knowledge base necessary for a Digital Aristotle with ever decreasing re-
liance on knowledge engineers [34, 71, 39, 35]. It was hoped that this could
dramatically decrease the cost of building a scientific question answering
system [71] and further reduce the number of errors due to incomplete do-
main knowledge by the knowledge engineers. The domain chosen for the
second phase was that of introductory college-level Advanced Placements
tests for chemistry, biology and physics.

The second phase was conducted as a 22 month effort undertaken in two
stages. The first 6 month stage was dedicated to a careful analysis of sam-
ple questions and the design of the application. This phase was followed
by a 15 month implementation phase that ended with an evaluation. Three
teams participated in the first stage, only two in the second stage. The
project structure is such, that the different teams have the same require-
ments, realize these separately and are the judged on their relative perfor-
mance. The results reported here are solely from team Ontoprise, which
included participants from Ontoprise, Carnegie Mellon University, Open
University, Georgia Tech and DFKI.

Dark Matter Studio

During the second phase of Project Halo, team Ontoprise built the Dark
Matter Studio (DMS, an example screenshot is shown in figure ??) tool in
order to support domain experts in the creation of a scientific knowledge
base. Only a short overview of this system will be given here.

Dark Matter Studio is built to support a document rooted methodology [62]
of knowledge formulation. This methodology stipulates that domain ex-
perts use an existing document (such as a textbook) as basis for formu-
lating knowledge. Having a root document as a foundation should help
the experts to decide what to model and in which order. It is further as-
sumed that textbooks are carefully structured in a way that is well suited

grades.
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for knowledge formulation. All created knowledge is tied to the document;
the document can thus help to contextualize and explain the contents of the
knowledge base.

Dark Matter Studio is created in a way that isolates the user from the de-
tails of the knowledge representation language and the workings of the
inference engine. The concepts the user manipulates are often on a higher
level than the concepts of the knowledge base. For example, a rule created
by the user is frequently translated into many rules for the inference engine.

Dark Matter Studio is built on top of Ontoprise’s ontology engineering en-
vironment OntoStudio [156], which in turn is built on top of the Eclipse
framework [7]. The Eclipse framework provides a plug-in framework that
allows to seamlessly extend OntoStudio. The main reasoning component
in Dark Matter Studio is Ontoprise’s inference engine Ontobroker [50, 3]
which utilizes Mathematica [138] for equation solving. The main hub for
the knowledge formulation work is the annotation component, which is a
further development of the annotation tool Ont-O-Mat [78] which includes
support for semi-automatic annotation based on the KANTOO environ-
ment [121]. Graphical editors for the ontology were extended from the On-
toStudio system; rules are created with a new graphical rule editor. Dark
Matter Studio also includes dedicated editors for the formulation of process
knowledge, explanations and tests. The verification support for Dark Mat-
ter Studio was conceived and largely implemented as part of this thesis.
It consists of testing support (see section 4), debugging (see section 5.2.2)
and anomaly detection heuristics (see section 6). The also includes a longer
walkthrough showcasing some of the main components of Project Halo in
section 5.2.3.

Evaluation Setup

The evaluation consisted of two parts, a knowledge formulation and a
question answering part. In the first part six domain experts (DEs), two
each for the domains of physics, chemistry and biology (senior students in
these fields) were handed the system, trained on it for two weeks and were
then asked to formalize some pages from a textbook in their field. In the
second part of the evaluation domain experts were given DMS with one of
the knowledge bases created during knowledge formulation. They were
then given a number of questions for this domain that they should formal-
ize as queries to get answers using DMS. Altogether the domain experts
spent on average ca. 100 hours interacting with the system [81].
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Figure 3.7: A part of the annotation perspective of Dark Matter Studio.
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Time spent in
DMS (hh:mm)

DE 1 (Physics) 106:56
DE 2 (Biology) 81:13
DE 3 (Biology) 128:25
DE 4 (Chemistry) 96:24
DE 5 (Chemistry) 84:32
DE 6 (Physics) 102:54

Table 3.5: The time spend working with Dark Matter Studio for each of the domain
experts.

Based on [81, 79, 80] the following sections summarize the results from
these two stages of the evaluation. Further evaluation results with respect
to testing are presented in a later chapter (section 4.4).

Ontology Creation and Size

All domain experts were able to successfully create a taxonomy, relations
and attributes. The size of the taxonomy varied between the domains, with
the Physics DEs creating the fewest concepts and instances. The follow-
ing table summarizes the size of the created ontologies. The table excludes
some domain specific knowledge that was already in the systems when
they were handed to the DEs. This pump primed knowledge was created
by knowledge engineers and consists of some fundamentals for each area,
such as the seven base SI-units for physics or the periodic table for chem-
istry.

Concepts Instances Attributes Relations
DE 1 (Physics) 14 6 34 11
DE 2 (Biology) 111 50 8 46
DE 3 (Biology) 172 278 8 24
DE 4 (Chemistry) 37 50 16 16
DE 5 (Chemistry) 75 93 55 45
DE 6 (Physics) 16 8 40 20

Table 3.6: Measures of the size of the ontologies created by the domain experts.

In the created ontologies the average number of sub-concepts was 3.1 per
concept, ranging from 2.1 to 4.2 depending on the domain expert. The
maximum depth of the taxonomy was between 3 and 11, with both biology
domain experts creating the taxonomy with the largest depth (10 and 11).
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# Rules # Disabled Rules
DE 1 (Physics) 50 3
DE 2 (Biology) 69 9
DE 3 (Biology) 130 7
DE 4 (Chemistry) 146 23
DE 5 (Chemistry) 175 175
DE 6 (Physics) 40 0

Table 3.8: Number of the rules created and the rules deactivated at the end of the
knowledge formulation phase.

The created ontologies were mostly relatively lightweight, with domain
experts making relatively little use of more advanced features such as sub-
property relations or default values for properties.

# sub-
property

# mult. in-
heritance

# instance
with mult.
concepts

# default
values

DE 1 (Physics) 0 1 0 0
DE 2 (Biology) 0 0 0 0
DE 3 (Biology) 9 0 0 1
DE 4 (Chemistry) 9 1 0 4
DE 5 (Chemistry) 3 0 0 0
DE 6 (Physics) 0 1 0 2

Table 3.7: Usage of advanced features of ontologies.

Rules and Processes

All domain experts were able to successfully use the graphical rule editor
of DMS to create a large number of rules. The integration of the rule ed-
itor with the rest of DMS worked well and some domain experts where
enthused to see their rules ’come to life’ in the tests.

In order to prevent faulty rules from corrupting a large part of the knowl-
edge base, the system contained an option to disable rules. This tool was
used by all domain experts, in particular by domain expert 5 who disabled
all her rules. DE 5 suffered from the problem that, while working well in-
dependently, her rules interacted in ways that broke the rule base in ways
she was not able to diagnose. To have at least some success, DE 5 therefore
disabled most of her rules, having only a few active rules at any given time;
at the end of the evaluation she disabled all rules.

DMS also included editors for the graphical editing of knowledge about
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processes. However, because of initial problems with the process editing
component during the evaluation, the domain experts did not have confi-
dence in this component and used it only very sparingly or not at all.

Figure 3.8: Project Halo example rule from [81].

Figure 3.8 shows an example rule [81] from a physics knowledge-base from
Project Halo. This rule realizes the Newtons second law as a mathematical
formula. The rule defines the context in which this equation applies and
the parameters that are fed into the equation. This example rule can be
paraphrased as: if ?aPhysicalObject is a Physical object and it has an accel-
eration of ?a m/s2 and a force of ?f Newton and a mass of ?m Kilogram,
the formula force = mass*acc can be applied. The relation between the at-
tributes ?f, ?m and ?a and the variables in the equation (force, mass and
acc) is defined by the position the lines from the attributes connect to the
green box with the formula. The formula is shown in green indicating that
it represents the conclusion from the rule, i.e. this is the rule head. This
graphical representation of the rule is translated into multiple F-logic rules,
ensuring that the equation can be used ’in any direction’, i.e. that it can be
used to compute accelaration from mass and force just as well as to com-
pute mass or accelaration in cases where at the values of two other variables
are known.

Testing

The testing component proved to be very popular with the domain experts.
The graphical interface of the testing component was usable and all do-
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main experts succeeded in creating a considerable number of tests. The
main two conclusions from the evaluation with respect to testing were that
[79]: 1) Only successfully tested rules have sufficient qualities to be used
for question answering and 2) that it proved important to re-run all tests
after only a small number of changes to ensure that these did not break the
knowledge base in surprising places. The main problem for testing was
the long time that running some of the tests took. This is not a problem of
the debugging component but rather was caused by general performance
problems of the inference engine [80]; nevertheless this caused users to use
the debugging component less than would be ideal. More evaluation data
about the testing component can be found in section 4.4.

Knowledge Base Quality and Question Answering

In the question formulation part of the evaluation, the quality of DMS and
of the created knowledge bases was evaluated. To do this, the system to-
gether with a knowledge base was given to different domain experts that
had to use it to formalize and answer a set of questions that hadn’t been
known before. In order for a question to be answered correctly, the knowl-
edge base needs to be correct, needs to encompass the needed knowledge
and the question formulation domain expert (QF DE) needed to correctly
formalize the question; i.e. to formalize it in a way that it yielded an answer
and also accurately reflected the question. An incorrect formalization of the
question could again depend on an error by the QF DE, knowledge miss-
ing from the knowledge base9 or a limited expressiveness of the question
formulation tool.

The question answering performance for questions judged to be fully ade-
quate is shown in the table below. The numbers show the count of results
that were fully, nearly or not adequate; only the results for fully adequate
queries are shown. It can be seen that only the Physics DEs succeeded to
formulate and correctly answer a considerable number of questions.

9e.g. the knowledge base lacked the terminology to represent the relations that the ques-
tion asked about



62 CHAPTER 3. ANALYSIS AND DESIGN

# Fully Adequate # Nearly Adequate # Inadequate
DE 1 (Physics) 4 0 3
DE 2 (Biology) 1 0 0
DE 3 (Biology) 0 0 0
DE 4 (Chemistry) 0 0 0
DE 5 (Chemistry) 0 0 4
DE 6 (Physics) 7 0 2

Table 3.9: Rating of answers for fully adequately formulated queries.

A larger number of questions could be formalized nearly adequately. The
question answering performance on these queries is shown below. Again
the table shows the number of results that were fully, nearly or not ade-
quate for nearly adequate query formulation.

# Fully Adequate # Nearly Adequate # Inadequate
DE 1 (Physics) 6 0 0
DE 2 (Biology) 0 1 0
DE 3 (Biology) 1 1 1
DE 4 (Chemistry) 0 0 5
DE 5 (Chemistry) 1 0 4
DE 6 (Physics) 7 0 6

Table 3.10: Rating of answers for nearly adequately formulated queries.

Knowledge missing from the knowledge base was the most common rea-
son for questions that could not be formalized adequately; this affected
62% of the cases. Another important problem affecting 27% questions was
the limited expressiveness of the question formulation tool. The remaining
cases were caused by limits in reasoning and errors in question formulation
[79].

Evaluation Summary

Overall the very challenging evaluation setup that required domain experts
to model knowledge that could successfully answer novel questions posed
by other domain experts showed some success, in particular in the physics
domain. At the same time, however, most questions could not be correctly
answered, showing major limitations of DMS. The final implementation
report [81] blamed this mostly on three clusters of problems:

• Question Formulation Workflow: An underestimation of the diffi-
culty of formalizing question.
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• DMS not restrictive and not transparent enough: The software al-
lowed domain experts to build models that would break the reasoner
in ways not transparent to the user.

• Project Management and Project Team: Problems in the project
structure that led to late architectural changes and late system inte-
gration.

Proposals were made to address these problems [81], however, these were
not realized due to Project Halo’s focus shifting towards web-based sys-
tems.

For this thesis Project Halo provided input for the analysis and design. Fur-
ther, some implementations were also integrated into Dark Matter Studio
and evaluated in the context of this project.

3.1.3 Smaller Projects

Two smaller rule base development projects form a further input for the
analysis. Online Forecast - an application of rule bases for human resource
reporting - is presented first. The second project is F-Verify, an anomaly
detection rule base.

Online Forecast

Online Forecast [131] was a project to explore the potential of knowledge
based systems with respect to maintainability and understandability. To-
wards this end an existing reporting application in a human resource de-
partment at Daimler AG was re-created as rule based system. This project
was performed by a junior developer with little prior experience with rule
based systems who spent approximately 5 person months creating it.

The application processed human resource data stored in a relational
database. One set of mapping rules was responsible for mapping the data
from the database to a human resource ontology. A second set of rules
aggregated data into higher-level concepts and supported users in gener-
ating reports such as ’how many people left the company last month be-
cause they have to serve compulsory military service’. A number of in-
tegrity rules were included to support users in maintaining data integrity,
and explanation facilities were realized prototypically for a small part of
the domain. Altogether the knowledge base consisted of 21 concepts with
35 relations and 100 rules with up to 38 body atoms. The instance data
used during the creation of the system consisted of anonymized data from
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roughly 15000 employees, in the end represented by almost one million
facts.

Online Forecast used F-logic as representation language and the Ontobro-
ker inference engine for reasoning. The commercial ontology engineering
environment OntoStudio [156] was used as editor. The project was real-
ized with a lightweight, iterative process. It began with the creation of
the domain ontology in close cooperation with the domain experts. In the
next steps informal descriptions of rules were created based on the legacy
application, these were validated with the domain experts and then imple-
mented. The results from applying the created rules to the database were
compared to the results from the legacy application and all diverging re-
sults were discussed with domain experts - this step uncovered multiple
errors in the legacy application, as well as some in the rule base. The rules
were adapted based on this feedback and the result was again presented to
the domain experts.

As a whole the project was a success in so far as it could show that rules
can be used to re-implement the reporting application with higher preci-
sion and additional functionality in the form of explanations and integrity
constraints that should enhance understandability and maintenance. The
integrity constraints uncovered errors in the existing data, thereby showing
their usefulness. However, the application was not used productively, be-
cause it did not easily fit within the existing IT-infrastructure and because
the skill sets needed for maintaining it were not available at the company.

For this thesis this project forms an importance input for analysis and de-
sign. During Online Forecast the problem of insufficient debugging sup-
port became very clear. In particular the debugging of the rule interactions
turned out to be difficult because many test-queries simply returned no
result, giving very little information that could aid error localization.

F-Verify

F-Verify (see also section 6) was a project to create a rule base to sup-
port verification activities. It models (mostly heuristic) knowledge about
anomalies in rule bases. It consists of anomaly detection rules that work on
the reified version of a rule base, i.e. that reason about the rules themselves.
This project was done by a developer with experience in creating rule bases
and took 3 months to complete.

F-Verify was created in F-logic and also used for the diagnosis of F-logic
rule bases. It used an informal iterative process: new heuristics would be
developed and defined in natural language, then implemented and added
to the rule base. This was repeated multiple times. The domain model
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(the reified rules) existed already and was reused. Altogether the rule base
consisted of 60 rules (examples are included in section 6). It was built in
the style of constraints and included facilities to explain the problems in
the rule base to end users.

This project was created to be used in later version of DMS. The rule base
was successfully created, but was never deployed because of the reasoning
performance problems affecting DMS [81].

The experience from this project further established to problem of tools
support for fault detection and prevention in rule based systems. In partic-
ular the lack of debugging support and a testing infrastructure hampered
development. Another observation from this project was, that with rule
based systems the error localization is made very difficult by some errors
caused by interactions between rules in parts of the rule bases that are com-
pletely unrelated from a user’s point of view (further explained below as
the Problem of Interconnection).
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3.2 Analysis

This section is dedicated to the analysis of debugging challenge based on
the empirical basis introduced in the previous section. It starts with the ex-
planation of the debugging challenge and presentation of evidence for its
existence. Next, the fault lifecycle is introduced as the model developed to
guide and summarize the analysis. After that five problem hypotheses are
presented for the explanation of the debugging challenge. Finally a section
introduces major trends in rule base development that must also be con-
sidered in any approaches that attempt to tackle the debugging challenge.
All results from the analysis section are then aggregated and used to derive
concrete approaches in the following design section.

3.2.1 The Debugging Challenge

The assumption of rule based systems as simpler than ’conventional’ pro-
grams rests on three observations:

• Rule languages are (mostly) declarative languages that free the devel-
oper from worrying about how something is computed. This should
decrease the complexity for the developer.

• The If-Then structure of rules resembles the way humans naturally
communicate a large part of knowledge.

• The basic structure of a rule is very simple and easy to understand.

To see whether this simplicity assumption holds in practice, the developer
survey (section 3.1.1) included a question that asked participants to com-
pare rule base development to the development of procedural and object
oriented programs. The results show (figure 3.9) that these developers in-
deed see the advantages in ease of change, reuse and understandability that
were expected from rule based (and declarative) knowledge and program
specification.

However, at the same time a majority of rule base developers sees rule
base development as inferior with respect to debugging; participants of
the survey see debugging of rule based systems as actually more difficult
than the debugging of conventional software. And, in a different question,
rank it as the issue most hindering the development of rule based systems
(see section 3.1.1). This observation was also corroborated in the three rule
base development projects described earlier. In these projects also the over-
all question preventing, finding and removing faults proved to be insuffi-
ciently supported.
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Figure 3.9: The aggregated results from the survey questions asking participants
to compare rule base and ’conventional’ software development

3.2.2 Fault Lifecycle

In order to organize and guide analysis and design, the fault lifecycle was
developed. It an is overall conceptual model that shows the different pro-
cesses that affect implementation faults in any software system’s develop-
ment. The fault lifecycle will be used in the consecutive sections of this
chapter.

During the development of a software many actions are made. Some of
these will be mistakes - inappropriate actions during software develop-
ment that may later cause a program to fail. A mistake may result in a
fault, an incorrect step, process or data definition in a computer program
[84]. Finally a fault may manifest itself in a computation that involves - or
should have involved - instructions affected by the software fault and that
results in an error, a difference between a computed, observed or measured
value or condition and the true, specified or theoretically correct value or
condition [84]. None of these transitions is inevitable; a mistake may be
caught before it results in a faulty implementation and a fault may be neu-
tralized by later code or may never be exercised in the running program. At
the same time many techniques are routinely applied to reduce the number
of faults in a program. Static Analysis techniques such as code review, for-
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mal verification or anomaly detection identify faults in the program code.
Testing techniques execute the program in a controlled environment, dis-
covering some of the errors that otherwise may appear in a production en-
vironment. Finally, debugging techniques are used to identify a fault based
on an error detected in testing.

Figure 3.10: The Fault Lifecycle and its transitions

It is important to note, that the notions of action, mistake, fault and error
are applicable at many levels of the software development process, such as
software design, software architecture or requirements engineering. In this
thesis, however, the fault lifecycle is used exclusively with respect to the
actual implementation.

Every transition in the fault lifecycle model is a potential trouble spot that
can lead to a program failing more often; at the same time each transitions
also offers a lever to make the creation of software with less faults more
effective. A short explanation and two examples for each of the transitions
shall make this and the Fault Lifecycle clearer:

• Lapse: This transition reflects lapses in the action of developers that
mean a mistake is made. The strength of this transition (i.e. the pro-
portion of actions that are mistakes) is affected for example by the
experience of the developers creating a rule base. Inexperienced de-
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velopers will make more mistakes and ultimately create rule bases
with more faults. On the other hand, visualizations or good architec-
tural metaphors improve a developers understanding of the program
and make it easier to make the right action.

• Fault Introduction: A mistake by a developer may introduce an in-
correct step, process or data definition into the computer program.
However, appropriate processes or tools may also catch the mistake
before its introduced into the code base. Using only a simple text
editor instead of one with syntax highlighting increases the chances
that mistakes lead to faults in the code. Pair programming, however,
is one technique thought to positively influence this transition; here
a second developer immediately questions all actions and can hence
spot mistakes early.

• Fault Manifestation: A fault may manifest itself in a computation
that did involve, or should have involved a statement affected by
the fault; this results in an error. Not all faults cause errors and one
fault may manifest itself in many different program behaviors. In rule
based systems the number of errors caused by a fault is influenced by
the structure of the inference engine as well as the semantics used.
For example using a rule base with a semantics that is only defined
for globally stratified models means that a single fault can - by mak-
ing the rule base unstratisfiable - cause a large number of errors. On
the other hand an inference engine that is able to recover from some
errors by automatically removing a rule from consideration will pro-
duce less errors for a given number of faults.

• Static Analysis: These techniques examine the program without run-
ning it, they try to identify faults through a careful analysis of the pro-
gram code. Detection of anomalies and bug patterns, formal proofs
of properties of a program and code review are techniques used for
this transition. Most of these techniques cannot directly identify a
fault [135], but rather they find anomalies that are then used by the
developers as hints for fault identification. The absence of a formal
specification is one factor aggravating the static detection of faults;
on the other hand the availability of a type system or an ontology
describing the terms in the rules improves it.

• Dynamic Analysis: Dynamic analysis techniques execute the pro-
gram to identify anomalies in the behavior of the program. The most
common used method for this transition is testing, however, run time
monitoring to uncover interim faulty states is also important. A large
difference between the environment used for testing and the runtime
environment of a system is one trouble spot that will affect the effi-
ciency of this transition. An infrastructure for automatic regression
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tests may improve it.

• Debugging: Through debugging an error observed under controlled
circumstances is investigated to identify the fault that caused it. De-
bugging is influenced positively for example by good error messages
and negatively by the absence of debugging tools.

• Repair: Once a fault has been identified the developer must find a
way to correct without impairing the rest of the program. A hard to
understand program or unsuitable editors make correcting faults dif-
ficult, automatically generated change proposals could make it easier.

It is important to note that the Fault Lifecycle developed here represents a
simplification of the fault releated activities in software development; that
in modern technologies are sometimes transcending its borders. For exam-
ple by examining all possible execution paths of a program, model check-
ing transcends the difference between static and dynamic analysis. Also,
many modern development environments already include anomaly detec-
tion and even regression testing before anything is added to the common
codebase; in this sense these systems harness static and dynamic analysis
already to improve the ’fault introduction’ transition.

3.2.3 Problem Hypotheses

This section introduces six problem hypotheses for the explanation of the
debugging challenge; for explaining the apparent mismatch between the
simplicity of rule bases and the observed difficulty of debugging. The prob-
lem hypotheses are: (1) One Rule Fallacy and the Problem of Terminology,
(2) the Problem of Opacity, (3) The Problem of Interconnection, 4) The No-
Result-Case and The Problem of Error Reporting, (5) the Problem of Pro-
cedural Debugging and finally (6) The Problem of Tool Support. Each of
these problems is described in a short section below.

The One Rule Fallacy and the Problem of Terminology

Declarative statements such as rules are often assumed to be easier reusable
and more modular, because they are true in broader contexts than program
statements can be used. As McCarthy put it in 1959 [107]:

Expressing information in declarative sentences is far more modular
than expressing it in segments of computer programs or in tables. Sen-
tences can be true in a much wider context than specific programs can
be used. The supplier of a fact does not have to understand much about
how the receiver functions or how or whether the receiver will use it.
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The same fact can be used for many purposes, because the logical con-
sequences of collections of facts can be available.

Based on these sentiments the one rule fallacy goes as follows:

One rule is simple to create and
the combination of declarative rules is handled automatically

by the inference engine

hence, entire rule bases are simply to create.

However, the inference engine obviously combines the rules only based on
how the user has specified the rules; and it is here - in the creation of rules in
a way that they can work together - that most errors get made. In particular
for rules in a rule set to work together, all rules need to be consistent in the
domain formalization and the use of terminology. For example it must not
happen:

• That one rule uses a relation part while another one uses part of .

• That one rule understands a parent relation biologically, while an-
other understands it socially.

• That one rule processes a number as inch, while another processes it
as millimeter.

Rule based systems hold the promise to allow the automatic recombination
of rules to tackle even problems not directly envisioned during the creation
of the rule base. However, this depends on ensuring the consistent formal-
ization and use of terminology across the rule base.

Hence a part of the gap between the expected simplicity of rule base cre-
ation and the reality can be explained by naive assumptions about rule base
creation. At the same time this points to the Problem of Terminology as one
explanation for the difficulty in debugging rule bases. The problem of ter-
minology makes the rule base harder to understand, makes it harder to
identify, avoid and correct mistakes based on only a local view of the rule
base. In the fault lifecycle the problem of terminology hence affects mostly
the lapse transition; also other transitions (such as debugging and repair)
are also affected.

The Problem of Opacity

In the authors experience failed interactions between rules are the most im-
portant source of errors during rule base creation. At the same time, how-
ever, it is this interaction between rules that is commonly not shown; that
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is opaque to the user. The only common way to explicitly show these inter-
actions between the rules is in a prooftree (see section 4.2.1) of a successful
query to the rule base. This stands in contrast to imperative programming,
where the relations between the entities and the overall structure of the
program are explicitly created by the developer, shown in the source code
and the subject of visualizations.

Not having an overall view on the rule base mainly affects the ability of
developers to correctly edit the rule base, because it becomes hard, for ex-
ample to see the consequences of changes or to gain confidence in the com-
pleteness of a rule base. The Problem of Opacity also affects the developer’s
ability to identify faults in rule bases.

The Problem of Interconnection

Because rule interactions are managed by the inference engine, everything
is potentially relevant to everything else10. This complicates error localiza-
tion for the user, because errors appear in seemingly unrelated parts of the
rule base.

As a very simple example consider the following rule base:

hot(X)← part of(Chile,X)
# fault - should be part of(Chili,X)

..

part of(Chile, SouthAmerica)

In this example a rule that deduces that something is hot based on it having
chili as part, is changed by a typo to deduce that something is hot if the
country Chile is part of it. This simple error then introduces a connection
to a part of the rule base that deals with countries and that - from the user’s
point of view - is absolutely unrelated.

More typical than this example, however, are cases that do not lead to
wrong conclusions but rather merely lead the inference engine to try one
path that ends in a rule cycle or in some kind of error. One example would
be that a rule causes a whole rule base to become unstratisfiable (see section
2.1.5), another that it leads to a rule being tried in unexpected circumstances
that then lead to errors due to the wrong usage of built-ins.

10At least in the absence of robust, user managed modularization.
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The Problem of Interconnection appeared frequently during the three rule
base development projects and is visible for example from these statements
by two Project Halo domain experts [69]11: ”... there are still rules that do not
work together, even though there is no connection between them.” and ”... some
rules cause problems in an inexplicable way”. These statements were uttered
in response to errors caused by rule interactions, but interactions the users
were not aware of or (as is evident from the first statement) even (falsely)
confident that didn’t exist. The main transition affected by the Problem of
Interconnection is the debugging connection that represents the identifica-
tion of faults based on observed errors. This identification is made more
difficult by the Problem of Interconnection. Another consequence of the
Problem of Interconnection is that even a single fault can cause many er-
rors across a large part of a rule base’s functionality.

The No-Result Case And the Problem of Error Reporting

In the three rule base development projects by far the most common error,
by far the most common symptom of a fault, was that a query (unexpect-
edly) did not return any result - the no-result case. In such a case most
inference engines give no further information that could aid the user in er-
ror localization. A problem made more significant by the fact that some
debugging tools for rule based systems only work in cases where there is
a result12. This is unlike many imperative languages that often produce a
partial output and a stack trace. Both imperative and rule based systems
sometimes show bugs by behaving erratically, but only rule based systems
show the overwhelming majority of bugs by terminating without giving
any help on error localization.

The survey of rule base developers also included a question asking which
kinds of errors were encountered, never, sometimes or frequently. Overall
it showed that 64% of developers frequently and a further 34% sometimes
encounter a fault showing itself in a missing conclusion. Looking only at
those development projects that used one of the environments classified as
declarative, i.e. that used rule languages most closely resembling the kind
of rule languages under discussion in this thesis, the no-result case even
becomes the error most frequently encountered (see figure 3.11).

An experiment with randomly seeded faults further confirmed this obser-
vation. In this experiment two small rule bases were randomly altered13

and the result for one query each was compared to the expected value. The

11Translated from German by the author.
12In particular this affects all traditional explanation approaches (see section 5.4.2).
13The details of the seedings process are described in section 5.3.
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Figure 3.11: Symptoms of faults in declarative rule bases, based on the survey of
developers

Figure 3.12: Sympoms from randomly seeded faults
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largest proportion of seeded faults did not result in any error (see Figure
3.12), but of the errors that where caused, 75% where no-result cases.

In the fault lifecycle the Problem of Error Reporting affects the identifica-
tion of faults based on errors - this is hampered by cases where the error
gives no clue for the identification of the fault.

The Problem of Procedural Debugging

The overwhelming majority of tools used for the debugging of rule based
system are based on the procedural or imperative debugging paradigm (see
figure 3.13 and the discussion in 3.1.1). This debugging paradigm is well
known from the world of imperative programming and characterized by
the concepts of breakpoints and stepping. A procedural debugger offers
a way to indicate a rule/rule part where the program execution is to stop
and has to wait for commands from the users. The user can then look at the
current state of the program and give commands to execute a number of the
successive instructions (a longer description of this debugging paradigm is
given in 5.4.1).

Figure 3.13: Tools used for debugging

However, as a declarative representation a rule base does not define an
order of execution - hence the order of debugging is based on the evalu-
ation strategy of the inference engine. In this way the debugging of rule
bases breaks the declarative paradigm - they force the developer to learn
about the inner structure of the inference engine. This stands in marked
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contrast to the idea that rule bases free the developer from worrying about
how something is computed. The development of rule based systems can-
not take full advantage of the declarative nature of rules, when debugging
is done on the procedural nature of the inference engine.

In the fault lifecycle the Problem of Procedural Debugging affects the tran-
sition from test error to fault: the debugging transition.

The Problem of Tool Support

Finally, compared to tools available as support for the development with
imperative languages, those for the development of rule bases often lack
refinement. This discrepancy is a direct consequence of the fact that in
recent years the percentage of applications built with imperative program-
ming languages was much larger than those built with rule languages. This
discrepancy is also visible in the results from the survey, where (in addi-
tion to debugging support) the lacking refinement of development tools
emerged as an area where rule based system development lags behind
’conventional’ software development (see figure 3.9).

Less refined tool support is something that affects all transitions in the fault
lifecycle. Within the context of the three projects observed, the dynamic
analysis transition was most affected. Prior to the work conducted for this
thesis, testing - the most commonly used verification method for rule bases
(see figure 3.4) - was not supported at all for F-logic/LP-O rule bases, e.g.
there was no infrastructure to store and run test cases, no user interface to
create tests and no test coverage measure.

3.2.4 Changing Environments

In this section, four major trends in rule base development are presented as
another input for the design. To tackle the debugging challenge, tools need
to work within the scope and constraints of modern rule based develop-
ment processes characterized by these trends; the six problems described
above must be tacked in this environment.

Based on literature research and on the survey of rule base developers, this
section looks at these changing processes and at the requirements for de-
buggers that follow from them.
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End User Programmers and Domain Experts

The amount of software in society increases continually, and more and
more people are involved in its creation. The creation of software artifacts
used to be the very specialized profession of a few thousand experts world-
wide, but has now become a set of skills possessed to some degree by tens
of millions of people. Within this group an increasing role is played by end
user programmers - people that are usually trained for a non-programming
area and just need a program, script or spreadsheet as a tool for some task.

For the US it is estimated that there are at least four times as many end
user programmers as professional programmers [148]; with estimates for
the number of end user programmers ranging from 11 million [148] up to
55 million [18]. End user programmers are particularly important for web
related development, because web developers are known to have an even
higher percentage of end user programmers [139, 82].

This rise in the number of end user programmers means, that the average
developer is not trained as well as the knowledge engineers that created the
first expert systems. End user programmers usually can’t justify making
an investment in programming training comparable to that of professional
programmers.

The survey of developers also found that the average rule base devel-
opment projects includes 1.5 domain experts that create rules themselves
and 1.7 domain experts that were involved in verification and validation.
Slightly more than half of the projects included at least one domain expert
that created rules.

Lesser training and experience of the developers is a challenge for all parts
of the Fault Lifecycle [116], most importantly, however, it means that sim-
ply more mistakes get made.

Embedded Rule Systems and Embedded Procedures

Current rule based systems are commonly not stand alone systems but are
rather embedded in a context of other systems, probably most of them built
in a different language. This integration goes both ways: on the one hand
rule bases are including and calling built-ins that are often implemented in
a procedural language. On the other hand rule bases are part of a larger,
conventional program. In particular in the business rule community it is
common [110] that rules are only used to represent the core, mutable busi-
ness process aspects of a system, while the rest of the application is still
realized with an object oriented programming language.
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This property is also visible in the developer survey described above. It
found that on average the rule bases took 9 person months to develop while
the overall application needed 60 person month; almost 6 times the effort.

This embedded nature of rule based systems means that on the one hand
the verification support must be aware and support problems that occur on
the boundaries of the rule base; that involve calls to other programs possi-
ble created in a different paradigm. This may complicate fault localization
based on test results as well as fault identification based on static analy-
sis. Secondly, however, it also means that rule bases tend to be relatively
small when compared to programs created in ’conventional’ programming
paradigms; simplifying the creation and editing somewhat.

Agile, Iterative and Lightweight Methods

Recent years also saw the increasing adoption and acceptance of iterative
and evolutionary development methodologies [97] - they are now widely
believed to be superior to waterfall-like models [102].

A high prevalence of agile and iterative methods was also found in the
developer survey. Agile and iterative methods were used in more than
50% of the projects with more than 10 person months of effort. A further
23% of the projects worked without following any specific methodology.

The first corollary of this observation is that the verification support for
these systems cannot rely on the availability of formal specifications of any
kind; an impediment for many static analysis methods. A second likely
consequence is a higher prevalence of implementation mistakes - since with
many of these methods, architecture and design decisions are taken on the
fly during the implementation of the software. In addition, these design
and architecture decisions are often repeated and changed, because agile
methodologies encourage developers to make these decisions based on the
scope of the current iteration, not on the expected scope of the final appli-
cation. Doing these design and architecture decisions ’on the fly’ reduces
the risk of costly requirements, design and (up-front) architecture mistakes,
however, at the same time it means that many of these mistakes are then
made during implementation.
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Rule Interchange, the Semantic Web and Ontologies

Emerging rule interchange14 [19] and the Semantic Web [91] are also posing
new challenges for verification support, but are also offering new opportu-
nities. Rule interchange and the Semantic Web pose challenges, because
they may lead to larger rule bases created without strong central support.
Further rule interchange means that people will often be faced with verify-
ing a software system including at least a part that was created externally,
making things like the Problem of Interconnection even more daunting.

The Semantic Web, however, is also opening up new opportunities for bet-
ter debugging tools. The purely declarative nature15 of many rule lan-
guages under consideration for the Semantic Web (e.g. WSML, SWRL and
F-logic) make it seem possible, that creation and debugging of rule bases
can be done without needing to learn about the evaluation strategy of the
inference engine. Also, the availability of explicit ontologies for the terms
used in the rules can offer additional information to better support the de-
bugging process.

Within the fault lifecycle these new languages are hence offering new ways
for the static identification of faults through the use of ontologies; e.g. iden-
tifying rules that cannot fire can be aided by knowing that two concepts
used are disjunctive, do not share any instances. At the same time rule in-
terchange and the reuse of rule bases on the Semantic Web are also posing
new challenges for fault identification, for the fault identification from test
errors as well as for the static identification of faults.

14I.e. the trend to create rule interchange formats in order to establish rule sets as trade-
able artefacts that can be exchanged between companies.

15In contrast to, e.g., Prolog or the rule languages used in most business rule management
systems.
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3.3 Design

This section aggregates the results from the analysis and gives a very coarse
design for tool support that can tackle the debugging challenge of rule
based systems. The design sketched in this section is then further elabo-
rated, implemented and evaluated in the remaining chapters of this thesis.

In section 3.3.1 this chapter starts with an aggregation of the problems and
challenges identified in the analysis. Then, based on literature research
and on experiences from the rule base development projects described at
the beginning of this chapter, four overall design principles are presented
in section 3.3.2. Finally, adressing the problems identified in the analysis
in the previous section, four concrete in the areas of testing, debugging,
static analysis, and visualization are shortly sketched (section 3.3.3). Their
elaboration is the topic of successive chapters.

3.3.1 Choke Points and Requirements

Aggregating the results from the analysis using the fault lifecycle one can
identify the transitions most affected by the properties of rule based sys-
tems (see figure 3.14).

This aggregation shows the debugging transition as affected by the largest
number of problems. In detail the affected transitions are

• The debugging transition from test error to known fault is affected
by five of the ten problems. The Problem of Interconnection (3) ham-
pers fault localization because it leads to errors appearing in surpris-
ing places. The Problem of Error Localization or the no-result-case
(4) makes it hard to diagnose faults, because in many cases the er-
ror is simply an empty result case, giving the user no information
on where to start the debugging process. The Problem of Procedu-
ral Debugging (5) means that developers have to learn about the how
of the computation, about the internal structure of the inference en-
gine to use state of the art debuggers. The embedded nature of rule
bases (8) leads to hard to diagnose faults at the boundaries of differ-
ent programming paradigms, but also means that rule bases tend to
be relatively small. Finally the Semantic Web and rule interchange
(10) mean that debugging may include rule bases developed inde-
pendently, without central control, meaning that often the developer
doing the debugging has to learn about the rule base at the same time.

• The lapse transition (proportion of actions that are mistakes) is
mainly affected by the Problem of Terminology, Opacity and by the
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Figure 3.14: The fault lifecylce with an overview of the analysis. The red circles
indicate the challenges for each transition, the one green circle indicates the new
opportunities afforded for static analysis through the use of ontologies (see section
3.2.4).
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rise of end user programmers. The first two are concerned with the
connection between rules that are not easily visible. The Problem of
Opacity (2) with the fact that the overall program is determined by
rule interactions normally not shown to the programmer. The Prob-
lem of Terminology (1) with the observation that, while often seen
as self-contained entities - rules are in fact dependent on a domain
formalization consistent across all rules. Finally, the rise of end user
programming (7) means that less trained people are creating the rule
bases.

• The static analysis transition is hampered by the increasing use of
agile processes (9) that mean that there are little or none formal speci-
fications. At the same time, however, the use of ontologies to describe
the terms used in rules may also offer new ways to improve this tran-
sition.

• Finally the dynamic analysis transition was the one - in the context
of the projects examined for this thesis - most affected by the problem
of missing or immature tool support.

To address these problem areas the following section presents four over-
all design principles that, when embodied by tools, can tackle some of
these points. The last section in this chapter then presents four concrete
approaches that directly tackle the choke points presented above.

3.3.2 Design Principles

The author has identified four core principles to guide the building of better
tool support for the creation of rule bases. These principles were conceived
either by generalizing from tools that worked well or as direct antidote to
problems encountered repeatedly.

• Interactivity: To create tools in a way that they give feedback at the
earliest moment possible. To support an incremental, try-and-error
process of rule base creation by allowing trying out a rule as it is cre-
ated.
Tools that embodied interactivity proved to be very popular and suc-
cessful in the three projects under discussion. Tools such as fast
graphical editors for test queries, text editors that automatically load
their data into the inference engine or simple schema based verifi-
cation during rule formulation were the most successful tools em-
ployed. In cases where quick feedback during knowledge formula-
tion could not be given16, this was reflected immediately in erroneous

16This was mostly due to very long reasoning times or due to technical problems with
the inference engine.
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rules and unmotivated developers.
Interactivity is known to be an important success factor for devel-
opment tools, in particular for those geared towards end user pro-
grammers [145, 146]. Interactivity as a principle addresses many of
the problems identified in the previous section by supporting faster
learning during knowledge formulation. Immediate feedback after
small changes also helps to deal with the Problem of Interconnection
and the Problem of Error Reporting.

• Visibility: To show the hidden structure of (potential) rule interac-
tions at every opportunity. Visibility is included as a direct countera-
gent for the problem of opacity and the Problem of Interconnection.

• Declarativity: To create tools in a way that the user never has to
worry about the how; about the procedural nature of the computation.
Declarativity of all development tools is a prerequisite to realize the
potential of reduced complexity offered by declarative programming
languages. This principle is motivated by the Problem of Procedural
Debugging.

• Modularization: [86, 4, 74, 109] To support the structuring of a rule
base in modules in order to give the user the possibility to isolate
parts of the rule base and prevent unintended rule interactions. By
imposing some user defined structure on the rule base, modulariza-
tion becomes one way to tackle the problems caused by the invisible
nature of the interactions in the rule base. However, modularization
is also only a mixed blessing for rule based systems. Any introduction
of modules that restrict the potential of rules to interact also means
some decrease in flexibility of the rule base - that the rule base is
less able to adapt to use cases not directly envisioned during the rule
base’s creation. Modules also introduce another layer of complex-
ity - create a new class of faults, where expected conclusions are not
reached because of faulty assignment of facts and rules to modules.

3.3.3 Concrete Approaches

Based on the transitions identified as particularly problematic as well as
best practices described in literature (e.g. [135, 75, 162]) a number of con-
crete approaches is developed in this thesis (the numbers in brackets refer
back to figure 3.14):

• For the testing transition a testing framework for F-logic was devised,
implemented and evaluated within the context of Project Halo. In
this context a novel test coverage notion for normal logic programs
was developed. This tackles the Problem of Tool support (6) for the
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dynamic analysis transition that is of profound importance to almost
every software development process. This is described in detail in
section 4.

• For the debugging transition Explorative Debugging was developed,
implemented and evaluated as a new approach to the declarative de-
bugging for rule bases. Explorative debugging together with its in-
novative components of Mutex-Prooftrees and Mutex-Depends-on-
Graph, is described in detail in section 5. The debugging approach
centers particularly on making purely declarative debugging a reality
(tackling the Problem of Procedural Debugging (5)) and on aiding the
user in Error Localization in the no-result-case (4,3). The Explorative
Debugging approach further facilitates learning while debugging -
partly tackling the problem caused by rule interchange (10). Finally
the implementations described in section 5 also include specific tools
to enable the developers to better deal with imperative procedures
embedded in the rule base (8).

• To support users with the challenges of the lapse transition, a novel
visualization approach for rule bases was developed. This approach
tackles the problems caused by the lack of developer defined struc-
ture by using the runtime rule interactions to create an overall visu-
alization of the rule base. By making the hidden structure of the rule
base visible, this approach directly tackled the Problem of Terminol-
ogy (1) and the Problem of Opacity; it is also an important aid in
particular for end user programmers (7). This approach is described
in detail in section 7.

• Finally a set of anomaly detection heuristics was developed, to uti-
lize the novel opportunities offered by terms described in ontologies
(10) as well as to tackle the static analysis challenge caused by the
absence of formal specifications and requirements in development
projects using agile development methods (9). This is described in
detail in section 6.



Chapter 4

Testing

”Testing is the process of executing a program with the intention of finding errors.”
[117], or more elaborate [84]:

(1) The process of operating a system or component under spec-
ified conditions, observing or recording the results, and making
an evaluation of some aspect of the system or component. (2)
The process of analyzing a software item to detect the differ-
ences between existing and required conditions (that is, bugs)
and to evaluate the features of the software item.

For the purpose of this thesis, I extend even the relatively broad first defi-
nition, arriving at

Testing is the process of executing a program with intention of
uncovering errors or gaining a better understanding of the pro-
gram.

The extension is needed to reflect the particularities of domain expert
driven rule base development- we found that one of the most important
uses of the testing component was to help developers better understand
how rule bases work and how they can create them.

Testing is easily the most widely deployed measure to find and remove
faults in software. For example, in a survey Perry [130] found that on av-
erage almost a quarter of a project’s development budget was allocated to
testing. The survey of rule base development processes described in sec-
tion 3.1.1 also found that testing is by far the most common measure taken
to remove faults from rule base.

Despite this importance, however, there are still clear deficiencies in the
technical and conceptual support for tests of normal logic rule bases. For
one, there is no generally accepted notion about the makeup of test cases

85
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and there are no established test coverage metrics. In the rule base develop-
ment environment that was used as basis for Project Halo, there was even
no testing support at all; when the work on this testing framework com-
menced in 2002, no testing framework could be found for either F-logic or
normal logic programs.

The work underpinning this chapter aimed to address these questions in
the context of Project Halo. The main parts of this work are:

• The definition of testing concepts for normal logic programs.

• The definition of a new test coverage measure based on the notion of
least general generalization and prooftrees.

• The implementation of the testing concepts in a framework that en-
ables domain experts to create tests.

• An evaluation of this test framework with domain experts. The eval-
uation showed that the testing concepts and user interface succeed in
enabling domain experts to create and run a large number of tests.
This enabled the domain experts to learn rule base development and
to create working rule bases.

The chapter is structured along these lines, with one section for each of
these points, followed by a discussion of prior work and a conclusion.

It is important to note that the implementation and evaluation of the work
presented here was not done exclusively by the author. The author im-
plemented the overall test framework and its user interface, however, the
graphical test query and test fact editors as well as the stylized english view
(all adaptations of tools also used for purposes other than testing), where
designed and specified by the author, but implemented by different de-
velopers. Further, the evaluation of the testing framework within Dark-
MatterStudio was done by an independent third party; the author was not
present. All conceptual work presented was done by the author.

4.1 Test Cases and Test Sets

This section introduces the main concepts of the testing framework pro-
posed in this thesis; these are the notions of test case, test facts and test
sets. To make these concepts accessible a simple example will be devel-
oped throughout this chapter. The rule base that is to be tested in this ex-
ample consists of only two rules and is shown below. The rules allow for
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the conclusion that someone is a parent, if he is male and has a child.

parent(Y )← fatherOf(Y,X) # Rule parent 1
fatherOf(A,X)← male(A), child(A,X) # Rule fatherOf

In general a test set can be thought of as similar to a physics question in an
exam. It includes some description of a situation and a number of questions
that should be answered using the rule base with respect to the situation
described. An example would be a situation describing a mass moving
frictionless at a certain speed. There could then be a number of queries
about this situation - such as ’what is the impulse of this mass’ - that should
be processed using the rule base.�

�

�

�
Definition 1 (Test Facts) A possibly empty set Tf = {f1, ...fn} where
f1, ..., fn are facts and for all fx ∈ Tf it holds that fx /∈ P , where P is
the normal logic program that is to be tested.

Test facts describe the situation that the query will be run against; they
describe the input that is to be processed by the rule base. For the rule base
example described above, test facts Tf1 could be:

male(peter)
child(peter,mike)

A test case then consists of the actual query and the expected answer. It is
defined as follows:�

�

�

�
Definition 2 (Test Case) A tuple TC = (q,R, l), where q is a query con-
sisting of a set of literals q = {L1, ..., Ln}, R is a set of substitutions
R = {θ1, ..., θm} and l is a label that is either true or false.

For the example a test case Tc1 could be defined as follows: q1 =
{parent(Y )}, R1 = {{Y/peter}} and l = true. This test case contains the
query asking for all entities known to be parent and defines the correct an-
swer as consisting of only the binding of Y to peter. The label is needed
for cases where the query is ground - in these cases R is always an empty
set and hence does not allow to differentiate between a query that follows
from the program and one that does not1.

1Consider for example the query q1 = {parent(peter)} - the set of subsitutions for this
query is always empty, irrespective of whether parent(peter) follows from the knowledge
base or not. Posing a ground query to a rule base may seem like a futile exercise, since
the expected answer must be known to create the query; however, to test a rule base, it is
important to check whether an expected conclusion is indeed reached; entailed by the rule
base.
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A test set consists of test facts and a number of test cases. A test set repre-
sents the description of one situation and a number of queries that is to be
asked about this situation.�

�

�

�
Definition 3 (Test Set) A tuple Ts = (Tf , Stc), where Tf are test facts and
Stc = {Tc1, ..., Tcn} is a set of test cases. The sets of test cases Stc are disjoint,
every test case is part of at most one test set.

A simple example test set would combine just the test facts Tf1 and the test
case Tc1 defined above, i.e. Ts1 = (Tf1, {Tc1}).

The success or failure of a test case is determined by computing the result
for the query using the rule base and the facts defined in the same test set.
The results are then compared to the expected result.'

&

$
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Definition 4 (Test Case Success) A test case Tci = (qi, Ri, l) that is part of
a test set Tcj = (Tfj , Stcj) with Tci ∈ Stcj is said to succeed iff for all θx ∈ Ri

it holds that qiθx ∈ HMp(P ∪ Tfj), where P is the rule base being tested and
HMp is its perfect herbrand model as defined in section 2.1.4. If Ri is empty,
Tci succeeds iff qi ∈ HMp(P ∪ Tfj). Otherwise it is said to fail.

In the example, the union of the test facts and the program P gives a logic
program consisting of

parent(Y )← fatherOf(Y,X) # Rule parent 1
fatherOf(A,X)← male(A), child(A,X) # Rule fatherOf
male(peter)
child(peter,mike)

For this logic program the query q1 = {parent(Y )} returns θ1 = {Y/Peter},
i.e. q1θ1 ∈ HMp (where HMp is the perfect Herbrand model of P ) and
hence the test case succeeds.

A set of tests that a rule base is supposed to pass is called a test suite.�
�

�
�

Definition 5 (Test Suite) A set Sts = {Tc1, ..., Tcn}, where Ts1, ..., Tsn are
the test sets for a logic program.

4.2 Test Coverage

Having a test suite for a program begs the question how good this test suite
is; how confident the developer can be that the test set is able to detect
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most or all faults in the rule base. Test coverage measures are an attempt
to answer this question based on how well the test suite executes all parts
of the rule base. This section introduces two such measures for normal
logic programs. The first - Simple Rule Coverage - just checks whether
every rule was involved in answering at least one test case. The second -
Complete Rule Coverage - tests whether every rule has been tested in its
entire variability.

In order to define such test coverage measures, first a notion is needed of
what parts of a rule base were executed to derive a result. This notion -
Prooftree - is defined in the next section. Based on this notion, Usage Data
is defined as the sum of all the data about the execution of all test cases.
Rule Coverage and Complete Rule Coverage are then defined based on
this notion in the two subsequent chapters.

4.2.1 Prooftree

A prooftree is a directed graph G(Ax, P ) = (V,E) that exists for each
ground atom Ax contained in the perfect Herbrand model HMp of a logic
program P . The prooftree is a declarative representation of the reason for
the inclusion of Ax in HMp.

We first define the justification for the inclusion of an atom Ax in HMp.'
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Definition 6 (Atom Justification) The justification for an atom Ax ∈
HMp, where HMp is the perfect Herbrand model of a logic program P , is
defined as:
• If there is a substitution θ such that Axθ ∈ P then Axθ is the justifica-

tion.
• If Ax /∈ P then there must be a ground substitution θ and at least one

rule R ∈ P such that Ax is in the head of Rθ and all atoms in positive
literals in the rule body are in the Herbrand model. All such instances
Rθ are justifications for Ax. Note that this means that there can be
multiple justifications for one atom.

Taking the rule base and the facts from the example in the previous sec-
tion as an example, the justification for the atom fatherOf(peter,mike)
would be given by the rule instance fatherOf(peter,mike) ←
male(peter), child(peter,mike).
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Definition 7 (Prooftree) A prooftree G(Ax, P ) = (V,E) for the atom Ax ∈
HMp is defined recursively as:
• The justifications for Ax are in V.
• For each rule instance Ri = Ax ← L1, ..., Ln in V, the justifications Ji

for each atom in a positive literal in the rule body of Ri are also included
in V and edges e = (Ri, Ji) are in E.

We also define a (partial) function fp : V → P that returns the rule for each
rule instance in V .

Figure 4.1: Prooftree for the example rule base

The prooftree for the example rule base and the query result parent(peter)
is shown in figure 4.1. At the top it shows the atom parent(Y) that is re-
turned by the query. The justification for this atom is given by the rule
instance parent(peter) ← fatherOf(peter,mike); because parent(peter) is
the head of this rule instance, an edge between these nodes is included.
Again the body atom of this rule instance is not in P and hence a rule in-
stance of the fatherOf rule is included as well. Finally the body atoms of
this rule instance, male(peter) and child(peter,mike) form the leafs of the
prooftree.

Note that in some rule bases there can be multiple justifications for the
same atom. This means that at any point the prooftree can have redun-
dant branchens and even that a prooftree can have multiple root nodes of
disjunct trees.
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4.2.2 Simple Rule Coverage

The prooftree then is a declarative notion of the parts of the rule base that
were used to derive a result. Based on this, test usage data can be defined as
a notion for the parts of the rule base used by an entire test suite.'

&

$

%

Definition 8 (Test Case Usage Data) Test Case Usage Data TUtc for a test
case TC = (q,R, l) that is part of a test set Ts = (Tf , Stc) is a set of prooftrees.
It consists of all prooftrees Gx(axθ, P ∪ Tf ) for all atoms axθx that can be
formed from the atoms of the query ax ∈ q and substitutions θ ∈ R; or the
prooftree Gx(q, P ∪ Tf ) when R is empty and l is true.

Intuitively, it can be said that test case usage data is the set of all prooftrees
for all results to the query. Based on this, Test Suite Usage Data can be
defined.�

�

�

�
Definition 9 (Test Suite Usage Data) Test suite usage data TUts(Ts) is
the set of all prooftrees in the test case usage data for all test cases in all test
sets of the test suite.

This defines the set of all prooftrees for all results of all test cases in the
test suite. Based on this, ’Simple Rule Coverage’ can be defined as a simple
notion of test coverage. Intuitively, it captures the notion that a rule has
been used in at least one test to the rule base.�

�

�

�

Definition 10 (Simply Covered) A rule rx ∈ P is said to be simply covered
by a test suite Ts if there is a prooftree Gx = (Vx, Ex) ∈ TUts(Ts) in the test
suite usage data that contains a rule instance of this rule, i.e. there is a ri ∈ Vx

such that fp(ri) = rx.

In the example the one prooftree from the one test case contains all rules
from the rule base and hence both are simply covered. We can then define
Simple Rule Coverage as the proportion of simply covered rules to those
that are not.�
�

�
�

Definition 11 (Simple Rule Coverage) If Sc is the set of all simply covered
rules in P, then the Simple Rule Coverage fsc is defined as |Sc|

|P |

This notion of test coverage is, however, a very loose measure; a test suite
with complete test coverage as calculated by this measure would still not
detect many faults. For example replacing the rules in the example by the
rule instances from the one test case would mean that the rule base is only
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useful for exactly these facts - but it would not be detected by the one test
case that already provides complete coverage.

4.2.3 Complete Rule Coverage

A more stringent test coverage measure will be defined in the following. It
is based on the concept of least general generalizations (lggs) [132] and the
notion that a rule is covered, iff the least general generalization of all rule
instantiations in the test suite usage data is a variant of the rule itself.

Least general generalization can be understood as the opposite of unifi-
cation2; instead of finding the most general specialization to apply some
knowledge in a specific situation, it tries to find the least general general-
ization that still allows to capture multiple situations. For example the lgg
for the atoms fatherOf(name(mike, lucien), name(michelle, lucien))
and fatherOf(name(mike, lucien), name(petra, lucien)) is
fatherOf(name(mike, lucien), name(A, lucien)), where A is a newly
introduced variable representing the lgg of michelle and petra. Within the
rules of normal logic programs this is the least general single atom that
is at least as general as the two statements given; that can still be unified
with these two statements.

The lgg is defined bottom up from terms:'

&
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Definition 12 (Least General Generalization for Terms) The lgg of two
terms is defined as:

lgg(t1, t2) ≡ t1, where t1 = t2

lgg(t1, t2) ≡ t1, if only t1 is a variable
lgg(t1, t2) ≡ t2, if only t2 is a variable
lgg(f(t1, ...., tn), f(u1, ..., un)) ≡ f(lgg(t1, u1)...lgg(tn, un))
lgg(t, u) and t 6= u ≡ Y , where Y is the variable that represents lgg(t, u).

Note that a particular variable represents an lgg, this means that a variable is
used whenever the lgg it is representing appears; e.g. the variable X is al-
ways used to represent lgg(f(a), g(a)), even if it appears in mulitple literals.

2In fact it is also often called anti-unification.
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Definition 13 (Least General Generalization for Literals) The lgg of
two literals is defined as:

lgg(p(t1, ..., tn), p(u1, ...un)) ≡ p(lgg(t1, u1), ..., lgg(tn, un))

The lgg is not defined in cases where the predicate symbol is different, or one
of the literals is positive and the other negative.

Finally, understanding rule bodies as lists of literals3, the lgg for rule in-
stantiations can be defined as:'

&
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Definition 14 (Least General Generalization for Rules Instantiations)
The lgg of two rule instantiations r1 = [l1, ..., ln] and r2 = [m1, ....mn] of the
same rule is then:

lgg([l1, ..., ln][m1, ....mn]) ≡ [lgg(l1,m1), ..., lgg(ln,mn)]

The lgg for a set of rule instantiations is given by:

lgg({r1, ..., rn}) ≡ lgg(r1, lgg(r2, ...lgg(rn−1, rn)...))

Based on this, a rule is completely covered, iff the lgg of all its rule instan-
tiations is equal to the rule itself (up to the renaming of variables); i.e. it is
a variant of the rule.'
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Definition 15 (Completely Covered) A rule rx ∈ P is said to be com-
pletely covered fsp(rx) by a test suite, iff the lgg of all rule instantiations
rx−lgg in all prooftrees of the test suite usage data is a variant of the rule,
i.e. there is a substitution θ such that rx−lggθ = rx and a substitution ρ such
that rx−lgg = rxρ

The complete coverage of the rule base is then defined analogous to Simple
Rule Coverage:�

�

�

�
Definition 16 (Complete Rule Coverage) If Cc is the set of all rules in P
that are completely covered by a test suite, then the Complete Rule Coverage
fcc is defined as |Cc|

|P |

An example shall further clarify this. Starting from the example in the

3The ordering of the literals in a rule is not important for the inference process, but
choosing an arbitrary ordering for each rule and using the same one for all instantiations of
these rules allows for a simpler definition and faster computation of the lgg.
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previous section another test set consisting of test facts male(peter) and
child(peter,michelle) and again the query← parent(X) is introduced. For
this example only the rule parent1 considered. The rule instantiations for
this rule from the two test cases are then:

parent(peter)← fatherOf(peter,mike)
parent(peter)← fatherOf(peter,michelle)

According to the definition of the lgg for literals defined
above the lgg of the two body atoms is then given by
fatherOf(lgg(peter, peter), lgg(mike,michelle)). The definition of least
general generalizations for terms then gives lgg(peter, peter) = peter
and lgg(mike,michelle) = X , where X is a variable represent-
ing lgg(mike,michelle). The lgg for the rule parent1 then is
parent(peter) ← fatherOf(peter,X). This lgg is less general than
the rule itself, because it includes peter instead of a variable; the test suite
for this rule base does not test the full flexibility of this rule - it is only
tested for the entity peter as father. Because the lgg is less general than the
rule, parent1 is not completely covered. A simple change to one of the test
sets that replaces peter with some other identifier, however, would change
the rule instantiations in a way that parent1 is completely covered.

4.3 Implementation

An implementation of a testing framework that realizes these test concepts
has been done in Project Halo (see section 3.1.2). The focus of this imple-
mentation has been on good usability in order to allow domain experts to
successfully use it. The testing framework is implemented as a plugin for
Eclipse [7] that works within DarkMatterStudio. For the user interface it re-
lies exclusively on the Simple Widget Toolkit SWT [161]. It is implemented
following the well known model-view-controller [95] pattern. The differ-
ent parts of this framework (test fact editor, test query editor, result view ..
) are implemented as independent views and editors that do not know of
each other, but that share one model and controller.

The testing implementation consists of six main parts. Each of the parts is
described in detail in subsequent sections.

• The test manager for managing and executing tests. It is responsible
for adding the test facts to the knowledge base prior to the execution
of tests, computing the result of queries and comparing the result to
the intended result. It is not directly visible to the user and includes
the model and the controller for the testing framework.
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Figure 4.2: Overall test interface, showing the stylized english view at the bottom
left, the test fact interface in the top right and the result view at the bottom right.

• The test overview - an interface that allows users to manage tests and
to get a quick overview about which test succeeded and which failed.

• The test fact interface allows users to create test facts in a simple,
graphical way.

• The test query interface allows users to create test cases in a simple,
graphical way.

• The stylized English view that shows a textual representation of the
current query or fact diagram.

• The result view that shows the current results and allows to specify
the expected result.

The combination of the different parts of the interface is shown in figure 4.2.
At the top left is the navigation interface that shows different elements from
the knowledge base, in this location either the overall knowledge navigator
or the test overview is shown. Below that, on the lower left hand side the
stylized English view is shown. The biggest part of the interface is taken
by either test fact or test query Interface - depending on which is currently
opened. Below these editors the result for the currently selected test query
is shown.
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4.3.1 Test Manager

The test manager realizes the test concepts introduced in the beginning of
this chapter. It is responsible for managing the test suite associated with the
working environment of one developer. The test suite consists of test sets,
each of which contains test facts and a number of queries. In addition to
these concepts, the test manager uses the notion of ’diagram’; the graphical
representation of a query or a number of facts that is edited by the devel-
oper. One query is always represented by one query diagram, the test facts
of one test set, however, can be spread over multiple fact diagrams. An
overview of the model is shown as UML class diagram in figure 4.3.

Figure 4.3: Simplified test framework implementation model

Not shown in this simplified object model are the relations to other parts
of Dark Matter Studio. Of particular importance are rule test sets - a spe-
cific kind of test set that is directly associated with a rule. These test sets
get created for a particular rule and stay connected to this rule for its en-
tire lifecycle. The main difference to normal test sets is, that when a rule
gets deactivated or removed from the rule base the test is deactivated or
removed as well. This was an important feature since users of the system
often deactivated rules during development of the rule base - causing a
large number of unnecessary test failures.
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Another extension to the model presented at the beginning of the chapter
is a slightly more complex notion of test case success. This was necessary
because users were often unwilling to specify the expected result for test
cases. Instead of specifying the expected result, they viewed getting any
result to a query as the success of a test case. The test manager was hence
extended to understand three possible states of test cases:

• test case success: an expected result is specified and matched by the
current result.

• probable test case success: no expected result is specified, but the test
case query returns some result.

• test case failure: an expected result is specified and not matched by
the current result or no result is specified and the query returns no
result at all.

4.3.2 Test Overview

Figure 4.4: Test overview interface

The test overview interface is used to add, remove, open and, run; i.e. to
manage test sets, test case and test facts. This view shows all test and with
one glance allows to see which succeed and which fail. In the interface (see
figure 4.4) test query diagrams are shown as documents with small ques-
tion marks, test fact diagrams with two exclamation marks. Red and green
decorations are used to mark test cases that fail or succeed. A probable test
case success is shown by the absence of any mark. The test overview allows
creating new test entities by clicking on the embedded toolbar or through
a context menu.

Finally the test overview also allows user to start any number of test cases
with one click. A progress dialog is included that shows the progress of the
tests, allows to cancel the test execution and that shows a short summary
of the results of running the tests.
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4.3.3 Test Fact Interface

Test facts and queries are created using variants of the Dark Matter Studio
rule editor. Besides the obvious advantage of saving implementation effort,
this also helps the domain experts because they only have to learn to use
one editor. The reuse of concepts from the Rule Editor is easily possible
because in the end a fact is just a rule without a body and a query is a rule
without a head. We will start by explaining the editor in its role as test fact
editor.

Figure 4.5: An example fact diagram

One example fact diagram is shown in figure 4.5. This example realizes
test facts of the kind that where needed for the physics domain in the Halo
project. This example diagram describes earth, its mass and rotation pe-
riod, and a satellite orbiting the earth at some radius. This could be a test
setup for tests that check whether the rules that identify and calculate a
geostationary orbit are correct.

The components of a fact diagram are instance nodes, predicates, attribute
values, attributes and relations. Instance nodes represent F-logic state-
ments of the form“Instance:Class”. Instance nodes are displayed as el-
lipses. “Earth is a Stellar Object” is an example of such a node in Figure
4.5. The user can create an instance node by selecting the appropriate tool
from the context menu or the palette in the editor and then choosing an
existing concept and a name for the instance. Alternatively, a concept or
an instance can be dragged from the concept hierarchy in the knowledge
navigator into the editor. Instance nodes are connected by relations. The
possible relation types are restricted by the schema information about con-
cepts of the instance nodes connected by a relation link. Relation links that
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are not consistent with the schema are flagged as problematic, highlighted
in orange and reported in a problems view. Attribute values are shown
as rectangles and connected to the instance nodes by attribute links. Here,
too, the editor ensures that the attributes correspond to the schema.

Note that - in the interest of usability - this fact editor is restricted in expres-
siveness; in particular it does not offer a way to enter any function symbols
or subclass statements. I.e. the fact editor is restricted to creating instances
and adding data-atoms for these instances.

4.3.4 Test Query Interface

The actual test queries are created with a variant of the same rule editor.
It allows the user to specify the intended result as well as to create queries
that contain variables. In the first case, the test query will check whether
the result can be inferred, in the latter case the result will be displayed and
verified by the user.

When the editor is used to specify an intended result, it is used exactly like
the fact editor: The diagram consists of instance nodes, attribute values and
predicates that are connected with relations, attributes and links indicating
the usage of an instance in a predicate. Only that, because the graph as a
whole is specified as a query, the system knows that these facts should not
be added to the knowledge base, but rather checked whether they can be
inferred.

Figure 4.6: The test query interface

An example of the query editor used to specify a query with variables is
shown in Figure 4.6. The query asks for all instances of OrbittingMove-
ment, the StellarObject that is orbited and the object that is orbiting. The
results that are returned are restricted so that they do not include those or-
biting movements that are instances of GeostationaryOrbitingMovement.
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In short: This example query asks for information about orbitting things
that are not in geostationary orbit.

The main building blocks of the query editor are still the instance nodes,
only that now it is allowed to substitute variables for the instance names.
The same holds for attribute values that can be replaced by variables. A
query diagram can obviously combine instance nodes with variables and
instance nodes referencing instances in the knowledge base in any way.

The test query editor allows for negated query parts. Negation of parts
of the query is represented by the concept of exception. An exception is
drawn as a red box in the query diagram. Query entities drawn in this
box are negated. For instance, the instance node inside the large red box
in the example in Figure 4.6 appends the literal “not anOrbittingmove-
men:GeostationaryOrbitingMovement.” to the query.

In the interest of usability, the editor’s expressivity is restricted relative to
what is possible in F-logic. In particular, the editor does not allow disjunc-
tive queries, variables for concepts (e.g. “return all classes for the instance
Earth”) or variables for relations (e.g. “return all relations between Mars
and Global Surveyor”). Allowing variables for relations or concepts would
have made it impossible to do schema-based validation and error reporting
of the entered data. Disjunction would have made the diagrams very hard
to read.

4.3.5 Stylized English View

The content of fact and query diagrams is also displayed in a form of a styl-
ized English explanation text; this should help prevent mistakes due to a
misunderstanding of the graphical language of the editors. The text shown
in the stylized English view changes automatically to immediately reflect
the changes the user makes to the diagram. The automatically generated
stylized English text for the example in Figure 4.5 reads:

The following statement are asserted:
satellite is a Object.
Earth is a StellarObject.
rotationPeriod of Earth equals 86164 Second.
mass of Earth equals 5.9e24 Kilogram.
orbitingmovement is a OrbitingMovement.
orbitingmovement orbited Earth.
orbitingmovement orbiting satellite.
radius of orbitingmovement equals 35768km
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4.3.6 Result View

The results of a query are displayed in the test result view shown in Figure
4.7. It shows the result that was saved as correct and the current result side
by side. To the left it shows the saved result as table. The table has one
column for each variable in the query and one row for each set of variable
bindings that satisfy the query. The example in the screenshot in Figure 4.7
shows the saved result for the query presented in Figure 4.6. A different
table to the right shows the result from the last run of the test. In the ex-
ample, the current result is only a subset of the saved result and hence the
query fails. Buttons below the result tables allow to run the query again,
designate the current result as correct, to designate it as false and to open
the current test in the debugger. The test result view does not offer any di-
rect way to input the intended result, the user can only designate a current
result as correct or false. Users that want to directly define the intended
result can use the query editor described above to describe it in a query
without variables. The result view then changes to display only whether
this intended result can be inferred or not.

Figure 4.7: Result view

4.4 Evaluation

Most of the design elements described in the previous section emerged in
a process of iterative comparison and testing of alternatives; in fact two
whole interfaces were discarded before the presented design for test and
query editor was developed. The first of these interfaces was text based
and too difficult to use for end users. The second was a graphical editor
but it used symbols and concepts different from the rule editor; hence it
required domain experts to learn another graphical language - something
that is not needed with the third and current implementation.

Further improvements in detail are certainly possible; but the important
question to evaluate was: is this general approach to testing sufficiently
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natural and manageable for domain experts so that they can apply it effec-
tively over extended periods of time to large and complex bodies of knowl-
edge?

Method

The evaluation of the testing framework was performed as part of the over-
all evaluation in the second phase of Project Halo, already described in sec-
tion 3.1.2. For this evaluation most relevant is the 6-week knowledge for-
mulation phase, during which the domain experts worked 4–5 hours each
day. The knowledge formulation phase began with 40 hours of training
with Dark Matter Studio, about three-quarters of which was devoted to su-
pervised practice. Then each domain expert spent 100 hours independently
using Dark Matter Studio to formalize knowledge from two chapters of a
college-level textbook from his or her domain. The main topics in physics,
biology, and chemistry were kinematics, cell structure and processes, and
stoichiometry4, respectively.

Each domain expert either had already earned a master’s degree in the do-
main in question or was taking master’s-level courses. None had expe-
rience with knowledge engineering; two had some programming experi-
ence, but it was not related to the type of formalization required with Dark
Matter Studio.

Use of the Test and Debug Component

All domain experts participating in the evaluation used the test component
extensively. On average more than 30% of the time was spent in the T&D
(Test and Debug) component that also included a debugging tool. This high
proportion of time spent in this component is, however, not exclusively a
consequence of the importance of testing, but also caused by the long time
that running some of the tests took5.

4The quantitative study of reactants and products of chemical reactions.
5A consequence of the overall runtime problems faced in Project Halo - see section 3.1.2.
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Time spent in
DMS (hh:mm)

Time spent in
T&D (hh:mm)

% of time
spent in T&D

DE 1 (Physics) 106:56 29:37 27.7%
DE 2 (Biology) 81:13 22:30 27.7%
DE 3 (Biology) 128:25 59:42 46.6%
DE 4 (Chemistry) 96:24 35:26 36.8%
DE 5 (Chemistry) 84:32 17:08 20.3%
DE 6 (Physics) 102:54 28:55 28.1 %

Table 4.1: Use of test and debug component for each domain expert

During this time an average of 858 test cases where evaluated, of which
almost 81% ran successfully and almost 19% were either aborted by the
user or ended in an exception in the inference engine.

# of test runs # of successful
test runs

# of test runs
with excep-
tions or aborts

DE 1 (Physics) 1194 1001 193
DE 2 (Biology) 492 433 59
DE 3 (Biology) 601 448 153
DE 4 (Chemistry) 861 682 179
DE 5 (Chemistry) 901 770 131
DE 6 (Physics) 1097 883 264

Table 4.2: Number of test runs for each domain expert

The thoroughness with which the domain experts tested the rules varied
widely - even though all domain experts were asked to test extensively. In
the end some domain experts had tested barely 30% of their rules while
others had more tests than rules.

# of rules # of tests % of enabled
rules tested

DE 1 (Physics) 50 24 51%
DE 2 (Biology) 69 56 93%
DE 3 (Biology) 130 57 46%
DE 4 (Chemistry) 146 36 29%
DE 5 (Chemistry) 175 49 28%
DE 6 (Physics) 40 48 115%

Table 4.3: Number of rules and tests for each domain expert

It can be seen that the physics domain experts were able to get by with a
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smaller number of rules (reflecting the fact that much of the knowledge in
the physics syllabus could be captured by some key equations), which they
were able to test more successfully. In the other two domains, the domain
experts found it necessary to define considerably larger numbers of rules,
but they were able to test only roughly the same absolute numbers of rules
successfully.

The poorer results for the testing of these larger rule sets can be explained in
part by technical problems of the inference engine: whereas the execution
times with the small rule sets of physics were quite acceptable (on the order
of a few seconds), in the other two domains the domain experts often had
to wait several minutes or more, and they accordingly often aborted tests.
Moreover, these large rule sets gave rise to forms of interference among
rules that had not been encountered in the previous smaller-scale tests or in
the work of experienced knowledge engineers with the system. By taxing
the patience of the biology and chemistry domain experts, these problems
offer an opportunity to see how important these domain experts considered
the activity of testing. We have already seen that these domain experts
spent a comparable amount of time using the T&D perspective and that
they initiated hundreds of test runs despite the difficulties just mentioned.

Overall Responses to the Test Component

Figure 4.8: Respones to test and debug component

A different perspective is given by Figure 4.8: The domain experts were
asked in the final interview to express their degree of agreement with the
statement “I found [this component] useful in helping me to achieve my
goals.” Here the pattern is consistent: All domain experts express moderate
or strong agreement with the statement for the test and debug component.
Overall for all components, domain experts had by no means a general ten-
dency to express satisfaction with. For example, two components that were
intended to facilitate the definition of new elements of the ontology on the
basis of occurrence of terms in the text were found to be relatively unim-
portant: The domain experts felt quite capable of specifying the necessary
ontology elements themselves.
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Qualitative Observations

Even domain experts with no previous experience in knowledge engineer-
ing or programming were able to use the testing framework. They showed
a strong inclination to test their rules as they went along, and they found
the testing tool provided to be basically suitable for this purpose (except
for the performance problems that they experienced). All domain experts
were able to create and run a large number of tests.

The later question answering phase and the examination of the created rule
bases revealed that only sufficiently tested knowledge bases would later
work. The knowledge bases of the two physics SME that were tested most
extensively were also the ones most successful at question answering (see
section 3.1.2).

One severe drawback of the system during the evaluation was that some-
times running all tests took a very long time; some domain experts even
had to run their tests overnight. This lack of immediate feedback and inter-
activity was one reason for why testing has sometimes been neglected and
tests did not work properly. These runtime problems, however, were not
caused by the testing component but were rather a consequence of overall
issues with the inference engine encountered in this phase of Project Halo.

4.5 Prior Work

Little academic literature exists about the testing of logic programs, even
though it is used routinely and is often implemented as part of rule base
development environments.

A simple notion of tests is given in [12, 13] for the purpose of defining a
test coverage measure. In this paper tests and test input is defined as a set
of atomic goals, without any notion of test facts as defined in the beginning
of this chapter. Paschke et. al [127] take an approach more similar to the
one presented here, defining a test case as a set consisting of temporarily
asserted test input facts, one or more test queries and, for each query, an
expected answer label and an output result set. This paper also defines a
format to represent tests in XML and to include them in RuleML [141] files.
This definition, which postdates the one presented here, uses a different
terminology but is conceptually compatible.

A different approach is taken by Ruggieri [140], he defines a test as finite set
of arbitrary, possible non-ground, atoms. The set represents requirements
to the program based on requirements documents, the specification or pre-
vious versions of the program. Testing then becomes the checking whether
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the formal semantics of the program entails this set of atoms. In this model,
however, testing is not generally decidable.

Test coverage metrics for logic programming based on least general gener-
alizations have been proposed before by Belli and Jack [13] and by Paschke
et. al [127]. Both approaches, however, only calculate the lgg for the spe-
cialization given by the unification of the test queries with rules. The ap-
proaches do not consider any actual results of the query or the inference
process beyond the unification of the query with the top-level rule. Be-
cause a rule has to unify directly with a test query in order to be covered,
an unnecessarily large number of tests is required. As an example again
consider the rule base below and the query q1 = {parent(Y )}.

parent(Y )← fatherOf(Y,X) # Rule parent 1
fatherOf(A,X)← male(A), child(A,X) # Rule fatherOf
male(peter)
child(peter,mike)

In order to process this query, the inference engine uses both rules and
hence the test coverage measure proposed in this chapter will find both
rules to be partially covered. The test coverage metrics proposed by
Paschke and Belli, however, only consider the rule that can be directly uni-
fied with the query, i.e. in this example only the rule parent1; these test
coverage metrics will still show the rule fatherOf to be not covered at all,
hence will underestimate the actual coverage of the rule base.

Another problem for the two approaches concerns trivial covers. A trivial
cover for a rule base can be created by taking all rule heads as test queries.
None of the queries may return any result, but the rule base is fully cov-
ered6. Jack and Belli introduce restrictions on the queries to obtain non-
trivial covers—a complication that is not needed in the approach presented
here. As an example consider the rule base (the same as above, only the
facts have been removed):

parent(Y )← fatherOf(Y,X) # Rule parent 1
fatherOf(A,X)← male(A), child(A,X) # Rule fatherOf

A trivial cover for this rule base can be obtained with the queries q1 =
{parent(Y )} and q1 = {fatherOf(A,X)}. The least general generalisation
of the unification of these queries with rule parent1 and rule fatherOf
are variants of the rules and hence Paschke’s and Belli’s7 measures will
show both rules to be fully covered. This is problematic, because these tests

6These covers are called trivial, because in the case where no result is expected or result
they do not add any information to the rule base.

7Without the complicating restrictions.
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do not add any information to the rule base; because these test coverage
measures count nonsensical tests. With these measures a test suite giving a
complete test coverage can be created fully automatically for all rule base
that do not contain facts. The approach proposed by the author does not
suffer from this weakness, because it considers not the unification of the
query with the rules but the actual rule instantiations used to derive results.

A different approach is taken in the TRUBAC8 [6, 5] system. Here the rule
base is translated into a graph reflecting the possibilities of rules to interact
and to use facts. Different test coverage measures are then defined based
on how well different classes of paths are used in the evaluation of the
test cases. A similar approach is taken by Kleiner [94] who also defines
a visualization of the coverage of a rule base. Compared to the approach
introduced here, these approaches are stronger and require a larger number
of tests to achieve complete test coverage; in fact the number of tests needed
is so large, that complete test coverage becomes unattainable for all but the
simplest rule bases.

4.6 Conclusions

This chapter presented three different contributions

• A formal account of the notions of test set, test case, test facts and test
suite that transfers these important notions to normal logic programs.

• The definition of a novel test coverage measure based on least gen-
eral generalization that avoids the problems of earlier measures that
underestimating test coverage in some cases and overestimate it
through trivial covers in others.

• The implementation and evaluation of a test framework based on
these notions.

The evaluation showed that these testing concepts as well as the testing
interfaces were usable by domain experts. Even domain experts who had
previously mainly used standard office software quickly caught on to tools
for testing an ontology and associated rules, all were able to create and
run a large number of tests. This in turn helped them improve their rule
development skills and to create working rule bases.

Qualitative evidence from observations and interviews of the domain ex-
perts further showed the large interest and importance domain experts
placed on testing; testing was very important for their motivation and for
them to learn about the knowledge engineering.

8Testing with Rule Base Coverage.
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The presented solution is the first graphical testing framework for F-logic
and it tackles the Problem of Tool Support for the dynamic analysis transi-
tion in the fault lifecycle (see section 3.2). It is further specifically tailored
to better support end user developers and well suited to support agile de-
velopment of rule bases. The presented testing solution realizes the Inter-
activity principle (by enabling developers to quickly try out the developed
rule base) and the declarativity principle (none of the proposed concepts
depend on the procedural nature of the inference engine).



Chapter 5

Debugging

Debugging is the process of tracking down and correcting faults based on
errors, differences between an observed or measured value or condition
and the true, specified or theoretically correct value or condition [84]. De-
bugging is a two step process, first a diagnostic step that identifies the fault
that caused the observed bug and second, changes to the rule base to rec-
tify the fault. In most development environments debugging is supported
by dedicated tools that can greatly speed up the debugging process. Most
of these tools center on the diagnostic step, relying on the overall creation
and editing tools for the second step.

Debugging is an inevitable and important part of any software develop-
ment activity, and good debugging support is an important ingredient for
the efficient creation of software. These statements are equally true for all
programming paradigms; debugging may look different for rule based sys-
tems, but it is just as needed as it is for assembler programming.

The importance of debugging was further emphasized by the survey of
developers presented in section 3.1.1. Asked to compare rule base devel-
opment to the development with procedural and object oriented program-
ming languages, the majority of participants found that rule based systems
development processes are inferior with respect to ease of debugging. In a
later question the difficulty of debugging was also given most often as the
issue hindering the development of rule bases.

In the analysis (section 3.2) five issues were identified as most affecting the
debugging of rule bases

1. The Problem of Interconnection is hampering fault localisation be-
cause it leads to errors appearing in surprising places.

2. The no-result-case and the Problem of Error Reporting make it hard

109
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to diagnose faults, because the error in many cases simply is an empty
result set.

3. The Problem of Procedural Debugging forces developers using state
of the art debugging support to learn about the procedural nature of
the inference engine; thereby brakes the declarative paradigm and
forces developers to learn about the how of computation.

4. Embedded Rule Bases and Embedded Procedures that lead to
hard to diagnose faults at the boundaries of different programming
paradigms, but also mean that rule bases tend to be relatively small.

5. The Emerging Semantic Web and Rule Interchange that mean de-
bugging may include rule bases developed independently, without
central control; meaning that often the developer doing the debug-
ging has to learn about the rule base at the same time.

The design principles of interactivity, visibility of the hidden rule base
structure, declarativity and modularization were identified (see section
3.3) as additional requirements for tools addressing the debugging chal-
lenge.

This chapter presents Explorative Debugging as a new debugging
paradigm for rule based systems. It concentrates on the issues identified in
the analysis and realizes the design principles proposed. Explorative De-
bugging tackles the Problem of Procedural Debugging by making it pos-
sible to explore the execution of a rule base at the declarative level. The
Problem of Interconnection and the Problem of Error Reporting in the no-
result case are tackled with Partial- and Mutated Prooftrees introduced in
this chapter (section 5.1.3). The proposed debugging paradigm enables de-
velopers to explore and quickly do experimental changes to the rule base
- realizing the interactivity design principle and enabling users to learn
about unfamiliar rule bases during debugging. Overall the visibility design
principle is realized through a multitude of (partially novel) techniques to
show the static (section 5.1.2) and dynamic structure (section 5.1.3) of the
rule base. A specific way to deal with faults at the boundaries to procedural
built-ins was also implemented and is presented in section 5.2.2.

The chapter starts with the definition of Explorative Debugging and its
components. After that the two implementations of the Explorative De-
bugging paradigm for RDF rules and F-logic are presented. The F-logic
implementation is a more conservative implementation that is integrated
into a commercial knowledge engineering workbench while the RDF rules
implementation is more powerful but less refined. Also within the imple-
mentation section a debugging walkthrough using the F-logic debugger is
presented. The section thereafter describes the comparative evaluation of
the debugger for RDF rules with a procedural debugger. After that a long
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section gives an overview of prior work in rule debugging before the chap-
ter concludes.
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5.1 Explorative Debugging and its Components

An Explorative Debugger is a rule browser that enables the user to browse
through the declarative structure of a rule base and its execution. Explo-
rative Debugging is defined as:'

&

$

%

Definition 17 (Explorative Debugging) Finding faults in a rule base
based on a developer-controlled exploration of the inference process that leads
to an error. This exploration process is done at the level of the declarative se-
mantics of the rule language, it is independent of the strategy of the inference
engine. The debugging space that is explored consists of
• The rules themselves, that can be experimentally altered to explore the

effects of changes.
• The conclusions enabled by rules.
• The static structure of the rule base.
• The dynamic structure of the inference process that led to the error.

An Explorative Debugger is a browser like tool that supports this process
by showing the different components of the debugging space and allowing
to navigate along the connections between the entities in it.

In this section each of these components will be described in more detail.
The actual implementation will be the topic of the section after this.

5.1.1 Rules and Rule Firings

The main elements for an Explorative Debugger are rules. The debugger
is always focused on one rule and can be opened for any rule. Navigation
elements allow navigating between rules. The decision to center the de-
bugger on rules was taken because the user syntax of every rule language
known to the author as well as the user interface of most rule editing tools
is rule centric as well. Centering a debugger around rules sounds self evi-
dent, but is not realized in many existing debuggers for rule based systems
(these debuggers use the goal the inference engine currently tries to prove
as main element).

An important component is the opportunity to quickly change the rules to
further explore the role different parts of the rule play. A simple way to do
this is to enable the user to quickly deactivate parts of the rule body to check
which effects this has on the rule firings. This is also the approach realized
in the implementations described below. Any kind of experimental rule
change could be supported, however, an integration with rule editing tools
could serve a similar purpose.
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Rule firings are the most basic form of checking whether a rule performs
according to the expectations of the user, they enable the user to quickly
check whether a given rule performs the expected function.�

�

�

�
Definition 18 (Rule Firings) The rule firings of a rule E with respect to a
rule base R are all ground instances Eθ in the perfect Herbrand model HM of
R.

For a ruleA← B (whereA is a conjunction of atoms andB is a conjunction
of literals) these rule firings can be computed simply from the results to the
query← B.

While very simple from a theoretical point of view, practical application
of rule firings can be problematic. On the one hand the number of rule
firings can be very large for some rules, requiring methods to summarize
large result lists or even needing a way to compute only partial results to
ensure the responsiveness of the program. Emphasizing the use of rela-
tively small test cases can also help reduce this problem. On the other hand
rule firings cannot be computed at all for some rules that utilize built-ins,
e.g. larger(a, b) ← greater(a, b) where greater(a, b) is built-in. This kind
of rules would require other user interface methods to enable the user to
check whether they perform to her expectations.

5.1.2 Static Structure

The simplest notion of static structure of a rule base is given by the
Depends-On Graph. We define this well known structure (e.g. [33]) in the
following way:'
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Definition 19 (Depends-On Graph) The depends-on graph of a rule base
R, is a directed graph GR = (R,A) with
• The set of vertices R, there is one vertex for each rule in the rule base.

We write that RE1 is the vertex for rule E1.
• The set of ordered pairs A of vertices called arcs or arrows. An arc e =

(RE1 , RE2) ∈ A exists iff at least one body atom of E1 can be unified
with at least one head atom of E2.

Intuitively, the depends-on graph captures the notion that one rule con-
cludes a result that is used by another rule; an arc e = (x, y) is considered
to mean that the rule represented by the vertex x depends on the rule rep-
resented by y.

Depends-on connections computed in this way overestimate the potential
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of rules to interact; hence approaches exist to impose additional constraints
[93, 143, 74]. Usually these approaches require that two rules connected
through a depends-on-link are consistent with respect to some predefined
criteria. A different approach is taken by [176], it uses actual rule interac-
tions during the use of the rule base to compute the strength of a depends-
on connection.

An important limitation of the Depends-On Graph is the lack of support
for cases where a fault prevents the existence of a depends-on connection.
For example a typo affecting a ground term in either the head or the body
of a rule may cancel a depends-on connection; a depends-on graph will
not offer any support for finding such a fault. To address this problem the
mutation-extended (mutex) depends-on graph is defined.

The mutex depends-on graph is defined to give a declarative notion of
static dependencies that almost exist, static dependencies where a rule body
almost unifies with another rule’s head. A mutex depends-on graph is a di-
rected graph with connections between all rules, where the strength of the
connection between two rules is inverse to the size of the change that would
need to be performed on the rules in order to have a static dependencies (a
depends-on connection as defined above). To capture this notion we first
formalize the notion of change as mutation. A mutant is then defined as
the application of a mutation to a rule and mutation similarity as a measure
for the size of the change. Finally the mutex depends-on graph is defined
based on these notions.'
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Definition 20 (Mutation) A mutation ρ is a set ρ = {t1/u1,
..., tn/un, p1/q1, ..., pm/qm}
• where t1, ..., tn and u1, ..., un, are terms and t1, ..., tn are distinct
• where p1, ..., pm and q1, ..., qm, are predicate symbols and p1, ...pm are

distinct.

Based on this a Mutant of a rule is defined as the application of a mutation
to a rule.'
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Definition 21 (Mutant) We call the rule obtained by applying a mutation
ρ = {t1/u1, ..., tn/un, p1/q1, ..., pm/qm} to a rule E a mutant of the rule,
this is written as Eρ. The mutant is obtained through the simultaneous re-
placement of all terms tx in the rule with the corresponding ux and of predicate
symbols py with the corresponding qy.

Based on this we define the Mutation Similarity as a measure for the size of
the change implied by a mutation.
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Definition 22 (Mutation Similarity) The mutation simi-
larity fsim(ρ) is defined as the aggregation of the Term
and Predicate Similarity values of all replacements, i.e.
fsim(ρ) = faggregation (fsimTerm(t1, u1), ..., fsimTerm(tn, un),
fsimPred(p1, q1), ..., fsimPred(pm, qm)). fsim of the empty mutation
ρe = ∅ is defined to be 1.

The function faggregation can be any function to aggregate the term similar-
ities; a typical function would be the product or the sum of all term and
predicate similarity functions. The selection of the right aggregation func-
tion is an empirical question and depends on the rule language and, in
particular, the kind of errors that get made.�
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Definition 23 (Term and Predicate Similarity Functions) The term
similarity function fsimTerm and the predicate similarity function fsimPred

are arbitrary similarity functions, returning values between 0 and 1, with 1
representing identity and 0 maximum dissimilarity.

A simple term similarity function would be the inverse of the edit distance
between the terms. More sophisticated similarity functions could utilize
semantic similarity measures (e.g. [103]), such as the taxonomic distance
between types or type similarity computed by an ontology mapping ap-
proach.'
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Definition 24 (Mutation Extended Depends-On Graph) The Mutation
Extended Depends-On Graph (Mutex Depends-On Graph) of a rule base R,
then, is a directed graph GR = (R,A) and a function fs : A→ [0, 1] with
• The set of vertices R, there is one vertex for each rule in the rule base.

We write that RE1 is the vertex for rule E1.
• The set of ordered pairs A of vertices called arcs or arrows. An arc exists

for every possible pair of rules.
• The function fs representing the strength of the evidence for a particular

arc. The value of fs for an arc a(RE1 , RE2) is defined as the maximum
mutation similarity fsim(ρ) for all body atoms a1,x ofE1, all head atoms
a2,y of E2 and all mutations ρz such that there exists a substitution θ
such that a1,xθ = a2,yρzθ.

Intuitively, it can be said, that the mutation extended depends-on graph
has connections between all rules, the strength of each arc representing the
minimum change that would be needed in order to unify at least one body
atom of a rule with the head atom of another. The mutation extended
depends-on graph contains all arcs ax of the normal depends-on graph
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with fs(ax) = 1, since per definition of the normal depends-on graph, these
arcs represent rule pairs for which a body atom can be unified with a head
atom without any change.

Practically, it obviously makes no sense to either compute or show the en-
tire mutation extended depends-on graph. Rather a strict minimum simi-
larity needs to be imposed on the computation and the display of the ex-
tended depends on graph. Depending on the similarity function and on the
expressiveness of the rule language it might also be necessary to compute
the extended depends-on graph only heuristically.

5.1.3 Dynamic Structure

The basic dynamic structure of the rule base is given by the prooftree that
in section 4.2.1 was defined as a graph G(Ax, P ) = (V,E) for an atom Ax ∈
HMp :

• The justification for Ax is in V.

• For each rule instance Ri = A← L1, ..., Ln in V, the justification Ji for
each atom in a positive literal in the rule body of Ri is also included
in V and an edge e = (Ri, Ji) is in E.

Although normally not defined in this declarative way, variants of
prooftrees have been used successfully for many years in the explanation
of expert systems (e.g. [36, 108, 62]). The use of prooftrees for debugging
(and to a lesser extent also for explanations) is, however, limited because of
their inability to explain the failure of the rule base to arrive at an expected
result; a prooftree is not defined for atoms A /∈ HM .

As an example consider the following rule base, and the atom
parent(peter). This atom is not a valid conclusion of this rule base, it is
not in its Herbrand Model and hence there is no prooftree for this atom.

parent(Y )← fatherOf(Y,X) # Rule parent 1
fatherOf(A,X)← male(A), child(A,X) # Rule fatherOf
child(peter,mike)

However, we can see that parent(peter) can almost be concluded. Adding
just one fact (male(peter)) would make parent(peter) a conclusion of this
rule base. The partial prooftrees introduced below are a way to capture and
communicate this notion of a proof that almost succeeded.
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5.1.4 Partial Prooftree

A partial prooftree is a directed graph G(A) = (V,E) that exists for every
ground atom A that can be formed using the terms and predicate symbols
in the rule base. To define it, first the notion of partial justification needs to
be introduced.'
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Definition 25 (Partial Atom Justification) The partial justification for an
atom Ax ∈ HMp is defined as:
• If there is a substitution θ such that Axθ ∈ P then Axθ is the justifica-

tion.
• If Ax /∈ P then there can be a ground substitution θ and at least one

rule R ∈ P such that Ax is in the head of Rθ and all atoms in positive
literals in the rule body are in the Herbrand model. All such instances
Rθ are the justifications for Ax.
• If there is neither of the above, the justification is the null justification.

Based on this, the partial prooftree can be defined:'
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Definition 26 (Partial Prooftree) A Partial Prooftree Gp(Ax, P ) = (V,E)
for the atom Ax in the logic program P is defined recursively as:

1. The partial justification for Ax is in V.
2. For each rule instance Ri = A ← L1, ..., Ln in V, the partial justifica-

tion Ji for each atom in a positive literal in the rule body of Ri is also
included in V and an edge e = (Ri, Ji) is in E.

Intuitively, a partial prooftree can be understood as the set of (successful as
well as failed) proofs of a top-down inference engine; note, however, that
its definition does not depend on any particular evaluation strategy of the
inference engine. Partial prooftrees are augmented by a scoring function
fpp that computes the grounding of a prooftree in the rule base, for example
through the proportion of justifications that are null justifications.

Computing all partial prooftrees defined in this way is an intractable prob-
lem, the partial prooftrees would be very confusing to the user and very
often they would be of infinite size. For this reason, any practical applica-
tion must minimize the size of the partial prooftrees while maximizing the
value of the scoring function fpp. One algorithm to do this is described in
the next section.

Coming back to the example from the beginning of this section, it can be
seen that there is a partial prooftree for the atom parent(peter) that includes
the null justification for the atom male(peter) (see figure 5.1). Note that
there are also partial prooftrees for all imaginable atoms; for example the
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Figure 5.1: Partial Prooftree Example

partial prooftree for the atom parent(mike) consists of only the null justifi-
cation for parent(mike).

5.1.5 Computation of Partial Prooftrees

Based on the concepts from abductive reasoning [90, 8] and on the algo-
rithm sketched in [32], partial prooftrees can be computed as described in
procedure BACK-CHAIN-P.

The algorithm presented extends the concepts of a backward chaining in-
ference engine. The core change is that when a goal cannot be proven, the
inference engine may assume it to be true in order to investigate whether
it can find a likely proof with only a few assumptions. The decision on
whether to carry on with the inference process is then taken based on the
relative size of the goals that have already been proven, the goals that still
need to be proven and the set of assumed goals.

As an input the algorithm takes a logic program, the list of atoms to be
proven, a substitution and two sets of already processed goals and assumed
goals, respectively. At the beginning of the inference process, the list of
atoms consists of the atoms from the query in any order. The substitution is
empty, also the sets of assumed goals and already processed goals contain
no elements.

On being called the procedure first checks whether the inference process
has been successful, whether qlist is empty and whether hence all goals
have been proven. If this is the case, the current substitution and the sets
Ap and Aa are returned. These sets are not directly necessary as result, but
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Data: The logic program P , the list of atoms to be proven qlist, a
substitution θ, a set of already processed goals Ap and a set of
assumed goals Aa

Result: A set of tuples consisting of a subsitution θ, a set of processed
goals and a set of assumed goals, i.e. (θ,Ap, Aa)

if qlist is empty then
return {(θ,Ap, Aa)}

else
q ← FIRST(qlist)
goalFailed = true
foreach q′i in P such that (θi)← UNIFY(q, q′i) succeeds do

answers← (θθi, Ap ∪ q′i, Aa) ∪ answers
goalFailed = false

end
foreach rule (q′1 ← (p1, ..., pn)) in P such that (θi, )← UNIFY(q, q′i) do

answers←
BACK-CHAIN-P(P, [p1θi, ..., pnθi] , θθi, Ap, Aa) ∪ answers
goalFailed = false

end
if goalFailed = true then

Aa = Aa ∪ {q′1}
if fs(qlist, Ap, Aa) < threshold then

answers← (θθi, Ap, Aa ∪ q′i) ∪ answers
end

end
end
foreach (θ) in answers do

toReturn← BACK-CHAIN-P(P,REST(qlist), θ, Aa, Ap) ∪ toReturn
end
return toReturn

Procedure BACK-CHAIN-P(P,qlist,θ,Ap,Aa)
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would allow to later rank the results based on the number of assumed goals
or the proportion of assumed goals to succesfully proven ones.

If qlist is not empty, the first goal from the list is taken and processed. First
the procedure attempts to directly unify the goal with the facts in the logic
program. For every fact where this succeeds, the substitution and the sets
of assumed and already proven goals are added to the set of answers.

In the next step the goal is matched against the heads of the rules in the
logic program. For every rule for which it is possible to unify the head with
the current goal, a recursive call to the BACK-CHAIN-PARTIAL procedure
is made. This call takes as arguments the body goals from the rule with the
substitution applied, the current substitution and the sets Aa and Ap. The
results returned by this recursive call are added to the sets of answers.

If both the unification with facts and the unification with rule heads did
not succeed at least once, the current goal is added to the list of assumed
goals. A check is then done whether the proportion of assumed goals to
other goals has not gotten too large; this is done to ensure that the inference
engines tries only promising paths of reasoning. If the proportion is still
acceptable1, the current substitution and the sets Aa and Ap are added to
the set of answers.

In the final loop of the procedure, a recursive call is done for every sub-
stitution in the set of answers. The purpose of these calls is to prove the
remaining goals in qlist. The results from the calls are aggregated in a set
that is then returned from the procedure.

Note that this kind of computation is not guaranteed to find every possi-
ble partial prooftree - not even all partial prooftrees that would satisfy the
threshold. This limitation is a consequence of the algorithm trying to prune
the search space as early as possible; it is caused by two factors:

• The abortion of some paths of reasoning based on a too high pro-
portion of assumed goals to other goals (already proven and yet to
be proven). This may lead to abandonment of reasoning paths that
could later add many more goals and produce partial prooftrees be-
low the threshold.

• The assumption of goals only after all attempts to prove a goal failed.
This may cause some partial prooftrees to be omitted in cases where a
goal succeeds but only with a substitution that later on causes a proof
to fail.

1The cutoff used in the implementation was: (number of proven goals + number of goals
to prove +10) divided by (number of assumed goals *10) must be larger or equal to 1. The
best cutoff, however, is an empirical question that also depends on the nature of the rule
base and one that implies a tradeoff between finding more partial prooftrees and runtime.
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The tradeoff between the loss of some partial prooftrees caused by the
pruning of the search space and the runtime of the inference engine is an
empirical question that to a great extent depends on the structure of the
rule bases; no final answer to this tradeoff was found in this thesis. An-
other possible course of action would be to replace the depth-first search
strategy of this algorithm with a breath or even best-first strategy: first ex-
ploring the reasoning path that looks most promising, but returning to the
less promising ones should the first fail. This very promising direction of
research is, however, beyond the scope of this thesis.

5.1.6 Mutated Prooftree

In some cases there are proofs that would succeed after only a small syn-
tactic change to the rule base; changes smaller than adding or removing
entire atoms as stipulated by the partial prooftree. Consider the following
example and the (partial) prooftree for the atom parent(peter).

parent(Y )← fatherOf(Y,X)
parent(Y )← fatherOf(Y,X)
fatherOf(A,X)← male(A), child(A,X) # Rule fatherOf
motherOf(A,X)← female(A), child(A,X) #Rule motherOf
mele(Peter) # note the typo - supposed to be ’male’
child(Peter,Mike)

In this case there are two equally valid partial prooftrees - a proof could be
created by adding either male(Peter) or female(Peter) to the rule base.
However, at the same time just changing one character in mele(Peter)
would also make a proof possible and would allow for the creation of a
prooftree. The mutated prooftree introduced in this section is a concept to
capture this notion of proofs that would succeed with very small syntactic
changes to the rule base. In this example a small syntactic change is defined
based on the edit distance between terms and predicate symbols. With such
a notion the mutated prooftree is only able to identify faults caused by ty-
pos. However, the mutated prooftree can use arbitrary notions of similarity
and nearness, for example based on a type hierarchy/ontology.

The mutated prooftree is defined analog to the normal prooftree at the be-
ginning of this section, the only difference being that it uses the Herbrand
model after a mutation ρ has been used to transform the rule base. Mutated
prooftrees are scored by fsim(ρ), where only those with the highest scores
should be presented to the user.
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Definition 27 (Mutated Prooftree) A mutated prooftree Gm(Ax, P, ρ) ex-
ists for all atoms Ax and mutations ρ where Ax is in the Herbrand model
of the rule base obtained by applying ρ to all rules in the rule base, i.e.
Gm(Ax, P, ρ) ≡ G(Ax, Pρ).

Intuitively, a mutated prooftree captures the notion of a proof that would
succeed after only small syntactic changes to the rule base. For practical
applications mutated prooftrees can again be computed only heuristically
- one technique of doing that is described in the next section.

Returning to the example from the begining of the section, multiple mu-
tated prooftrees exist for the given rule base and the atom parent(peter).
One mutated prooftree is the expectedGm1(parent(peter), P, {mele/male})
and another one would be Gm2(parent(peter), P, {mele/parent}). The
scoring function fsim is used to establish the most likely mutated
prooftree(s). In this example a scoring function based on the edit distance
would correctly identify Gm1 as the most likely prooftree and the devel-
oper can then be guided to check whether mele(Peter) really is a fault or is
actually intended.

5.1.7 Computation of Mutated Prooftrees

The algorithm to compute the Mutated Prooftree is also a variant of back-
ward chaining, however, it uses a different unification routine that does not
fail on not-equal predicates, function symbols or constants but rather pro-
poses a mutation that would make the unification possible. Again a thresh-
old is introduced that aborts a particular reasoning path in cases where the
mutation similarity gets too low.

To describe the notion of the mutated prooftree, first the unification with
mutation needs to be introduced. In order to do that effectively, the notions
of subexpression and disagreement pair need to be defined first.�
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Definition 28 (Subexpression) For every j the subexpression s(ax, j) of
the atom ax is the j-th subexpression of ax. s(ax, j) is undefined, if j is larger
than the number of subexpressions.

For example for the atom ax = pred(f(g(a))), s(ax, 0) is f(g(a)) and s(ax, 2)
is a. Based on this notion of subexpressions, disagreement pairs are de-
fined.
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Definition 29 (Disagreement Pair) The disagreement pair d(ax, ay) of two
non-equal atoms ax and ay is the pair of subexpressions s(ax, j) and s(ay, j),
where j is the smallest index such that s(ax, j) 6= s(ay, j). A disagrement pair
(s(ax, j), ∅) or (∅, s(ay, j) is defined for the cases where s(ay, j) or s(ax, j) is
not defined (because one atom has fewer subexpressions than the other).

Intuitively, the disagreement pair for two atoms reflects the first non-equal
subexpressions in these atoms. For example the disagreement pair for the
atoms pred(f(g(a)), c(a)) and pred(f(h(a)), c(f)) is (g(a), h(a)). Note that
there is always only one disagreement pair for each pair of atoms.

With these notions the adaptation of the unification algorithm can be pre-
sented.

Data: A pair of atoms (ax, ay) and a mutation ρ
Result: A substitution θ, and the possibly changed mutation ρ
Set θ to ∅
while There is a disagreement pair d(axρθ, ayρθ) = (sx, sy) do

if Neither sx nor sy is a variable then
ρ = {(sx, sy)} ∪ ρ

else
Let sx be the variable in (sx, sy)
if sx occurs in sy then return failed
else

θ = {(sx, sy)} ∪ θ
end

end
end
return θ,ρ

Procedure UNIFY-M((ax, ay),ρ)

The adapted unification algorithm continues to process the disagreement
pair in (axρθ, ayρθ) while adding elements to ρ and θ until either the unifi-
cation fails or there is no disagreement pair left. The unification fails only
on the occur check - when a variable that is used for unification is already
contained in the term it is supposed to be bound to; something not fre-
quently encountered in practice2 [144]. The difference between this unifica-
tion procedure and normal unification is in the behavior on disagreement
pairs that do not include a variable. In this case the two subexpressions
(terms) are added to the mutation ρ while a normal unification would sim-

2In fact the optimized unification used in Prolog usually omits even this check in the
interest of speed.
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ply fail.

Note that while this procedure is fast3, it is not guaranteed to find the
smallest mutation that would unify two atoms. For example the unifica-
tion of the two atoms pred(a(b(c)), X) with pred(a(d(c)), f(a)) would re-
sult in θ = {(X, f(a))} and ρ = {(a(b(c)), a(d(c)))} instead of the optimal
ρ = {b, d)}. More complete unification algorithms with mutation are easily
conceivable, but would also be considerably slower. As a final note it has
to be remarked that while this unification is as fast as normal unification in
the worst case, it is slower in practice. This is due to many of the indexing
techniques normally used to prevent unnecessary calls to the unification
function not working once mutation is included.

With the extended unification algorithm introduced, backward chaining
with mutation can be defined. As input the procedure takes a logic pro-
gram, the list of atoms to be proven, a substitution, and a mutation. At the
beginning of the inference process, the list of atoms consists of the atoms
from the query, the substitution is empty and the mutation is empty.

The procedure first checks whether the list of goals is empty; the inference
process has been completed. If this is the case, the current substitution and
the current mutation are returned as result.

In the cases where qlist is not empty, the first goal from the list is taken
and then processed. As a first step it is attempted to unify this goal with a
fact in the program. If this succeeds and the mutation similarity is above
a predefined threshold, the substitution and the mutation are added to the
set of answers.

Next the unification of the atom with the heads of the rules in the program
are attempted. For all rules where this succeeds and the necessary mutation
has a similarity above the threshold, a recursive call is made to prove the
unified rule’s subgoals.

In the final loop of the procedure, a recursive call is done for every substi-
tution in the answers. The purpose of these calls is to prove the remaining
goals in qlist. The results from the calls are aggregated in a set that is then
returned from the procedure.

Note that this kind of computation is not guaranteed to find every possible
mutated prooftree - not even all that would satisfy the threshold. This is a
consequence of the details of the unification procedure whose limits were
described earlier.

The computation of mutated prooftrees and partial prooftrees can be com-

3Like normal unification: quadratic to the size of the atoms being unified, or linear (but
incorrect) if the occur check is omitted [144].
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Data: The logic program P , the list of atoms to be proven qlist, a
substitution θ and a mutation ρ

Result: A set of tuples, each consisting of a subsitution θ and a mutation ρ,
i.e. (θ, ρ)

if qlist is empty then
return {(θ, ρ)}

end
else

q ← FIRST(qlist)
foreach q′i in P such that (θi, ρi)← UNIFY-M(q, q′i, ρ) succeeds do

if fsim(ρi) > threshold then
answers← (θθi, ρi) ∪ answers

end
end
foreach rule (q′1 ← (p1, ..., pn)) in P such that
(θi, ρi)← UNIFY-M(q, q′i, ρ) do

if fsim(ρi) > threshold then
answers←
BACK-CHAIN-MUT(P, [p1θi, ..., pnθi] , θθi, ρi) ∪ answers

end
end

end
foreach (θ, ρ) in answers do

toReturn← BACK-CHAIN-MUT(P,REST(qlist), θ, ρ) ∪ toReturn
end

Procedure BACK-CHAIN-MUT(P,qlist,θ,ρ)
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bined into one algorithm. An atom is then assumed only after it could not
be proven; no atom is assumed if a small mutation is sufficient to proof a
goal.
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5.2 Implementation

The previous section introduced rules, rule firings, the static structure and
the dynamic structure of the rule base as components for explorative de-
bugging. This section now presents the implementation of the Explorative
Debugging concepts in two programs:

• As part of the Trie! (Transparent RDF Inference Engine) application.
This debugging prototype supports rules on top of RDF (as defined
in section 2.3.4) and implements all variants of the static and dynamic
structure introduced in the previous section. This debugger was used
as the basis for the evaluation presented later in section 5.3.

• As the Inference Explorer for F-logic, integrated into the Dark Matter
Studio system. This debugger does not support partial and mutation
extended prooftrees, but is more mature and supports some addi-
tional features, such as the explanation of built-ins.

This section will start with the description of the newer Trie! system; a
short description of the additional features of the Inference Explorer will
be given after that.

5.2.1 The Trie! Framework

The concept of Explorative Debugging is implemented in the Trie!
(Transparent RDF Inference Engine4) program presented here. The Trie!
program is open source and available at http://code.google.com/p/
trie-rules/. It is an Eclipse RCP (Rich Client Platform) [60] application
consisting of an Explorative Debugger, a procedural debugger, a custom in-
ference engine, a simple visualization of the (mutation extended) rule base
dependency graph and tools to load and change RDF and rule definition
files.

The procedural debugger is included to support the comparative evalua-
tion between the Explorative and procedural debugging paradigm. The
dependency graph visualization uses the Zest [54] toolkit to show the
depends-on graph. Finally file management tools are included for load-
ing RDF and rule files into the knowledge base. An integrated text editor
allows to change these files. The program is able to read RDF/XML [10]
and Turtle [11] files. Rule files are expected in the rule format used in the
Jena Semantic Web toolkit [30], with the additional option for rule com-
ments. Inference engine and Explorative Debugger are described in more
detail in the sections below.

4Named in recognition to the pioneering work of the Transparent Prolog Machine [56].

http://code.google.com/p/trie-rules/
http://code.google.com/p/trie-rules/
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The Trie! Inference Engine

The custom Trie! inference engine is built specifically to facilitate the easy
creation of debugging applications (e.g. by sacrificing memory efficiency
to have an easily accessible internal state). The inference engine currently
supports the rule language described in section 2.3.4; it currently has no
support for built-ins. The evaluation strategy used is backward chaining
without tabling5.

The Trie! inference engine real-

Figure 5.2: A Partial Prooftree in the user
interface

izes the algorithms described
in section 5.1.5 in the creation
of partial prooftrees: on fail-
ure to prove a goal the in-
ference engine does not back-
track, rather it continues to
look for partial proofs that
would succeed if this goal
would be true. The propor-
tion of goals that are already
successfully proven, the rules

used, and the goals still on the stack to the goals assumed to be true are
used as a heuristic to guide the inference engine; once the proportion of
assumed goals becomes too high the inference engine backtracks. Fur-
ther sorting and filtering is done after a query has been processed; e.g.
prooftrees are sorted by the proportion of facts and rules to assumptions; no
partial prooftree is returned for a result for which there is also a complete
prooftree. The user interface used to display partial prooftrees is shown in
figure 5.2.

Figure 5.3: A mutation extended prooftree in the user interface

Mutated prooftrees are generated through a modification of the unifica-
tion algorithm (detailed in section 5.1.6) at the core of the Trie! inference
engine. Instead of failing on not-equal ground terms the unification al-
gorithm returns the number of edit operations (Levenshtein distance) that
would need to be performed on ground terms in order to unify two atoms.

5Meaning in particular that the inference engine is not able to deal with rule cycles.
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Because of the simple structure of the rule base6 this change does not com-
plicate or slow down the unification algorithm excessively. The inference
engine backtracks only when the number of edit operations exceeds a spec-
ified threshold (see section 5.1.5 and 5.1.7). The same technique is used to
compute the extended depends-on connections between rules. The user
interface used to display mutated prooftrees is shown in figure 5.3.

Partial and mutated prooftrees are created at the same time and may in fact
be combined, i.e. the inference engine can return a proof that assumes one
goal and is also based on the almost-unification of two atoms (i.e. made
possible by a small number of edit operations).

The Trie! Explorative Debugger

The user interface of the explorative debugger in the Trie! application con-
sists of five main areas: the navigation controls, rule details, rule firings,
depends-on connections and prooftree. A screenshot of the user interface
is shown in figure 5.4.

Figure 5.4: User interface of the Trie! Explorative Debugger

The symbols at the top right of the interface are the navigation controls
that allow to jump to any rule, jump to the query or to reload data from
files. A configuration menu enables to show or hide the namespace part of
Uri’s.

6I.e. it does not include function symbols and only the ternary predicate symbol triple.
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The rule details view at the center of the interface shows the current rule
and its comment. The body atoms of the rule are colored depending on
whether an atom alone is satisfiable; e.g. in the screenshot the atom ?father,
has fater, ?grandfather (note the typo in has fater) is colored red because
it is unsatisfiable. Clicking on an atom in the rule details view temporar-
ily disables a rule atom, the debugger will then show how the rule would
function without this atom.

Below the rule details the rule firings are shown. A red exclamation
mark is used to mark results for which there is only a partial and/or mu-
tated prooftree. The variable bindings selected in this part determine the
prooftree that is shown.

In the bottom left of the interface the current depends-on connections are
shown. The rules shown here are based on the extended depends-on graph.
Rules are shown in red, when the connection to them is only afforded by a
(non-empty) mutation. A double click on any rule shown, opens this rule
in the Explorative Debugger.

At the bottom right the prooftree for the currently selected result is shown.
For partial and mutated prooftrees, the mutated or assumed parts are
shown in red and tooltips give more information about them (see also fig-
ures 5.2 and 5.3).

5.2.2 Inference Explorer

The Inference Explorer is the Explorative Debugger that was implemented
as part of the Dark Matter Studio system in Project Halo. The Inference
Explorer supports the debugging of F-logic rule bases and uses the Onto-
broker [50, 3] as inference engine. Partial and mutated prooftrees are not
supported by Ontobroker and hence cannot be shown in this system.

The debugger is implemented as a plugin for Eclipse that works within
DMS. For the user interface it relies exclusively on SWT [161]. It is imple-
mented following the well known model-view-controller [95] pattern. The
different parts of the debugger (details view, information view etc.) are im-
plemented as independent views that do not know of each other, but that
share one model and controller. The model is described in more detail later
in this section.

A screenshot of the Inference Explorer is shown in figure 5.5. The basic user
interface is similar to that of the Trie! debugger described earlier (see figure
5.5); although it consists only of three main elements:

• The display of rules and rule parts at the top. Again this part allows
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Figure 5.5: User Interface of the Inference Explorer

to deactivate rule parts and rule parts are colored based on their sat-
isfiability.

• At the bottom left rule firings are shown.

• At the bottom right one pane displays information depending on
what is selected. It shows the depends-on connections when noth-
ing or a rule atom is selected. It shows the prooftree when one of the
rule firings is selected and it shows documentation text in case the
selected rule atom is a built-in.

The Inference Explorer does not support mutation extended prooftrees and
partial prooftrees, however, it does have some features not included in the
less mature Trie! Explorative Debugger, these are:

• A ’Debugging Context’

• A simplified prooftree display that hides F-logic axioms

• A configurable rendering of rules and facts

• An integrated documentation for built-ins used in the rules.

Each of these features will be shortly described in the following para-
graphs.

Debugging Context

Figure 5.6: The debugging context information and toolbar
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For the debugger it is relevant whether it should be executed within a test
set. A rule normally not firing at all, may fire when the facts from a test set
are considered; also the query from a test case is not normally in the rule
base and could not be debugged. For these reasons the debugger knows
about the test case from which it was called; this is called the context for the
debugger. The context contains the test case query and all setup facts from
the test set. The context of a debugger is clearly shown to the user in a box
in the top right of the debugger (see figure 5.6 and figure 5.5). Inside the
box the system displays the name of the current test set and test query; FZI
and Query in this example. The debugging context also offers two buttons
with commands: the cross to the left “ends the context”. Ending the context
means that the debugger henceforth stops considering the setup facts from
the test and will not show the query anymore. The flashlight to the right is
a quick way to navigate to the test case query - clicking it instantly opens
the query in the debugger.

Simplified Prooftree Display

The Ontobroker inference engine evaluates F-logic after the translation into
normal logic - as described in the section 2.2. Doing this introduces a mis-
match between the prooftree returned by the inference engine and the user
level understanding of F-logic. For example the prooftree usually contains
the axiom rules that the user should not need to know about or it may
contain multiple rules that have been created from the one rule the user
specified. This is further complicated by the inclusion of numerous imple-
mentation specific operations in the prooftree, e.g. elements representing
the access to a database. To deal with this mismatch between the user level
entities and entities of the inference engine, the debugger transforms the
prooftree before it is shown to the user. In this transformation

1. All implementation specific nodes are removed;

2. Some axioms, e.g. subclassTransitivity1 (see section 2.2), are re-
moved;

3. Prooftree nodes representing instances of multiple rules created from
one user rule are joined again;

4. Prooftree nodes representing the application of axioms not removed
by step 2, are replaced by natural language explanations.

When prooftree node A, with parent node B and children C1, ..., Cn is re-
moved from the prooftree, all children C1, ..., Cn are then reconnected to
the parent node B. When prooftree nodes are joined together, again the
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children of all joined nodes become children of joined node. The new node
is also connected to all parents of the nodes that were joined7.

Through this transformation a prooftree is created that faithfully represents
the inference process without requiring the user understand or even know
about the transformation going on in the background.

Configurable Rendering

Figure 5.7: The configuration menu of the Inference Explorer

Dark Matter Studio includes a lexical layer that allows to show the facts and
rules while hiding the internal ids, namespaces and modules. The debug-
ger supports this lexical layer. However, because not all faults are visible
at this level, it also includes the option to change its display to also include
some or all of the normally hidden information. All these options affect all
parts of the debugger where such entities are displayed; i.e. they simul-
taneously change the rule name, rule details, results, depends on and the
prooftree. The meaning of the options in detail:

• Show Namespaces: Shows or hides the namespaces in the id’s of
entities.

• Show Modules: Shows or hides the modules of statements and rules.

• Shows IDs instead of Labels: DMS uses automatically generated ids
for most entities in the knowledge base and has labels defined for the
ids. For expert users, however, it is sometimes needed to look at the
actual ids.

7Note that this means that the prooftree may stop being a tree, may become a directed
graph. The nature of the nodes that get joined, however, means that this is normally not the
case; it would also not break the program.
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• Show As Predicates: Shows everything translated into a normal logic
program.

• Show As F-logic: Shows everything in standard F-logic syntax.

• Show As Stylized English: Shows all entities from the knowledge
base in a simple form of stylized english. This representation of F-
logic as stylized english is used throughout DMS and hence familiar
to the user.

The defaults for all of these options is the simplest representation and it is
assumed that virtually all domain experts will exclusively use the default
configuration. To also support expert users and to aid in the development
of the DMS system, however, it was needed to allow the look at lower ab-
straction level.

Documentation of built-ins

Figure 5.8: Built-in information in the Inference Explorer

A particular challenge for debugging are those parts of the rule base that ac-
cess built-ins - parts of the rule base realized as separate programs; usually
created in a different programming language. To support the developer
in using these and debugging faults appearing in the user of built-ins, the
Inference Explorer can display information about a selected built-in (see
figure 5.8).

The challenge here is that the built-ins are changing relatively frequently,
that these documentation could be used in different parts of DMS and that
the person writing the documentation is often not a programmer. For these
reasons it was decided to describe the documentation of built-ins in simple
XML files that could be easily edited and to include interfaces to allow
access to this documentation from all parts of Dark Matter Studio.

The following example shows a very short built-in documentation file con-
taining only the description for the between builtin:
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<builtinSet>

<builtin>
<description>
returns true, if X is between A and B
</description>
<syntax>between(A,X,B)</syntax>
<example>
FORALL X :- equal(X,"true") and between(3,4,5).
</example>
<name>between</name>
<numberArgs>3</numberArgs>

</builtin>

</builtinSet>

BuiltinSet is the topmost container element containing all built-ins. The
description for each built-in is enclosed in a built-in element. The descrip-
tion, syntax and example elements are directly shown to the user. The last
two, name and the number of arguments are used to identify a predicate as
built-in.

5.2.3 Debugging Walkthrough

This section describes a simply fictive debugging session with the Infer-
ence Explorer and the testing interface described in the previous chapter.
It starts by describing the contents of the knowledge base that is to be de-
bugged. It then shows the definition of a test case and how the debugger
can be used to identify the problem. This section assumes that the reader
is familiar with the graphical notation used for the definition of test cases
(described in section 4).

Contents of the Knowledge Base

The knowledge base for this walkthrough defines some simple relations
between organizations, persons employed at organization and subordinate
relationships. This toy knowledge base enables the (questionable) infer-
ences that a person is employed at an organization because its superior is
employed there and, through a second rule that a person can be said to
work at an organization if it is known that he works at an entity that is part
of the organization.
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Figure 5.9: The ontology for the debugging walkthrough

The ontology for this example only defines three concepts: Organization,
Hedge Fund and Person. Hedge Fund is defined as a subclass of organi-
zation. All in all there are four relations, the relations “is boss of” between
persons, the relation “is part of” between organizations and “works at” and
“employed at” from person to organization. A view of the ontology in the
knowledge navigator is shown in Figure 5.9.

The knowledge base for the example consists of two rules: rule ’Organi-
sationOwns’ and rule ’Boss’, both are shown in figure 5.10. Rule Organi-
sationOwns defines that a person that works at one organization A that is
owned by another organization B, is said to also work at organization B;
unless organization B is a hedge fund. The second rule, rule Boss, states
that if a person A has a boss B and he is employed and an organization C,
then person A also has a works at relation to organization C. The reader
may note that the second rule, rule Boss, is faulty. Throughout the knowl-
edge base the works at relation is used to denote that a person works at an
organization. Rule Boss, however, in one part uses the employed at rela-
tion instead. This is the fault that will be debugged in this walkthrough.
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Figure 5.10: The two rules for the debugging walkthrough
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Tests

Figure 5.11: Test fact and query definition for the debugging walkthrough

A debugging session starts either directly from the definition of a rule or
from a test case that does not return the expected result. The latter case
is used for this walkthrough. Figure 5.11 shows the definitions of facts
and query. The facts describe an organisation WIM that is part of another
organisation FZI. A person Valentin has a works at relation to WIM, it is
stated that another person Carsten is the boss of Valentin. The query asks
whether it is true that Carsten works at FZI. The assumption of the user is
that it is indeed true, that the “OrganisationOwns” rule can infer a works
at relation between Valentin and FZI and that the “Boss” rule can then infer
that Carsten works at FZI because his subordinate does. However, the fault
in the rules prevent this from working.

Figure 5.12: Test result view for the debugging walkthrough

After defining the test, the user runs it by pressing the “Run Query” button
in the Test Result View. The test returns no result instead of the expected
“true” (see Figure 5.12). The user presses the “Show in debugger” button
in the lower right corner of the test result view to start the debugger.
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Debugging

Figure 5.13: The debugger has identified the only unsatisfiable atom in the query

Initially the debugger shows information about the failed test query (see
Figure 5.13. It shows a stylized English representation of the query, the
current results (none in this case) and the rules that could contribute to a
result. One of the rule atoms is colored in red, indicating that it is the only
atom that is not satisfiable when viewed alone. It is very likely that the
problem lies with this atom. The user clicks on it.

Figure 5.14: The user has selected the unsatisfiable atom in the query

As a response to the selection of the rule atom the lower part of the de-
bugger changes (see Figure 5.14). The left part now shows everything that
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satisfies this atom (as opposed to the whole rule body) - still nothing is
shown since this is an unsatisfiable rule part. The lower right part of the
debugger now shows only the other rules that this rule part could depend
on. The user sees the “Boss” rule in the depends-on view, remembers that
it should be involved in generating a result and double clicks on it.

Double clicking on the Boss rules takes the user to the debug view of this
rule; the debugger now displays information about the Boss rule. The de-
bugger highlights the one unsatisfiable atom in the rule Boss in red and the
user selects this atom (see figure 5.15). Please note that this atom contains
the fault that had been introduced in the knowledge base.

Figure 5.15: The user has selected the only unsatisfiable atom in the query

Again the lower part of the debugger changes to show the details for this
atom. There is no binding for this rule and only two unrelated rules are
shown in the depends-on part. The user realizes that there must indeed be a
problem with this atom, since it does not depend on the OrganisationOwns
rule as she expected. The user presses on the “Open Rule” button and the
system opens the Boss rule in the rule editor, the atom currently selected in
the debugger is highlighted in the editor (see Figure 5.16).
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Figure 5.16: The atom identified by the user is highlighted in yellow the rule editor

The debugger has helped the user to find the exact position in the rule base
where the error lies. It also supports the user in finding it in the editor
where she can change it immediately.
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5.3 Evaluation

The hypothesis to evaluate is that Ex-

Figure 5.17: Debugging evalua-
tion design

plorative Debugging improves a devel-
oper’s effectiveness in finding faults in
rule bases. An improved effectiveness
could be either a reduced time needed
to identify a bug or an improved accu-
racy in doing so. To evaluate this hy-
pothesis it was decided to compare Ex-
plorative Debugging to procedural de-
bugging - the most widely deployed de-
bugging paradigm for rule bases. During
the evaluation random faults would be
introduced in a rule base and a compari-
son would be done of the effectiveness of
developers in finding the fault based de-
pending on what kind of debugger they

used. In detail the setup for the evaluation is the following (see also figure
5.17):

1. A rule base is selected randomly.

2. The rule base is transformed randomly without impairing its func-
tion. This is needed since the same developer will debug the same
rule base with different faults multiple times; this transformation en-
sures that he or she cannot simply memorize the correct rule base.
The exact nature of this transformation is described later.

3. A random fault is introduced into the rule base; this is also described
in more detail later.

4. A debugger is selected at random, in this case either a procedural (see
section 5.4.1) or the Trie! Explorative Debugger.

5. The debugging process is observed and the fault identified by the
user is saved. Later this is compared to the seeded fault.

All steps of this debugging setup are performed automatically. For this
purpose one stand alone Java program has been created for the rule base
transformation and mutation. Also an evaluation runner was created as
another plugin for the Trie! program, its responsibility is the selection of
rule base and debugger and the observation of the user’s actions.

Two very small rule bases were used for this evaluation, each consisting of
only 5 rules and a small number of facts. The rule bases are shown in the
appendix B and C. Both rule bases are created with the RDF processing rule
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language described in section 2.3.4. For both rule bases a query is given as
the start point for the debugging process.

This process is repeated and the results for the two kinds of debuggers are
compared. Similar experimental designs have been used by the Software
Engineering Research Center at Purdue University in the evaluation of a
debugging oracle assistant [154] and by the NASA in the evaluation of de-
bugging techniques for the Martian rover software [21], although the latter
seeded not random faults but actual bugs that had been removed from ear-
lier versions of the software.

5.3.1 Fault Seeding

Fault seeding is a four step process:

1. The random selection of a rule atom. Every rule atom, head or body
had equal chance of being selected. In this evaluation the focus was
on rule debugging in a narrow sense, hence no faults were seeded in
facts. The query was included here, i.e. faults were also seeded in the
body of the query.

2. The random selection of a term. In the RDF rule language used for
the evaluation every atom has exactly three terms and each of these
had the same chance of being selected.

3. A random change to this term. One out of six operations was chosen
to randomly transform the term. The operations are detailed below.

4. A checking of the rule base. The rule base is written to a file, parsed
and the results for the test query are computed. This checking process
is described in more detail later.

The six operations for changing terms are the following:

• Changing a URI to a literal or vice versa.

• Changing a variable to a URI or vice versa.

• Removing a random character from the term.

• Adding a random character to the term.

• Replacing a term by a synonym, taken from a list that contains multi-
ple synonyms for the URIs, variables and literals in the program; for
example this operation could change an URI ”..#Male” to ”...#mascu-
line”, ”...#Masculine” or ”...#male”.

• Selecting a second term from the same atom and swapping these.
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In the final step the rule base is checked whether it is still syntactically cor-
rect and whether the query actually shows an error, whether the seeded
fault changes the result. The results for this checking process for 1000
seeded faults is shown in figure 5.18. It shows that in almost half of the
cases the query is not affected by the seeded fault. In a further 10% the
fault causes a syntactic problem (such as a literal in predicate position) and
in 5% it causes a rule loop (which the Trie! Explorative Debugger cannot
process8). These almost 65% of the rule bases are discarded. In 75% of the
remaining rule bases the test query has no results (no-result-case) and in
15% a result different from that of the rule base without the seeded fault.

Figure 5.18: Results from checking the rule base after fault seeding

5.3.2 Rule Base Transformation

During the evaluation the same developers were asked to debug multiple
different faults from the same rule base. In order to prevent them from
finding these faults simply by comparing the rule base to their recollection
of the correct one, the rule base is transformed before each iteration of the
evaluation. In this transformation the majority of terms in the rule base is
replaced with synonyms. In addition one typo is introduced. All changes
done to the rule base in this step are applied in exactly the same way to
all rules - hence the functionality of the rule base is not impaired by these
changes.

Consider as an example the following rule:

[Rule_Pool_For_Kids:
(?X, zach:suitedFor, zach:Kids)

<-
(?X,rdf:type,zach:Apartment)
(?X,zach:has_property,zach:Pool)

8Since it does not implement tabling.
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]

The rule base transformation can turn this into the following rule9.

[Rule_Pool_For_Kids:
(?X,zach:suitedFor,zach:Children)

<-
(?X,rdf:type,zach:Flat)
(?X,zach:has_attribute,zach:Pool)

]

Here ’Kids’ where replaced by ’Children’, ’Apartment’ by ’Flat’ and
’has property’ by ’has attribute’ - making it generally impossible to find
the fault in the rule simply by looking at isolated rules; in particular re-
member that a fault can be a replacement of a term by a synonym using
the same list of synonyms used for the transformation. Also note that the
transformation additionally introduces one random typo (adds or removes
one character) that is made consistently across the whole rule base. After
the transformation the rule bases were again checked for syntactic validity
and whether the result truly was unchanged by the transformations - both
conditions were met in 100% of the cases.

5.3.3 Evaluation Results

The results from repeating the described evaluation for 112 times show Ex-
plorative Debugging to be faster and more accurate in identifying faults.

With Explorative Debugging 91% of the faults were identified correctly;
i.e. the user entered a free text description that correctly names the atom
and term affected by the seeded fault. In 5% of the cases the user correctly
identified the atom, but attributed the fault to a wrong term. In only 1.7%
percent (one case) the user gave up and in another case he gave an incorrect
answer. The overview of these results is shown in figure 5.19.

With procedural debugging still 74% of the faults were identified correctly;
in one further case the fault was identified almost correctly. In 15% of the
cases the user gave up. This high number of cases where the user gave
up is due to the fact that with a procedural debugger alone it is almost
impossible to debug cases that affect the unification of a body atom with
another’s rule head, since with a procedural debugging the failure to unify
cannot be explored further. The user then has some idea in which part of
the rule base the fault lies, but cannot identify it at the level of granularity
expected for this evaluation. In 9% of the evaluation runs the fault was not
identified correctly.

9This is an example from an actual file used in the evaluation.
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Figure 5.19: Correctness in identifying faults using the procedural and Explo-
rative debugger

The average time for users to identify a fault (excluding those cases where
the user gave up) is 41 seconds for the Explorative and 69 seconds, or a
little longer than one minute for the procedural debugger - very short times
explained by the small size of the rule base being debugged. The times
for all evaluations runs are shown in figures 5.20 and 5.21, respectively.
The difference between the average values is significant with a significance
level of 0.05.

5.3.4 Evaluation Observations

In addition to the quantitative measurements described in the previous sec-
tion, a number of qualitative observations were made in the evaluation;
these concerned mutated and partial prooftrees in general, the difficulty
of the no-result-case, attributing failures to single atoms and the relation
between faults and similarity function in the mutated prooftrees. The fol-
lowing paragraphs will describe each of these in more detail.

During the evaluation mutated and partial prooftrees indeed proved to be
often able to sum up the reason for the failure of a rule base to conclude
an expected result in one picture; often identifying the faults was possible
from just looking at the mutated or partial prooftree for the expected result,
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Figure 5.20: Debugging times using the procedural debugger

Figure 5.21: Debugging times using the Explorative Debugger
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little or no browsing in the rule base was necessary. In fact in 6 cases the
user identified the fault without any navigation at all (however, one of these
cases was only almost correct; it identified the right atom but not the right
term). This stands in contrast to the use of the procedural debugger, where
the users almost always had to observe the inference engine for many steps.

A further observation was that with either debugger the no-result-case
turned out to be often simpler to debug than cases with false results. For
the no-result-case the Explorative Debugger often showed a partial or mu-
tated prooftree with one red node that allowed almost instant identifica-
tion of the fault location. For a wrong result also a prooftree was given, but
the user did not have the one red node that he or she could use as start-
ing point. When debugging a no-result-case with a procedural debugger
the user could concentrate her attention on failed goals; quickly stepping
through the goals succeeding. This too, was not possible in the cases where
the user had to identify the reason for a wrong result.

The failure of rules to conclude the expected result based on the interac-
tion between multiple atoms proved to be difficult to diagnose. Often, at
least with the error seeding used in this experiment, the fault caused one
rule atom to become unsatisfiable; there was absolutely no binding for this
atom. Such cases are easily understood by users and easy to diagnose; the
Explorative Debugger even supports these cases by highlighting the unsat-
isfiable atoms in red. More difficult were cases, where every single body
atom was satisfiable, but no variable binding satisfied all of them. These
cases needed more time to diagnose, both in the Explorative and the pro-
cedural debugger. One venue for further improvements to the debuggers
hence would be a better explanation for these cases, for example based on
the largest satisfiable groups of atoms.

A final observation was that the effectiveness of the mutated prooftrees
largely depends on whether the kind of faults encountered are ’compati-
ble’ to the similarity function used. In the evaluation the inverse of the edit
distance was used as similarity measure; mutated prooftrees built with this
similarity function proved to be only good at finding faults based on the
adding or removing of characters; i.e. specific kinds of typos. It can be ex-
pected that changing the similarity function to give high similarity values
to the kinds of faults created by other seeding methods (such as changing
an URI to a literal or even replacing a term by a synonym) would have
made the mutated prooftrees even more effective. For the practical appli-
cation of mutated prooftrees this means that the similarity function must
be fine tuned to detect actual fault patterns, e.g. for example giving high
similarity values to mutations that replaces a term with similar term in a
different namespace or high values for the replacement of a class with its
superclass.
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5.3.5 Evaluation Discussion

The evaluation showed a significant decrease in time while the accuracy in-
creased; with this it showed the potential of Explorative debugging to out-
perform state of the art debuggers under specific circumstances. However,
there are also many questions with respect to the approach presented in this
chapter that cannot be answered without additional evaluations. The most
important of these questions will be shortly explained in the following:

• Larger rule bases: The number of rules in the evaluation rule bases
was very small. It remains an open question how the approaches
compare for larger rule bases.

• Contribution of different Components: It remains unclear how im-
portant each of the different components of Explorative Debugging
was; e.g. it may theoretically be the case that Explorative Debugging
would show exactly the same performance without partial prooftrees.
This question is particularly acute for the relative importance of par-
tial and mutated prooftrees, because each of these is relatively expen-
sive to implement.

• Fault seeding: The evaluation experiment used fault seeding based
on qualitative observations from rule base development experiments.
No data is available on how well these reflect the actual faults encoun-
tered. An experiment using actual faults in real rule bases could have
a much higher predictive ability.

• More users: Lastly the evaluation is based only on the use of these
debuggers by two persons. A repetition with more users would also
be very desirable.
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5.4 Prior Work

Throughout the history of rule based systems a number of different
paradigms have emerged to tackle the debugging challenge. An overview
of the debugging approaches and their relationship is shown in figure 5.4.

Figure 5.22: A schematic overview of debugging paradigms

The main characteristics of the approaches in the figure are the following:

• Explanation systems generate human understandable representa-
tions for why a particular result was returned. Explanation systems
were developed initially not for debugging but rather to increase user
acceptance of a rule based system by making its decision understand-
able. Explanation approaches are described below in section 5.4.2.

• The novel paradigm of Explorative Debugging enables the user to
explore the execution of the rule base at the declarative level; this
debugging paradigm has been introduced in the main body of this
chapter.

• Procedural Debugging is well known from the world of object ori-
ented and procedural programming languages; it uses the concepts
of breakpoints, stepping and program state exploration to enable the
user to observe the behavior of the inference engine. It is described in
section 5.4.1.

• Computer Controlled Debugging is a broad term for approaches
that strive to isolate the user from the actual execution of the rule
base. With these approaches the user is no longer in control of an ex-
plorative process to find the fault; rather this process is controlled by
the computer. The user is only presented with the results and occa-
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sionally has to answer questions posed by the system.

• Automatic Debugging approaches automatically identify the bug
causing fault from a large number of candidates. Some systems may
also return a small number of likely faults. Some automatic debug-
ging systems also automatically change the rule base to remove the
bug.

• In Algorithmic Debugging the execution of the computer program is
decomposed into a tree of sub-computations. Some oracle (the speci-
fication, another system or the user) is then used to check the results
of sub-computations; a computation that returns a wrong result from
correct input is the location of a fault. Algorithmic Debugging is de-
scribed in detail in a section below. Declarative Debugging, Guided
Debugging, Declarative Diagnosis, Rational Debugging and Deduc-
tive Debugging are different names for essentially the same concept.

• Why-Not Explanations are special explanations that can also explain
why a particular result was not returned. Why-Not Explanations ex-
ist in two variants, in one they rely on the user to ask consecutive
questions to find the root cause, in the second the system automat-
ically identifies the root cause and presents an explanation for that.
Why-Not Explanations are the topic of a later section.

• Automatic Theory Revision and Knowledge Refinement are auto-
matic debugging approaches that also change the rule base to remove
the fault. Approaches called Automatic Theory Revision have their
roots in machine learning and require relatively large sets of test data,
Knowledge Refinement approaches require less data but often more
user involvement, i.e. they may require a user to select one of a num-
ber of possible changes to the rule base. These approaches are jointly
described in a later section.

Of these approaches the most used is clearly procedural debugging, our
survey found more than 70% or rule base development projects using ei-
ther a graphical or a textual procedural debugger (see figure 5.4). Procedu-
ral debuggers are followed by explanations, still used by almost a quarter
of the projects. All other approaches are only used very seldom and are
usually not available in industry strength implementations. The following
sections will give a short overview of these approaches, with more space
devoted to those in practical use.



152 CHAPTER 5. DEBUGGING

Figure 5.23: Tools used for debugging - percentage of respondents that stated to
use a particular tool for debugging during the development of a rule base

5.4.1 Procedural Debugging

Procedural Debugging is by far the most widely used debugging paradigm
for rule based systems. Debuggers following this paradigm are well known
from the world of procedural and object oriented programming languages.
A procedural debugger offers a way to indicate a rule/rule part where the
program execution has to stop and has to wait for commands from the
user; this location is called breakpoint or spypoint. The user can then ex-
amine the current state of the inference engine and give commands to exe-
cute a number of the successive instructions, to step or creep. However, a
rule base strives to be a declarative representation of knowledge and does
not directly define an order of execution - hence the order of debugging is
based on the evaluation strategy of the inference engine.

Consider the following rule base as example, note the fault introduced to
the fact in the last line.
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motherOf(A,X)← female(A), child(A,X)
fatherOf(A,X)← male(A), child(A,X)
parent(Y )← fatherOf(Y,X)
parent(Y )← motherOf(Y,X)
male(Peter)
child(Mike, Peter) # fault - should be child(Peter,Mike)

To this rule base the user poses the query ← parent(Y ) and is surprised
to get no result. For this example it is further assumed that the rule base
is evaluated with a backward chaining inference engine and that the user
suspects the rule parent(Y ) ← fatherOf(Y,X) to be faulty and hence has
placed a breakpoint on this rule. The debugging process with a procedural
debugger then could be the following:

1. The inference engine starts to try to find results for the query ←
parent(Y ). As one of the first things it will find the rule parent(Y )←
fatherOf(Y,X) and determine that this rule could help in finding a
result. The inference engine designates fatherOf(Y,X) as the next
goal to be proven and then suspends itself because a breakpoint is
associated with this rule.

2. The user is presented with information about the current state of the
inference engine (what rule the inference engine is examining, what
is the goal it is trying to prove, what results have already been found
etc.) and is given a choice on how to proceed. The choices are usu-
ally to abort the inference process, to let the inference engine resume
until it hits the next breakpoint, to look at the next steps of the infer-
ence engine or to jump to next condition in, or the end of the current
rule. Some advanced systems also allow going backwards in time and
looking at the previous steps of the inference engine. In this example
the user decides to follow the stepwise execution of the inference en-
gine.

3. The inference engine finds the rule fatherOf(A,X) ←
male(A), child(A,X), designates male(A) as the next goal to be
proven and suspends.

4. The user is presented with information about the state of the infer-
ence engine and is again given a choice on how to proceed. The user
decides to jump to the next goal of the rule.

5. The inference engine successfully proves male(A), binding the vari-
able A to Peter. It then designates child(Peter,X) as the next goal to
be proven and suspends.



154 CHAPTER 5. DEBUGGING

6. The user looks at the presented program state and decides to let the
inference engine step.

7. The inference engine fails to prove child(Peter,X) and suspends.

8. The user is informed about the failed goal, realizes the fault and ends
the execution of the program.

The exact nature of the steps, the terminology used, the way in which the
inference engine’s state is conveyed and the overall user interaction varies
greatly between different procedural debuggers, however, they all share
the three defining properties: 1) they are based on the procedural nature of
the inference engine 2) they offer a way to control the stepwise execution
of the inference engine 3) the state of the inference engine can be examined
when it is suspended.

The most common terminology used is based on the Byrd box mode [28]
This model of execution is used to give a uniform procedural view on the
execution of a logic program. In this model each predicate is understood as
a procedure or box. A box is understood to have four ports, the program
control is said to enter or leave through one of them. The ports are:

• Call: The call port is used when a procedure is called the first time,
the first time a goal is attempted. The control flows into a box through
the call port.

• Succeed: The succeed port is used when control flows out of a box
after a procedure executed successfully, i.e. a rule could be found
such that its head unifies with the goal and all its subgoals could be
proven.

• Redo: The redo port is only reached when a procedure has been exe-
cuted succesfully before and some subsequent goal has failed. In such
a case the procedure is reentered to retrieve other variable bindings
that could be used to attempt the goals that failed; i.e. the control flow
re-enters through the redo port in cases where the Prolog interpreter
backtracks after a failed goal.

• Fail: Control flows out of a procedure through the Fail port in the case
when (a) control entered through the call port but no rule’s head uni-
fies with the current goal (b) a rule is found whose head unifies with
the current goal but its subgoals cannot be proven or (c) the proce-
dure was entered through the redo port and no new variable bindings
could be found.

Some systems define a fifth, an exception port. Control flows out of this
port in case of an error.
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Figure 5.24: Screenshot of a conventional procedural debugger implemented as
part of this thesis

The user interface of a modern procedural debugger with the typical user
interface elements is shown in figure 5.4.1

• On the top left the buttons ’Start’, ’Step’, ’Stop’ and ’Jump’ enable the
user to control the inference engine.

• In the top middle, in the ’Current Action’ box, a short explanation of
the last action of the inference engine is given.

• The ’Current Rule’ box shows the rule currently processed by the in-
ference engine. The current condition (A is of type male) is high-
lighted in blue. A rule comment is shown with a gray background.

• The variable bindings box shows the variables and the constants they
are currently bound to, in this case the rule engine has already bound
A to JohnsUncle.

• On the bottom right the execution tree shows an overview of the
search process by the inference engine.

Procedural debuggers are available as purely textual tracers [170, 169] and
with a simple graphical user interface [160, 170]. The most sophisticated
graphical user interface of a procedural debugger was created as part of
the Transparent Prolog Machine project [56, 55] that displayed even large
inference processes in concise ’AORTA’ (And/Or TRee Augmented) dia-
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grams [26, 126, 53]. Modern business rule management systems (e.g. [122])
include sophisticated procedural debuggers that do not include this kind
of visualizations but that are integrated with graphical rule editors.

5.4.2 Explanations

Explanations are abstractions of the program trace that aim to explain the
program execution to a user. Explanations can be graphical, textual or both.
Some explanation systems generate and display one explanation after the
program execution, some offer an interface for the user to investigate the
inference process, others stipulate a dialog with the user. Explanations are
used to build confidence in the results of expert systems, to facilitate bet-
ter understanding of rule based systems, to teach problem solving and for
debugging.

Explanations are most commonly based on the prooftree, a representation
of the inference process that led to a result. A prooftree contains the rules
and facts and connections between them that were used to derive the result.
A prooftree can directly form the input for explanation visualizations or
it can be used as a basis to derive more refined explanations. Prooftrees
are created by the inference engine during the search for a solution, they
are, however, relatively independent of the actual implementation of the
inference engine. The same prooftree can be created by a forward chaining,
backward chaining or any inference algorithm. For some rule languages
(e.g. Datalog) prooftrees can be defined to depend only on the rules and
facts and not on the inference engine.

Consider the example from the previous section (after the software fault
has been removed).

motherOf(A,X)← female(A), child(A,X) # Rule motherOf
fatherOf(A,X)← male(A), child(A,X) # Rule fatherOf
parent(Y )← fatherOf(Y,X) # Rule parent 1
parent(Y )← motherOf(Y,X) # Rule parent 2
male(Peter)
child(Peter,Mike)

For the query ← parent(Y ) the system now returns the result Y = Peter
and the prooftree for this result is shown in figure 5.25.

At the top the root of the prooftree is formed by the Result Y = Peter.
This node is connected to a node representing the application of the rule
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Figure 5.25: Simple schematic prooftree for the example in the section explanations

parent 1 with the variable Y bound to Peter andX bound toMike. This in
turn depended on an application of the rule fatherOf , which used the two
facts male(Peter) and child(Peter,Mike) at the bottom of the prooftree.

A prooftree is often augmented with natural language templates that allow
to create readable representations of rule applications. For the example
above these explanation templates might look like the following:

motherOf: %A is the mother of %X, because she is female and
has %X as a child.

fatherOf: %A is the father of %X, because he is male has and
has %X as a child.

parent_1: %Y is a parent, because he is the father of %X.
parent_2: %Y is a parent, because she is the mother of %X.

child(X,Y): %Y is the child of %X.
male(X) : %X is male.
parent(X) : %X is a parent.

Such templates are created by the developers of the rule base and may also
contain additional information such as when and by whom a rule was cre-
ated or justifications in the form of documents that were used during the
creation of the rule. With these templates a readable explanation for the
results can be created, such as:
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Peter is a parent
Peter is a parent, because he is the father of Mike

Peter is the father of Mike, because he is male and
has Mike as a child.

Peter is male
Mike is the child of Peter

As is already evident from the small example, ensuring readability and con-
ciseness of these approaches is challenging and often requires additional
steps to simplify the prooftree and the explanations.

Explanations following this principle are used in some business rule sys-
tems [85] and many other rule systems (e.g. [108, 61, 62]). A recent evalua-
tion of the quality of the created explanations can be found in [61].

Historically, explanations have been used in expert systems since the pi-
oneering Mycin system [153, 152, 25], a system for the diagnosis and
treatment of bacterial infections. Mycin was meant to work as an assis-
tant to physicians in the diagnosis and treatment of bacterial infections.
Early versions of Mycin only offered rule traces as explanations for results,
but sophisticated explanation algorithms where developed in the Teiresias
[46, 47] project and then added to the Mycin system.

The user interacts with Mycin in the form of a textual dialog. A typical dia-
log starts with the physician giving some facts about the patient in a form of
constrained English. Mycin then tries to infer a diagnosis and recommend
a treatment with the use of a production rule system. The system asks ques-
tions like: ”What is the protein value in the CSF [Cerebro-Spinal Fluid]?”
when it needs more evidence to reach a conclusion. At all stages during
the interaction the user can demand explanations from the expert system.
She can ask questions like ”Why is it important to know the protein value
in CSF”, ”Did you consider that the patient had not received steroids?” or
”How did you know that the patient had not received steroids”. Mycin
attempts to match the question of the user against a number of predefined
patterns. After a suitable pattern has been found, an algorithm for this
type of question generates an answer. The answers are generated by look-
ing directly at the rules and a trace of the inferences made: ”why” question
would be answered by giving the conclusion of the rule(s) that use(s) this
evidence. The ”did you consider” question by finding all rules that could
use this fact and saying whether they were used and if not, which rule part
prevented them from being used. The system answered ”How” questions
by finding and displaying rules that concluded a fact. Although mainly
used to explain and build confidence in the inference process, explanations
where also used as a high level debug tool [166]. A longer description of
Mycin’s explanation facilities can be found in [149] and [153].

The success of the Mycin system [175] led to many follow up projects, of
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particular interest is the Guidon [37, 38] project that tried to leverage the
rules created by experts for Mycin for teaching purposes. Other important
work includes the Knight [98] system renowned for its ability to generate
polished multi-sentence and multi-paragraph explanations. The Texplan
[105, 106] system that gives the user the chance to influence the explana-
tions by asking for elaboration or stating disbelieve. Or finally the older
XPlain [159] system that pioneered (together with Guidon) the use of ex-
plicit domain knowledge in explanation generation.

Explanation systems have been and are used successfully in many systems;
these systems are important in particular to build confidence in the re-
sults from the expert systems. The utility of explanations for debugging,
however, is limited because these approaches (except for the Why-Not Ap-
proaches described below) can only be used when there is a result, not in
cases where a fault prevents a query from having any result (as, in the ex-
ample in the section on procedural debugging).

5.4.3 Why-Not Explanations

Of particular interest for debugging purposes are explanation systems that
can answer ”Why Not” questions such as ”Why was there no result?” or
”Why didn’t the result equal the one that I know to be correct?” Only a
small number of explanations systems can answer this kind of questions.
The Teiresias system described above allowed for simple why-not ques-
tions, again finding rules that conclude the user expected result and return-
ing that parts of the rule body that prevented these rules from firing. The
task of providing why-not explanations in this system was simplified by
the very limited expression power of its rules. Why-not explanations exists
in two distinct variants: a manual variant where a why-not explanation is
only generated for the current rule or query and an automatic variant that
tries to automatically identify the ultimate cause. In this section an exam-
ple for the manual variant is given first followed by one of the automatic
variant, both using a variant of the already familiar rule base and the query
← parent(Y ).

motherOf(A,X)← female(A), child(A,X) # Rule motherOf
fatherOf(A,X)← male(A), child(A,X) # Rule fatherOf
parent(Y )← fatherOf(Y,X) # Rule parent 1
parent(Y )← motherOf(Y,X) # Rule parent 2
child(Peter,Mike)
# Error, note that male(Peter) is missing
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A debugging session with a manual Why-Not debugging system would
start with the system giving an explanation for the failure of the query to
find a result (this example is inspired by the capabilities of the system de-
scribed in [20].

I can’t prove that there is a Y such that parent(Y)
because

Rule [parent_1] is not applicable:
there is no X such that

fatherOf(Y,X) <details?>

Rule [parent_2] is not applicable:
there is no X such that

motherOf(Y,X) <details?>

Using her knowledge about the system the user would then choose to see
details about fatherOf(Y,X), getting an explanation pinpointing the location
of the problem:

I can’ prove that there are X,Y such that fatherOf(Y,X)
because

Rule [fatherOf] is not applicable:
there is no Y such that

male(Y)

Unlike this simple example, however, real-life application of this kind of ex-
planation requires sophisticated algorithms to hide details that are unlike
to interest the user and also to make it possible to keep an overview of large
rule bases. This kind of system also requires some intervention of the user,
possibly too much for end-user facing applications. Why-Not applications
of this kind have been known for a long time, but are also not currently
used in commercial systems. Besides the Teiresias and the Rewerse sys-
tem [20] another example is Que [104], which applies these techniques to a
forward chaining inference engine. Automatic why-not explanations strive
to make debugging even simpler by automatically identifying the fault that
caused a bug or by automatically producing a detailed explanation for why
the rule base has not been able to conclude the expected result. However,
since these systems cannot possibly have complete knowledge about the
domain of the system and the intention of the programmers, the identifi-
cation of the ultimate cause is done heuristically. In the example rule base
described above, possible faults that explain the failure of the rule base to
find any Y such that parent(Y ) are, for example:

the fact male(Peter) missing
rule fatherOf wrongly contains the condition male(A)
rule motherOf wrongly contains the condition female(A)
child(Peter,Mike) should be child(Mike,Peter) and

the fact male(Mike) is missing
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rule parent_1 should have the condition child(X,Y)
and not fatherOf(Y,X)

rule parent_2 should have the condition child(X,Y)
and not motherOf(Y,X)

the fact fatherOf(Peter,Mike) is missing
the fact parent(Peter) is missing
the fact parent(Michael) is missing
...

This list is not exhaustive, in fact, even for this very simple rule base created
in a very simple rule language there are infinitely many candidate faults.
Hence, automatic why-not systems must choose one (or a few) of these
infinite many candidate faults for presentation to the user. Implicitly this
selection is based on the competent programmer hypothesis [51]. It states
that, while unable to create flawless programs, programmers usually create
programs that are ”nearly perfect” and that syntactically small changes are
sufficient to correct them. Applying this idea to the search problem the
system can look for the smallest change that would make a query succeed
and report this as the most likely problem. In a nutshell, automatic why-
not explanation systems change the inference engine to also look for proofs
that almost succeed - that use a good part of the rule base and that with just
a small change would return a result. These systems build on the theory
of abduction [128, 89] - a reasoning paradigm that tries to identify the best
hypotheses that, when true, would explain a phenomenon.

The most important of these systems is the why-not system by Chalupsky
and Russ [32] that also explored the applicability of these techniques to
large rule bases. A very recent one is the system by Becker et al [8] that uses
these techniques to explain why a system denies access to a resource based
on policies formalized as rules. Diamod [111], Diva [44] and DeBrief [87]
are further systems that can answer ”Why Not questions”. Automatic why-
not debugging systems seem promising, but have not yet made the leap to
practical application. Possible reasons are the difficulty in implementing
these systems, the potentially high computational complexity and the still
open question of whether these systems can reliably identify real life errors.

5.4.4 Knowledge Refinement and Automatic Theory Revision

Automatic knowledge refinement and automatic theory revision systems
take as input a knowledge base or ”theory” and a set of test cases and their
correct results. Some of the test cases fail with the given knowledge base.
These systems then try to change the knowledge base until all test cases
succeed. Automatic knowledge refinement systems usually employ an it-
erative control structure: identify a set of possible repairs, evaluate them
on all test cases and apply the most promising refinement. This is repeated
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until all test cases succeed or the system fails to generate any refinement
that improves the performance of the knowledge base.

Historically [41], automatic knowledge refinement systems have been part
of the knowledge acquisition community. These systems deal with many
different problem solving approaches and representations. They often re-
quire some intervention by a human expert. In contrast automatic theory
revision systems have been created by the machine learning community;
they require many test cases but usually no human intervention.

The Krust system [40, 41] is a recent automated refinement system for
knowledge based systems. Starting from a failed test case and the correct
solution the system classifies rules into categories such as ”error causing”
(a rule that fires and whose conclusion contradicts the correct solution) or
”target rule, NoCanfire” (a rule that would conclude the correct solution
but whose antecedents are not satisfied). The system then generates a large
number of possible refinements by making small changes to the knowl-
edge base based on the class of a rule (for example dropping one clause
from the antecedent of a ”target rule, NoCan fire”). The number of possi-
ble refinements is then reduced through the use of heuristics such as ”pre-
fer less changes”, the ability of refined knowledge bases to correctly pro-
cess other stored test cases or meta-knowledge about rule quality. The best
scoring refinements are presented to the user. Other famous knowledge
refinement systems are Seek [67] and Odysseus [171]. Probably the first
automatic theory refinement system was the poker playing program from
Waterman [167]; other examples are Ether [125], Forte [112] and Audrey II
[172]. Multi-strategy revision systems use several learning techniques and
knowledge sources. Clint [136], Why [147] and Mobal [113] are examples
for multi-strategy revision systems.

Related, although seldom used for debugging, are rule induction and
knowledge assimilation approaches. Rule induction [115] focuses on learn-
ing rules from data without consideration for rules and facts already
present. Knowledge assimilation [57] is the process of incorporating up-
dated data into a knowledge base while taking into account the content
and integrity constraints of the knowledge base. In contrast to theory
revision, automatic knowledge refinement and rule induction focus on
adding/removing facts and not on changing rules. Knowledge assimila-
tion relates to debugging in the following way: the correct result of a failed
test is understood as an update request, knowledge assimilation techniques
are then used to identify facts that could be added to the knowledge base
to make this test succeed.

Some people argue that automatically learned and refined rules are the
only way in which rule bases can find wider practical use, however, de-
spite decades of research these approaches are currently confined to mostly
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academia. These approaches still have to prove that they can be used effi-
ciently and reliably to maintain rule bases. There is also the problem that
many current applications of rules focus on reliability and traceability, i.e.
these applications are realized with rules solely to ensure that business pro-
cesses are reliably executed and that decision can be justified - both prop-
erties that are risked when rules are learned. Another problem is that these
approaches are relatively hard to implement and computationally expen-
sive.

5.4.5 Algorithmic Debugging

Algorithmic debugging describes debugging techniques that automatically
divide the program into hierarchically ordered part’s, each part having a
number of subparts that are used in this parts computation. Each part has
some identifiable result. These approaches then try to identify the part(s)
that create a wrong result even though its subparts return correct results.

Ehud Shapiro [151] described the first algorithmic debugger in his PhD the-
sis. The system creates a computation tree representing the computation
of the program. The nodes in the tree represent procedures, rules or other
small programming parts and their results. The children of a node are other
programming parts whose results were instrumental in this node’s compu-
tation. The root node represents the entire program and its result. Using
the user and the specification as an oracle the system identifies the node in
the computation tree that returned a wrong result from correct inputs, i.e.
the program uses an algorithm to identify a suitable candidate node, asks
the user ”is the result of this node correct?” and repeats this until the faulty
node is found. The system tries to minimize the number of questions asked
to the user.

As an example consider the well known rule base, similar to the one in the
previous section but with an additional fact male(Mike).

motherOf(A,X)← female(A), child(A,X) # Rule motherOf
fatherOf(A,X)← male(A), child(X,A) # Rule fatherOf;
error, should be child(A,X)
parent(Y )← fatherOf(Y,X) # Rule parent 1
parent(Y )← motherOf(Y,X) # Rule parent 2
male(Peter)
child(Peter,Mike)
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In the following, an example for a debugging session with an algorithm
for the query← parent(Y ) is shown. In each step the system presents the
user with the input for a program part and its output. The user replies with
yes or no indicating whether this program part performed according to her
expectations. Note that the fault introduced above means that the query
returns the false result parent(Mike) instead of the correct parent(Peter).

parent_1 (in: Y, out: Y=Mike)
user> no

fatherOf (in: Y,X out: Y=Mike, X=Peter)
user> no

male (in Y, out:Y=Mike)
user> yes

child (in X,Y out: X=Peter,Y=Mike)
user> yes

A fault has been identified in the body of rule fatherOf.

A large body of research into algorithmic debugging exists, although of-
ten using a different terminology. Algorithmic debugging has also been
called declarative debugging [155], declarative diagnosis [118], guided de-
bugging [22], rational debugging [129] and deductive debugging [52]. Dis-
cussion of graphical user interfaces for algorithmic debugging can be found
in [168] and a collection of useful references related to algorithmic debug-
ging is contained in [53].

Algorithmic debugging has been heralded as a promising debugging ap-
proach because it truly frees the user from understanding complex inter-
action in the program and because it can seamlessly use any (even partial)
specification to reduce the number of questions asked to the user. However,
at the same time algorithmic debugging still asks a large number of ques-
tions, some of which may be very hard to answer. Further it does not facil-
itate learning of the user about the program and cannot easily profit from
the user’s intuition and background knowledge that may aid in finding a
fault. Algorithmic debuggers have not, so far, found widespread adoption
and the author is not aware of any commercial rule based system including
such a debugger.

5.4.6 Synthesis - Explorative Debugging Compared to Prior Work

As a debugging paradigm, Explorative Debugging aims to fill a void be-
tween approaches that require the developer to understand the inference
engine (procedural debugging) and, on the other hand, approaches that
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are at abstraction levels considerably above those of rules (explanation and
computer controlled debugging). It is the first systematic attempt to debug
rule bases at the same level as the semantics of the rules.

Procedural debugging forces the developer to learn about the inner work-
ings of the inference engine. In this way one possible advantage of rule
based systems - that the developers do not need to worry about the how
of the computation - is lost. An additional problem is that the inner work-
ings of inference engines can actually be very complex and even harder to
understand than a traditional backward chaining inference engine.

On the other end of the spectrum explanation and computer controlled
debugging approaches try to shield the developer from the details of the
debugging process; for example by delivering one shot explanations or
through debugging dialogs. However, there are a number of high level
problems with these approaches:

• These approaches always risk abstracting not only from unecesssary
details but also from the actual fault.

• Some of these approaches (in particular Algorithmic Debugging) also
get into the way of the developer; prevent her from using all her
knowledge and intuition to quickly find a fault.

• The performance of these approaches in the automatic identification
of faults has never proven to be good enough to debug the over-
whelming majority of bugs in a program; even in the much more ma-
ture world of procedural and object oriented programming no such
tools have emerged. For this reason these tools can never be the sole
debugging support - at the very least, they need the backup of a man-
ual debugging tool.

In addition to these abstract contributions, the Explorative Debugger also
introduces new ways of capturing the static and dynamic structure of a
rule base (in particular the mutation extended depends-on graph and the
mutation extended prooftree).
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5.5 Conclusions and Future Work

Explorative Debugging is a new debugging paradigm for logic program-
ming that enables developers to explore the execution of logic program
without needing to worry about the evaluation strategy of the inference
engine. As such it aims to fill a void between the procedural debugging
approaches on one hand and Algorithmic Debugging and explanation ap-
proaches on the other.

This chapter presented properties of logic programs that can be used to ex-
plore the execution of a logic program at the declarative level. This work
adds to the state of the art in debugging of rule bases in four points: (1)
the notion of Explorative Debugging, (2) the comprehensive collection of
declarative properties of rule bases useful for debugging (3) the notion of
the mutation extended dependency graph and (4) the notion and the im-
plementation of the mutated prooftree (in particular in a way that allows
to use arbitrary similarity measures such as taxonomic similarity).

The presented implementation of the F-logic debugger was the first ever
graphical debugger for this language and is still the most powerful. The
Trie! package is the only debugger for the presented rule language, the
only open source implementation of partial prooftrees and the only imple-
mentation of the mutated prooftree concept.

This chapter further presented an experiment comparing Explorative De-
bugging to the state of the art procedural debugging and showing a signif-
icant improvement in the time needed to identify faults while the accuracy
increased.

The work presented in this chapter opens up numerous venues for further
research:

• To arrive at more definitive answers about the suitability of different
debugging approaches it would be desirable to extend the evaluation
to larger rule bases, examine the importance of the different compo-
nents of Explorative Debugging and use faults not artificially created
but that occurred in real rule base development projects.

• Extending the Trie! implementation to cover a broader rule language,
in particular to also support built-ins and tabling to allow rule cycles.
A related research thread would be the introduction of partial and
mutated prooftrees into the Inference Explorer for F-logic.

• Another very interesting research thread would be the adaptation of
the algorithms to create partial and mutated prooftrees to perform
best-first instead of depth-first search; i.e. to create inference en-
gines that only start to explore mutations and partial prooftrees af-
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ter (at least the simple) chances to succeed without these have been
exhausted.

• Finally the mutation extended prooftree introduces a fairly general
model for conclusions that could almost be reached. This notion of
near conclusion is potentially useful for areas outside of debugging;
i.e. domains with noisy and faulty rule bases where some false con-
clusions are acceptable.
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Chapter 6

Anomaly Detection

Anomaly detection is the automatic examination of a rule base in order to
find symptoms of probable fault; to identify parts of a rule base that are in
need of a developer’s attention. Anomaly detection is a conceptual frame-
work for looking at some automatic techniques for (mostly) static analysis
of a rule base under development.

Static analysis was identified in the design and analysis of this thesis (see
chapter 3) as one of the transitions to investigate. This was based on the
challenge caused by the absence of formal specifications in development
projects using agile methods and on the novel opportunities afforded by
terms described in ontologies.

Static analysis means techniques for the examination of a program with-
out running it; it is performed for two related purposes: 1) to find faults
that need to be removed and 2) to obtain evidence for the conformance of
a program to (some part of) its requirements; i.e. for program verification.
These two purposes are related, because many of the static analysis tech-
niques used for verification also provide information that can be used to
find and remove faults.

At a high level, five different (but overlapping) clusters of static analysis
methods can be identified:

• Code Review: The manual inspection of a program by its developer,
a different developer, a domain expert or an external specialist.

• Bug Patterns: The automatic, usually heuristic, identification of pat-
terns in the program that can be identified as faults or that are often
seen as a consequence of a fault. Examples are rules that can never
fire, duplicate rules or variables that are never read.

169



170 CHAPTER 6. ANOMALY DETECTION

• Formal Methods: The use of reasoning techniques to formally proof
important properties of a program.

• Software Metrics: Measures of some property of a software or parts
thereof. Examples for software metrics are lines of code, coupling,
the number of rules or the size of the vocabulary of a rule base. Most
software metrics are computed without executing the program (test
coverage metrics are one important exception).

• Type Checking: Type checking is a specific way to identify use-
less and potentially problematic parts of a computer program. Type
checking often depends on particular elements of the programming
language that enable developers to specify the intended type for en-
tities in the program. In addition to their use in static analysis, many
type systems also affect the runtime of the program, e.g. they enable
to choose between similarly named, but unequally typed methods
(i.e. overloaded methods). Types are described in more detail in sec-
tion 6.2.

Note that these clusters of methods overlap, e.g. software metrics and bug
patterns can guide the review process and bug pattern detection can utilize
type information for more effective fault identification. Also note that the
static analysis is often understood to only encompass automatic techniques,
in this way excluding code review.

In the context of the work presented here, the decision was made to put the
notion of anomaly at the core of the static analysis, since it is a very flexible
notion that can encompass a large group of static analysis methods. An
anomaly is a notable, distinctive or unusual part or property of a rule base;
it points the developer to some part or property that requires attention.
Anomalies encompass bug patterns, many problems with types and can
also utilize software metrics.

After this introduction, the notion of anomalies is further explored in two
sections, first introducing the anomalies related to the type systems and
then those related to bug patterns and metrics. The subsequent section then
describes the implementation of these notions. Finally a section introduces
prior work before this chapter concludes.

The work described in this chapter is only related to F-logic and does not
easily generalize to normal logic programs. This is caused by the fact that
normal logic programs (as introduced in the chapter 2.1), lack a type sys-
tem comparable to F-logic and also that many of the anomaly heuristics
introduced use specifics of types or F-logic programs that are not found in
normal logic programs.
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6.1 Anomalies and Anomaly Heuristics

Anomalies are notable, distinctive or unusual parts or properties in a rule
base that are, with a high probability the result of a fault. Anomalies are
used to focus the developer’s attention on some part of the knowledge base
that is likely to contain a fault.

Anomalies can be computed using any kind of method or tool, such as
the detection of bug patterns, type checking or the computation of soft-
ware metrics. The methods used to compute anomalies are called anomaly
heuristics1. Every anomaly heuristic described below detects one type of
anomalies.

In order to ensure portability and following the seminal work of Preece and
Shinghal [133], all anomaly heuristics are realized in F-logic itself.

Ideally each anomaly would directly correspond to one fault, but ensuring
this is generally impossible and many anomalies are false positives, i.e. are
not actually a symptom of a fault in the rule base. To allow developers to fo-
cus on the more serious anomalies a ranking of anomalies was introduced:
each anomaly is classified as either information, warning or error.

For better organization anomalies are presented here in two large groups:
those related to the F-logic type system and those that are not. Both types
of anomalies are now described in one section each.

6.2 Type Checking based Anomalies for F-logic

In general types attach meaning to a collection of bits in a computer system,
e.g. they determine which bits are executed as code and which are treated
as an integer. Type information is used by both the computer and the de-
veloper and can facilitate program comprehension, optimization, and fault
detection.

Type checking is the process of verifying that a computer program satisfies
the constraints imposed by the type system. Type checking can be dynamic
(i.e. be performed at runtime), static (i.e. be performed without executing
the program) or a combination of both.

As described in section 2.2, F-logic includes syntactic elements for specify-
ing types, but it does not specify a complete type system; in particular it
does not specify a method for type checking. The F-logic introduction in

1The term ’heuristic’ here is used to allude to the fact that not all anomalies are caused
by faults, that anomalies can be false positives. ’Heuristic’ does not say anything about the
kind of algorithm used.
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[92] includes a definition of type correctness and type safety as a yardstick.
However, the defined type system is undecidable, too weak for many cases
and computationally very expensive.

This section introduces the F-logic type checking system developed by the
author in Project Halo. It starts first with a recapitulation of the type syntax
in F-logic followed by a discussion of the yardstick type semantics intro-
duced in [92]. Previous implementations of F-logic type systems are pre-
sented. Then, the developed type checking system is motivated, described
and discussed.

6.2.1 Syntax and Semantics of F-logic Types

F-logic’s type syntax consists of two kinds of signature expression, set val-
ued signature expressions of the form d[m@{c1,...,cn=>>e] and scalar
signature expression of the form o[m@{b1,...,bn}->t]. Consider the
following example rule base:

man::person.
woman::person.

person[mother=>woman].
person[son=>>man].
person[child@{woman}=>>person].

This rule base shows three examples for the application of these signature
expressions. It first specifies a simple type hierarchy, stating that both man
and woman are subclasses of person. The third line then is a scalar sig-
nature expression, specifying that the application of method mother to an
instance of person yields at most a single return value of type woman. The
line below is a set valued signature expression, defining that the method
son applied to an instance of person yields zero or more instances of type
man. Finally the last line contains a more complex set valued signature ex-
pression that states that the method child of person return zero or more
persons, when called with a parameter of type woman. Note that these
signature expressions can also be used both in the head and body of rules,
allowing rules to change the signature of classes.

In [92] Kifer et al. define a yardstick semantics for the F-logic type system
based on these signature expressions as follows:
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An atom A of the form o[m@{b1,...,bn}->t]2 is covered by a signa-
ture atom d[m@{c1,...,cn}=>e], iff o:d and for every i=1,...,n it holds
that b1:c1. Similarly an atom of the form o[m@{b1,...,bn}->>t] is
covered by a signature atom d[m@{c1,...,cn=>>e], iff o:d and for ev-
ery i=1,...,n it holds that b1:c1. An rule base that contains only data atoms
covered in this way is said to be type correct.

A Herbrand interpretation I of an F-logic program is a typed Herbrand
interpretation iff:

1. every data atom in I is covered by a signature atom in I

2. for every data atom o[m@{b1,...,bn}->t] that is covered by a
signature atom d[m@{c1,...,cn}=>e] it holds that t:e in I

3. for every data atom o[m@{b1,...,bn}->>t] that is covered by a
signature atom d[m@{c1,...,cn}=>>e] it holds that t:e in I

The first condition is a restriction on the domain of methods; it ensures
that methods are called only on objects for which they are defined. The
second and third condition restrict the range of methods, they ensure that
the methods satisfy the contraints imposed on them by the signature atoms.
A rule base that satisfies the second and third condition is said to be type
safe.

An F-logic program is a well-typed program, iff all its canonical models3

are typed Herbrand interpretations.

Consider the following simple example:

man::person.
woman::person.
person[son=>>man].

Sarah:woman.
Sarah[son->>mike].

This example is not a well-typed program because of the statement
Sarah[son->>mike]. This statement is covered by the signature atom
person[son=>>man] (the rule base is type correct), however, mike is not
known to be of type man, hence condition 3 from above is violated and the
rule base is neither type safe nor well-typed.

As another example consider the logic program consisting of only one rule:

2For readability this section uses F-logic syntax, however, please recall that
(as defined in section 2.2.3) this is equivalent to the normal logic atom direc-
tatt(o,m(b1,...bn),t,DefaultModule).

3E.g. the least or perfect Herbrand model as defined in section 2.1.
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FORALL X,Y
X[son->>Y]
<-
Y:man[father->X].

Intuitively this program should be detected as not-well typed, because the
rule uses a class and methods not declared at all. However, because the
(empty) least Herbrand model of this program contains no atoms that vio-
late any of the constraints specified above, this program is in fact well typed
in the sense described here. This example shows the weakness of this type
system: it cannot identify type related faults in rules that do not fire. This
weakness is particularly problematic for case where - like in Project Halo -
a rule set is created to be used with changing sets of facts. In such a setting
only few rules fire at any given moment and it is highly desirable to check
the rules independently of the (changing) facts.

A further problem of this type system is, that checking a program for type
correctness in this sense is computationally very expensive and undecid-
able [92].

6.2.2 Prior Implementations of F-logic Type Checking

All prior implementations of F-logic type systems have been either ad hoc
syntactic approaches using procedural languages or simple implementa-
tions of the yardstick type semantics described above, even though its lim-
itations are well understood. This section will shortly introduce the ap-
proaches taken by the three main F-logic implementations Flora, Florid and
Ontobroker.

Florid [64] does not include any implementation of the type system, how-
ever, the documentation [63] includes three rules that directly implement
a limited version of the yardstick type system introduced above. This
implementation is limited, because it is restricted to only consider scalar
data signature expression and methods with no arguments. Additionally,
these rules require the prior computation of the entire least model of the
program- a very costly and (in the case of infinite models) impossible pre-
requisite.

Flora [174] also does not automatically type check programs, but it includes
a method to facilitate easier type checking by the user. This type method
[173] can check the type correctness according to the yardstick type seman-
tics described above; it further allows to restrict the checking of type cor-
rectness to only particular classes or modules. Type checking in Flora does
not generally work for parts of the knowledge base that include built-ins
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or non-logical features [173] and it suffers from the general problems of the
yardstick type semantics detailed above.

Ontobroker [49] does not include any facilities for type checking, however,
the rule editor included with its development environment Ontostudio
[124] performs static type checking. This static type checking (whose ex-
act semantics are not published) mainly warns the user when a method
is called on a variable that is not explicitly required to be of a type for
which this method is specified; i.e. a warning is generated for an atom
A[son->B] unless4 A:person is also in the rule body. This type checking
algorithm is implemented outside of the logic language and not portable
for rules created outside of the rule editor (which only supports a subset
of all possible rules). Another problem is that this type checking algorithm
creates many warning for rules that would work fine, i.e. would not violate
any type constraints.

6.2.3 Dynamic Type Checking Anomaly Heuristics

As part of the work described in this thesis, the dynamic type checking us-
ing the yardstick semantics was realized as two anomaly heuristics. Both
take as input the module that is to be checked; thereby allowing to reduce
the computational cost and making it possible to apply type checking only
to the simpler modules for which it is decidable. The two anomaly heuris-
tics are (the formal specification of the anomaly heuristics as F-logic is given
in the Appendix E):�

�

�

�

Anomaly Heuristic 1 (Instance Method Undefined) An error is created
for instances with methods that are not defined in their signature. This is a
direct realization of type correctness; the first of the three conditions specified
for the yardstick type semantics detailed above.

�

�

�

�

Anomaly Heuristic 2 (Method Range Type) An error is created for
methods of instances that return the wrong type. This is a direct realization of
type safety; the second and third of the conditions specified for the yardstick
type semantics detailed above.

These two heuristics allow a complete dynamic type checking for (parts of)
a knowledge base, however, they are very expensive to compute, checking
them may not terminate and they suffer from the weakness in static type
checking detailed above.

4Assuming the signatures defined in the second example in the previous section.



176 CHAPTER 6. ANOMALY DETECTION

6.2.4 Heuristic Static Type Checking for F-logic

Project Halo’s goal was the creation of rule sets that would work for queries
and facts not available at the time of their creation. In such a setting, type
checking (also) needs to be static and needs to work on the rules even with-
out them firing.

As shown above, even a full implementation of the yardstick semantic is
too weak for these requirements. In general it is also not possible to de-
termine whether any given set of rules only concludes type-correct facts.
However, starting from the assumption that only data atoms (and not sig-
nature atoms and rules) are later added to the rule base, rules can be stat-
ically classified as type incorrect, type safe or type unknown. Consider the
following example rule base:

/* facts */
man::person.
woman::person.

person[son=>>man].
person[father=>man].

RULE1:
FORALL X,Y

X[son->>Y]
<-

Y[father->X].

RULE2:
FORALL X,Y

X[son->>Y]
<-

Y:man[father->X] AND
X:man.

RULE3:
FORALL X,Y

X[son->>Y]
<-

Y:man[parent->X].

In this example rule 1 is ’type unknown’: depending on the data atoms it
may conclude well typed atoms (in the case when all bindings for Y hap-
pen to be of type man) or not-well typed atoms (in the case when at least
one binding for Y is of type woman). Rule 2 includes additional atoms that
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ensure that both X and Y are of type man, even with an input of data-atoms
that are not well typed themselves, this rule only concludes well-typed
atoms; rule 2 is type safe. Rule 3 is type incorrect - it uses a method not
specified for any type and hence is useless, would only fire for not-well
typed data.

Two anomaly heuristics have been developed based on these notions. The
first is based on the notion of ’type-unknown’ rules and generates a warn-
ing and an explanation for rules that are ’type-unknown’. The second
heuristics generates an error for rules that are type incorrect. Both heuris-
tics are realized as rules that reason about the rules in the knowledge base
(the details of this are described in detail in the section 6.4 below).'

&

$

%

Anomaly Heuristic 3 (Method Undefined for Variable in Rule) A
warning is generated for all rules that use a method on a variable that is not
known to be of a type that defines this method. A variable A is said to be
known to be of a type b in a rule, iff the rule also contains a positive atom of
the form A:c, where c::b.

This heuristic is able to alert the developer to problems like rule 2 in the
example above. A second heuristic identifies some of the statically type-
incorrect rules.�
�

�
�

Anomaly Heuristic 4 (Rule Method Unknown) An error is generated
for each rule that uses a method that is not defined in any signature atom.

This second heuristic can statically detect some type incorrect rules, such
as rule 3 in the example above. This heuristic was generated mostly to
ensure that developers are reminded to update rules after changes to the
signatures.

6.3 Bug Pattern based Anomalies for F-logic

Bug patterns, i.e. patterns in the rule base that are often the consequence of
a fault, are used in addition to the type checking based anomalies described
above. These bug pattern based anomalies can be coarsely grouped into
two classes: those mainly focusing on rules and those focusing on the class
hierarchy; each of these is detailed in one subsection below.
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6.3.1 Rule Bug Patterns

Three heuristics are defined that are mainly concerned with rules, identify-
ing the use of non-existing instances in rules, unsafe rules and undefined
classes.�

�

�

�
Anomaly Heuristic 5 (Rule Body Instance Undefined) A warning is
generated for each rule that uses an instance in the rule body that is not defined
elsewhere.

Consider the following example rule base:

FORALL A
A:VW_car

<-
A[maker->VW]

A warning5 of the type ’Rule Body Instance Undefined’ would be gen-
erated for this rule base, because VW is an instance that is not defined in
the rule base. This kind of problem would most likely be caused by some
change that removed or renamed the VW entity that was present at some
point.�

�

�

�
Anomaly Heuristic 6 (Head Variable Unbound) An error is created for
each rule that uses a variable in the head, but not in at least one positive atom
in the body.

Rules that fit this pattern are usually not intended in this way, and, more
importantly, the Ontobroker inference engine cannot process such rules
and will terminate the reasoning process with an exception and without
computing a result.�

�

�

�
Anomaly Heuristic 7 (Class Undefined) A warning is created for each
class that is used in an is-a statement but that is not defined elsewhere. For
this heuristic the is-a statements in rules and in data atoms are considered.

Again this heuristic is mostly geared towards identifying faults caused by
the independent evolution of rules and the class hierarchy; i.e. to detect
cases where a rule wasn’t changed after a class had been removed or re-
named.

5In fact, some type checking based errors defined in the previous section would be raised
as well.
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6.3.2 Class Hierarchy Bug Patterns

Four heuristics are defined that deal mainly with the class hierarchy and
support the developer in maintaining it.�

�

�

�
Anomaly Heuristic 8 (Many Subclasses) A warning is created for each
class with more than 12 subclasses. Such a large number of subclasses is often
seen as bad practice [120] and results in hard to maintain ontologies.

�

�

�

�
Anomaly Heuristic 9 (Few Subclasses) A warning is created for each
class with less than two subconcepts. A very small number of subclasses is
also often seen as bad practice [120] and indicates possibly superfluous classes.

Another indicator of possible superfluous classes are those that do appear
in the class hierarchy but that aren’t used as types for instances or in con-
ditions for rules.�
�

�
�

Anomaly Heuristic 10 (Class Leaf) A warning is created for each class
that has neither instances, nor subconcepts nor is used in the atom of a rule.

While such classes might have been created on purpose (e.g. classes that
are intended to be instantiated within the context of tests) they often also
indicate loose ends in the knowledge base; where the developer created a
class for some purpose that was not realized.�
�

�
�

Anomaly Heuristic 11 (Root Classes) An information is generated for
each concept that has no superconcepts (other than itself).

Finally a list of root classes is created and presented to the user. Obviously
being a root concept can be intended and, in fact, every class hierarchy
needs at least one root concept. However, a root class may also indicate
a class that the developer has forgotten to sort into the class hierarchy or
that is left over from a restructuring of the class hierarchy. Hence, and
because the number of root concepts is usually relatively small, this list of
root concepts is presented to the user.

6.4 Implementation

All anomaly heuristics described in the previous section are realized with
meta-reasoning in F-logic. Each anomaly heuristic consists of a number of
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F-logic rules that are described in an XML file. This XML file also contains
information about parameters a heuristic accepts and natural language pat-
terns that enable the user-level explanation of the anomalies identified. An
user interface integrated into DarkMatterStudio allows to parameterize the
rules and to look at the explanations.

In the current section the implementation of the anomaly heuristics is de-
scribed in detail. The section starts with a description of rule reification; the
data structures that enable the system to reason about the rules in its rule
base. Next, the realization of the actual heuristics is described before the
user interface is introduced.

6.4.1 Rule Reification

Reification is the process of turning an abstraction into an object that can be
reasoned about. In the context of the work presented here, rules are reified
so that they can be examined and reasoned about with anomaly heuristics.

Reification of F-logic rules was a pre-existing feature of the Ontobroker in-
ference engine [59] and is introduced here using an example; the complete
ontology for the representation of the reified rules is shown in appendix D.

As an example consider the following rule that ensures the reflexivity for
a method m, i.e. that, if calling the method m on an instance B returns A,
calling the same method on A returns B.

RULE reflex:
FORALL A,B

A[m->B]
<-

B[m->A]

Please recall that the F-logic rules are translated to normal logic before they
are processed by the inference engine (see section 2.2.3); the reification is
also applied to these translated rules. For the example rule above, the nor-
mal logic version is the following:

att(A,m,B,DefaultModule)← att(B,m,A,DefaultModule)

Based on on this translated version, the facts created in the reification are
the following; the reified rule is:

reflex:Rule[
identifier->reflex;
bodyVariables ->> {variable(A),variable(B)},
headVariables ->> {variable(A),variable(B)},
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heads -> [literal1];
bodies -> [literal1];
bodyLength -> 1.0;
headLength -> 1.0;
module -> DefaultModule].

literal1:Literal[
atom->atom3;
variables ->> { variable(A),variable(B) }
isPositive -> true;
module -> DefaultModule].

atom3:PAtom[
predicateSymbol -> "att";
arguments ->[variable(A), constant(m),

variable(B),constant(DefaultModule)];
arity -> 4.0].

literal2:Literal[
atom->atom4;
variables ->> {variable(A),variable(B)}
isPositive -> true;
module -> DefaultModule].

atom5:PAtom[
predicateSymbol -> "att";
arguments ->[variable(B), constant(m),

variable(A),constant(DefaultModule)];
arity -> 4.0].

The top level instance representing the reification of a rule is reflex, an
instance of the class Rule. This instance has methods with the variables
used in head and body, references to instances representing the literals in
head and body6, the numbers of atoms in head and body and finally the
module of the rule.

The literal instances each have one atom, their module, the variables used
in them and, most importantly, a method indicating whether they are
negated or not.

Finally the atom instances have methods for the predicate symbol, its arity
and a list of the arguments.

6Note that there are only atoms, not literals in the rule head. Having literal instances
represent the rule head is a quirk in the reification ontology.
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Since, as defined in section 2.1, normal logic rules consist of only a head
atom and body literals, all of these can be represented in the presented
way. Please note, however, that reifying the normal logic rules (and not the
F-logic rules directly) means that one F-logic rule can be represented by any
number of reified rules. The link between the reified rules and the F-logic
rules they where derived from is given by the identifier method of the
rule instance.

With this reification ontology it is now possible to reason about all elements
in the rule base, the facts being already accessible with the standard ele-
ments of F-logic.

Note that the reification here is only a representation of the rules for in-
trospection. It is not, however, possible to use this ontology to create new
rules at runtime; it is not possible, that rules infer new rules.

6.4.2 Anomaly Heuristic Realization

Anomaly heuristics are rules that jointly define a special 4-ary predicate:

problem(anomalyId,severity,module,location)

The arguments for this predicate are:

• anomalyId The kind of anomaly that was found.

• severity ’Error’, ’Warning’ or ’Information’; indicating the severity of
each anomaly.

• module The module the anomaly was found in7.

• location A list of further instances giving more information about the
location and the kind of anomaly. The first element of the list is used
to group anomalies, all further elements are used only by the expla-
nation templates of the heuristics (see below).

An example anomaly is given below, it shows the anomaly identified by
the anomaly heuristic ’Rule Method Unknown’ when applied to the reflex
rule introduced above. Please note that the actual anomaly heuristics use
a terminology different from that in this thesis (e.g. ’property’ instead of
’method’), this is due to non-standard terminology being used in Project
Halo in an attempt to make F-logic easier to understand.

problem(rule_property_unknown,severity_error,
DefaultModule,[reflex,m])

7Having the module as one argument of the problem predicate allows - together with
the datalog style reasoning in Ontobroker - to compute anomalies only for certain modules.
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As arguments the problem predicate has the id of the anomaly heuristic
(rule_property_unknown), an instance indicating that this is classified
as an error (severity_error), the module (DefaultModule) and a list
with further information about the details of the anomaly - in this case the
identifier of the rule (reflex) and that of the method (m).

The anomaly heuristics themselves are defined in an XML file, allowing
for easy extension, change and exchange without needing any change in
the code of the ontology engineering environment or the inference engine.
An example for the anomaly heuristic ’Rule Method Unknown’ is shown
below. All elements appearing in the example are detailed therafter.

<title>Rule Property Unknown</title>
<id>rule_property_unknown</id>
<category>Rule</category>
<performanceIndex>1</performanceIndex>
<defaultOn>true</defaultOn>

<code>
RULE rule_property_unknown:

FORALL R,P,M,E
problem(rule_property_unknown,severity_error,M,[R,P])

<-
is_rule(R,M) AND
att_rule(R,E,P) AND
NOT property(P,M).

</code>

<description> A rules uses an attribute or relation that
is not defined anywhere. Run this test after you
removed attributes or relations from the ontology that
some rules may still use.

</description>

<explanation>The rule $0$ uses the property $1$ - such
a property is not defined for any concept! This rule
will not work.

</explanation>

The definition of an anomaly heuristic consists of the following parts:

• Title The name of the anomaly heuristic. This is shown in the user
interface.

• ID The id of the anomalies created by this anomaly heuristic; this is
used to find the explanation template for a given anomaly. This id
needs to be unique.

• Category A category of the anomaly heuristic; used to group anoma-
lies in the user interface.
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• Performance Index A number indicating how long a particular
heuristic usually takes to execute. This is used in the user interface
as a guide for the user.

• Default On Indicating whether the anomaly heuristic should be run
per default, when the user makes no configurations.

• Code The actual rule(s) realizing the anomaly heuristic. The anomaly
heuristic rules can use a library of helper rules for meta-reasoning
about F-logic programs. This library too was created as part of
this thesis and is shown in appendix E.1. The example above
uses the predicates is_rule (is rule(Rule,Module) - all rules in
one module), att_rule (att rule(Rule, Entity, Property) - all meth-
ods/properties used in a rule on an entity/instance) and property
(property(Property,Module) - all instances defined as properties) that
are all defined by this library.

• Description A description of the anomaly heuristic that is displayed
to the user as further information.

• Explanation A template that is used to explain anomalies found by
this heuristic to the user. The explanation template contains numbers
enclosed in dollar signs, these are replaced with the instances from
the list in the problem predicate. Applying the explanation template
to the example anomaly above yields: The rule reflex uses the property
m - such a property is not defined for any concept! This rule will not work.

Not shown in this simple example is the feature that allows users to param-
eterize an anomaly heuristic. For example the ’Many Subclasses’ anomaly
heuristic introduced above allows to change the threshold over which the
number of subclasses gets reported. The realization of this feature is shown
below in a excerpt from the definition of the ’Many Subclasses’ heuristic:

<code>
FORALL Concept_,NumberSubclasses_, Module

problem(style_manySubclasses,severity_warning,Module,
[Concept_,NumberSubclasses_])

<-
number_subclasses(Concept_,NumberSubclasses_,Module) AND
greater(NumberSubclasses_,$num$).

</code>

<parameters>
<parameter>

<name>Number Subclasses</name>
<id>num</id>
<defaultValue>12</defaultValue>
<description>The number of subclasses that are allowed
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before a warning gets created.
</description>

</parameter>
</parameters>

Here the rule realizing the anomaly heuristic includes a parameter $num$
that is replaced by a user supplied value before the anomaly heuristic is
executed. The description of the parameter, its default value and how it is
explained to the user is done with further XML elements.

The actual realization and execution of the anomaly heuristics comprises
of the following steps:

• On system startup the XML file specifying the anomaly heuristics is
read, validated and the user interface is configured such that the user
is able to choose and parameterize the anomaly heuristics. A default
configuration of the anomaly heuristics is created based on the con-
figuration from the last time the system was run or (if this is not avail-
able) from the default values.

• Any time the system runs, the user can select, deselect or parameter-
ize anomaly heuristics.

• At any time the user can choose to run the anomaly heuristics based
on the current configuration; this is done in the following steps:

1. The anomaly heuristic parameters are inserted into the rules.

2. The rules from the currently active anomaly heuristics and the
meta-reasoning helper rules are added to the rule base.

3. A query for all problems in the user modules is executed. The
result is saved.

4. The anomaly rules and the helper rules are removed from the
rule base (to not hinder performance or confuse the user).

5. The explanation templates are used to generate natural language
texts explaining the anomalies found.

6. The anomalies are shown to the user.

6.4.3 User Interface

The interface for the anomaly component consists of two views that are
integrated into the Dark Matter Studio system. The first view shows infor-
mation about the available heuristics, gives hints on when to enable them
and allows their configuration. The other view shows the actual anomalies
found in the rule base.
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The anomaly select view (see figure 6.1) shows the different anomalies and
whether they are currently enabled, i.e. will run the next time DMS
searches for anomalies. The different anomaly heuristics are ordered in
broad categories such as rules, instances or concepts. The anomaly select
view also allows to activate, deactivate and configure anomalies.

Figure 6.1: Anomaly select view.

The second view; the anomaly view displays the anomalies that have been
found in the rule base (see figure 6.2). The anomalies are grouped by either
the affected entity or the type of anomaly.

Clicking on an entity shows the different anomalies affecting this entity. All
anomalies that have been found are displayed with a small icon indicating
their severity (in the example only warning - indicated by a yellow warning
sign - are shown). A short explanation text is displayed below the list of
anomalies.

6.5 Prior Work

Anomaly heuristics to support the creation of rule based systems have been
researched and developed since the days of the first expert systems.

Probably the first anomaly detection system was included in the Teiresias
system [45]. This system examined the rule base and created a model of the
patterns in which attributes were used together. On newly introduced rules
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Figure 6.2: Anomaly view.

the system would then create a warning when this pattern was violated,
e.g. ’all previous rule considering age and glucose level also considered
the weight of the patient’.

From this grew a first generation of anomaly detection systems [133]. This
first generation focused on the detection of anomalies involving only one
or a very small number of rules. Typically they could detect the following
problems:

• Duplicate rules: Pairs of redundant rules, where one rule duplicated
the conditions and conclusions of the other. One rule could also be
subsumed by the other.

• Missing rules Missing rules were detected based on possible combi-
nations of input values that do not match any rule body.

• Contradicting rules Pairs of rules that, on the same situation, con-
clude incompatible facts.

Typical system from this first generation of anomaly detection systems are
RCP [158] and CHECK [119].

The second generation of anomaly detection systems focused on identify-
ing redundancies and contradictions across large groups of rules. These
systems also attempted to find more sophisticated cases of missing knowl-
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edge. Important systems are EVA [33], COVER [134], and KB-REDUCER
[68].

Based on experiences from these systems, Preece and Shinghal [133] created
a very influential categorization of anomaly heuristics. They differentiated
the following groups:

• Redundancy, further divided into:

– Unfireable rule

– Subsumed rule

– Unusable consequent

• Ambivalence, in particular contradicting rules

• Circularity

• Deficiency, in particular unused inputs.

Only the first of these, redundancy is examined in the context of this work.
Circularity is not a problem with normal logic programs8. Deficiency as
unused input is not detectable, since the input is not known or specified
in advance. The system presented here, however, extends this classifica-
tion in some aspects, since it also considers some anomalies related to the
ontology.

Most of the work on anomaly detection for rule based systems has been
done more than one decade ago, very few novel work exists. Notable recent
works are attempts to extend the anomaly idea beyond rules to specifica-
tion artifacts [165] and attempts to use binary decision diagrams to speed
up the detection of anomalies involving large numbers of rules [114]. A
comprehensive approach is the VALENS (VALid Engineering Support) tool
for validation and verification of Aion knowledge bases. This system real-
izes anomalies from all groups identified by Preece and Shinghal.

The system presented in this chapter is the first attempt at creating an
anomaly detection system for F-logic. Its also the first system to realize
some static type checking for F-logic. It does not, however, pioneer entirely
new classes of anomalies or novel ways to compute them; rather it focuses
on the practical aspects of embedding them in a flexible, transparent and
extensible way in a modern rule base engineering environment.

8Unless paired unfortunately with negation, causing a rule base to become unstratisfi-
able.
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6.6 Conclusion

This chapter presented an anomaly detection framework for F-logic. It sup-
ports anomaly heuristics based on the F-logic type system, problems in
rules and problems with the ontology. The type based anomalies realize
both the yardstick type semantics of F-logic and heuristic static type check-
ing.

The framework is implemented as a plugin for the rule engineering envi-
ronment Dark Matter Studio and (except for the user interface) it is imple-
mented in F-logic rules processing a reified version of the rule base. The
created framework is easily extensible and relatively portable to other sys-
tems due to all anomaly heuristics being defined in XML files and realized
in F-logic itself. The implementation supports template based natural lan-
guage explanation of the problems found; the templates too, are contained
in the XML files.

The presented framework is the first anomaly detection system for F-logic
and includes the first implementation of static type checking for F-logic.
Compared to the related work in the broader area of anomaly detection for
any rule based system it is unique in its XML based extensibility.

The most important limitation of the proposed approach is the current ab-
sence of a systematic evaluation. Obtaining existing rule base and using
the presented system to identify faults in these is hence the most promis-
ing and most important venue for future work. Another possible venue for
future work is the extension of the current set of anomaly heuristics.
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Chapter 7

Visualization

The analysis in chapter 3 identified the action-mistake transition in the fault
lifecycle (the proportion of developer actions that are mistakes) as one of
the critical points for explaining the debugging challenge of rule base de-
velopment. The identification of this transition as problematic rested on
three observations (explained fully in section 3.2):

• The Problem of Terminology: that while rules are often seen and pre-
sented as self-contained entities, they depend on a consistent domain
formalization across all rules they interact with.

• The Problem of Opacity: that the behavior of a rule base is deter-
mined by the interaction of the rules; that at the same time, however,
this interaction is usually not shown to the user.

• The Rise of End User Programmers: that less trained developers are
creating rule bases.

To tackle this challenge a visualization of the rule base was conceived. This
visualization shows the structure of the rule base on the basis of the actual
rule interactions. It should enable the developer to make more correct de-
cisions by making her more aware of the connections in the rule base; i.e.
with which parts of the rule base her changes need to be consistent with
and which other rules may be affected by a change. This visualization is
an implementation of the visibility design principle required above (see
section 3.3.2), it further also realizes the declarativity principle by being
completely independent of the evaluation strategy of the inference engine.

The visualization of entire rule bases, independent of the answer to any
particular query, is a problem that has so far been largely ignored by the
research community. The goals for such a visualization are the same as for
UML class diagrams and other overview representations of programs: to

191
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aid teaching, programming, debugging, validation and maintenance by fa-
cilitating a better understanding of a computer program by the developer.
The importance of such representations cannot easily be overstated and is
probably higher than in object oriented programming: In object oriented
programming the overall structure is explicitly created by the programmer
with links between objects, the inheritance hierarchy and method calls; in
rule bases the interaction between rules is only decided by the inference
engine and usually never shown to the user. Hence an overview represen-
tation of the entire rule bases is necessary to make this hidden structure
visible. Before suitable visualizations for rule bases can be created, how-
ever, we need a definition of the overall structure of the rule base - doing this
with respect to usage data is the main contribution of this chapter.

This chapter starts with a recapitulation of the static structure of the rule
base. Next, the dynamic structure of a rule base is introduced in section
7.2. Section 7.3 introduces techniques to hide1 and to join multiple rules2 in
the visualization. The implementation of this visualization is described in
section 7.4, before an overview of related work and the conclusion.

It is important to note that large parts of the actual implementation pre-
sented in this chapter were implemented by Imen Borgi, a student, with
supervision by the author.

7.1 Static Structure

In this section the static structure of the rule base is quickly recapitulated
and presented from the viewpoint of visualizations; a definition is already
given in section 5.1.2 of the debugging chapter.

The core concept for the static structure of rule bases is the depends-on con-
nection between rules. Such a link indicates that two rules seem to be able
to work together. Consider the following rule base:

father(A)← male(A), parent(A,B) (1)
parent(X,Y )← child(Y,X) (2)

employer(X)← owns(X,C), employed at(A,C) (3)

It can be seen that, with the right facts, rule (1) could work with the result
of rule (2). The following fact base consisting of only two facts should serve
as an example:

male(mike), child(michelle,mike)
1For example the F-logic axioms.
2For example all rules in a module or multiple rules created from the compilation of one

high-level rule.
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With these facts, rule (2) could deduce that parent(mike,michelle) from
child(michelle,mike) and rule (1) could then deduce that father(mike). In
such a case it is said that rule (1) depends-on rule (2). It is said depends-
on, because the rule (1) could not have made the inference that Mike is a
father without rule (2) being present; for this conclusion it depended on
the other rule. For the depends-on connection, only those cases are con-
sidered, where a rule works directly on the conclusion of another rule; not
the cases where there are intermediary rules. The depends-on connections
are calculated on the rules without consideration for the actual facts that
are available: a depends-on connection exists independently of the facts.
A depends-on connection between a rule A and a rule B states that there
exists a set of facts such that an inference of rule A directly depends on rule
B being present.

Figure 7.1: Static structure of the example rule base in section 7.1.

The rule (3) on the other hand, has no depends-on connection to any of the
other rules - there exists no set of facts such that rule 3 could directly work
on data inferred by one of the other two rules. Also note that depends-on
connections are not symmetric: rule (1) depends-on (2) but not the other
way around.

A simple way to calculate an approximation of the depends-on connection
is the following: a depends-on connection exists from rule A to rule B, iff
rule A has a body atom that can be unified with the head atom of B. This
way to calculate the depends-on connections is only an approximation be-
cause it only considers single atoms and not the entire rule; other atoms
in the rule body may make a depends-on connection impossible. A defini-
tion of the static structure as well as links to other ways to compute these
connections is given in section 5.1.2.

The rule graph for the simple rule base example in this section is shown
in figure 7.1. It quickly conveys information such that {1,2} and {3} are
independent parts of the rule base, that a deletion of (2) will affect (1) and
that someone interested in understanding rule (1) should also look at (2).
For a rule base consisting only of three rules such a diagram is obviously
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not needed, but it can be seen how this kind of information can aid the
creation, debugging, maintenance and reuse of larger rule bases.

7.2 Dynamic Structure

The static structure defined in the previous section represents the potential
of rules to interact, without making assumptions/using information about
the queries and facts a rule base is used with. The dynamic structure of
a rule base complements this by combining the prooftrees from all known
queries to the rule base into an overview picture. The resulting picture
shows which rules and rule connections actually matter in the use of a rule
base. When used to visualize the prooftrees from the tests for a rule base it
also gives a picture of test coverage.

Consider the following rule base. This rule base makes heavy use of a type
hierarchy encoded in special predicates - a structure typical for rule bases
created in F-logic [92].

is a(A,working parent)← is a(A, parent), is a(A, employee) (4)
is a(A,mother)← is a(A, female), child(X,A) (5)

is a(A,C)← is a(A,B), subclass(B,C) (6)

The static structure of this rule base is confusing (see figure 7.3) as almost
everything depends on everything else; looking at the rule interactions in
the actual use of the rule base can help here.

Figure 7.2: An example prooftree

The structure that represents the interaction of rules and facts in the infer-
ring of a result is called a prooftree. The root node of a prooftree is always
the query, its variables bound to the result that has been returned. The chil-
dren of this node are the rules that were directly needed to prove the query.
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The children of these rules are again the rules needed to prove them. Leafs
of the prooftree are formed by the facts in the knowledge base. A formal
definition of prooftree has been already given in section 4.2.1.

An example prooftree is created by the query is a(A,working parent)
posed against the rule base above and the following facts:

subclass(mother, parent), is a(michelle, female)
is a(michelle, employee), child(michelle,mike jr)

A graphical representation of this prooftree is shown in figure 7.2. It shows
the query on top with the variable A bound to michelle. This result of the
query directly depended on the firing of rule (4) that in turn depended on
rule (6) and the fact is a(michelle, employee) etc.

Figure 7.3: The static structure (to the left) and the dynamic structure (right) of
the example in section 7.2. In this example the dynamic structure is very similar
to a prooftree - because the usage data consits only of this one prooftree; this is not
the case generally.

The novel approach presented here now combines all known prooftrees for
a rule base into an aggregated picture of the dynamic structure of the rule
base, independent from the answer to any particular query. To do this, first
usage data is defined as the multiset of all known prooftrees for a rule base,
i.e.�
�

�
�

Definition 30 (Rule Base Usage Data) Rule base usage data U =
{GP,1, GP,2..., GP,i} is the multiset of all known prooftrees for a rule base.

The prooftrees could be created by tests of the rule base or be collected
during the actual use of the system. Based on this usage data, the dynamic
structure of the rule base can be defined. The dynamic structure is based
on the static structure defined above, but adds a weight for each arc based
on how often an arc has been exercised in the usage data.
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Definition 31 (Dynamic Structure of a Rule Base) The dynamic struc-
ture of a rule base R, is a directed graph GR = (R,A) and a function
fs : A→ N with
• The set of vertices R, there is one vertex for each rule in the rule base.

We write that RE1 is the vertex for rule E1.
• The set of ordered pairs A of vertices called arcs or arrows. An arc e =

(RE1 , RE2) ∈ A exists iff at least one body atom of E1 can be unified
with at least one head atom of E2.

The value of the function fs for an edge e = (RE1 , RE2), fs(e) is the number of
all edges (pr1, pr1) in the prooftrees of the rule base usage data where fp(pr1) =
RE1 and fp(pr2) = RE2 .

Intuitively, the dynamic structure can be understood as the combination of
all prooftree known for a rule base. The weight of an arc from rule a to b can
then be understood as the number of times that rule a depended on rule b
in the actual use of a rule base. Graphical representations of this structure
can use this weight to hide unused depends-on links and to highlight im-
portant rules and links3.

The dynamic structure of the example in this section is shown in figure 7.3,
an example for a larger rule base is shown in section 7.3.3. Compared to the
static structure it gives a much better picture of the interactions between
these rules as they would happen for real world data. The dynamic struc-
ture facilitates a better understanding of the rule base for programming,
maintenance, test coverage, reuse and even profiling.

Displaying the dynamic structure in this way is not the only possible way
to use the usage data for a rule base. The following section will discuss
how it can also aid transformations of the rule graph to hide certain rules
or to display the rule graph at different levels of abstraction.

7.3 Hiding and Joining Rules

The techniques presented so far work for showing the structure of a toy rule
base. Even small real life rule bases, however, pose additional challenges:
they are too large to show every rule, very general rules/axiom like rules
(similar to rule (6) in the previous section) confuse the picture, and some-
times graphical editors are used that create multiple rules for one high level
entity known to the user. For instance, figure 7.7 shows the static structure

3In the implementation that was used to create the screenshots for this chapter, the
weight of arcs was only used to hide arcs with a weight of 0.
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of a small but functional rule base - the structure is much too confusing to
be of any use.

To deal with these problems, algorithms are presented to hide and join
some rule nodes, while still keeping the overall structure of rule interac-
tions intact.

7.3.1 Hiding Rules

For certain very general, axiom like rules it makes sense to completely hide
them from the view of the user. This is particulary important for F-logic
rule bases that add a number of axioms to the rule base that are transparent
to the user4. Again the usage data is used to ensure that only relevant links
are displayed. Consider the following example rule base, slightly extended
from the rule base in section 7.2.

is a(A,working parent)← is a(A, parent), is a(A, employee) (7)
is a(A,mother)← is a(A, female), child(X,A) (8)

is a(A,C)← is a(A,B), subclass(B,C) (9)
is a(A, laptop)← portable(A), is a(A, computer) (10)

Figure 7.4: The static dependencies for the example in section 7.3.1. The left side
shows the unaltered dependencies, the right side the dependencies after rule (9) has
been trivially hidden.

4This is described in detail in section 2.2.6.
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For this example, we assume that the very general rule (9) should be hid-
den while preserving the interaction structure of the rule base as much as
possible. The left side of figure 7.4 shows the static dependencies between
the rules with rule (9) still being shown. A naive algorithm to hide one
rule would connect all vertices that depend on the rule node being hidden
to all vertices the hidden rule depended on (see algorithm 4). This algo-
rithm, however, normally adds a large number of depends-on connections
and thereby makes the visualization less comprehensible. The right side
of figure 7.4 shows the example rule base after rule (9) has been hidden
using this naive algorithm. The visualization of the transformed example
shows that every rule depends on all rules (including itself) - resulting in a
visualization without much useful information.

Data: A directed graph GR = (R,A), representing the static structure of
the rule base, and a rule r1 ∈ R that is to be hidden.

Result: A transformed graph G
′
R = (R′, A′), representing the static

structure of the rule base while hiding f .
foreach ai = (ri, rj) ∈ A do

if ri = f then
Add rj to the set Outgoing;
Remove ai from A;

end
if rj = f then

Add ri to the set Incoming;
Remove ai from A;

end
end
foreach ri ∈ Incoming do

foreach ro ∈ Outgoing do
Add aio = (ri, ro) to A;

end
end
Remove f from R;

Algorithm 4: A naive algorithm to hide rules.

Usage data in the form of prooftrees can help to better deal with this prob-
lem, because it contains paths through the rule base, not only arcs between
two rules. When hiding rules this enables to retain only the actual paths
through the hidden node(s). A detailed description of this is shown as al-
gorithm 5. The algorithm presented works by removing the rule that is to
be hidden from all prooftrees and then re-creating a rule graph from the
transformed prooftrees. For readability the algorithm shown deals only
with one rule that is hidden, however, it can be trivially extended to hide
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multiple rules.

Figure 7.5 shows the visualization of the example rule base presented
at the beginning of this paper after rule (9) has been hidden with
this algorithm. The usage data used for this computation consisted
of the prooftrees resulting from the queries is a(A,working parent) and
is a(A, portable computer) being posed against the rule base and the fol-
lowing facts:

subclass(mother, parent), is a(michelle, female)
is a(michelle, employee), child(michelle,mike jr)
subclass(mac, computer), is a(myPowerBook,mac)
portable(myPowerBook)

Compared to the right side of figure 7.4 this example visualization is a lot
simpler. It gives a clear picture of the rule interactions - possibly even a
clearer picture than before rule (9) was removed.

Figure 7.5: The dependencies for the example in section 7.3.1 after rule (9) has
been hidden with the algorithm that utilizes usage data.

7.3.2 Joining Rules

There are a number of cases where it makes sense to join a number of rules
for display purposes:

• Some rule engineering environments create more than one rule for a
high level-entity edited by the user5. Here the visualization should
only show the high-level entity without losing information.

• In a large rule base there is often some hierarchical structure on top
of the rules (like rule packages or different files defining rules). The
system can join all rules in each package and thereby give a high-level
view of the rule base, allowing to zoom in at one package, to show the
rules in a package.

• In large rule bases without auxiliary structure, clustering algorithms
could be used to identify and jointly display rule clusters, again al-
lowing to expand the clusters.

5For example the DarkMatterStudio system described in section 3.1.2.
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Data: The multiset of all known prooftrees for a rule base
U = {GP,1, GP,2..., GP,i}, a rule rh that is to be hidden and the
function fr that returns the rule for a prooftree node.

Result: A rule graph GR = (R,A), representing the static structure of the
rule base while the rule rh.

foreach Prooftree GP,i = (Vi, Ai) ∈ U do
foreach ax = (vu, vv) ∈ Ai do

if fr(vu) = rh then
Add vv to the set Outgoing;
Remove ax from A;

end
if fr(vv) = rh then

Add vu to the set Incoming;
Remove ax from A;

end
end
foreach rn ∈ Incoming do

foreach ro ∈ Outgoing do
Add ano = (rn, ro) to Ai;

end
end
foreach ax = (vu, vv) ∈ Ai do

Add fr(vu) to R;
Add fr(vv) to R;
Add ay = (fr(vu), fr(vv)) to A;

end
end

Algorithm 5: An algorithm to hide rules while using usage data.
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Figure 7.6: An example showing the joining of rules. The left side shows the rule
base before, the right side after the rules represented by white circles have been
joined.

Joining of rules is done by replacing a number of nodes in the rule graph
with one new node. The arcs that go to or from one of the nodes being
joined get changed to end/start at the newly introduced node. The rule
connections used as basis can be either the static structure of the rule base
or the structure representing the usage data. The detailed algorithm for
this transformation is shown as algorithm 6. An example of this algorithm
applied to a small rule base is shown in figure 7.6.

7.3.3 Example

The right side of figure 7.7 shows the same rule base as the left side after us-
age data has been used to scale the rules nodes, axioms have been hidden
and some rule sets (reflecting rules automatically created from one high
level entity) have been joined. These transformations have uncovered the
relatively simple, layered and ordered structure of this diagnostic rule base.
The rule base used for this example consists of 15 user created rules high
level that got translated into 54 F-logic rules. The usage data for this ex-
ample consists of 15 test queries resulting in 26 prooftrees. There are more
prooftrees than queries because some queries return more than one result.

The size of the rule base that can be visualized with the approach here is
not restricted to such small rule bases. Because of the algorithm to join
groups of rules, the same algorithm can be used to show the interaction
between rule modules, or sets of rules. This approach also allows to look
at one module in detail while showing the rest of the rule base joined into
modules.
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Data: A directed graph GR = (R,A), representing the structure of the rule
base, and a set of rules S = {rj1, rj2, ..., rjn} that is to be joined.

Result: A transformed graph G
′
R = (R,A), representing the structure of

the rule base with the joined rules.
foreach ax = (ri, rj) ∈ A do

if ri ∈ S then
Add rj to the set Outgoing;
Remove ax from A;

end
if rj ∈ S then

Add ri to the set Incoming;
Remove ax from A;

end
end
Remove all r ∈ S from R;
Add a new rule rj to R;
foreach ri ∈ Incoming do Add ax = (ri, rj) to A;
foreach ro ∈ Outgoing do Add ax = (rj , ro) to A;

Algorithm 6: Algorithm to join rules.

Figure 7.7: Visualizations of a small working rule base. The left picture shows the
unaltered static structure, the right picture shows the structure after rule nodes
have been scaled based on their use, low level axioms have been hidden and some
rules representing high-level entities have been joined.
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7.4 Implementation

The prototype of this visualization system is implemented as a standalone
Java application. For the actual graph the JUNG [88] (Java Universal Net-
work/Graph) Framework is used. The layout of the graphs is done with
the Fruchterman-Reingold algorithm [65] in an implementation that is part
of the JUNG framework6 . Moving of nodes is also supported by the
JUNG framework. The visualization system utilizes log files containing
the prooftrees for queries and a file representing a serialization of the rule
graph.

7.5 Prior Work

To the author’s best knowledge there is no approach that uses usage data
in the form of prooftrees for the visualization of rule bases. In fact the
author is not aware of any approach that uses the runtime rule interactions
to create visualizations of entire rule bases.

There is a large number of approaches that visualize the inference process
that lead to a single result (e.g. [55, 24]) and some that show the static
structure of rule bases [99, 72] but none that uses runtime rule interactions
to create visualizations of entire rule bases. The approaches that show the
static structure of rule bases also do not consider the challenges posed by
large rule bases, high level editors and the hiding of rules.

Further visualizations of rules exist within the data mining community
[23, 58, 77, 27, 96]. These approaches visualize association rules in order
to facilitate the analysis of these rules and the extraction of the most im-
portant information from them. They also face the problem of a large set
of rules from which a few interesting ones need to be selected. These ap-
proaches, however, are mostly concerned with the problems posed by the
statistical nature of association rules. The goal of these visualization as well
as the data used to create them, are very different from the visualizations
described in this chapter.

6Please note that the right side of Figure 7.7 is not directly generated through this layout
algorithm - for this picture some nodes were moved in order to better show the overall
structure of the rule base.
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7.6 Conclusion

This chapter presented a novel visualization of a rule base’s structure based
on the runtime interaction of rules. It can help developers understand the
overall structure of the rule base that - without such a tool - is opaque to
them. In this way the visualization can aid developers by making it trans-
parent which parts of the rule base are connected; which parts of a rule base
would be affected by a change.

The proposed visualization is independent of the procedural nature of the
inference engine. Further, algorithms to join and hide specific rules were
presented; these enable the visualization to hide low level rules, join rules
that have been created through the compilation of high-level rules and to
also show the interaction of modules.

The implementation of the presented visualization so far is only prototyp-
ical - integrating it into an development environment and evaluating its
utility for the developer is the most pressing future work. Another possi-
ble venue for future work is the examination of this visualization for profil-
ing - giving the developers some understanding for why a particular query
takes long - and test coverage. Work in the latter direction has already
started under the author’s supervision and is described in [94].



Chapter 8

Conclusion

8.1 Achievements

The starting point for this thesis was the apparent contradiction between
the perception of rule bases as simple to create and the experience of rule
bases as hard to debug and difficult to create without faults. This contradic-
tion was analyzed using data from a survey of developers, experiments and
experiences from three rule base development projects. With this analysis
ten problem areas were identified as challenges for removing or prevent-
ing faults in rule bases; challenging areas that also point to possible areas of
improvement. Based on the aggregation of these areas using the developed
fault lifecycle model, testing, debugging, static analysis and visualization
were chosen as concrete and particularly promising approaches for tack-
ling the debugging challenge. Each of these areas was further examined
within the context of this thesis.

In the area of testing, a formal account of the notions of the test entities
was developed, a novel test coverage measure based on least general gen-
eralization was conceived and a testing framework based on these notions
was implemented and evaluated. The evaluation over more than 100 hours
showed that the developed testing concepts and their implementation were
usable for domain experts, very important for the domain experts’ motiva-
tion, indispensable for the developers to learn rule base development and
needed to create working rule bases.

To better support the debugging of rule bases, Explorative Debugging was
proposed as a novel and purely declarative debugging paradigm for these
systems. The notions of mutation extended dependency graph and mu-
tation extended prooftree were developed as new declarative properties
of rule bases that can be used for Explorative Debugging. In this context
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Figure 8.1: Overview of the main contributions of this thesis

the first ever graphical debugger for F-logic was created. Another imple-
mented debugger is (at the time of this writing) the only open source im-
plementation of partial and mutated prooftrees. An experiment compar-
ing Explorative Debugging to the state of the art procedural debugging
paradigm showed a significant improvement in the time needed to iden-
tify faults, while the accuracy increased.

To improve the static analysis for fault detection, an anomaly detection
framework for F-logic was developed. This framework is the first anomaly
detection system for F-logic and it includes the first implementation of
static type checking for F-logic. It is mostly implemented in F-logic itself,
integrated into a rule engineering environment and easily extensible.

Finally, to support users in understanding the rule base and the conse-
quences of changes to it, a novel approach to the visualization of the over-
all structure of the rule base was developed. The novelty of this approach
lies in the use of runtime rule interactions to show the overall structure of
the rule base. This approach is independent of the procedural nature of
the inference engine and allows to view the rule base at different levels of
abstraction.
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8.2 Future Work

The work in this thesis has opened up many possibilities for future work;
many of which were already detailed in the conclusion section of the ear-
lier chapters. Overall, the most promising and broad ones are: the further
development of the proposed systems towards their evaluation in practi-
cal use, the extension of the approaches to support collaborative rule base
engineering on the web and a further examination of the application of dis-
tance metrics for near conclusion in rule based reasoning.

This thesis has identified and experimentally evaluated many practical ap-
proaches to tackle the debugging challenge of rule based systems. How-
ever, only in large scale practical use can these concepts and tools prove
whether they can in fact significantly improve fault prevention and re-
moval during real-life rule base development; in particular the anomaly
detection and visualization approaches can only be evaluated in this way.
Hence, the further refinement of the created tools and the integration with
rapidly evolving rule base engineering tools are important next steps.

With the partial and mutated prooftrees, the debugging chapter in this the-
sis discussed declarative specification for near conclusions; i.e. conclusion
that could almost, with only slight syntactic variations, be reached. One
important venue for further work is the examination of the runtime speed
of these approaches and their scalability for larger rule bases; one possi-
ble improvement could be implementations that perform best-first search
instead of the depth-first search of the current system. In addition the no-
tion of near conclusion introduced with the mutated prooftree is poten-
tially useful for areas outside of debugging; i.e. to support fault tolerant
reasoning in domains with noisy rule bases where some false conclusions
are acceptable.

The work presented in this thesis centers around supporting the removal
and prevention of faults in rule bases created with traditional desktop ap-
plications and involving only a very small number of developers. How-
ever, the advent of large scale collaborative creation of structured data (as
exemplified by Wikipedia) points the way towards a future where large, di-
verse and distributed groups of people jointly create knowledge bases. The
focus of this work on end user developers and agile processes makes many
results applicable for such a scenario; however, the large scale, permanent
change and permanent inconsistency to be expected in such a system still
pose many challenges.
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Appendix A

Developer Survey

The section contains the questions from the developer survey in their orig-
inal layout.

A.1 Rule Base Basics

Thanks for taking this survey! Please answer all questions with respect to
the largest rule base in whose development you’ve been involved with in
the past 5 years.

Sorry, the winner of the Canon SD1100 (Ixus 80is) has already been selected;
though you can still participate in the survey if you like.

Which rule language and environment did you use
primarily?
� Clips � JBoss Rules / Drools � SWRL - Bossam
� Computer Associates AION � Jena Rules � SWRL - KAON2
� Corticon Business Rules � Jess � SWRL - Pellet
� EXSYS Corvid �Mandarax � SWRL - RacerPro
� Fair Isaac Blaze Advisor � Pegasystems Business Rules � Versata 6 BRMS
� F-logic - Flora2 � Prolog - GNU Prolog � XSB
� F-logic - ontoprise � Prolog - SWI Prolog � Yasu Quick Rules (SAP)
� gensym g2 (Versata) � Prolog - tuProlog
� Ilog JRules/.Net rules � Prolog - Visual Prolog
Other (please specify)

209



210 APPENDIX A. DEVELOPER SURVEY

How large was the rule base?
Approximate person month development time for entire software:
Approximate person month development time for the rule base:
Approximate number of rules:
Approximate size of average rule (number of conditions or body-atoms):
Apptoximate size of largest rule (number of conditions or body-atoms):

How many people participated in the development of
the rule base?

Rule development experts and knowledge engineers:
Other software developers:
Domain experts that created rules themselves:
Domain experts as consultants:
Domain experts for verification and validation:
Others:

How is the rule base used?
� Deployed (Commercial)
� Deployed (Research)
� In development, deployment planned
� Prototype, also used by others than the developer(s)
� Prototype/Experiment, only used by the developer(s)
Other (please specify):

What is the task of the rule base? (e.g. diagnosis, fraud
detection, workflow management ...)
(Freeform answer)

What is the domain of the rule base (e.g. medicine,
eCommerce, logistics ...)
(Freeform answer)
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A.2 Development Process and Tools

Which development process was used?
� Did not use a specific development process
�Waterfall model / Specification driven
� Agile (e.g. ABRD, Xtreme Programming)
� Other Iterative and Incremental processes (e.g. RUP)
� Knowledge engineering (e.g. CommonKADS)
� Prototype driven (e.g. MOKA)
Other (please specify)

What kind of tool(s) were used to create and edit the
rule base?
� Simple text editor
� Textual Rule Editor (with syntax highlighting for the rule language)
� Business Rule Templates / constraint natural language rule editor
� Graphical rule editor
� Spreadsheet based rule editor
� Decision trees rule editor
� Tools to learn rules from data or text
� An IDE that allows to edit, load, debug and run rules
Other (please specify)

What kind of verification and validation activities were
performed?
� Testing with actual data
� Testing with contrieved data
� Testing - structural testing guided by test coverage metrics
� Testing - Regression testing
� Review by domain experts
� Review by developers
� Parallel use of system by rule expert/knowledge engineer
� Parallel use of system by domain expert
� Rule base visualization to aid review
� Formal verification
� Anomaly Detection (e.g. automatic detection of rule cycles or use of non existing classes)
Other (please specify)
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What kind of tools were used for debugging?
� None
� Command line procedural debugger / tracer (specify breakpoints, investi-

gate program state and step through program execution)
� Graphical procedural debugger / tracer (specify breakpoints, investigate pro-

gram state and step through program execution)
� Algortihmic/deductive debugger (system tries to identify error by asking

user for results of subcomputations)
� Explanations (system generates descriptions that explain results)
� ’Why-Not’ Explanations (special explanations that can also explain why

some conclusion was not reached)
� Tools that automatically change the rule base to remove errors (e.g. automatic

theory revision)
Other (please specify)

What kind of bugs were encountered? What were the
indications that some rule is faulty?

never seldom frequent not applicable
A query/test would not ter-
minate

� � � �

A query/test did not return
any result

� � � �

A wrong result was returned � � � �
A part of the result missing � � � �
The rule engine crashed � � � �
Other (please specify)



A.3. ISSUES AND END 213

A.3 Issues and End

What were the most important issues in the develop-
ment of the rule base?

Not an issue Annoyance Hindered development
Rule expressivity - could not
(easily) represent what was
needed

� � �

Runtime performance - rule
base too slow

� � �

Editing of rules was hard � � �
Debugging was difficult � � �
Understanding the rule base
was diffcult

� � �

Determining the complete-
ness of the rule base was dif-
ficult

� � �

Developers had little experi-
ence with rule languages

� � �

Organizing collaboration be-
tween the developers was
difficult

� � �

Maintenance - keeping the
rule base up to data

� � �

Supporting tools (rule en-
gine, editors, ...) missing, un-
suited or immature

� � �

Other important issues
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How does the rule base and its development process
compare to a ’conventional program (created with pro-
cedural/object oriented languages) of similar size?

Rule base su-
perior

Comparable Conventional
program
superior

Don’t know

Ease of change and
maintenance

� � � �

Ease of creation � � � �
Ease of debugging � � � �
Reliability � � � �
Runtime performance � � � �
Tool support for devel-
opment

� � � �

Understandability � � � �

Your Experience
How many years of experience do you have with rule based
systems:
How many years of experience do you have with creating
computer programs in general:

Any comments, remarks about this survey?
(Freeform answer)

Enter your email address, if you like to enter the draw-
ing of the camera. The winner will be drawn from the
email addresses of all people that compeletely filled out
the survey. Your address will not be shared or used to
SPAM you.
(Freeform answer)

Would you like to have the results of the survey send to
your email address.
� yes
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Evaluation Rule Base One

This section contains the first of the two rule bases used in the evaluation.

B.1 Rules

@prefix zach: <http://www.fzi.de/ipe/zach#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

# Return all grandfathers of Mike
[Query:

(x,x,x)
<-

(zach:Mike,zach:has_grandfather,?Grandfather)
]

# Someone is the (paternal) grandfather of someone, when someone has a
# father who has him as a father.
[Paternal_Grandfather:

(?child, zach:has_grandfather, ?grandfather)
<-

(?child, zach:has_father, ?father)
(?father, zach:has_father, ?grandfather)

]

# Someone is the (maternal) grandfather of someone, when someone has a
# mother who has him as a father.
[Maternal_Grandfather:

(?child, zach:has_grandfather, ?grandfather)
<-

(?child, zach:has_mother, ?father)
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(?father, zach:has_father, ?grandfather)
]

# Someone is the (paternal) grandmother of someone, when someone has a
# father who has him as a mother.
[Paternal_Grandmother:

(?child, zach:has_grandma, ?grandma)
<-

(?child, zach:has_father, ?mother)
(?mother, zach:has_mother, ?grandma)

]

# Someone is the (maternal) grandmother of someone, when someone has a
# mother who has him as a mother.
[Maternal_Grandmother:

(?child, zach:has_grandma, ?grandma)
<-

(?child, zach:has_mother, ?mother)
(?mother, zach:has_mother, ?grandma)

]

# A ?child has a ?father, if it can be inferred that ’?father has_child
# ?child’
[Has_Father:

(?child, zach:has_father, ?father)
<-

(?father, rdf:type, zach:Father)
(?father, zach:has_child, ?child)

]

# A ?child has a ?mother, , if it can be inferred that ’?mother has_child
# ?child’
[Has_Mother:

(?child, zach:has_mother, ?mother)
<-

(?mother, rdf:type, zach:Mother)
(?mother, zach:has_child, ?child)

]

B.2 RDF Statements

@prefix : <http://www.fzi.de/ipe/zach#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
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:Abraham rdf:type :Male;
rdf:type :Father;
:has_child:Michelle.

:Michelle rdf:type :Female;
rdf:type :Mother;
:has_child :Mike.

:Francis rdf:type :Male;
rdf:type :Father;
:has_child :Mike.

:Mike rdf:type :Male.
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Appendix C

Evaluation Rule Base Two

This section contains the second of the two rule bases used in the evalua-
tion.

C.1 Rules

# Example Rule File
@prefix zach: <http://www.fzi.de/ipe/zach#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

# Return all arguments ?B about a some apartment preferences ?B
[Query:

(x,x,x)
<-

(?A,rdf:type,zach:Apartment)
(zach:Family,zach:is_argument_for,?A)

]

# If an apartement is well suited for something
# and this is a preference, then this becomes an
# argument for this apartment
[Rule_Well_Suited:

(?B, zach:is_argument_for,?A)
<-

(?AP,rdf:type,zach:ApartmentPreferences)
(?AP,zach:preference,?B)
(?A,rdf:type,zach:Apartment)
(?A,zach:suitedFor,?B)

]
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# If an apartment is well suited for kids and suited for cars,
# then it is ’suitedForFamilies’
[Rule_Suited_For_Families:

(?Apartment, zach:suitedFor, zach:Family)
<-

(?Apartment, rdf:type, zach:Apartment)
(?Apartment, zach:suitedFor,zach:Kids)
(?Apartment, zach:has_property,zach:SuitedForCars)

]

#if an apartment has a garden, then it is well suited for kids.
[Rule_Garden_For_Kids:

(?Apartment, zach:suitedFor, zach:Kids)
<-

(?Apartment, rdf:type, zach:Apartment)
(?Apartment, zach:has_property,zach:Garden)

]

# If an apartment has a pool, then it is well suited for kids.
[Rule_Pool_For_Kids:

(?X, zach:suitedFor, zach:Kids)
<-

(?X,rdf:type,zach:Apartment)
(?X,zach:has_property,zach:Pool)

]

# If an apartment is near a school, then it is well suited for kids.
[Rule_School_For_Kids:

(?X, zach:suitedFor, zach:Kids)
<-

(?X,rdf:type,zach:Apartment)
(?X,zach:has_property,zach:NearSchool)

]

C.2 RDF Statements

@prefix : <http://www.fzi.de/ipe/zach#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

:MikesPreferences rdf:type :ApartmentPreferences;
:preference :Family.

:BayViewApartment rdf:type :Apartment;
:has_property :Pool;
:has_property :SuitedForCars.
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Reification Ontology

The rule reification ontology.

//Concepts ---------------------------------------------

ElementOf :: Atom.
IsA :: Atom.
DataAtom :: Atom.
PAtom :: Atom.
DataType :: Atom.

Function :: Term.
List :: Function.

Constant :: Term.
NUMBER :: Constant.
STRING :: Constant.

Variable :: Term.

Literal[].
Rule[].

//Relations --------------------------------------------

Number[value=>NUMBER; type=>STRING].

String[value=>STRING].

Constant[value=>STRING].
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Variable[identifier=>STRING].

IsA[subConcept=>Term; superConcept=>Term].

Literal[atom=>Atom; isPositive=>boolean; module=>Term;
variables=>>Term].

ElementOf[element=>Term; concept=>Term].

Atom[predicateSymbol=>STRING; arity=>integer; arguments=>List].

Function[arguments=>List; functionSymbol=>STRING;
arity=>integer; variables=>>Term].

PAtom[arguments=>List].

DataAtom[relationName=>Term; value=>Term; object=>Term].

DataType[relationName=>Term; relationType=>Term; concept=>Term].

DataSetType[relationName=>Term; relationType=>Term; concept=>Term].

Rule[headLength=>NUMBER; bodyLength=>NUMBER; bodies=>List;
heads=>List;identifier=>Term; module=>TERM; variables=>>Term;
headVariables=>>Term; bodyVariables=>>Term].
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Anomaly Heuristics

This appendix details rules used for the identification of anomalies. In the
first part helper rules are introduced, then the actual anomaly detection
rules are presented with their explanation data.

E.1 Helper Rules

/* ***********************************************
* root(Class,Module)

*
* Class is root class in module.

************************************************* */
RULE root:
FORALL Concept_, TempNumber_,Module

root(Concept_,Module)
<-

(number_superclasses(Concept_,TempNumber_,Module)) AND
(isnumber(TempNumber_)) AND
(equal(TempNumber_,0)).

/* *******************************************
* number_subclasses(Concept,NumberSubclasses,Module)

*
* Well, the number of subclasses of a class

********************************************** */
RULE number_subclasses:
FORALL Concept_,NumberSubclasses_,Module

number_subclasses(Concept_,NumberSubclasses_,Module)
<-

class(Concept_,Module) AND
(EXISTS Subconcept_
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directsub_(Subconcept_,Concept_)@Module AND
count(Concept_,Subconcept_,NumberSubclasses_)).

RULE number_subclasses0:
FORALL Concept_,Module

number_subclasses(Concept_,0,Module)
<-

class(Concept_,Module) AND
(NOT EXISTS Subconcept_

directsub_(Subconcept_,Concept_)@Module).

/* *******************************************
* number_superclasses(Concept,NumberSuperclasses,Module)

*
* the number of superclasses of a class.

********************************************** */
RULE number_superclasses:
FORALL Concept_,Number_,Module

number_superclasses(Concept_,Number_,Module)
<-

class(Concept_,Module) AND
(EXISTS Superconcept_

directsub_(Concept_,Superconcept_)@Module AND
count(Concept_,Superconcept_,Number_)).

RULE number_superclasses0:
FORALL Concept_,Module

number_superclasses(Concept_,0,Module)
<-

class(Concept_,Module) AND
(NOT EXISTS Superconcept_

directsub_(Concept_,Superconcept_)@Module).

/* ************************************************
* var_type(Variable,Type,Rule)

*
* In the context of Rule, Variable is known to be of Type.

************************************************** */
RULE var_type:
FORALL V,T,R,A,TEMP1

var_type(V,T,R)
<-

type_atom(A,R) AND
A[arguments->[variable(V),constant(T),TEMP1]]@rules_.

/* ************************************************
* type_atom(Atom,Rule)

*
* All atoms that set the type of an variable
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************************************************** */
RULE type_atom:
FORALL A,R,M,P

type_atom(A,R)
<-

has_atom(R,A,M) AND
A[predicateSymbol->P]@rules_ AND
(

equal(P,"directisa_") OR
equal(P,"isa_")

).

/* ************************************************
* att_rule(Rule, Entity, Property)

*
* Properties/Attributes used in a rule on a entity (this may

* constant(...) or variable(...))

************************************************** */
RULE att_rule:
FORALL R,E,P,A,I,M

att_rule(R,I,P)
<-

att_atom(A,R) AND
A[arguments->[I,constant(P),E,M]]@rules_.

/* ************************************************
* att_atom(Atom,Rule)

*
* All atoms that set the value of an objects property / attribute

*************************************************** */
RULE att_atom:
FORALL R,A,M,P

att_atom(A,R)
<-

has_atom(R,A,M) AND
A[predicateSymbol->P]@rules_ AND
(

equal(P,"att_") OR
equal(P,"setatt_")

).

/* ************************************************
* constant_in_rule_body(RULE,CONSTANT,MODULE)

*
* All constants in the rule body

************************************************** */
FORALL R,CONSTANT,MODULE,ATOM, ARGUMENTS

constant_in_rule_body(R, CONSTANT, MODULE)
<-
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has_body_atom(R,ATOM,MODULE) AND
ATOM[arguments->ARGUMENTS]@rules_ AND
inlist(constant(CONSTANT),ARGUMENTS)@rules_.

FORALL R,CONSTANT,MODULE,ATOM,FUNCTION,ARG,ARGUMENTS,FARGUMENTS
constant_in_rule_body(R, CONSTANT, MODULE)

<-
has_body_atom(R,ATOM,MODULE) AND
ATOM[arguments->ARGUMENTS]@rules_ AND
inlist(FUNCTION,ARGUMENTS)@rules_ AND
FUNCTION:Function@rules_ AND
FUNCTION[arguments->FARGUMENTS] AND
equal(ARG,FARGUMENTS)@rules_ AND
function2entity(ARG,CONSTANT).

/* ************************************************
* has_atom(Rule,Atom,Module)

*
* All atoms of rule.

*************************************************** */
RULE ruleAtom:
FORALL R,A,M

has_atom(R,A,M)
<-

(has_body_atom(R,A,M) OR has_head_atom(R,A,M)).

/* ************************************************
* has_head_atom(Rule,Atom,Module)

*
* All body atoms for a rule.

*************************************************** */
RULE ruleAtomHead:
FORALL R,A,M,BODY_EL,HEADS

has_head_atom(R,A,M)
<-

is_rule(R,M) AND
R[heads->HEADS]@rules_ AND
inlist(BODY_EL,HEADS)@rules_ AND
BODY_EL[atom->A]@rules_.

/* ************************************************
* has_body_atom(Rule,Atom,Module)

*
* All body atoms for a rule.

*************************************************** */
RULE ruleAtomBody:
FORALL R,A,M,BODY_EL,BODIES

has_body_atom(R,A,M)
<-
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is_rule(R,M) AND
R[bodies->BODIES]@rules_ AND
inlist(BODY_EL,BODIES)@rules_ AND
BODY_EL[atom->A]@rules_.

/* **********************************************
* is_rule(Rule,Module)

*
* all rules in one module

************************************************* */
RULE isRule:
FORALL R,M

is_rule(R,M) <- R:Rule@rules_ AND R[module->M]@rules_.

/* ************************************************
* function2Entity(functionArray,Entity)

*
* The entity for the a ns_ function object

************************************************** */
FORALL A1,A2,ENTITY

function2entity([A1,constant(A2)], ENTITY)
<-

equal(ENTITY,A1#A2).

/***********************************************
* entity

*
* Everything that is a class, object, property or module

************************************************ */
FORALL Thing,Module

entity(Thing,Module)
<-

(class(Thing,Module)) OR
(object(Thing,Module)) OR
(module(Thing)) OR
(property(Thing,Module)).

/* ************************************************
* module(X)

* An approximation of the modules that exist (only those that

* contain at least one rule)

************************************************** */
RULE modules:
FORALL R,M

module(M) <- is_rule(R,M).

/* ***********************************************
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* property(Property,Module)

*
* All things defined as properties.

************************************************* */
RULE property:

FORALL P,C,R,M
property(P,M) <- (C[P=>R]@M or C[P=>>R]@M).

/* *******************************************
* object(Object,Module)

*
* All defined objects (things that are instances

* of something or things that have attribute

* values defined for them.

********************************************** */
RULE object1:
FORALL Instance_,Class_,Module_

object(Instance_,Module_)
<-

directisa_(Instance_,Class_,Module_).

RULE object2:
FORALL Instance_, Temp_, Temp2_,Module_

object(Instance_,Module_)
<-

Instance_[Temp_->Temp2_]@Module_.

/* *******************************************
* class(Class,Module)

*
* All defined concepts

********************************************** */
RULE conceptSubclass:
FORALL Concept_, Temp_,Module_

class(Concept_,Module_) AND class(Temp_,Module_)
<-

Concept_::Temp_@Module_.

RULE conceptConcept:
FORALL Concept,Module class(Concept,Module) <- Concept[]@Module.

RULE conceptAttribute:
FORALL Concept_,Temp_,Temp2_,Module_

class(Concept_,Module_)
<-

Concept_[Temp_=>Temp2_]@Module_.
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RULE conceptISA:
FORALL Instance_, Name_, Module_

class(Name_,Module_)
<-

directisa_(Instance_,Name_)@Module_.

/* **********************************************
* has_defined_property

*
* is property defined in ontology

************************************************ */
RULE has_defined_property:
FORALL I,P,C,R,M

has_defined_property(I,P,M)
<-

I:C@M and (C[P=>R]@M or C[P=>>R]@M).

RULE has_defined_property_defaults:
FORALL C,P,R,M

has_defined_property(C,default(P),M)
<-

(C[P=>R]@M or C[P=>>R]@M).

/* **********************************************
* primitive_type(X)

*
* all primitive types known to flogic

************************************************* */
primitive_type(string).
primitive_type("http://www.w3.org/2001/XMLSchema"#string).
primitive_type(STRING).
primitive_type(number).
primitive_type(NUMBER).
primitive_type(integer).
primitive_type(INTEGER).
primitive_type("http://www.w3.org/2001/XMLSchema"#decimal).
primitive_type("http://www.w3.org/2001/XMLSchema"#number).
primitive_type("http://www.w3.org/2001/XMLSchema"#integer).
primitive_type("http://www.w3.org/2001/XMLSchema"#double).

/* **********************************************
* is_type_conform(X,Y)

*
* is value of instance element of type

* the type_conform_ISA rule really isn’t 100% correct, but should work.

*********************************************** */

// for literals
RULE type_conform_string:
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FORALL X is_type_conform(X,string) <- isstring(X) .

RULE type_conform_XMLString:
FORALL X

is_type_conform(X,"http://www.w3.org/2001/XMLSchema"#string)
<-

isstring(X).

RULE type_conform_STRING:
FORALL X is_type_conform(X,STRING)

<-
isstring(X) or isconstant(X).

RULE type_conform_number:
FORALL X is_type_conform(X,number)

<-
isnumber(X).

RULE type_conform_NUMBER:
FORALL X is_type_conform(X,NUMBER)

<-
isnumber(X).

RULE type_conform_number:
FORALL X is_type_conform(X,integer)

<-
isnumber(X).

RULE type_conform_NUMBER:
FORALL X is_type_conform(X,INTEGER)

<-
isnumber(X).

RULE type_conform_XMLDecimal:
FORALL X
is_type_conform(X,"http://www.w3.org/2001/XMLSchema"#decimal)

<-
isnumber(X).

// for literals, although in fact ontobroker does not support
// integer semantics, now.
RULE type_conform_XMLDecimal:
FORALL X

is_type_conform(X,"http://www.w3.org/2001/XMLSchema"#integer)
<-

isnumber(X).

RULE type_conform_XMLDecimal:
FORALL X



E.2. ANOMALY HEURISTICS 231

is_type_conform(X,"http://www.w3.org/2001/XMLSchema"#double)
<-

isnumber(X).

//Actually does not exist in XMLSchema, but is used
RULE type_conform_XMLNumber:
FORALL X

is_type_conform(X,"http://www.w3.org/2001/XMLSchema"#number)
<-

isnumber(X).

RULE type_conform_ISA:
FORALL V,R,M is_type_conform(V,R)

<-
V:R@M.

/* *********************************************
* Serverity level

*********************************************** */
severity_error.
severity_warning.
severity_information.

E.2 Anomaly Heuristics

<anomalyHeuristics>
<fLogicHeuristics>

<flogicAnomalyHeuristic>
<title>Property Undefined for Variable in Rule</title>

<!-- A rule uses a property on a instance and this instance
if not known to be of a type that defines this property-->

<id>property_undefined_for_variable</id>
<category>Rule</category>
<performanceIndex>0</performanceIndex>
<defaultOn>true</defaultOn>
<code>

RULE property_undefined_for_variable:
FORALL R,E,P,M

problem(property_undefined_for_variable,severity_warning,M,[R,P,E])
<-

is_rule(R,M) AND
att_rule(R,variable(E),P) AND
property(P,M) AND
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NOT (
EXISTS T,RANGE
var_type(E,T,R) AND
(T[P=>RANGE]@M or T[P=>>RANGE]@M)

).
</code>

<description> An attribute or relation is used in a rule on an
instance that does not have the attribute or relation. Run
this test after you removed attributes or relations from the
ontology that some rules may still use.

</description>

<explanation> The rule $0$ uses the attribute/relation $1$ on
variable $2$, but $2$ is not known have this attribute/relation.
This is only a warning - the rule may still work.

</explanation>

</flogicAnomalyHeuristic>

<flogicAnomalyHeuristic>

<title>Rule Property Unknown</title>
<id>rule_property_unknown</id>
<category>Rule</category>
<performanceIndex>1</performanceIndex>
<defaultOn>true</defaultOn>

<code>
RULE rule_property_unknown:

FORALL R,P,M,E
problem(rule_property_unknown,severity_error,M,[R,P])

<-
is_rule(R,M) AND
att_rule(R,E,P) AND
NOT property(P,M).

</code>

<description> A rules uses an attribute or relation that
is not defined anywhere. Run this test after you
removed attributes or relations from the ontology that
some rules may still use.

</description>

<explanation>The rule $0$ uses the property $1$ - such
a property is not defined for any concept! This rule
will not work.

</explanation>
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</flogicAnomalyHeuristic>

<flogicAnomalyHeuristic>

<title>Range Concept Undefined</title>
<id>range_concept_undefined</id>
<category>Properties</category>
<performanceIndex>1</performanceIndex>
<defaultOn>true</defaultOn>

<code>
RULE range_concept_undefined1:
FORALL P,C,R,M

problem(range_concept_undefined,severity_error, M,[C,P,R])
<-

directatttype_(C,P,R)@M AND NOT(class(R,M)
OR primitive_type(R)).

RULE range_concept_undefined2:
FORALL P,C,R,M

problem(range_concept_undefined,severity_error, M,[P,C,R])
<-

directsetatttype_(C,P,R)@M AND NOT(class(R,M)
OR primitive_type(R)).

</code>

<description> An error is created for each relation that goes to
a concept that no longer exist. Run this test after you
removed concepts from the ontology.

</description>

<explanation> The property $0$ of concept $1$ goes to the concept
$2$ the (no longer) exists. Maybe you replaced the concept with a
different one and you need to replace it in the definition of the
relation as well? Maybe the relation is no longer needed and can
be deleted?

</explanation>

</flogicAnomalyHeuristic>

<flogicAnomalyHeuristic>

<title>Rule Body Constant Undefined</title>
<id>body_constant_undefined</id>
<defaultOn>true</defaultOn>
<category>Rule</category>
<performanceIndex>1</performanceIndex>
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<code>
RULE body_constant_undefined:
FORALL R,C,M

problem(body_constant_undefined,severity_warning,M,[R,C])
<-

constant_in_rule_body(R,C,M) AND
NOT entity(C,M).

</code>

<description> A rule uses an instance in the rule body that is
not defined elsewhere. Run this test after you removed instances
from the ontology that may still be used in rules.

</description>

<explanation> The rule $0$ uses the instance $1$ that is not
defined anywhere. Maybe you replaced the instance in the ontology
and need to replace it in the rule as well? With the instance no
longer there, can the rule be removed as well?

</explanation>

</flogicAnomalyHeuristic>

<flogicAnomalyHeuristic>

<title>Head Variable Unbound</title>
<id>head_var_unbound</id>
<category>Rule</category>
<performanceIndex>0</performanceIndex>
<defaultOn>false</defaultOn>

<code>
RULE head_var_unbound:
FORALL R,HEAD_VAR,Module

problem(head_var_unbound,severity_error, Module,[R,HEAD_VAR])
<-

R:Rule@rules_ AND R[module->Module]@rules_ AND
R[headVariables->variable(HEAD_VAR)]@rules_
AND NOT R[bodyVariables->variable(HEAD_VAR)]@rules_.

</code>

<description> An error is created for each rule that uses a variable
in the head but not in the body. This is a fatal modelling error that
will stop a rule from working. This will not happen, if you use only
the rule editor to create rules.

</description>

<explanation>The rule $0$ uses the variable $1$ in the head but not in
the body. This error means that this rule can’t work and that any
attempt to use it in a inference will case an exception. Correct this
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exception by either removing the variable from the head or adding
it to the body.

</explanation>

</flogicAnomalyHeuristic>

<flogicAnomalyHeuristic>

<title>Many subclasses</title>
<id>style_manySubclasses</id>
<category>Style</category>
<performanceIndex>1</performanceIndex>
<defaultOn>true</defaultOn>

<description>A warning is generated for each concept with more
than $num$ subclasses. A large number of subclasses is often
considered a bad practice. Run this test to refine a large
ontology for example before declaring it finished.

</description>

<explanation>$0$ has $1$ subclasses. More than $num$ is usually
considered a bad practice. Maybe some of the subconcepts can
be grouped under some new concept?

</explanation>

<code>
FORALL Concept_,NumberSubclasses_, Module

problem(style_manySubclasses,severity_warning,Module,
[Concept_,NumberSubclasses_])

<-
number_subclasses(Concept_,NumberSubclasses_,Module) AND
greater(NumberSubclasses_,$num$).

</code>

<parameters>
<parameter>

<defaultValue>12</defaultValue>
<id>num</id>
<name>Number Subclasses</name>
<description>The number of subclasses that are allowed

before a warning gets created.
</description>

</parameter>
</parameters>

</flogicAnomalyHeuristic>

<flogicAnomalyHeuristic>
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<title>Few subclasses</title>
<id>style_fewSubclasses</id>
<category>Style</category>
<performanceIndex>1</performanceIndex>
<defaultOn>true</defaultOn>

<description> A warning is generated for each concept with less
than $num$ subconcepts. A very small number of subclasses is
often considered a bad practice. Run this test to refine a
large ontology for example before declaring it finished.

</description>

<explanation>$0$ has $1$ subclasses. Less than $num$ is usually
considered a bad practice. Maybe you meant to add more
subconcepts later? Would it be possible to remove some subconcept
of $1$ and add its subconcepts directly?

</explanation>

<code>
FORALL Concept_,NumberSubclasses_,Module

problem(style_fewSubclasses,severity_warning,Module,
[Concept_,NumberSubclasses_])

<-
number_subclasses(Concept_,NumberSubclasses_,Module) AND
greater(NumberSubclasses_,0) AND
less(NumberSubclasses_,$num$).

</code>

<parameters>
<parameter>

<defaultValue>2</defaultValue>
<id>num</id>
<name>Number Subclasses</name>
<description>The minimum number of subclasses. </description>

</parameter>
</parameters>

</flogicAnomalyHeuristic>

<flogicAnomalyHeuristic>

<title>Class Leaf</title>
<id>class_leaf</id>
<defaultOn>true</defaultOn>
<category>Concepts</category>
<performanceIndex>1</performanceIndex>

<code>
FORALL Concept_, Module
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problem(class_leaf,severity_warning,Module,[Concept_])
<-

class(Concept_,Module) AND
(NOT EXISTS TempConcept_ TempConcept_::Concept_@Module) AND
(NOT EXISTS TempInstance_ TempInstance_:Concept_@Module).

</code>

<description> A warning is created for each concept that has
neither instances nor subconcepts. This often indicates that
the author forget to create instances. Run this test regularly
to check the ontology for loose ends.

</description>

<explanation>$0$ is a concept that has neither instances nor
subconcepts. This may be intentional (for example when
representing a taxonomy) but propably indicates missing instances.

</explanation>

</flogicAnomalyHeuristic>

<flogicAnomalyHeuristic>

<title>Class Undefined</title>
<id>class_undef</id>
<defaultOn>true</defaultOn>
<category>Concepts</category>
<performanceIndex>1</performanceIndex>

<code>
FORALL Instance_, Concept_, Module

problem(class_undef,severity_warning, Module,[Instance_,Concept_])
<-

Instance_:Concept_@Module AND
(NOT EXISTS Superconcept_ Concept_::Superconcept_@Module) AND
(NOT EXISTS Subconcept_ Subconcept_::Concept_@Module) AND
(NOT EXISTS Attribute_,Type_ Concept_[Attribute_=>Type_]@Module)
AND (NOT Concept_[]@Module).

</code>

<description> A warning is created for each concept that is used in
a isa statement but not defined elsewhere. Run this test after
you removed concepts from the ontology.

</description>

<explanation>$0$ is an instance of $1$, but $1$ is not defined
elsewhere. This is not necessary a problem, but propably indicates
that you meant a different concept or deleted the concept in the
meantime.
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</explanation>

</flogicAnomalyHeuristic>

<flogicAnomalyHeuristic>

<title>Cardinality Constraint Violation</title>
<id>cardinality_constraint_hurt</id>
<category>Instances</category>
<performanceIndex>3</performanceIndex>
<defaultOn>false</defaultOn>

<code>
RULE cardinality_constraint_hurt:
FORALL Instance,Concept,Property,Range,Value1,Value2,Module

problem(cardinality_constraint_hurt,severity_error,Module,
[Instance,Property,Concept])

<-
Instance:Concept@Module AND Concept[Property=>Range]@Module AND
Instance[Property->Value1]@Module AND
Instance[Property->Value2]@Module AND not equal(Value1,Value2).

</code>

<description> An error is created for instances that have more than
one property value for properties defined with cardinality 0..1.
Run this test to refine a large ontology for example before
declaring it finished. Start it before going to lunch, because it
may take a long time.

</description>

<explanation>$0$ has more than one different values for relation or
attribute $1$ but the schema defines a maximum cardinality of one
for its concept $2$.

</explanation>

</flogicAnomalyHeuristic>

<flogicAnomalyHeuristic>

<title>Instance Property Undefined</title>
<id>instance_property_undefined</id>
<category>Instances</category>
<performanceIndex>3</performanceIndex>
<defaultOn>false</defaultOn>

<code>
RULE instance_property_undefined:
FORALL Module,Instance, Property, Value
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problem(instance_property_undefined,severity_error,
Module,[Instance,Property,Value])

<-
Instance[Property->Value]@Module AND NOT
has_defined_property(Instance,Property,Module).

</code>

<description> An error is created for attributes or relations of
instances that is not defined. Run this test after removing
attributes or relations. Start it before going to lunch, because
it may take a long time.

</description>

<explanation>$0$ has the property $1$ (with value $2$). This property
is not defined for the concepts of $0$.

</explanation>

</flogicAnomalyHeuristic>

<flogicAnomalyHeuristic>

<title>Instance Range Type</title>
<id>instance_range_type</id>
<defaultOn>false</defaultOn>
<category>Instances</category>
<performanceIndex>3</performanceIndex>

<code>
RULE instance_range_type:
FORALL Module, Instance, Method, Value , Range, Concept
problem(instance_range_type,severity_error, Module,

[Instance, Method, Value,Range])
<-

(Concept[Method=>Range]@Module OR
Concept[Method=>>Range]@Module) AND
Instance:Concept[Method->Value]@Module AND
NOT is_type_conform(Value,Range).

</code>

<description> An error is created for attributes or relations of
instances that have the wrong type. Run this test after you
changed the type range type of properties.

</description>

<explanation>$0$ has the attribute or relation $1$ with value $2$.
This value is not compatible to the specified range "$3$" for
this property.

</explanation>



240 APPENDIX E. ANOMALY HEURISTICS

</flogicAnomalyHeuristic>

<flogicAnomalyHeuristic>
<title>Root Concepts</title>
<id>info_rootconcept</id>
<defaultOn>true</defaultOn>
<category>Concepts</category>
<performanceIndex>1</performanceIndex>

<code>
FORALL Concept_,Module

problem(info_rootconcept,severity_information, Module,[Concept_])
<-

root(Concept_,Module).
</code>

<description> An information is generated for each concept that
has no superconcepts. Run this test to refine a large ontology
for example before declaring it finished.

</description>

<explanation>$0$ is a root concept. This is not a problem, but may
indicate that you forgot to specify a superclass.

</explanation>

</flogicAnomalyHeuristic>
</fLogicHeuristics>

</anomalyHeuristics>
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