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Abstract

The problem of estimating the crystallite orientation distribution function (codf) based on the leading texture coef-

ficients is considered. Problems of such a type are called moment problems, which are well known in statistical mechan-

ics and other areas of science. It is shown how the maximum entropy method can be applied to estimate the codf.

Special emphasis is given to a coordinate-free formulation of the problem. The codf is represented by a tensorial Fou-

rier series. The equations, which have to be solved for the estimate of the distribution function, are derived for all tensor

ranks of the Fourier coefficients. As a numerical example, a model codf is estimated based on a set of discrete crystal

orientations given by a full-constrained Taylor type texture simulation.
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1. Introduction

The distribution of crystal orientations is an
important microstructural feature which affects

the overall properties of polycrystalline metals. If

this distribution is inhomogeneous, the material

has a crystallographic texture. Such a texture influ-

ences the overall elastic and the overall viscoplastic
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behavior as well as the non-mechanical properties

of a polycrystal.

The distribution of crystal orientations can be
described by correlation functions. In texture anal-

ysis, the one-point correlation function is called

crystallite orientation distribution function

(codf). It specifies the volume fraction of crystals

having a specific orientation. A crystal orienta-

tion can be identified by a proper orthogonal

tensor.

There exist different approaches to the represen-
tation of the codf. The classical representation by

generalized harmonic functions was introduced
ed.
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by Bunge [7] and Roe [13]. Later on, Adams et al.

[1] and Guidi et al. [9] introduced a tensorial Fou-

rier expansion of the codf (see also [21,22]). Both

representations are generally equivalent. The

advantage of the tensorial representation is that
it is coordinate-free. Therefore, the texture coeffi-

cients that occur in the tensorial representation

can be used as micro-mechanically defined and

measurable internal variables in continuum

mechanics [4–6].

In the present paper the following problem is

considered: how to estimate the codf, if a fixed

number of discrete crystal orientations or leading
texture coefficients is known? These orientation

data can be obtained experimentally for example

by automated electron back scatter diffraction ori-

entation measurements. The estimate of the codf

has to be consistent in the way that it is nonnega-

tive and normalized. Such a type of a problem is

usually called moment problem. Moment prob-

lems are well known in statistical mechanics and
other areas of science. The estimate of a distribu-

tion function based on incomplete data is not un-

ique. One way to single out a solution of the

aforementioned problem is to maximize the (infor-

mation-theoretic) entropy of the codf. The maxi-

mum entropy method was introduced by [10,11]

into the field of statistical mechanics. For an over-

view on this method see Wu [20].
The outline of the paper is as follows: in Section 2

the basic formula of the tensorial representation of

the codf is summarized for the special case of a cubic

crystal symmetry. In Section 3 the moment problem

is stated in terms of tensorial texture coefficients.

Then it is shown that the so called crystallographic

exponential family, here introduced with tensorial

coefficients, solves the moment problem. As a
numerical example a model codf is estimated based

on a set of discrete crystal orientations given by a

full-constrained Taylor type texture simulation.

Notation. Fourth- and higher-order tensors are

denoted by, e.g., Vhai, where the index a specifies

the tensor rank. The corresponding zero tensor is

written as O. The dyadic product and the Froben-

ius norm are denoted by � and k Æk, respectively.
Components of tensors are always represented

with respect to an orthonormal vector basis ei in

the three-dimensional Euclidean space. For exam-
ple, a fourth-order tensor is written in the follow-

ing way: Vh4i ¼ V ijklei � ej � ek � el. The scalar

product between tensors is denoted by a dot,

e.g., Vhai � Fhai. A linear mapping is written as

Vhai ¼ Eh2ai½Fhai�. Irreducible, i.e., completely sym-
metric and traceless, tensors are designated by a

prime, e.g., V0
hai. The number of independent com-

ponents of a tensor Vhai is denoted by dimðVhaiÞ. If

it is necessary to distinguish tensors of the same

rank, which are denoted by the same capital letter,

then an additional index in the bracket specifying

the tensor rank is introduced. For example V0
h121i

and V0
h122i are two different 12th-order tensors.

The set of proper orthogonal tensors is specified

by SO(3).
2. Tensorial representation of the codf

Properties of the codf. The orientation of a crys-

tallite is described by a proper orthogonal tensor
Q = gi � ei 2 SO(3) where ei and gi represent an

orthonormal basis fixed to the sample and to the

(orthonormal) lattice vectors of the crystal, respec-

tively. The distribution of crystal orientations Q
can be quantitatively described by the crystallite

orientation distribution function f(Q) [7,13]. It rep-

resents the one-point correlation function of crystal

orientations. For statistically homogeneous mate-
rials the one-point correlation function is posi-

tion-independent. The function f(Q) specifies the

volume fraction of crystals having the orientation

Q, i.e.,

dv
v
ðQÞ ¼ f ðQÞdQ: ð1Þ

dQ is the volume element in SO(3), which ensures

an invariant integration over SO(3) [8]Z
SOð3Þ

f ðQÞdQ ¼
Z
SOð3Þ

f ðQQ0ÞdQ ð2Þ

"Q0 2 SO(3). If SO(3) is parameterized by Euler

angles {u1,U,u2}, the volume element dQ is given

by

dQ ¼ sinðUÞ
8p2

du1 dUdu2: ð3Þ

The function f(Q) is nonnegative and normalized

such that



278 T. Böhlke / Computational Materials Science 32 (2005) 276–283
f ðQÞ P 0 8Q 2 SOð3Þ;
Z
SOð3Þ

f ðQÞdQ ¼ 1: ð4Þ

In the present work, only time-independent tex-

tures are considered.

The orientation distribution function f(Q) re-

flects both the symmetry of the crystallites forming
the aggregate and the sample symmetry, which re-

sults from the processing history [22]. The crystal

symmetry implies the following symmetry relation:

f ðQÞ ¼ f ðQHCÞ 8HC 2 SC � SOð3Þ; ð5Þ
where SC denotes the symmetry group of the crys-

tallite. The sample symmetry implies

f ðQÞ ¼ f ðHSQÞ 8HS 2 SS � SOð3Þ: ð6Þ
SS denotes the symmetry group of the sample.

Tensorial Fourier expansion of the codf. For the

subsequent considerations it is assumed that the

codf is square integrable. This property implies

the existence of a tensorial Fourier expansion.

Adams et al. [1] and Guidi et al. [9] considered this
expansion for the special case of a cubic crystal

symmetry. Zheng and Fu [21,22] analyzed the

expansion for arbitrary crystal and sample

symmetries.

For aggregates of cubic crystals the Fourier

expansion has the following form:

f ðQÞ ¼ 1 þ
X1
i¼1

faiðQÞ; ð7Þ

where

fai ¼ V0
haii � F

0
haiiðQÞ; F0

haiiðQÞ ¼ QHT0
haii ð8Þ

and

faig ¼ f4; 6; 8; 9; 10; 121; 122; 13; 14; . . .g: ð9Þ
The V0

haii are called tensorial Fourier coefficients or

texture coefficients. The tensors T0
haii are called ref-

erence tensors, which are normalized without loss

of generality

kT0
haiik ¼ 1: ð10Þ

The w in Eq. (8)2 denotes the Rayleigh product,

which for tensors T ¼ T ij...l ei � ej � . . . � el of

arbitrary rank is defined by

QHT ¼ T ij...lðQeiÞ � ðQejÞ � . . .� ðQelÞ: ð11Þ
The product QHT0
haii can be interpreted as the

rotation of the tensor T0
haii by the orthogonal ten-

sor Q.

The V0
haii and T0

haii are completely symmetric

and traceless tensors. E.g., the following relations
hold for V0

h4i

V 0
ijkl ¼ V 0

jikl ¼ V 0
klij ¼ V 0

kjil ¼ . . . ; V 0
iikl ¼ 0: ð12Þ

Completely symmetric and traceless tensors are

called irreducible. An irreducible tensor V0
haii has

dimðV0
haiiÞ ¼ 2ai þ 1 independent components.

Hence, the number of independent components in-

creases linearly with the tensor rank.

From Eqs. (5)–(8) it can be concluded that the

reference tensors T0
haii reflect the crystal symmetry

f ðQÞ ¼ f ðQHCÞ ) T0
haii ¼ HC

HT0
haii ð13Þ

"HC 2 SC, whereas the tensorial Fourier coeffi-
cients V0

haii have the sample symmetry

f ðQÞ ¼ f ðHSQÞ ) V0
haii ¼ HS

HV0
haii ð14Þ

"HS 2 SS.

The Fourier coefficients V0
haii can be considered

as micro-mechanically based tensorial internal vari-

ables. They are defined in terms of the one-point

correlation function of crystal orientations, which

can be determined by texture measurements.

Bunge [7] and Roe [13] used generalized harmonic

functions in their representation of the codf, the
coefficients of which are not tensor components.

It can be shown that the Voigt bound and the

Reuss bound of the strain energy of linear elastic

materials depend only on the fourth-order tenso-

rial coefficient V0
h4i [5]. It has also been shown

how a quadratic yield function of weakly textured

fcc polycrystals can be specified in terms of the tex-

ture coefficient V0
h4i [5].

Calculation of the Fourier coefficients. In the

context of a tensorial Fourier expansion of the

codf, the orthogonality relations are given byZ
SOð3Þ

F0
haiiðQÞ � F0

hajiðQÞdQ ¼ O 8 i 6¼ j ð15Þ

andZ
SOð3Þ

F0
haiiðQÞ � F0

haiiðQÞdQ ¼ 1

2ai þ 1
Dh2aii: ð16Þ
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Dh2aii denotes the identity on irreducible tensors of

rank ai. A combination of equations (7) and (15)

gives the following set of linear equations:

J0
haii ¼ Eh2aii½V0

haii�; ð17Þ

where

J0
haii ¼

Z
SOð3Þ

f ðQÞF0
haiiðQÞdQ ð18Þ

and

Eh2aii ¼
Z
SOð3Þ

F0
haiiðQÞ � F0

haiiðQÞdQ: ð19Þ

Eq. (16) can now be used to simplify (19) and to

solve the system of equations. Finally one obtains

V0
haii ¼ ð2ai þ 1Þ

Z
SOð3Þ

f ðQÞF0
haiiðQÞdQ: ð20Þ

For a set of discrete crystal orientations and

corresponding volume fractions fQb; mbg
(b = 1, . . . ,N) the codf can be approximated by

f �
XN
b¼1

mbdQb
: ð21Þ

Eqs. (20) and (21) imply the following formula for

the texture coefficients:

V0
haii ¼ ð2ai þ 1Þ

XN
b¼1

mbQbHT0
haii: ð22Þ
3. The maximum entropy method

Texture entropy. In establishing information

theory, Shannon [15] found a unique quantity that

measured the uncertainty of an information

source. Due to the similarity of the above men-

tioned quantity and the entropy used in thermody-

namics, it was called entropy. In order to
distinguish both quantities it is also called infor-

mation-theoretic entropy or Shannon�s entropy.

The maximum entropy method or maximum

entropy principle was introduced by Jaynes

[10,11] into the field of statistical mechanics. For

an overview on this method see the book by Wu

[20]. For an application of the information-theo-

retic entropy in the context of orientational statis-
tics see Mardia and Jupp [12] and Schaeben [14].
The information-theoretic entropy of the orien-

tation distribution function is defined by

E ¼ �
Z
SOð3Þ

f ðQÞ lnðf ðQÞÞdQ 2 ð�1; 0�: ð23Þ

It is equal to zero for a uniform distribution and

smaller than zero otherwise.

Formulation of the moment problem. Consider
the following problem: how to determine an esti-

mate �f ðQÞ of the function f(Q), if L tensorial Fou-

rier coefficients V0
haiiði ¼ 1; . . . ; LÞ are known? The

estimate has to be consistent in the sense that (4)1

and (4)2 are fulfilled.

For a given set of discrete crystal orientations

and corresponding volume fractions, the Fourier

coefficients can be estimated by Eq. (22) up to an
arbitrary tensor rank. Therefore, the moment

problem can also be stated in this case.

It should be noted that a truncation of the series

(7) would generally give an inconsistent estimate of

the codf, because the constraint (4)1 can be

violated

f ðQÞ ¼ 1 þ
XL
i¼1

V0
haii � F

0
haiiðQÞ� 0 ð24Þ

if L is finite. This will be shown later for specific

textures. In the context of the representation of

the codf by generalized harmonics this problem

has been considered by [18].

The moment problem is well known in statistical

mechanics and other areas of science. The problem
of estimating a distribution function based on

incomplete data has no unique solution and there-

fore it is ill-posed. One way to single out a solution

of the aforementioned problem is to maximize the

entropy of the estimate �f ðQÞ of f(Q)

E ¼ �
Z
SOð3Þ

�f ðQÞ lnð�f ðQÞÞdQ ! max : ð25Þ

This is a nonlinear constrained optimization prob-

lem. The first constraint is given by the normaliza-
tion condition (4)1, which implies

G0 :¼
Z
SOð3Þ

�f ðQÞdQ� 1 ¼ 0: ð26Þ

The other constraints are given by the requirement

that the L leading Fourier coefficients of �f ðQÞ are



280 T. Böhlke / Computational Materials Science 32 (2005) 276–283
equal to the given coefficients of the distribution

function f(Q)

Gai :¼ ð2ai þ 1Þ
Z
SOð3Þ

�f ðQÞF0
haiiðQÞdQ�V0

haii ¼ O;

ð27Þ
where i = 1, . . . ,L.

As mentioned before, a Fourier coefficient V0
haii

has 2ai + 1 independent components. Hence, for L

given coefficients, (26) and (27) represent

1 þ
XL
i¼1

ð2ai þ 1Þ ð28Þ

independent nonlinear equations.

Formal solution of the moment problem. The

main result of this paper is the application of the

maximum entropy method in the context of tenso-

rial representation of the codf. The equations,

which have to be solved for the estimate of the dis-

tribution function, are derived for all tensor ranks
of the Fourier coefficients.

The constrained optimization problem (25) and

(26) can be solved by the Lagrange multiplier

method. The objective functional L is

L ¼ E � V
�
0G0 �

XL
i¼1

V
0
haii �Gai ; ð29Þ

where V �
0 and V

0
haii are the Lagrange multipliers.

The first variation of L with respect to �f is

dL ¼
Z
SOð3Þ

hðQÞd�f dQ; ð30Þ

where

hðQÞ ¼ V 0 þ lnð�f ðQÞÞ þ
XL
i¼1

ð2ai þ 1ÞV0
haii � F

0
haiiðQÞ

with V 0 ¼ 1 þ V
�
0. After setting the first variation

equal to zero and taking into account that d�f is

arbitrary, one gets the final form of the estimate

of the codf

�f ðQÞ ¼ e �V 0 �
XL
i¼1

ð2ai þ 1ÞV0
haii � F

0
haiiðQÞ

 !

ð31Þ
The estimate �f ðQÞ is an exponential form in terms

of the Lagrange multipliers, which have to be cal-

culated by the constraints (26) and (27).

An exponential form similar to (31), but defined

in terms of generalized harmonic functions, has
been considered by van Houtte [19] and Van den

Boogaart [16,17]. Van den Boogaart calls it crys-

tallographic exponential family.

Numerical solution of the moment problem. The

nonlinear constrained optimization problem given

by (25)–(27) has been transformed into the set of

1 þ
PL

i¼1ð2ai þ 1Þ nonlinear equations

1 ¼
Z
SOð3Þ

�f ðQÞdQ ð32Þ

and

V0
haii ¼ ð2ai þ 1Þ

Z
SOð3Þ

�f ðQÞF0
haiiðQÞdQ; ð33Þ

(i = 1, . . . ,L), where

�f ðQÞ ¼ e �V 0 �
XL
i¼1

ð2ai þ 1ÞV0
haii � F

0
haiiðQÞ

 !
:

ð34Þ

If only V0
h4i is known, then L = 1 and the codf is

estimated based on nine texture coefficients, i.e.,
the nine independent components of V0

h4i. In this

case, the estimate (31) depends on the 10 parame-

ters fV 0;V
0
h4ig which are determined by the 10 con-

straints (32) and (33).

If V0
h4i and V0

h6i are known, then L = 2 and the

codf is estimated based on 22 texture coefficients,

i.e., the nine independent components of V0
h4i

and the 13 independent components of V0
h6i. In this

case, the estimate (31) depends on the 23 parame-

ters f�V 0;V
0
h4i;V

0
h6ig which are determined by the 23

constraints (32) and (33).

The numerical solution of (32) and (33) is ob-

tained by a damped form of Newton�s method.

The Jacobian of the system of nonlinear equations

have been numerically determined. The numerical

solution of these equations requires a numerical
integration over SO(3), which has been performed

by an adaptive integration scheme [2,3].
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4. Numerical example

Fig. 1 shows a model codf due to a tensile defor-

mation with an equivalent strain of 0.5 as it is pre-

dicted by full-constrained Taylor model. The
Taylor simulation has been performed with 3000

equal-sized face-centered cubic single crystals.

The codf has been estimated by a superposition

of 3000 Mises–Fisher distributions [12], one for

each crystal orientation, and their crystallographic

equivalents due to the cubic crystal symmetry. The

half-width has been taken to be equal to 12.5�.
Based on the single crystal orientations given by

the Taylor simulation, the tensorial Fourier coeffi-

cients have been estimated by Eq. (22). In Figs. 2

and 3, inconsistent estimates of the codf based

on a truncation of the tensorial Fourier expansion

are shown. The inconsistency is obvious because

the truncation leads to negative values of the codf.

In Figs. 4–6 the solution of the moment prob-

lem can bee seen for the cases that fV0
h4ig;

fV0
h4i;V

0
h6ig and fV0

h4i;V
0
h6i;V

0
h8ig are taken into
Fig. 1. Estimate of the codf by a superposition of Mises–Fisher

distributions (tensile test, equivalent strain 0.5).

Fig. 2. Approximation of the codf based on Vh4i and Vh6i:
�f ðQÞ � 1 þV0

h4i � F0
h4iðQÞ þV0

h6i � F0
h6iðQÞ.

Fig. 3. Approximation of the codf based on V0
h4i, V0

h6i, and

V0
h8i:

�f ðQÞ � 1 þV0
h4i � F0

h4iðQÞ þ � � � þV0
h8i � F0

h8iðQÞ.



Fig. 4. Maximum entropy estimate of the codf based on V0
h4i

(nine texture coefficients): �f ðQÞ ¼ expðV 0 � 9V
0
h4i � F0

h4iðQÞÞ.

Fig. 5. Maximum entropy estimate of the codf based on V0
h4i

and V0
h6i (22 texture coefficients): �f ðQÞ ¼ expðV 0 � 9V

0
h4i�

F0
h4iðQÞ � 13V

0
h6i � F0

h6iðQÞÞ.

Fig. 6. Maximum entropy estimate of the codf based on V0
h4i,

V0
h6i, and V0

h8i (39 texture coefficients): �f ðQÞ ¼ expðV 0 � 9V
0
h4i�

F0
h4iðQÞ � � � � � 17V

0
h8i � F0

h8iðQÞÞ.
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account. The maximum entropy estimate based

only on V0
h4i is not acceptable because important

parts of the texture are missing. The main features

of this tensile texture are reproduced by the esti-

mate based on fV0
h4i;V

0
h6ig.
5. Summary

It has been shown how the maximum entropy

method can be applied to estimate the crystallite

orientation distribution function, which is defined

on the special orthogonal group. Special emphasis
is given to a coordinate-free representation of the

distribution function. The moment problem, which

occurs in that context, has been derived and for-

mally solved based on the entropy maximization.

As a result, the estimate of the codf has an expo-

nential form. The tensor-valued functions, which

have to be solved in order to specify the exponen-

tial form, have been formulated for all tensor ranks
that occur in the tensorial Fourier expansion. As a

numerical example, the orientation distribution
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due to a tensile deformation has been estimated

based on the maximum entropy method.
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