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EFFICIENT IVSREFERENCE POINT DETERMINATION
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Abstract: The improvement of the local ties between different observation methods (GPS,
VLBI, etc.) improves the quality of the ITRF considerably. The IVS reference point of a
VLBI radio telescope is defined as the intersection between the azimuth- and elevation-axis
or, if they do not intersect, the intersection of the right-angle projection from the elevation-
axis onto the azimuth-axis. In the past, these axes have been estimated by fitting 3D circles,
e.g. (Eschelbach et al., 2003) or (Dawson et al., 2006). The data acquisition for the
determination of the circles requires that the telescope has to be moved into clearly defined
positions; therefore, the basic station process (data gathering for the intrinsic telescope task) is
disturbed. In this paper we present an alternative mathematical model, which computes the
reference point without circle fitting. This algorithm does not need observations from
predefined telescope positions and therefore the station's downtime can be reduced. The
parameter estimation of this non-linear problem is implemented in two steps. At first we are
using the Levenberg-Marquardt-Algorithm for a pre-evaluation to find stable approximate
values (Madsen et al., 2004), which we use for the main least-square-model in a second step.

1. INTRODUCTION

The reference point of a VLBI radio telescope is defined as the intersection between the
azimuth- and elevation-axis. If these axes do not intersect, the reference point is the right
angle projection from the elevation-axis onto the azimuth-axis. As a rule the two axes of this
telescope will be derived by 3D circle fitting and the invariant reference point will be
estimated. For this the telescope rotates around one axis while the second axis is fixed and
some targets on the telescope side will be observed by a theodolite or an instrument like that.
This is done step by step. The trajectory of every target corresponds to a circle. The centre
points of these circles are also points of the rotation axis and will be used to approximate this
axis. For the determination of axis wobble, the process must be repeated for many different
telescope orientations, whereas the orientation angles are not needed with high accuracy.
Getting the reference point by minimization the orthogonal distance (eccentricity) between the
approximated elevation- and azimuth-axis is the final step. A detailed description of this way
of doing is published e.g. in (Eschelbach et al., 2003) or (Dawson et al., 2006).
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Nowadays, optical tracking measuring instrumenk la robot tacheometers and laser
trackers enable possibilities to replace this tooesuming method, because the necessary
data can be gathered while the telescope is maigigeventually doing its intrinsic task. If
the conventional circle fitting method shall be kgxh the circle model has to be expanded to
a torus-like structure to approximate the wholeturesured data set. The dimension of the
torus depends on the distance between the tardeharelevation-axis; and the torus is very
thin due to the small — and unknown — eccentritigtween the azimuth-axis and the
elevation-axis. Therefore, the results for the wviam parameters (at least the eccentricity)
become uncertain.

Therefore will present an alternative method tineste the reference point without circle (or

torus) fitting in this paper. The mathematical maages the 3D coordinates from targets on
the side of the telescope as auxiliary paramefdtiough the model requires the elevation
angles and the azimuth angles assigned to the negsune of the specific target to get the

connection between the telescope’s orientation thadlocal site network, the suggested
algorithm does not need observations assignedeiefined telescope positions. The method
can roughly be compared to solving two datasetspecific transformation parameters. To
solve the non-linear-problem the use of a dampeal3&¥ewton-Method called Levenberg-

Marquardt-Algorithm, which is briefly described section 3.3, provides a first reliable set of
approximate values for the main least-square-model.

2. CONDITIONS AND RESTRICTIONS

2.1. Coordinate systems

There are two different coordinate systems to migstish between. Both are defined as
mathematical (right-handed), cartesian coordinatetems. Firstly there is the standard

observationX,,, Yons: Zops SyStem from the observation instrument. This oae lbe the

local site network at the station and does not reedétailed description. The second one is
the telescope systemy,,, Vo, Z - It is defined by the following:

- Origin of the coordinate system is the referendatpo

- The x-axis is parallel to the elevation-axis

- The z-axis corresponds to the azimuth-axis of élestope

- The y-axis is normal to the x- and z-axis
The telescope system rotates around the z-axisvedato the fixed geodetic observation
system by the azimuth angle.

2.2. Restrictions

An ideal radio telescope is not given. Becausehis, the mathematical model has to allow
for some restrictions on rather corrections, wkaoh shown in figure 1. They are parts of the
unknown parameters, which are estimated, too. Theeethree deviations related to the
construction of the telescope.

1. The elevation- and azimuth-axis do not interseberé is an eccentricity between
these axes.
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2. The angle between the elevation- and azimuth-aasnat right-angled, therefore
there is a tiny correction angle.
3. The azimuth-axis and the z-axis of the observasigstem are not parallel to each
other but differ by a small angle.
In addition, the positions of the observation-tésgm the side of the telescope are arbitrarily.
Only the direction of rotation and the magnitudéwa=n two telescope orientations are the
same (figure 4 in section 3.1). So, every angls getorrection value for the specific target,
too. To demonstrate the first and the third restic(the second one is quite conceivable and
not shown), in Figure 1 the observation coordirsgtgems is shift while the z-axis intersects
the azimuth-axis of the telescope.

7 A
Obs | Reference
point
~-... Eccentricity
Elevation-axis
Inclination
Azimuth-axis
yObs
XObs

Figure 1: Restrictions (eccentricity and inclinadiofor clearness shown in the coordinate
SystemX' o, Yonss Zops» Which emantes from the observation system, Yops, Zons PY
translation

3. MATHEMATICAL MODEL

3.1. Derivation

Due to the restrictions 1 and 2, which result irdiadnal parameters, all the unknown
parameters can not be solved in a one-step Helfnansformation. Therefore, in this section
we present the derivation of the new mathematicadehby a step by step introduction for
one target. In the end of the section we obtaieetransform equations, which can be used to
estimate the invariant reference poit in a closed mathematical model. In the following

the superior index is used to denote the resula dfansformation equation, in this case
identical with the equation’s number.



UYI\V\%
lm“efges 13th FIG International Symposium on Deformation Ble@ments and Analysis
e c\/\a
4th IAG Symposium on Geodesy for Geotechnical angc8iral Engineering
Lisbon, May 12-15 2008

Firstly, we adopt that the two defined coordingtstems in section 2.1 are congruent to each
other. So, the observation coordinate system isleguthe telescope coordinate system. In
the course of the derivation the difference betwbese coordinate systems will be explained
and the transformation formulas will be given. Angeal point P of the rotational solid is
defined under disregard for every restriction arithout any telescope twist, that means, that
the telescope orientation angles are zeros, as

Pi=[b a 0, 1)

whereasb is the distance along the x-axis amds the shortest distance between the p&int
and the x-axis of the point coordinate system, Wwiscdenoted by an apostrophe and move on
to the telescope system in the end (note figuned34d. The z-value is set to zero, because the
elevation-angleE (Epsilon) is set to zero and therefazg =alsinE= . Sb, the pointP,

which is represented by the target in figure 2, lies within the xy-plane.

X'y'=plane

Figure 2: Point definition

If the telescope rotates around the elevation-byian angleE, the pointP is the result of
the matrix multiplication (figure 2, targét,, ):

1 0 0 b b
P2=R,(E)lP*=|0 cosE -sinE |[a|=|altosE |, (2)
0 sinE cosE| |0 alsinE

whereasR, (E) describes the rotation matrix for a rotation vifi elevation-angl€& around

the x-axis. An eccentric distan@&between the two telescope axes, see the firstatest in
section 2.2, displaces the y-value®f
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0 b b
P°®=Ecc+P?=|e|+|altosE|=|e+altosE |. (3)
0| |alsinE alsinE

The non-orthogonality between the axes of the teles is the second restriction. It can be
modelled by a rotatiorR, (y) around the y-axis with the correction-angle

cosy 0 siny b cosy [ +siny[A[SINE
P‘=R(y)PP=| 0 1 0 |(e+altosE|= e+altosE (4)
-siny 0 cosy alsinE —siny [+ cosy[A[SINE

Zig = Azimuth-axis

X'= Elevation-axis

XTeI

Figure 3: Connection between the point system hadelescope system

So far the two defined coordinate systems in se@id are congruent to each other because
there are no twists or translations. However, #rgedt representing poir® rotates with the
telescope around the azimuth-axis. This rotation lsa described by the rotation matrix
R,(A) and the azimuth angla (Alpha) as follows:

cosA sinA 0 cosy b +siny[A[SInE
PS=R,(A)P* =|-sinA cosA 0 e+altosE (5)
0 0 1| |-sinyb+cosylalsinE

The third restriction in section 2.2 was the nonaplalism between the z-axis of the local
network coordinate system and the azimuth-axis hef tadio telescope. To model this
inclination two rotations and correction-angles aseded. The rotation around the y-axis
with an anglea rotates the azimuth-axis into the xz-plane. Thewsd rotation around the x-
axis with the correction-angl# is essential to get the parallelism-condition kesw these
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two axes. The inclination correctiorRY’X(a,,B) can be described by the matrix
multiplication:

(10 0 cosa 0 sina

RY'x(a,,B)= 0 cosf -sing 0 1 0

|0 sing  cospB| |-sina 0 cosa
(6)

cosa 0 sina
=|-sinBOsina cosf -sinfltosa
| cosplFsina sinB  cosfleosa
The pointP is then described by the equation:

P" =R, (B)R,(a)P° =R, (a,8)P° (7)

Finally, a translation vector is added; that déssithe connection between the origins of the
two coordinate systems. This vectBg includes the coordinates of the invariant telescop
reference point. So, we get the three transformagiquations — one for each coordinate-

component —, which can be written as matrix additio
P=P,+P’ (8)

Remember the different orientations problem betwbentargets and the radio telescope in
section 2.2. In order to use the azimuth- and ¢l@vangle of the telescope to transform the
point P between the two coordinate systems, add the atientcorrectiongO, and O to

these angles, refer figure 4:
A, =A+0, 9)
E, =E+O, (10)
The elevation correction angl®. is to estimate for every specific targét separately

whereas the azimuth correction an@g is fixed for all targets.

A
ZTeI

yTeI

Figure 4: Target position after elevation rotatwith correction angle
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3.2. Least-Square-Model

The three transformation equations — one for eardmate-component — in the section
above can be used to estimate the telescope reéepmint P, by a least-square-adjustment

called Gaul3-Helmert-Model. The (error-free) obst'ewaparametersli to solve the non-

linear problem F(IZ,)Z) include the 3D coordlnateBXIepq Y epa, 1 Zi epq_]T of the several

targetsT, furthermore the telescope orientation ang%gpq and E, whereasi is

i.epg; ! i.epg;

the number of the specific target asfdo. the associated observation epochl, [fis the first
target, the observations can be written as:

(=L +v, =X Y, 2o Ay, B, X z

-
Y Lepg, ’Aleporl 'Elyeporlj +tVy (11)

lepa, ' 'lepq, ’
with L are the true values of the observation

The vector of unknown paramete)% can be classified in two groups:
and

target-depended paramet@ﬁ$arget.

- fixed parametersx

const

The eight fixed parameters are the 3D coordin%ﬁl@é,YpR L ]T of the reference poin®y,

the eccentricitye between the telescope axes, the small angleand S to correct the
inclination, the angley to correct the non-orthogonality between the aad the azimuth
orientation correctiorO, . For every target the number of unknown parameteses up by

three. These target-depended parameters are theahsvaluesa andb along the axes with
reference to the reference poiRL and the telescope coordinate system and the Elavat

correction angléd. . The number of unknown parameterss:

u=u =8+ 30m. 12)

const + target

It follows from the above equitation for the degoédreedom f

€P%nax
f=n-u=30>T,

epo=1

- (8+30m), (13)

i,epo

whereasm is the number of targets.

The described transformation equations are nomjrteerefore they have to be linearised by
a first-order Taylor expansion at first:

E(E.R)= F(L v, X, # )= F(Lx)+ FL X)) (LX) g )
oL X, Y (14)
N X
A

[ —
w

The function of minimisation of this Gaul3-Helmertdil is given by e.g. (Niemeier, 2002)
as follows:

Q=v'Q, 'v+2k" [{Bv+Ax+w) — min (15)
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with the normal-equation:

o R T

WhereasA is the Jacobian-matrix, which contains the padeiivatives with respect to the
parametersX , B is the design matrix of conditions, which contaihe partial derivatives

with respect to the observations, w is the vector of contradiction®),, is the cofactor

matrix of the observations , x is the vector of increments and the vedtorconsists of so

called Laplace multipliers.

The Gaul3-Helmert-Model needs like every optimizatioethod approximate values, for
the unknown parameters, which are updated by etexgtion:

A

X =X, +X. a7)

At each iteration the estimated value& will be used as approximate value§,. This
determination has to be repeated until the impra@rémare converging towards zero. The
number of iterations is depending on the qualityhef approximate valueX,. To get a first

reliable solution the Levenberg-Marquardt-Algorithwhich is briefly described in the next
section, can be used.

3.3. Levenberg-Marquardt-Algorithm

To solve a non-linear least-square problem reliahl@944 Kenneth Levenberg published the
suggestion to use a so called method of damped $sspgre (Levenberg, 1944), which
Donald Marquardt took up again in 1963. The Levegidarquardt-Algorithm, named after
its developer, is a hybrid method between the ntkethiosteepest descent (also called as:
gradient descent direction) and the Gauf3-NewtorhbtetBoth ones are able to solve a non-
linear problem iteratively. The main-differencedvibeen these methods are the number of
required iterations and therefore the runtime dweddifferent convergence criteria.

The Levenberg-Marquardt-Algorithm is an iterativethrod and locates the minimum of a
function F in respect to the unknown parameteftsand is a standard technique for non-
linear least-square problems (Lourakis, 2005). Taenped Gaul3-Newton-Method is be
described in (Marquardt, 1963) by the equation:

(ATA+ 14)x =-ATw, (18)

whereasA is the Jacobian-matrix, which includes the firstigations of the functiorF (X ,)
and the matrixl is the identity matrix. The vectar contains the residuals of the function.
The vector of incrementx is the so-called damped Newton step gmd (x> 0), is the

damping parameter, which influences the directiu the size of the specific step. The scalar
M has to be set one-times in dependence on thedeoiek of the approximation values under

the condition (Marquardt, 1963):
Q. <Q, (19)

whereasQ is the function of minimisation at tHe™" iteration.
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For all 4> 0 it ensures thatx converges along the direction of the minimum bseatne
coefficient matrix A is positive definite. Furthermore, a large valde o means that the
matrix is diagonal-dominated and the current sotuts far from the correct one. The method
works slowly because it is only a short step indteepest descent direction, but it guarantees
to converge.

1 .7

xO-—A"w (20)
U

On the other hand, for a very small valuegofthe algorithm switches to the Gaul3-Newton-
Method and gets (almost) quadratic convergence ¢etaét al., 2004) because it is

(ATA+ 4 )O(AT A) (21)
and therefore
x O-(ATA)*ATw. (22)

At each iteration the error reduction will be vexdf (quod vide equation 19) and the damping
parameter adjusted. If the current step failecettuce the errors, the damping parameter will
have to be increased. Otherwigewill be reduced. For this reason the LevenbergegJardt-

Algorithm is adaptive (Lourakis, 2005) and providebable (robust) values.

A detailed analyse of the Levenberg-Marquardt-Alllpon is published by
(Madsen et al., 2004). For further information thierested reader is referred to this paper.
Additionally, there is described an implementatmithis algorithm. Furthermore, a short
description and an improved implementation in C/Gwder the terms of the GNU General
Public License are published by (Lourakis, 2005).

4. CONCLUSION

We have derived an alternative procedure to comingténvariant reference point of a VLBI
radio telescope without circle fitting. The algbrit estimates the reference point and also the
antenna parameters “eccentricity” and “inclinatiomth respect to the telescope restrictions
in a closed model. It is possible to reduce thémsts downtime because the mathematical
model does not require observations from predeftedzscope positions as it is needed for
circle-fitting. Instead, the observation-data-refesed telescope-orientation is needed. This
can be easily archived by combining time-stampebytaeter (or laser tracker) data with the
telescope observation protocol. Investigations @dothat the determination of the reference
point and the additional parameters will not beeetifd noteworthy by the uncertainty
introduced by this method of synchronisation, ié thata during a source observation is
gathered, meanwhile the telescope moves very slolvlgll the data, i.e. including that
gathered during the repositioning of telescope motlger source, is used, a sufficient
synchronisation can be achieved by using a trigigmal of the telescope’s control clock,
which triggers the laser tracker (Juretzko et @08). In both ways of doing, a reference point
determination could be carried out while the irgiinstation process is working. Our further
work will focus on the economic efficiency by priael applications of different measurement
equipment, culminating e.g. in active (i.e. sellating) reflector hubs.
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In addition, we presented the damped Newton methalled Levenberg-Marquardt-
Algorithm for the determination of approximate @y which is an efficient technique for
non-linear least-square problems because it prevideable values. This damped Newton
method is a hybrid method to solve the non-linegablem. It is a combination of the steepest
descent method and the Gaul3-Newton-Method.

Acknowledgments

The author is indebted to Dr. Martin Nitschke fatuable discussions during the work on the
model. This research has been supported by thes€leuForschungsgemeinschatft (DFG).

References

Dawson, J., Sarti P., Johnston G., Vittuari L. @00ndirect approach to invariant point
determination for SLR and VLBI systems: an asse#sidaurnal of Geodesy, Vol 81,
p.433-441.

Eschelbach, C., Haas R. (200Bhe IVS-Reference Point at Onsala - High End Smiufor a
real 3D-DeterminationSchwegmann, W./Thorandt, V. (Hrsg.) Leipzig/Framka. M.,
Bundesamt fur Kartographie und Geodasie, Procesdiijh Working Meeting on
European VLBI for Geodesy and Astronomy, p.109-118.

Juretzko, M., Hennes, M., Schneider, M., Fleischér, (2008). Uberwachung der
raumzeitlichen Bewegung eines Fertigungsroboters Hiife eines Lasertrackers.
Allgemeine Vermessungsnachrichten, Feb-Issue,im.pr

Levenberg, K. (1944)A Method for the Solution of Certain Problems inagteSquares
Quarterly of Applied Mathematics, Vol 2, p.164-168.

Lourakis, M.L.LA. (2005). A Brief Description of the Levenberg-Marquardt Aiigfam
Implemened by levmainstitute of Computer Science Foundation for Rede and
Technology - Hellas (FORTH), http://www.ics.forthglourakis/levmar/levmar.pdf
(last visited: 2008-01-08).

Madsen, K., Nielsen H.B., Tingleff, O. (2004Methods for non-linear Least Square
Problems Technical University of Denmark, 2nd Edition,
http://www2.imm.dtu.dk/pubdb/views/edoc_downloaghd215/pdf/imm3215.pdf (last
visited: 2008-01-08).

Marquardt, D.W. (1963).An Algorithm for Least-Squares Estimation of Nogdin
ParametersSociety for Industrial and Applied Mathematic®I\L1, p.431-441.

Niemeier, W. (2002)Ausgleichungsrechnun@erlin, 1st Edition, Walter de Gruyter.

Corresponding author contacts

Michael Losler
michael.loesler@gik.uni-karlsruhe.de

Geodetic Institute of the University of KarlsruhieH)
Germany





