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Abstract

The main result of the paper is the derivation of the evolution equation of the tensorial texture coefficients of the crystallite orientation
distribution function (codf). The evolution equation of each coefficient depends on the complete codf and the lattice spin, which is a
constitutive quantity. For the solution of the differential equation based on a finite number of coefficients, the codf has to be estimated.
This estimate is obtained here by the maximum entropy method. By this approach the texture evolution can be described by modeling
some low-order Fourier coefficients. It will be shown that such a low-dimensional approach yields a reasonable description of the texture
evolution and of mechanical properties like the Taylor factor.
� 2006 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.
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1. Introduction

Phenomenological models seem to be generally unable to
adequately represent the evolution of the crystallite orienta-
tion distribution. Therefore, if the evolving crystallographic
texture has to be taken into account in the context of finite
element simulations in most cases the Taylor model is
applied [18,14,19]. In this case, the texture evolution is
described by a system of ordinary or algebro differential
equations. The dimension of such a system is in between
1000 and 10000. Hence, at each integration point of the
finite element mesh large systems of differential equations
have to be integrated. This fact considerably limits the num-
ber of degrees of freedom that can be handled by standard
finite element codes. Therefore, there is a need for homoge-
nization strategies which allow to condense the number of
degrees of freedom and nevertheless accurately describe
the crystallite orientation distribution function (codf).
0045-7949/$ - see front matter � 2006 Civil-Comp Ltd. and Elsevier Ltd. All
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Here an approach is presented that is based on a tensorial
Fourier expansion of the codf [1,10]. The tensorial Fourier
coefficients or texture coefficients can be considered as
micro-mechanically based tensorial internal variables [5,
6,22]. They are defined in terms of the codf, which can be
determined by texture measurements. The main result of
the paper is the derivation of the evolution equation of the
tensorial texture coefficients. The evolution equation of each
coefficient depends on the complete codf and on the lattice
spin, which is a constitutive quantity. Hence, for a solution
of the differential equation based on a finite number of coef-
ficients, the codf has to be estimated. This estimate is
obtained here by the maximum entropy method [4]. Based
on the aforementioned approach the texture evolution can
be described by modeling some low-order Fourier coeffi-
cients. It will be shown that such a low-dimensional
approach yields a reasonable description of the texture
evolution.

The outline of the paper is given as follows. Section 2
gives a summary concerning the representation of the codf
by a tensorial Fourier expansion. In Section 3 the evolution
rights reserved.
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equation of the texture coefficients is derived for the special
case of a homogeneous deformation of the aggregate. In
Section 4 a numerical example is considered. The texture
evolution is predicted for a simple shear deformation based
on both a representation of the codf by a discrete orienta-
tion distribution and a continuous representation based on
the leading texture coefficients. It is shown that the second
approach allows to reduce the number of degrees of free-
dom significantly.

Notation. Fourth- and higher-order tensors are denoted by,
e.g., Vhai, where the index a specifies the tensor rank. The
corresponding zero tensor is written as O. The dyadic
product and the Frobenius norm are denoted by � and kÆk,
respectively. Components of tensors are always represented
with respect to an orthonormal vector basis ei in the three-
dimensional Euclidean space. For example, a fourth-order
tensor is written in the following way: Vh4i ¼ V ijklei � ej�
ek � el. The scalar product between tensors is denoted by a
dot, e.g., Vhai � Fhai. A linear mapping is written as Vhai ¼
Eh2ai½Fhai�. Irreducible, i.e., completely symmetric and
traceless, tensors are designated by a prime, e.g., V0hai. The
number of independent components of a tensor Vhai is
denoted by dimðVhaiÞ. If it is necessary to distinguish
between tensors of the same rank, which are denoted by the
same capital letter, then an additional index in the bracket
specifying the tensor rank is introduced. For example, V0h41i
and V0h42i are two different fourth-order tensors. The set of
proper orthogonal tensors is specified by SO(3). A super-
imposed dot denotes the material time derivative.
2. Tensorial representation of the codf

2.1. Properties of the codf

A crystal orientation is described by a proper orthogo-
nal tensor Q = gi � ei 2 SO(3) which is introduced in such
a way that it maps the fixed reference basis ei onto the
lattice vectors gi. Q can be parameterized by Euler angles
/1 = u1 2 [0,2p), /2 = U 2 [0,p], /3 = u2 2 [0,2p) [8]

ðQTÞij ¼
C1C3 � S1C2S3 S1C3 þ C1C2S3 S2S3

�C1S3 � S1C2C3 �S1S3 þ C1C2C3 S2C3

S1S2 �C1S2 C2

2
64

3
75;

ð1Þ
where Ci and Si denote the values cos (/i) and sin (/i),
respectively. The matrix components refer to the base vec-
tors ei. The transposition is introduced in order to make the
description of crystal orientations by Q = gi � ei compati-
ble to the one introduced by Bunge [8].

The codf f(Q) specifies the volume fraction dv/v of crys-
tals having the orientation Q [7,20], i.e.,

dv
v
ðQÞ ¼ f ðQÞdQ. ð2Þ

dQ is the volume element in SO(3) which ensures an invari-
ant integration over SO(3) [9], i.e.,
Z
SOð3Þ

f ðQÞdQ ¼
Z

SOð3Þ
f ðQQ0ÞdQ 8Q0 2 SOð3Þ. ð3Þ

If SO(3) is parameterized by Euler angles, the volume ele-
ment dQ is given by

dQ ¼ sinðUÞ
8p2

du1dUdu2. ð4Þ

The function f(Q) is nonnegative and normalized such that

f ðQÞP 0 8Q 2 SOð3Þ;
Z

SOð3Þ
f ðQÞdQ ¼ 1. ð5Þ

The orientation distribution function f(Q) reflects both the
symmetry of the crystallites forming the aggregate and the
sample symmetry, which results from the processing his-
tory Zheng and Fu [25]. The crystal symmetry implies the
following symmetry relation for f(Q)

f ðQÞ ¼ f ðQHCÞ 8HC 2 SC � SOð3Þ. ð6Þ
SC denotes the symmetry group of the crystallite. The sam-
ple symmetry implies the following symmetry relation for
f(Q)

f ðQÞ ¼ f ðHSQÞ 8HS 2 SS � SOð3Þ. ð7Þ
SS denotes the symmetry group of the sample.

2.2. Tensorial Fourier expansion of the codf

For the subsequent considerations it is assumed that the
codf is square integrable. This property implies the exis-
tence of a tensorial Fourier expansion. Adams et al. [1]
and Guidi et al. [10] considered this expansion for the spe-
cial case of a cubic crystal symmetry. Zheng and Fu [24,25]
analyzed the expansion for arbitrary crystal and sample
symmetries.

For aggregates of cubic crystals the Fourier expansion
has the following form

f ðQÞ ¼ 1þ
P1
i¼1

faiðQÞ; ð8Þ

where

fai ¼ V0haii � F
0
haiiðQÞ; F0haiiðQÞ ¼ Q � T0haii ð9Þ

and

faig ¼ f4; 6; 8; 9; 10; 121; 122; 13; 14; . . .g. ð10Þ
The V0haii are called tensorial Fourier coefficients or texture
coefficients. The tensors T0haii are called reference tensors
which are normalized without loss of generality

kT0haiik ¼ 1. ð11Þ

The * in Eq. (9)2 denotes the Rayleigh product, which for
tensors T ¼ T ij...lei � ej � � � � � el of arbitrary rank is de-
fined by

Q � T ¼ T ij...lðQeiÞ � ðQejÞ � � � � � ðQelÞ. ð12Þ

The product Q � T0haii can be interpreted as the rotation of
the tensor T0haii by the orthogonal tensor Q. The V0haii and
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T0haii are completely symmetric and traceless tensors. For
example, the following relations hold for V0h4i

V 0ijkl ¼ V 0jikl ¼ V 0klij ¼ V 0kjil ¼ � � � ; V 0iikl ¼ 0. ð13Þ

Completely symmetric and traceless tensors are called irre-
ducible [1]. From Eqs. (6)–(9) it can be concluded that the
reference tensors T0haii reflect the crystal symmetry

f ðQÞ ¼ f ðQHCÞ ) T0haii ¼ HC � T0haii 8H
C 2 SC; ð14Þ

whereas the tensorial Fourier coefficients V0haii have the
sample symmetry

f ðQÞ ¼ f ðHSQÞ ) V0haii ¼ HS �V0haii 8H
S 2 SS. ð15Þ
2.3. Calculation of the Fourier coefficients

In the context of a tensorial Fourier expansion of the
codf the orthogonality relations are given byZ

SOð3Þ
F0haiiðQÞ � F0hajiðQÞdQ ¼ O 8i 6¼ j ð16Þ

andZ
SOð3Þ

F0haiiðQÞ � F0haiiðQÞdQ ¼ 1

2ai þ 1
Dh2aii. ð17Þ

Dh2aii denotes the identity on irreducible tensors of rank ai.
A combination of Eqs. (8) and (16) gives the following set
of linear equations

J0haii ¼ Eh2aii½V0haii�; ð18Þ

where

J0haii ¼
Z

SOð3Þ
f ðQÞF0haiiðQÞdQ ð19Þ

and

Eh2aii ¼
Z

SOð3Þ
F0haiiðQÞ � F0haiiðQÞdQ. ð20Þ

Eq. (17) can now be used to simplify (20) and to solve the
system of Eq. (18). Finally one obtains

V0haii ¼ ð2ai þ 1Þ
R

SOð3Þ f ðQÞF
0
haiiðQÞdQ: ð21Þ

For a set of discrete crystal orientations and corresponding
volume fractions {Qb,mb}(b = 1, . . .,N) the codf can be
approximated by

f �
XN

b¼1

mbdQb
. ð22Þ

Eqs. (21) and (22) imply the following formula for the tex-
ture coefficients

V0haii ¼ ð2ai þ 1Þ
XN

b¼1

mbQb � T0haii. ð23Þ

If the orientation distribution function is uniform, then
all tensorial Fourier coefficients vanish and f(Q) = 1 holds.
Eqs. (11) and (23) show that for a single crystal orientation
the norm of the coefficients is

kV0haiik ¼ 2ai þ 1. ð24Þ
Based on the triangle inequality it can be concluded that
for a textured polycrystal

kV0haiik 6 ð2ai þ 1Þ
XN

b¼1

mbkQb � T0haiik

¼ ð2ai þ 1Þ
XN

b¼1

mb ¼ ð2ai þ 1Þ. ð25Þ

Hence the magnitude of the coefficients is generally
bounded by

kV0haiik 2 ½0; 2ai þ 1�. ð26Þ

The values kV0haiik are measures for the anisotropy degree
of a polycrystal.

2.4. Dimension and parameterization of irreducible

tensors

In the three-dimensional space a tensor of rank R has 3R

independent components. If a tensor (R P 2) is symmetric
with respect to all pairs of indices, then the number of inde-
pendent components reduces to

XRþ1

k¼1

k ¼ 1

2
ðRþ 1ÞðRþ 2Þ. ð27Þ

If a completely symmetric tensor is required to be traceless
then the number of constraints is equal to the number of
independent components of a symmetric tensor of rank
R � 2. As a result such an irreducible tensor has the
dimension

XRþ1

k¼1

k �
XR�1

k¼1

k ¼ 2Rþ 1. ð28Þ

Hence, the number of independent components increases
linearly with the tensor rank. In Table 1 the dimension of
higher order tensors subjected to the aforementioned con-
straints is shown for different values of R.

As an example, nine independent components of a
fourth-order irreducible tensor V0h4i are given

V 4
1 ¼ V 01111; V 4

2 ¼ V 01112; V 4
3 ¼ V 01113;

V 4
4 ¼ V 01122; V 4

5 ¼ V 01123; V 4
6 ¼ V 01222;

V 4
7 ¼ V 01223; V 4

8 ¼ V 02222; V 4
9 ¼ V 02223.

The condition that V0h4i is traceless implies

V 01133 ¼ �V 01111 � V 01122 ¼ �V 4
1 � V 4

4;

V 01233 ¼ �V 01112 � V 01222 ¼ �V 4
2 � V 4

6;

V 01333 ¼ �V 01113 � V 01322 ¼ �V 4
3 � V 4

7;

V 02233 ¼ �V 01122 � V 02222 ¼ �V 4
4 � V 4

8;

V 02333 ¼ �V 01123 � V 02223 ¼ �V 4
5 � V 4

9;

V 03333 ¼ �V 01133 � V 02233 ¼ V 4
1 þ 2V 4

4 þ V 4
8.



Table 1
Number of independent components of Rth-order tensors due to different types of constraints

Rank R V General V Traceless V Symmetric V Irreducible

dimV ¼ 3R dimV ¼ 8	 3R�2 dimV ¼ 1
2 ðRþ 1ÞðRþ 2Þ dimV ¼ 2Rþ 1

2 9 8 6 5
4 81 72 15 9
6 729 648 28 13
8 6561 5832 45 17

10 59049 52488 66 21
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All other components of V0h4i can be derived by the condi-
tion that V0h4i is completely symmetric. Based on the afore-
mentioned results, the scalar product of two fourth-order
irreducible tensors V0h4i and F0h4i can be expressed by the
corresponding components V 4

1...9 and F 4
1...9

V0h4i � F0h4i ¼ F 4
8V 4

1 þ 16F 4
2V 4

2 þ 12F 4
6V 4

2 þ 8F 4
3V 4

3 þ 4F 4
7V 4

3

þ 8F 4
8V 4

4 þ 16F 4
5V 4

5 þ 4F 4
9V 4

5 þ 12F 4
2V 4

6

þ 16F 4
6V 4

6 þ 4F 4
3V 4

7 þ 16F 4
7V 4

7 þ 8F 4
8V 4

8

þ F 4
1 8V 4

1 þ 8V 4
4 þ V 4

8

� �
þ F 4

4 8V 4
1 þ 22V 4

4 þ 8V 4
8

� �
þ 4F 4

5V 4
9 þ 8F 4

9V 4
9.

A similar formula holds for higher-order tensors.

2.5. Irreducible tensors with a specific symmetry

The reference tensors T0haii have the crystal symmetry
(see (14)), i.e.,

T0haii ¼ HC � T0haii 8H
C 2 SC. ð29Þ

Reference tensors satisfying (29) can be constructed in the
following way. Let SC be given by the proper orthogonal

tensors HC
b

n o
with b = 1, . . . ,NC and let A0haii be an arbi-

trary irreducible tensor of rank a. Then it can be shown
that the tensor

T0haii ¼
1

NC

XNC

b¼1

HC
b �A0haii ð30Þ

fulfills Eq. (29).
In the present paper, a cubic crystal symmetry is consid-

ered. In this case the symmetry group SC is given by 24
orthogonal tensors mapping the unit cube onto itself. For
the cubic case the independent components have been
determined by Guidi et al. [10]. For example, independent
components of Th4i are given by

T 4
1 ¼ T 01111 ¼ 2a; T 4

2 ¼ T 01112 ¼ 0; T 4
3 ¼ T 01113 ¼ 0;

T 4
4 ¼ T 01122 ¼ �a; T 4

5 ¼ T 01123 ¼ 0; T 4
6 ¼ T 01222 ¼ 0;

T 4
7 ¼ T 01223 ¼ 0; T 4

8 ¼ T 02222 ¼ 2a; T 4
9 ¼ T 02223 ¼ 0.

The constant a can be calculated by the normalization con-
dition kTh4ik ¼ 1 : a ¼ 1=

ffiffiffiffiffi
30
p

. The independent compo-
nents of Th6i are
T 6
1 ¼ T 0111111 ¼ 2a; T 6

2 ¼ T 0111112 ¼ 0; T 6
3 ¼ T 0111113 ¼ 0;

T 6
4 ¼ T 0111122 ¼ �a; T 6

5 ¼ T 0111123 ¼ 0; T 6
6 ¼ T 0111222 ¼ 0;

T 6
7 ¼ T 0111223 ¼ 0; T 6

8 ¼ T 0112222 ¼ �a; T 6
9 ¼ T 0112223 ¼ 0;

T 6
10 ¼ T 0122222 ¼ 0; T 6

11 ¼ T 0122223 ¼ 0; T 6
12 ¼ T 0222222 ¼ 2a;

T 6
13 ¼ T 0222223 ¼ 0.

The normalization condition kTh6ik ¼ 1 implies: a ¼
1=

ffiffiffiffiffiffiffiffi
462
p

.

3. The evolution equation of the tensorial texture coefficients

3.1. Time derivative of orientational averages

The Lagrangian form of the conservation law of the
codf for regular points is given by

f ðQ; tÞ ¼ detðGðQ0; tÞÞ
�1f0ðQ0Þ ð31Þ

[16,17], where f0(Q0) is the initial codf. Q0 denotes the ini-
tial orientation of a crystal having the orientation Q at time
t. The dependence of Q on Q0 is assumed to be given by
a one-to-one mapping Q = q(Q0,t) with continuous G =
oq(Q0,t)/oQ0 and det(G) > 0.

For time dependent orientation distributions an orienta-
tional average of a quantity w(Q) is given by

�wðtÞ ¼
Z

SOð3Þ
f ðQ; tÞwðQÞdQ ð32Þ

and the corresponding time derivative is

_�wðtÞ ¼ d

dt

Z
SOð3Þ

f ðQ; tÞwðQÞdQ. ð33Þ

After substituting (31) into Eq. (33) and taking into ac-
count that the volume elements of the current and the ini-
tial codf are related by dQ = det(G)dQ0 one obtains

_�wðtÞ ¼
Z

SOð3Þ
f0ðQ0Þ _wðqðQ0; tÞÞdQ0. ð34Þ

Using again Eq. (31) and applying the chain rule finally
gives

_�wðtÞ ¼
Z

SOð3Þ
f ðQ; tÞ owðQÞ

oQ
� _QdQ. ð35Þ

The reorientation velocity _Q is a constitutive quantity. It
can be concluded that the local formulation of the balance
equation of the codf implies that the time derivative of an
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orientational average is equal to the orientational average
of the material time derivative.

3.2. Evolution equation of the tensorial texture coefficients

The evolution equation of the tensorial texture coeffi-
cients V0haii (see (21)) can be derived based on Eq. (35).
Eq. (35) implies that

_V0haiiðtÞ ¼ ð2ai þ 1Þ
Z

SOð3Þ
f ðQ; tÞ _F0haiiðQÞdQ ð36Þ

holds. The time derivative of the Rayleigh product
F0ðQÞ ¼ Q � T0 can be formalized by

_F0haiiðQÞ ¼ _QQ�1
� F0haiiðQÞ ¼ X � F0haiiðQÞ; ð37Þ

where

ðX � FÞij...k ¼ XimF mj...k þ XimF jm...k þ � � � þ XimF jk...m. ð38Þ

In case of viscoplastic single crystals (without hardening)
the skew tensor X depends on the current crystal orienta-
tion and the velocity gradient L = ov/ox. From Eqs. (36)
and (37) it follows that the evolution equation of the tex-
ture coefficients is given by

_V0haiiðtÞ ¼ ð2ai þ 1Þ
R

SOð3Þ f ðQ; tÞXðLðtÞ;QÞ � F0haiiðQÞdQ:

ð39Þ
As an example _F0h4iðQÞ ¼ X�F0h4iðQÞ is given here explicitly
in terms of the axial vector w = e[X]/2 of X where e denotes
the permutation tensor

_F 4
1 ¼ þ4w1F 4

2 þ 4w2F 4
3;

_F 4
2 ¼ �w1F 4

1 þ 3w1F 4
4 þ 3w2F 4

5 þ w3F 4
3;

_F 4
3 ¼ �4w2F 4

1 þ 3w1F 4
5 � w3F 4

2 � 3w2F 4
4;

_F 4
4 ¼ �2w1F 4

2 þ 2w1F 4
6 þ 2w2F 4

7 þ 2w3F 4
5;

_F 4
5 ¼ �w1F 4

3 � 3w2F 4
2 þ 2w1F 4

7 � 2w3F 4
4 � 2w2F 4

6 � w3F 4
1;

_F 4
6 ¼ �3w1F 4

4 þ w1F 4
8 þ w2F 4

9 þ 3w3F 4
7;

_F 4
7 ¼ �2w1F 4

5 � 2w2F 4
4 þ w1F 4

9 � 3w3F 4
6 � w2F 4

8 � 2w3F 4
2;

_F 4
8 ¼ �4w1F 4

6 þ 4w3F 4
9;

_F 4
9 ¼ �3w1F 4

7 � w2F 4
6 � 4w3F 4

8 � 3w3F 4
4.
3.3. The closure problem

For numerical computations only a finite number of
coefficients _V0haii can be taken into account. Hence, for
the solution of the evolution Eq. (39) it is necessary to esti-
mate the distribution function f(Q,t) based on a limited
number of texture coefficients. In the following this esti-
mate is denoted by �f ðQ; tÞ. The estimate has to be consis-
tent in the sense that (5)1 and (5)2 are fulfilled. It should
be noted that a truncation of the series (8) would generally
give an inconsistent estimate of the codf, because the con-
straint (5)1 can be violated
f ðQÞ ¼ 1þ
XL

i¼1

V0haii � F
0
haiiðQÞj0 ð40Þ

if L is finite. In the context of the representation of the codf
by generalized harmonics this problem has been considered
by Van Houtte [23].

The problem of estimating a distribution function based
on incomplete data has no unique solution and therefore it
is ill-posed. One way to single out a solution of the afore-
mentioned problem is to maximize the information-
theoretic entropy of the estimate �f ðQÞ of f(Q) under the
constraints that �f ðQ; tÞ is normalized and that �f ðQ; tÞ has
the same leading texture coefficients as the function f(Q,t).
The maximum entropy method or maximum entropy prin-
ciple was introduced by Jaynes [12,13] into the field of sta-
tistical mechanics.

The entropy of the orientation distribution function is
defined by

E ¼ �
Z

SOð3Þ
f ðQÞ lnðf ðQÞÞdQ 2 ð�1; 0�. ð41Þ

A discussion of the general features of the texture entropy
can be found in Schaeben [21]. For an application of the
maximum entropy principle in the context of tensorial tex-
ture coefficients the reader is referred to Böhlke [4]. There it
is shown that the estimate �f ðQÞ has the following form

�f ðQÞ ¼ exp ��V 0 �
PL
i¼1

ð2ai þ 1Þ �V0haii � F
0
haiiðQÞ

� �
: ð42Þ

The multipliers �V 0 and �V0haii have to be computed from the
set of 1þ

PL
i¼1ð2ai þ 1Þ nonlinear equations

1 ¼
R

SOð3Þ
�f ðQÞdQ ð43Þ

and

V0haii ¼ ð2ai þ 1Þ
R

SOð3Þ
�f ðQÞF0haiiðQÞdQ ð44Þ

(i = 1, . . .,L). For example, if V0h4i and V0h6i are known, then
L = 2 and the codf is estimated based on 22 texture coeffi-
cients, i.e., the 9 independent components of V0h4i and the
13 independent components of V0h6i. In this case, the esti-

mate (42) depends on the 23 parameters �V 0;V
0
h4i;V

0
h6i

n o
which are determined by the 23 constraints (43), (44). In
Section 4 the following estimates will be used in order to
solve the differential equation of the texture coefficients

A �f ðQ; tÞ ¼ expð��V 0 � 9 �V0h4iðtÞ � F0h4iðQÞÞ; ð45Þ

B �f ðQ; tÞ ¼ expð��V 0 � 9 �V0h4iðtÞ � F0h4iðQÞ

� 13 �V0h6iðtÞ � F0ðQÞÞ; ð46Þ

C �f ðQ; tÞ ¼ expð��V 0 � 9 �V0h4iðtÞ � F0h4iðQÞ � � � �

� 17 �V0h8iðtÞ � F0ðQÞÞ. ð47Þ



Fig. 1. Norm of the texture coefficients predicted by model T1 and model
T2A.
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4. Numerical example

4.1. Flow rule and lattice spin

Distortions of rigid-viscoplastic single crystals can be
modeled by the following set of equations:

0 ¼ D0 �Q symð ~KðQTs0Q; sC
a ÞÞQ

T;

_QQ�1 ¼W �Q skwð ~KðQTs0Q; sC
a ÞÞQ

T
ð48Þ

[11]. D and W are the symmetric and the skew part of the
velocity gradient L. s denotes Kirchhoff stress tensor,
which is related to the Cauchy stress tensor r by s = Jr,
where J = .0/. is the determinant of the deformation gra-
dient. The internal variables sC

a are the critical resolved
shear stresses in the different slip systems. In the present
work, fcc single crystals are considered. For this specific
class of materials, it is a reasonable assumption that the slip
systems harden in an isotropic manner, i.e., sC

a ¼ sC [15].
The function ~K is assumed to be given by

~KðQTs0Q; sCÞ ¼
XN

a

_caðsa; s
CÞ ~Ma;

_caðsa; s
CÞ ¼ _c0sgn sað Þ

sa

sC

��� ���n;
sa ¼ ðQTs0QÞ � ~Ma

ð49Þ

[11]. The material parameter n quantifies the strain rate
sensitivity of the material. It is generally temperature depen-
dent and can be estimated by strain rate jump experiments.
At room temperature n is usually in the range of 50–250. In
the limit n!1 a rate-independent behavior is obtained.
The Schmid or slip system tensors ~Ma ¼ ~da � ~na are rank-
one tensors, which are defined in terms of the slip directions
~da and the slip plane normals ~na. In the case of an fcc single
crystal at room temperature, the octahedral slip systems
{11 1}h110i have to be taken into account (N = 12).

4.2. Simple shear

As an example a simple shear deformation is considered.
Due to the application of the Taylor assumption, each crys-
tal is subjected to the same deformation process. In the case
of simple shear the velocity gradient has the representation
L = L12e1 � e2, where e1 is the shear direction and e2 is the
shear plane normal. L12 is set to be equal to 0.001 s�1. The
following material parameters are used: sC = 20 MPa, _c0 ¼
0:001 s�1, n = 50.

In the first step the texture evolution is computed based
on 1000 single crystal orientations. The discrete distribu-
tion of the crystal orientations (not of the Euler angles) is
initially uniform. Since hardening is not considered here
the microstructure is described by 3000 internal variables
(Euler angles) the evolution of which is governed by Eq.
(48). In the following this model is referred to as Taylor
model 1 (T1).

In the second step the texture evolution is computed
again based on the Taylor assumption but instead repre-
senting the codf by a discrete set of crystals the differential
Eq. (39) is solved. This model is referred to as Taylor model
2 (T2). The differential Eq. (39) is numerically integrated for
the three closures A, B, and C (see (45)–(47)). The initial val-
ues of the three texture coefficients are computed from the
discrete initial orientation distribution used for the texture
simulation with model T1. In the cases T2A, T2B, and
T2C the crystallographic texture is represented by 9, 22,
and 39 internal variables (texture coefficients), respectively.
It is worth to mention that this number of internal variables
corresponds to 3, about 8, and 13 single crystals.

The numerical solution of (43), (44) is obtained by a
damped form of Newton’s method. The Jacobian of the
system of nonlinear equations has been numerically deter-
mined. The numerical integration over the elementary
region of Euler angles (cubic crystal symmetry) is per-
formed by the TOMS Algorithm 698 [2].

In Fig. 1 the norms of the coefficients �V0h4i,
�V0h6i, and �V0h8i

according to model T1 are shown as a function of the von
Mises equivalent strain. Furthermore, the norm of �V0h4i is
shown for model T2A. It can be seen that the magnitude
of �V0h4i is described accurately for equivalent strains less
than 1. The saturation of the texture is not captured by
model T2A.

If the deformation field and the hardening state are
homogeneous in the aggregate, then the Taylor factor can
be used to relate the critical resolved shear stress sC on
the microscale to the macroscopic flow stress �r by �r ¼
�MsC. The Taylor factor can be estimated by �M �

R
SOð3ÞPN

a _caj jdQ=_�e where _�e denotes the equivalent strain rate on
the macroscale. For a precise definition of the Taylor in
the rate-dependent and the rate-independent case see [3].
In Fig. 2 the Taylor factor �M is plotted for model T2A.
The prediction of �M is correct as far as the equivalent strain
is less than 0.3.

In Fig. 3 the norms of �V0h4i and �V0h6i are shown for the
closure T2B. The corresponding predictions of model
T1 are also shown. It can be seen that the prediction
of the evolution concerning the coefficient �V0h4i by T2B



Fig. 2. Taylor factor predicted by model T1 and model T2A.

Fig. 3. Norm of the texture coefficients predicted by model T1 and model
T2B.

Fig. 5. Norm of the texture coefficients predicted by model T1 and model
T2C.
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corresponds to the predictions of model T1. For the coeffi-
cient �V0h6i model T2B predicts the initial slope of the curve
correctly and describes also the saturation of the texture.
The magnitude of the coefficients is overestimated for large
strains. Fig. 4 indicates that model T2B describes the vari-
Fig. 4. Taylor factor predicted by model T1 and model T2B.
ation of the Taylor factor over a larger range of deforma-
tions compared to model T2A. The prediction of �M is
correct as far as the equivalent strains less than 0.7.

Fig. 5 shows the norms of �V0h4i,
�V0h6i, and �V0h6i predicted

by model T2C together with those of model T1. It can be
seen that the prediction of the evolution concerning the
coefficient �V0h4i by T2C again corresponds to the predic-
tions of model T1. For the coefficients �V0h6i and �V0h8i model
T2C predicts the initial slope of the curves correctly and
describes also the saturation. The magnitude of the coeffi-
cients is overestimated for large strains. Fig. 6 indicates
that model T2C describes the evolution of the Taylor factor
as far as the equivalent strain is less than 0.9.

In Fig. 7 the codf predicted by model T1 is shown in the
Euler angle space for an equivalent strain of 0.5. (Only the
90� sections are shown for simplicity.) The codf has been
estimated by means of the maximum entropy method
based on the fourth, sixth, and eighth-order coefficients
using the discrete orientations given by model T1. In
Fig. 8 the corresponding plot is shown for model T2B. It
can be seen that the main features of the texture evolution
Fig. 6. Taylor factor predicted by model T1 and model T2C.
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given by model T1 (3000 internal variables) are reproduced
by model T2B (22 internal variables).
5. Summary

Based on the conservation law of the codf the differential
equation of the tensorial texture coefficients has been
derived and formulated in a coordinate-free setting. The
evolution equation of each coefficient depends on the com-
plete codf and the lattice spin, which is a constitutive quan-
tity. For the solution of the differential equation based on a
finite number of coefficients, the codf has to be estimated.
The problem of estimating the codf based on a finite number
of coefficients is generally ill-posed. One way to single out a
solution is given by the application of the maximum entropy
method [4]. In the present paper, this maximum entropy
approach is used for the solution of the evolution equation
governing the tensorial texture coefficients. Based on differ-
ent closures with an increasing number of coefficients the
differential equation is numerically solved for a simple shear
deformation. It is shown that the evolution of the codf and
of the Taylor factor is reproduced for moderate deforma-
tions if at least the 6th-order coefficients are taken into
account. In contrast to formulations of the Taylor model,
which are based on discrete orientation distributions, the
approach suggested here allows to model the evolution of
the codf by a much smaller number of internal variables.
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