
Market-Based Scheduling
in Distributed Computing Systems

Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)

von der Fakultät für
Wirtschaftswissenschaften

der Universität Karlsruhe (TH)

genehmigte
DISSERTATION

von

Dipl.-Inform.Wirt Jochen Stößer

Tag der mündlichen Prüfung: 20. Januar 2009
Referent: Prof. Dr. Christof Weinhardt
Korreferent: Prof. Dr.-Ing. Stefan Tai

Karlsruhe, 2009

ii

Acknowledgements

I am indebted to many people for their support and collaboration in the course of my Ph.D.
research. Firstly, I thank my supervisor Prof. Dr. Christof Weinhardt for his strong and con-
tinuous support, which already started well during my undergraduate studies. He ultimately
convinced me to pursue this Ph.D. research. I would also like to thank Prof. Dr.-Ing. Stefan
Tai for co-advising this thesis and for providing me with valuable and constructive insights and
comments. Prof. Dr. Bruno Neibecker and Prof. Dr. Wolf Fichtner have been so kind to serve
on the board of examiners. I would like to especially thank Dr. Dirk Neumann for his guidance
and for pointing me – and constantly pushing and challenging me – in the right directions.

I would also like to thank the many people who have contributed feedback and discussions to
my research, especially within the projects SORMA and Biz2Grid. I would like to particularly
thank Prof. Dr. Amnon Barak, Lior Amar, and Dr. Ahuva Mu’alem from The Hebrew University
of Jerusalem for hosting my research stay in 2007 and for the very fruitful and interesting
collaboration. I would like to express my gratitude to my colleagues from the Information &
Market Engineering group for providing a stimulating and fun environment in which to grow
and learn. Special thanks go to Arun Anandasivam, Benjamin Blau, Carsten Block, and Thomas
Meinl for proofreading parts of this thesis.

I dedicate this thesis to my family, my parents Ingrid and Karl-Heinz and my brother Florian. I
have relied on their encouragement and support throughout my studies. Finally, I want to thank
Nadine for her love and her patience with my restlessness and the distractions caused by this
thesis.

iv

Contents

List of Figures xi

List of Tables xiii

Abbreviations xv

1 Introduction 1

1.1 Motivation . 1

1.2 Research Outline . 4

1.3 Structure of this Work . 7

1.4 Related Publications . 8

2 Preliminaries and Related Work 11

2.1 Distributed Computing Concepts . 11

2.1.1 Cluster Computing . 12

2.1.2 Voluntary Computing . 12

2.1.3 Grid Computing . 13

2.1.4 A Classification . 15

2.2 Why Markets for Scheduling in Distributed Computing Systems? 18

2.3 Technical Challenges . 21

2.3.1 Layer 1: Applications and Resources 22

2.3.2 Layer 2: Intelligent Tools . 22

2.3.3 Layer 3: Resource Market . 23

vi CONTENTS

2.3.4 Layer 4: Core Market Services . 25

2.4 Economic Challenges . 27

2.4.1 A Classification of the Trading Objects 27

2.4.2 A Two-Tiered Market Structure . 31

2.4.3 Scheduling in Resource-Near Markets 34

2.5 Methodologies . 36

2.5.1 Theoretical Analyses . 37

2.5.2 Empirical Studies . 37

2.5.3 Simulations . 38

3 Outcome Determination in Large-Scale Grid Settings 39

3.1 Introduction . 39

3.2 Requirements and Design Desiderata . 40

3.3 Related Work . 44

3.4 The Mechanism . 45

3.4.1 Expressing Job Requests and Node Offers 45

3.4.2 Allocating Jobs to Nodes . 47

3.4.3 Pricing the Outcome . 53

3.5 Numerical Evaluations . 58

3.5.1 What Makes Instances Hard? . 59

3.5.2 Strategic Behavior . 65

3.6 Implications . 71

3.7 Discussion . 72

4 Randomization and Distributed Outcome Determination 75

4.1 Introduction . 75

4.2 Related Work . 76

4.3 A Randomized Pay-as-Bid Mechanism . 78

4.3.1 The Mechanism . 78

CONTENTS vii

4.3.2 Monotone and Strongly Convex Allocation Probabilities 82

4.3.3 Evaluation in a Simplified Setting . 84

4.4 Distributed Problem Solving . 87

4.5 Numerical Simulations . 89

4.5.1 Strategic Behavior . 89

4.5.2 Efficiency . 93

4.5.3 Implications . 96

4.6 Discussion . 97

5 The Power of Preemption 99

5.1 Introduction . 99

5.2 The Problem Setting . 100

5.3 Baseline Model – A Decentralized Local Greedy Mechanism 100

5.4 Adding Preemption . 103

5.5 Empirical Analysis . 108

5.5.1 Experimental Setup . 108

5.5.2 Experimental Results . 112

5.6 Related Work . 113

5.7 Discussion . 117

6 Allocating and Pricing Shared Resources 119

6.1 Introduction . 119

6.2 Related Work . 120

6.2.1 The Setting . 121

6.2.2 Proportional Share . 121

6.2.3 The Discriminatory Pay-as-Bid Mechanism by Sanghavi and Hajek . . 122

6.3 Comparison for Two Users . 123

6.3.1 User Strategies and Mechanism Performance 123

viii CONTENTS

6.3.2 Analytical Comparison: User Strategies, Provider’s Revenue, and Effi-
ciency . 124

6.3.3 A Numerical Example . 128

6.3.4 Intermediate Summary . 129

6.4 Comparison Based on Real-World Workloads 130

6.4.1 Experimental Setup . 130

6.4.2 Empirical Analysis . 141

6.5 Service Levels Guarantees for Business-Critical Applications 144

6.5.1 The Allocation . 144

6.5.2 The Pricing of Reservation Requests 145

6.5.3 A Numerical Example . 145

6.5.4 Special Situations . 147

6.6 Integration into State-of-the-Art Schedulers 147

6.6.1 Sun N1 Grid Engine . 147

6.6.2 The Pay-as-Bid Mechanism as Additional Policy 148

6.6.3 The Pay-as-Bid Mechanism as Scheduler 150

6.6.4 Implications of the Approaches . 151

6.7 Discussion . 151

7 Conclusions and Future Work 153

7.1 Summary of Contributions . 153

7.2 Possible Extensions and Open Questions . 156

7.2.1 Specific Extensions to This Work . 156

7.2.2 Complementary Research . 157

7.3 Final Remarks . 161

Appendices

A Appendix to Chapter 3 163

CONTENTS ix

B Appendix to Chapter 4 165

B.1 Pseudo-Code of the Randomized Heuristic . 165

B.2 Proofs of Lemma 1 and Lemma 2 . 166

C Appendix to Chapter 5 169

D Appendix to Chapter 6 173

D.1 Workload Statistics . 173

D.2 Correlation – Spearman Correlation Coefficient 175

D.3 Rationality – Mean Request Utility . 176

D.4 Robustness Against Varying Random Number Seeds 177

D.5 Proof of Corollary 1 . 178

Bibliography 181

x CONTENTS

List of Figures

1.1 Structure of this work. 8

2.1 Fixed pricing. 20

2.2 Conceptual architecture for a market for distributed computing systems. 22

2.3 The different aggregation levels of services and resources. 29

2.4 Two-tiered market structure. 31

2.5 Taxonomy of resource-near (Tier 2) markets with respect to the research ques-
tions of this work. 36

3.1 Design framework for periodic market mechanisms. 43

4.1 Allocation tree. 80

4.2 Sample allocation tree. 81

4.3 Sample best response functions for two competing and mutually exclusive users. 86

4.4 Distributed randomized mechanism. 88

5.1 Information exchange in DLGM at time r̃ j. 102

5.2 Utilization patterns of the workload traces with a FIFO scheduler. 110

5.3 Performance comparison of DLGM and P-DLGM for the uniform distribution. . 114

5.4 Performance comparison of DLGM and P-DLGM for the bimodal distribution. 115

6.1 The number of requests and requested CPUs in the workload for each timeslot. 132

6.2 The reinforcement learning model. 134

xii LIST OF FIGURES

6.3 Correlation of the competition in the workload and the mean percentage bid
across all users. 140

6.4 Sample initial scenario. 146

6.5 Sample scenario – Addition of a pay-a-bid request. 146

6.6 The technical N1GE scheduler. 148

6.7 The pay-as-bid mechanism as additional policy. 149

6.8 The pay-as-bid mechanism as scheduler. 150

D.1 Histogram of the CPU size of the requests in the workload. 173

D.2 Histogram of the runtime of the requests in the workload. 174

List of Tables

2.1 Distinguishing distributed computing concepts. 15

2.2 Technical challenges for distributed computing markets. 26

2.3 Economic objectives. 30

2.4 Mapping of the scenarios considered in the research questions to the distributed
computing concepts. 34

3.1 Mapping of the existing mechanisms to the requirements 46

3.2 Sample job requests and node offers. 47

3.3 Sample greedy allocation scheme. 51

3.4 Options for misreporting. 54

3.5 Sample prices and payments. 57

3.6 Simulation setting. 59

3.7 Runtime of Anytime-CPLEX depending on the number of job requests and node
offers and the ratio of job requests to node offers. 61

3.8 Runtime of Anytime-CPLEX and the heuristic depending on the number of job
requests and node offers and the (mean) job runtime. 63

3.9 Ratio of the heuristic’s mean efficiency to the mean efficiency generated by
Anytime-CPLEX depending on the number of job requests and node offers and
the ratio of requests to offers. 64

3.10 Utility for a single misreporting user with 20 jobs and 20 nodes. 67

3.11 Utility for a single misreporting user with 60 jobs and 20 nodes. 67

3.12 Utility for a single misreporting provider with 20 jobs and 20 nodes. 69

3.13 Utility for a single misreporting provider with 60 jobs and 20 nodes. 70

xiv LIST OF TABLES

4.1 Sample scenario. 80

4.2 Sample allocation probabilities. 81

4.3 Numerical example. 86

4.4 Simulation results for a misreporting user in the setting with 20 jobs and 20 nodes. 90

4.5 Simulation results for a misreporting user in the setting with 60 jobs and 20 nodes. 91

4.6 Simulation results with respect to efficiency in the setting with as many jobs as
nodes. 94

4.7 Simulation results with respect to efficiency in the setting with twice as many
jobs as nodes. 95

5.1 Workload traces. 109

5.2 Ratio of the total weighted flow time of DLGM to P-DLGM. 112

6.1 Numerical example. 129

6.2 Descriptive statistics of the workload trace. 132

6.3 Tested parameter combinations for the Q-Learning strategy. 139

6.4 Mean utility per request. 141

6.5 Mean revenue. 142

6.6 Mean efficiency ratio for the Q-Learning strategy. 142

D.1 Mean Spearman correlation coefficients for varying α , γ , and ε 175

D.2 Mean request utility for varying α , γ , and ε . 176

D.3 Coefficient of variation for the total payments across all runs for varying α , γ ,
and ε . 177

Abbreviations

API Application Programming Interface . 14

ASP Application Service Providing . 160

BSD Bounded Slowdown . 111

CPU Central Processing Unit . 3

CV Coefficient of Variation . 61

DLGM Decentralized Local Greedy Mechanism . 100

EERM Economically Enhanced Resource Management .24

EGEE Enabling Grids for E-sciencE . 14

FIFO First-In-First-Out . 110

GAP Generalized Assignment Problem . 48

GB Gigabyte . 19

GLUE Grid Laboratory Uniform Environment . 27

HDD Hard Disk Drive . 28

IT Information Technology . 1

JSDL Job Submission Description Language . 27

LCG Worldwide LHC Computing Grid . 2

MACE Multi-Attribute Combinatorial Exchange . 44

MB Megabyte . 47

MKP Multiple Knapsack Problem. .48

xvi ABBREVIATIONS

N1GE N1 Grid Engine . 71

NP Non-Deterministic Polynomial Time . 49

OGSA Open Grid Services Architecture . 15

OSG Open Science Grid . 2

OWL-S Web Ontology Language for Web Services . 27

P-DLGM Preemptive Decentralized Local Greedy Mechanism 103

PC Personal Computer . 12

PS Proportional Share . 141

RAM Random Access Memory . 27

RES Reservation Requests . 144

SaaS Software as a Service . 159

SH Sanghavi-Hajek . 141

SLA Service Level Agreement . 24

SORMA Self-Organizing ICT Resource MAnagament . 21

UNICORE Uniform Interface to Computing Resources . 14

US United States . 14

USD US Dollar . 2

VCG Vickrey-Clarke-Groves . 55

WSDL Web Service Description Language . 27

WSMO Web Service Modeling Ontology . 27

WSPT Weighted Shortest Processing Time . 105

ZIC Zero Intelligence Constrained . 133

Chapter 1

Introduction

1.1 Motivation

I n recent years, computer resources have become increasingly considered as being a utility
that can be accessed dynamically in analogy to classic utilities such as electricity, water,

and telecommunication services: “Utility computing is the on-demand delivery of infrastruc-
ture, applications, and business processes in a security-rich, shared, scalable, and standards-
based computer environment over the Internet for a fee. Customers will tap into information
technology resources – and pay for them – as easily as they now get their electricity or water”
(Rappa, 2004). According to Rappa, utilities are characterized by necessity, reliability, ease of
use, fluctuating utilization patterns, and economies of scale. Computer resources match this
profile very well. Rather than being a strategic asset, information technology (IT) has become a
basic necessity for almost all businesses, as the prominent and controversial IT critic Nicholas
Carr points out (Carr, 2003). If IT systems fail, this can result in unsatisfied customers and
severe contractual penalties. Moreover, IT systems must be easy to use for customers and em-
ployees and must adapt and connect to heterogeneous systems. Most importantly, especially
small- and medium-size companies will not constantly require massive amounts of computer
resources. Instead, these resources will be required in the design phase of a new product only
or to create daily / monthly / yearly reports, leading to fairly dynamic and unpredictable (from
the provider’s point of view) demand. To be able to accommodate the resulting peak loads,
enterprises must maintain large computing clusters that sit idle most of the time, thus incurring
tremendous costs. The results of a meta-study show that corporate data centers are only us-
ing 10% to 35% of their available computing power and that 50% to 60% of enterprises’ data
storage capacity is being wasted (Carr, 2005).

The validity of the utility computing approach mainly stems from its immense economies of

2 INTRODUCTION

scale. Instead of having each company and research organization to maintain its own costly
computing and data centers, resource providers can benefit from economies of scale and offer
these resources on-demand. Setting up computing and data centers for the first customer takes
tremendous fixed costs, but serving an incremental customer or request with these existing
resources only requires (comparably) minor efforts. Carr (2005) compares this to the electricity
production and predicts that dispersed, private IT “plants” will be displaced by large, centralized
providers.

Grid computing (oftentimes also called “the Grid”) and cluster computing offer a promising
technological basis for this utility-like view. These technologies permit the creation of pools
of resources, which can be shared both within as well as across administrative or even organi-
zational boundaries, e.g. between enterprises or among business units and departments within
one enterprise (Foster et al., 2001). This has two main benefits. Firstly, the resource pool can
be used to aggregate the resource demand across users and or business units within a company
to generate a more stable overall demand, ultimately at least partially eliminating the dynamic
peaks in resource demand. Secondly, by enabling the dynamic access to external resources, en-
terprises need only accommodate the basic load; peak loads are serviced externally on demand.
Especially the latter benefit leads to high expectations. For instance, The Insight Research Cor-
poration estimates an increase of worldwide grid spending from USD 1.84 billion in 2006 to
approximately USD 24.52 billion in 2011 (Insight Research, 2006). It has been projected that
grids can lower total IT costs by 30% (Minoli, 2005). According to the Gartner group, early
adopters will source 40% of their IT as a service by 2011.1

Cluster computing has a long history for business applications. Advances in networking tech-
nologies made it possible to substitute clusters of standard computers for costly and complicated
mainframe computers. In contrast, grid computing originally stems from the area of high per-
formance computing (oftentimes also referred to as “e-Science”) where users need easy access
to massive processing and storage resources, as in the areas of high-energy physics, physical
astronomy, engineering, and biology. Consequently, grid technologies have primarily been used
as a capable middleware layer by researchers. In subsequent times, the focus evolved beyond
accessibility towards “coordinated resource sharing and problem solving in dynamic, multi-
institutional virtual organizations” (Foster et al., 2001). In academia, this sharing approach has
led to the emergence of several virtual organizations (e.g. TeraGrid2, Worldwide LHC Comput-
ing Grid (LCG)3, Open Science Grid (OSG)4), which facilitate resource sharing among their
members.

1http://www.gartner.com/it/page.jsp?id=593207
2http://www.teragrid.org/
3http://lcg.web.cern.ch/LCG/
4http://www.opensciencegrid.org/

http://www.gartner.com/it/page.jsp?id=593207
http://www.teragrid.org/
http://lcg.web.cern.ch/LCG/
http://www.opensciencegrid.org/

1.1 MOTIVATION 3

For enterprises, this inter-organizational sharing model has not yet made it into practice. While
technical advancements with respect to sensitive issues (such as security and quality-of-service
management) have occurred, this slow adoption of grid technologies is not surprising as admin-
istrative barriers – even within enterprises – are too difficult to overcome to make the sharing
approach work. For instance, the free-riding problem, meaning that members participate in the
Grid without contributing to it (Adar and Huberman, 2000), strongly argues against the sharing
approach. It has thus been suggested that the adoption of grid computing by enterprises has
been slow due to the lack of viable business models and chargeable and reliable grid services.
There is a deficit of mechanisms that enable users to discover, negotiate, and pay for the use
of grid services. According to one of the leading grid research institutes, The451Group, the
application of resource trading and allocation models is one of the crucial success factors for
establishing commercial grids (The451Group, 2007).

Complying with the proposition of The451Group, Sun Microsystems has adopted the idea of
selling resources within its utility computing initiative, believing that enterprises will eventually
stop maintaining their own infrastructure and instead buy computing power from dedicated
resource providers. To put weight on this idea, Sun Microsystems is currently establishing
network.com5, an electronic marketplace for trading resources and applications. Sun started out
offering a fixed price for computing services of USD 1 per central processing unit (CPU) hour.
Amazon has launched comparable efforts with its Amazon Elastic Compute Cloud (Amazon
EC2)6 and Amazon Simple Storage Service (Amazon S3)7. Like Sun Microsystems, Amazon is
offering processing power and storage for a fixed price.

However, instead of selling computer resources for a fixed price, it has been proposed to deter-
mine resource allocations and prices dynamically by means of markets (e.g. Sutherland (1968)
for cluster-like settings and Lai (2005) for grid settings, also see Neumann et al. (2008c) for
a recent survey). Large computer hardware manufacturers like Hewlett-Packard have already
worked on or at least pondered the options for such markets (cf. Lai et al. (2005)). Attach-
ing fair prices to resources in a market-like fashion ensures that the resources are only invoked
when needed; users have an incentive to shift their demand for computational resources to off-
peak periods where prices are lower, thus performing some kind of user-driven load balancing.
Moreover, markets provide the incentive to contribute idle resources to the system in return for
the market price.

5http://www.network.com/
6http://aws.amazon.com/ec2
7http://aws.amazon.com/s3

http://www.network.com/
http://aws.amazon.com/ec2
http://aws.amazon.com/s3

4 INTRODUCTION

1.2 Research Outline

The question that will be addressed in this work is how markets for computational resources
should be designed in order to be at the same time applicable in practice and theoretically
sound. It is a well-known result from Market Engineering that there is not one omnipotent
market mechanism that can be used for any setting (Weinhardt et al., 2003). Instead, a set of
mechanisms is needed, where the design of the mechanisms depends on the properties of the
users’ applications (e.g. batch vs. interactive), the resources (e.g. dedicated or shared alloca-
tion), and the overall objective of the market designer (e.g. welfare vs. revenue maximization)
(Wellman et al., 2001; Roth, 2002; Neumann, 2004). Due to these dependencies, the set of
mechanisms is inherently open and changing. Consequently, the overall objective of this work
is to extend the existing body of research on the market-based scheduling of computational
tasks and resources by developing and evaluating market mechanisms for specific application
settings.

The first two research questions deal with markets for grid computing settings. Grid markets by
definition involve the trading of heterogeneous computer resources that are owned by multiple
providers. Moreover, the grid vision is about developing a large-scale distributed computing
system (on a national, international, or even global level) that appears as one virtual supercom-
puter. Besides these technical and structural properties, the design of grid markets is exacer-
bated by the single users and providers pursuing their self-interest instead of working towards
one common goal, such as economic efficiency. For instance, users might try to manipulate the
system by misstating job properties and valuations in the hope for a lower price. Analogously,
resource providers might misstate their costs in order to obtain a higher price. Hence, the first
research question addressed in this work is:

Research Question 1:

How can a scalable, two-sided market mechanism for clearing heterogeneous grid
settings be designed so that strategic behavior from users and providers is limited?

This research question is addressed by (1) designing a market-based heuristic, (2) developing
and presenting alternative pricing schemes that are designed to induce users and providers to
report their true valuations and resource characteristics to the system, and (3) an in-depth anal-
ysis of the heuristic and these pricing schemes with respect to the complexity of the allocation
problem, the incentives for users and providers to try to manipulate the mechanism, and the
computational impact of the pricing schemes on the mechanism.

Compared to previous attempts, the proposed heuristic and pricing schemes offer a fundamental

1.2 RESEARCH OUTLINE 5

advancement in making grid markets truly applicable in practice. As opposed to exact mecha-
nisms, which always optimally solve the allocation problem but are infeasible in practice, the
proposed mechanism is highly scalable but still yields near-optimal allocations. Furthermore,
compared to previous mechanisms, the mechanism allows strategic behavior on both sides of
the market. Proportional critical-value pricing constitutes the main improvement over previous
mechanisms. If complemented by this pricing scheme, the heuristic achieves truthfulness (with
respect to the reporting of valuations) on the demand side of the market while limiting strategic
behavior on the supply side.

On its downside, the proposed deterministic heuristic is vulnerable to specific worst cases.
Randomization provides a promising remedy towards intercepting such worst cases. Random
choices of the allocation algorithm can make these special cases improbable and thus mitigate
the deficiencies of deterministic mechanisms (Nisan and Ronen, 2001; Goldberg et al., 2006).
From a strategic viewpoint, however, this also requires the design of new pricing schemes, as
the prices used for deterministic mechanisms can no longer be determined given the random
choices of the allocation algorithm. This gives rise to the second research question:

Research Question 2:

How can a randomization of the heuristic allocation algorithm improve efficiency?
How can the pricing scheme be modified to limit strategic behavior from users?

Randomization can easily be shown to avoid worst cases on average. The true benefit of ran-
domization, however, lies in combining it with the inherently decentralized nature of markets.
The idea is that the lightweight randomized heuristic can easily be computed by every market
participant, for instance as kind of a mandatory “participation fee”. A central auctioneer can
then collect the local solutions from the participants and aggregate them so as to generate a
desirable overall outcome.

While the theoretical benefits of randomization and distributed outcome determination are com-
pelling, it remains to be shown whether this actually improves on the deterministic heuristic
with respect to efficiency in the “average” case, i.e. given more realistic input than mere worst
cases. Furthermore, randomization violates the monotonicity property of the allocation algo-
rithm, which is crucial for a truthful (in dominant strategies) mechanism (Lavi et al., 2003).
Consequently, novel solution concepts are needed.

The contribution of this work is a randomization of the presented deterministic heuristic. A pay-
as-bid pricing rule is proposed that is aligned with the allocation algorithm so as to incentivize
users to bid “close” to their true valuation. Finally, the randomized heuristic is benchmarked
against the deterministic heuristic to analyze the average case performance.

6 INTRODUCTION

The first two research questions consider so-called batch or offline grid settings, in which the
market mechanism has rather comprehensive information about the computational jobs of the
users, in particular with respect to the release dates, i.e. the time when these jobs are submitted to
the system. The third and fourth research question focus rather on cluster and utility computing
settings, where users compete for a centralized and homogeneous pool of resources. Moreover,
these questions consider so-called online settings. In online settings, the release dates of jobs
are unknown to the mechanism until the jobs are released to the system. A typical example for
such settings are interactive applications where the user steers the processing of the application.
Online mechanisms – i.e. market mechanisms in online setting – thus have to make allocation
and pricing decisions with less information and these decisions may prove unfortunate as new
information (e.g. new jobs) is released. The advantage of online mechanisms compared to
periodic, offline mechanisms (as considered in research questions one and two) is increased
responsiveness.

In online settings, flexibility of the allocation mechanisms becomes crucial. Until recently, only
few grid and cluster systems provided preemptive migration. Preemption can mitigate unfor-
tunate earlier allocations decisions by allowing the allocation mechanism to suspend a running
job in favor of some more desirable job and to possibly continue this suspended job later on the
same compute node. Migration is a natural extension to preemption and denotes the ability of
dynamically moving computational jobs across compute nodes. The importance of preemptive
migration is stressed by the emerging technology of virtualization. Virtualization enables the
efficient management of computing systems by abstracting from the physical resources. This
technology provides off-the-shelf support for virtual machine migration, thus making the use of
preemption and migration more accessible. The third research question centers around the use
of preemption in economic online settings:

Research Question 3:

What is the benefit of performing preemptions in economic online settings with
dedicated resources?

The results of this work showcase how the performance of economic online mechanisms can be
improved by performing preemptions, which has largely been neglected in the existing literature
on market mechanisms. The analysis is done using an existing, non-preemptive mechanism by
Heydenreich et al. (2006) as a baseline, extending this mechanism’s allocation and pricing
scheme so as to include preemptions, and analytically and empirically benchmarking the two
mechanisms.

The previous research questions consider settings in which the resources are more or less dedi-

1.3 STRUCTURE OF THIS WORK 7

cated, meaning the flexibility when allocating computational jobs to compute nodes is restricted
by the indivisibility of the node’s resources (e.g. CPU cores). Only a limited number of jobs can
be allocated to the same node at the same time. With the recent rise of utility computing, there
is a trend back towards sourcing computer resources from centralized providers. Moreover,
virtualization technologies make the resources appear as a homogeneous and almost perfectly
divisible pool of resources. The fourth research questions hence is:

Research Question 4:

How should shared resources be allocated and priced in online settings?

The currently most prominent market-based scheduling procedure for allocating and pricing
such divisible resources to online requests is Proportional Share (e.g. Stoica et al. (1996)).
Sanghavi and Hajek (2004) propose a market mechanism for the allocation of bandwidth that is
also applicable to more general settings. This work discusses how this Sanghavi-Hajek mecha-
nism can be applied to the allocation of more general types of computer resources. Conditions
are derived under which the Sanghavi-Hajek mechanism outperforms Proportional Share re-
garding both the provider’s revenue and the allocative efficiency for the case of two users. For
larger settings, the mechanisms are compared by means of an agent-based simulation based on
real-world workload traces. However, the basic Sanghavi-Hajek mechanism does not enable
users to obtain service guarantees for critical applications. Therefore, an extension to the basic
mechanism is proposed that allows users to choose between (1) a certain price and a dynamic
(uncertain) service level or (2) a dynamic price and a guaranteed quality of service.

1.3 Structure of this Work

The previous research outline is reflected in the structure of this work (cf. Figure 1.1).

Chapter 2 introduces the concepts that build the basis of this work. First, distributed computing
concepts are briefly discussed that support inter-organizational systems and thus market-based
computing systems. Then a conceptual architecture for distributed computing markets is pre-
sented, which is followed by a discussion of the arising technical and economic challenges. The
key result of this discussion is that there is not one single, omnipotent market, as pointed out
above. Instead, there is a need for a suite of market mechanisms depending on the nature of the
applications and resources that are to be traded. Finally, the research methodologies are briefly
discussed that are subsequently used to answer the research questions underlying this work.

8 INTRODUCTION

Figure 1.1: Structure of this work.

Chapters 3 to 6 constitute the core of this work and are structured along the four research
questions and focus on four specific scenarios and market mechanisms. Whereas Chapter 2
introduces general related work, each subsequent chapter discusses more specific related work
that is relevant to the scenarios at hand.

Finally, Chapter 7 summarizes the key contributions of this work and points to open questions
for future research.

1.4 Related Publications

Parts of this thesis have been published and presented at various academic conferences, work-
shops, and in several journals.

With respect to Chapter 2, the presentation of a conceptual architecture for distributed comput-
ing markets, the discussion about economic and technical challenges as well as the resulting
market structure have been published in two journal articles, Neumann et al. (2008c) in Elec-
tronic Markets and Neumann et al. (2008a) in the Journal of Grid Computing. A preliminary
version (Neumann et al., 2007a) has been presented at the 20th Bled eConference, Bled, Slove-
nia.

The work on a deterministic, partially truthful heuristic mechanism in Chapter 3 has been
presented at the 15th European Conference on Information Systems, St. Gallen, Switzerland
(Stößer et al., 2007a), the Networking and Electronic Commerce Research Conference, Riva
Del Garda, Italy (Stößer and Neumann, 2007), and the Journal of AIS Sponsored Theory De-
velopment Workshop, Montréal, Canada (Stößer et al., 2007b). A consolidated and extended

1.4 RELATED PUBLICATIONS 9

version has been published in a journal article (Stößer and Neumann, 2008).

Concerning Chapter 4, the results about the randomized extension of this heuristic have been
presented at the IEEE Joint Conference on E-Commerce Technology and Enterprise Computing,
E-Commerce and E-Services, Washington, D.C., USA (Stößer, 2008).

The work in Chapter 5 about the preemptive online scheduling of dedicated resources has been
presented at the 5th International Workshop on Grid Economics and Business Models, Las
Palmas, Spain (Amar et al., 2008c).

The investigation of online mechanisms for shared resources in Chapter 6 has been presented
at the 20th Bled eConference, Bled, Slovenia (Bodenbenner et al., 2007) and the 41st Hawaii
International Conference on System Sciences, Waikoloa, Hawaii, USA (Stößer et al., 2008).

The intention of this work is to present a sound, complete and structured overview of this
research, discuss the relationships between the research questions, and point to areas for future
research.

10 INTRODUCTION

Chapter 2

Preliminaries and Related Work

T he aim of this chapter is to introduce the key technological and economic considerations
underlying this work. First, distributed computing concepts are outlined that form the

basis for inter-organizational systems and thus market-based computing systems. Following
this brief technical introduction, the need for economic principles in such distributed systems
is discussed. Since this work integrates both the technical and the economic points of view,
the arising technical and economic challenges are subsequently highlighted. Most importantly,
this chapter describes a market structure that frames the research questions in the design of
distributed, market-based computing systems that build the core of this work. Finally, the
underlying methodologies for approaching these questions are presented. While this chapter
contains general related work on distributed computing systems and markets for such systems,
the subsequent chapters contain more detailed discussions of the literature that is specific to the
research questions at hand.

2.1 Distributed Computing Concepts

Distributed computing is defined as “a computer system in which several interconnected com-
puters share the computing tasks assigned to the system” (Milojicic et al. (2002) citing IEEE
(1990)). The focus of this work is on the market-based allocation of computational resources in
settings where selfish users share scarce resources for the execution of computing tasks. Con-
sequently, distributed computing systems can be seen as the technological basis underlying this
work and enabling such markets. This section briefly introduces some of the key concepts and
technologies for distributed computing systems and subsequently delineates the characteristics
that distinguish these concepts for the purpose of this work.

12 PRELIMINARIES AND RELATED WORK

2.1.1 Cluster Computing

In the 1980’s and 1990’s, cluster computing emerged as a viable alternative to mainframe com-
puters (also simply called “mainframes”). In the past, mainframes had largely been computers
that were specifically tailored towards certain applications, especially business-critical appli-
cations that processed large amounts of data. Mainframes were characterized by their high
availability and performance. They oftentimes involved special computing and programming
paradigms, e.g. vector computing (Dongarra et al., 2005).

The ever-increasing performance and decreasing costs of standard personal computers (PCs)
combined with advances in networking technologies and management software (e.g. for load-
balancing and user management) allowed to create networks of standard PCs, so-called “clus-
ters” (see Baker et al. (1995) for a review of cluster computing and cluster management sys-
tems). For Bell and Gray (2002), “a cluster is a single system comprised of interconnected com-
puters that communicate with one another either via a message passing; or by direct, internode
memory access using a single address space”. Consequently, it became possible to improve
the throughput of applications not only by the use of mainframes, but also by executing the
applications on a distributed cluster of PCs at manageable costs. At the same time, traditional
mainframe applications could be ported to standard PCs, which are generally easier to manage
and program (Bell and Gray, 2002). MOSIX Version 11, Condor2, and Moab3 are some of the
most prominent cluster management systems, which provide functionalities for managing the
resources such as failover, user authentication, and distributing the workload on the resources.

In the past, cluster computing has been used for enabling the efficient sharing of computing
resources between multiple users within the same organization. Recently, this scope has been
extended to utility computing settings, where a centralized utility computing provider such
as Amazon or Sun Microsystems hosts cluster systems that predominantly service external
users. Note that the provisioning of computing resources to external users has recently also
been subsumed under the term “cloud computing”. However, cloud computing is more than the
provisioning of low-level computing resources, as will be discussed in the outlook in Chapter 7.

2.1.2 Voluntary Computing

Computing power has not only become a scarce resource for business applications. In sci-
ence, computer-based simulations and data analyses have become widely used, making costly
computer resources a limiting factor in academia also. This gave rise to so-called “voluntary

1http://www.mosix.org/
2http://www.cs.wisc.edu/condor/
3http://www.clusterresources.com/pages/products/moab-cluster-suite.php

http://www.mosix.org/
http://www.cs.wisc.edu/condor/
http://www.clusterresources.com/pages/products/moab-cluster-suite.php

2.1 DISTRIBUTED COMPUTING CONCEPTS 13

computing” projects that aim at connecting computer resources across research and computing
centers, ultimately including voluntary, private contributors as well (Ong et al., 2002; Cirne
et al., 2006). The thus far most prominent voluntary computing project was Seti@Home (now
also called Seti@Home Classic)4. One result of this project has been the development of the
BOINC platform5, which now hosts a wide array of applications, e.g. a biological application
for predicting the structure of proteins (proteins@home6) or a physical application for analyz-
ing the data from gravitational wave detectors (Einstein@Home7). It is based on leveraging idle
time of voluntarily participating desktop PCs and currently8 comprises 319,691 volunteers and
568,288 computers.

One key advantage of voluntary computing systems typically is their lightweight middleware;
the voluntary contributor only needs to install a rather small middleware (client) component
(oftentimes called the “worker” or “slave”) that then communicates with a central “master”.
The master process divides the computational task into smaller sub-tasks, distributes these tasks
to the slaves, and aggregates the sub-results to the overall result (Shao et al., 2000; Sarmenta,
2001).

2.1.3 Grid Computing

Grid computing denotes a computing model that distributes the processing of computational
tasks across an administratively and geographically dispersed infrastructure (Foster et al.,
2001). By connecting many heterogeneous computing resources, virtual computer architec-
tures are created, increasing the utilization of otherwise idle resources.

Due to the multitude of available technologies and computing paradigms it is oftentimes hard
to distinguish grid computing from cluster computing and voluntary computing. Foster (2002)
thus compiled a simplified “three point checklist” for assessing whether a distributed computing
system might be regarded as being a grid. Due to the difficulty of giving a unique definition
and thus the lack of such definitions, Foster’s checklist has been widely adopted and referenced.
According to Foster, a grid

• “coordinates resources that are not subject to centralized control [...],

• uses standard, open, general-purpose protocols and interfaces [...],

4http://seticlassic.ssl.berkeley.edu/
5http://boinc.berkeley.edu/
6http://biology.polytechnique.fr/proteinsathome/
7http://einstein.phys.uwm.edu/
8as of 14.11.2008

http://seticlassic.ssl.berkeley.edu/
http://boinc.berkeley.edu/
http://biology.polytechnique.fr/proteinsathome/
http://einstein.phys.uwm.edu/

14 PRELIMINARIES AND RELATED WORK

• delivers non-trivial qualities of service [...]”.

A grid is based on grid middleware that provides services for authentication, resource discovery
and access, file transfer, etc. It typically consists of a collection of cluster systems and consti-
tutes an abstraction layer that provides unified access to the underlying cluster resources. The
currently most prominent grid middlewares are Globus Toolkit9, UNICORE (Uniform Interface
to Computing Resources)10, and gLite11, which are all open source.

Globus Toolkit has been developed by US researchers and is currently available in version 4.2.1.
Besides the core middleware services, Globus Toolkit offers an application programming inter-
face (API) that allows the application developer to tailor the application towards the use in a
grid environment (Snelling et al., 2002). This underlying design principle is best described by
the following quote from Foster and Kesselman (1997): “The Globus project is attacking the
meta-computing software problem from the bottom up by developing basic mechanisms that
can be used to implement a variety of higher level services.” Consequently, Globus Toolkit can
be used for a wide range of applications.

UNICORE has been the outcome of German and European grid efforts. It is currently available
in version 6.1. In contrast to Globus Toolkit, it aims at a top-down approach, abstracting from
the underlying grid environment. The idea is that the user ideally should not have to change the
application. UNICORE allows the user to define a workflow of tasks to be executed in the Grid,
such as dependencies between computational tasks and user interaction (Snelling et al., 2002).
The drawback of UNICORE’s abstraction, however, is the limited support for customization
and application development.

One of the most prominent grid activities in academia is the EGEE III project, which is funded
by the European Commission.12 EGEE stands for “Enabling Grids for E-sciencE” and currently
brings together researchers from 50 countries with the common aim of developing a grid infras-
tructure that is suited for almost any scientific research, especially where the time and resources
needed for running the applications are considered impractical when using traditional IT infras-
tructures (e.g. weather forecasts, protein folding, etc). The established EGEE grid comprises
over 80,000 CPU cores across about 300 sites. In total, EGEE serves more than 300,000 com-
putational jobs a day from about 10,000 users.13 The EGEE grid is built on gLite, currently in
version 3.1. gLite consists of older Globus Toolkit components (from version 2.4.3), Condor
components, as well as components that have been developed within the EGEE sub-projects
themselves (Burke et al., 2008). gLite is mainly being used in high energy physics.

9http://www.globus.org/
10http://www.unicore.eu/
11http://glite.web.cern.ch/glite/
12http://www.eu-egee.org/
13Statistics from http://www.eu-egee.org/, 24.10.2008

http://www.globus.org/
http://www.unicore.eu/
http://glite.web.cern.ch/glite/
http://www.eu-egee.org/
http://www.eu-egee.org/

2.1 DISTRIBUTED COMPUTING CONCEPTS 15

Globus Toolkit is oftentimes regarded as being the de-facto standard grid middleware. However,
the co-existence of these various middlewares and different approaches makes it hard for users
to develop and deploy grid applications, yet alone to realize the vision of “the Grid”. To this end,
the Open Grid Forum (formerly Global Grid Forum) is the most important standardization body
for grid protocols and interfaces.14 One of the outstanding results has been the specification of
the Open Grid Services Architecture (OGSA) (Foster et al., 2006), a reference architecture for
grid middlewares. OGSA combines grid concepts with Web services principles and technolo-
gies and aims at standardizing the interfaces to common grid services such as job submission
or security.15 Up to now, all three middlewares introduced above have at least partially imple-
mented OGSA standards.16 This can be a first step towards fully standardized, easier-to-use
grid middlewares and might thus increase the acceptance and adoption of grid technologies in
the future.

2.1.4 A Classification

The various distributed computing concepts can be distinguished by many possible criteria.
Based on the scenarios that will be considered in this work, the most useful and distinguishing
criteria are listed in Table 2.1.

Criteria
Cluster Voluntary Grid

computing computing computing

Sharing approach
intra-org. sharing, CPU scavenging for inter-organizational
utility computing scientific applications resource sharing

Control over resources centralized decentralized decentralized

Type of resources homogeneous heterogeneous heterogeneous

Qualities of service non-trivial trivial non-trivial

Mode of allocation dedicated / shared shared dedicated / shared

Use of virtualization widespread n/a in its beginnings

Support for
available n/a in its beginnings

preemptive migration

Advance reservation available n/a in its beginnings

Type of applications batch & interactive batch batch

Table 2.1: Distinguishing distributed computing concepts.

14http://www.ogf.org/
15See http://gdp.globus.org/gt4-tutorial/singlehtml/progtutorial_0.2.1.html#

id2482481 for a brief introduction to these concepts.
16See e.g. Java WS Core for Globus Toolkit for building stateful Web services, http://www.globus.org/

toolkit/docs/4.2/4.2.1/common/javawscore/#javawscore.

http://www.ogf.org/
http://gdp.globus.org/gt4-tutorial/singlehtml/progtutorial_0.2.1.html#id2482481
http://gdp.globus.org/gt4-tutorial/singlehtml/progtutorial_0.2.1.html#id2482481
http://www.globus.org/toolkit/docs/4.2/4.2.1/common/javawscore/#javawscore
http://www.globus.org/toolkit/docs/4.2/4.2.1/common/javawscore/#javawscore

16 PRELIMINARIES AND RELATED WORK

The resources in a cluster are under centralized control of the organization’s computing de-
partment, such as a computing center of a utility computing provider such as Amazon or Sun
Microsystems, an enterprise or a research center. Cluster systems are designed to operate at
high qualities of service, such as reliability, throughput, response time, and security. The re-
sources in a cluster are usually homogeneous to simplify the management of the cluster and are
located in one single computing center. The resources – i.e., the computers within the cluster, in
the remainder also called “compute nodes” or simply “nodes” – can be either allocated in a ded-
icated manner such that only one user task can be executed on a specific node at the same time,
or in shared mode such that multiple users or tasks are assigned to the node in parallel. The
latter is simplified by the use of virtualization technologies. Virtualization is used to efficiently
utilize the resources, meet diverse user demands, e.g. with respect to the operating system, and
to enhance security (Barham et al., 2003). For instance, the user applications are isolated so that
there are no side-effects between the applications running in different virtual machines, and the
applications cannot tamper with the underlying hardware or operating system.

Cluster systems support a wide range of applications. So-called “batch applications” are char-
acterized by a planned execution time and an expected termination time. Users send their
computational tasks (“jobs”) to the system, these tasks are executed without any further user
interaction, and the results are finally reported back to the user. Oftentimes at least an estimate
of the application’s processing time and resource consumption is known a priori, e.g. by means
of statistical analyses of past runs (Degermark et al., 1997; Smith et al., 1998). Examples are
compute-intense applications like numerical simulations. For such batch applications, state-of-
the-art cluster schedulers such as Maui17 support the advance reservation of resources. In con-
trast, so-called “interactive applications” require responsive services or resources on demand
depending on the interactions with users.18 Different than batch applications, with interactive
applications it is not possible to plan execution time far in advance, so there can be unpre-
dictable peaks of requests occurring within a short time. Examples for interactive applications
are interactive data analyses, where the user steers the analysis based on iterative input and out-
put. Especially with interactive applications, it is important for the system to be able to preempt
running jobs and possibly migrate jobs across nodes in order to react to system changes, such
as the failure of a node or in case a high-priority job enters the system. Preemptive migration
can be performed on several levels, such as the migration of single application processes (e.g.
in the MOSIX system (Barak et al., 2005)) or the migration of complete virtual machines (e.g.

17http://www.clusterresources.com/pages/products/maui-cluster-scheduler.

php
18See e.g. http://www.cisl.ucar.edu/docs/LSF/7.0.3/admin/interactive.html#

wp16802 for a brief description of how to run interactive applications or tasks using the Platform Load Sharing
Facility.

http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php
http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php
http://www.cisl.ucar.edu/docs/LSF/7.0.3/admin/interactive.html#wp16802
http://www.cisl.ucar.edu/docs/LSF/7.0.3/admin/interactive.html#wp16802

2.1 DISTRIBUTED COMPUTING CONCEPTS 17

VMotion by VMware19).

In voluntary computing, in contrast to cluster computing, the resources are inherently under the
decentralized control of the voluntary contributors. The execution of the application and the ag-
gregation of the results is typically managed by the central master component (Bonorden et al.,
2006). However, this entity does not have ultimate control over the resources as such. The re-
sources can only be accessed if this is permitted by the contributor and if there are idle resources
available. The system must be able to integrate highly heterogeneous resources, e.g. operating
systems, which are distributed across multiple locations. The applications are generally run in
shared mode, i.e. in parallel to applications of the contributor. This model is oftentimes referred
to as “CPU scavenging” or “cycle stealing” (Globus, 2001). While virtualization may be used
by the individual contributor, it is not inherent to the voluntary computing system as such. The
applications are typically small batch computations that the central master sends to the dispersed
slave nodes, which then report the results back (Bonorden et al., 2006). Preemptive migration is
not supported, as there is no sophisticated middleware involved. The application domain of vol-
untary computing approaches are scientific applications, where private people have an altruistic
interest in donating resources.

In summary, the basic difference between cluster computing and voluntary computing is the
move from centrally managed, homogeneous resources to heterogeneous resources, which are
contributed by private contributors and hence are under decentralized control. The resulting
cost reductions, however, mainly come at the expense of reduced qualities of service.

A grid can roughly be considered as representing a collection of clusters. The grid middleware
has no direct control over the underlying resources, but accesses these resources via the local
(cluster) resource manager. As in a cluster, the compute nodes can be either allocated in dedi-
cated or shared mode. The use of virtualization is only in its beginnings but is currently being
pushed by the advances in the underlying cluster systems. Besides the benefits discussed above,
virtualization technologies can be used to simplify the submission of computational jobs. In-
stead of having to specify the exact types of resources that are required for the computational
job, the user can submit the application encapsulated inside a virtual machine (Freitag et al.,
2008). Essentially, most grid applications are batch applications since batch processing is eas-
iest to manage. Globus Toolkit, for instance, currently only offers very limited support for the
execution of interactive applications on grids.20 The use of preemption is in its beginning. For
instance, the GridWay meta-scheduler21, which is part of the Globus project, supports migra-

19http://www.vmware.com/products/vi/vc/vmotion.html
20Interactive applications that are steered by means of a Web server, parameter files or similar workarounds are

possible. However, it is currently not possible to run a graphical user interface on a remote compute node since in
a grid the user cannot directly access this node.

21http://www.gridway.org/

http://www.vmware.com/products/vi/vc/vmotion.html
http://www.gridway.org/

18 PRELIMINARIES AND RELATED WORK

tion. Due to the heterogeneity of the resources involved in a grid, migration is typically not
yet support on a system level but only on a user level, meaning that the user has to implement
checkpointing22 and recovering strategies herself. A notable exception is the MOSIX system
(Version 2) that – besides its long history in the cluster area – is moving towards grid settings
and supports the migration of application processes (Barak et al., 2005). While advance reser-
vation is not fully supported by the grid middleware yet, Globus Toolkit will most likely support
this feature in the near future to make use of the capabilities provided by the underlying clus-
ter middleware.23 As regards the sharing approach, by definition grids denote the sharing of
resources across organizational domains.

Compared to cluster computing, grid computing has essentially the same distinguishing prop-
erties as voluntary computing does. However, in contrast to voluntary computing, resources are
distributed on an organizational level and not on an individual level. Moreover, since grids are
based on interconnecting clusters, they achieve qualities of service that are ideally comparable
to the levels achieved by cluster systems.

While the predominant approach in these distributed computing concepts is the sharing of re-
sources, this work proposes the use of markets for allocating and pricing the resources in such
systems. The following section will present the rationale for introducing economic principles
to these systems.

2.2 Why Markets for Scheduling in Distributed Computing
Systems?

As pointed out above, the key assumption underlying this work is that computing resources are
scarce. There are two main arguments that support this view. Firstly, while the processing power
of computer systems has been increasing at an almost exponential rate (which has prominently
been described by “Moore’s law”), resource consumption has at least kept pace. There seem to
be application domains in both science and industry, especially involving complex simulations
and data analyses, that exhibit an almost infinite demand for computer resources. For example in
the finance industry, companies need large amounts of computing power to calculate their risk
exposure or to determine prices for financial options (Huang and Thulasiram, 2005; Marena
et al., 2008). Secondly, while the costs of producing computer hardware have been falling, the
costs of operating and maintaining this hardware have steadily increased, which is exacerbated

22Checkpointing denotes the saving of the current state of the application in files that can later be used to restart
the application from that state.

23http://dev.globus.org/wiki/Incubator/GARS

http://dev.globus.org/wiki/Incubator/GARS

2.2 WHY MARKETS FOR SCHEDULING IN DISTRIBUTED COMPUTING SYSTEMS? 19

by the increase in electricity prices and the need to reduce carbon dioxide emissions.24 For
instance, the ratio of energy costs to hardware expenses (considered over a time period of three
years) is rapidly approaching unity (Wang, 2007; Beladym, 2007). For each Watt that is spent
on powering the servers, computing and data centers currently have to spend between one and
two additional Watts on cooling, air conditioning etc. Consequently, resource providers will
aim at reducing their pool of computing resources in order to minimize their operating costs.

Markets seem to be adequate for commercial computing systems as they contribute to business
models that charge based on resource usage and scarcity. As a side-effect, markets have the
ability to improve the efficiency of the resource allocation (Byde et al., 2003; Shneidman et al.,
2005; Lai, 2005). Today’s resource management systems in clusters and grids have recognized
the need for expressing valuations by including user priorities, weighted proportional sharing,
and service level agreements that set upper and lower bounds on the resources available to each
user or user group (Irwin et al., 2004; Neumann et al., 2006b). Maximizing overall utility
(i.e. the sum of the users’ and providers’ valuations), however, is only possible if the resource
manager knows the attached valuations, meaning the exact relative weights at any point of time.
Knowing the valuations at any time is a very demanding requirement, as users typically have no
incentive to report decreases in their valuations because they loose priority and correspondingly
value by not getting their computation completed (earlier).

Hence, valuation-oriented approaches are not sufficient per-se to achieve an efficient solution.
Only if all participants are willing to report their priorities and valuations honestly, these al-
gorithms (e.g. Proportional Share (Lai et al., 2005)) will work well. This is where markets
for the resource allocation in distributed computing systems enter the discussion. The pricing
mechanisms of markets have the ability to set the right incentives for users to reveal their true
valuation as well as for resource owners to provide the resources that are scarcest in the system.
With the introduction of prices, incentives will be given to the users to substitute the scarce
resource, say, memory, with a less scarce resource, say, storage. For instance, a fixed pricing
scheme that requests $10 for one Gigabyte (GB) of memory and $1 for one GB of storage, sets
incentives to swap out data to storage instead of using up the more expensive memory.25

A fixed pricing scheme, however, does generally not achieve an efficient allocation if demand is
variable, which is illustrated by the following simplified example, based on Lai (2005). Suppose
a resource provider is offering a fixed price and has negligible variable costs, as shown in
Figure 2.1. There are two users, a user with a high valuation and a user with a low valuation.
Demand (the users’ willingness to pay) changes over time as depicted by the parabola. Consider

24These developments recently gave rise to so-called “Green IT” initiatives that aim at reducing the energy
consumption of computing systems.

25In the remainder of this work, currency units ($) will be omitted for the sake of simplicity when the meaning
is clear from the context.

20 PRELIMINARIES AND RELATED WORK

Figure 2.1: Fixed pricing, based on Lai (2005).

the following sample scenarios:

• Scenario I (left part of the graph): Only the user with the high valuation is present.
If demand is below the fixed price, no resource will be allocated. This is because the
valuation for the resource, represented by the demand curve, is below the price. As a
consequence, there is unrealized welfare, which is depicted by the area below the demand
curve, and that cannot be split between the user and the provider in any way.

• Scenario II (middle part of the graph): The willingness to pay of the high-value user
exceeds the fixed price. There is unrealized profit for the provider, illustrated by the area
between the demand cure and the fixed price. The provider could have charged the user
a higher price and the user would still have accepted. This unrealized profit is instead
realized by the user in the form of increased utility.

• Scenario III (right part of the graph): Assume both users are present but the provider
is not able to determine the high-value user; the resource is allocated to the user with
the low valuation. Consequently, there is unrealized welfare amounting to the difference
in the users’ valuations. Additionally, as in Scenario II, there is again unrealized profit,
respectively.

Market mechanisms promise to work well for scheduling by taking into account the dynamic
resource demand and supply when making their allocation and pricing decisions (Shneidman
et al., 2005). Appropriate market prices (appropriate in a way that will be established in the
remainder of this work) cause the users to make efficient use of the resources (efficient coding,

2.3 TECHNICAL CHALLENGES 21

user-driven load balancing to off-peak periods) and to reveal their true valuations, which helps
in avoiding unrealized utility and profit. At the same time, the prices provide incentives to
resource owners to contribute their idle resources to the system. Overall, appropriate market
mechanisms aggregate the dispersed and incomplete information about resource demand and
supply to generate a desirable overall outcome.

It is important to note that in the remainder of this work it is assumed that the users and providers
have decided to participate in the market. Hence, the aim of this work is not to elaborate about
in which settings users and providers should participate in a market, and in which they should
not. Further, it is assumed that market participants know their true characteristics, in particular
with respect to their valuations for resources. To this end, Chapter 7 points to complementary
research areas and questions for future research that can help to relax these assumptions.

2.3 Technical Challenges

Summarizing the discussion above, markets can play a crucial role for commercial computing
systems as they set the right incentives for contributing resources while at the same time avoid-
ing excessive resource consumption. However, the use of markets needs to be integrated with
state-of-the-art distributed computing middleware – otherwise the concept will remain purely
theoretic. In this section, a generic conceptual architecture for distributed computing markets is
presented to allow for a discussion of the technical challenges that such markets raise.

Figure 2.2 illustrates the conceptual architecture in terms of the functional entities of a market
for computational resources, their responsibilities and their dependencies. The boxes represent
functional entities and the arrows indicate information flows between them, where an arrow
from an entity A to an entity B means that B receives input from A. It should be noted that this
architecture can be implemented in a decentralized manner. There can be multiple instances of
the various components within the same system, each tailored towards specific functionalities
or redundantly servicing parts of the overall system to achieve fault tolerance and robustness.

A first prototype based on this architecture has been implemented in the SORMA project (Self-
Organizing ICT Resource MAnagement).26 SORMA aims at implementing “methods and tools
for establishing an efficient market-based allocation of IT resources in order to enable resource
accessibility for all users and to increase user satisfaction, profit and productivity” (Neumann
et al., 2007b). The architecture and its description is based on SORMA Consortium (2007) and
Neumann et al. (2008a).

26http://www.sorma-project.eu/

http://www.sorma-project.eu/

22 PRELIMINARIES AND RELATED WORK

Figure 2.2: Conceptual architecture for a market for distributed computing systems.

2.3.1 Layer 1: Applications and Resources

Layer 1 comprises the end-users’ applications as demand, the provided resources as supply and
the corresponding market participants, i.e. the users and the resource providers. The resource
provider makes use of the so-called intelligent tools of Layer 2 to model the business strategies
and the offered resources. On the consumer side, either the user of the application or the ap-
plication itself uses the intelligent tools to model the application’s resource requirements based
on the user’s economic preferences. If an application is decomposed into several services, it is
the application’s task to realize a service deployment coherent to the allocations made on the
market.

2.3.2 Layer 2: Intelligent Tools

For an easy access to the market, both the users and the resource providers must be supported by
a set of intelligent tools (MacKie-Mason and Wellman, 2006; Neumann et al., 2006a, 2008b).

• Demand Modeling: The user needs to be equipped with a tool to specify the technical
requirements of her application, i.e. the properties of the resources. In case the require-

2.3 TECHNICAL CHALLENGES 23

ments are specified in terms of aggregated services, demand modeling also assumes the
task of decomposing a request into its constituent services.

• Preference Modeling: This component facilitates the description of the user’s economic
preferences that will determine her bidding strategies on the market, e.g. the user can
define the maximal amount she is willing to pay or if she prefers cheap over reliable
resources.

• Bid Generation: The bid generation denotes the component that generates and places the
bids on the market on behalf of the user. For this purpose the bid generator retrieves the
user preferences, the technical requirements and the current state of the resource market,
and forms the bid or bid series accordingly.

• Supply Modeling: The supply modeling component is the provider’s correspondent to
the user’s demand modeling component. This component allows the providers to specify
the technical properties of the contributed resources.

• Business Modeling: Analogously to the consumer preference modeling, the providers
need to specify their business models to generate adequate offers. For example, one part
of the description could be a pricing model that specifies if the users have to pay for
booked timeslots or for the actual usage. Moreover, the provider might charge users from
outside the organisation a premium compared to internal users.

• Offer Generation: The offers are derived from the technical supply descriptions and
the business model of the respective provider via the offer generation component. As an
automated agent, the offer generation component continuously observes the state of the
market and places and updates offers.

2.3.3 Layer 3: Resource Market

The third layer is headlined Resource Market, as it accounts for the economic matchmaking
(i.e., which user request is allocated to which resource, when and for what price?). Accordingly,
it provides the necessary functionality along the economic matching process, starting from the
interaction with the market over the determination of the actual allocations and prices to the
subsequent billing and payment.

• Trading Management: The actual matchmaking process that assigns the users’ requests
to suitable offers is executed by the trading management. As a first step, the trading man-
agement matches the technical descriptions of the request (received from the bid genera-
tion component) to the technical descriptions of the offered resources (received from the

24 PRELIMINARIES AND RELATED WORK

offer generation component). In the second phase the trading management orchestrates
the bidding process between the users and the providers following the protocol of the
employed market mechanism. If the bidding process finishes successfully, the pairs of
corresponding bids and offers are submitted to the contract management.

• Contract Management: The contract management transforms the pairs of bids and of-
fers into mutually agreed contracts. One important part of these contracts are the service
level agreements (SLAs), which define the agreed terms of usage of the resources and the
pricing as well as penalties in case these terms are violated by either party. After stating
the contract, the contract management initiates the SLA enforcement.

• SLA Enforcement and Billing: The enforcement of the SLAs triggers the submission
of user tasks, keeps track of the resource usage, compares it to the SLA, and at the end
initiates the billing according to the results of the comparison.

• Economically Enhanced Resource Management (EERM): The EERM provides a stan-
dardized interface to the resource providing middleware (e.g. MOSIX or Globus Toolkit).
Comparable with a wrapper, the EERM isolates its clients from middleware specific is-
sues and enhances and complements its functionality with market relevant features. The
EERM’s main duties include:

– Resource fabric management: Standardized interfaces to create instances of re-
sources and later make use of them from the application.

– Resource management: The resource management aims at the satisfaction of the
service level agreement. It also notifies users and providers of variations and addi-
tionally coordinates independent resources to allow for co-allocation in case this is
not directly provided by the fabrics.

– Resource monitoring: The resource monitoring subcomponent monitors the state
of the resources in terms of its technical parameters and reports them to the SLA
enforcement.

• Payment: Once the SLA enforcement and billing component has determined the degree
of SLA fulfilment and associated payments, the payment component is invoked. The
payment component offers a unified interface to commercial payment services such as
PayPal27.

27http://www.paypal.com/

http://www.paypal.com/

2.3 TECHNICAL CHALLENGES 25

2.3.4 Layer 4: Core Market Services

Standard middleware does not provide all the infrastructure services necessary for the Resource
Market. Layer 4 thus extends the middleware by basic infrastructure services:

• Market Exchange: All communication among market participants (users, providers and
services of the Resource Market layer) is mediated by the market exchange service, which
assures that information is routed to the appropriate party in a secure and reliable way.

• Logging: All transactions executed on the market must be registered in a secure log for
auditing purposes (to avoid the repudiation of contracts, for instance).

• Market Information: The market information service allows participants to gather in-
formation (e.g. prices, resource usage levels) from the market. Participants can query the
market information service about the current and historical state of the market or sub-
scribe to the service in order to be notified about certain events in the market (Brunner
et al., 2008). For example, a user might want to subscribe to the service in order to be
notified once the price for a certain resource drops below a certain level.

• Security Management: The security management component serves as entry point for
a single sign-on mechanism and is responsible for an identity management for the users,
the providers and the constituent components of the market.

The conceptual architecture is sufficiently generic to be applicable to both cluster and grid
settings. However, some components can be simplified for cluster systems. For example, in grid
settings, part of the EERM component’s task is to abstract from the underlying middleware and
it thus has to provide interfaces to all prominent grid middlewares. If the conceptual architecture
is applied to a cluster setting, only one interface is necessary. Besides the EERM component,
especially the Core Market Services on Layer 4 can be simplified or even substituted by the
cluster middleware’s information system, logging, or security components. Moreover, there
only needs to be one instance of the provider’s intelligent tools.

The implementation of the conceptual architecture sketched above raises several technical chal-
lenges that have to be addressed to allow for the vision of a comprehensive market for computing
resources. The challenges that are summarized in Table 2.2 concern the technologies and tools
used to implement the market.

26 PRELIMINARIES AND RELATED WORK

Challenge Description

Composition of
applications

Applications that consist of multiple services or components need to
be able to dynamically acquire these components on a market. A
promising approach to address this issue is the use of semantic tech-
nologies – in grid computing usually denoted as the “Semantic Grid”
(http://www.semanticgrid.org/).

Standards and
stability

The rapid development of current grid and Web service standards leads
to continuous changes in the technologies and tools that build the basis
for a market for computational resources. This lack of stability in un-
derlying systems makes it hard to mature the market components over
time.

SLA formulation
and enforcement

The service level of a computer resource can be specified by a wide
range of metrics. This is exacerbated for computer resoueces and ser-
vices, where not only non-functional but also functional aspects become
crucial. Obviously, it is very complex to negotiate SLAs with such
a large number of dimensions and to enforce them during execution.
Thus, the relevant parameters have to be identified to allow for an ap-
propriate expressiveness of SLAs and to restrict the complexity of their
technical management at the same time.

Economic
awareness of
resources

Current resources and middleware components are not aware that they
are situated in an economic environment, for example they do not know
that they have a certain price or that their malfunction implies financial
compensation. Thus, resources need extensions to cope with their eco-
nomic nature and especially to inform clients of their economic as well
as technical state.

Transparency For a good acceptance of markets – besides economic factors – it is also
necessary that the developed technology can be used as transparently as
possible. The required changes in the existing systems must not be too
invasive and the users must not be bothered with too many additional
time-consuming tasks. While the users’ tasks – at least to some extent –
can be supported by intelligent agents and wizards, virtualization seems
to be a promising remedy against the technical complexity arising from
heterogeneous physical resources.

Table 2.2: Technical challenges for distributed computing markets.

http://www.semanticgrid.org/

2.4 ECONOMIC CHALLENGES 27

2.4 Economic Challenges

2.4.1 A Classification of the Trading Objects

This work centers around the design of the economic logic that is encapsulated within the trad-
ing management component. From Market Engineering it is known that the design of markets
ultimately depends on the characteristics of the objects that are being traded via the market
(Neumann, 2004). For distributed computing, three types of trading objects can be distinguished
based on the level of functionality, the possibility to efficiently and compactly specify and de-
scribe the object, and the mode of deployment, i.e. how the EERM processes the user requests
/ applications:

• Physical resources can be CPUs, memory, sensors, other hardware or even aggregated
resources such as clusters (e.g. a Condor or a MOSIX cluster). From a technical point
of view, resources are simple to describe as there exists only a finite and established
set of attributes. For instance, a resource may be defined by the operating system (e.g.
Linux operating system), the number of CPUs (e.g. 4 * x86 CPU), memory (e.g. 128
MB RAM) etc. The Grid Laboratory Uniform Environment (GLUE) schema28 and the
Job Submission Description Language (JSDL)29 provide standardized vocabularies for
describing computing elements. The standardization of resources offers an easy way
to uniquely describe them. This in turn alleviates resource discovery as the technical
matchmaking is straightforward.

• Raw application services (or simply raw services in the remainder) are resource-near ser-
vices that access resources via standardized interfaces. Examples comprise computing
and storage Web services such as the Amazon Elastic Compute Cloud (EC2)30 and Ama-
zon Simple Storage (S3)31. Raw services also comprise simple application services that
can be described by means of expressive description languages such as the Web Service
Description Language (WSDL)32, which describes the information required to invoke a
Web service. Other developments such as the Web Ontology Language for Web Services
(OWL-S)33 and the Web Service Modeling Ontology (WSMO)34 allow further semantic

28http://forge.ogf.org/sf/projects/glue-wg
29http://forge.ogf.org/sf/projects/jsdl-wg/
30See http://s3.amazonaws.com/ec2-downloads/ec2.wsdl for the WSDL of this service.
31See http://s3.amazonaws.com/doc/2006-03-01/AmazonS3.wsdl for the WSDL of this ser-

vice.
32http://www.w3.org/TR/wsdl20/
33http://www.w3.org/Submission/OWL-S/
34http://www.wsmo.org/

http://forge.ogf.org/sf/projects/glue-wg
http://forge.ogf.org/sf/projects/jsdl-wg/
http://s3.amazonaws.com/ec2-downloads/ec2.wsdl
http://s3.amazonaws.com/doc/2006-03-01/AmazonS3.wsdl
http://www.w3.org/TR/wsdl20/
http://www.w3.org/Submission/OWL-S/
http://www.wsmo.org/

28 PRELIMINARIES AND RELATED WORK

descriptions of the services, such as response time, the costs of a service invocation, or
security issues.

• Complex application services35 (or simply complex services) are so diverse that they can-
not reasonably be standardized, e.g. services that perform complex data consolidation and
aggregation or that (partially) implement a business process. Force.com is a sample plat-
form that hosts a wide range of such complex services, e.g. for data cleansing and data
integration. Complex services can theoretically be modeled by using semantic languages
such as OWL-S and WSMO. However, the characteristics of these services are so manifold
and complex that service requests and offers cannot be described and matched by means
of a reasonable (with respect to size and computationally complexity) set of attributes
(Blau and Schnizler, 2008).

See Blau and Schnizler (2008) for a detailed discussion of description languages. Figure 2.3
illustrates these different aggregation levels of services and resources (similar to the Grid Pro-
tocol Architecture in Foster et al. (2001) and Joseph et al. (2004)). On top of this stack, the
actual application is located, such as a demand forecasting tool for supply chain management or
computer-aided engineering tools for simulations. While these applications can be run directly
on physical resources, they may access several complex services, e.g., services for integrat-
ing, aggregating and statistically analyzing vast amounts of data, to simplify the development
and deployment by shielding parts of the computing system’s complexity from the application.
These complex services might in turn access raw services that provide standardized interfaces
for accessing various data sources and or computational services. When relying on the direct
access to physical resources, executables and external libraries need to be transferred across the
computing system.

Designing one market for all kinds of computing systems and resources, from physical resources
to sophisticated virtual resources or services, seems inappropriate due to both technical and
economic factors:

• Technical factors: From the technical perspective, differences in the monitoring and
deployment of services and resources exist, such that it is very difficult to devise a generic
system for the EERM and the trading management that allows the trading of all kinds of
resources and services. Physical resources – either accessed directly or as raw services
via standardized interfaces – are application-independent in the sense that the application
is fully transferred to and deployed on the physical resources (given that these resources

35Note that here the term “service” is used in a wider sense than Web services. In this work, a service is a
software application that is hosted on a distributed computing system. It does not necessarily have to be invoked
by means of standardized Web service technologies.

2.4 ECONOMIC CHALLENGES 29

Figure 2.3: The different aggregation levels of services and resources.

match the application’s technical requirements), but the resources are somewhat generic
and can be used for a wide range of applications. Complex services on the other hand
offer more specific functionality and can only be used by a limited number of applications.
The interface (input and output, e.g. data format and accuracy) of the services needs to
exactly match the needs of the calling applications and vice-versa, and complex services
are therefore application-dependent or application-driven.

• Economic factors: The alternative ways of resource and service description, deploy-
ment and dependencies give rise to distinctively different requirements for potential mar-
kets. From an economic perspective, markets for physical resources and raw services
are promising for automation via an organized electronic market. There are standardized
items for sale that potentially attract many users and providers. Complex services have
a disadvantage as demand and supply are highly specialized and distributed across niche
markets such that only a relatively small number of potential users and providers is inter-
ested in the same or a related service. While physical resources and raw services are more
or less a commodity for which auction mechanisms are expected to work well, complex
services are inherently non-standardized making auction-like mechanisms hard to apply.
From the economic perspective, market mechanisms need to achieve at least a subset of
the standard objectives in mechanism design listed in Table 2.3 (see e.g. Mas-Colell et al.
(1995); Parkes (2001); Nisan et al. (2007) and the latter chapters of this work for formal
definitions).36

36It is important to note that there are well-known impossibility results regarding certain combinations of these
objectives, cf. e.g. Parkes (2001). The objectives and some of these impossibility results will be formally introduced
in the remainder of this work.

30 PRELIMINARIES AND RELATED WORK

Objective Description

Allocative
efficiency

Allocative efficiency is typically the overall goal of market mechanisms
for resource allocation. A mechanism is said to be allocatively efficient
if it maximizes the utility across all participating users and providers
(welfare or overall “happiness”).

Budget-balance Budget-balance is essentially one out of two feasibility constraints. A
mechanism is budget-balanced if it does not need to be subsidized by
outside payments. The payments coming from the users cover the pay-
ments made to the resource providers.

Individual
rationality

Individual rationality is the second feasibility constraint. A mechanism
is individually rational if users cannot suffer any loss in utility from par-
ticipating in the mechanism, i.e. it is individually rational to participate.

Computational
tractability

Due to the potentially large number of resource and service requests
and offers, the complexity of the underlying allocation problem and the
need for immediacy of the allocation decision, the mechanisms need
to be solvable in polynomial runtime in the size of the input, i.e. the
number of resource requests and offers.

Truthfulness Truthfulness means that it is a (weakly) dominant strategy for users to
reveal their true valuations to the mechanism. Truthfulness is a desir-
able feature since it tremendously simplifies the strategy space of the
users; there is no need to reason about the bidding strategies (even the
strategies of the other market participants), thereby essentially reducing
the bidding problem to a preference elicitation problem.

Table 2.3: Economic objectives.

2.4 ECONOMIC CHALLENGES 31

From this brief discussion, it can be seen that a one-size-fits-all market for computing systems
is not feasible from both the technical as well as from the economic perspective.

2.4.2 A Two-Tiered Market Structure

Due to the heterogeneous properties of the trading objects, markets for computational resources
and services can be divided into two different types of markets (cf. Eymann et al. (2006) and
Schnizler (2007)): resource-near markets for physical resources and raw services on the one
hand, and markets for complex services on the other hand, spanning out a “two-tiered market
structure” as depicted in Figure 2.4.37

Figure 2.4: Two-tiered market structure.

In Tier 1 markets, applications demand the execution of their constituting complex services.
Along the lines of the two-tiered market structure, complex services can be decomposed into
smaller raw services that can in turn be translated into resources that are necessary for executing
them. E.g., an application might require a complex service for cleansing and aggregating data.

37It should be noted that there could be multiple intermediate markets. For the sake of presentation only the
extreme cases are considered.

32 PRELIMINARIES AND RELATED WORK

The necessary computing power and the relevant data are available as raw services, which in
turn need processing power, memory, storage, etc. Users in such a market request a complex
service and the provider of this service, the service integrator, is responsible for obtaining the
required raw services and physical resources in turn on the resource-near Tier 2 market, thus
hiding parts of the complexity from the user. Such a hierarchical shading of complexity seems
to be an appropriate approach since service users typically have no information about how much
resources the complex service will consume (Eymann et al., 2006).

The same conceptual architecture introduced above can be used for both types of markets,
however with different instances of the components. In the forefront, the trading management
component needs to implement a different market mechanism that supports the respective mar-
ket. In the following, those two classes of markets are discussed in terms of their requirements
on the market mechanisms.

Tier 1 – Markets for Complex Services

The requirements on market mechanisms for complex services are different than for resource-
near markets. Complex services are used by a relatively small number of users – installing
competition is hard. Here the difficulty rather stems from the matching, i.e. from having to
find a counterpart that is exactly offering the capabilities to execute the application. The mar-
ket mechanism is more search-oriented such as bilateral or multi-lateral negotiation protocols,
giving rise to the following requirements:

• Multi-attributes (Schnizler et al., 2008): Complex services have quality attributes defin-
ing the functional and non-functional characteristics of the service. Thus the mechanism
needs to cope with multi-attributes.

• Workflow support (Emmerich et al., 2005): To support complex applications and ser-
vices, raw services and distributed resources such as computational devices, data, and
applications need to be orchestrated while managing the application workflow. The mar-
ket mechanism needs to account for this during design time and runtime of the workflow.
This imposes extreme difficulties on the market mechanism, as the operations need to be
performed in the defined manner, thus opening up lots of exposure risks: if one single
task in the workflow fails, the complex service cannot be orchestrated. Thus the market
mechanism needs to account for this problem in a rather quick manner.

• Co-allocation (Czajkowski et al., 1999; Schnizler et al., 2008): Capacity-demanding ap-
plications usually require the simultaneous allocation of several service instances from
different providers. For example, a large-scale simulation may require several computa-

2.4 ECONOMIC CHALLENGES 33

tion services to be completed at one time. This situation with the simultaneous allocation
of multiple homogenous services is called co-allocation. A mechanism for the service
market has to enable co-allocations and provide functionality to control it.

Since the focus of this work is on resource-near markets, a further discussion of markets for
complex services is omitted at this point. Chapter 7 will discuss some of the characteristics of
these markets and questions for future research.

Tier 2 – Resource-Near Markets

Similar to complex services, physical resources and raw services have quality attributes such
as the speed of the CPU, the operating platform or bandwidth. Thus the mechanism needs to
cope with multi-attributes. Other than that, the matching of physical resources and raw services
is simpler than with markets for complex services, in particular as workflows and co-allocation
usually do not need to be supported in the market mechanism as such, but must be implemented
in the end-users’ applications or the complex services.

Grids and clusters focus on the allocation of physical resources and are thus located on this
market tier. For grids, which are inter-organizational and distributed by definition, markets
are an almost straightforward resource allocation scheme to consider. From its definition, grid
computing theoretically also comprises markets for complex services. Currently, however, grids
are mostly used for the allocation of physical resources and raw services. But markets have been
investigated for cluster-like settings as well in the 1960’s already (cf. Sutherland (1968)).38

There are three arguments for this:

• Markets can help in prioritizing not only external users, but also users within organiza-
tions.

• Markets can help in determining appropriate prices for billing resource access.

• Recent advances led to utility computing scenarios where also (or even predominantly)
external users are serviced via cluster systems (see the discussion above).

Dividing the market structure into two tiers only is overly simplistic though. Resource-near
markets need to be specifically tailored towards the type of the distributed computing setting
(cluster vs. grid computing) and the users’ application. The market mechanism needs to make
full use of the underlying system’s capabilities such as virtualization and preemptive migration
and the information that is available about the users’ applications, such as the timing of demand,

38Sutherland (1968) considers the use of simple auction protocols for allocating access to mainframe computers.

34 PRELIMINARIES AND RELATED WORK

Criteria / Research Question RQ 1 & RQ 2 RQ 3 RQ 4

Sharing approach
inter- intra-organizational / intra-organizational /

organizational utility computing utility computing

Control over resources decentralized (de-)centralized centralized

Type of resources heterogeneous homogeneous homogeneous

Mode of allocation shared dedicated shared

Use of virtualization optional optional essential

Support for
essential

only preemption
essential

preemptive migration required

Type of applications batch batch / interactive batch / interactive

Advance reservation essential not used not used

Most suitable concept Grid Cluster Cluster

Table 2.4: Mapping of the scenarios considered in the research questions to the distributed
computing concepts.

such as release dates (i.e., the time when the computational job is submitted to the system) and
runtimes. This will be discussed in the following subsection in the light of the research questions
that will be addressed in this work.

2.4.3 Scheduling in Resource-Near Markets

As introduced in Chapter 1, this work considers four specific scenarios. All of these scenarios
are located on the tier for resource-near markets. This subsection further distinguishes market
mechanisms for such resource-near scenarios based on the specific scenarios of this work and
the characteristics of distributed computing systems introduced above (cf. Table 2.4).

Research questions one and two consider pure grid settings where multiple resource providers
offer resources to multiple users. The resources can be allocated in shared mode. For instance,
if a compute node offers four CPUs, it can be allocated up to four computational jobs. Virtu-
alization is not assumed in this scenario but would only reduce the heterogeneity of resources.
Advance reservation, however, is essential in this scenario. If a user’s job is allocated, the user is
guaranteed to have access to the requested amount of resources for the specified timeframe. The
key assumption in this scenario is that users want to execute batch applications for which they
have an (estimated) release date and runtime. From a scheduling point of view, the advantage
when handling batch applications is that the scheduler has almost complete information about
the relevant input and does not have to deal with an uncertain environment. Given honest reports
of the users, the scheduler can thus determine the optimal allocation. This setting is commonly

2.4 ECONOMIC CHALLENGES 35

called “offline scheduling” (Arndt et al., 2000). Offline scheduling, however, is computation-
ally demanding. Since the scheduler has to consider the available information about resource
consumption and supply, the timing of this demand and supply, and possibly further parame-
ters, the scheduling problem easily becomes a combinatorial allocation problem (cf. Martello
and Toth (1990) and Chekuri and Khanna (2006)). Finding the optimal solution hence becomes
infeasible in practice for many settings, especially when large numbers of users and providers
are involved. Consequently, heuristic mechanisms are employed that, however, can generally
not guarantee a “close” bound with respect to the deviation from the optimal solution if based
on a deterministic allocation algorithm. In order to intercept worst case scenarios of determin-
istic heuristic mechanisms, randomizing the algorithm might offer a loophole (e.g. Nisan and
Ronen (2001)). These two alternative scheduling approaches distinguish research question one
and research question two.

Research questions three and four consider settings that are closest to cluster and utility com-
puting scenarios; the resources are homogeneous and need to be efficiently allocated to inter-
nal users and / or external users. Moreover, the focus is rather on interactive applications for
which the release date is not known a priori. Schedulers in such scenarios are so-called “online
schedulers”. An online scheduling algorithm denotes an algorithm that has to make allocation
decisions without complete information about the future input (Borodin and El-Yaniv, 1998;
Arndt et al., 2000). For the purpose of this work, online schedulers can be further distinguished
by the mode of allocation, i.e. whether the scheduler assigns dedicated resources as in research
question three or shares of resources as in research question four. Note that the latter denotes
a much more fine-grained sharing as considered in the grid setting, where a compute node is
shared on the level of CPUs and / or units of memory. In contrast, research question four con-
siders settings in which the resource is (almost) perfectly divisible. Such settings have thus far
mainly be considered for allocating divisible resources such as bandwidth (e.g. Sanghavi and
Hajek (2004)). However, with the advent of virtualization techniques in mainstream computing
and system management, it has become possible to treat whole computers as divisible resources
(Barham et al., 2003).

In summary, in the light of the research questions to be tackled in this work, market mecha-
nisms for resource-near markets can first be distinguished by the assumptions the mechanism
makes on the computational jobs of users, i.e. whether the mechanism has a priori knowledge
of these jobs’ release dates (offline scheduling) or whether these dates are unknown until the
jobs actually enter the system (online scheduling). Additionally, in the course of this work the
focus changes from the properties of the allocation algorithm (determinism vs. the randomiza-
tion) to the properties of the resources (dedicated vs. shared resources). These distinctions are
illustrated in Figure 2.5.

36 PRELIMINARIES AND RELATED WORK

Figure 2.5: Taxonomy of resource-near (Tier 2) markets with respect to the research questions
of this work.

2.5 Methodologies

In trying to answer the research questions presented in Chapter 1, two components of a market
must be modeled and analyzed: strategic behavior from users and providers and the perfor-
mance of the allocation mechanism (Smith, 1982). These two components are closely intercon-
nected and mutually impact each other. Depending on the incentives set by the market mecha-
nism, the users do not necessarily report their true characteristics to the mechanism but might
benefit from misreporting. Thus, to be able to analyze the “realistic” performance of the mech-
anism (with respect to a subset of possible economic performance criteria, cf. Table 2.3), one
must be able to describe “realistic” user behavior first. Vice versa, the user behavior inherently
depends on the properties of the mechanism.

This work does not primarily aim at analyzing existing market (mechanisms), but at designing
novel market mechanisms. As such, as pointed out by Roth (2002), an “engineering approach”
is required. This work heavily relies on three methods to modeling and analyzing user behav-
ior and market performance: theoretical analyses, empirical studies, and simulations. These

2.5 METHODOLOGIES 37

approaches are briefly presented in the remainder of this section.

2.5.1 Theoretical Analyses

Strategic behavior from users and providers is studied by employing the concepts and methods
of game theory. There exists a wide array of solution concepts that are used to model market
participants, such as dominant strategies and Nash equilibria. Game theory involves making
explicit assumptions about users and providers, e.g. with respect to utility functions and the
information about the strategies of other market participants (Mas-Colell et al., 1995).

The analytic evaluation of the performance of an allocation algorithm is oftentimes used to
derive general impossibility and / or possibility results, e.g. the worst case behavior of an algo-
rithm. For instance, in scheduling theory, competitive analysis is a common tool. It typically
involves finding a bound that limits a specific online scheduling algorithm’s deviation from
the optimal offline mechanism (Borodin and El-Yaniv, 1998). Competitive analysis has also
recently been applied to study the worst case performance of market mechanisms (Goldberg
et al., 2006; Heydenreich et al., 2006).

Theoretic analysis provides the strongest results. On its downside, it typically relies on strong
assumptions about strategic behavior and further parameters, which do not necessarily reflect
realistic inputs.

2.5.2 Empirical Studies

While theory might produce possibility and impossibility results and give general insights, it
is oftentimes more important and meaningful to analyze the “average” or “realistic” case by
means of real-world data.

Empirical studies have been widely used in computer science to analyze computing systems
(e.g. Harchol-Balter and Downey (1997)). Workload models of clusters have been derived from
the characteristics of real-world workload traces to be able to generate accurate random input
(cf. Feitelson (2008)). With the emergence of electronic markets and thus the comparably easy
availability of real-world data, empirical studies have also become a common tool in the study
of markets (e.g. Roth and Ockenfels (2002)).

With respect to the study of grid markets, empirical work is currently hard to perform since
there is not much data available about grid workloads, for instance. Moreover, there is currently
no grid market in operation that would generate data about user valuations.

38 PRELIMINARIES AND RELATED WORK

2.5.3 Simulations

To this end, numerical simulations provide a useful tool to analyze markets by means of ran-
domly generated workloads and / or user valuations (Böttcher et al., 1999). Numerical simula-
tions can be used to enrich purely technical workloads with user valuations up to generating all
necessary attributes. While the former is closest to reality and thus relevance, the latter often-
times helps in gaining insights into the general problem structure, i.e. the dependencies between
market performance and the input parameters, such as the complexity of the allocation problem
or the market’s vulnerability to strategic misreporting dependent on the number of users.

In addition to numerical simulations, agent-based simulations are a useful tool for analyzing
strategic behavior from users (Bonabeau, 2002). User behavior is simulated by means of col-
lections of software agents. First, agent-based simulations allow to analyze complex settings
with large numbers of users that preclude theoretical analyses. Moreover, agent-based simula-
tions allow the analysis of strategies other than “traditional” game-theoretic constructs. On its
downside, it is a crucial and complex task to model and incorporate strategic behavior into the
software agents. However, there is an increasing body of research in this field and a whole set
of strategies has been shown to work well in many settings (Phelps, 2007).

Chapter 3

Outcome Determination in Large-Scale
Grid Settings

3.1 Introduction

W ith batch applications users oftentimes have information about the expected release
dates and runtimes of jobs. State-of-the-art cluster schedulers, such as the Maui clus-

ter scheduler1, try to utilize this information and support the advance reservation of resources.
With advance reservations, the access to a resource can be restricted to a certain computational
job for a specific timeframe. Intuitively, this allows to manage resource allocations in a more
efficient manner from both a technical and economic point of view, e.g. by avoiding “gaps” in
the allocation schedule. As discussed in the previous chapter, in the near future grid middle-
wares can be expected to make use of the underlying clusters’ capability to support advance
reservation on the grid level as well.

While advance reservation promises increased efficiency, it also increases the computational
complexity of the scheduling problem. Due to the additional information about jobs and re-
sources, it is complex for the market mechanism to identify the feasible allocation schedules
and try to find the optimal (in a sense that will be discussed below) schedule among these fea-
sible schedules. This is exacerbated in settings with offline scheduling where the scheduler
collects resource requests and offers for a period of time before making its allocation decisions.
Another layer of complexity is added by the large-scale nature that is inherent to grids. Large
grids combine the resources from many providers of heterogeneous resources. Moreover, the
set of users and providers is highly dynamic, as grid users can become providers over time and
vice versa.

1http://www.clusterresources.com/products/maui/

http://www.clusterresources.com/products/maui/

40 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

Hence, due to the large amount of available information and the large scale of many grid set-
tings, the market mechanism needs to be scalable but still be able to find efficient allocation
schedules. However, in finding these efficient schedules, the market mechanism inherently
relies on the users and providers to truthfully report their private information about jobs and
resources. Otherwise the mechanism tries to optimize over false input and will generally not be
able to find the truly efficient allocation schedule.

Current market mechanisms, however, are not adequately able to contend with dependencies
between multiple grid resources (e.g. the simultaneous need for computing power and memory)
in large-scale settings with strategic users who try to benefit from manipulating the mechanism.
First, this chapter presents a greedy, deterministic heuristic that can be applied to solve such
large-scale scenarios for batch applications. The strategic dimension of scheduling in grids is
addressed by presenting two pricing schemes. The first, proportional critical-value pricing, is
a novel pricing scheme that successfully limits strategic behavior on both market sides on the
expense of computational cost. The second pricing scheme, k-pricing, is highly scalable on
the expense of strategic properties. It has been proposed and evaluated in previous research,
however for a different allocation rule and setting (Schnizler et al., 2008). The structure of
the allocation problem, the efficiency of the heuristic, and the pricing schemes are evaluated
analytically and by means of numerical simulations.

3.2 Requirements and Design Desiderata

There is a number of requirements, which a market mechanism must satisfy in order to be
applicable to a grid environment for batch applications:

• Double-sided market: The mechanism must support the trading between multiple strate-
gic users and multiple strategic resource providers that issue job requests and node offers.
This requirement is inherent to grids, which consist by definition of resources that are
under decentralized control.

• Computational tractability: The mechanism must compute allocations and prices in
polynomial runtime in the size of its input, i.e. the number of job requests and node
offers. For example, the Sun N1 Grid Engine, a state-of-the-art grid scheduler by Sun
Microsystems, allocates every 15 seconds. The mechanism should therefore be able to
compute the outcome for at least several hundred job requests and node offers within this
timeframe.

• Bundling: Users must be able to express interdependencies between multiple resources
and / or multiple job requests and node offers (Nisan, 2006). Supporting interdependen-

3.2 REQUIREMENTS AND DESIGN DESIDERATA 41

cies between multiple resources is important because a job requires computing power and
memory on one node at the same time, for instance. Consequently, users must be able to
specify technical constraints of their jobs that limit the feasible set of compute nodes to
which these jobs can be allocated.

• Time constraints: In the batch setting considered in this chapter, users and providers are
assumed to have a priori knowledge about the starting times and runtimes of jobs and the
availability of nodes. For example, a provider might only be able or willing to temporarily
contribute a node to the grid for a fixed and known period of time. The mechanism must
therefore allow users and providers to express time constraints and consider these when
making its allocation decisions.

The mechanism is intended to perform job scheduling in a distributed computing environment
with heterogeneous and selfish users. This gives rise to a number of economic design desider-
ata (Mas-Colell et al., 1995; Parkes, 2001; Nisan et al., 2007) that a mechanism should ideally
satisfy but that might be relaxed to a certain extent. In the following the focus will be on so-
called direct revelation mechanisms where the users’ and providers’ strategies only consist of
reporting their economic and technical attributes, i.e. their “types”, to the market-based sched-
uler (Mas-Colell et al., 1995). Let θi be the type of user or provider i and θ−i the type of all
other users and providers, where θ = (θi,θ−i). Then the following economic requirements can
be stated:

Definition 1 (Allocative efficiency). A mechanism is said to be allocatively efficient if, based on
its input θ , it always determines the outcome o that maximizes the utility across all participating
users and providers (i.e., welfare):

∑
i∈J∪N

ui(o,θ |θi)≥ ∑
i∈J∪N

ui(o′,θ |θi), o′ ∈ O

where ui(o,θ |θi) is the utility of user or provider i that she derives from the market outcome
o ∈ O, O is the set of possible outcomes, J is the set of jobs, and N the set of nodes.

Definition 2 (Budget-balance). A mechanism is said to be weakly budget-balanced if its pay-
ment scheme does not need to be subsidized (ex post) by outside payments. The payments
coming from the users cover the payments made to the resource providers:

∑
j∈J

p j(θ)− ∑
n∈N

pn(θ)≥ 0

where p j (pn) denotes the payment of job j’s user (node n’s provider).

42 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

Definition 3 (Individual rationality). A mechanism is said to provide the property of individual
rationality (also called voluntary participation) if users and providers cannot suffer any loss in
utility from participating in the mechanism:

ui(o,θ |θi)≥ ui(o,θ |θi), i ∈ J∪N

where ui denotes the utility that i could derive by withdrawing from the market.

Definition 4 (Truthfulness). A mechanism is said to be truthful if it is a weakly dominant strat-
egy for market participant i to reveal her true characteristics for arbitrary θ̃−i:

ui(o,(θi, θ̃−i)|θi)≥ ui(o,(θ̃i, θ̃−i)|θi), i ∈ J∪N, θ̃i, θ̃−i.

Truthfulness is a desirable property since it tremendously simplifies the strategy space of the
market participants; there is no need to reason about the strategies of other participants. In case
of a periodic mechanism that continues for several rounds, it is assumed that the participants
are myopic, i.e. they only consider the current round and do not reason about the future.

Users and providers are assumed to have quasi-linear utility functions. The market outcome o
consists of an allocation schedule X and corresponding payments p, i.e. o(θ) = (X(θ), p(θ)).
Consequently, the user’s ex post utility for job j is u j(o,θ |θ j) = v j(X(θ))− p j(θ), where
v j(X(θ)) is the user’s true valuation for allocation schedule X that the mechanism determined
based on its input θ .2 Analogously, the utility of the provider of node n is un(o,θ |θn) = pn(θ)−
vn(X(θ)).

Throughout this chapter, it will be useful to refer to the framework for the design of periodic
market mechanisms depicted in Figure 3.1. There are three basic components to be designed in
a market mechanism (de Vries and Vohra, 2003; Schnizler et al., 2008): the bidding language,
which defines how job requests and node offers are specified (and which thus determines the
strategy space of the selfish users and providers); the allocation algorithm, which decides which
job is to be executed on which node at what time; and the pricing scheme, which translates the
resulting allocation schedule into monetary transfers between the users and providers.

There exist several interdependencies between these components and the presented design
desiderata. Budget-balance and individual rationality are hard constraints that the mechanism
must satisfy. If these two requirements are not met, the mechanism will not be sustainable;
participants will not voluntarily participate in the market if they incur losses and the market
operator will not be willing to subsidize the mechanism in the long run. Moreover, there exist
strong theoretic results that show that it is in fact impossible to achieve certain combinations of

2Note that this notation will be simplified to ui(θ |θi) if it is clear from the context that a specific and well-
defined mechanism is considered, i.e. when the set of rules that determine o based on input θ has been defined.

3.2 REQUIREMENTS AND DESIGN DESIDERATA 43

Figure 3.1: Design framework for periodic market mechanisms.

the design desiderata (cf. e.g. Parkes (2001)). Among the most prominent are the following two
theorems:

Theorem 1 (Hurwicz Impossibility Theorem3 (Green and Laffont, 1979; Walker, 1980; Hur-
wicz and Walker, 1990)). There is no double-sided mechanism that is at the same time alloca-
tively efficient, budget-balanced, and truthful in settings with quasi-linear preferences.

Theorem 2 (Myerson-Satterthwaite Impossibility Theorem (Myerson and Satterthwaite,
1983)). There is no double-sided mechanism that is at the same time allocatively efficient,
budget-balanced, Bayesian-Nash incentive compatible, and (interim) individually rational,
even in settings with quasi-linear preferences.

The theorem of Myerson and Satterthwaite (1983) has stronger implications than the Hurwicz
Impossibility Theorem, since it extends the latter to the solution concept of Bayesian-Nash
incentive compatibility, where the users’ / providers’ aim is to maximize the expected utility
instead of ex post utility. In doing so, an additional assumption of Myerson and Satterthwaite
(1983) is that the mechanism must be individually rational.

The Myerson-Satterthwaite Impossibility Theorem implies that at most two desiderata out of
allocative efficiency, individual rationality and budget-balance can be achieved when aiming at
a truthful mechanism in settings with quasi-linear preferences. This in turn implies that either
allocative efficiency or truthfulness must be sacrificed, at least to a certain extent, since budget-
balance and individual rationality must be satisfied in the long run for the mechanism to be
sustainable.

Moreover, for complex scheduling settings, allocative efficiency and computational tractability
conflict because it takes a prohibitively long time to compute the optimal allocation schedule in

3This theorem is also oftentimes called Green-Laffont Impossibility Theorem due to Green and Laffont (1979).
However, this work follows Parkes (2001) since the theorem is originally based on unpublished work by Hurwicz
(1975)).

44 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

combinatorial settings. However, sacrificing efficiency generally comes at the expense of truth-
fulness, although there exist some special cases, one of which will be utilized below (Mu’alem
and Nisan, 2008).

Consequently, when configuring the three components, there is an inherent trade-off involved
between the various design desiderata. This will also become apparent in the following discus-
sion of related works. The aim of this chapter is to find an “appropriate” trade-off: a mechanism
that satisfies the applicability constraints of a double-sided market structure, computational
tractability, bundling and time constraints, and that is individually rational, budget-balanced,
truthful and at least approximately allocatively efficient. This trade-off will be tested both ana-
lytically and numerically.

3.3 Related Work

A conceptual view on the integration of market mechanisms into grid systems is provided by
the G-commerce project (Wolski et al., 2001) and GridBus (Buyya et al., 2002). These projects
propose and evaluate basic auction mechanisms in the grid context. But as Wellman et al. (2001)
point out, scheduling problems often exhibit properties that are not captured by such basic
auction protocols, e.g. the presence of multiple resource providers and time constraints. The
authors point out that a suite of mechanisms is likely to emerge for a broader range of scheduling
problems. Along the lines of the domain-specific applicability requirements, research in the
market-based allocation of grid resources can best be separated into mechanisms that consider
the trading of one type of resource only and mechanisms that account for dependencies between
multiple grid resources.

Spawn (Waldspurger et al., 1992), market-based Proportional Share (Chun and Culler, 2000;
Lai et al., 2005), and the Popcorn market (Regev and Nisan, 2000) allow the specification and
trading of one resource only such as CPUs or CPU cycles. But, as discussed above, the users’
jobs require a bundle of resources such as computing power, memory, and bandwidth. The
approaches at hand thus lead to inefficient allocations since jobs with the same demand for
computing power but different memory requirements, for instance, are treated the same. On
the other hand, users are exposed to the risk of only being able to obtain one of the required
resources in the bundle. Note that Spawn and Popcorn are efficient in the simplified setting with
one resource only, but not in the light of the more complex setting considered in this work.

MACE (Multi-Attribute Combinatorial Exchange, Schnizler et al. (2008)) and the Bellagio sys-
tem (AuYoung et al., 2004) target these deficiencies by allowing users to request bundles of
computer resources with quality attributes. Neither mechanism yields truthful prices and the

3.4 THE MECHANISM 45

scheduling problem in these combinatorial settings is computationally intractable.4 The mech-
anisms are thus not applicable to large-scale settings in which users require the timely alloca-
tion of resources. The work of Bapna et al. (2008) is most relevant to the work presented in this
chapter. In their model, multiple users and providers can trade both computing power and mem-
ory for a sequence of timeslots. However, the model does not allow for the strategic behavior
of resource providers, but it imposes one common reserve price. First, an exact mechanism is
introduced.5 To mitigate the computational complexity of this exact formulation, a fast, greedy
heuristic is proposed at the expense of both truthfulness and efficiency.

In summary, as comprised in Table 3.1, the mechanisms proposed for grids are not fully able to
account for dependencies between multiple grid resources in large-scale settings with strategic
users. In the following section, a scalable heuristic is proposed that allows the trading of both
computing power and memory. Additionally, pricing schemes are presented that are designed
to induce truthful behavior from strategic users.

3.4 The Mechanism

First, the bidding language will be introduced, which determines how job requests and node of-
fers are expressed. As pointed out above, in order to support the fast allocation of resources, the
market is implemented as a centralized mechanism where the only action of users and providers
is to declare their economic and technical attributes. The mechanism clears periodically and
offline, i.e. it collects job requests and node offers for a period of time in the so-called “order
book” before making its allocation and pricing decisions.6

3.4.1 Expressing Job Requests and Node Offers

In the model at hand, computing power is the central scarce resource to be traded. Let N be the
set of compute node offers, which the mechanism has collected over a period of time. When
submitting a node offer n ∈ N, the resource provider reports the type θn = (vn,Cn,Mn,Rn,En)
to the system. vn ∈ R+ denotes the provider’s valuation (reserve price) per unit of computing
power and time in some common monetary unit. Cn ∈ N and Mn ∈ N specify the maximum
available amount of computing power (e.g. number of CPUs or CPU cycles) and memory (e.g.

4Note, however, that the architecture of the Bellagio system can also be applied to double-sided markets and
to heuristic allocation algorithms. Here the exact, single-sided formulation with Parkes’s VCG-based threshold
pricing is considered (AuYoung et al., 2004; Parkes et al., 2002).

5The exact formulation does not solve the allocation problem to optimality due to what Bapna et al. call a
“fairness constraint”, which limits the mechanism’s allocation decisions.

6Note that the clearing period can be as small as a couple of seconds.

46 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

M
echanism

\
R

equirem
ent

A
pplicability

C
onstraints

E
conom

ic
D

esign
D

esiderata
C

om
putational

D
ouble-sided

B
und-

Tim
e

A
llocative

B
udget-

Individual
Truth-

tractability
m

arket
ling

constraints
efficiency

balance
rationality

fulness
Spaw

n
X

×
×

•
X

X
X

X

ProportionalShare
X

×
×

×
×

X
×

×
Popcorn

(V
ickrey)

X
×

×
×

X
X

X
X

Popcorn
(double

auctions)
X

X
×

×
×

X
X

×
M

A
C

E
×

X
X

X
×

X
X

×
B

ellagio
×

×
X

X
×

X
X

×
B

apna
etal.(exact)

×
•

•
X

×
X

X
X

B
apna

etal.(heuristic)
X

•
•

X
×

X
X

×
T

his
w

ork
X

X
•

X
×

X
X

•

Table
3.1:M

apping
ofthe

existing
m

echanism
s

to
the

requirem
ents.

X
satisfied,•

partly
satisfied,×

notsatisfied.

3.4 THE MECHANISM 47

in Megabytes), respectively. Rn ∈ N and En ∈ N indicate the earliest and latest timeslots during
which these resources are available. It is assumed that nodes can virtually execute multiple
jobs in parallel, e.g. by viewing each node as a virtual machine, which makes this node almost
perfectly divisible.

Let J be the set of job requests. Users wanting to submit a computational job j ∈ J report
the type θ j = (v j,c j,m j,r j,e j) to the system where v j ∈ R+ expresses the user’s valuation
(maximum willingness to pay) per unit of computing power and time, c j ∈N and m j ∈N specify
the minimum required amount of computing power and memory, respectively, and r j ∈ N and
e j ∈ N mark the job’s release date and end time. Consequently, the job’s runtime (duration)
is d j = e j− r j + 1 timeslots. A job j can only be executed in its entirety, meaning it is only
allocated if there are sufficient resources available in each timeslot t ∈ [r j,e j]. A job can only be
run on one node at a time but can migrate across nodes over time without having to be restarted.
Job migration is an important feature that distinguishes the scheduling in computational grids
from other machine scheduling domains (see e.g. Harchol-Balter and Downey (1997)).

Example: The sample job requests and node offers listed in Table 3.2 have been submitted
to the system. The user of job j1 is requesting 35 units of computing power and 50 units of
memory throughout timeslots 3 to 7. The user is willing to pay up to $10 per unit of computing
power and timeslot, i.e. v1c1d1 = $1,750 in total. The provider of node n1 requires a payment
of at least $8 per unit of computing power and timeslot while she is offering up to 123 units of
computing power and 98 units of memory throughout timeslots 1 to 8.

Job j v j c j m j r j e j Node n vn Cn Mn Rn En

j1 10 35 50 3 7 n1 8 123 98 1 8
j2 14 35 27 1 7 n2 11 98 82 1 9
j3 11 84 45 2 7
j4 16 71 48 2 7
j5 12 63 30 2 7
j6 17 55 20 2 7

Table 3.2: Sample job requests and node offers.

3.4.2 Allocating Jobs to Nodes

Let T be the scheduling horizon for a problem instance, i.e. the set covering all timeslots speci-
fied in job requests and node offers. The binary decision variable x is defined as x jnt = 1 if job
j is allocated to node n in timeslot t and x jnt = 0 else. Then the allocation problem, which de-
termines an optimal allocation schedule X = (x jnt) that assigns jobs to nodes so as to maximize

48 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

allocative efficiency (welfare) W , can be formalized as a mathematical integer program:

max
X=(x jnt)

W = ∑
j∈J

c j ∑
n∈N

∑
t∈T

x jnt(v j− vn). (3.1)

Since users and providers are assumed to have quasi-linear utility functions, efficiency is the
overall difference between the users’ job valuations and the providers’ reserve prices (both
expressed per CPU and timeslot). Hence, the aim is to allocate the most valuable jobs to the
cheapest possible nodes.

Constraint 3.2 introduces the binary decision variable x and ensures that a job can only be
allocated to a node that is accessible during the right timeslots and whose reserve price does not
exceed the user’s willingness to pay:

x jnt

∈ {0,1} if r j ≤ t ≤ e j∧Rn ≤ t ≤ En∧ vn ≤ v j

= 0 else
, j ∈ J, n ∈ N, t ∈ T. (3.2)

Furthermore, a job can only be allocated to a maximum of one node at a time (Constraint 3.3):

∑
n∈N

x jnt ≤ 1, j ∈ J, t ∈ T, r j ≤ t ≤ e j. (3.3)

Constraints 3.4 and 3.5 specify that the jobs allocated to one node are not allowed to consume
more resources than are available on this node:

∑
j∈J

x jntc j ≤Cn, n ∈ N, t ∈ T, Rn ≤ t ≤ En, (3.4)

∑
j∈J

x jntm j ≤Mn, n ∈ N, t ∈ T, Rn ≤ t ≤ En. (3.5)

Constraint 3.6 enforces atomicity, i.e. a job is either fully executed in all requested timeslots or
it is not executed at all:

e j

∑
u=r j

∑
n∈N

x jnu = d j ∑
n∈N

x jnt , j ∈ J, t ∈ T, r j ≤ t ≤ e j. (3.6)

A compact presentation of this allocation problem is presented in Appendix A. This problem is
a special case in between the Multiple Knapsack Problem (MKP) and the Generalized Assign-
ment Problem (GAP).

In the notation of this work, MKP is defined as follows (Martello and Toth, 1990; Chekuri and

3.4 THE MECHANISM 49

Khanna, 2006):

[MKP]

max
X

W = ∑
j∈J

∑
n∈N

x jnv j

subject to ∑
j∈J

x jnc j ≤Cn, n ∈ N,

∑
n∈N

x jn ≤ 1, j ∈ J,

x jn ∈ {0,1}, j ∈ J,n ∈ N,

where v j is interpreted as the “profit” of assigning job j to node n. It can easily be seen that
the allocation problem at hand is more complex than MKP since the profit of allocating a spe-
cific job varies with the reserve price of the node it is allocated to. Moreover, the setting is
constrained by two resources instead of only one. Most importantly, Constraint 3.6 essentially
interconnects a separate allocation problem for each timeslot, where each of these separate al-
location problems is already more complex than MKP.

GAP is defined as follows (Martello and Toth, 1990; Chekuri and Khanna, 2006):

[GAP]

max
X

W = ∑
j∈J

∑
n∈N

x jnv jn

subject to ∑
j∈J

x jnc jn ≤Cn, n ∈ N,

∑
n∈N

x jn ≤ 1, j ∈ J,

x jn ∈ {0,1}, j ∈ J,n ∈ N.

It is not obvious if the allocation problem is less or more complex than GAP. On the one hand,
GAP is more comprehensive as it allows for different capacity requirements of a job depending
on the node it is allocated to. On the other hand, as MKP, it only supports one restricting
resource and does not consider timeslots.

Since MKP is known to be NP-complete (Chekuri and Khanna, 2006) but still simpler than the
allocation problem at hand, from a computational viewpoint, solving the model to optimality
is clearly also NP-complete. Consequently, solving this combinatorial allocation problem to
optimality is computationally intractable in practice. Users typically require the resources in a
timely manner and the overhead for determining the allocations must be kept as low as possible.

This computational hardness forms the rationale for an allocation scheme based on a greedy
heuristic whose basic form was originally proposed by Lehmann et al. (2002) and Mu’alem and
Nisan (2008) for clearing single-sided single-attribute combinatorial auctions. This heuristic is
extended to the setting of double-sided multi-attribute auctions. The greedy allocation scheme
is specified in Algorithm 1.

50 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

Algorithm 1 Deterministic Allocation Heuristic.
Require: Set J containing all job requests, sorted in non-increasing order of v j.
Require: Set N containing all node offers, sorted in non-decreasing order of vn.
Ensure: Feasible allocation schedule X = (x jnt).

1: X = (x jnt) = O, X ′ = (x′jnt) = O {Initialize allocation schedule X and temporary schedule
X ′ to be zero matrices}

2: for all j ∈ J do
3: X ′ = (x′jnt) = O {Reset X ′}
4: for all t ∈ [r j,e j] do
5: for all n ∈ N do
6: if (Rn ≤ t ≤ En) && (c j ≤Cn(t)) && (m j ≤Mn(t)) && (vn ≤ v j) then
7: x′jnt = 1, break {Job j can be allocated to node n in timeslot t}
8: if ∑

e j
t=r j ∑n∈N x′jnt == d j then

9: X = X +X ′ {Add the job to the allocation schedule if the job can be accommodated in
all requested timeslots}

10: for all t ∈ [r j,e j] do
11: for all n ∈ N do
12: if x′jnt == 1 then
13: Cn(t)−= c j, Mn(t)−= m j {Update the node’s remaining capacity in timeslot

t}
14: return X

It essentially consists of two phases:

• Step 1 (sorting phase): Sort jobs j ∈ J in non-increasing order of their willingness to
pay v j, and nodes n ∈ N in non-decreasing order of their reserve prices vn.

• Step 2 (allocation phase): Run sequentially through the job ranking, starting with the
highest-ranked job. For each job j, try to allocate this job to the cheapest feasible node
that still has idle capacity left.

The basic idea behind this heuristic is that, by sorting the job requests and node offers with
respect to their reported valuation per unit of computing power and time, to try to greedily max-
imize the difference v j− vn in the objective function (Equation 3.1) of the exact formalization
of the allocation problem for each job assignment.

Example: Applying the greedy allocation scheme to the example above generates the allocation
schedule depicted in Table 3.3 with welfare of W greedy = $6,570, while the optimum is $6,858.
In this example, the user of job j6 is willing to pay up to $17 per unit of computing power and

3.4 THE MECHANISM 51

timeslot, which is more than any other user is willing to pay. Consequently, j6 is ranked first
in the sorting phase, while j4 and j2 are ranked second and third, respectively. After having
allocated these three jobs, the remaining jobs either do not fit on nodes n1 and n2 at the same
time or the users are not willing to pay these nodes’ reserve prices and their jobs are thus not
allocated.

t 1 2 3 4 5 6 7 8 9
n1 j2 j2, j6 j2, j6 j2, j6 j2, j6 j2, j6 j2, j6 — —
n2 — j4 j4 j4 j4 j4 j4 — —

Table 3.3: Sample greedy allocation scheme.

This allocation scheme runs in polynomial time in the size of its input, i.e. the number of job
requests and node offers. The sorting phase (Step 1) runs in O(|J| log |J|) and O(|N| log |N|)7

while the allocation phase (Step 2) runs in O(|J||N|).

The computational speed of heuristics generally comes at the expense of efficiency. Let W OPT

be the (optimal) efficiency generated by the exact mechanism and W greedy the efficiency gen-
erated by the greedy heuristic. Then the greedy heuristic exhibits the following worst case
behavior:

Theorem 3 (Competitive ratio). The greedy heuristic has a competitive ratio of
W greedy/W OPT = 0.

Proof. W.l.o.g., consider valuations and computing power only. Suppose one node offer with
characteristics (vn,Cn) = (0,k), k ∈ N, and two job requests (v j1,c j1) = (2,1) and (v j2,c j2) =
(1,k). The heuristic generates welfare of $2 while the optimum is $k. Clearly, W greedy/W OPT →
0 for k→ 0.

While this is clearly a negative result, only a 2-approximation exists for GAP today (Chekuri
and Khanna, 2006). Due to the multiple resources and time constraints (in particular considering
Constraint 3.6), the structure of the allocation problem at hand is significantly more complex
than the standard MKP and GAP, and these bounds thus probably do not hold for this special
problem. Furthermore, the approximation techniques used to obtain these bounds generally do
not allow for constructing truthful prices (Mu’alem and Nisan, 2008), which is a key feature
of the mechanism to be developed in this chapter, as will be shown below. Those worst cases,
however, are merely of theoretical value; the heuristic’s efficiency needs to be evaluated in more
realistic settings. Section 3.5 will thus report the results of an extensive numerical evaluation.

7Note that in practice this sorting can be done as jobs enter the system.

52 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

Besides its computational speed, the heuristic allocation scheme implements desirable strate-
gic properties, such as limiting the potential gain to be had by both users and providers from
manipulating the mechanism by reporting job and resource characteristics, i.e. computing and
memory requirements and time constraints, that are untrue.

Truthfulness with respect to a single job’s resource requirements is straightforward. If a job’s
resource requirements (CPU and memory) are understated, the job cannot be executed cor-
rectly8; the user has to pay for the used resources, but these are of no value. Overstating a
job’s requirements either increases the job’s payment or results in the job not being scheduled
at all due to insufficient available resources. The same holds for the job runtime d j. There is,
however, the possibility of users benefiting from shifting the job to later timeslots (i.e., r̃ j > r j

while ẽ j − r̃ j + 1 = e j − r j + 1) since there might be less competition and thus lower prices.
However, this strategic behavior is in fact desirable as it gives users an economic benefit to shift
the system load to off-peak periods.

Essentially the same reasoning also applies when looking at resource providers. Providers
clearly cannot gain from understating the amount of available resources, since it does not im-
prove their nodes’ position in the ranking phase of the heuristic but only reduces the set of
possible allocations. Given sufficiently severe penalties (e.g. above market prices), providers
cannot gain from overstating their available resources either, since they might then be unable to
execute allocated jobs.

In the spirit of Moulin (2008), two further strategic properties of scheduling mechanisms can
be introduced, which can be interpreted as a mechanism’s robustness against coalitions of users
or providers. These criteria are desirable as they promote fairness in the sense that low-volume
users and providers are not at a disadvantage compared to high-volume users and providers.

Definition 5 (Job-merge-proofness). An allocation algorithm is job-merge-proof when the
user(s) of two job requests j1 and j2 cannot increase their combined ex post utility by merg-
ing θ1 = (v1,c1,m1,r1,e1) and θ2 = (v2,c2,m2,r2,e2) to one single job θM = (vM,cM =
c1 + c2,mM = m1 +m2,rM = min{r1, r2},eM = max{e1, e2}).

The utility of users not only depends on the allocation scheme but also on the employed pricing
scheme. Since two such pricing schemes will be presented later on, the investigation of this
property is deferred at this point. Analogously to the demand side of the market, a merge-
proofness property for resource providers can be defined:

Definition 6 (Node-merge-proofness). An allocation algorithm is node-merge-proof when the
provider(s) of two node offers n1 and n2 cannot increase their combined ex post utility by sub-

8It is a common policy in grid systems to kill jobs requiring more resources than requested by the user.

3.4 THE MECHANISM 53

mitting their offers θ1 = (v1,C1,M1,R1,E1) and θ2 = (v2,C2,M2,R2,E2) as one single offer
θM = (vM,CM = C1 +C2,MM = M1 +M2,RM = min{R1, R2},EM = max{E1, E2}).

In the setting at hand, this possibility can only be excluded due to technical constraints; it is
currently not possible to define virtual machines that span multiple physical nodes. If this was
possible, there are simple examples in which two nodes would benefit from merging since the
mechanism could then allocate a large job to the merged node that would not fit on the single
nodes.

In summary, the strategy space of a selfish user (provider) is essentially restricted to misstating
the valuation for a job (node). In the following subsection, two pricing schemes are proposed
that aim at aligning the individual participant’s goal of utility maximization with the market
designer’s goal of allocative efficiency, i.e. overall welfare maximization.

3.4.3 Pricing the Outcome

As introduced above, besides the bidding language, (periodic) market mechanisms consist of
two basic components, an allocation scheme and a pricing scheme (cf. Figure 3.1). While the
allocation component generally accounts for the technical specifics of the grid setting, the objec-
tive of the pricing component is to induce the selfish participants in the market environment to
act towards the general objective, in this case welfare maximization. To this end, in this section
two pricing schemes are presented that can be used in conjunction with the greedy heuristic;
both positive and negative results are derived analytically.

Proportional Critical-Value Pricing

The concept of critical-value pricing is based on Lehmann et al. (2002) and Mu’alem and Nisan
(2008) and essentially implements the prominent Vickrey principle. Let φ j(θ) ∈ R+ be the
minimal valuation per unit of computing power and timeslot that job j would have needed to
report to the mechanism in order to be allocated. Then, with critical-value pricing, the price of
job j is set to

p j(θ) =

φ j(θ)c jd j if ∑
n∈N

∑
t∈T

x jnt > 0

0 else.

It is easy to see that this pricing scheme is individually rational if the user of job j truthfully
reports its type. Moreover, this pricing scheme implements the property of truthfulness with
respect to job valuations:

54 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

Theorem 4 (Truthfulness of critical-value pricing). The greedy heuristic with critical-value
pricing is truthful with respect to job valuations:

u j(θ j, θ̃− j|θ j)≥ u j((ṽ j,c j,m j,r j,e j), θ̃− j|θ j) = u j(θ̃ j, θ̃− j|θ j)

for all j ∈ J, θ j, ṽ j, and θ̃− j.

Proof. Users are assumed to have quasi-linear utility functions:

u j(θ |θ j) =

v jc jd j− p j(θ) if j is allocated

0 else.

Assume the user of j has truthfully reported her valuation, i.e. ṽ j = v j. There are four cases to
be considered (cf. Table 3.4).

State\Action Decrease bid Increase bid
Job j was allocated Case 1 Case 2

Job j was not allocated Case 3 Case 4

Table 3.4: Options for misreporting.

Suppose j was allocated, i.e. ṽ j = v j≥ φ j(θ j, θ̃− j) and p j(θ j, θ̃− j) = φ j(θ j, θ̃− j)d jc j. Reporting
a lower valuation ṽ j < v j (Case 1) either leaves j in the allocation while it does not change φ j

(φ j(θ j, θ̃− j) = φ j(θ̃)) and consequently it does not change u j, or it leads to j being rejected
and thus u j(θ̃ |θ j) = 0 ≤ (v j−φ j(θ j, θ̃− j))c jd j = u j(θ j, θ̃− j|θ j). Reporting a higher valuation
ṽ j > v j (Case 2) leaves j being accepted while it does not change φ j and consequently it does
not change u j.

Now suppose j was not allocated, i.e. ṽ j = v j < φ j(θ j, θ̃− j) and p j(θ j, θ̃− j) = 0. Reporting a
lower valuation ṽ j < v j (Case 3) leaves j being rejected. Reporting a higher valuation ṽ j > v j

(Case 4) either leaves j being rejected (ṽ j < φ j(θ̃)), or it leads to j being accepted (ṽ j ≥ φ j(θ̃) >

v j) and thus u j(θ̃ |θ j) = (v j−φ j(θ̃))c jd j < 0 = u j(θ j, θ̃− j|θ j).

The critical value of a job essentially hinges on the competition of other jobs for the same
resources. If there is no competition, the job is only required to pay the cheapest possible
reserve price. Otherwise, the job at least needs to outbid these competing jobs.

As pointed out above, the property of job-merge-proofness (cf. Definition 5) depends on the
employed pricing scheme. With respect to the heuristic with critical-value pricing, the following
result can be stated:

3.4 THE MECHANISM 55

Theorem 5 (critical-value pricing is not job-merge-proof). The greedy heuristic is not job-
merge-proof if complemented by critical-value pricing.

Proof. It is to be shown that the merger of two job requests results in a higher overall utility
compared to submitting the two requests separately. This can be shown by a sample scenario.

W.l.o.g., assume that all requests and offers have the same runtimes and availability times,
respectively. Consider the three job requests (v j1,c j1 ,m j1) = ($4,1,100), (v j2 ,c j2,m j2) =
($3,1,150), and (v j3,c j3,m j3) = ($2,2,100), and two resource offers (vn1 ,cn1,mn1) =
($0,1,150) and (vn2 ,cn2,mn2) = ($1,3,200).

When the jobs j1 and j3 are submitted separately, j1 is allocated and has a critical value (price)
of φ1 = $1, j3 is not allocated and has a critical value of φ3 = $3. The utility of j1 is $4−$1 = $3
and the utility of j3 is $0 since it is not allocated.

When j1 and j3 are merged to (v jM ,c jM ,m jM) = ($22
3 ,3,300), jM is allocated and has a critical

value of φM = $1 (price per CPU unit). Consequently, the combined utility of j1 and j3 is $5
and the users can increase their combined utility by merging their jobs.

The major drawback of critical-value pricing in this setting is the computational cost of deter-
mining the critical values. In order to calculate the critical value for a specific allocated job, it
is not possible to simply take the valuation of the highest-ranking unexecuted job since this job
might not have been executable in any case due to capacity constraints. Moreover, removing
j from the allocation might change the allocation of other jobs within the allocation as well.
Consequently, to determine the critical value for each allocated job j, the allocation without j
needs to be determined: All other jobs from the ranking are successively allocated and, after
having allocated a job, it is checked whether j can still be accommodated. Note that, while
the mechanism seems to suffer from the same computational problems as the prominent VCG
mechanism, the critical values can still be computed in polynomial time due to the heuristic
allocation scheme.

If there is sufficient competition such that critical values are above reserve prices, critical-value
pricing of job requests generates a surplus, i.e. the overall payments exceed the providers’ re-
serve prices. The question then is how to distribute the surplus generated on the demand side of
the market among resource providers in a way that will also produce truthful payments while
preserving budget-balance. Unfortunately, critical-value pricing is not applicable to the pricing
of resource offers. It would require a binary decision in the sense that a node is only allocated

56 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

as a whole, or not at all. In the model at hand, however, resource offers are divisible. Worse,
the following theorem holds:

Theorem 6 (Impossibility of truthful prices for node offers). There is no payment scheme
complementary to the greedy heuristic capable of generating truthful payments to resource
providers.

Proof. A key requirement for achieving truthfulness is designing a monotonically decreasing
allocation scheme in the sense that providers cannot be allocated a higher load by overstating
their reserve prices (Archer and Tardos, 2001). By means of a simple example it can be shown
that with the heuristic providers can potentially increase their load by overstating their reserve
prices.

W.l.o.g., consider valuations and computing power only. Assume two resource requests,
(v j1,c j1) = ($10,1) and (v j2,c j2) = ($9,2), and two truthful resource offers, (vn1,Cn1) = ($1,2)
and (vn2,Cn2) = ($2,2). Then the first offer will be allocated one unit of computing power. Now
assume the first provider had reported (ṽn1 ,Cn1) = ($3,2) instead. Then she would have been
allocated two units of computing power. Consequently the heuristic’s allocation scheme is not
monotonically decreasing.

This is clearly a strong negative result as it extends across any payment scheme for the greedy
heuristic. As a consequence of Theorem 6, it is not possible to design a payment scheme
that will preclude any strategic behavior on the part of resource providers; one can only try to
limit these strategic possibilities. One possibility is to distribute any surplus according to the
providers’ contribution of computing power, the key resource in this setting. Let

S(θ) = ∑
j∈J

p j(θ)−∑
j∈J

∑
n∈N

∑
t∈T

x jntc jvn

be this surplus. The first term captures the total revenue collected by critical-value pricing,
whereas the second term captures the providers’ reserve prices for the allocation schedule at
hand. Then, with proportional payments, provider n receives payments amounting to

pn(θ) = ∑
j∈J

∑
t∈T

x jntc jvn +S(θ) ·
∑
j∈J

∑
t∈T

x jntc j

∑
j∈J

∑
m∈N

∑
t∈T

x jmtc j
,

where the first summand captures n’s reserve price for the allocation schedule and the second
summand captures n’s proportional payments. The rationale for proportional payments is that
the share of the surplus that is allotted to n does not directly depend on n’s reported reserve
price. Instead, it only depends on the final allocation schedule, which can only be influenced
by n to a rather limited extent depending on the competition on both sides of the market. The

3.4 THE MECHANISM 57

Proportional critical-value pricing k-pricing (k = 0.5)
Job j p j Node n pn Job j p j Node n pn

j2 2,940 n1 6,165.88 j2 2,695 n1 6,820
j4 5,112 n2 5,846.12 j4 5,751 n2 5,751
j6 3,960 j6 4,125
j1, j3, j5 0 j1, j3, j5 0

∑ 12,012 ∑ 12,012 ∑ 12,571 ∑ 12,571

Table 3.5: Sample prices and payments.

prices and payments generated by proportional critical-value pricing for the sample job requests
and node offers are listed in Table 3.5.

k-pricing

k-pricing is an alternative pricing scheme to proportional critical-value pricing. It was in-
troduced in Schnizler et al. (2008) for double-sided combinatorial auctions. The basic idea
is to distribute the welfare generated by the allocation algorithm between users and resource
providers according to a factor k ∈ [0,1]. For instance, assume an allocation of resources from
a specific provider to a specific user. The user values these resources at $10 while the provider
has a reserve price of $5. Then the (local) welfare of this transaction is $10−$5 = $5, and k ·$5
of the surplus is allotted to the user (who thus has to pay $10−k ·$5) and (1−k) ·$5 is allotted
to the provider (who thus receives $5+(1− k) ·$5).

Formally, the price of job j is

p j(θ) = ∑
n∈N

∑
t∈T

x jntc j
(
v j− k ·

(
v j− vn

))
.

The payment to node n is

pn(θ) = ∑
j∈J

∑
t∈T

x jntc j
(
vn +(1− k) ·

(
v j− vn

))
.

k-pricing has two main advantages. The distribution of welfare among users and providers can
be flexibly pre-defined by setting the factor k accordingly, thus allowing for both fairness and
revenue considerations. Prices can be determined in polynomial runtime. On the downside, it
does not yield truthful prices on either side of the market and, as with critical-value pricing,
users can benefit from merging jobs:

Theorem 7 (k-pricing is not job-merge-proof). The greedy heuristic is not job-merge-proof if
complemented by k-pricing.

58 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

Proof. A simple scenario shows that two users can merge their jobs so as to make at least one
of them better off while not reducing the utility of the other user.

W.l.o.g., consider valuations and computing power only. First, assume one node (vn,Cn) =
($0,2) and three job requests (v j1,c j1) = ($4,1), (v j2,c j2) = ($2,1), and (v j3,c j3) = ($1,1).
Then the jobs j1 and j2 are allocated while j3 is not. j1 has utility of $4− ($4− k ·$4) = k ·$4
while j3 has zero utility.

Now assume a merger of j1 and j3 to (v jM ,c jM) = ($2.5,2). Then the merged job request is
ranked higher than j2 in the heuristic’s sorting phase and is allocated. The utility derived by the
merged job is $5− ($5− k ·$5) = k ·$5≥ k ·$4 for k ∈ [0,1].

The prices and payments generated by proportional critical-value pricing and k-pricing with
k = 0.5 are listed in Table 3.5. By construction, both pricing schemes generate budget-balanced
prices and payments. In this example, k-pricing produces higher revenue ($12,571) than pro-
portional critical-value pricing ($12,012).

3.5 Numerical Evaluations

The analytic evaluation in the previous section gave some general insights into the strategic
and computational properties of the presented allocation and pricing schemes. These general
properties, however, provide rather limited guidance to the market operator, who has to choose
an “adequate” mechanism for the setting at hand. Consequently, numerical simulations are
employed in order to obtain more detailed insights into the properties of the presented allocation
and pricing schemes, particularly with respect to

• the complexity of the underlying allocation problem,

• the allocative efficiency of the greedy heuristic compared to the optimum, and

• the incentives of selfish users to misreport their valuations to the mechanism.

Unfortunately, this evaluation cannot be based on real grid workload traces. The only publicly
available traces are cluster workloads available in the Parallel Workload Archive9. However,
this data exhibits various problems. The traces are often incomplete and do not contain all of the
parameters needed for this specific setting. Another substantial limitation is that clusters mainly
consist of homogeneous nodes, whereas this grid setting is heterogeneous. Consequently, artifi-
cial workloads are used for this evaluation. This will also permit testing the allocation problem

9http://www.cs.huji.ac.il/labs/parallel/workload/

http://www.cs.huji.ac.il/labs/parallel/workload/

3.5 NUMERICAL EVALUATIONS 59

Parameter Job Requests Node Offers
Computing power 1 + Binomial(5, 0.5) 1 + Binomial(10, 0.5)
Memory Lognormal(4, 0.15) Lognormal(5, 0.2)
Start time Binomial(5, 0.5) Binomial(4, 0.5)
Valuation Uniform[10,20] Uniform[7, 12]

Table 3.6: Simulation setting.

as well as the exact and the heuristic allocation scheme for their sensitivity to changes in the job
and node characteristics as well as with respect to the competition in the market.

3.5.1 What Makes Instances Hard?

The computational tractability of the allocation problem mainly depends on the number of job
requests and node offers along with the job runtimes, which determine the scheduling hori-
zon. In addition to these parameters, the heuristic’s approximation of the optimal solution also
depends on the level of “competition” in the market. The level of competition can be distin-
guished along two dimensions: the size of the order book, i.e. the number of job requests and
node offers, and the ratio of job requests to node offers. If the competition is very low, meaning
that essentially all job requests are accommodated by the optimal solution, the heuristic will
generally also be able to allocate most of the jobs, and the deviation from the optimal solution
as regards allocative efficiency will be low. With increasing competition, the heuristic is more
likely to take suboptimal allocation decisions.

Data Generation

Three parameters were varied: the number of job requests and node offers (20 nodes, 40 nodes,
up to 200 nodes), the ratio of jobs to nodes (one job per node, two jobs per node, and three jobs
per node), and the mean job runtime d.

Based on the model and the corresponding bidding language, there is a set of further parameters
upon which problem instances (henceforth “order books”) need to be generated. Table 3.6
specifies the probability distributions based on which some of the job and node characteristics
were generated and which were not changed across the several settings. Further information,
e.g. about job runtimes and the availability of nodes, will be given in the description of the
specific settings.

The computing requirements of the jobs were randomly drawn from a binomial distribution
(adding one CPU to always obtain positive values) with n = 5 (i.e., five independent trials)

60 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

and p = 0.5 (the probability of a success in each random trial). The binomial distribution with
p = 0.5 is symmetric and bell-shaped like the normal distribution for continuous parameters.
It was chosen so as to make the majority of the jobs have medium CPU demand, but to also
have some outliers that have low or high CPU demand. For example, the distribution 1 +
Binomial(5, 0.5) leads to a mean of 3.5 available CPUs; the minimum is 1, the maximum 6.
Memory requirements (as integer values) were generated based on a lognormal distribution
with a mean of ≈ 55.216 and a variance of ≈ 69.375 (mean 4 and variance 0.15 in log space).
The resource characteristics of nodes were generated likewise with a mean of 5 and a variance
of 0.2 in log space. The lognormal distribution is recommended by Feitelson (2002) for the
creation of parameters such as file sizes. Representing a normal distribution in log space, it is
positively skewed. The start times and end times were drawn from binomial distributions while
the maximum willingness to pay and reserve prices were drawn from uniform distributions (as
integer values). In the economic literature, the uniform distribution is a prominent choice to
model valuations, cf. Maskin and Riley (2000) and the references therein.

The simulations were run on an Intel Pentium Xeon computer with 3.2 GHz and 2 GB memory.
For each parameter combination, 30 order books were generated based on the aforementioned
distributions. The means and coefficients of variation (which normalize the standard deviation
by the mean) across all 30 runs will be reported.

Data Analysis

Impact of the Level of Competition on the Allocation Problem’s Complexity

In order to obtain the exact solutions, the allocation problem was modeled and solved with
CPLEX 9.1, a state-of-the-art commercial optimization engine. Due to the potentially large
runtimes necessary to solve the integer problem, CPLEX was stopped in the event that it found
a feasible solution within 0.1% of the projected optimum or after at most 30 minutes. CPLEX
then returned the best solution found so far. This allocation algorithm is henceforth called
“Anytime-CPLEX” in the spirit of Sandholm et al. (2005).

Table 3.7 shows the impact of varying the competition in the market. The runtimes of jobs were
drawn from the Binomial distribution 1 + B(5,0.5); node availability times were drawn from
1+B(8,0.5).

It can clearly be seen that the runtime of Anytime-CPLEX grows exponentially with increasing
order book sizes. Anytime-CPLEX already takes about 9 minutes on average to optimally solve
allocation problems with 200 job requests and 200 node offers. The effect of increasing the ratio
|J|/|N| of jobs to nodes is even more significant. With twice as many jobs as nodes, Anytime-
CPLEX only finds feasible suboptimal solutions within 30 minutes in 9 out of 30 runs for 280

3.5 NUMERICAL EVALUATIONS 61

|J
|/
|N
|=

1
|J
|/
|N
|=

2
|J
|/
|N
|=

3
N

od
es

tim
e

C
V

ex
ec

tim
e

C
V

ex
ec

tim
e

C
V

ex
ec

20
27

3.
37

1.
67

0.
96

3
2,

63
9.

60
1.

22
0.

83
0

27
,7

29
.7

0
0.

96
0.

64
6

40
2,

18
7.

37
0.

80
0.

98
7

24
,2

58
.3

0
0.

63
0.

85
9

29
0,

53
7.

40
1.

07
0.

67
2

60
11

,7
46

.9
1.

07
0.

98
4

97
,0

95
.8

7
0.

73
0.

87
9

75
4,

27
5.

10
0.

52
0.

68
1

80
22

,5
75

.0
3

0.
66

0.
99

0
22

1,
15

9.
37

0.
57

0.
86

2
1,

48
8,

80
5.

27
0.

30
0.

67
5

10
0

51
,3

10
.4

3
0.

42
0.

99
6

50
7,

70
6.

67
0.

50
0.

87
2

1,
79

3,
51

9.
80

0.
02

0.
67

8
12

0
10

5,
97

8.
83

0.
34

0.
99

6
87

8,
60

3.
13

0.
51

0.
87

1
–

(1
9)

†
–

–
14

0
17

0,
45

6.
9

0.
46

0.
99

6
1,

36
1,

12
3.

37
(9

)‡
0.

29
0.

87
2

–
(3

0)
†

–
–

16
0

27
6,

61
1.

00
0.

35
0.

99
5

1,
60

5,
77

6.
03

(1
8)

‡
0.

17
0.

86
2

–
(3

0)
†

–
–

18
0

45
2,

94
6.

93
0.

29
0.

99
6

1,
71

5,
24

5.
27

(2
4)

‡
0.

16
0.

86
0

–
(3

0)
†

–
–

20
0

53
4,

55
8.

37
0.

28
0.

99
4

–
(1

6)
†

–
–

–
(3

0)
†

–
–

Ta
bl

e
3.

7:
R

un
tim

e
of

A
ny

tim
e-

C
PL

E
X

de
pe

nd
in

g
on

th
e

nu
m

be
r

of
jo

b
re

qu
es

ts
an

d
no

de
of

fe
rs

an
d

th
e

ra
tio

of
jo

b
re

qu
es

ts
to

no
de

of
fe

rs
.t

im
e

re
pr

es
en

ts
th

e
m

ea
n

ru
nt

im
e

(i
n

m
ill

is
ec

on
ds

),
C

V
th

e
co

ef
fic

ie
nt

of
va

ri
at

io
n,

an
d

ex
ec

th
e

ra
tio

of
al

lo
ca

te
d

jo
bs

to
su

bm
itt

ed
jo

b
re

qu
es

ts
.“

–”
m

ar
ks

se
tti

ng
s

in
w

hi
ch

C
PL

E
X

ra
n

ou
tm

em
or

y
w

he
n

tr
yi

ng
to

m
od

el
th

e
al

lo
ca

tio
n

pr
ob

le
m

,w
he

re
“–

(n
)† ”

in
di

ca
te

s
th

at
th

is
ha

pp
en

ed
in

n
ou

to
f

30
ca

se
s.

“(
n)

‡ ”
in

di
ca

te
s

th
at

C
PL

E
X

on
ly

fo
un

d
a

su
bo

pt
im

al
so

lu
tio

n
w

ith
in

30
m

in
ut

es
in

n
ou

to
f

30
ca

se
s.

62 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

jobs and 140 nodes. For a ratio of three, Anytime-CPLEX can only solve order books with 300
jobs and 100 nodes but nearly uses up its preset time limit of 30 minutes in all cases. For larger
order books, Anytime-CPLEX is not able to internally model the allocation problem and runs
out of memory.

Impact of Job Lengths on the Allocation Problem’s Complexity

Table 3.8 shows the impact of increasing the mean job runtime (and thus the scheduling horizon)
on the runtime of Anytime-CPLEX. This is an important issue as it essentially determines how
“fine-grained” the timeslots can be set, which ultimately involves a trade-off between allocative
efficiency (small timeslots) and computational tractability (large timeslots). Job runtimes were
drawn from the Binomial distributions B(5,0.5), B(6,0.5), B(7,0.5), B(8,0.5), always adding
one timeslot. The mean job runtimes thus are d = 3.5, 4, 4.5, 5. Node availability times were
drawn from B(8,0.5) to B(11,0.5), also always adding one timeslot, to obtain longer availability
times.

As discussed above when comparing the allocation problem to MKP and GAP, the allocation
problem essentially consists of several complex knapsack problems, one problem per timeslot.
Constraint 3.6 of the allocation problem connects these problems by stipulating that a feasible
overall solution must be feasible for all of these local problems at the same time. This complex-
ity is reflected in the numerical results. While Anytime-CPLEX is still able to optimally solve
all problem instances for d = 3.5, its runtime more than doubles for almost all order book sizes
when the mean job runtime is increased to d = 5. This shows that strong consideration should
be given to the granularity of the timeslots when designing the allocation scheme for a specific
setting.

Table 3.8 lists the runtimes of the greedy allocation heuristic for the most complex setting with
d = 5. The results clearly showcase the computational speed of the greedy heuristic, which, if
combined with k-pricing, only takes about 140 milliseconds to allocate 200 job requests and
200 node offers as opposed to more than 21 minutes for Anytime-CPLEX. The last column of
Table 3.8 further shows the impact on the mechanism’s runtime if switching to proportional
critical-value pricing. While it adds considerably to the mechanism’s runtime, the mechanism
still takes less than three seconds on average to solve the allocation and pricing problem for the
largest instances.

Impact of the Level of Competition on the Heuristic’s Efficiency Ratio

The previous results show that the level of competition is one of the main reasons for the com-
plexity of the underlying allocation problem. Moreover, as discussed above, with increasing
competition the heuristic will increasingly take unfortunate allocation decisions and the devi-
ation from Anytime-CPLEX (as a proxy for the optimal solution) with respect to allocative

3.5 NUMERICAL EVALUATIONS 63

A
ny

tim
e-

C
PL

E
X

w
ith

k-
pr

ic
in

g
G

re
ed

y
he

ur
is

tic
(d

=
5)

Jo
bs

&
d

=
3.

5
d

=
4

d
=

4.
5

d
=

5
k-

pr
ic

in
g

pr
op

.c
ri

tic
al

-v
al

ue
no

de
s

tim
e

C
V

tim
e

C
V

tim
e

C
V

tim
e

C
V

tim
e

C
V

tim
e

C
V

20
17

9.
70

1.
04

23
9.

00
1.

33
17

4.
43

0.
65

26
3.

93
1.

63
2.

10
2.

55
7.

30
1.

07
40

2,
71

3.
50

1.
20

4,
10

1.
53

1.
07

4,
34

9.
60

0.
84

5,
08

3.
50

0.
79

10
.8

7
1.

45
37

.5
3

0.
49

60
10

,9
78

.5
3

1.
08

16
,6

24
.0

3
0.

84
17

,8
59

.8
3

0.
47

19
,3

09
.4

7
0.

64
20

.7
7

0.
74

93
.3

0
0.

20
80

22
,8

51
.0

7
0.

53
37

,6
07

.7
0

0.
62

62
,4

58
.3

0
0.

61
74

,3
31

.2
3

0.
62

34
.6

7
0.

48
19

4.
73

0.
12

10
0

54
,4

60
.9

3
0.

36
75

,4
85

.0
3

0.
40

85
,4

88
.5

3
0.

48
14

1,
97

4.
37

0.
42

41
.1

7
0.

21
36

5.
97

0.
10

12
0

98
,7

68
.1

7
0.

46
13

7,
17

9.
13

0.
35

19
6,

34
7.

33
0.

38
20

6,
41

1.
00

0.
24

53
.9

7
0.

18
63

6.
40

0.
11

14
0

18
7,

00
1.

47
0.

44
28

0,
87

2.
87

0.
40

31
3,

29
1.

60
0.

48
37

9,
04

3.
30

0.
36

90
.5

7
0.

32
94

2.
67

0.
08

16
0

25
7,

52
2.

77
0.

35
35

6,
70

5.
77

0.
30

45
9,

10
1.

00
0.

22
59

4,
92

0.
23

(1
)‡

0.
45

93
.9

3
0.

14
1,

41
7.

73
0.

07
18

0
39

4,
84

7.
77

0.
25

55
5,

52
2.

93
0.

29
67

9,
26

4.
40

0.
20

90
5,

31
7.

33
0.

32
12

1.
97

0.
20

1,
94

4.
70

0.
07

20
0

56
4,

35
5.

30
0.

43
79

4,
97

7.
23

0.
32

1,
06

9,
54

0.
57

0.
30

1,
28

4,
63

4.
43

0.
26

13
9.

23
0.

14
2,

63
0.

23
0.

07
(1

)§
(1

)‡ (
1)

§
(3

)‡ (
1)

§

Ta
bl

e
3.

8:
R

un
tim

e
of

A
ny

tim
e-

C
PL

E
X

an
d

th
e

he
ur

is
tic

de
pe

nd
in

g
on

th
e

nu
m

be
r

of
jo

b
re

qu
es

ts
an

d
no

de
of

fe
rs

an
d

th
e

(m
ea

n)
jo

b
ru

nt
im

e.
d

is
th

e
m

ea
n

jo
b

ru
nt

im
e

(i
n

tim
es

lo
ts

),
tim

e
re

pr
es

en
ts

th
e

m
ea

n
ru

nt
im

e
(i

n
m

ill
is

ec
on

ds
),

C
V

is
th

e
co

ef
fic

ie
nt

of
va

ri
at

io
n.

“(
n)

‡ ”
in

di
ca

te
s

th
at

C
PL

E
X

on
ly

fo
un

d
a

su
bo

pt
im

al
so

lu
tio

n
w

ith
in

30
m

in
ut

es
in

n
ou

to
f

30
ca

se
s.

T
he

ad
di

tio
n

(n
)§

in
di

ca
te

s
th

at
C

PL
E

X
co

ul
d

no
tfi

nd
an

y
fe

as
ib

le
so

lu
tio

n
w

ith
po

si
tiv

e
w

el
fa

re
w

ith
in

30
m

in
ut

es
in

n
ou

to
f3

0
ca

se
s.

64 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

|J|/|N|= 1 |J|/|N|= 2 |J|/|N|= 3
Nodes ratio CV exec ratio CV exec ratio CV exec

20 0.967 0.17 0.963 0.946 0.11 0.830 0.920 0.11 0.646
40 0.977 0.13 0.987 0.961 0.09 0.859 0.941 0.07 0.672
60 0.983 0.09 0.984 0.970 0.07 0.879 0.948 0.06 0.681
80 0.981 0.11 0.990 0.971 0.08 0.862 0.953 0.06 0.675

100 0.983 0.07 0.996 0.972 0.06 0.872 0.959 0.05 0.678
120 0.986 0.07 0.996 0.976 0.06 0.871 – (19)† – –
140 0.987 0.06 0.996 0.978 (9)‡ 0.04 0.872 – (30)† – –
160 0.987 0.04 0.995 0.982 (18)‡ 0.03 0.862 – (30)† – –
180 0.988 0.05 0.996 0.985 (24)‡ 0.05 0.860 – (30)† – –
200 0.991 0.05 0.994 – (16)† – – – (30)† – –

Table 3.9: Ratio of the heuristic’s mean efficiency to the mean efficiency generated by Anytime-
CPLEX depending on the number of job requests and node offers and the ratio of requests to
offers. ratio denotes the ratio of the mean efficiencies, CV the coefficient of variation, and exec
the ratio of allocated jobs to submitted job requests with Anytime-CPLEX.“–” marks settings
in which CPLEX ran out memory when trying to model the allocation problem, where “– (n)†”
indicates that this happened in n out of 30 cases. “(n)‡” indicates that CPLEX only found a
suboptimal solution within 30 minutes in n out of 30 cases.

efficiency will become larger. Consequently, to measure the inherent trade-off between com-
putational complexity and allocative efficiency for the greedy heuristic, Table 3.9 shows the
heuristic’s deviation from the solutions returned by Anytime-CPLEX for increasing order book
sizes and ratios of job requests to node offers. The results are based on the same order books as
above, i.e. job runtimes were again drawn from 1 + B(5,0.5) and node availability times were
drawn from 1+B(8,0.5).

For a ratio of |J|/|N| = 1, Anytime-CPLEX and the heuristic can essentially accommodate all
requests and the heuristic consequently approximates the near-optimal solution of Anytime-
CPLEX by 96.7% for the smallest order book and by 99.1% for the largest order book. This
approximation ratio will generally increase with increasing order book sizes as the heuristic
receives additional degrees of freedom in making its allocation decisions. Interestingly, for
increasing ratios of jobs to nodes, the deviation increases only slightly. Even for a ratio of
|J|/|N| = 3, whereby only about 67% of the jobs can be accommodated, the heuristic still
generates about 95% of the allocative efficiency of Anytime-CPLEX.

In summary, the heuristic strikingly outperforms Anytime-CPLEX with respect to computa-
tional tractability; the latter was also clearly shown to be infeasible in practice. At the same

3.5 NUMERICAL EVALUATIONS 65

time, the heuristic closely approximates the optimal allocative efficiency in the average case, as
opposed to the negative result for the worst case (Theorem 3).

3.5.2 Strategic Behavior

In this subsection, the effect of combining the greedy heuristic with the proposed pricing
schemes is analyzed on the incentives of single users and providers to truthfully report their
valuations. These incentives inherently depend on the level of competition in the market. More-
over, for k-pricing, it will be interesting to investigate the influence of the choice of the param-
eter k on the users’ incentives.

Three parameters were varied: For k-pricing, the factor k was shifted (k = 0.3,0.5,0.7). Further-
more, the order book size was varied and the ratio of job requests to node offers was increased
from one job per node to three jobs per node. For each such parameter combination, 200 order
books were generated based on the simulation setting specified above in Table 3.6, with job
runtimes being drawn from 1+B(5,0.5) and node availabilities from 1+B(8,0.5). Then each
combination of the heuristic and the four pricing schemes (k-pricing with k = 0.3,0.5,0.7 and
proportional critical-value pricing) was fed with the same set of order books, i.e. 200 runs per
setting were performed. The large number of runs is due to the number of parameters and their
interdependencies (e.g. recall that the total valuation of a job (node) equals its reported valua-
tion times its required computing power times its time span); this might cause heavy statistical
noise. Therefore the means across all 200 runs are reported. Since the users’ and providers’
utility is measured on a cardinal scale, the statistical significance was tested using one-tailed
matched-pairs t-tests with the alternative hypothesis that the market participant benefits from
misreporting, i.e. her mean difference in utility is greater than zero (Fahrmeir et al., 2004).10

The p-values of the tests are indicated in the tables.

Manipulation by a Single User

In the first setting, it was analyzed to what extent a single user can benefit from reporting an
untrue valuation. The user of j reported 50%, 60%, up to 150% of her true valuation; ṽ j is
therefore a percentage bid of the true valuation.

The user of j has two possible strategies for deviating from truthful bidding:

• The user understates her true valuation for j. With k-pricing, there are two opposite
implications for this strategy compared to truthful bidding: On the one hand (the adverse

10Due to the large sample size, the t-test is very robust to violations of the normality assumption underlying the
test (Ramsey, 1980; Sawilowsky and Blair, 1992; Bridge and Sawilowsky, 1999).

66 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

effect), j risks receiving a lower ranking and may thus not be allocated at all, or it may be
allocated to a node n with a higher reserve price and may thus obtain a k-fraction of the
smaller resulting welfare spread ṽ j− vn. On the other hand (the beneficial effect), j may
remain in the allocation and may even be able to obtain a larger fraction of the welfare
spread, e.g. if it is still allocated to the same node as with truthful bidding (ṽ j− k · (ṽ j−
vn) < v j− k · (v j− vn)).

• The user overstates her true valuation for j. Equivalently, j may be allocated to a cheaper
node and reap a k-fraction of the larger surplus (the beneficial effect). However, it could
also remain allocated to the same or an only slightly cheaper node and obtain a smaller
fraction of the surplus (the adverse effect).

The factor k and the competition in the market ultimately determine which effect will prevail.
For example, the bigger k is, the bigger the beneficial effect and the smaller the adverse ef-
fect from overstating will generally be. Moreover, the greater the competition, the smaller the
chances of being allocated to the same node as with truthful bidding when misreporting the
valuation.

Table 3.10 lists the utility of a single user when misstating compared to truthful reporting for
a low level of competition with 20 jobs and 20 nodes. Table 3.11 lists the utility for a more
competitive setting with 60 jobs and 20 nodes.

For the low level of competition (one job per node), k-pricing is essentially robust to overstating;
the adverse effect outweighs the beneficial effect on average. Moreover, the smaller k is, the
less likely the user can gain from overstating. The point is that if k is small, the job must be
allocated to a much cheaper node than would be the case with a larger k in order to benefit. For
example, assume a job with a true valuation of $100 is allocated to a node with a reserve price
of $50. Then, for k = 0.5, the job has to pay $75. If the user overstates and reports a valuation
of, say, $120, the job must be allocated to a node with a reserve price of at most $29 (if integer
valuations are imposed) to benefit. Now assume k = 0.3. With truthful reporting, the job has
to pay $85. The user again decides to report a valuation of $120 instead in order to achieve a
higher ranking in the heuristic’s sorting phase. The job must then be allocated to a node with a
reserve price of at most $3 to benefit.

The effect of understating is essentially inverse. The results show that the heuristic combined
with k-pricing is significantly vulnerable to understating for smaller values of k (k = 0.3,0.5).
For example, for k = 0.3, a user can gain more than 80% in (expected) utility by reporting only
70% of her true valuation. Again, the effect inherently depends on the factor k. With a small
k, it is easier for users to reap a higher fraction of the supposed surplus. For example, assume
again that for truthful reporting, a job with a true valuation of $100 is allocated to a node with a

3.5 NUMERICAL EVALUATIONS 67

Percentage bid
k-pricing Critical-value

k = 0.3 k = 0.5 k = 0.7 pricing
abs rel abs rel abs rel abs rel

50% 17.61 0.75 18.05 0.46 18.50 0.34 6.93 0.13
60% 40.08 1.71*** 42.31 1.09 44.54 0.82 33.34 0.62
70% 42.46 1.82*** 47.30 1.21*** 52.15 0.96 45.36 0.84
80% 38.86 1.66*** 46.77 1.20*** 54.67 1.00 50.64 0.93
90% 32.52 1.39*** 43.94 1.13*** 55.36 1.02 53.36 0.98

100% 23.37 1.00 38.95 1.00 54.53 1.00 54.20 1.00
110% 11.78 0.50 31.27 0.80 50.76 0.93 53.60 0.99
120% -0.24 -0.01 23.15 0.59 46.54 0.85 53.06 0.98
130% -12.30 -0.53 15.11 0.39 42.53 0.78 52.24 0.96
140% -24.51 -1.05 6.65 0.17 37.81 0.69 52.24 0.96
150% -36.68 -1.57 -1.77 -0.05 33.15 0.61 52.24 0.96

Table 3.10: Utility for a single misreporting user with 20 jobs and 20 nodes. abs denotes the
mean absolute utility, rel the ratio of means of the utility when misreporting divided by the
utility from truthful reporting. * denotes significance at the level of p = 0.1, ** at p = 0.05, and
*** at p = 0.01.

Percentage bid
k-pricing Critical-value

k = 0.3 k = 0.5 k = 0.7 pricing
abs rel abs rel abs rel abs rel

50% 0.22 0.01 0.23 0.01 0.24 0.01 0.92 0.04
60% 6.07 0.37 6.37 0.23 6.67 0.17 1.60 0.07
70% 16.61 1.01 18.22 0.67 19.84 0.52 10.85 0.46
80% 21.34 1.30*** 25.21 0.92 29.08 0.76 18.60 0.78
90% 20.03 1.22*** 27.01 0.99 33.98 0.89 22.99 0.96
100% 16.41 1.00 27.35 1.00 38.29 1.00 23.83 1.00
110% 8.05 0.49 22.10 0.81 36.15 0.94 23.08 0.97
120% -1.74 -0.11 16.82 0.61 35.38 0.92 20.74 0.87
130% -11.90 -0.72 10.81 0.40 33.52 0.88 17.27 0.72
140% -23.40 -1.43 3.53 0.13 30.46 0.80 12.16 0.51
150% -35.49 -2.16 -4.20 -0.15 27.08 0.71 9.26 0.39

Table 3.11: Utility for a single misreporting user with 60 jobs and 20 nodes. abs denotes the
mean absolute utility, rel the ratio of means of the utility when misreporting divided by the
utility from truthful reporting. * denotes significance at the level of p = 0.1, ** at p = 0.05, and
*** at p = 0.01.

68 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

reserve price of $50 and has to pay $75 for k = 0.5 and $85 for k = 0.3. If the user understates
and reports a valuation of, say, $80, for k = 0.5, it must be allocated to a node with a reserve
price of at most $74 to benefit. For k = 0.3, it must be allocated to a node with a reserve price
of at most $63 to benefit.

As stated in Theorem 4, with (proportional) critical-value pricing, users cannot gain from mis-
stating their valuations in any case, so the same holds for the means across all runs. One inter-
esting aspect is that critical-value pricing does not punish overstating as severely as k-pricing.
If a job is allocated with truthful reporting, it is also allocated if the user overstates the valua-
tion. But as the price does not directly depend on the reported valuation, the overall utility does
not change. The only negative effect from overstating arises if a job only becomes allocated
if the user overstates her valuation. Since in this case the critical value is larger than the true
valuation, the user suffers a negative utility.

Interestingly, while k-pricing is vulnerable to understating, the potential gain from understat-
ing significantly diminishes as the competition in the market increases (cf. Table 3.11). The
argument is that the risk of being allocated to a substantially more expensive node (and thus
reaping a k-fraction of the smaller surplus) increases as the competition in the market increases.
This is in line with the theoretic results of Hurwicz (1972) and Roberts and Postlewaite (1976)
who show that, as the market size increases, users essentially become price takers and strategic
considerations converge towards truthful behavior.

Manipulation by a Single Provider

In the second setting, which is symmetric to the setup above, it is analyzed to what extent
a single provider can benefit from reporting an untrue reserve price. The implications from
under- or overstating the true reserve price are essentially analogous to those on the demand
side.

• As for users, there are two opposite effects of understating the reserve price. Recall that
the payment to a resource provider consists of two components: her reserve price and
her fraction of the surplus, i.e. total revenue less total reserve prices. On the one hand,
by understating the reserve price, the provider inherently lowers the first component. On
the other hand, she may achieve a higher ranking for her node and may thus be allocated
more load and thus a higher fraction of the surplus.

• The implications of overstating the reserve price are essentially the reversion of the con-
sequences of understating this valuation.

3.5 NUMERICAL EVALUATIONS 69

Percentage bid
k-pricing Proportional

k = 0.3 k = 0.5 k = 0.7 critical-value pricing
abs rel abs rel abs rel abs rel

50% 70.10 0.97 17.81 0.34 -34.48 -1.11 -58.09 -2.15
60% 86.16 1.19*** 35.92 0.69 -14.31 -0.46 -38.06 -1.41
70% 97.12 1.34*** 50.95 0.98 4.78 0.15 -16.70 -0.62
80% 88.01 1.21*** 52.20 1.01 16.39 0.53 4.05 0.15
90% 71.89 0.99 47.20 0.91 22.51 0.72 18.24 0.67
100% 72.60 1.00 51.86 1.00 31.12 1.00 27.05 1.00
110% 49.82 0.69 37.81 0.73 25.80 0.83 26.53 0.98
120% 29.21 0.40 23.34 0.45 17.48 0.56 19.44 0.72
130% 12.14 0.17 10.26 0.20 8.38 0.27 10.38 0.38
140% 11.90 0.16 10.26 0.20 8.62 0.28 10.19 0.38
150% 4.65 0.06 4.06 0.08 3.46 0.11 3.99 0.15

Table 3.12: Utility for a single misreporting provider with 20 jobs and 20 nodes. abs
denotes the mean absolute utility, rel the ratio of means of the utility when misreport-
ing divided by the utility from truthful reporting. * denotes significance at the level of
p = 0.1, ** at p = 0.05, and *** at p = 0.01.

Table 3.12 lists the mean utility across all 200 runs for a single provider when misstating com-
pared to truthful reporting in each of the four payment schemes and for a low level of competi-
tion (among users). Table 3.13 shows the results for the more competitive setting with 60 jobs
and 20 nodes.

For a low level of competition, k-pricing with a small k (= 0.3) is vulnerable to understating for
the supply side of the market also. This vulnerability diminishes as k increases. These results
can again be explained by means of the two opposite implications of understating or overstating.
As discussed above, if provider n understates the reserve price vn, then this component of the
payment is automatically lowered, but she might be able to extract a fraction of the larger spread
v j− ṽn. However, since the provider receives (1− k) · (v j− ṽn) of this spread, this beneficial
effect of understating gradually diminishes as k converges to 1.

Moreover, k-pricing is robust to overbidding, as the loss in the surplus component of k-pricing’s
payment scheme outweighs the gain in the reserve price component.

An important result is that, while proportional critical-value pricing does not produce truthful
payments (in dominant strategies), it is robust to both under- and overbidding on average. With
critical-value pricing and a low level of competition, the surplus (payments of users exceeding
reserve prices) to be distributed among providers with the proportional payment rule will gen-

70 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

Percentage bid
k-pricing Proportional

k = 0.3 k = 0.5 k = 0.7 critical-value pricing
abs rel abs rel abs rel abs rel

50% 87.59 0.65 27.95 0.29 -31.69 -0.55 5.60 0.05
60% 109.55 0.82 50.88 0.53 -7.79 -0.14 27.86 0.27
70% 127.05 0.95 70.34 0.73 13.62 0.24 50.26 0.49
80% 131.47 0.98 80.64 0.84 29.81 0.52 71.33 0.70
90% 128.26 0.96 85.35 0.89 42.44 0.74 88.32 0.86

100% 134.02 1.00 95.73 1.00 57.44 1.00 102.36 1.00
110% 116.74 0.87 88.09 0.92 59.44 1.03** 101.74 0.99
120% 102.75 0.77 81.40 0.85 60.05 1.05** 101.75 0.99
130% 79.60 0.59 65.89 0.69 52.18 0.91 88.34 0.86
140% 66.71 0.50 56.49 0.59 46.27 0.81 74.54 0.73
150% 60.19 0.45 52.22 0.55 44.24 0.77 69.17 0.68

Table 3.13: Utility for a single misreporting provider with 60 jobs and 20 nodes. abs
denotes the mean absolute utility, rel the ratio of means of the utility when misreport-
ing divided by the utility from truthful reporting. * denotes significance at the level of
p = 0.1, ** at p = 0.05, and *** at p = 0.01.

erally be low. Consequently, providers have little to gain by trying to strategically influence this
component of the payment scheme.

One might think that increased competition on the demand side of the market would give
providers more strategic leeway by making their load less sensitive to their reported reserve
price. However, the results in Table 3.13 paint a somewhat different picture. k-pricing essen-
tially becomes less sensitive to underbidding. k-pricing is vulnerable to underbidding because
the gain in the payment’s surplus component may outweigh the loss in the reserve price compo-
nent as the provider’s load may increase with a lower reserve price. But with high competition,
the provider’s load (and thus the payment’s surplus component) is less sensitive to the reported
reserve price. While k-pricing becomes more vulnerable to overbidding, even for a large k
(= 0.7) the potential gain is insignificant.

For a higher level of competition, proportional critical-value pricing no longer punishes under-
and overbidding that severely. However, on average it remains thoroughly robust.

In summary, in settings with a low level of competition, k-pricing is vulnerable to underbid-
ding from both users and providers if only a small portion of the generated welfare (i.e. k is
small) is allocated to users. As formally shown in Theorem 4, critical-value pricing is truth-
ful on the demand side of the market. Even though this implies fairly low prices for resource

3.6 IMPLICATIONS 71

requests in settings with a low level of competition (and thus a smaller portion of welfare for
resource providers), the proposed proportional amendment to critical-value pricing is robust to
both under- and overbidding by resource providers.

3.6 Implications

Thus far there has only been scant research about how grid markets should be implemented
in complex (realistic) settings. As Lai (2005) points out, “the attention of system designers,
especially those designing scalable systems, should also be balanced with equal concern given
to strategic behavior”. In this chapter, the design of grid markets was tackled from both ends:
scalability and strategic behavior.

The analysis has shown that exact mechanisms, which always optimally solve the allocation
problem, are infeasible in practice. In contrast, the greedy heuristic is highly scalable. If em-
ployed in interval scheduling mode, Sun Microsystems’s N1GE scheduler is typically executed
every 15 seconds. It was found that, if complemented with k-pricing, the heuristic can clear up
to 2,500 orders per side on average across 200 order books within this timeframe (12.7 seconds).
If compared to the size of PlanetLab, the largest testbed for networking and distributed comput-
ing, which currently comprises 927 nodes at 452 sites,11 these results underline the heuristic’s
applicability to practical scenarios. While this scalability comes at the expense of efficiency, it
was also shown that the heuristic generates near-optimal allocations on average.

With respect to the strategic behavior of grid market participants, two alternative pricing
schemes have been investigated. From a welfare perspective, k-pricing offers the nice fea-
ture that, given truthful information from all users, welfare can be distributed among users and
providers according to the parameter k, which can act as an adjusting screw. The welfare im-
plications of proportional critical-value pricing are more involved, as the distribution of welfare
hinges on the competition on both sides of the market. In contrast to k-pricing, there is no direct
adjusting screw for the market operator. However, via the critical values of job requests, pro-
portional critical-value pricing implements a desirable economic dynamicity in the sense that
prices and payments adequately reflect resource scarcity. If resources are not scarce, critical
values will be low, and resource providers might just receive their reserve prices. With increas-
ing scarcity, critical values converge to the users’ maximum willingness to pay, and resource
providers extract a larger fraction of welfare. Considering strategic users, proportional critical-
value pricing is clearly advantageous in that users cannot profit from misreporting in any case
and resource providers cannot benefit from overstating their reserve prices on average. With
k-pricing, the freedom in choosing k becomes somewhat restricted. On the one hand, if k – and

11as of 16.11.2008, http://www.planet-lab.org/

http://www.planet-lab.org/

72 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

thus the users’ surplus – is small, both users and providers have a significant incentive to un-
derstate their true valuations. On the other hand, if k is large, and hence the providers’ surplus
is low, this reduces the incentive for resource providers to contribute their idle resources to the
grid. With respect to computational considerations, k-pricing clearly outperforms proportional
critical-value pricing.

In large-scale settings, k-pricing will generally be preferable to proportional critical-value pric-
ing due to its computational simplicity. Moreover, as discussed above, as the market size in-
creases, the potential gains from misreporting become smaller. The increasing competition
assumes the pricing scheme’s role of inducing users to engage in truthful behavior. In small-
scale settings, the importance of computational considerations naturally diminishes, and in line
with the results for increasing market sizes, strategic considerations gain in importance as the
market size decreases. Proportional critical-value pricing may thus prove superior to k-pricing
in these settings, as it not only ensures truthful reporting of users on average, but in dominant
strategies.

In conclusion, a market mechanism was presented that approaches the issues of scalability and
strategic behavior in an integrated manner. The results presented in this work also suggest that
centralized, direct revelation mechanisms can successfully be implemented even in complex
settings, which refutes the contrary statement made by Guo et al. (2007).

3.7 Discussion

In Section 3.2, the need to cope with several domain-specific and economic requirements was
discussed when designing a market mechanism for computational grids. As summarized in
Table 3.1, up to now there has been no mechanism fully capable of accounting for dependencies
between multiple grid resources in large-scale settings with strategic users. Unfortunately, as
shown by the Myerson-Satterthwaite impossibility theorem, it is not possible to design such a
perfect mechanism that satisfies all requirements. However, the proposed greedy heuristic and
the pricing schemes present a significant step forward compared to previous work in this field.

The analysis suffers from two main limitations. Since there is currently no data available for
real grid workloads, especially with respect to user valuations, the analysis built on artificial
workloads. The results will thus have to be confirmed in the future as new data becomes avail-
able. Another limitation is the assumption that a job can be migrated between nodes at zero cost.
It would be interesting to weaken this assumption and limit the heuristic’s flexibility in order
to avoid excessive migrations. Moreover, a further analyses of the presented pricing schemes
would be interesting. The numerical simulation only considered individual misreporting by

3.7 DISCUSSION 73

single market participants. By means of experiments and agent-based simulations, the effect
of multiple misreporting users who possibly form coalitions might be investigated. Extensions
of the heuristic allocation scheme, such as the use of more sophisticated norms in the sorting
phase, as well as the study of their impact on the mechanism’s strategic properties, might be
further promising areas for future research.

74 OUTCOME DETERMINATION IN LARGE-SCALE GRID SETTINGS

Chapter 4

Randomization and Distributed Outcome
Determination

4.1 Introduction

I n the previous chapter, a highly scalable heuristic was designed and complemented with a
pricing scheme that yields truthful prices for users. Unfortunately, the deterministic greed-

iness and simplicity of this heuristic can lead to allocation decisions far from optimal in special
cases (cf. Theorem 3 in the previous chapter). The focus of this chapter is thus on advancing the
allocation algorithm. One possible means for intercepting worst cases as the one in the proof
to Theorem 3 in the previous chapter is to randomize the allocation heuristic. Then, with posi-
tive probability, the desirable high-volume job (i.e., with large vc) will be considered instead of
the small job with a higher density-based ranking (i.e., v). However, when introducing random
choices to the mechanism, the prices of jobs cannot be based on critical values anymore, since
the allocation algorithm is non-deterministic and it is thus impossible to determine the critical
values of jobs. Consequently, there is also the need for new pricing rules.

The contributions of this chapter are as follows:

• The heuristic is randomized so as to account for worst cases. While the (one-sided)
truthfulness of the pricing scheme cannot be maintained, a randomization and a payment
scheme are presented, which together induce users to bid “close” to their true valuations.

• It is shown how this randomized mechanism and the deterministic mechanism can be
combined to a distributed randomized mechanism that aims at capturing the benefits of
both mechanisms.

76 RANDOMIZATION AND DISTRIBUTED OUTCOME DETERMINATION

• This distributed randomized mechanism is evaluated with respect to strategic users and
the generated efficiency.

4.2 Related Work

Randomization has recently been the subject of much interest in mechanism design, the main
reason being that randomized mechanisms can help in obtaining better performance ratios than
deterministic mechanisms (Nisan and Ronen, 2001). For Nisan and Ronen (2001), “a ran-
domized mechanism is a probability distribution over a family [...] of mechanisms.” I.e., a
randomized mechanism is constructed by randomizing over deterministic mechanisms. While
the single deterministic mechanisms may still perform poorly in special cases, randomizing
over these deterministic mechanisms makes these special cases improbable (Goldberg et al.,
2006). If a randomized mechanism consists of a random “coin flip” over truthful deterministic
mechanisms, it is still truthful in dominant strategies and thus truthful in the universal sense
(Nisan and Ronen, 2001; Dobzinski et al., 2006).

Goldberg et al. (2006) present two mechanisms that are based on random sampling. The key
idea is to randomly partition the bidders in combinatorial auctions into distinct groups. One
group is used for market / preference analysis, and what is learned from this group is then
applied to set parameters in the other group(s), such as reserve prices. The objective of the
presented mechanisms is to maximize the revenue of the provider of a “digital good”1.

Dobzinski et al. (2006) present a similar framework for constructing randomized mechanisms
for combinatorial auctions. The objective of the framework is to enable the design of mech-
anisms that are truthful in the universal sense and that provide a good approximation to the
optimal (welfare maximizing) allocation. The main idea of the framework is again to randomly
assign the bidders to distinct groups. The bidders in one of the groups do not get any items
but are only used to determine appropriate (reserve) prices for the second-price and fixed-price
auctions, respectively, within the other groups. Two specific mechanisms are constructed, each
for a specific type of bidder valuation functions, which attain a good performance ratio in ex-
pectation. The main problem of this framework is that there is a relatively high probability that
the solution is not close to the expected value. For example, the specific mechanism for general
bidders provides an expected performance ratio (i.e., deviation from the optimal solution) of
O(
√

m
ε3) with probability 1− ε , where 0 < ε < 1 is the parameter for randomly assigning the

bidders to the different groups and m is the number of items that are to be sold. In consequence,
a good expected performance ratio (large ε) implies having to compromise on the probability

1In the terminology of Goldberg et al. (2006), a digital good is a good with unlimited supply where all instances
of the good are identical.

4.2 RELATED WORK 77

with which this ratio is achieved.

Dobzinski (2007) extends this framework to enable the design of universally truthful mecha-
nisms that provide a good performance ratio with high probability. Again, two specific mecha-
nisms are constructed, one for the case of general bidders and one for the case of sub-additive
bidders2. The first mechanism provides an O(

√
m) performance ratio with probability of at

least 1−O(logm√
m). The second mechanism has the performance ratio O(logm log(logm)) with

probability of at least 1−O(1
logm).

Awerbuch et al. (2003) consider online optimization problems where jobs arrive over time,
such as in network admission control and routing problems. The objective in this setting is to
maximize the provider’s revenue. A framework is presented that essentially piggybacks on some
existing, not necessarily truthful online approximation algorithm B, where B is ρ-competitive
in that the revenue of an (optimal) offline, omniscient algorithm (that has complete information
about the jobs) is not more than ρ times the expected revenue produced by B.3 The framework
then combines B with the randomized admission / rejection and pricing of jobs so as to design a
truthful mechanism that is O(ρ + log µ)-competitive, where µ is the ratio of the maximum job
valuation to the minimum job valuation.

The work of Archer et al. (2003) is closest to the approach presented in this chapter. Archer
et al. (2003) design a mechanism for combinatorial auctions with single-minded bidders4. The
mechanism is based on the randomized rounding of solutions to linear programming relaxations
of the well-known set packing problem in combinatorial auctions. In contrast to the other works,
the mechanism is not truthful in the universal sense. Instead, the weaker solution concept of
truthfulness in expectation is introduced, where truthful behavior only maximizes the bidders
expected utility. Users are induced to bid truthfully by giving them a discount amounting to
their aggregated probability of being allocated when bidding less. But the approach leaves
two difficulties (Archer et al., 2003): The discount cannot be efficiently computed and the
mechanism might frequently have to give large discounts to the users, which might distort
budget-balance.

In summary, the recent theoretical results show that randomization is a promising complement
to the toolbox of market designers. However, these theoretical results are practically infeasible
in the more realistic and complex scenario at hand. But randomization is too promising to give
up on it yet, and one might be willing to sacrifice the strong constraint of truthfulness in the hope
for an increase in allocative efficiency. In the next section, a fundamentally different approach

2Informally, a bidder is sub-additive if the valuation for a combination of items is equal to or less than the sum
of the valuations for the single items.

3B may hence be deterministic or randomized.
4A bidder is single-minded if she desires exactly one subset of the items that are for sale in a combinatorial

auction.

78 RANDOMIZATION AND DISTRIBUTED OUTCOME DETERMINATION

to randomizing the allocation algorithm and determining the prices will thus be explored.

4.3 A Randomized Pay-as-Bid Mechanism

A simplified job type θ j = (v j,c j,m j) with v j > 0 is used where the attributes correspond to the
attributes used in the previous chapter, except that time constraints are not considered for the
ease of presentation. Accordingly, node n has the type θn = (vn,Cn,Mn).

The rationale for randomizing the heuristic proposed in the previous chapter is to intercept worst
cases as in the proof to Theorem 3. Consequently, the approach will be to randomly choose the
jobs in the allocation phase of the heuristic with the probability being dependent on the jobs’
reported valuations. Let π j(θ̃) = π j(θ̃ j, θ̃− j) be the probability for job j of being allocated
given its reported type θ̃ j and the (reported) types θ̃− j of all other jobs and nodes. Users are
assumed to truthfully report their jobs’ resource constraints c j and m j but to possibly misreport
about v j, that is θ̃ j = (ṽ j,c j,m j). Resource providers are assumed to be obedient (i.e., θ̃n = θn).

In this section, a so-called “pay-as-bid” mechanism is presented in which p j(θ̃) = ṽ jc j for each
allocated job j, and p j(θ̃) = 0 else. Obviously, this payment scheme cannot be truthful. Regard-
less of how the allocation algorithm is randomized, users can only hope for a positive utility if
they understate their true valuation. However, one can try to induce users to bid “close” to their
true valuations. Similar to the well-known monotonicity condition for truthful deterministic
mechanisms (cf. Lehmann et al. (2002); Mu’alem and Nisan (2008)), every truthful random-
ized mechanism must be monotone (Archer and Tardos, 2001; Archer et al., 2003):

Definition 1 (Monotonicity). A randomized mechanism is monotone if, for any j, c j, m j, and
θ̃− j,

π j((v̂ j,c j,m j), θ̃− j)≥ π j((ṽ j,c j,m j), θ̃− j), v̂ j ≥ ṽ j.

The intuition behind this is that if the allocation mechanism was not monotone, the user could
increase her job’s chance of being allocated by reporting a lower valuation. Besides ensuring
monotonicity, in order to induce users to report a valuation close to their true valuation, the
underlying idea when randomizing the allocation algorithm is to try to give high bidders a
“discount” such that a high bidder has a disproportionately higher probability of her job getting
allocated than a user with a low reported valuation.

4.3.1 The Mechanism

The allocation algorithm of the heuristic presented in the previous chapter is randomized
as follows. Instead of having a strict ordering when considering the jobs in the allocation

4.3 A RANDOMIZED PAY-AS-BID MECHANISM 79

phase, in each step the job that is considered for allocation is determined randomly. Let
∆k = (j1, j2, . . . , jk), jl 6= jm for l 6= m, be the sequence of jobs that have been considered in
the first k allocation decisions of the heuristic, where job jl has been considered in l-th place.
Let 1 j(θ̃ ,∆k) = 1 if job j can be allocated after the job sequence ∆k has been allocated, and
1 j(θ̃ ,∆k) = 0 else. This indicator function contains all restrictions on the possible allocations
that are due to capacity constraints and reserve prices. Then, in step k and given the prior
allocation decisions ∆k−1 of the heuristic, job j is allocated with probability

ϕ j,∆k−1(θ̃) =

1 j(θ̃ ,∆k−1)·ṽα

j

∑i∈J\∆k−1
1 j(θ̃ ,∆k−1)·ṽα

i
, α ≥ 1 if 1 j(θ̃ ,∆k−1) = 1

0 else.
(4.1)

The pseudo-code of this allocation algorithm is given in Appendix B.1. The intuition behind
this randomization is to determine the probability of choosing a specific job based on this job’s
reported valuation relative to the reported valuations of the other jobs. α is an adjusting screw
that has to be set by the market designer to determine to what extent a high valuation job should
be preferred over a job a with low valuation. The idea of a large α is to induce users to bid close
to their true valuation by boosting their allocation probability. This will be analyzed in detail
below.

The probability π j1(θ̃) that job j is allocated in step 1 is π j1(θ̃) = ϕ j, /0(θ̃).5 For step k, 1 < k≤
|J|, the probability is

π jk(θ̃) = ∑
∆k−1=(j1,..., jk−1)
jm 6= j, m=1,...,k−1

(
k−1

∏
l=1

ϕ jl ,(j1,..., jl−1)(θ̃)

)
·ϕ j,∆k−1(θ̃).

This probability equals the sum over the probabilities of all possible allocation sequences until
step k times the probability that job j can be allocated after a given allocation sequence.

Overall, job j is allocated with probability π j(θ̃) = ∑
|J|
k=1 π jk(θ̃).

The randomized allocation algorithm spans out an “allocation tree” that illustrates the various
allocation sequences, the allocation probabilities and their dependencies, cf. Figure 4.1. Each
node in this allocation tree represents a job that has been considered in the last step of the al-
location heuristic. The vertex to a subsequent node indicates that the end job of that vertex is
considered next. Consequently, at a given decision point (node in the allocation tree), the heuris-
tic chooses a specific vertex with the probability specified by Equation 4.1.6 This randomized
process is now illustrated with a sample scenario.

5It can reasonably be assumed that 1 j(θ̃ , /0) = 1, since otherwise the job would not be considered in the alloca-
tion phase.

6For simplification, a vertex can be omitted if this probability is zero, i.e., if there is not sufficient capacity left
to accommodate the end node of the vertex.

80 RANDOMIZATION AND DISTRIBUTED OUTCOME DETERMINATION

Figure 4.1: Allocation tree.

Example: Assume the job requests and node offers listed in Table 4.1 have been submitted to
the market:

Job j ṽ j c j m j Node n vn Cn Mn

j1 10 1 100 n1 1 2 500
j2 8 1 500 n2 2 1 600
j3 7 2 400

Table 4.1: Sample scenario.

The node offers are ranked in non-decreasing order of their reserve prices (costs) as in the
deterministic heuristic. Recall that these valuations are expressed per unit of computing power.
Job j1 is willing to pay up to $10 for its one required CPU and 100 MB of memory. Node
n1 requests at least $1 for each of its two CPUs and offers up to 500 MB of memory. The
optimal allocation is j1→ n2 and j3→ n1, yielding welfare of $20. The deterministic heuristic,
however, allocates j1→ n1 and j2→ n2 with welfare of $15 only.

As introduced above, the randomized heuristic does not depend on this deterministic ranking
of job requests but, in each step k and given a preceding allocation sequence ∆k−1, randomly
chooses the job according to ϕ j,∆k−1(θ̃). The chosen job is then greedily assigned to the cheapest
possible offer.

Assume α = 2. Then, in the first step, job j1 is chosen (and thus allocated to node n1) with
probability π j1,1(θ̃) = ϕ j1, /0(θ̃) = 102

102+82+72 ≈ 0.47. The probabilities π j2,1(θ̃) and π j3,1(θ̃) are
determined analogously.

4.3 A RANDOMIZED PAY-AS-BID MECHANISM 81

For the second step, note that j3 cannot be allocated to n2 because this node does not have
sufficient computing power. Thus π j3,2(θ̃) = 0. The probability that j1 is allocated to n2 (in the
second step) is π j1,2(θ̃) = π j2,1(θ̃) · 1 + π j3,1(θ̃) · 102

102+82 ≈ 0.44, and π j2,2(θ̃) = π j1,1(θ̃) · 1 +

π j3,1(θ̃) · 82

102+82 ≈ 0.56. In summary, π1(θ̃) = π j1,1(θ̃) + π j2,1(θ̃) ≈ 0.91, π2(θ̃) ≈ 0.86 and
π3(θ̃)≈ 0.23. The allocation tree for this sample scenario is depicted in Figure 4.2.

Job j π j1 π j2 π j

j1 0.47 0.44 0.91
j2 0.30 0.56 0.86
j3 0.23 0 0.23

Table 4.2: Sample allocation probabilities.

Figure 4.2: Sample allocation tree.

The expected welfare generated by the randomized heuristic can now be computed as 0.47 ·
$15+0.30 ·$15+0.23 ·0.61 ·$20+0.23 ·0.39 ·$18≈ $15.97. Consequently, in expectation the
randomized heuristic yields a higher welfare than the deterministic heuristic ($15, see above).

As this example shows, the randomized heuristic can outperform the deterministic heuristic on
expectation. However, in contrast to the discussion of the related work, it is hard to give a
general bound for such complex scenarios. If the expected welfare of the randomized heuristic
is higher than the welfare generated by the deterministic heuristic, and with which probability
a gain is actually achieved, depend on the specific scenario. This efficiency dimension of the
design problem at hand will be evaluated in more detail in Section 4.5. In the remainder of
this section, the focus will be on the strategic properties and implications of this randomized
pay-as-bid mechanism.

82 RANDOMIZATION AND DISTRIBUTED OUTCOME DETERMINATION

4.3.2 Monotone and Strongly Convex Allocation Probabilities

As discussed above, it is crucial for a randomized mechanism to yield monotone allocation
probabilities, which are a first step towards inducing users to bid “close” to their true valuations:

Theorem 1 (Monotonicity of the randomized mechanism). The randomized pay-as-bid mech-
anism is monotone.

Proof.
∂ϕ j,∆k−1(θ̃)

∂ ṽ j
≥ 0 for all ∆k−1 and θ̃− j if 1 j(θ̃ ,∆k−1) = 1.

This directly implies that π jk(θ̃) is monotone in ṽ j. However, π jk(θ̃) and π jl(θ̃), l > k, are gen-
erally not independent. It remains to be shown that an increase in π jk(θ̃) outweighs a resulting
decrease in ∑

|J|
l=k+1 π jl(θ̃).

Consider the sub-tree of the allocation tree following an allocation sequence ∆k−1. In each such
sub-tree, the heuristic makes an allocation decision:

∑
i∈J\∆k−1

ϕi,∆k−1(θ̃) = 1.

Consequently, if ϕ j,∆k−1(θ̃) increases by ε > 0, ∑i∈J\∆k−1
i6= j

ϕi,∆k−1(θ̃) decreases by ε . That is,

if the probability of choosing job j increases, the probability of choosing a job other than j
decreases by the same amount. Hence, there is a direct, positive effect of reporting a higher
valuation in the form of a higher probability of being allocated early, and an indirect, negative
effect since this inherently lowers the probability of being allocated later. However, the overall
effect is non-negative, since

∑
i∈J\∆k−1

i 6= j

ϕi,∆k−1(θ̃)≥ ∑
i∈J\∆k−1

i 6= j

ϕi,∆k−1(θ̃)ϕ j,(i1,...,ik−1,i)(θ̃),

and thus the negative effect is no more than ε .

Since this effect holds for all sequences ∆k−1 (i.e., all possible scenarios that lead to step k,
and in particular also for k = 1), the increase in π jk(θ̃) outweighs the possible decrease in

∑
|J|
l=k+1 π jl(θ̃).

Consequently, π j(θ̃) = ∑
|J|
k=1 π jk(θ̃) increases monotonically in ṽ j.

Besides monotonicity, in order to further induce users to bid close to their true valuation, it is
desirable to have strongly convex allocation probabilities, that is the increase in the allocation
probability is disproportionately high compared to the increase in the reported valuation. This
is inherently connected to the choice of α and the competition in the market:

4.3 A RANDOMIZED PAY-AS-BID MECHANISM 83

Corollary 1 (Strong convexity). With the randomized pay-as-bid mechanism, the allocation
probability ϕ j,∆k−1(θ̃) is strongly convex in ṽ j if α > 1, 1 j(θ̃ ,∆k−1) = 1, J \ {∆k−1 ∪ j} 6= /0,
and

ṽ j < α

√
α−1
α +1 ∑

i∈J\{∆k−1∪ j}
ṽα

i . (4.2)

Proof. With J \ {∆k−1 ∪ j} 6= /0, α > 1, and 1 j(θ̃ ,∆k−1) = 1, it is straightforward to see that
∂ϕ j,∆k−1(θ̃)

∂ ṽ j
> 0.

Moreover,

∂ 2ϕ j,∆k−1(θ̃)
∂ ṽ2

j
= α ṽα−2

j

(
∑

i∈J\∆k−1

ṽα
i

) ∑
i∈J\∆k−1

i 6= j

ṽα
i

(α−1)

(
∑

i∈J\∆k−1

ṽα
i

)
−2α ṽα

j(
∑

i∈J\∆k−1

ṽα
i

)4 > 0

⇔ (α−1)

(
∑

i∈J\∆k−1

ṽα
i

)
−2α ṽα

j > 0

⇔ (α−1)

 ∑
i∈J\∆k−1

i 6= j

ṽα
i

− (α +1)ṽα
j > 0

⇔ ṽ j <
α

√√√√√α−1
α +1 ∑

i∈J\∆k−1
i6= j

ṽα
i .

Consequently, at each decision point ∆k−1 of the heuristic (i.e., decision node in the allocation
tree), the allocation probability is strongly convex in ṽ j given that there is at least one other
job left that is competing with j and that ṽ j is within the interval that is upper-bounded by
Equation 4.2.

There are two key implications of this result: (i) The user’s incentive to bid close to the true
valuation increases with increasing competition and (ii) there is no general “optimal” choice of
α that maximizes the upper bound of Equation 4.2.

The first implication is obvious; ∑i∈J\∆k−1
i 6= j

ṽα
i increases as the set of jobs whose reported val-

uations are summed up increases. The second implication is exacerbated by the fact that the
optimal α is different for each decision point in the randomized heuristic’s allocation tree. It
can be stated, however, that the upper bound of the interval specified by Equation 4.2 converges
towards the maximum reported valuation of all competing jobs as α approaches ∞:

84 RANDOMIZATION AND DISTRIBUTED OUTCOME DETERMINATION

Corollary 2 (Limit of Equation 4.2).

lim
α→∞

α

√
α−1
α +1 ∑

i∈J\{∆k−1∪ j}
ṽα

i = max
i∈J\{∆k−1∪ j}

ṽi.

Proof. The overall limit can be partitioned as

lim
α→∞ α

√√√√√α−1
α +1 ∑

i∈J\∆k−1
i6= j

ṽα
i = lim

α→∞

α

√
α−1
α +1

· lim
α→∞ α

√√√√ ∑
i∈J\∆k−1

i 6= j

ṽα
i .

For the first limit, one gets lim
α→∞

α

√
α−1
α+1 = lim

α→∞
e

1
α

ln α−1
α+1 = e0 = 1.

The latter limit is both lower- and upper-bounded by ṽmax = max
i∈J\∆k−1

i 6= j

ṽi:

• α

√
∑i∈J\∆k−1

i6= j
ṽα

i ≤ α
√

n · ṽα
max = α

√
n · ṽmax→ ṽmax for α → ∞ and n being the number of

jobs over which to sum up.

• α

√
∑i∈J\∆k−1

i6= j
ṽα

i ≥ α
√

ṽα
max = ṽmax.

Consequently, lim
α→∞

α

√
∑i∈J\∆k−1

i6= j
ṽα

i = ṽmax and lim
α→∞

α

√
α−1
α+1 ∑i∈J\∆k−1

i 6= j
ṽα

i = 1 · ṽmax.

This further supports the first implication, as this maximum valuation will generally increase as
the number of jobs increases over which to maximize.

The complexity of the setting with multiple jobs, multiple nodes, and varying capacity con-
straints precludes a further analytic evaluation, since the allocation probabilities π j are hard
to derive. In the following subsection, a simplified setting will be analyzed in order to exem-
plify the effect of the parameter α on the strategies of the users, the expected utilities, and the
expected overall welfare.

4.3.3 Evaluation in a Simplified Setting

Consider one node only, w.l.o.g. having a reserve price of zero. There are two users who are
competing for this node, meaning only the job of one of them can be allocated. Obviously, in
this scenario π j(θ̃) = π j1(θ̃) = ϕ j, /0(θ̃), i.e. the chance of being allocated equals the chance of
being considered first.

4.3 A RANDOMIZED PAY-AS-BID MECHANISM 85

The solution concept of Nash equilibria is chosen to analyze the incentive of users to deviate
from their true valuations (Nash, 1951; Mas-Colell et al., 1995). However, for a randomized
allocation algorithm, this concept has to be adapted similar to the adaptation of the solution
concept of truthfulness to truthfulness in expectation that was briefly discussed in Section 4.2:

Definition 2 (Nash equilibrium in expectation). The vector θ̃ NE constitutes a Nash equilibrium
in expectation if

E(u j(θ̃ NE
j , θ̃ NE

− j |θ j))≥ E(u j(θ̃ j, θ̃
NE
− j |θ j)), j ∈ J, θ̃ j,

where E(u j(.)) denotes j’s expected utility.

Given a randomized allocation algorithm and users with complete information about the other
reported job and node types θ̃ NE

− j and the general allocation process, no user can benefit in
expectation by unilaterally deviating from θ̃ NE

j . Note that Nash equilibria in expectation are
distinctively different from Bayesian-Nash equilibria (Mas-Colell et al., 1995; Parkes, 2001). In
the latter, the participants face incomplete information about the types of the other participants.
In contrast, with Nash equilibria in expectation, participants face incomplete information about
the non-deterministic outcome of the mechanism as such.

Nash equilibria can be interpreted as the final outcome of a fictive, iterative process. After each
stage, the users can adjust their reported types based on feedback about the other users’ reported
types. This process is not a repeated game in the game-theoretic sense, but users play a myopic
best response strategy for this single allocation phase only until they arrive at an equilibrium
point (Mas-Colell et al., 1995; Sanghavi and Hajek, 2004).

For the simplified setting at hand, the following lemmata about these best responses can be
stated:

Lemma 1 (Best response for α = 1). In this scenario and for α = 1, the best response of user
j to the bid of user i is given by

b j(ṽi|v j) =−ṽi +
√

ṽ2
i + ṽiv j.

Lemma 2 (Best response for α = 2). In this scenario and for α = 2, the best response of user
j to the bid of user i is given by

b j(ṽi|v j) = 3

√√
ṽ4

i v2
j + ṽ6

i + ṽ2
i v j− 3

√√
ṽ4

i v2
j + ṽ6

i − ṽ2
i v j.

The proofs are presented in Appendix B.2. With the best response functions given by Lemma 1
and Lemma 2, the Nash equilibria can now be computed as the intersections of the best response
functions of the two users.

86 RANDOMIZATION AND DISTRIBUTED OUTCOME DETERMINATION

Example: Assume two unit jobs (c1 = c2 = 1). The first user has a true valuation of v1 = 5 and
reports the valuation ṽ1, 0 < ṽ1 ≤ 5 (recall that p1(5, ṽ2) = 5). The second user values her job
at v2 = 7 and reports the valuation ṽ2, 0 < ṽ2 ≤ 7. The best response functions of both users for
α = 1 and α = 2 are plotted in Figure 4.3.

Figure 4.3: Sample best response functions for two competing and mutually exclusive users.

At the end of the imaginary iterative process, the two users have coordinated their bids to the
intersections of their respective best response functions. At these intersections, no user can
improve her expected utility by unilaterally deviating from her best response. Consequently,
two Nash equilibria in expectation are obtained at these intersections (one per α): ṽNE

α=1 ≈
(1.7748,2.1716) and ṽNE

α=2 ≈ (2.6917,3.1829).

α = 1 α = 2
ṽNE (1.7748, 2.1716) (2.6917, 3.1829)

π j(ṽNE) (0.4497, 0.5503) (0.417, 0.583)
E(u j(ṽNE |v)) (1.4504, 2.6571) (0.9626, 2.2254)
ṽNE

j /π j(ṽNE) (3.94, 3.94) (6.45, 5.45)

Table 4.3: Numerical example.

Table 4.3 lists the basic results for this sample scenario. Increasing α pushes both users towards
reporting a higher valuation, thus inherently increasing their payments. This push also increases
overall welfare in expectation. For α = 1, the expected welfare is π1(ṽNE)v1 +π2(ṽNE)v2≈ 6.1,

4.4 DISTRIBUTED PROBLEM SOLVING 87

whereas expected revenue is π1(ṽNE)ṽNE
1 + π2(ṽNE)ṽNE

2 ≈ 1.99. For α = 2, expected welfare
and revenue increase to 6.17 and 2.98, respectively.

As pointed out earlier, one basic rationale in designing the mechanism is to give high bidders
a discount in the form of disproportionately higher allocation probabilities. One metric for this
is ṽNE

j /π j(ṽNE) in the last row of Table 4.3, which can be interpreted as price per “unit” of
allocation probability. For α = 1, both users have to pay the same unit price. But for α = 2, the
high bidder has to pay less than the low bidder (5.45 respectively 6.45).

4.4 Distributed Problem Solving

As the previous results show, the parameter α plays an important role in trading off the influ-
ence of the randomization in intercepting worst cases on the one hand, and in distorting the
incentives to bid close to truthfully on the other hand. It is, however, a non-trivial task to choose
an “appropriate” α . As discussed above, one implication of Corollary 1 is that it is difficult to
choose the α that maximizes the interval within which the job’s probability of being allocated
increases disproportionately to the user’s reported valuation. Furthermore, from an allocation
point of view, for α → ∞ the randomized allocation algorithm “converges” towards the deter-
ministic heuristic again, since the jobs essentially become ordered by their reported valuations.
In contrast, the smaller α , the larger the deviation from the deterministic algorithm and its
vulnerabilities.

While it seems difficult to determine the best choice of the parameter α , this can be partly
mitigated by running the randomized mechanism multiple times instead of just once, thereby
possibly changing α between the runs. On the one hand, the scalability of the (randomized)
heuristic easily allows for multiple runs of the centralized market. The auctioneer can then
combine the results of the multiple runs and determine the allocation that spends the maximum
welfare. On the other hand, the auctioneer might exploit the distributed nature that is inherent to
any market and require the market participants to help in solving the allocation problem as kind
of a “participation fee”. This approach is depicted in Figure 4.4. First, the auctioneer collects all
job requests and node offers. Then the consolidated order book is distributed (possibly in some
anonymized way7) to all users and providers. Each market participant is required to run the
randomized heuristic with some specific α and returns the resulting allocation to the auctioneer.
Finally, the auctioneer again combines all allocations, determines the allocation that spends the

7For instance, the reported valuations and capacity constraints can be scaled, each parameter with a different
scalar, to hinder the identification of one’s own job or node. However, manipulation in the sense of trying to
allocate one’s own job or node might not actually be a problem after all, since the outcome is only enforced if it
outperforms the other local solutions, which is a desirable overall outcome.

88 RANDOMIZATION AND DISTRIBUTED OUTCOME DETERMINATION

maximum welfare as well as the corresponding prices and payments, which are then enforced.
This further allows the auctioneer to perform some sort of parameter sweep for α .

(a) Request and offer collection and aggrega-
tion

(b) Order book broadcast

(c) Local solving (d) Collection of the local solutions

Figure 4.4: Distributed randomized mechanism. The central auctioneer collects all reported job
and node types and broadcasts the order book. Then the market participants run the randomized
heuristic, the auctioneer runs the deterministic heuristic. Finally, the auctioneer collects the
local solutions and enforces the outcome among all randomized solutions and the deterministic
solution that generates the maximum welfare.

But this approach is not limited to the randomized heuristic. In many cases the deterministic
heuristic clearly shows its strengths. An intuitive approach is thus to combine the randomized
and the deterministic heuristic in the spirit of the Approx-MUA algorithm in Mu’alem and Nisan
(2008). The basic idea is to run both the deterministic and the randomized heuristic on the
same problem instances and then to actually enforce the allocation and prices of the mechanism
that returned the maximum welfare. Thus, one obtains what may be called a “best-of-breed”
distributed randomized mechanism by combining the mechanism design worlds of determinism

4.5 NUMERICAL SIMULATIONS 89

and randomization. Clearly, the impact on the strategic properties is more involved. On the
one hand, the desirable truthfulness of the deterministic mechanism is lost. On the other hand,
coupling the deterministic with the randomized heuristic may strengthen the properties of the
latter, since deviating from true valuations may prove unfavorable when the former is selected
and enforced. In order to gain further insights into these issues, the following section will report
about the results of a numerical simulation.

4.5 Numerical Simulations

The aim of this section is to evaluate the distributed randomized mechanism in more complex
scenarios with respect to efficiency and its robustness against strategic behavior from users
that misreport their valuations. The analysis in the previous chapter showed that the level of
competition (i.e., the number of jobs and nodes as well as the ratio of jobs to nodes) has an
important influence on these performance dimensions. Hence, in the following analysis both
the choice of α as well as the level of competition will be varied.

4.5.1 Strategic Behavior

With the pay-as-bid mechanism, users can only obtain a positive utility from understating their
true valuations. To go against this, the previous analysis showed that a larger α generally results
in a stronger incentive to bid at least close to the true valuation.8 Another implication is that
this incentive clearly increases as the level of competition increases.

The following simulation is based on the same order books as the simulation in Subsection 3.5.2
in the previous chapter to allow for a comparison of the results. Hence, the randomized mecha-
nism is employed in a more complex scenario as in the analysis above, now also including time
constraints. The simulation consists of two settings, a setting with 20 jobs and 20 nodes and a
setting with 60 jobs and 20 nodes. As in the previous chapter, the simulation is based on 200
order books per setting. Recall that, in the distributed randomized mechanism, the randomized
mechanism is run once for each job and node. Additionally, the deterministic heuristic is run
once. Finally, the best outcome with respect to efficiency is enforced. α is varied from 1, to
10, 30, 50, 100, and 200. The aim of this subsection is to analyze to what extent a single job
request (user) can benefit from reporting an untrue valuation: In the simulation, the user of j
hence reported 50%, 55%, up to 100% of her true valuation v j.

8As pointed out above, this relation does not always hold since the right term of Equation 4.2 is not (strictly)
monotone for any combination of ṽi’s.

90 RANDOMIZATION AND DISTRIBUTED OUTCOME DETERMINATION

B
id

α
=

1
α

=
10

α
=

30
α

=
50

α
=

100
α

=
200

util
succ

rand
util

succ
rand

util
succ

rand
util

succ
rand

util
succ

rand
util

succ
rand

50%
22.09

41
194

12.69
25

200
10.51

21
197

12.12
25

193
8.35

19
180

9.14
21

175
55%

27.96
58

192
24.41

52
198

21.07
45

197
21.17

45
191

21.29
46

176
20.91

45
175

60%
36.81

88
196

34.21
81

200
34.81

84
197

32.51
79

194
32.37

78
178

32.06
76

171
65%

38.29
108

194
34.75

97
200

35.16
97

197
34.60

97
195

34.50
97

178
34.67

96
175

70%
36.22

124
195

34.42
116

199
33.23

111
198

33.45
113

195
34.08

112
178

34.56
112

175
75%

33.92
140

194
31.58

130
197

31.73
131

198
31.39

126
192

32.04
127

178
32.32

127
177

80%
28.62

152
193

26.92
143

197
26.30

138
199

27.18
138

192
28.93

141
176

29.09
141

175
85%

23.45
165

196
22.41

159
199

21.67
154

198
21.90

152
194

24.95
154

178
25.78

154
173

90%
16.50

175
195

15.59
168

199
16.03

167
198

16.19
165

192
18.97

163
177

19.73
163

173
95%

9.76
181

194
8.21

177
199

8.70
173

196
9.41

174
193

12.33
173

177
12.96

172
175

100%
1.09

191
197

0.18
187

199
0.54

186
198

2.18
186

194
5.85

187
180

7.18
187

179

Table
4.4:

Sim
ulation

results
for

a
m

isreporting
user

in
the

setting
w

ith
20

jobs
and

20
nodes.

util
represents

the
m

ean
utility

of
the

m
isreporting

user,succ
the

num
ber

of
runs

(outof
200)

in
w

hich
the

job
of

the
m

isreporting
user

w
as

allocated,and
rand

the
num

ber
of

runs
in

w
hich

the
distributed

random
ized

m
echanism

enforced
the

outcom
e

of
the

random
ized

heuristic
(and

not
the

determ
inistic

heuristic).N
ote

thatthe
usercan

obtain
a

positive
utility

from
truthfully

reporting
hervaluation

in
case

the
outcom

e
ofthe

determ
inistic

m
echanism

is
enforced.

4.5 NUMERICAL SIMULATIONS 91

B
id

α
=

1
α

=
10

α
=

30
α

=
50

α
=

10
0

α
=

20
0

ut
il

su
cc

ra
nd

ut
il

su
cc

ra
nd

ut
il

su
cc

ra
nd

ut
il

su
cc

ra
nd

ut
il

su
cc

ra
nd

ut
il

su
cc

ra
nd

50
%

0.
92

3
11

0.
80

3
18

9
0.

61
2

19
8

0.
80

3
19

8
0.

61
2

19
8

0.
20

1
19

7
55

%
0.

92
3

10
0.

97
4

19
1

0.
72

3
19

7
0.

97
4

20
0

1.
20

5
19

8
0.

72
3

19
9

60
%

1.
60

6
9

1.
51

7
19

1
1.

99
8

19
6

1.
42

6
19

7
1.

41
6

19
6

1.
52

7
19

9
65

%
6.

47
20

8
2.

66
14

18
9

3.
58

18
19

8
5.

78
21

19
8

3.
57

16
19

5
3.

57
17

19
8

70
%

10
.8

5
33

5
7.

94
31

18
9

6.
75

26
19

7
7.

68
29

19
8

9.
29

33
19

9
9.

28
34

19
8

75
%

14
.6

0
48

8
14

.5
8

58
18

9
12

.2
3

53
19

7
12

.5
7

56
19

8
12

.8
9

56
19

8
11

.9
5

54
19

8
80

%
18

.6
0

68
7

13
.3

2
68

19
1

13
.2

9
71

19
8

12
.3

8
67

19
9

13
.1

9
72

19
8

12
.7

5
68

19
7

85
%

20
.6

1
80

8
12

.8
0

80
18

8
12

.5
4

85
19

6
12

.4
0

84
19

7
12

.2
9

84
19

6
11

.6
7

81
19

7
90

%
22

.6
7

95
6

11
.0

9
10

0
18

6
10

.2
1

10
1

19
7

10
.0

0
96

19
7

10
.1

5
97

19
7

9.
89

97
19

6
95

%
23

.3
5

11
0

7
7.

34
10

9
18

8
6.

63
10

9
19

7
6.

29
11

3
19

7
6.

47
11

5
19

5
6.

19
11

6
19

5
10

0%
23

.0
1

12
1

9
1.

01
12

2
19

3
0.

45
11

9
19

8
0.

00
12

6
20

0
0.

45
12

7
19

8
0.

45
12

5
19

9

Ta
bl

e
4.

5:
Si

m
ul

at
io

n
re

su
lts

fo
r

a
m

is
re

po
rt

in
g

us
er

in
th

e
se

tti
ng

w
ith

60
jo

bs
an

d
20

no
de

s.
ut

il
re

pr
es

en
ts

th
e

m
ea

n
ut

ili
ty

of
th

e
m

is
re

po
rt

in
g

us
er

,s
uc

c
th

e
nu

m
be

r
of

ru
ns

(o
ut

of
20

0)
in

w
hi

ch
th

e
jo

b
of

th
e

m
is

re
po

rt
in

g
us

er
w

as
al

lo
ca

te
d,

an
d

ra
nd

th
e

nu
m

be
r

of
ru

ns
in

w
hi

ch
th

e
di

st
ri

bu
te

d
ra

nd
om

iz
ed

m
ec

ha
ni

sm
en

fo
rc

ed
th

e
ou

tc
om

e
of

th
e

ra
nd

om
iz

ed
he

ur
is

tic
(a

nd
no

t
th

e
de

te
rm

in
is

tic
he

ur
is

tic
).

N
ot

e
th

at
th

e
us

er
ca

n
ob

ta
in

a
po

si
tiv

e
ut

ili
ty

fr
om

tr
ut

hf
ul

ly
re

po
rt

in
g

he
rv

al
ua

tio
n

in
ca

se
th

e
ou

tc
om

e
of

th
e

de
te

rm
in

is
tic

m
ec

ha
ni

sm
is

en
fo

rc
ed

.

92 RANDOMIZATION AND DISTRIBUTED OUTCOME DETERMINATION

Table 4.4 presents the results with the distributed randomized mechanism for the setting with
20 jobs and 20 nodes, Table 4.5 for the setting with 60 jobs and 20 nodes. The tables contain
the mean utility of the misreporting user depending on her percentage bid, the number of runs
(out of 200) in which the user’s job got allocated, and the number of runs in which the dis-
tributed randomized mechanism enforced the outcome of the underlying randomized allocation
mechanism instead of enforcing the outcome of the deterministic mechanism.

In the setting with 20 jobs and 20 nodes, the user can substantially benefit from understating
her true valuation. The user maximizes her expected utility by only reporting about 65% of
her true valuation. While this “optimal” percentage bid is essentially the same across all α ,
increasing α slightly reduces the gain. That is, expected utility decreases for small percentage
bids and increases for higher percentage bids, thus further increasing the incentive to bid higher.
Another important aspect is that understating the true valuation implies a trade-off between
higher expected utility but a smaller chance of being allocated, cf. the succ columns in Table 4.4.
For example for α = 10, the job of the misreporting user is allocated 177 times when she
reports 95% of her true valuation, but only 97 times when reporting 65%. This suggests that
the randomized mechanism will provide much stronger incentives for users that are averse to
the risk of their job not being allocated, and that bidding 65% of the true valuation will be
a “lower bound” for such users. Moreover, increasing α leads to allocation decisions similar
to the decisions made by the deterministic heuristic. The rand columns in Table 4.4 show
that the distributed randomized mechanism increasingly enforces the allocation decisions of the
deterministic heuristic as α increases and thus the chance for “luckier” allocation decisions by
the randomized heuristic decreases.

Increasing competition from 20 jobs to 60 jobs while holding the number of nodes constant
reduces the potential gain from manipulation. This further confirms the analytic insights. For
large α’s, the misreporting user’s expected utility is maximized when she reports about 80%
of her true valuation. Further, increasing competition drastically increases the risk of not being
allocated. With 20 jobs and truthful reports of the job valuation, the misreporting job is allo-
cated in about 187 runs out of 200, whereas with 60 jobs the misreporting job is only allocated
about 125 times. Moreover, with higher competition, this risk increases faster than with less
competition. With the user only reporting 65% of her true valuation and α = 10, her job gets
allocated 97 times (down from 187, i.e. a decrease of about 48% in the number of allocations)
in the setting with low competition, but only 14 times (down from 122, i.e. a decrease of about
88.5%) in the setting with high competition. This increased risk pushes the misreporting user
towards reporting closer to her true valuation.

Interestingly, this is very different for α = 1, where the user’s expected utility is maximized
when reporting almost her true valuation. This result is due to the distributed mechanism enforc-

4.5 NUMERICAL SIMULATIONS 93

ing the outcome of the deterministic mechanism rather than the randomized mechanism, which
makes truth-telling of the valuation a (weakly) dominant strategy in most runs. As pointed out
above, for small α’s the randomized heuristic generally deviates most from the allocation deci-
sions of the deterministic heuristic. On its downside, in this setting with high competition, this
leads to the randomized heuristic increasingly taking unfortunate allocation decisions and thus
the distributed mechanism enforcing the outcome of the deterministic mechanism. This illus-
trates the potential strategic benefit of combining the randomized mechanism with the partially
truthful deterministic mechanism.

4.5.2 Efficiency

The following simulation aims at comparing the efficiency generated by the distributed ran-
domized mechanism to the efficiency generated by the stand-alone deterministic heuristic. It
is based on the same order books as the simulation in Subsection 3.5.1 in the previous chap-
ter when investigating the impact of the level of competition on the deterministic heuristic’s
efficiency. The simulation consists of two settings, a setting with as many jobs as nodes and
a setting with twice as many jobs as nodes. In each of these settings, the number of nodes is
successively increased from 20, to 40, 60, up to 200. As in the previous chapter, the simulation
is based on 30 order books per setting and order book size. α is varied from 1, to 5, 10, 20, 30,
40, and 50.

Table 4.6 shows the results for the setting with the same number of jobs and nodes, Table 4.7
shows the results for the more competitive setting with twice as many jobs as nodes. In the
tables, ratio represents the ratio of the mean efficiency generated by the distributed randomized
heuristic to the mean efficiency of the deterministic solution, and rand the number of runs (out
of 30) in which the distributed randomized mechanism enforced the solution of the randomized
heuristic and not the deterministic heuristic.

For the low level of competition (among users) and small numbers of jobs and nodes, the dis-
tributed randomized heuristic outperforms the deterministic heuristic by up to 2%. This is a
good result considering that the deterministic heuristic already approximates the near-optimal
solution of Anytime-CPLEX by about 97%, as shown in Table 3.9 in the previous chapter, thus
not leaving much leeway for improvement. Moreover, the distributed randomized mechanism
enforces the allocation determined by the randomized mechanism in almost all runs. Increasing
α slightly reduces the improvement. As discussed above, the randomized heuristic makes allo-
cation decisions close to the deterministic heuristic if α is large. Consequently, the randomized
heuristic becomes less likely to improve on the deterministic heuristic.

Increasing the order book size also reduces the improvement. As Table 3.9 in the previous

94 RANDOMIZATION AND DISTRIBUTED OUTCOME DETERMINATION

Jobs
N

odes
α

=
1

α
=

5
α

=
10

α
=

20
α

=
30

α
=

40
α

=
50

ratio
rand

ratio
rand

ratio
rand

ratio
rand

ratio
rand

ratio
rand

ratio
rand

20
20

1.022
29

1.020
29

1.020
30

1.017
30

1.014
30

1.012
30

1.012
30

40
40

1.014
29

1.012
30

1.011
30

1.009
30

1.009
30

1.008
30

1.008
30

60
60

1.009
29

1.008
29

1.008
29

1.007
28

1.007
28

1.006
29

1.006
29

80
80

1.010
30

1.009
30

1.009
30

1.007
30

1.007
30

1.007
30

1.007
30

100
100

1.009
30

1.008
30

1.007
30

1.007
30

1.006
30

1.006
30

1.006
30

120
120

1.007
30

1.007
30

1.006
30

1.006
30

1.006
30

1.005
30

1.005
30

140
140

1.007
30

1.006
30

1.006
30

1.005
30

1.005
30

1.005
30

1.005
30

160
160

1.006
30

1.006
30

1.006
30

1.005
30

1.005
30

1.005
30

1.005
30

180
180

1.006
30

1.006
30

1.005
30

1.005
30

1.005
30

1.005
30

1.005
30

200
200

1.005
30

1.005
30

1.005
30

1.004
30

1.004
30

1.004
29

1.004
29

Table
4.6:

Sim
ulation

results
w

ith
respect

to
efficiency

in
the

setting
w

ith
as

m
any

jobs
as

nodes.
ratio

represents
the

ratio
of

the
distributed

random
ized

heuristic’s
m

ean
efficiency

com
pared

to
the

m
ean

efficiency
generated

by
the

determ
inistic

heuristic,rand
the

num
ber

of
runs

(outof
30)

in
w

hich
the

distributed
random

ized
heuristic

selects
the

outcom
e

of
one

of
the

random
ized

runs
and

notof
the

determ
inistic

heuristic.

4.5 NUMERICAL SIMULATIONS 95

Jo
bs

N
od

es
α

=
1

α
=

5
α

=
10

α
=

20
α

=
30

α
=

40
α

=
50

ra
tio

ra
nd

ra
tio

ra
nd

ra
tio

ra
nd

ra
tio

ra
nd

ra
tio

ra
nd

ra
tio

ra
nd

ra
tio

ra
nd

40
20

1.
01

4
22

1.
02

6
28

1.
02

8
30

1.
02

5
30

1.
02

5
30

1.
02

3
30

1.
02

2
30

80
40

1.
00

5
14

1.
01

4
30

1.
01

6
30

1.
01

6
30

1.
01

5
29

1.
01

5
30

1.
01

4
30

12
0

60
1.

00
2

14
1.

00
9

28
1.

01
1

29
1.

01
1

29
1.

01
1

30
1.

01
0

30
1.

01
1

30
16

0
80

1.
00

1
9

1.
00

8
30

1.
01

0
30

1.
01

0
30

1.
01

0
30

1.
00

9
30

1.
00

9
30

20
0

10
0

1.
00

1
10

1.
00

7
29

1.
00

9
30

1.
00

9
30

1.
00

8
30

1.
00

8
30

1.
00

8
30

24
0

12
0

1.
00

1
6

1.
00

5
28

1.
00

7
30

1.
00

7
30

1.
00

7
30

1.
00

7
30

1.
00

7
30

28
0

14
0

1.
00

0
7

1.
00

5
29

1.
00

7
30

1.
00

7
30

1.
00

7
30

1.
00

7
30

1.
00

7
30

32
0

16
0

1.
00

0
0

1.
00

4
28

1.
00

6
29

1.
00

6
29

1.
00

6
30

1.
00

6
30

1.
00

6
30

36
0

18
0

1.
00

0
2

1.
00

4
27

1.
00

6
30

1.
00

7
30

1.
00

7
30

1.
00

7
30

1.
00

6
30

40
0

20
0

1.
00

0
2

1.
00

4
29

1.
00

6
29

1.
00

6
30

1.
00

6
30

1.
00

6
30

1.
00

6
30

Ta
bl

e
4.

7:
Si

m
ul

at
io

n
re

su
lts

w
ith

re
sp

ec
tt

o
ef

fic
ie

nc
y

in
th

e
se

tti
ng

w
ith

tw
ic

e
as

m
an

y
jo

bs
as

no
de

s.
ra

tio
re

pr
es

en
ts

th
e

ra
tio

of
th

e
di

st
ri

bu
te

d
ra

nd
om

iz
ed

he
ur

is
tic

’s
m

ea
n

ef
fic

ie
nc

y
co

m
pa

re
d

to
th

e
m

ea
n

ef
fic

ie
nc

y
ge

ne
ra

te
d

by
th

e
de

te
rm

in
is

tic
he

ur
is

tic
,r

an
d

th
e

nu
m

be
r

of
ru

ns
(o

ut
of

30
)

in
w

hi
ch

th
e

di
st

ri
bu

te
d

ra
nd

om
iz

ed
he

ur
is

tic
se

le
ct

s
th

e
ou

tc
om

e
of

on
e

of
th

e
ra

nd
om

iz
ed

ru
ns

an
d

no
to

f
th

e
de

te
rm

in
is

tic
he

ur
is

tic
.

96 RANDOMIZATION AND DISTRIBUTED OUTCOME DETERMINATION

chapter shows, the approximation ratio of the deterministic heuristic improves with increasing
order book sizes, as the heuristic obtains more flexibility in allocating jobs to nodes. It hence
becomes harder for the distributed mechanism to improve on the deterministic heuristic.

Increasing competition has two implications. With small α’s, the randomized heuristic takes
unfortunate allocation decisions, i.e. these decisions become “overly independent” of the jobs’
valuations. Hence, the distributed randomized heuristic enforces the result of the deterministic
heuristic in most runs (cf. Table 4.7 for α = 1). However, for larger α’s the improvement
actually increases compared to the setting with low competition. Firstly, the approximation
ratio of the deterministic heuristic reduces for increased competition, thus leaving more room
for improvement. For instance, for small numbers of jobs and users, increasing the ratio of
jobs to nodes from one to two reduces the deterministic heuristic’s approximation ratio from
about 97% to 95% (cf. Table 3.9 in the previous chapter). Secondly, the distributed randomized
heuristic is robust to increased competition, since each additional user implies an additional run
of the randomized heuristic.

4.5.3 Implications

The distributed randomized mechanism is a promising approach to mitigating the potential
worst case behavior of the deterministic heuristic. The numerical results show that the dis-
tributed randomized heuristic only slightly improves on the deterministic heuristic with respect
to efficiency in large settings with many jobs and nodes. This is due to the stand-alone de-
terministic heuristic already achieving a high approximation ratio, not leaving much room for
possible improvements. The randomized mechanism becomes more relevant in small-scale set-
tings, where the deterministic mechanism becomes more vulnerable to special cases.

The choice of α depends on the competition in the system. If competition is low, the randomized
heuristic should be parameterized with a small α so as to make it deviate from the possibly
unfortunate allocation decisions of the deterministic heuristic. If competition is high, α should
be increased as the randomized heuristic takes overly random allocation decisions with small
α’s.

Besides avoiding worst cases, the distributed randomized mechanism might be a possible means
for boosting the providers’ revenue. Note that with the randomized mechanism the single user
maximizes her expected utility by reporting between 65% and 80% of her true valuation, de-
pending on the level of competition in the market. These reported valuations inherently translate
into the providers’ revenue, since a pay-as-bid pricing scheme is employed. In contrast, while
the deterministic mechanism with critical-value pricing is truthful for users, this truthfulness
essentially comes at the expense of revenue. Especially in settings with low competition, the

4.6 DISCUSSION 97

critical-values of jobs will just be slightly above the node’s reservation prices.

It is important to note that the performance of the randomized mechanism with respect to limit-
ing strategic user behavior will improve as users become more risk-averse. Then the increased
risk of not being allocated when deviating from the true valuation will push the reported valua-
tions still closer towards the true valuations, thus further increasing the providers’ revenue.

4.6 Discussion

In the previous chapter, a deterministic heuristic with a partially truthful pricing scheme was
presented. However, in special cases, the heuristic may generate efficiency far from optimal.
This chapter thus elaborated on a randomized heuristic that may help in intercepting such worst
cases. Critical-value pricing is impossible with a non-deterministic allocation rule, and thus
the use of the simple yet promising pay-as-bid pricing rule was proposed that, together with
the monotone and convex allocation algorithm induces users to bid “close” to their true val-
uations. Further, a distributed mechanism was proposed that leverages the distributed nature
that is inherent to any market by requiring each market participant to help in solving the allo-
cation problem as kind of a participation fee. Moreover, this approach allows to combine the
mechanism design worlds of determinism and randomization and mitigates the complexity in
appropriately parameterizing the randomized mechanism, i.e. choosing a good α with respect
to limiting strategic behavior and deviating from the deterministic heuristic’s worst case behav-
ior. The numerical results, however, indicate that especially in large settings the average case
performance of the deterministic heuristic is hard to improve on with respect to efficiency. But
the randomized pay-as-bid mechanism might be an interesting means to increase the providers’
revenue if the critical-values of jobs are low, especially in the case of risk-averse users.

This chapter focused purely on modeling strategic behavior on the demand side. A natural
extension would thus be to also model strategic behavior of resource providers. It would be
interesting to see whether randomizing the supply-side of the heuristics (i.e. the sorting of node
offers) might be beneficial or if this is already too much randomization in the sense that the
resulting mechanism makes overly “random” and unfortunate allocation decisions. Moreover,
users were assumed to have quasi-linear utility functions and hence to be risk-neutral. This
assumption in fact penalizes the randomized mechanism. As the simulation results showed, one
important strategic aspect of randomization is the allocation risk. It would hence be promising
to investigate randomized mechanisms for risk-averse users, as increased allocation risk will
generally push risk-averse users towards truthful behavior.

98 RANDOMIZATION AND DISTRIBUTED OUTCOME DETERMINATION

Chapter 5

The Power of Preemption

5.1 Introduction

T he aim of this chapter is to showcase the benefit of allowing preemptions regarding the
performance of online market mechanisms (or simply “online mechanisms” in the re-

mainder). As discussed in Chapters 1 and 2, online mechanisms continuously assign jobs to
nodes as new jobs enter the system and / or nodes become idle. Whereas online mechanisms
are more responsive than periodic offline mechanisms, online mechanisms have no information
about the future input, and past allocation decisions may thus prove unfortunate. Preemption
gives the mechanism more flexibility in intercepting and alleviating such unfortunate decisions.
Running jobs can be suspended in favor of some more desirable job and possibly continued
later on the same node. Until recently, only few grid and cluster systems provided preemptive
migration. The emerging technology of virtualization becomes an important building block in
clusters and grids (e.g. Figueiredo et al. (2003)) and provides off-the-shelf support for virtual
machine migration, thus making the use of preemption and migration more accessible.

The results of this chapter show that the performance of online market mechanisms can be
significantly improved by performing preemptions, which has largely been neglected in the
existing literature on market-based scheduling. E.g. the Decentralized Local Greedy Mechanism
of Heydenreich et al. (2006) was shown to be 3.281-competitive with respect to total weighted
completion time if the users act rationally. In this chapter, it is analytically shown that the
preemptive version of this mechanism is 2-competitive. As a by-product, preemption allows to
relax the restrictions on jobs upon which this competitiveness relies. At the core of this chapter,
an in-depth empirical analysis is presented of the average case performance of the original
mechanism and its preemptive extension based on real workload traces. The empirical findings
indicate that introducing preemption improves both the utility and the slowdown of the jobs.

100 THE POWER OF PREEMPTION

Furthermore, this improvement does not necessarily come at the expense of low-priority jobs.

5.2 The Problem Setting

The specific problem at hand is having to schedule a set of jobs with arbitrary release dates
onto m parallel homogeneous nodes with the aim of minimizing total weighted completion time

∑ j∈J v je j, where J is the set of jobs to be scheduled.1 e j ∈ R+ denotes job j’s completion time
(the end), i.e. the point in time when j leaves the system. Job j ∈ J is of type θ j = (r j,d j,v j) ∈
R+×R+×R+, where r j denotes j’s release date, d j its runtime, and v j is its weight, which can
be interpreted as j’s valuation or waiting cost, that is the cost of remaining in the system for one
additional unit of time.

A setting is considered in which each user submits a single job. The terms “user” and “job” are
thus used interchangeably in the remainder of this chapter. While the nodes are obedient, the
jobs are rational and selfish. Each job j ∈ J aims at maximizing its individual ex post utility

u j(e j, p j|θ j) =−v je j− p j,

where p j is j’s ex post payment. Job j may decide to strategically misreport about its type, i.e.
it may report θ̃ j = (r̃ j, d̃ j, ṽ j) 6= (r j,d j,v j) in order to improve its utility compared to truthful
reporting. Obviously, r̃ j ≥ r j. Furthermore, d̃ j ≥ d j since any excess runtime can easily be de-
tected and punished by the system.2 It is henceforth assumed that jobs are numbered according
to their time of arrival, i.e. k < j⇒ r̃k ≤ r̃ j.

It is important to note that this homogeneous setting (with respect to the nodes) will generally
understate the benefit of performing preemptions. For instance, with heterogeneous nodes it
can be beneficial to preempt a running job and continue it on another, faster node that has idle
capacity (migration).

5.3 Baseline Model – A Decentralized Local Greedy Mecha-
nism

Heydenreich et al. (2006) examine the setting at hand without preemption, that is P|r j|∑v je j

based on the notation of Graham et al. (1979). They propose a Decentralized Local Greedy
Mechanism (DLGM) that will be presented now for the ease of exposition:

1Note that the original notation uses w j instead of v j and C j instead of e j. This was modified to allow for
consistency with the notation in the other chapters of this work.

2It is a common policy in shared computing systems to kill jobs that exceed their reported runtime.

5.3 BASELINE MODEL – A DECENTRALIZED LOCAL GREEDY MECHANISM 101

• Step 1 – Job report: At its chosen release date r̃ j, job j communicates ṽ j and d̃ j to every
node n ∈ N.

• Step 2 – Tentative node feedback: Based on the received information, the nodes com-
municate a tentative node-specific completion time ê j(n) and a tentative payment p̂ j(n)
to the job. The tentativeness is due to the fact that later arriving jobs might overtake job
j. This leads to a final ex post completion time e j(n) ≥ ê j(n) and a final ex post pay-
ment p j(n)≤ p̂ j(n) as compensation payments by overtaking jobs might occur (see Step
3 below).

The local scheduling on each node follows Smith’s ratio rule (Smith, 1956), which has
been shown to be optimal for 1||∑v je j with one single node and without release dates,
i.e. all jobs arriving at the same time. Jobs are assigned a priority according to their ratio
of weight and processing time: Job j has a higher priority than job k if (1) ṽ j/d̃ j > ṽk/d̃k

or (2) ṽ j/d̃ j = ṽk/d̃k and j < k, and is inserted in front of k into the waiting queue at
this node. For obtaining the tentative completion time, the remaining processing time
of the currently running job and the runtimes of the higher-prioritized jobs in the local
queue as well as j’s own runtime have to be added to r̃ j. The tentative payment equals a
compensation of utility loss for all jobs which would be displaced if j is queued at this
node.

• Step 3 – Queueing: Upon receiving information about its tentative completion time and
required payment from the nodes, job j makes a binding decision for a node. j is queued
at its chosen node n according to its priority and pays ṽkd̃ j to each lower ranked job k at
this node.

The information exchange between the job and the nodes is depicted in Figure 5.1. At a first
glance, this decentralized protocol does not seem to fit to a cluster or utility computing setting
where the nodes are under centralized control. However, the purpose of this decentralization is
rather to be able to determine the waiting costs a new job causes and in turn appropriate prices.
The protocol as such – and thus the properties of the mechanisms that will be derived below –
can also be implemented by a centralized mechanism.

For evaluating and comparing market mechanisms, one needs to define the user behavior, i.e.
the users’ strategies s, and a metric. It is started with the former.

Under DLGM, j’s strategy consists of reporting its type and choosing a node. Let s̃ j = (θ̃ j,n)
be job j’s strategy. Let s̃ be the vector containing the arbitrary strategies of all users, and let s̃− j

be the vector containing the arbitrary strategies of all users except j. Given the tentative node

102 THE POWER OF PREEMPTION

Figure 5.1: Information exchange in DLGM at time r̃ j.

feedback to job j’s report of θ̃ j, let û j(θ̃ j,n, s̃− j|θ j) be j’s tentative utility at node n at time r̃ j.3

Heydenreich et al. (2006) use the concept of myopic best response equilibria in order to model
the behavior of rational and selfish users:

Definition 1 (Myopic best response equilibrium). A strategy profile s = (s1, . . . ,sn) is called a
myopic best response equilibrium if, for all j ∈ J, θ j, s̃− j, and all strategies s̃ j which j could
play instead of s j,

û j(s j, s̃− j|θ j)≥ û j(s̃ j, s̃− j|θ j).

Theorem 1 (Myopic best response equilibrium under DLGM, Theorem 9 in Heydenreich et al.
(2006)). Given the types of all jobs, the strategy profile s where each job j reports θ̃ j = θ j and
chooses the node n that maximizes its tentative utility û j(θ̃ j,n, s̃− j|θ j) =−v jê j(n)− p̂ j(n) is a
myopic best response equilibrium under DLGM.

For the sake of completeness, the full proof of Heydenreich et al. (2006) is presented in Ap-
pendix C. According to this theorem, without knowledge about the future and other jobs’ types,
each job maximizes its tentative utility at time r j by truthfully reporting its characteristics and
choosing the best available node. Furthermore, if the user truthfully reports her type, then her
ex post utility equals her tentative utility since whenever the job’s tentative completion time
changes, the job is immediately compensated for the exact loss of ex post utility.

3The notation may henceforth differ slightly for the ease of exposition if the notation is obvious from the
context.

5.4 ADDING PREEMPTION 103

Since it is now known how jobs act in this model, the performance of DLGM can be evaluated as
regards efficiency. A common metric for a scheduling mechanism’s performance is its compet-
itive ratio, in this case in the myopic best response equilibrium. This approach is adopted and,
in the setting at hand, an online market mechanism’s competitive ratio is defined as the largest
possible ratio of the total weighted completion time generated by the specific mechanism if
all jobs play their equilibrium strategy divided by the theoretical minimum of an omniscient
offline mechanism that knows all the jobs’ true types when making its allocation decisions, in
particular also the jobs’ release dates (Heydenreich et al., 2006). One of the main results of
Heydenreich et al. will be stated, as this will be the baseline for the following analysis:

Theorem 2 (Competitive ratio of DLGM, Theorem 10 in Heydenreich et al. (2006)). Suppose
every job is rational in the sense that it truthfully reports θ j and selects a node that maximizes
its tentative utility at arrival. Then DLGM is 3.281-competitive for the scheduling problem
P|r j|∑v je j.

This theorem essentially captures DLGM’s performance without using preemption. Note that
this performance ratio relies on the artificial assumption that critical jobs, that is jobs with
long runtimes, are only released to the system later in the scheduling process. To achieve this,
Heydenreich et al. (2006) impose the restriction r j ≥ αd j, and optimize the performance ratio
ρ over α to obtain ρ = 3.281. In a real system, this restriction can be achieved by not allowing
the release of such jobs before this inequality is satisfied. However, this restriction still remains
somewhat artificial.

5.4 Adding Preemption

It will now be examined how introducing preemption to DLGM impacts the mechanism’s com-
petitive ratio. This extended DLGM will henceforth be referred to as P-DLGM.

The following notation is introduced. Let d j continue to denote j’s total runtime, but let d j(t)
be its remaining runtime at time t. In contrast to DLGM, P-DLGM uses a dynamic extension
of Smith’s ratio rule, i.e. at time t, the jobs are ordered according to the ratio of their reported
weight and the remaining runtime (ṽ j/d̃ j(t)). Hence, let H j(t) = {k ∈ J|ṽk/d̃k(t) > ṽ j/d̃ j(t)}∪
{k ≤ j|ṽk/d̃k(t) = ṽ j/d̃ j(t)}, i.e. H j(t) contains all jobs with higher priority than job j at time
t, including j itself. Further, L j(t) = J \H j(t) is introduced, i.e. the set containing all jobs with
a lower priority than j at time t. Let j→ n denote that job j is assigned to node n. At time r̃ j,
all jobs k with k < j and ek > r̃ j are present in the system.

P-DLGM comprises the following three steps:

104 THE POWER OF PREEMPTION

• Step 1 – Job report: At its chosen release date r̃ j, job j communicates ṽ j and d̃ j to every
node n ∈ N.

• Step 2 – Tentative node feedback: Based on the received information, the nodes com-
municate a tentative node-specific completion time and a tentative payment to the job.

The tentative completion time of job j at node n is determined as

ê j(n) = r̃ j + d̃ j + ∑
k∈H j(r̃ j)

k→n
k< j

ek>r̃ j

d̃k(r̃ j),

i.e. the projected time that job j spends on node n equals the sum of j’s own runtime and
the remaining runtimes of all jobs which are queued in front of j at n at time r̃ j.

The tentative compensation payment of job j at node n is determined as

p̂ j(n) = d̃ j ∑
k∈L j(r̃ j)

k→n
k< j

ek>r̃ j

ṽk,

i.e. j’s runtime multiplied by the aggregate weights of all jobs which are displaced at node
n due to the addition of j at time r̃ j. This comprises the currently waiting jobs and, due
to allowing preemption, possibly also the currently running job. Consequently, given that
the job reported its true weight, it is compensated exactly for its additional waiting costs
if it is delayed by some subsequent job with a higher priority.

• Step 3 – Queueing: Upon receiving information about its tentative completion time and
required payment from the nodes, job j makes a binding decision for a node. Job j is
queued at its chosen node n according to its priority or preempts the currently running
job – which is then put back into this node’s local queue – and pays ṽkd̃ j to each lower
ranked job k at this node.

Note that in the extension to the basic DLGM, preemption is assumed to imply zero cost, that
is jobs can be suspended in negligible time. This is a reasonable assumption since – in contrast
to migrations where jobs are transferred between different nodes over the network (a setting
investigated in Amar et al. (2008b)) – in P-DLGM jobs are suspended on one single node.

Now the main results can be stated:

Theorem 3 (Myopic best response equilibrium under P-DLGM). Given the types of all jobs,
the strategy profile where each job j reports θ̃ j = θ j and chooses a node which maximizes
its tentative utility û j(θ j,n, s̃− j|θ j) = −v jê j(n)− p̂ j(n) is a myopic best response equilibrium
under P-DLGM and its ex post utility equals its tentative utility.

5.4 ADDING PREEMPTION 105

Proof. Due to the dynamic extension to Smith’s ratio rule, the proof to Theorem 3 reduces to
the proofs to Theorem 9 in Heydenreich et al. (2006) as the dynamic priorities can be plugged
into the latter. Consequently, the proof to this theorem and its supporting lemmata and theorems
do not change if preemption is introduced (cf. the proofs in Appendix C).

Before deriving P-DLGM’s competitive ratio, the following lemma is stated:

Lemma 1 (Non-increasing set of higher-priority jobs).

{(j,k) ∈ J× J| j ∈ Hk(r j),k < j} ⊆ {(j,k) ∈ J× J| j ∈ Hk(rk),k < j}.

Proof. There are two possible cases (recall that k < j⇒ rk ≤ r j):

• rk = r j⇒Hk(r j) = Hk(rk) and thus {(j,k)| j ∈Hk(r j),k < j}= {(j,k)| j ∈Hk(rk),k < j}.

• rk < r j and j ∈ Hk(r j). Obviously, v j
d j(r j)

= v j
d j(rk)

since j cannot be started prior to r j.
Moreover, vk

dk(r j)
≥ vk

dk(rk)
since the dynamic weighted shortest processing time (WSPT)

ratio of job k cannot decrease over time but remains unchanged if k is not executed and
increases if k is executed. It follows that

v j

d j(r j)
=

v j

d j(rk)
>

vk

dk(r j)
≥ vk

dk(rk)

and thus j ∈ Hk(rk).

Theorem 4 (Competitive ratio of P-DLGM). Suppose that every job j plays its myopic best
response strategy according to Theorem 3. Then P-DLGM is 2-competitive for the scheduling
problem P|r j, pmtn|∑v je j.

Proof. If job j plays a myopic best response strategy (r j,d j,v j), at time r j it selects the node n
that minimizes

−û j(θ j,n,s− j|θ j) = v jê j(n)+ p̂ j(n)

= v j(r j +d j + ∑
k∈H j(r j)

k→n
k< j

ek>r j

dk(r j))+d j ∑
k∈L j(r j)

k→n
k< j

ek>r j

vk.

Let n j be this node. As a result of the payment scheme, −û j(.,n j, .) exactly corresponds to the
increase of the objective value ∑k∈J vkek which is due to the addition of j. Furthermore, any
change in u j(.) that results from the assignment of some job k to node n j after r j, is absorbed

106 THE POWER OF PREEMPTION

by the payment scheme and uk(.). Thus the objective value can be expressed as W (s|θ) =
∑
j∈J
−û j(θ j,n j,s− j|θ j).

Since jobs are assumed to act rationally when choosing the node n at which to queue, one
obtains

−û j(.,n j, .) = min
n=1,...,m

−û j(.,n, .)≤ 1
m

m

∑
n=1
−û j(.,n, .)

by an averaging argument, and therefore W (.)≤ ∑
j∈J

1
m

m
∑

n=1
−û j(.,n, .). Hence

1
m

m

∑
n=1
−û j(.,n, .) = v j(r j +d j)+ v j

m

∑
n=1

∑
k∈H j(r j)

k→n
k< j

ek>r j

dk(r j)
m

+d j

m

∑
n=1

∑
k∈L j(r j)

k→n
k< j

ek>r j

vk

m
,

which can be shortened to

1
m

m

∑
n=1
−ûn

j(.) = v j(r j +d j)+ v j ∑
k∈H j(r j)

k< j
ek>r j

dk(r j)
m

+d j ∑
k∈L j(r j)

k< j
ek>r j

vk

m
.

By including all jobs instead of only the jobs k for which ek > r j, and by considering the total
runtime of jobs k ∈ H j(r j),k < j, this can be upper-bounded by

1
m

m

∑
n=1
−ûn

j(.) ≤ v j(r j +d j)+ v j ∑
k∈H j(r j)

k< j

dk(r j)
m

+d j ∑
k∈L j(r j)

k< j

vk

m

≤ v j(r j +d j)+ v j ∑
k∈H j(r j)

k< j

dk

m
+d j ∑

k∈L j(r j)
k< j

vk

m
.

By utilizing Lemma 1 and subsequently interchanging the indices j and k, the summation of the
last term over all jobs in J can be rewritten as

∑
j∈J

d j ∑
k∈L j(r j)

k< j

vk

m
= ∑

(j,k):
j∈Hk(r j)

k< j

d j
vk

m
≤ ∑

(j,k):
j∈Hk(rk)

k< j

d j
vk

m
= ∑

(j,k):
k∈H j(r j)

j<k

dk
v j

m
= ∑

j∈J
v j ∑

k∈H j(r j)
k> j

dk

m
.

5.4 ADDING PREEMPTION 107

Therefore,

W (.) ≤ ∑
j∈J

v j(r j +d j)+ ∑
j∈J

v j ∑
k∈H j(r j)

k< j

dk

m
+ ∑

j∈J
v j ∑

k∈H j(r j)
k> j

dk

m

= ∑
j∈J

v j(r j +d j)+ ∑
j∈J

v j ∑
k∈H j(r j)

dk

m
−∑

j∈J
v j

d j

m

≤ ∑
j∈J

v j(r j +d j)+ ∑
j∈J

v j ∑
k∈H j(r j)

dk

m
.

Let W OPT
pmtn (θ) be the objective value that an omniscient offline mechanism can achieve for an

instance θ of P|r j, pmtn|∑v je j.

Obviously, ∑ j∈J v j(r j +d j)≤W OPT
pmtn (θ).

Furthermore, consider the problem 1||∑v je j for a single node with speed m times the speed
of any of the identical parallel nodes and with the same jobs all arriving at time zero. Without
release dates, one gets that H j(t) = H j := {k ∈ J|ṽk/d̃k > ṽ j/d̃ j}∪{k ≤ j|ṽk/d̃k = ṽ j/d̃ j} for
all t since d̃ j(t) ≤ d̃ j, i.e. the ordering of jobs does not change over time. Since 1||∑v je j

is a relaxation of P|r j, pmtn|∑v je j and ∑ j∈J v j ∑k∈H j
dk
m is the objective value of the optimal

solution to 1||∑v je j, one obtains ∑ j∈J v j ∑k∈H j(r j)
dk
m ≤W OPT

pmtn (θ) (Megow and Schulz, 2004),
and thus W (s|θ)≤ 2W OPT

pmtn (θ).

This proof is close in spirit to the proof to Theorem 10 in Heydenreich et al. (2006). The basic
differences are that dynamic WSPT ratios are used in contrast to the static priorities used in
Heydenreich et al. (2006) and that different reductions can be used to upper bound the compet-
itive ratio in the last step of the proof.

One may argue that the bounds in Theorems 2 and 4 relate to different optimization problems.
However, exactly this difference – introducing preemption – is the main point in this chapter,
which is captured by the following theorem:

Corollary 1 (Benefit of preemption). Suppose that every job j plays its myopic best response
strategy according to Theorem 3. Then preemptions allow to improve the upper (worst case)
bound on the objective value ∑v je j generated by a market mechanism from 3.281 to 2.

Proof. Take Theorems 2 and 4 as well as the fact that the objective value W OPT
pmtn (θ) of the

optimal solution to P|r j, pmtn|∑v je j will always (for all θ) be less than or equal to the objective
value W OPT (θ) of the optimal solution to P|r j|∑v je j. Consequently, if W (s|θ) is the objective
value generated by P-DLGM, then W (s|θ)≤ 2W OPT

pmtn (θ)≤ 2W OPT (θ).

108 THE POWER OF PREEMPTION

With preemption, one cannot only lower this upper bound to ρ = 2, but additionally omit the
artificial restriction on critical jobs (r j ≥ αd j).

An important result of Heydenreich et al. (2006) is that there is no payment scheme which can
complement DLGM so as to make truthtelling a dominant strategy equilibrium where revealing
the true job type and choosing the best node is not only the tentatively optimal strategy but is
also optimal from an ex post perspective. This result applies also for P-DLGM.

Theorem 5 (Impossibility of truthful prices for P-DLGM). It is not possible to turn P-DLGM
into a mechanism with a dominant strategy equilibrium in which all jobs report truthfully by
only modifying the payment scheme.

Proof. The proof follows from Theorem 14 in Heydenreich et al. (2006). It relies on a sim-
ple example to show that, under DLGM, jobs may improve their ex post completion time by
reporting ṽ j < v j, which contradicts weak monotonicity, a necessary condition for truthfulness
(Lavi et al., 2003; Heydenreich et al., 2006). In the example, all jobs arrive at the same time.
Consequently, no preemption can occur and this example as well as the supporting lemmata
thus also hold with preemption.

An interesting open question for future research remains: Is there any truthful mechanism (in
dominant strategies) at all for this setting?

5.5 Empirical Analysis

5.5.1 Experimental Setup

In the previous section, it was shown that P-DLGM yields a better worst case performance than
DLGM. In this section, the average case is analyzed by means of an empirical analysis based
on real workload traces.

A simulator was implemented to study online mechanisms for the scheduling in distributed
computing systems. The experimental setup is similar to the analysis of fairness in economic
online scheduling in Amar et al. (2008b). P-DLGM and DLGM are evaluated using this previ-
ous setting since this allows for comparing the results of both analyses. Moreover, the economic
setting at hand is to be checked without “tailoring” a specific setting towards the advantage of
P-DLGM.

5.5 EMPIRICAL ANALYSIS 109

Workload Traces

For the simulations, four workload traces were taken from the Parallel Workload Archive4 (cf.
Table 5.1). All these traces were recorded on homogeneous clusters. The DAS2-FS4 cluster

Trace Timeframe
Jobs Jobs

CPUs
Runtime

(original) (serialized) Mean (sec.) CV (%)
WHALE Dec’05–Jan’07 196,417 280,433 3,072 35,658 237
REQUIN Dec’05–Jan’07 50,442 466,177 1,536 45,674 411

LPC-EGEE Aug’04–May’05 219,704 219,704 140 3,212 500
DAS2-FS4 Feb’03–Dec’03 32,626 118,567 64 2,236 961

Table 5.1: Workload traces.

is part of a Dutch academic grid. LPC is a French cluster that is part of the EGEE grid. The
WHALE and REQUIN traces are taken from two Canadian clusters. These workloads were
chosen due to the large number of jobs which will help in mitigating stochastic outliers, the
availability of technical parameters such as release dates and runtimes, and because of their rel-
ative recentness, as old workloads might contain outdated applications and utilization patterns.
In all of the traces the CPUs were dedicated, meaning only one job is using each CPU at the
same time.5 Parallel jobs (using more than one CPU) are treated as a collection of serial jobs
all with the same weight, release date and runtime. The addition “serialized” in the job column
of Table 5.1 indicates the number of jobs after converting such parallel jobs to serial ones.

Table 5.1 contains descriptive statistics of the jobs in the traces. The homogeneity of the jobs
within one trace as regards runtime is expressed by reporting the coefficients of variation (CV)
of the runtimes, which normalize the standard deviation by the mean. The jobs in WHALE and
REQUIN have long runtimes and are rather homogeneous, whereas the jobs in LPC-EGEE and
DAS2-FS4 are short on average with DAS2-FS4 being highly heterogeneous.

To analyze the utilization patterns in these traces, they were simulated using a simple first-in-
first-out scheduler. As the results in Figure 6.1 illustrate, the WHALE and the REQUIN cluster
are highly utilized, a large number of jobs resides in the waiting queue most of the time. In
contrast, the LPC-EGEE and the DAS2-FS4 clusters only have a small number of peaks in the
waiting queue. The competition among jobs is small and CPUs are frequently idle. To measure
the impact of preemption for the LPC-EGEE and the DAS2-FS4 clusters in more competitive
settings, the pressure in these two workloads was increased and simulated with only 75% of the

4http://www.cs.huji.ac.il/labs/parallel/workload
5Note that the actual job characteristics are taken from from the traces which have been measured by the system,

not the user estimates.

http://www.cs.huji.ac.il/labs/parallel/workload

110 THE POWER OF PREEMPTION

original CPUs being available.

(a) WHALE (b) REQUIN

(c) LPC-EGEE (d) DAS2-FS4

Figure 5.2: Utilization patterns of the workload traces with a FIFO scheduler (Waiting Jobs,
Running Jobs).

Waiting Cost Model

Essentially, the users’ waiting costs (weights) represent the users’ valuations for the jobs. The
only empirical investigation of economic scheduling mechanisms which uses a time-dependent
user valuation model was performed by Chun and Culler (2002). Valuations were assumed to be
bimodal with the majority of jobs having valuations following a normal distribution with a low
mean, and some high valuation jobs with valuations coming from a second normal distribution
with a higher mean.

In order to check the validity of the results for two different valuation models, all settings were
simulated for such a bimodal distribution with 80% of the job weights coming from a normal
distribution with mean 30 and standard deviation 15, and 20% of the job weights coming from
a normal distribution with mean 150 and standard deviation 15.6 Consequently, on average,
high-valuation jobs were assumed to be five times more important than low-valuation jobs. The
simulation settings were additionally run drawing the job weights from a uniform distribution
over {1, . . . ,100}, i.e. there are 100 priority classes.

6Note that negative valuations were cut off.

5.5 EMPIRICAL ANALYSIS 111

Metrics

Since this work is about investigating economic schedulers, the evaluation cannot be based on
purely technical metrics, based on a single scalar, such as makespan or the sum of completion
times. Instead, metrics have to be developed that capture the viewpoint of the users and measure
the dependency between the “service” a job receives from the system and its reported valuation.

Total weighted flow time describes the overall system performance and is defined as ∑ j v j(e j−
r j). In contrast to the previous section, for the empirical analysis it was chosen to measure
the total weighted flow time instead of the total weighted completion time. First, minimizing
completion time is equivalent to minimizing flow time up to an additive constant of −∑ j v jr j.7

Second, since traces are run that cover more than one year of workloads on a per second basis,
this additive constant will be very large and hence might dominate this ratio. Thus, focussing
on the flow time instead of the completion time helps in determining the actual difference in
system performance for DLGM and P-DLGM.

Utility per priority value describes the utility a job receives in relation to its WSPT ratio.8

Total weighted flow time only describes the overall system performance. In contrast, this mea-
sure gives more insights into the impact of performing preemptions on the single jobs’ utility.
Which jobs suffer from preemptions, which gain, or do all jobs gain by performing preemptions
regardless of their priority? To capture the utility per WSPT ratio (which is a continuous ran-
dom variable), this value range is discretized as follows: All jobs are sorted with respect to their
initial WSPT priorities v j/d j. This sorted list is then divided into 100 slices, i.e. the percentile
of jobs with the lowest WSPT ratios, the second percentile and so forth. The mean utility will
be reported for each percentile to compare DLGM and P-DLGM.

Bounded slowdown per valuation (BSD) also reflects the perspective of a single job. The
bounded slowdown of job j is defined as

BSD j =

e j−r j

d j
if d j ≥ 60

e j−r j
60 else.

This metric is widely used in the Computer Systems Evaluation literature (e.g. Harchol-Balter
and Downey (1997); Mu’alem and Feitelson (2001)). The bounded slowdown is taken instead
of the slowdown because short jobs can easily experience a large slowdown, which does not nec-
essarily reflect a bad service. Intuitively, job j seeks to minimize BSD j. Naturally, in economic
schedulers, jobs with higher valuations (and smaller runtimes) should get smaller (bounded)

7The optimal schedules are identical for both metrics. However, schedules that approximate each metric can
differ even if the same approximation ratio is guaranteed.

8Note that for jobs playing the best myopic strategy of truthful reporting the tentative utility equals the ex post
utility, as shown in Theorem 7(a) in Heydenreich et al. (2006).

112 THE POWER OF PREEMPTION

slowdowns. The rationale for looking at this metric is that this gives hints towards the mech-
anisms’ performance if other job utility functions as the one introduced above are considered,
e.g. if the importance of the jobs’ waiting costs increases compared to the job payments. Addi-
tionally, the utility function in the setting at hand has many indifference points (a delay of job
j for a one time unit can be compensated with a payment of v j). It seems reasonable to assume
that users have strict preferences over these “indifference” points and would like to finish earlier
rather than to be compensated.

5.5.2 Experimental Results

The following results represent the means across 50 runs. Table 5.2 shows the ratio of the
total weighted flow time generated by P-DLGM to the result produced by DLGM for both the
uniform and the bimodal weight distribution. P-DLGM always outperforms DLGM with respect

Trace Uniform distribution Bimodal distribution
WHALE 1.09 1.08
REQUIN 1.06 1.05

LPC-EGEE-75% 1.07 1.07
DAS2-FS4-75% 1.22 1.20

Table 5.2: Ratio of the total weighted flow time of DLGM to P-DLGM for the uniform and the
bimodal weight distributions.

to this overall performance metric. Consequently, P-DLGM not only improves upon DLGM in
the worst case as shown in the previous section but also in the average case. Intuitively, the
benefit of performing preemptions increases (i.e., the ratio increases) as the pressure in the
system increases, that is as more jobs compete for the resources. As the results hold for both
the uniform and the bimodal weight distribution, it can be hypothesized that the overall benefit
of performing preemptions is robust to the assumption about a specific weight distribution.

However, the results for the total weighted flow time cannot give any insight into the impact
of performing preemptions on the performance of the individual jobs. Which jobs benefit and
which jobs suffer from this feature? Figures 5.3(a), 5.3(c), 5.3(e) and 5.3(g) show the ratio of the
average utility per WSPT priority percentile (see explanation in Subsection 5.5.1) generated by
DLGM to the average utility produced by P-DLGM (based on the uniform weight distribution).
Since both are always negative, the bigger this ratio, the better P-DLGM performs in comparison
to DLGM for a given priority range. Overall, the payments across all jobs cancel out due to the
presented pricing scheme that is based on compensation payments between the jobs. P-DLGM
results in lower total waiting costs and, due to the jobs’ utility functions, higher welfare. In the

5.6 RELATED WORK 113

simulations, it can be seen that the ratio of the average utilities is almost always bigger than
1 for all four workload traces and priority ranges. This shows that P-DLGM almost always
outperforms DLGM and that essentially all job priority percentiles benefit from performing
preemptions, regardless of their WSPT priority. Note that within each percentile there might
well be jobs that suffer, however, on average the jobs within the percentile benefit in most cases.

But how does the ability of preempting jobs impact the jobs’ service level, as captured by the
bounded slowdown? As pointed out above, this is important when considering other job utility
functions where the waiting costs are more important. As Figures 5.3(b), 5.3(d), 5.3(f) and
5.3(h) show, P-DLGM strikingly outperforms DLGM regarding the bounded slowdown. On
average, P-DLGM yields a lower bounded slowdown (better service) than DLGM across all
priority ranges. Moreover, the bounded slowdown of P-DLGM is almost always close to 1 (the
optimum), besides a small peak in the DAS-FS4 workload. This result can be explained by the
use of the (dynamic) WSPT ratios, which divide the job weight by the runtime. This generally
boosts the priority of small jobs compared to long jobs. Thus, in contrast to the static DLGM,
the WSPT ratios in conjunction with preemptions gives the mechanism the ability to suspend
long jobs in favor of short jobs. Hence, P-DLGM tends to result in much smaller slowdowns for
short jobs but only slightly larger slowdowns for long jobs, since the slowdown is normalized
by the job runtime. From an overall perspective, the mean slowdown will thus be much smaller
for P-DLGM than for DLGM.

The results for the bimodal weight distribution closely resemble the results for the uniform
distribution, cf. Figure 5.4. In fact, the graphs look almost identical. As pointed out above, this
suggests that the overall benefit of performing preemptions is robust to the assumption about
a specific weight distribution. One explanation for this robustness can be that, on average, the
job weights are small compared to the job runtimes. Consequently, the jobs’ WSPT priority is
heavily dominated by the job runtimes and becomes less sensitive to changes in the valuation
distribution.

5.6 Related Work

This section will first discuss related work on (technical) allocation algorithms before focusing
on market mechanisms. A good overview about approximation results via deterministic algo-
rithms is given in Megow (2007). For the non-preemptive setting with arbitrary job weights, re-
lease dates, and numbers of nodes (P|r j|∑v je j in the notation of this chapter), Correa and Wag-
ner (2005) give the currently best known algorithm, which is 2.62-competitive. For the single-
node setting, Goemans et al. (2002) obtain a 2.41-competitive algorithm. Note that Megow and
Schulz (2004) and Megow (2007) also give an allocation algorithm that is 2-competitive for the

114 THE POWER OF PREEMPTION

(a) WHALE Utility (b) WHALE BSD

(c) REQUIN Utility (d) REQUIN BSD

(e) LPC-EGEE-75% Utility (f) LPC-EGEE-75% BSD

(g) DAS2-FS4-75% Utility (h) DAS2-FS4-75% BSD

Figure 5.3: Left column: ratio of the average (negative) utility of DLGM to P-DLGM; right
column: average bounded slowdown of DLGM and P-DLGM. v/d indicates the discretized
WSPT percentiles. Both evaluations are based on the uniform weight distribution.

preemptive setting P|r j, pmtn|∑v je j. Furthermore, they show that this bound is tight. However,
they use static priorities when ordering jobs which are independent of the jobs’ progress and

5.6 RELATED WORK 115

(a) WHALE Utility (b) WHALE BSD

(c) REQUIN Utility (d) REQUIN BSD

(e) LPC-EGEE-75% Utility (f) LPC-EGEE-75% BSD

(g) DAS2-FS4-75% Utility (h) DAS2-FS4-75% BSD

Figure 5.4: Left column: ratio of the average (negative) utility of DLGM to P-DLGM; right
column: average bounded slowdown of DLGM and P-DLGM. v/d indicates the discretized
WSPT percentiles. Both evaluations are based on the bimodal weight distribution.

the allocation algorithm is centralized as opposed to the decentralized setting used in this work.
Most importantly, the latter leads to Megow and Schulz using migration (i.e. the moving of

116 THE POWER OF PREEMPTION

jobs across nodes) whereas P-DLGM only uses preemption (i.e. suspended jobs are continued
on the same node). Megow (2007) proposes an algorithm that uses dynamic WSPT priorities
as proposed in this work and shows that it is 2-competitive for the single-node case. Again, in
this chapter a decentralized variant of this algorithm was proposed. Moreover, it was shown
that the resulting market mechanism is not only 2-competitive for the single-node case but for
arbitrary numbers of nodes. However, it is not clear whether this bound is tight, as the proof of
the tightness of the algorithm of Megow and Schulz (2004) and Megow (2007) does not hold
with dynamic WSPT priorities. It is important to note that this previous research only focuses
on the allocation algorithm and does not give a pricing scheme to complement this algorithm.

In Harchol-Balter and Downey (1997), the authors showed that performing preemptive migra-
tion is more effective than static scheduling as regards the mean slowdown. Moreover, the
authors argue that the mean slowdown understates the advantages of the preemptive strategy
from the viewpoint of severely suffering jobs, and suggest to also use more fine-grained metrics
such as the variance of slowdown and the number of severely slowed jobs. In this chapter, these
metrics were extended to take into account the valuations of jobs.

As presented in the preliminaries in Chapter 2, online market mechanisms can be distinguished
into mechanisms which allocate shares of one or more divisible goods such as bandwidth or
computing power (e.g. Chun and Culler (2000); Sanghavi and Hajek (2004)) and, similar to the
approach in this chapter, mechanisms that allocate indivisible nodes. As such, strategic behavior
of users is considered by Friedman and Parkes (2003) for the allocation of bandwidth. The paper
elaborates online variants of the prominent VCG mechanism to induce the users to truthfully
reveal their valuations and release dates. Lavi and Nisan (2005) studied “Set-Nash” equilibria
mechanisms and also showed that no ex post dominant-strategy implementation can obtain a
constant fraction of the optimum. Porter (2004) is most similar to the spirit of this chapter
in that it addresses the issue of preemption in economic online settings. The objective of the
mechanism is to schedule strategic jobs with deadlines onto one single node so as to induce
these users to truthful reports of their characteristics and to maximize the overall value returned
to the users. The benefit of migration was studied in Amar et al. (2008b) in the context of online
fair allocations in heterogenous grids: under mild assumptions, it was shown that several natural
fairness and quality of service properties cannot be achieved without the ability to preempt jobs
during runtime. Extensive numerical experiments are performed with real-world workloads and
varying degrees of realistic migration cost. The experiments show that the performance of a fair
(according to the defined criteria) scheduling algorithm is robust to even significant migration
cost.

Additionally, many recent results studied the limitations of the dominant strategy approach on
various scheduling settings (e.g. Christodoulou et al. (2007) and Mu’alem and Schapira (2007)).

5.7 DISCUSSION 117

This suggests that other notions of implementation should be studied. In this chapter “myopic”
best responses were studied where users do not have information about the future.

In Chun and Culler (2002), the authors also find that economic scheduling algorithms improve
the system performance from the users’ viewpoint. They conclude that introducing a limited
preemption model (in which a job is preempted at most once) does not significantly improve the
overall performance. The paper does not give sufficient details about the simulation setting, e.g.
the level of competition in the artificially generated workloads. More importantly, it only con-
siders overall performance as opposed to the intimate connection of the individual performance
and the valuation of single jobs as well as the predictability of the service level.

5.7 Discussion

This chapter investigated the benefit of performing preemptions in economic settings where
users have time-dependent valuations. By focusing on Heydenreich et al.’s DLGM mechanism,
it was shown that both the worst case as well as the average case economic performance of
online mechanisms can be significantly improved by introducing preemptions. Virtualization
technologies provide off-the-shelf support for virtual machine migration, thus making the use
of preemption and migration more accessible. The results suggest that designers of distributed
systems should make full use of this feature to build in more flexible and efficient allocation
and pricing mechanisms. DLGM and P-DLGM have been integrated into MOSIX, a cluster and
grid management system that supports preemptive migration and is functional at the Hebrew
University in Jerusalem (Barak et al., 2005).

A natural extension to preemption is migration, i.e. the moving of jobs across nodes during
runtime instead of only the suspension and continuation on one single node. Migration will
allow for still more efficient mechanisms and might also help in introducing stronger game-
theoretic solution concepts (e.g. in dominant strategies) in some settings. However, this would
require the introduction of migration cost since jobs are moved across the network, whereas in
this chapter jobs have only been suspended in local memory or on disk (cf. Amar et al. (2008b)).
Additionally it will be interesting to consider settings in which the nodes are paid for executing
the jobs. It would also be interesting to extend the analytic and empirical results to other job
strategies, e.g. based on Q-Learning (Phelps, 2007).

118 THE POWER OF PREEMPTION

Chapter 6

Allocating and Pricing Shared Resources

6.1 Introduction

I n Chapter 1, the vision of utility computing has briefly been introduced. One aspect of util-
ity computing is the trend back towards centralizing computing services. In contrast to grid

computing where essentially every user can also become a resource provider over time, in utility
computing settings, users are serviced by few dedicated service providers such as Amazon or
Sun Microsystems. Within such a centralized resource pool of one provider, the management
of resources and applications becomes simpler. The resources are homogeneous and connected
by a high-speed network. Moreover, virtualization technologies allow to dynamically adapt the
system to changes in demand, e.g. by dynamically adjusting the size of virtual machine images
regarding CPU, memory and bandwidth, or by moving virtual machines across physical ma-
chines. Ultimately, the resources might be viewed as shared resources that can be accessed by
multiple users at the same time.

The aim of this chapter is to review and extend existing market mechanisms in the light of this
scenario. The contributions of this chapter are the following:

• Mechanism design: From an economic point of view, a discriminatory pay-as-bid market
mechanism by Sanghavi and Hajek (2004) is presented. By means of a game-theoretic
analysis, this mechanism is compared to (market-based) Proportional Share, arguably
the currently most prominent market mechanism for computing systems. Conditions are
derived under which the Sanghavi-Hajek mechanism outperforms Proportional Share re-
garding both the provider’s surplus and the allocative efficiency for the case of two users.

For larger settings, the mechanisms are compared by means of an agent-based simulation
based on a real-world workload trace. However, the basic mechanism does not allow

120 ALLOCATING AND PRICING SHARED RESOURCES

for users to obtain service level guarantees for business-critical applications. Therefore,
an extension to the basic mechanism is proposed that allows users to choose between
(1) a fixed price and a dynamic (uncertain) service level or (2) a dynamic price and a
guaranteed service level.

• Integration into state-of-the-art service platforms: From a technical perspective, it is
shown that this mechanism is not purely a theoretical construct but that it can be integrated
into state-of-the-art computing platforms to economically enrich the current allocation
procedure. The basic design considerations are illustrated for the case of the N1 Grid
Engine, the basis of Sun Microsystems’s network.com platform.

6.2 Related Work

The market mechanisms that were presented in the previous chapters are based on periodically
allocating either discrete shares of a compute node (e.g. assuming that the node can only be di-
vided in whole CPU units, cf. Chapter 3 and Chapter 4) or dedicated nodes only (cf. Chapter 5).
Moreover, with an allocation rule mainly based on economic reasoning, all available resources
would be given to the resource requests1 with the highest valuations. Technically, this could
result in starvation2 and in unstable systems3, which needs to be considered. Combining the
economic and the technical aspects, it can be desirable to give “better” service to high-value
requests but to also allot at least “some” service to requests of low value.

Fundamentally different in their approach are mechanisms that assign continuous resource
shares to applications based on one-dimensional input only, e.g. single scalars that represent
the users’ valuations. Proportional Share is currently the most prominent proxy of such mech-
anisms (Stoica et al., 1996; Chun and Culler, 2000; Lai et al., 2005). The Sanghavi-Hajek
mechanism (Sanghavi and Hajek, 2004), however, can improve on Proportional Share with re-
spect to efficiency and the provider’s revenue. The setting and these two mechanisms will now
be presented in more detail.

1In this chapter, the term “request” is used instead of the term “job” as the former does not necessarily need to
be fully satisfied with respect to its requested resources if it is allocated.

2In scheduling theory, starvation denotes the fact that low-priority processes are prevented from doing any
progress because all resources are assigned to other higher-value processes.

3Note that the whole allocation might need to be adjusted even if there has only been a marginal increase in a
user’s bid.

6.2 RELATED WORK 121

6.2.1 The Setting

Let vector ṽ = (ṽ1, . . . , ṽn) represent the positive reported valuations (“bids”) of the users. The
users receive shares x = (x1, . . . ,xn), x j ∈ R+, ∑

n
j=1 x j = 1, of the perfectly divisible good ac-

cording to some specific allocation algorithm τ . Thus, x j = τ j(ṽ) is the quantity user j is
allocated for a given bid vector ṽ.

This chapter considers pay-as-bid mechanisms where user j pays the bid ṽ j regardless of the
allocation τ j(ṽ). The mechanism must be valid in the sense that τ must be smooth, symmetric,
and scale free (Sanghavi and Hajek, 2004):

• Smooth: τ j(ṽ j, ṽ− j) is differentiable, increasing, and concave in ṽ j.

• Symmetric: The allocation to a specific user does not change if the bid vector ṽ is trans-
formed by a permutation.

• Scale free: The allocations to the users do not change if all bids are scaled by the same
factor.

The prominent Vickrey auction is not smooth since its allocation rule is not continuous; it has a
jump discontinuity at the highest bid.

As is common in mechanism design, the users are assumed to have quasi-linear utility functions:

u j(ṽ j,τ j(ṽ)|v j) = v jτ j(ṽ)− ṽ j,

with v j ∈R+ being the user’s true valuation for receiving the whole resource. This type of utility
function has also been used by Sanghavi and Hajek (2004), Johari and Tsitsiklis (2004), and Lai
et al. (2005) in equivalent settings. Consequently, j’s unit price p j, i.e. the price user j would
have to pay if she got the whole resource unit (x j = τ j(ṽ) = 1), amounts to p j(ṽ j,τ j(ṽ)) = ṽ j

τ j(ṽ)
.

It is assumed that each user can make full use of the resource, i.e. there is no idle share of the
resource even if there is only one user in the system. Let uP(ṽ) = ∑ j ṽ j be the provider’s utility
function, which only depends on the users’ bids and equals the sum across all user payments. It
is assumed that the provider has a zero reservation price.

6.2.2 Proportional Share

Proportional Share allocates shares of unequal size, hence accounting for varying importance
among users. Whereas scheduling according to pre-set, fixed shares for different users remains
technical, market-based Proportional Share mechanisms dynamically base the resource share on

122 ALLOCATING AND PRICING SHARED RESOURCES

the users’ bids. The total amount of available resources is distributed among the users according
to their bids’ fraction of the overall bid: User (request) j with bid ṽ j receives a fraction of ṽ j

∑
n
k=1 ṽk

of the available resource given a group of n users is competing for resource access. It is easy to
see that Proportional Share has a valid allocation algorithm according to the criteria above.

Systems using Proportional Share as allocation scheme have been proposed in Stoica et al.
(1996), Chun and Culler (2000), and Lai et al. (2005). The problem with Proportional Share is
that it remains allocatively inefficient, which will be illustrated in Subsection 6.3.3 by means of
a numerical example. The point is that users have an incentive to shade their bids down, since
the value of an increased share (resulting from a higher bid) is overcompensated by the increase
in the payment.

6.2.3 The Discriminatory Pay-as-Bid Mechanism by Sanghavi and Hajek

With Proportional Share, all users pay the same unit price. In contrast, Sanghavi and Hajek
(2004) propose a mechanism that gives “volume discounts” in the sense that high-bidding users
pay lower unit prices.

For a given bid vector ṽ = (ṽ1, . . . , ṽn), the following allocation rule is proposed:

τ
sh
j (ṽ) =

ṽ j

ṽmax

∫ 1

0
∏
k 6= j

(
1− s

ṽk

ṽmax

)
ds,

with at least two users and ṽmax being the maximum bid.

For a scenario with two users, a user l (low bidder) and a user h (high bidder), vl ≤ vh, τsh

simplifies to

τ
sh
l (ṽl, ṽh) =

ṽl

2ṽh
and τ

sh
h (ṽl, ṽh) = 1− ṽl

2ṽh
.

If the pay-as-bid pricing rule is combined with the Sanghavi-Hajek allocation scheme τsh, the
resulting mechanism as a whole produces discriminatory unit prices; the user with a lower
bid pays a higher unit price than the high-bidding user.4 This volume discount is supposed to
encourage users to bid higher, and thus closer to their true valuation, compared to a scenario
with uniform prices where the users can potentially benefit from shading their bids downwards.

While the Sanghavi-Hajek mechanism has been proposed for the allocation of network band-
width, the setting essentially generalizes to the allocation of any perfectly divisible resource. In
the following section, this mechanism is compared to the Proportional Share mechanism with
respect to the provider’s revenue and overall utility for the restricted two-user case.

4 pl(ṽl ,τ
sh
l (ṽ)) = ṽl

2ṽh
ṽl

= 2ṽh and ph(ṽh,τ
sh
h (ṽ)) = ṽh

1− ṽl
2ṽh

= 2ṽ2
h

2ṽh−ṽl
. Consequently, pl(.) ≥ ph(.)⇔ 2ṽh− ṽl ≥

ṽh⇔ ṽh− ṽl ≥ 0. This inequality holds per definition.

6.3 COMPARISON FOR TWO USERS 123

6.3 Comparison for Two Users

6.3.1 User Strategies and Mechanism Performance

For evaluating and comparing market mechanisms, the users’ strategies, i.e. the users’ reporting
of ṽ, and a metric need to be defined. For the former, the solution concept of Nash equilibria un-
der complete information (Nash, 1951; Mas-Colell et al., 1995) is chosen in line with Sanghavi
and Hajek (2004) and Johari and Tsitsiklis (2004).

Definition 1 (Nash equilibrium). A bid vector ṽNE = (ṽNE
1 , . . . , ṽNE

n) constitutes a Nash equilib-
rium if, for all j, v j and ṽ j,

u j(ṽNE
j ,τ j(ṽNE)|v j)≥ u j(ṽ j,τ j(ṽNE

1 , . . . , ṽNE
j−1, ṽ j, ṽNE

j+1, . . . , ṽ
NE
n)|v j).

In a Nash equilibrium ṽNE , no user j can benefit by unilaterally deviating from ṽNE
j , even when

given complete information about the bids of the other users.

A common metric for a mechanism’s performance is its competitive ratio in its Nash equilibrium
(also called fractional efficiency (Sanghavi and Hajek, 2004)):

Definition 2 (Competitive ratio). The competitive ratio of the allocation mechanism τ is defined
as

inf
{u j}

inf
{ṽNE}

W τ(ṽNE |v)
W OPT =

∑ j u j(ṽNE
j ,τ j(ṽNE)|v j)+uP(ṽNE)

W OPT

=
∑ j τ j(ṽNE)v j

W OPT ,

where W OPT is the optimal efficiency if the whole resource unit is allocated to the user with the
highest valuation, and W τ(.) is the efficiency generated by allocation mechanism τ in its Nash
equilibrium.

In this setting, the competitive ratio of a mechanism is the worst case ratio of the overall utility
generated by the specific mechanism if all users play their Nash strategy ṽNE

j , divided by the
theoretical optimum W OPT .5 As shown in Johari and Tsitsiklis (2004) and Sanghavi and Hajek
(2004), to analyze the competitive ratio it is sufficient to consider linear valuation functions of
the form v jτ j(ṽ).

From a mechanism design perspective, the aim is to design a mechanism with maximum com-
petitive ratio, i.e. to find the mechanism that maximizes the market’s (and thus the computing

5Note that the uniqueness of Nash equilibria is generally not guaranteed. Consequently, the infimum over all
Nash equilibria is taken for a given set of utility functions to obtain the competitive ratio.

124 ALLOCATING AND PRICING SHARED RESOURCES

system’s) value across all users, given the specific setting at hand. For two users, the competitive
ratio of τsh adds up to 87.5% (Sanghavi and Hajek, 2004). In comparison, the competitive ratio
of the Proportional Share mechanism is 82.84% (cf. the proof to Lemma 4 in Johari and Tsit-
siklis (2004)). Moreover, Sanghavi and Hajek (2004) show that τsh not only provides the best
(worst case) competitive ratio, but that it is optimal for any pair of valid valuation functions6.

For arbitrary numbers of users, it is hard to analytically determine an exact value for the worst
case efficiency of the Sanghavi-Hajek mechanism. Instead, Sanghavi and Hajek (2004) numer-
ically calculate the interval [87.03%, 87.5%] as bounds for the general competitive ratio. The
proposed mechanism is still close to the theoretical maximum worst case efficiency of 87.5%
(Sanghavi and Hajek, 2004). But a guarantee that the mechanism τsh is the optimal one can
no longer be given. In contrast, for general numbers of users, Proportional Share was shown to
have a competitive ratio of 75% (Johari and Tsitsiklis, 2004).

These previous results focus solely on efficiency. Especially in the case where the market out-
come is determined by a centralized provider and not by an independent intermediary, another
important performance dimension of the mechanism is the provider’s revenue. In order to de-
rive more general results, Sanghavi and Hajek (2004) and Johari and Tsitsiklis (2004) base
their analyses on the general structure of the mechanisms’ Nash equilibria without explicitly
determining the users’ bids in these equilibria.7 However, measuring and comparing the mech-
anisms’ revenue requires an explicit model of the users’ strategies dependent on their requests’
characteristics and the mechanism. The focus of the following analysis will thus be on de-
riving the equilibrium strategies for the two mechanisms at hand and comparing the resulting
provider’s revenue. Additionally, the results with respect to efficiency confirm the results of
Sanghavi and Hajek (2004) about the optimality of their mechanism in the two-user case.

6.3.2 Analytical Comparison: User Strategies, Provider’s Revenue, and
Efficiency

This subsection will first develop an explicit model of the users’ strategies and the resulting
market outcome before evaluating the mechanism performance.

The following lemma confirms that there is no “distorted” Nash equilibrium for the Sanghavi-
Hajek mechanism in the sense that the user with the lower valuation bids more than the user
with the higher valuation.

6By valid valuation function, Sanghavi and Hajek (2004) refer to valuation functions that are differentiable,
concave, and strictly increasing.

7For instance, Sanghavi and Hajek (2004) (cf. the proof to Lemma 3) show that for all Nash equilibria ṽNE the
following condition must hold: ∂ul(.)

∂τl(ṽNE)/
∂uh(.)

∂τh(ṽNE) = ṽNE
l /ṽNE

h .

6.3 COMPARISON FOR TWO USERS 125

Lemma 1 (No “distorted” Nash equilibria). In the Nash equilibrium ṽsh of the pay-as-bid mech-
anism τsh, the user l does not bid more than user h (ṽsh

l ≤ ṽsh
h).

Proof. Assume ṽsh
l > ṽsh

h . Hence user l gets allocated 1− ṽsh
h

2ṽsh
l

and user h gets allocated ṽsh
h

2ṽsh
l

.

In the Nash equilibrium,
∂u j(ṽsh

j ,τsh
j (ṽsh)|v j)

∂ ṽsh
j

= 0, j = l,h.

Consequently,
∂uh(ṽsh

h ,τsh
h (ṽsh)|vh)

∂ ṽsh
h

=
vh

2ṽsh
l
−1 = 0⇔ ṽsh

l =
vh

2

and
∂ul(ṽsh

l ,τsh
l (ṽsh)|vl)

∂ ṽsh
l

=
vl ṽsh

h

2(ṽsh
l)2
−1 = 0⇔ ṽsh

h =
2
vl

vh

2
ṽsh

l =
vh

vl
ṽsh

l ≥ ṽsh
l ,

a contradiction.

In the following, it can thus be assumed that the user with the high valuation indeed reports the
higher valuation. The strategies and outcomes can then be determined as follows:

Lemma 2 (Nash equilibrium with the Sanghavi-Hajek mechanism). In the Nash equilibrium ṽsh

of the Sanghavi-Hajek mechanism τsh, user l bids ṽsh
l = v2

l
2vh

and receives a share of τsh
l (ṽsh) =

vl
2vh

, whereas user h bids ṽsh
h = vl

2 , thus receiving τsh
h (ṽsh) = 1− vl

2vh
.

Proof.
∂ul(ṽsh

l ,τsh
l (ṽsh)|vl)

∂ ṽsh
l

=
vl

2ṽsh
h
−1 = 0⇔ ṽsh

h =
vl

2

and
∂uh(ṽsh

h ,τsh
h (ṽsh)|vh)

∂ ṽsh
h

=
vhṽsh

l

2(ṽsh
h)2
−1 = 0⇔ ṽsh

l =
2
vh

(vl

2

)2
⇔ ṽsh

l =
v2

l
2vh

.

Moreover,
∂ 2uh(ṽsh

h ,τsh
h (ṽsh)|vh)

∂ (ṽsh
h)2

=−
vhṽsh

l

(ṽsh
h)3

< 0.

To see that ṽl = ṽsh
l indeed maximizes ul(ṽl,τ

sh
l (ṽl, ṽsh

h)|vl), consider two cases:

• ṽl ≤ ṽsh
h ⇒ ul(ṽl,τ

sh
l (ṽl, ṽsh

h)|vl) = vl ṽl
2ṽsh

h
− ṽl = 0 = ul(ṽsh

l ,τsh
l (ṽsh)|vl).

• ṽl > ṽsh
h = vl

2 ≥ ṽsh
l ⇒ ul(ṽl,τ

sh
l (ṽl, ṽsh

h)|vl) = vl−
v2

l
4ṽl
− ṽl. Hence,

∂ul(.)
∂ ṽl

=
v2

l

4ṽ2
l
−1 <

v2
l

4(vl
2)2 −1 = 0.

126 ALLOCATING AND PRICING SHARED RESOURCES

Consequently, the user l cannot increase her utility by deviating and ṽl = ṽsh
l maximizes ul(.)

for ṽh = ṽsh
h .

Inserting ṽsh into τsh directly yields τsh
l (ṽsh) = vl

2vh
and τsh

h (ṽsh) = 1− vl
2vh

.

The mechanism τsh allocates the resource shares in such a way that, in the Nash equilibrium
ṽsh, the low-bidding user l is pushed to zero utility:

ul(ṽsh
l ,τl(ṽsh)|vl) = vlτl(ṽsh)− ṽsh

l = vl
vl

2vh
−

v2
l

2vh
= 0.

The high-bidding user h obtains utility of

uh(ṽsh
h ,τh(ṽsh)|vh) = vhτh(ṽsh)− ṽsh

h = vh− vl,

while the provider’s revenue amounts to

ṽsh
l + ṽsh

h =
v2

l + vlvh

2vh
.

The central result of this analysis is that, from a resource provider’s point of view, the Sanghavi-
Hajek mechanism dominates Proportional Share under certain conditions with respect to the
provider’s revenue. To be able to compare the results of both mechanisms, first the provider’s
revenue is computed that is generated by Proportional Share in the Nash equilibrium. In doing
so, it is assumed that, as in the mechanism by Sanghavi and Hajek, the Proportional Share
allocation rule is complemented by the pay-as-bid pricing rule, as proposed in Chun and Culler
(2000) and Johari and Tsitsiklis (2004).

Lemma 3 (Nash equilibrium with Proportional Share). In the Nash equilibrium ṽps of the Pro-
portional Share mechanism τ ps, user l bids ṽps

l = v2
l vh

(vl+vh)2 and receives a share of τ
ps
l (ṽps) =

vl
vl+vh

, whereas user h bids ṽps
h = vlv2

h
(vl+vh)2 , thus receiving τ

ps
h (ṽps) = vh

vl+vh
.

Proof. In the Nash equilibrium ṽps,

∂ul(ṽ
ps
l ,τ ps

l (ṽps)|vl)
∂ ṽps

l
= vl

ṽps
h

(ṽps
l + ṽps

h)2 −1 = 0

⇔
√

vl ṽ
ps
h = ṽps

l + ṽps
h ⇔ ṽps

l =
√

vl ṽ
ps
h − ṽps

h .

(Note that vi, ṽ
ps
i > 0). Analogously,

∂uh(ṽ
ps
h ,τ ps

h (ṽps)|vh)
∂ ṽps

h
= vh

ṽps
l

(ṽps
l + ṽps

h)2 −1 = 0⇔ vhṽps
l = (ṽps

l + ṽps
h)2

6.3 COMPARISON FOR TWO USERS 127

⇔ vh

(√
vl ṽ

ps
h − ṽps

h

)
= vl ṽ

ps
h ⇔ ṽps

h = vl

(
vh

vl + vh

)2

=
vlv2

h
(vl + vh)2 .

Inserting ṽps
h above directly yields

ṽps
l =

vlvh

vl + vh
−

vlv2
h

(vl + vh)2 =
v2

l vh

(vl + vh)2 .

Moreover,
∂ 2u j(ṽ j,τ

ps
j (ṽ)|v j)

∂ ṽ2
j

=−
2ṽiv j

(ṽl + ṽh)3 < 0, j = l,h.

Hence, ṽ j = ṽps
j indeed maximizes u j(ṽ j,τ

ps
j (ṽ)|v j) for j = l,h.

Inserting ṽps
l and ṽps

h into τ ps returns

τ
ps
l (ṽps) =

√
vl ṽ

ps
h − ṽps

h√
vl ṽ

ps
h

= 1−

√
ṽps

h
vl

= 1− vh

vl + vh
=

vl

vl + vh

and

τ
ps
h (ṽps) = 1− τ

ps
l (ṽps) =

vh

vl + vh
.

Consequently, Proportional Share generates provider’s revenue of ṽps
l + ṽps

h =
√

vl ṽ
ps
h = vlvh

vl+vh
.

Based on Lemma 2 and Lemma 3, the first central result can be stated:

Theorem 1 (Revenue comparison). For two users with linear valuation functions with slopes vl

and vh, vl,vh ∈ R+ and vl ≤ vh, in the unique Nash equilibria ṽsh and ṽps the Sanghavi-Hajek
mechanism generates larger provider’s revenue than Proportional Share iff

vl > (
√

2−1)vh.

Proof.

v2
l + vlvh

2vh
− vlvh

vl + vh
> 0⇔

(vl + vh)(v2
l + vlvh)−2vlv2

h
2vh(vl + vh)

> 0

⇔ v3
l +2v2

l vh− vlv2
h > 0⇔ vl(v2

l +2vlvh− v2
h) > 0

⇔ v2
l +2vlvh− v2

h > 0⇔ (vl + vh)2 > 2v2
h

⇔ vl > (
√

2−1)vh.

128 ALLOCATING AND PRICING SHARED RESOURCES

Finally, these results can be used to also assess the allocative efficiency that is generated in the
Nash equilibrium for two users, and in line with the results of Sanghavi and Hajek (2004) the
following theorem can be stated:

Theorem 2 (Efficiency comparison). For two users with linear valuation functions with slopes
vl and vh, vl,vh ∈R+ and vl ≤ vh, in the unique Nash equilibria ṽsh and ṽps the Sanghavi-Hajek
mechanism generates an equal or larger efficiency than Proportional Share (W sh(ṽsh|v) ≥
W ps(ṽps|v)) for all combinations of (vl,vh).

Proof. From the previous results, it is known that

W sh(ṽsh|v) = ul(.)+uh(.)+uP(.) = 0+ vh− vl +
v2

l + vlvh

2vh
=

v2
l +2v2

h− vlvh

2vh

and

W ps(ṽps|v) = vlτ
ps
l (ṽps)+ vhτ

ps
h (ṽps) =

v2
l + v2

h
vl + vh

.

Thus,

W sh(ṽsh|v)≥W ps(ṽps|v)⇔
v2

l +2v2
h− vlvh

2vh
−

v2
l + v2

h
vl + vh

≥ 0

⇔ v2
l + v2

h ≥ 2vlvh⇔ (vl− vh)2 ≥ 0.

Consequently, the discriminatory pay-as-bid mechanism of Sanghavi and Hajek (2004) not only
provides a better competitive ratio (i.e. worst case bound) than Proportional Share, but it out-
performs the latter independently of vl and vh.

6.3.3 A Numerical Example

In this subsection, Proportional Share and the Sanghavi-Hajek mechanism are compared with
respect to their allocation and the resulting efficiencies by means of a simple numerical example.
There are two divisions within a company – divisions L and H – that submit requests to a
shared pool of computing resources. Division H temporarily demands more resources than
division L, which is shown by a higher valuation for the computing resources: uL(ṽL,τL(ṽ)) =
2.1 · τL(ṽ)− ṽL and uH(ṽH ,τH(ṽ)) = 5 · τH(ṽ)− ṽH . The provider’s utility function is given
by uP(ṽ) = ṽL + ṽH . Each division sends one resource request to the central market-based
scheduler. The allocation of resource shares to requests and the resulting prices and utilities
with both market-based mechanisms are listed in Table 6.1.

Whereas in this example the provider’s revenue created by the Sanghavi-Hajek mechanism
($1.491) is only slightly higher than with the Proportional Share mechanism ($1.478), overall

6.3 COMPARISON FOR TWO USERS 129

Proportional Share Sanghavi-Hajek
Bids in Nash equilibrium ṽps

L = 0.437, ṽps
H = 1.041 ṽsh

L = 0.441, ṽsh
H = 1.05

Allocations (shares) xps
L = 0.296, xps

H = 0.704 xsh
L = 0.21, xsh

H = 0.79
Unit prices pps

L (.) = pps
H (.) = 1.478 psh

L (.) = 2.1, psh
H (.) = 1.329

Utilities of the users uL(.) = 0.185, uH(.) = 2.479 uL(.) = 0, uH(.) = 2.9
Provider’s revenue 1.478 1.491
Efficiency W ps(ṽps|v) = 4.142 (82.84%) W sh(ṽsh|v) = 4.391 (87.82%)
Theoretical optimum W OPT = vH = 5

Table 6.1: Numerical example.

utility increases by about 6% from W ps(ṽps|v) = $4.142 to W sh(ṽsh|v) = $4.391. While both
the high bidder and the provider benefit from switching to the Sanghavi-Hajek mechanism, this
gain mainly comes at the expense of the low bidder, whose utility becomes zero, leaving him
indifferent between participating or not (as analytically shown above).

In certain cases, the provider might be willing to actually sacrifice revenue in return for higher
overall utility. Attributing the resources to the division with the higher valuation might be more
important than creating revenue from internal sources. Especially in cases where the provider’s
revenue increases, an option might be to “subsidize” the lower bidder in order to convince this
bidder to participate in the Sanghavi-Hajek mechanism. It would be an interesting question for
future research to explore how such an incentive can be implemented in the Sanghavi-Hajek
mechanism and how it changes the users’ strategic considerations.

6.3.4 Intermediate Summary

The preceding analysis has shown that the Sanghavi-Hajek mechanism can improve on Propor-
tional Share with respect to both efficiency and the provider’s revenue in a simplified scenario
with two users with one unit-size request each. The complexity of more general settings de-
fies a further analytical evaluation. Indeed, as pointed out above, the competitive ratio of the
Sanghavi-Hajek mechanism can no longer be explicitly bounded. The subsequent section hence
reports the results of an agent-based evaluation on the basis of a real workload trace, using two
user strategies to gain further insights into the two mechanisms’ more general performance.

130 ALLOCATING AND PRICING SHARED RESOURCES

6.4 Comparison Based on Real-World Workloads

6.4.1 Experimental Setup

This subsection specifies and describes the setting in which the mechanisms were compared as
well as the workload trace and the user strategies that were used in this comparison.

The Setting

Consider a setting where a resource is to be allocated to computing requests, which arrive over
time. The resource has a “size” of C ∈ N, e.g. measured in the number of available CPUs.
This models the Amazon and Sun Microsystems scenario, where a total number of C CPUs is
available in the server pool. It is again assumed that the resource is perfectly divisible.

Let θ j = (r j,c j,d j,v j) be the “type” of request j. r j ∈ N is the request’s release date, i.e. the
time (in seconds) when the request is submitted to the system. c j ∈ N denotes the number of
resource units that the user requests in each timeslot, c j ≤C. d j ∈ N is the request’s duration,
again in seconds. The request length is assumed to be independent of the resource share. This
might be due to an application where the quality is continuous in the resource share, such as a
rendering application where the achieved frames per second almost continuously increase with
the resource share, or because unavailable resources are sourced from some outside option.
Finally, the user request is completed by the valuation v j ∈ R+, which is specified per timeslot
and resource unit.

The users’ utility functions used in Section 6.3 need to be generalized to match this more com-
plex setting, as the user’s valuation for a request is affected not only by the request of one single
other user, but possibly by multiple competing users over the whole duration of the request. As
above, quasi-linear utility functions are considered. In a given timeslot, each user receives her
full valuation for her request only if she is allocated the full resource. If she does not receive
the full share in this timeslot, her valuation decreases linearly. Hence, the user’s ex post utility
for request j is modeled as

u j(ṽ j,x j|θ j) = v j

r j+d j−1

∑
t=r j

x jt−
r j+d j−1

∑
t=r j

ṽ jtc j,

where ṽ j = (ṽ jr j , . . . , ṽ jt , . . . , ṽ j,r j+d j−1) is the bid vector – and hence ṽ jc j is the payment vector
as a pay-as-bid pricing rule is used – containing j’s bids per CPU across the request’s duration
and x j = (xir j , . . . ,x jt , . . . ,x j,r j+d j−1) is the vector containing the resulting shares (measured
in allocated CPUs). This utility function reduces to the utility function used in Section 6.3
if two requests (users) with identical release dates, durations and resource requirements are

6.4 COMPARISON BASED ON REAL-WORLD WORKLOADS 131

considered. Compared to the case of Section 6.3 where a unit-size resource was studied, in
this more general setting, the user j is allocated x jt = min{c j,τ j(ṽt) ·C} units of the (perfectly
divisible) resource, with ṽt being the bid vector in timeslot t.

Modeling the Demand

The experiment is based on a workload from the Parallel Workload Archive8. “DAS2 fs0”
(henceforth DAS) is a workload from a Dutch computing cluster, which consists of 72 homo-
geneous compute nodes with dual core CPUs. This workload was used as it contains all request
attributes that are needed for the simulation, such as the request’s release date, its duration, and
the number of CPUs used, except of the valuation.

The workload trace was modified as follows:

• Reducing the size: It was not possible to run the whole workload on a per second basis
for 225,711 requests across a timeframe of one year. This was exacerbated by the need
to tailor the user strategies towards the specific workload (as will be discussed in detail
below), which is a computationally intensive task in itself. Consequently, only the first
1,000 requests of the DAS workload were considered.

• Installing competition: To analyze the market mechanisms, competition needed to be
installed in the system. However, the DAS workload does not show any competition. It
only contains information about the actual allocations but not the status of the waiting
queue. Competition was induced by reducing the number C of available resources from
144 CPUs to 10 CPUs. As will be shown below, this creates a setting where demand is
frequently below supply, but that also contains peaks where demand exceeds supply by a
factor of up to six.

• Filtering incomplete entries: Incomplete request entries in the workload file that do not
contain all necessary request attributes were filtered out.

• Filtering excessive requests: All requests that exceed 10 CPUs were omitted since these
requests cannot be completely allocated in the modified system. Note that this was only
the case for 16 requests.

• Inducing user valuations: Two settings were considered. In the first setting, the users have
rather similar valuations. Each request was assigned a valuation per CPU and timeslot
from a “narrow” uniform distribution between {10, . . . ,60}. In the second setting, the
users have more heterogeneous valuations; for each request, the valuation was drawn

8http://www.cs.huji.ac.il/labs/parallel/workload/

http://www.cs.huji.ac.il/labs/parallel/workload/

132 ALLOCATING AND PRICING SHARED RESOURCES

from a “wide” uniform distribution between {10, . . . ,160}, i.e. three times the support of
the narrow valuation distribution.

Table 6.2 contains further descriptive statistics about the requests in the modified workload.
Histograms of the CPU size and the runtimes of the requests are presented in Appendix D.1. The
dynamicity and competition in the workload is illustrated in Figure 6.1. This graph shows that,
when restricting the number of available CPUs to 10, the resulting workload exhibits various
larger peaks where resource demand exceeds supply, but it also contains periods of time where
there is no scarcity.

Request attribute Min Max Mean Median
CPU 2 8 2.08 2
Runtime (in sec.) 2 38,768 1,044.06 38

Table 6.2: Descriptive statistics of the workload trace.

Figure 6.1: The number of requests and requested CPUs in the workload for each timeslot. Note
that the graph shows the means across intervals of five timeslots. It does not include timeslots
in which there was no request present.

The mechanisms’ performance might vary greatly depending on the users’ strategies. Hence,
two different strategies were implemented: Zero Intelligence Constrained and Q-Learning.

6.4 COMPARISON BASED ON REAL-WORLD WORKLOADS 133

Modeling the User Strategies – Zero Intelligence Constrained

Looking at the users’ utility functions, users obviously only report valuations up to the true
valuation v j. Any higher bid would result in a utility loss since a pay-as-bid pricing rule is
employed. With the Zero Intelligence Constrained (ZIC) strategy, users randomly report a val-
uation within this action space: ṽ jt(v j) = µ jt , where µ jt ∈ {1,2, . . . ,v j} is a discrete, uniformly
distributed random variable. As Phelps (2007) reports, ZIC was able to achieve high degrees of
efficiency in continuous double auctions. In its formulation, ZIC can easily be applied to the
problem setting at hand.

It is important to note that strategies such as ZIC, in which the users follow a fixed strategy that
is independent of the market mechanism9, are not suited for comparing different market mech-
anisms. ZIC rather serves as a validity check for the implementation of the Proportional Share
mechanism, the Sanghavi-Hajek mechanism, and the subsequent strategy based on reinforce-
ment learning: Since with ZIC the users’ bids are independent of the market mechanism and a
pay-as-bid pricing rule is employed, both mechanisms should produce the same provider’s rev-
enue. Further, the subsequent strategy based on reinforcement learning should outperform ZIC,
since otherwise the users are better off when not following the proposed learning algorithm.

Modeling the User Strategies – Q-Learning

Q-Learning is a prominent instantiation of reinforcement learning (see Kaelbling et al. (1996)
for an excellent survey). It has originally been proposed by Watkins (1989) and has been shown
to perform well in a wide array of applications (cf. Watkins and Dayan (1992)). The underlying
reinforcement model can be briefly described as follows, cf. Figure 6.2.

The user iteratively interacts with some system. In each iteration, the user obtains an input
signal s about the state of the system. Based on this input, the user determines an action a.
This action changes the state of the system, and the value associated with the state change is
fed back to the user by means of a reinforcement (reward) signal r. Ultimately, by means of the
reinforcement signals, the user tries to learn the optimal (e.g. utility maximizing) action a∗ for
a given state s (the so-called “policy”).

Reinforcement learning is used for approximating the optimal policy in a stationary, markovian
environment. Here the probabilities of state transitions are fixed and the subsequent system
state only depends on the previous state and the actions performed in the system (Kaelbling
et al., 1996). Q-Learning has been shown to converge to the optimal policy in a stationary,

9In another, similar strategy the users might bid only a fixed percentage of their true valuation, for instance.
Note that with ZIC, the users bid about 50% of their true valuation on average.

134 ALLOCATING AND PRICING SHARED RESOURCES

Figure 6.2: The reinforcement learning model (based on Kaelbling et al. (1996)).

markovian environment and under further theoretical assumptions, e.g. that each state-action
pair is visited infinitely often (Watkins and Dayan, 1992). More importantly, it does not need
an explicit model of the system and the learning can take place online, i.e. as the user interacts
with the system (Tesauro and Kephart, 2002).

One issue with the setting considered here is that it is in fact non-stationary. The system changes
over time as requests are finished, new requests are released, and users change their actions.
Moreover, the system is only partially observable by the single users, who can assess their
own state (allocation and prices) but not the system state as a whole. While the theoretical
convergence guarantees of Q-Learning do not hold in this dynamic environment, this does not
generally preclude the use of reinforcement learning approaches (Kaelbling et al. (1996); see
e.g. Crites and Barto (1996), who use Q-Learning in a non-stationary, dynamic setting where
the objective is to optimize elevator dispatching policies; Sandholm and Crites (1996), who
use Q-Learning for the Iterated Prisoner’s Dilemma; Tesauro and Kephart (2002) for the price-
setting in competitive marketplaces; and Weinberg and Rosenschein (2004) for an algorithm
that copes with larger numbers of players). The logic underlying the Q-Learning algorithm
can still be hypothesized to model human reasoning in dynamic environments. Moreover, at
a first glimpse the system might appear to be more dynamic under the used workload than it
actually is. There are several long periods of time (10,000-20,000 timeslots) where the same set
of requests is present in the system, cf. Figure 6.1. Further, the characteristics of requests are
typically assumed to follow certain stochastic processes and distributions. This is the subject of
a large body of research on workload modeling (cf. Feitelson (2002, 2008)).

The remainder of this subsection describes the design decisions that were made in implementing
the Q-Learning algorithm for the setting at hand.

6.4 COMPARISON BASED ON REAL-WORLD WORKLOADS 135

States and Actions

The system consists of the demand that is generated based on the modified workload trace,
the fixed resource supply, the market mechanism, and the users’ bidding strategies. The action
space of each user consists of the bidding interval {1,2, . . . ,v j}. The state signal corresponds to
the resource share the user has received in the last bidding round (second). Since the resource
share is continuous but the learning algorithm can only reasonably work with a finite number
of states, for request j the resource share is discretized to ratios x jt

c j
in {0%,1− 10%,11−

20%, . . . ,91−100%}10, i.e. the user of the request keeps action-reward memories for 11 states.
Furthermore, in order to enable the users to quickly build up a memory of the past rewards
for each state and action, the action space is reduced as well by using the ratios ṽ jt−ṽmin

v j−ṽmin
in

{0%,1− 10%,11− 20%, . . . ,91− 100%} with ṽmin being the minimal admissible bid, i.e. the
user keeps 11 action-reward memories for each state. Consequently, each user’s “memory”
consists of 11 ·11 state-action pairs.

Reinforcements

The learning process works as follows: Assume in the last bidding round t (r j ≤ t < r j +d j−1)
the user of request j bid ṽ jt and subsequently received a (discretized) resource share of x jt units.
Then the user determines the reward from taking the (discretized) action ṽ jt in state x jt as

reward(x jt , ṽ jt |θ j) = v jx jt− ṽ jtc j.

After round t, the memory Q j is then updated with this new information according to the update
rule

Q j(x, ṽ) ←

(1−α) ·Q j(x, ṽ)+α · [reward(x, ṽ|θ j)+ γ · max

k∈{1,...,v j}
Q j(x′,k)]

if x = x jt and ṽ = ṽ jt

Q j(x, ṽ) else,

where α is the learning rate according to which the new information suppresses the past expe-
rience (0 < α < 1), γ (0 < γ < 1) is the factor for discounting future rewards, and x′ is the state
that followed from taking action ṽ jt in state x jt (Watkins, 1989; Watkins and Dayan, 1992).

The learning rate α determines how fast the user’s actions adapt to changes in the system. If
α is small, it takes the user a long time to incorporate changes in the reinforcement signal (her
reward) into the Q-table. However, if α is large and the system is highly dynamic, the user
incorporates short-term noise too quickly and the actions fluctuate heavily.

10Since the ratios are rounded to integer values, it is possible to have a ratio of zero even though each user is
allocated a positive share.

136 ALLOCATING AND PRICING SHARED RESOURCES

The discount factor γ essentially allows a trade-off between immediate and long-term rewards.
This discount factor becomes very important in non-stationary environments. In the dynamic
setting considered here, the user will generally not look far ahead into the future (i.e., γ will be
small) since the future state of the system is highly uncertain (Schwartz, 1993). Consequently,
γ serves so as to adjust for the uncertainty in the future state of the system.

The updating is typically implemented based on lookup tables (also called the “Q-table”). The
Q-table is initialized with Q j(x,v) = 0 for all states x and actions v (Kaelbling, 1993).

Exploration vs. Exploitation

When designing the Q-Learning strategy, a policy must be chosen according to which the user
tries to explore her action space in order to accumulate information about the expected outcomes
of her actions, and how the user exploits the acquired information to benefit in the future. A so-
called epsilon-greedy strategy is combined with a fixed number of initial explorations (Sutton
and Barto, 1998).

In the first 100 bidding rounds, the user exclusively explores the state-action pairs to build up
an initial perception of the system. The choice of 100 exploration rounds is due to the user
having about 100 state-action pairs. After the initial 100 rounds, the user follows the epsilon-
greedy strategy with ε = 0.05: In each round, the parameter β ∈ [0,1] is randomly drawn (from
a uniform distribution). If β ≤ ε , the user randomly chooses her next bid from a uniform
distribution over all possible actions, i.e. the user explores the action space. Otherwise, the user
exploits the past experience by choosing action argmaxk Q j(x jt ,k) · (v j− ṽmin)+ ṽmin.

In stationary environments, the learning rate and the exploration parameter are typically grad-
ually lowered as time advances in order to ensure convergence of the learning process to the
optimal policy. However, in this dynamic environment, continuous learning and exploration
allow the user to adapt to changes in the system (and thus competition). The resulting updating
and epsilon-greedy action selection rule are illustrated in Algorithm 1.

Algorithm 1 Epsilon-Greedy Q-Learning.
Require: Q-Table Q j, allocation x jt , bid ṽ jt , true type θ j, minimal admissible bid ṽmin, explo-

ration counter count
1: reward(x jt , ṽ jt |θ j) = v jx jt− ṽ jtc j {Compute the reward from the last timeslot}
2: Q j(x jt , ṽ jt) = (1−α) ·Q j(x jt , ṽ jt)+α · [reward(x jt , ṽ jt |θ j)+γ ·maxk Q j(x j,t+1,k)] {Update

the Q-table}
3: if count ≤ 100∨ random(0,1)≤ ε then
4: ṽ j,t+1 = random(0,1) · (v j− ṽmin)+ ṽmin {Explore}
5: else
6: ṽ j,t+1 = argmaxk Q j(x jt ,k) · (v j− ṽmin)+ ṽmin {Exploit}

6.4 COMPARISON BASED ON REAL-WORLD WORKLOADS 137

Dealing with Short Request Runtimes

Ideally, the user would learn separately for each request, so that the learning process takes into
account the distinct attributes of this request. However, many requests in the workload only
have very short runtimes (2 seconds, cf. Table 6.2). In this scenario, assigning a separate Q-
table to each request is inadequate since the request runtime is too short to allow the user to
build up a memory of states, actions and associated rewards specific to the request that could be
exploited later on. Consequently, the requests are assigned to 10 different users so as to model a
scenario where the users have different valuations while at the same time allowing the users to
build up a memory (Q-table) across multiple requests. Looking at the pressure in the workload
(cf. Figure 6.1), 10 users seem to be a reasonable trade-off between aggregating information
across multiple requests over time while at the same time not having very many requests per
user in a given timeslot (on average).

The requests are assigned to the users as follows: The uniform valuation distribution is divided
into 10 intervals, e.g. {10, . . . ,14}, {15, . . . ,19}, . . ., {50, . . . ,54}, {55, . . . ,60} for the narrow
valuation distribution. Each such interval is associated with exactly one user and vice versa.
When the valuation for a request has been randomly drawn from the valuation distribution, this
request is then assigned to the user that is associated with that valuation interval. Consequently,
the users have different valuations, but the requests of one user can also have slightly different
valuations. Each user maintains one single Q-table that aggregates the information across all of
her requests.

Parameterizing the Q-Learning Strategy

One key issue remains: How is the Q-Learning strategy to be parameterized with respect to the
learning rate α , the discount factor γ , and the exploration parameter ε so as to yield “appropri-
ate” results? And what determines the appropriateness of a result? Based on Weidlich (2008),
the following three criteria were used to compare the results of instantiations of the learning
algorithm:

• Correlation: Do the users’ bids reflect the competition in the market? The main aim in
designing the learning algorithm is to induce user behavior that is somewhat rational. If
aggregate resource demand is above the fixed resource supply, the average bid should go
up as users compete for the scarce resources. In contrast, if aggregate demand is below
supply, i.e. the resources are not scarce, the users should detect this and the bids should
go down. Besides the direction in the change of the users’ bids, the question is how fast
these bids adjust to changes in the market situation and how stable the users’ bids are over
time if the market situation does not change.

The correlation criterion was operationalized as follows. For a given combination of pa-

138 ALLOCATING AND PRICING SHARED RESOURCES

rameters, the learning algorithm was run 10 times. A larger number of runs was infeasible
due to the size of the workload and the dimension of the parameter space. For each run,
every 20 seconds the mean “percentage bid” was calculated for the last period under ob-
servation, as well as the mean number of requested CPUs. The percentage bid measures
for each request the ratio of the reported valuation to the true valuation to allow for com-
parison across requests with different valuations. Then the mean Spearman correlation
coefficient between resource demand and the mean percentage bids was calculated across
all 10 runs in order to measure the correlation between resource scarcity and the users’
bidding behavior (Fahrmeir et al., 2004).

• Rationality: Do the users benefit from following the proposed learning process? The
learning algorithm should ensure that the users benefit from its usage, i.e. maximize their
individual utility.

In order to evaluate the rationality criterion, for each run and parameter combination, the
mean utility per request was calculated. Finally, the mean over all runs was computed.
The aim was to search for a parameter combination that maximizes the users’ mean utility.

• Robustness: Is the learning algorithm robust against variations in the random number
seeds? Q-Learning with an epsilon-greedy based exploration and exploitation strategy is
based on random choices with respect to whether the action space should be explored and
if so, with which action it should be explored. An appropriate learning algorithm should
be robust to changes in the random number seeds upon which these random choices are
based. Simulation results can only be generalized if the algorithm is robust.

If the learning algorithm is robust, for a given parameter combination, the market out-
come across all runs should be similar. This similarity was measured by computing the
coefficient of variation of the provider’s revenue across all 10 runs, since this will be the
key performance metric in the subsequent analysis.

Similar to Weidlich (2008), a trial and error approach was applied. The infinite parameter space
was partially searched by running the learning algorithm for a specific combination of param-
eters, market mechanism, and input (demand). The result was then evaluated according to the
three criteria above. This ultimately allowed to compare different combinations of parameters
for a given market mechanism and input. The parameters have been independently varied as
specified in Table 6.3. Consequently, 36 possible parameter combinations were tested and com-
pared for both Proportional Share and the Sanghavi-Hajek mechanism and the two valuation
distributions.

The results for the valuation distribution with support {10, . . . ,160} and the Proportional Share
mechanism are presented in Appendices D.2, D.3 and D.4.

6.4 COMPARISON BASED ON REAL-WORLD WORKLOADS 139

Parameter Tested values
Learning rate α {0.1,0.3,0.5,0.7}
Discount γ {0.3,0.5,0.7}
Exploration parameter ε {0.05,0.15,0.25}

Table 6.3: Tested parameter combinations for the Q-Learning strategy.

With respect to correlation, the parameter combination α = 0.3, γ = 0.3, and ε = 0.05 shows
the largest correlation with the CPU demand in the system. Since the users interact with the
system very frequently (on a per second basis), the fairly small exploration parameter ε = 0.05
is sufficient for the users to detect changes in the system. It is thus not necessary to increase
the exploration parameter but this in fact reduces the convergence and thus correlation. The
frequent interactions with the system also explain the relatively small learning rate α . Even at
this small learning rate, the users quickly incorporate changes in the system into their Q-tables.
Increasing the discount factor γ implies that users try to look ahead further into the future. This,
however, reduces correlation in this setting. The reason for this might be the non-stationary
system as discussed above: If the system is changing (e.g. due to finished requests or new
requests arriving in the system), looking into the future becomes overly uncertain.

Figure 6.3 illustrates the mean percentage bid across all users and runs and the competition
in the workload (on a logarithmic scale). The graph shows that the peaks in the users’ mean
percentage bids are associated with the CPU scarcity in the system. Note that an increase in
demand first causes a short drop in the users’ mean percentage bid before the bids go up. This
can be explained by the fact that the Q-tables are initiated with zero values. If demand goes up
and, in consequence, the users’ state changes, some users might encounter state-action pairs in
their Q-tables that have not yet been explored, thus initially only submitting the minimum bid.
As the resource scarcity persists and the users explore these regions of the state-action space,
the bids increase and the mean percentage bid reflects the peak in the resource demand.

The parameter combination α = 0.3, γ = 0.3, and ε = 0.05 also maximizes the users’ mean
utility, which reflects the rationality criterion above. The reasoning behind the relatively small
exploration parameter and discount factor are analogous to the discussion for the correlation
criterion. Increasing the exploration parameter does not lead to higher correlation but only
makes the users deviate from the “rational” bid; a large discount factor leads the users into
making foresights that are highly uncertain.

All parameter combinations are very robust to changes in the random number seeds. The co-
efficient of variation is never larger than 6.5%. The parameter combination α = 0.3, γ = 0.3,
and ε = 0.05 only exhibits a coefficient of variation of 1.3%. Interestingly, increasing the ex-
ploration parameter (and thus the impact of the random choices) leads to less variation in the

140 ALLOCATING AND PRICING SHARED RESOURCES

Figure 6.3: Correlation of the competition in the workload (measured as the total number of
requested CPUs) and the mean percentage bid across all users. Note that the graph shows the
means across intervals of 20 timeslots on a logarithmic scale. It does not include timeslots in
which there was no request present.

overall payments. This, however, can be explained by the large number of requests and bid-
ding rounds (more than 400,000), which in fact make the payment component, which can be
attributed to the users exploring the state-action space, more predictable since the impact of the
random choices converges to its mean.

Overall, the parameter combination α = 0.3, γ = 0.3, and ε = 0.05 shows a good trade-off be-
tween the criteria presented above. It accurately reflects the situation in the market (correlation),
leads to the best outcome for the users among the tested parameter combinations (rationality),
and is robust to variations in the underlying random number seeds.

The results essentially hold if the Sanghavi-Hajek and / or the narrow valuation distribution
are used, however the differences between the various parameter combinations become smaller.
Hence, the parameter combination α = 0.3, γ = 0.3, and ε = 0.05 was applied to all settings.

Further test runs showed that the results are robust against using initial rewards in the Q-tables
different from zero.

6.4 COMPARISON BASED ON REAL-WORLD WORKLOADS 141

6.4.2 Empirical Analysis

The aim of this experiment is to compare the proposed user strategies as well as the resulting
performance of Proportional Share and the Sanghavi-Hajek mechanism. Essentially, the objec-
tive is to confront the analytic results with a more complex (and more realistic) scenario. The
experiment was performed by generating 30 workloads for each valuation distribution based on
the 1,000 requests taken from the original DAS workload. Each combination of a user strategy
and allocation mechanism was then fed with the same workloads.

User Strategies

The performance of the user strategies was evaluated using the individual metric of utility, which
is measured per request. Table 6.4 shows the mean utility per request and run for each com-
bination of a user strategy, valuation distribution (henceforth called “setting”), and allocation
mechanism.

Setting \Mechanism PS SH PS SH
Valuation distribution {10, . . . ,60} {10, . . . ,160}
ZIC 7,615 6,404 22,226 19,310
Q-Learning 30,406 28,245 75,503 70,635

Table 6.4: Mean utility per request. PS stands for Proportional Share, SH for the Sanghavi-
Hajek mechanism.

For both settings, Q-Learning outperforms ZIC. Looking at the revenues listed in Table 6.5,
users drastically overbid with ZIC (recall that the revenue corresponds to the aggregated bids of
all users since pay-as-bid pricing is used). This essentially validates the implementation of Q-
Learning as users benefit from “following” the proposed logic instead of simply issuing random
bids.

Switching from Proportional Share to the Sanghavi-Hajek mechanism reduces the mean utility
in all settings. This is due to the users bidding higher with the Sanghavi-Hajek mechanism than
with Proportional Share. Moreover, the Sanghavi-Hajek mechanism results in slightly lower
efficiency, cf. Table 6.6, as will be discussed below.

Mechanism Performance

For the comparison of the mechanisms, the aggregate metrics of provider’s revenue and effi-
ciency are used. Table 6.5 shows the mean revenue per run for each setting and mechanism

142 ALLOCATING AND PRICING SHARED RESOURCES

combination, whereas Table 6.6 contains the mean efficiency ratios, i.e. the resulting efficiency
divided by the theoretical optimum. Two-tailed sign tests were performed to test the differences
in revenue (cf. Theorem 1) and efficiency (cf. Theorem 2) between the Sanghavi-Hajek mecha-
nism and Proportional Share for statistical significance. The alternative hypothesis was that the
median of the differences in revenue (efficiency) is not equal to zero (Fahrmeir et al., 2004).
The results (p-values) are indicated in the tables.

Setting \Mechanism PS SH SH/PS PS SH SH/PS

Valuations {10, . . . ,60} {10, . . . ,160}
ZIC 38,996,633 38,999,034 1.000 90,435,690 90,435,073 1.000
Q-Learning 16,077,240 17,147,600 1.067*** 36,146,847 38,270,621 1.059***

Table 6.5: Mean revenue. PS stands for Proportional Share, SH for the Sanghavi-Hajek mech-
anism. *** denotes significance at the level of p = 0.01 for a two-tailed sign test.

Setting \Mechanism PS SH PS SH
Valuations {10, . . . ,60} {10, . . . ,160}
Q-Learning 0.829*** 0.809 0.819*** 0.799

Table 6.6: Mean efficiency ratio for the Q-Learning strategy. PS stands for Proportional
Share, SH for the Sanghavi-Hajek mechanism. *** denotes significance at the level of
p = 0.01 for a two-tailed sign test.

With ZIC, both mechanisms generate about the same revenue. This is due to the fact that ZIC
is independent of the specific market mechanism and further validates the implementation of
ZIC and the mechanisms. For the narrow valuation distribution, the revenue should be approx-
imately ṽmean · cmean ·dmean ·1000 = $17.5 ·2.08 ·1,044.06 ·1000 = $38,000,000. For the wide
valuation distribution, it should be about $92,300,000. This is close to the results obtained in
the simulations.

The results for the Q-Learning strategy reveal that the Sanghavi-Hajek mechanism consistently
generates higher revenue than Proportional Share in both settings where the users follow the
Q-Learning strategy. Consequently, in this regard the analytic result for the case of two users
holds for this more complex scenarios. The increase adds up to about to 6.7% with the narrow
valuation distribution and 5.9% with the wide valuation distribution. Both improvements are
statistically significant at a level below p = 0.01. It is interesting that the increase in revenue is
smaller if the user valuations are more heterogeneous. This resembles the analytic result where
the Sanghavi-Hajek mechanism only generates higher revenue than Proportional Share in case
the valuation of the low-value user is not too far from the valuation of the high-value user (cf.
Theorem 1).

6.4 COMPARISON BASED ON REAL-WORLD WORKLOADS 143

Table 6.6 shows the mean ratio of the efficiency generated by the specific mechanism and the
theoretical optimum, in which the resource is allocated exclusively to the requests with the
highest (true) valuation. The table only contains the results for the more realistic and success-
ful (with respect to individual utility) Q-Learning strategy. For both valuation distributions,
Proportional Share produces a slightly higher efficiency than the Sanghavi-Hajek mechanism.

There are three reasons for the efficiency in these share-based mechanisms being below the
theoretical optimum. The first reason is obvious. By construction, even if all users truthfully
report their valuations, the mechanisms allocate shares to low-value requests. This inherently
leads to suboptimal allocations. Secondly, this effect is strengthened by the users shading down
their bids for requests with a high bid and small resource requirements. These requests can be
allocated more resources than the users actually requested. However, excessive resources are
of no value to the users, and these users will thus generally submit lower bids for high-value
requests (“bid shading”) relative than for low-value requests with high resource consumption.
Finally, allocations in excess of the requests’ CPU demand essentially constitute a waste since
the current allocation rule does not re-allocate this excess allocation to other requests.

The latter two effects also explain why the Sanghavi-Hajek mechanism leads to slightly lower
efficiency than Proportional Share. Due to the volume discount for high bids, the Sanghavi-
Hajek mechanism further strengthens the bid shading effect for high-value requests that have
small resource requirements and weakens the effect for requests with low-valuations and large
resource requirements. The Sanghavi-Hajek mechanism thus encourages users with low val-
uations to bid more aggressively (compared to Proportional Share) in order to obtain a vol-
ume discount. The resulting bigger share for low-valuation requests directly reduces efficiency.
Moreover, the volume discount in the Sanghavi-Hajek mechanism also increases the possible
“waste” resulting from allocation in excess of the users’ demand.

The effect of more heterogeneous user valuations is the following. When user valuations are
more heterogeneous, this slightly lowers the efficiency of both mechanisms. The mechanisms
are designed to allocate a share to every user. Consequently, the more heterogeneous the users
are, the larger is the deviation from the theoretical optimum.

Implications of the Simulation Results

In summary, the experimental analysis with larger numbers of user requests and realistic re-
quest attributes yields promising results. It shows that both mechanisms are approximately
equal with respect to efficiency; Proportional Share only yields a slightly higher efficiency.
However, the Sanghavi-Hajek mechanism can lead to significantly larger provider’s revenue.
These results imply that Proportional Share might be more appropriate for scenarios where rev-

144 ALLOCATING AND PRICING SHARED RESOURCES

enue is only of minor importance and fairness is important (regarding identical unit prices). For
instance, within enterprises, the efficient but fair division of scarce computing resources of a
shared computing center will be more important than generating revenue. In contrast, if com-
mercial considerations become dominant (e.g. in the case of Amazon and Sun Microsystems),
the Sanghavi-Hajek mechanism can be a viable tool for increasing revenue.

6.5 Service Levels Guarantees for Business-Critical Applica-
tions

The main advantages of both Proportional Share and the Sanghavi-Hajek mechanism are the low
informational requirements (users do not need to specify the length of their request in advance),
avoiding “starvation” and promoting “fairness” in a wider sense, meaning that all requests are
served, or at least to a certain extent. The major drawback, however, is the uncertain resource
allocation. Requests are not guaranteed a specific share of the resource(s), which can be critical
for applications that require a minimum service level, e.g. with respect to bandwidth or storage.
In this section, the basic Sanghavi-Hajek mechanism is extended by adopting the main idea
behind the Augmented Proportional Share mechanism of Stoica et al. (1997), which supports
resource reservations. Users can thus obtain a guaranteed share of the resource. The resulting
mechanism essentially allows a trade-off between predictable costs but uncertain service levels
and uncertain costs but guaranteed service levels.

6.5.1 The Allocation

Assume again one perfectly divisible resource but now there are two classes of service requests,
the class SH of pay-as-bid (Sanghavi-Hajek) requests as before and the class RES of reserva-
tion requests. In contrast to the pay-as-bid requests, reservation requests do not specify their
valuation but the share x j ∈ (0,1] of the resource that they want reserved for them.

The reservation requests hold a share of xRES = ∑ j∈RES x j in total. Consequently, a share of
xSH = 1− xRES can be allocated to the pay-as-bid requests. This logic follows the approach in
Stoica et al. (1997). The difference is in calculating the shares of the pay-as-bid requests and in
determining the payments of the reservation requests. The share xSH is distributed among the
pay-as-bid requests according to the Sanghavi-Hajek scheme as presented above. The pay-as-
bid requests hence pay ṽSH = ∑ j∈SH ṽ j in total.

6.5 SERVICE LEVELS GUARANTEES FOR BUSINESS-CRITICAL APPLICATIONS 145

6.5.2 The Pricing of Reservation Requests

The mechanism of Stoica et al. (1997) uses Proportional Share for the pay-as-bid class. De-
termining the prices for the reservation requests is straightforward: They simply pay the same
(uniform) unit price as the requests in the pay-as-bid class. However, when using the Sanghavi-
Hajek mechanism for the pay-as-bid class, this is no longer possible since the unit price for the
pay-as-bid requests is discriminatory as discussed above.

Reserving resources typically involves paying a premium since the provider looses degrees of
freedom in serving and pricing other requests and because service guarantees are more difficult
to provide and manage than a best effort service. This approach is adopted and reservation
requests are charged a premium that depends on the situation in the pay-as-bid class: Each
reservation request is charged a unit price corresponding to the maximum unit price in the pay-
as-bid class:

∀ j ∈ RES : p j =
ṽ j

x j
= max

k∈SH

ṽk

xk
.

Due to the discriminatory allocation rule of the Sanghavi-Hajek mechanism, this maximum unit
price is always paid by the pay-as-bid request with the lowest bid:

Corollary 1 (Maximum unit price). The maximum unit price is paid by the pay-as-bid request
with the lowest bid:

argmax
j∈SH

ṽ j

x j
= argmin

j∈SH
ṽ j.

11

The proof is given in Appendix D.5. This implements a desirable economic reasoning: If re-
source demand is low (and the maximum unit price in the pay-as-bid class hence is generally
also low), reserving a share of the resource is cheaper than if the resource is scarce. Analo-
gously, reserving resources becomes more expensive as demand increases.

6.5.3 A Numerical Example

The following numerical example illustrates the mechanism’s functionality. Assume that there
are currently two pay-as-bid requests and two reservation requests present in the system, cf.
Figure 6.4.

The reservation requests reserve a share of 70% of the resource. The remaining 30% are allo-
cated among the pay-as-bid requests according to the basic Sanghavi-Hajek mechanism. The
high-bidding user who pays $20 thus receives a share of 22.5% and the low-bidding user ($10)

11Note that the argmin and argmax operators might return a set of requests in case there are multiple requests
with the same bid.

146 ALLOCATING AND PRICING SHARED RESOURCES

Figure 6.4: Sample initial scenario.

receives 7.5%. Consequently, the highest unit price of the pay-as-bid requests is paid by the
low-bidding user with $133.33. According to the presented pricing logic, this is also the unit
price of the reservation requests. Overall, the mechanism accrues revenue of $123.33.

Now assume that another pay-as-bid request with weight $30 is submitted to the system. Fig-
ure 6.5 illustrates how the increased competition in the pay-as-bid class pushes the unit prices
in both the pay-as-bid class and the reservation class.

Figure 6.5: Sample scenario – Addition of a pay-a-bid request.

The pay-as-bid class still gets 30% of the resource. However, the increased competition pushes
the maximum unit price in the pay-as-bid class from $133.33 to $256.41. Overall, revenue
almost doubles to $239.49.

This example illustrates how prices (and thus revenue) dynamically adapt to changes in the
market situation, without the provider having to react manually. The pay-as-bid requests receive
an uncertain service level at a certain cost, while the reservation requests receive a certain
service level at uncertain costs.

6.6 INTEGRATION INTO STATE-OF-THE-ART SCHEDULERS 147

6.5.4 Special Situations

There are two special scenarios to the allocation and pricing logic above. The first one arises
when a new reservation request j enters the system but cannot be served since there are not
sufficient resources available, i.e. x j > 1−∑k∈RES\ j xk. In this case, the request can either be
rejected or be held in a waiting queue until a sufficiently big resource share becomes available.

The second special case occurs when there are no pay-as-bid requests. The logic above can no
longer be applied to determine the prices of reservation requests. There are two possible cases.
If all reservation requests can be served, the resource is not scarce and might be shared among
the reservation requests at some minimum unit price (reservation price) set by the provider. If
there are reservation requests RES⊂ RES which cannot be served, one possibility to determine
the unit price for the served reservation requests is to multiple the provider’s reservation price
by a scarcity factor ∑ j∈RES x j

∑ j∈RES\RES x j
.

6.6 Integration into State-of-the-Art Schedulers

The following section is dedicated to the integration of market mechanisms that are based on
allocating “shares” (such as Proportional Share and the Sanghavi-Hajek mechanism) into tech-
nical scheduling systems. First, the scheduling logic of the Sun N1 Grid Engine (N1GE) –
a state-of-the-art cluster and grid management system by Sun Microsystems – will be briefly
presented. Then two possible approaches towards integrating market-based schedulers into
this process will be briefly discussed: (1) a modular extension of N1GE, with an additional
market-based policy and (2) the displacement of the current technical scheduler with the market
mechanism.

6.6.1 Sun N1 Grid Engine

N1GE is a resource management and scheduling system developed by Sun Microsystems (Sun
Microsystems, 2008). It administers and dynamically allocates the shared pool of resources
such as computing power, memory, and licensed software within an organization.

The N1GE scheduler consists of a waiting queue with pending requests and a technical sched-
uler that subsequently assigns waiting requests to idle resources. The user submits a request
together with a specification of the technical requirements. After receiving the requests, the
scheduler places the requests in the waiting list. The position of a request in the waiting list is
determined by the request’s priority. This priority value is calculated by the scheduler using a
pre-defined and static mix of different policies. A sample policy mix might include manually

148 ALLOCATING AND PRICING SHARED RESOURCES

(by the administrator) set shares for individual users, user groups, a department or a project
(also called entitlement policy), an increase in priority for requests that will reach their deadline
soon or that have been waiting for a long time (urgency policy). Additionally, users might be
able to sort their own requests (custom policy or POSIX) (Chaubal, 2005). An example policy
mix might be as follows:

Pmix, j = Pe,iWe +Pu, jWu +Pc, jWc,

where Pmix, j is the overall dispatch priority for request j, Pe,i is the entitlement priority for the
user i who submitted request j and We is the entitlement weighting factor. Pu, j, Wu, Pc, j and
Wc are defined accordingly for the urgency and custom priorities. If the user submits multiple
requests, the entitlement priority of the user might be split equally across all her requests, for
instance, as depicted in the example in Figure 6.6.

Figure 6.6: The technical N1GE scheduler.

There are two possible approaches towards integrating market mechanisms such as Proportional
Share and the Sanghavi-Hajek mechanism into N1GE’s scheduling process that will now be
discussed.

6.6.2 The Pay-as-Bid Mechanism as Additional Policy

The objective of this approach is to use the market-based mechanism as an instrument for parti-
tioning the priority value that determines the order of requests in N1GE’s waiting queue. Ana-
logue to the current N1GE system, the users submit their requests along with a specification

6.6 INTEGRATION INTO STATE-OF-THE-ART SCHEDULERS 149

document to state their resource requirements. In addition, the users send a one-dimensional
bid (a single real number) to signal their valuation of the submitted request. These bids are then
used by the market mechanism to allocate shares of the priority value, which then again are
used to determine the order in the waiting list of pending requests. Whenever a resource (e.g. a
compute node) becomes idle, the technical scheduler traverses the sorted waiting list and picks
the first feasible request for execution. This procedure is depicted in Figure 6.7.

Figure 6.7: The pay-as-bid mechanism as additional policy.

In addition to this new policy, the currently available policies in N1GE are still at the adminis-
trator’s disposal. This can rather easily be achieved by adding the new Sanghavi-Hajek policy
to the existing policy mix, for instance. The value that is determined by the market-based mech-
anism is weighted and added to the total priority value of a request:

P′mix, j = Pmix, j +Psh, jWsh

Thereby, P′mix, j is the new dispatch priority for request j, Pmix, j the priority value generated
with the current N1GE policy mix, and Psh, j and Wsh are the Sanghavi-Hajek priority and the
corresponding weighting factor for this new policy, respectively.

The major drawback of this approach is that – by only allocating and pricing the priority value
– the market mechanism cannot dynamically revise past allocation decisions once a request has
been assigned to a physical resource.

150 ALLOCATING AND PRICING SHARED RESOURCES

6.6.3 The Pay-as-Bid Mechanism as Scheduler

In this scenario the market mechanism is applied as a scheduler to directly allocate the resources
to the users. In contrast to the scenario assumed so far, the mechanism does not calculate the
respective priority value for each user, but it determines the actual share of resources a user gets.
This procedure is depicted in Figure 6.8.

Figure 6.8: The pay-as-bid mechanism as scheduler.

The major challenge that has to be mastered in this scenario is the architectural limitation of
N1GE, which only allows a single task to be executed on each physical resource at a time.
Therefore resources can no longer be assumed as being perfectly divisible. This problem can
be tackled from the technical side. Employing virtualization tools could restore the perfect
divisibility of the resources. With recent advances in virtualization technology it is possible to
almost perfectly split one physical resource into multiple virtual instances (Barham et al., 2003).
Moreover, there has been research on dividing a pool of dedicated compute nodes among user
requests over time so that each request is approximately allocated its share (Lai et al., 2005;
Amar et al., 2007).

Compared to the policy-based approach, incorporating the market mechanism directly into the
scheduler – especially by using virtualization technologies – has the advantage that the shares
of requests that have been allocated can be dynamically resized.

6.7 DISCUSSION 151

6.6.4 Implications of the Approaches

Introducing the market mechanism as an additional policy constitutes a modular extension of
N1GE. Most of the current architecture and structure remains unchanged. The policy mix still
covers the existing policies. In contrast, the direct scheduling scenario requires the modification
and replacement of core components. Consequently, the implementation effort is much higher
with this approach. In addition, the allocated resources are limited to a single type whereas
the modular extension supports heterogeneous resources. On the other hand, giving the mar-
ket mechanism direct access to the resources entails many advantages. For instance, a waiting
list is dispensable since all requests get a share of the resource. Furthermore, the additional
in-between scheduler can be omitted, which removes complexity from the scheduling process.
Both scenarios offer promising enhancements to N1GE. The modular extension offers a quick
solution for incorporating the discriminatory pay-as-bid mechanism, whereas the higher flexi-
bility of the second approach comes at the expense of higher implementation effort.

To guarantee a sound concurrence of the N1GE system and the market mechanism, a number
of extensions and modifications have to be considered, in particular the re-evaluation of the
priority values of requests as new requests enter the system or requests are finished, bid updating
to allow for strategic user behavior, especially to prevent the starvation of requests, and feedback
of market information to the users.

6.7 Discussion

The Sanghavi-Hajek mechanism and the proposed extensions to the mechanism are a promising
addition to the N1GE scheduler. The Sanghavi-Hajek mechanism allows flexible reactions to
changes in the demand and supply situation. Moreover, it offers an elaborated pricing scheme
where prices reflect the current market situation and induce users to report their valuations to the
system. The administrator no longer needs to adjust the user priorities manually but the users
can directly express the urgency of their requests. In comparison to other market mechanisms,
for instance the mechanisms presented in the previous chapters, the Sanghavi-Hajek mechanism
scores with its ease-of-use; users only need to report few technical and economic parameters,
hence making it a reasonable choice especially for online settings.

While the mechanism makes strong assumptions about the divisibility of resources, this chapter
discussed two basic design options for how the mechanism can be integrated into state-of-the-
art computing platforms. In the first approach, the scarce good to be allocated is essentially
the priority value that determines the position of requests in the waiting queue. The second
approach relies on virtualization technologies and load-balancing techniques so as to make the

152 ALLOCATING AND PRICING SHARED RESOURCES

physical resources themselves almost perfectly divisible.

Compared to (market-based) Proportional Share, arguably the currently most prominent market
mechanism for the setting in which the Sanghavi-Hajek mechanism operates, the Sanghavi-
Hajek offers a potential increase in the provider’s revenue. On its downside, from the user
perspective the Sanghavi-Hajek mechanism might be more complicated to grasp and not fair in
the sense that it discriminates users with respect to unit prices.

The game-theoretic analysis of the simplified two-user scenario built on the solution concept of
ex post Nash equilibria, where the users are assumed to have complete information about the
other user’s types, i.e. the user types are public information. As pointed out by Parkes (2001),
this is a somewhat peculiar assumption. If the user types are public, the mechanism could easily
determine the optimal allocation without having to rely on the user reports. Consequently,
from a game-theoretic point of view, it would be interesting to consider more realistic solution
concepts in the future, such as Bayesian-Nash equilibria where the users only have expectations
about the other users’ types (Mas-Colell et al., 1995).

Further work also needs to be done with respect to learning agents (users) in a dynamic and
only partially-observable environment. While traditional reinforcement learning concepts and
methods are not perfectly suited for such settings, the simulations reported in this chapter
yielded promising results. Developing software agents that trade in dynamic and inherently
non-stationary and non-markovian environments is a very challenging but also important area
for future research.

In this chapter, a framework was developed that allows to integrate requests that require service
level guarantees. Further work needs to be done on analyzing the impact of these extensions on
the mechanism’s economic properties.

Finally, a decentralized version of the mechanism would be desirable to support decentralized
waiting queues as well. This might be necessary to keep the N1GE scheduler applicable for very
large computing systems with thousands of cores, which will be demanded in the near future
given the current trend towards centralizing computing resources in few providers’ computing
centers.

Chapter 7

Conclusions and Future Work

T his chapter concludes the work at hand. First, the key points of this thesis are summarized
by reviewing the research questions from Chapter 1. Subsequently, possible extensions

of this work and open questions for future research are highlighted.

7.1 Summary of Contributions

The main objective of this work was to investigate market-based scheduling mechanisms for
specific application scenarios of distributed computing systems. The aim was to design markets
that are both feasible in practice and theoretically sound. These two perspectives are oftentimes
complex and somewhat conflicting. If the scenario is close to reality, its complex structure
might defy further theoretical analyses. On the other hand, abstract models with nice theoretical
properties (in particular possibility results) might not be truly applicable to reality. The work at
hand therefore makes the following contributions:

• The general problem setting – designing market-based schedulers for computational re-
sources – was structured according to the characteristics of the applications and the re-
sources. By doing so, the problem was divided into a set of more specific and manageable
scenarios.

• For each of these scenarios, this work investigated market mechanisms by applying a
range of methods, from theoretical analyses, over empirical studies, to numerical sim-
ulations. Either novel market mechanisms were developed that improve over existing
research, or existing mechanisms were extended so as to provide a better fit to the given
setting.

154 CONCLUSIONS AND FUTURE WORK

• In consequence, this research partially bridged the gap between theory and practice. On
the one hand, theoretical research about market mechanisms was applied to real-world
scenarios. On the other hand, the characteristics of the specific computing environment,
such as the importance of preemption and migration, might also feed back into the re-
search on market mechanisms in general.

Based on the results developed and presented in this work, the four research questions, which
were introduced in Chapter 1, can be recapitulated as follows.

Research Question 1:

How can a scalable, two-sided market mechanism for clearing heterogeneous grid
settings be designed so that strategic behavior from users and providers is limited?

Chapter 3 studied market mechanisms in offline grid settings and developed a deterministic
heuristic and the proportional critical-value pricing scheme. The analytical and numerical eval-
uation showed that this heuristic is highly scalable and yields near-optimal resource allocations
in realistic scenarios. Moreover, the mechanism generates prices that are truthful on the demand
side and approximately truthful on the supply side with respect to valuations. Limiting strategic
behavior is important because with truthful prices, market participants will not game the mech-
anism by reporting an untrue valuation, and the mechanism can thus optimize over the correct
input. The developed mechanism improves over previous work especially because it allows
the trading between multiple users and providers without artificially restricting the providers’
strategy space (cf. Bapna et al. (2008)). Moreover, it improves on the previous mechanisms’
vulnerability against manipulations from users and providers, while only slightly sacrificing
allocative efficiency.

Research Question 2:

How can a randomization of the heuristic allocation algorithm improve efficiency?
How can the pricing scheme be modified to limit strategic behavior from users?

The greedy heuristic proposed in Chapter 3 is based on a deterministic ranking of job requests.
In Chapter 4, this deterministic heuristic was converted so as to randomly choose the job re-
quests in the allocation phase. This randomization can help in avoiding worst cases of the
deterministic heuristic. While previous research showed that it is theoretically possible to turn
a randomized heuristic into a truthful (in expectation) mechanism, it is practically infeasible to

7.1 SUMMARY OF CONTRIBUTIONS 155

determine these prices. Moreover, the previous research only considered simplified scenarios
and the results can thus not be transferred to the more complex scheduling scenario at hand.
Consequently, in Chapter 4 a randomized mechanism was developed that induces users to at
least bid “close” to truthfully. Moreover, it was shown how this randomized mechanism can be
combined with the deterministic mechanism to a distributed randomized mechanism. The nu-
merical results show that the distributed randomized mechanism is a promising addition to the
stand-alone deterministic mechanism especially in smaller settings. In large settings, the deter-
ministic heuristic obtains a close approximation ratio (regarding the optimal solution), thus not
leaving much room for improvement. This further underlines the strength of the deterministic
heuristic.

Research Question 3:

What is the benefit of performing preemptions in economic online settings with
dedicated resources?

Chapter 5 showed that preemptions allow the design of more efficient economic online mech-
anisms both with respect to worst case efficiency as well as “average” efficiency in realistic
scenarios. This result was derived in a setting that in fact puts preemptive mechanisms at a dis-
advantage, as only homogeneous resources are considered. Moreover, the mechanism knows
the job runtimes, which is a strong assumption, since oftentimes the user will not be able to
actually specify her job’s runtime. The benefit of preemption and especially migration will thus
generally be still higher when heterogeneous resources are taken into account and when the job
runtimes are unknown to the mechanism.

Research Question 4:

How should shared resources be allocated and priced in online settings?

A mechanism by Sanghavi and Hajek (2004), which was originally proposed for the allocation
of bandwidth, was applied and extended to the cluster / utility computing setting. The mech-
anism was compared to Proportional Share, the currently most prominent mechanism for such
scenarios. It was shown both analytically and with an agent-based simulation that the Sanghavi-
Hajek mechanism can outperform Proportional Share with respect to allocative efficiency and,
in particular, the provider’s revenue. Moreover, a framework was developed that allows a trade-
off between predictable costs but uncertain service levels and uncertain costs but guaranteed
service levels, to extend the range of possible application scenarios for the Sanghavi-Hajek
mechanism.

156 CONCLUSIONS AND FUTURE WORK

7.2 Possible Extensions and Open Questions

7.2.1 Specific Extensions to This Work

There are several directions in which the specific research in this work should be continued and
extended.

Real Workloads

Since there is currently no workload of a real grid or utility computing market available, es-
pecially with respect to economic attributes (user valuations, reserve prices), the market mech-
anisms had to be evaluated by means of randomly generated and modified workloads. While
the general properties of the mechanisms will hold, it would be interesting to see the runtime
and approximation behavior for real workloads. In this regard, it should be noted that currently
a real-world marketplace for computer resources is being launched: Zimory1, a spin-off of the
Deutsche Telekom Laboratories, aims at establishing a “marketplace where anyone is able to
sell and buy server capacities world-wide”.

Strategic Behavior

Additionally to having to use artificial workloads, the numerical analysis of the mechanisms’
strategic properties was based on letting only one user or provider misreport. This of course
does not consider the interdependencies between the strategies of the market participants. In
more complex and realistic settings, multiple users and providers will misreport in parallel
and / or form coalitions. Moreover, a provider can be a user at the same time and vice versa.
Such behavior could possibly be analyzed by means of agent-based simulations and laboratory
experiments. Furthermore, in Chapter 5, the providers have been assumed to be obedient. In an
extended scenario, these providers can have reservation prices and report and act strategically.

The Benefit of Migration in Heterogeneous Settings

As pointed out above, a natural extension to the investigation of preemption in online markets
would be to consider migration, i.e. the moving of jobs across compute nodes during runtime,
especially if these nodes are heterogeneous (Amar et al., 2008b). Migration allows for still
more flexibility in the allocation and pricing schemes and might thus also help in implementing
stronger game-theoretic solution concepts.

1http://www.zimory.de/

http://www.zimory.de/

7.2 POSSIBLE EXTENSIONS AND OPEN QUESTIONS 157

Non-Clairvoyant Market Mechanisms

The analysis of preemption in Chapter 5 was based on the strong assumption that the job run-
times are known a priori. However, oftentimes the user will have no information or not even an
estimate of the job runtime. Scheduling mechanisms that work without information about the
job runtimes are called “non-clairvoyant schedulers” (Motwani et al., 1993). Non-clairvoyant
market mechanisms would thus be a further important addition to the set of market mechanisms
for scheduling problems. Moreover, such mechanisms would also be easier to use from the
user’s perspective as less information is required. First results on such mechanisms for grid
settings show that non-clairvoyant mechanisms with the ability of migrating jobs can even out-
perform existing clairvoyant, static mechanisms that know the exact job runtimes a priori (Amar
et al., 2008a,b). However, this existing work focuses on the allocation algorithm only. Future
research is needed that develops a suitable pricing scheme that can complement the allocation
algorithm.

Decentralized Market Mechanisms

Except for the P-DLGM mechanism in Chapter 5, all mechanisms considered in this work rely
on a centralized entity that collects the private information of users and providers and then
determines the allocations and prices. However, a central entity can constitute a single-point of
failure and bottleneck especially in large-scale grid settings. It would thus be a promising area
for future research to design decentralized market protocols for such settings, possibly based on
existing work on peer-to-peer networks (e.g. Milojicic et al. (2002)). Sample research questions
comprise algorithms that distribute the information about users and providers and the system’s
state in a decentralized manner, as well as market protocols that converge towards a market
equilibrium in a timely manner, if such an equilibrium exists.

7.2.2 Complementary Research

Besides these specific extensions, there are more general research areas that are complementary
to the mechanisms and the scheduling process that have been considered in this work.

Preference Elicitation

While market mechanisms exhibit compelling features, it is typically assumed that the market
participants know their true valuations. However, it is a complex task for users and providers
to assess their valuation for a certain resource or service or even a complex combination of

158 CONCLUSIONS AND FUTURE WORK

services. This comprises questions such as “What am I willing to pay for using a server with
application X, a dual-core processor and 2 GB of memory for one hour?”. It might be even
more difficult to assess the valuation for a certain offering relative to another offering: “If
I can only get a server with a single-core processor, what is my valuation for this offering
as opposed to the dual-core server?” There is currently not much research available in this
area, which is surprising as it is a prerequisite for any market-based approach (Shneidman
et al., 2005). Popular techniques for estimating a user’s valuation for a certain resource or
service are Conjoint Analyses (Luce and Tukey, 1964; Green and Rao, 1971) and the Analytical
Hierarchy Process (Saaty, 1990), for instance. The main problem with these approaches is that
they quickly become infeasible with increasing numbers of resource and service attributes and
attribute values. This is exacerbated by the large number of transactions especially in resource-
near markets.

Automated Trading

When the valuation and resource characteristics are known, another complex task is to effi-
ciently communicate these preferences to the market (Shneidman et al., 2005). By equipping
users with automated tools such as bidding agents, the communication with the market can be
drastically simplified since human users and providers do not constantly need to monitor the
market outcome and update their requests and offers (MacKie-Mason and Wellman, 2006). The
tools do not need to be (and cannot be) fully automated black boxes but will be hybrid models;
the users must understand the underlying logic to be able to parameterize the tools according
to their technical and economic preferences. Moreover, the users will not give away the total
control about the trading process (and might not be allowed to do so for legal reasons) but will
regularly interact with the bidding agents. From a technical perspective, it would be interesting
to analyze how such tools can be implemented into real systems. From an economic point of
view, these tools need to be tailored to the specific market mechanisms at hand, and vice versa
(cf. Neumann et al. (2008b)). Consequently, the tasks of designing a market mechanism and of
designing the agents that trade on this market are interdependent, iterative, and evolutionary.

SLA Enforcement

As presented in Chapter 2, after the market mechanism has determined the outcome, this is
encoded in an SLA. Research in the design of market mechanisms assumes the ex post com-
pliance of market participants: After the mechanism has determined the allocation and the re-
sulting prices, the market participants are typically assumed to adhere to the market’s decisions.
In reality, however, this is not self-evident due to the possibility of technical failures and moral

7.2 POSSIBLE EXTENSIONS AND OPEN QUESTIONS 159

hazard problems. For instance, in case a provider has committed to a certain SLA, it might
later well be in the provider’s interest to intentionally violate the SLA in favor of another, more
desirable user (cf. Byde et al. (2003)). A subsequent task is thus to monitor the execution of the
job to assure that it executes according to the SLA. An interesting area for future research is the
question of how to penalize the user or the provider in case the job or the node violates the SLA
(van Dinther et al., 2009; Rana et al., 2008). How should violations of certain job or resource /
service attributes be aggregated and translated into monetary compensations? Is there any way
to extend the economic properties of the market mechanism (such as incentive compatibility) to
the subsequent stages of the overall process? Moreover, analogously to the mechanism design
problem, another layer of complexity is added by the characteristics of the application domain
at hand. In computational grids, for instance, when a job fails or a wrong result is returned
to the user, it is hard to detect whether this was due to intentional misbehavior of the resource
provider or due to technical reasons, which are neither controlled by the user nor the provider,
programming errors of the user, etc.

Reputation Mechanisms

While the SLA enforcement works with contractual and monetary penalties to incentivize users
and providers to comply with the market outcome, reputation mechanisms aim at building trust
via feedback mechanisms (Anandasivam and Neumann, 2008; Resnick et al., 2000; Bolton
et al., 2002; Dellarocas, 2003). Trust is a vital requirement for a market to be sustainable, in
particular if a user only rarely transacts with the same provider, and vice versa. Reputation
mechanisms aggregate the perceived users’ and providers’ transaction history and thus might
give indications towards these users’ and providers’ future performance and compliance. This
expected performance can be taken into account when making allocation and pricing decisions
and thus in turn impacts the future allocation and pricing decisions. For example, jobs of users
and nodes of providers with a low reputation might receive a lower priority in the scheduling
process. Ultimately, users and providers have to trade off the present benefit of not complying
with an SLA with the future loss. It is an interesting challenge for future research to design and
implement such feedback mechanisms into the market’s allocation and pricing decisions.

Markets Mechanisms for Complex Services

This work has focused on market mechanisms for resource-near markets. However, there is a
strong trend towards not only dynamically sourcing low-level resources from external providers,
but also software services and complementary services. This trend is oftentimes comprised
under the terms “cloud computing” and “Software as a Service” (Saas). Such more complex

160 CONCLUSIONS AND FUTURE WORK

services are located on Tier 2 of the market structure elaborated in Chapter 2 (cf. Figure 2.4).

Cloud computing is a new concept for distributed computing. While there is no established
definition yet, there is a general consensus that cloud computing is more than distributed,
high-performance computing. Boss et al. (2007) stress that clouds are not limited to high-
performance environments, but also support “interactive, user-facing applications” such as Web
applications and three-tier architectures. Lawton (2008) briefly describes the type of applica-
tions that is run on clouds: Web-based applications that are accessed via browsers but with
the look-and-feel of desktop programs. For Klems et al. (2008), cloud computing builds upon
virtualization and Web technologies to deliver “compute utilities as on-demand services with
variable pricing schemes, enabling a new consumer mass market.” Buyya et al. (2008) point out
that there are different types of clouds, compute clouds for data processing and storage clouds
for data storage. This distinction, however, is not sufficient as clouds go beyond the provision-
ing of physical resources. Consequently, a further distinction should be made into infrastructure
clouds and application clouds (Weinhardt et al., 2008).

Cloud computing is similar to the well-known trends of application service providing (ASP) and
SaaS in that it focuses on the provisioning of services that are hosted in a more or less central-
ized way and that can be accessed and payed for dynamically by many users (Knolmayer, 2000;
Gillan et al., 1999; Turner et al., 2003; Papazoglou, 2003; Sääksjärvi et al., 2005). However,
cloud computing is more than ASP and SaaS since it not only supports the access to software
services, but also to infrastructure services, such as computing power and storage. Moreover,
cloud computing systems can be the underlying platform for the hosting of software services,
especially when these services have to scale quickly. By means of virtualization technologies,
cloud computing allows the customization of services by the end user. This view is supported
by Weiss (2007), for whom cloud computing is not a fundamentally new paradigm. It rather
draws on existing technologies and approaches, such as virtualization, utility computing, SaaS,
distributed computing, and centralized data centers. What is new is that cloud computing com-
bines and integrates these approaches to a comprehensive concept and architecture.

In the future, cloud providers will try to differentiate themselves and build a market by of-
fering services on top of physical resources. Here services might comprise tools for making
the resources easily accessible, high qualities of service, and security, but also programming
environments and application services. It will be interesting for future research to investigate
business and pricing models for such service markets (cf. Blau et al. (2008)). Sample questions
comprise: How should resources and services be bundled to more complex offerings? How can
SLAs be determined for such complex services? Is price discrimination appropriate? Moreover,
this leads to the following research area.

7.3 FINAL REMARKS 161

Market Concatenation

As introduced in Chapter 2, there can be multiple market mechanisms both across the tiers of
the market structure as well as within one tier. Up to now, each of these mechanisms has been
investigated in isolation. But in practice, these mechanisms may be closely intertwined. For ex-
ample, a mechanism for the pricing of a complex service may depend on multiple mechanisms
for raw services and physical resources. An interesting question for future research might thus
be to model and investigate these dependencies: How does strategic behavior change if a user
acts on multiple markets at the same time? And how does the computational complexity of the
markets on one service layer affect the tractability of the markets on another service layer?

Revenue Considerations

In this work, the dominant design objective was allocative efficiency, i.e. maximizing the overall
utility of all users and providers. However, especially in utility computing and cloud computing
settings with potentially only a few rather centralized providers, the objective in the design of
market mechanisms or pricing schemes in general will rather shift to revenue maximization (for
the provider, cf. Anandasivam and Neumann (2009)). Moreover, it is not possible to design
a pricing scheme for each resource provider in isolation, since the pricing decisions of one
provider might cause users to move from or to another provider. Consequently, there is the need
for an explicit model of the competition between the resource providers and the price elasticity
of demand.

7.3 Final Remarks

Markets for computer resources are an interesting and promising setting for investigating mar-
ket mechanisms, since markets can be purposefully designed and implemented from scratch
instead of passively studying existing markets. In settings where computer resources are scarce,
markets can be a viable tool towards increasing the efficiency of the resource scheme. The sys-
tem engineer faces a key problem: How should the scarce resources be allocated between the
competing users and providers so as to maximize the overall system value? In order to max-
imize this value, the system engineer inherently depends on the users and providers to reveal
their private information about resource demand and supply. The users and providers, however,
will selfishly try to maximize their individual benefit instead of working towards one common
goal. For instance, without “proper” pricing mechanisms (as studied in this work) they will
generally benefit from overstating their priorities. Here markets have the power to align the
incentives of the users and providers with the system / market engineer’s goal. Markets can

162 CONCLUSIONS AND FUTURE WORK

induce users and providers to make proper use of the resources, reveal their true demand and
supply situation, and offer incentives to providers to contribute scarce resources to the system.
Markets can then aggregate this dispersed information and determine allocations and prices that
are both desirable from an overall perspective, but also from the viewpoint of the individual
users and providers. This ultimately follows the concept of the “invisible hand” by Adam Smith
(Smith, 1904).

The focus of this work was on Market Engineering, especially the micro and IT structure of
the market, i.e. the rules that govern the information exchange between the market participants
and the market itself and that decide about the market outcome based on this input. The aim
was to develop, implement, and test allocation algorithms that take into account the technical
constraints and capabilities of the application scenarios in order to determine allocations that
are technically feasible and economically desirable. Moreover, in line with Smith’s concept
of the “invisible hand”, pricing mechanisms were developed that aim at aligning the market
participants’ incentives with the overall objective of welfare and / or revenue maximization.

However, as this research outlook shows, there are many complementary research questions that
need to be addressed in a comprehensive and integrated manner. Only if these challenges are
mastered, it is that markets for computer resources and services will find their way from theory
to practice.

Appendix A

Appendix to Chapter 3

The complete allocation problem considered in this chapter is the following:

max
X

W = ∑
j∈J

c j ∑
n∈N

∑
t∈T

x jnt(v j− vn)

subject to ∑
n∈N

x jnt ≤ 1, j ∈ J, t ∈ T,r j ≤ t ≤ e j,

∑
j∈J

x jntc j ≤Cn, n ∈ N, t ∈ T,Rn ≤ t ≤ En,

∑
j∈J

x jntm j ≤Mn, n ∈ N, t ∈ T,Rn ≤ t ≤ En,

e j

∑
u=r j

∑
n∈N

x jnu = d j ∑
n∈N

x jnt , j ∈ J, t ∈ T,r j ≤ t ≤ e j,

x jnt ∈ {0,1}, j ∈ J,n ∈ N, t ∈ T,r j ≤ t ≤ e j,Rn ≤ t ≤ En,vn ≤ v j.

164 APPENDIX TO CHAPTER 3

Appendix B

Appendix to Chapter 4

B.1 Pseudo-Code of the Randomized Heuristic

Algorithm 2 Randomized Allocation Heuristic.
Require: Set J containing all job requests; set N containing all node offers, sorted in non-

decreasing order of vn; α ≥ 1.
Ensure: Feasible allocation schedule X = (x jn).

1: X = O, J′ = /0
2: while |J′|< |J| do
3: v = 0
4: for all j ∈ J \ J′ do
5: if isFeasible(j,N) then
6: v+ = vα

j

7: if v == 0 then
8: break
9: r = random([0,v]), tmp = 0

10: for all j ∈ J \ J′ do
11: if !isFeasible(j,N) then
12: continue
13: tmp+ = vα

j

14: if r ≤ tmp then
15: allocate(j,N)
16: J′ = J′∪ j
17: break
18: return X

166 APPENDIX TO CHAPTER 4

B.2 Proofs of Lemma 1 and Lemma 2

Proof to Lemma 1. The expected utility of j is given as

E(u j(ṽ|θ j)) = c j
ṽ j

ṽ j + ṽi
(v j− ṽ j).

Hence,

∂E(u j(ṽ|θ j))
∂ ṽ j

=−c j(−v j ṽi+ṽ2
j+2ṽ j ṽi)

(ṽ j+ṽi)2 = 0

⇔ ṽ2
j +2ṽiṽ j− v jṽi = 0

⇔ ṽ j =−ṽi +
√

ṽ2
i + ṽiv j,

since all parameters are positive by definition.

Moreover,
∂ 2E(u j(ṽ|θ j))

∂ ṽ2
j

=−
2c jṽi(ṽi + v j)

(ṽ j + ṽi)3 < 0.

Consequently, b j(ṽi|v j) =−ṽi +
√

ṽ2
i + ṽiv j maximizes E(u j(ṽ|θ j)) for α = 1.

Proof to Lemma 2. The expected utility of j is given as

E(u j(ṽ|θ j)) = c j
ṽ2

j

ṽ2
j + ṽ2

i
(v j− ṽ j).

Hence,

∂E(u j(ṽ|θ j))
∂ ṽ j

= c j
ṽ j(2ṽ2

i v j−ṽ3
j−3ṽ j ṽ2

i)
(ṽ2

j+ṽ2
i)

2 = 0

⇔ ṽ3
j +3ṽ2

i ṽ j−2ṽ2
i v j = 0.

Cardano’s formula (cf. Nickalls (1993)) gives the only real root of this cubic polynomial as

ṽ j = 3

√
ṽ2

i v j +
√

ṽ4
i v2

j + ṽ6
i + 3

√
ṽ2

i v j−
√

ṽ4
i v2

j + ṽ6
i

= 3

√√
ṽ4

i v2
j + ṽ6

i + ṽ2
i v j− 3

√√
ṽ4

i v2
j + ṽ6

i − ṽ2
i v j

= b j(ṽi|v j).

Moreover,

∂ 2E(u j(ṽ|θ j))
∂ ṽ2

j
=

2c jṽ2
i (−3v jṽ2

j + v jṽ2
i + ṽ3

j −3ṽ jṽ2
i)

(ṽ2
j + ṽ2

i)3 < 0

⇔ −3v jṽ2
j + v jṽ2

i + ṽ3
j −3ṽ jṽ2

i < 0.

B.2 PROOFS OF LEMMA 1 AND LEMMA 2 167

Inserting b j(ṽi|v j) into the left hand side of the latter equation always yields negative values.
This has been verified graphically and numerically for 0 < v j ≤ 100 and 0 < ṽi ≤ 100 (with
increments of 0.01 each).

Consequently, the second derivative ∂ 2E(u j(ṽ|θ j))
∂ ṽ2

j
is always negative within reasonable intervals

and b j(ṽi|v j) maximizes E(u j(ṽ|v j)) for α = 2.

168 APPENDIX TO CHAPTER 4

Appendix C

Appendix to Chapter 5

The following results from Heydenreich et al. (2006) are repeated for the sake of completeness.

Lemma 4 (Truthful weight report and node selection, Theorem 6 in Heydenreich et al. (2006)).
Regard any type vector θ , any strategy profile s and any job j such that j reports (r̃ j, d̃ j, ṽ j) and
chooses node m̃. Then changing the report to (r̃ j, d̃ j,v j) and choosing a node that maximizes
its tentative utility at time r̃ j does not decrease j’s tentative utility under DLGM.

Proof. First consider the single node case, i.e. m = 1. Suppose, at the arrival time r̃ j of job
j jobs k1,k2, . . . ,kr with corresponding reported processing times d̃1, d̃2, . . . , d̃r and reported
weights ṽ1, ṽ2, . . . , ṽr are queueing to be processed on the node, but none of them has started
being processed yet. Without loss of generality let ṽ1/d̃1 ≥ ṽ2/d̃2 ≥ . . . ≥ ṽr/d̃r. Given the
reported processing time d̃ j, job j could receive any position in front of, between or behind the
already present jobs in the priority queue by choosing its weight appropriately. Therefore, it
has to decide for every job ks, s ∈ {1, . . . ,r}, whether it wants to be placed in front of ks or not.
Displacing ks would increase p̂ j(1) by ṽsd̃ j, whereas ê j(1) is decreased by d̃s. Thus, j’s tentative
utility changes by v jd̃s− ṽsd̃ j if j displaces ks compared to not displacing ks. Therefore, it is
rational for j to displace ks if and only if v jd̃s− ṽsd̃ j > 0, which is equivalent to v j/d̃ j > ṽsd̃s. As
the node schedules according to WSPT, j is placed at the position that maximizes its tentative
utility when reporting v j.

For m > 1, recall that j can select a node itself. As reporting the truth maximizes its tentative
utility on every single node, and as j can then choose the node that maximizes its tentative
utility among all nodes, truth-telling and choosing a node maximizing û j(.) will maximize j’s
tentative utility.

Lemma 5 (Preservation of the tentative utility, Lemma 7(a) in Heydenreich et al. (2006)). Con-
sider any job j ∈ J. Then, under DLGM, for all reports of all other users as well as all choices

170 APPENDIX TO CHAPTER 5

of nodes of the other users, the following is true:

If j reports ṽ j = v j, then the tentative utility when queued at any of the nodes will be preserved
over time, i.e. it equals j’s ex post utility.

Proof. Note that whenever j’s tentative completion time changes, j is immediately compen-
sated for that by a payment. If ṽ j = v j then the payment exactly equals the loss in utility.

Lemma 6 (Truthful reports of release dates and runtimes, Theorem 8 in Heydenreich et al.
(2006)). Consider the restricted strategy space where all j ∈ J report ṽ j = v j. Then the strategy
profile where all jobs j truthfully report r̃ j = r j, d̃ j = d j and choose a node that maximizes û j(.)
is a dominant strategy equilibrium under DLGM.

Proof. Start with m = 1. Suppose ṽ j = v j, fix any pretended release date r̃ j and regard any
d̃ j > d j. Let u j(.) denote j’s (ex post) utility when reporting d j truthfully and let ũ j(.) be
its (ex post) utility for reporting d̃ j. As ṽ j = v j, the ex post utility equals in both cases the
tentative utility at decision point r̃ j according to Lemma 5. Thus regard the latter utilities.
Clearly, according to the WSPT-priorities, j’s position in the queue at the node for report d j

will not be behind its position for report d̃ j. Divide the jobs already queuing at the node at
j’s arrival into three sets: Let J1 = {k ∈ J|k < j,bk > r̃ j, ṽk/d̃k ≥ v j/d j} (where bk is the time
when k is started to be processed), J2 = {k ∈ J|k < j,bk > r̃ j,v j/d j > ṽk/d̃k ≥ v j/d̃ j} and
J3 = {k ∈ J|k < j,bk > r̃ j,v j/d̃ j > ṽk/d̃k}. That is, J1 comprises the jobs that are in front of j
in the queue for both reports, J2 consists of the jobs that are only in front of j when reporting
d̃ j and J3 includes only jobs that queue behind j for both reports. Therefore,

ũ j(.)−u j(.) = − ∑
k∈J1∪J2

v jd̃k− ∑
k∈J3

d̃ jṽk− v jd̃ j−

(
− ∑

k∈J1

v jd̃k− ∑
k∈J2∪J3

d jṽk− v jd j

)
= ∑

k∈J2

(d jṽk− v jd̃k)− ∑
k∈J3

(d̃ j−d j)ṽk− (d̃ j−d j)v j.

According to the definition of J2, the first term is smaller than or equal to zero. As d̃ j > d j, the
whole right hand side becomes non-positive. Therefore ũ j(.) ≤ u j(.) , i.e. truthfully reporting
d j maximizes j’s ex post utility on a single node.

Now fix ṽ j = v j and any d̃ j ≥ d j and regard any false release date r̃ j > r j. There are two effects
that can occur when arriving later than r j at the node. Firstly, jobs queued at the node already at
time r j may have been processed or may have started receiving service by time r̃ j. But, either j
would have had to wait for those jobs anyway or it would have increased its immediate utility
at decision point r j by displacing a job and paying the compensation. So, j cannot gain from
this effect by lying. The second effect is that new jobs have arrived at the node between r j and
r̃ j. Those jobs either delay j’s completion time and j looses the payment it could have received

171

from those jobs by arriving earlier. Or the jobs do not delay j’s completion time, but j has to
pay the jobs for displacing them when arriving at r̃ j. If j arrived at time r j, it would not have
to pay for displacing such a job. Hence, j cannot gain from this effect either and the immediate
utility at decision point r j will be at least as large as its immediate utility at decision point r̃ j.
Therefore, for a single node, j maximizes its immediate utility at decision point r̃ j by choosing
r̃ j = r j. As ṽ j = v j, it follows from Lemma 5 that choosing r̃ j = r j also maximizes the job’s ex
post utility on a single node.

For m > 1 note that on every node, the immediate utility of job j at decision point r̃ j is equal
to its ex post utility and that j can select a node itself that maximizes its immediate utility and
therefore its ex post utility. Therefore, given that ṽ j = v j, a job’s ex post utility is maximized
by choosing r̃ j = r j, d̃ j = d j and choosing a node that minimizes the immediate increase in the
objective function.

Theorem 1 (Myopic best response equilibrium under DLGM, Theorem 9 in Heydenreich et al.
(2006)). Given the types of all jobs, the strategy profile s where each job j reports θ̃ j = θ j and
chooses the node n that maximizes its tentative utility û j(θ̃ j,n, s̃− j|θ j) =−v jê j(n)− p̂ j(n) is a
myopic best response equilibrium under DLGM.

Proof. Regard job j. According to the proof of Lemma 4, û j(.) on any node is maximized by
reporting ṽ j = v j for any r̃ j and d̃ j. According to Lemma 6, r̃ j = r j, d̃ j = d j and choosing a
node that maximizes j’s tentative utility at time r̃ j maximize j’s ex post utility if j truthfully
reports ṽ j = v j. According to Lemma 5 this ex post utility is equal to û j(.) if j reports ṽ j = v j.
Therefore, any job j maximizes û j(.) by truthful reports and choosing the node as claimed.

172 APPENDIX TO CHAPTER 5

Appendix D

Appendix to Chapter 6

D.1 Workload Statistics

Figure D.1: Histogram of the CPU size of the requests in the workload.

174 APPENDIX TO CHAPTER 6

Figure D.2: Histogram of the runtime of the requests in the workload.

D.2 CORRELATION – SPEARMAN CORRELATION COEFFICIENT 175

D.2 Correlation – Spearman Correlation Coefficient

The following table presents the mean Spearman correlation coefficients across 10 runs. The
workloads were based on the valuation distribution with support {10, . . . ,160} and were fed
into the Proportional Share mechanism.

γ \ ε 0.05 0.15 0.25
Learning rate α = 0.1

0.3 0.799 0.766 0.733
0.5 0.781 0.771 0.74
0.7 0.751 0.753 0.743

Learning rate α = 0.3
0.3 0.808 0.752 0.725
0.5 0.807 0.752 0.727
0.7 0.797 0.76 0.734

Learning rate α = 0.5
0.3 0.796 0.747 0.723
0.5 0.795 0.747 0.726
0.7 0.785 0.752 0.731

Learning rate α = 0.7
0.3 0.774 0.735 0.715
0.5 0.771 0.74 0.721
0.7 0.773 0.745 0.732

Table D.1: Mean Spearman correlation coefficients for varying α , γ , and ε .

176 APPENDIX TO CHAPTER 6

D.3 Rationality – Mean Request Utility

The following table presents the mean request utility across 10 runs. The workloads were based
on the valuation distribution with support {10, . . . ,160} and were fed into the Proportional Share
mechanism.

γ \ ε 0.05 0.15 0.25
Learning rate α = 0.1

0.3 67,395 61,408 55,394
0.5 61,447 57,152 52,950
0.7 52,982 50,214 47,098

Learning rate α = 0.3
0.3 69,055 62,598 55,237
0.5 65,544 59,803 53,877
0.7 57,546 55,257 50,807

Learning rate α = 0.5
0.3 67,525 60,471 53,716
0.5 63,810 58,650 52,427
0.7 59,037 55,251 50,019

Learning rate α = 0.7
0.3 65,265 58,451 51,804
0.5 61,622 56,598 50,639
0.7 58,203 54,055 48,484

Table D.2: Mean request utility for varying α , γ , and ε .

D.4 ROBUSTNESS AGAINST VARYING RANDOM NUMBER SEEDS 177

D.4 Robustness Against Varying Random Number Seeds

The following results present the coefficient of variation for the total payments across 10 runs.
The workloads were based on the valuation distribution with support {10, . . . ,160} and were
fed into the Proportional Share mechanism.

γ \ ε 0.05 0.15 0.25
Learning rate α = 0.1

0.3 0.029 0.012 0.005
0.5 0.065 0.02 0.005
0.7 0.062 0.015 0.011

Learning rate α = 0.3
0.3 0.013 0.005 0.003
0.5 0.035 0.007 0.005
0.7 0.03 0.01 0.005

Learning rate α = 0.5
0.3 0.01 0.004 0.004
0.5 0.025 0.006 0.004
0.7 0.032 0.009 0.005

Learning rate α = 0.7
0.3 0.016 0.006 0.003
0.5 0.04 0.009 0.004
0.7 0.022 0.008 0.004

Table D.3: Coefficient of variation for the total payments across all runs for varying α , γ , and
ε .

178 APPENDIX TO CHAPTER 6

D.5 Proof of Corollary 1

Proof. The left term can be rewritten as follows:

max
j∈SH

ṽ j

x j
= max

j∈SH

ṽ j

τsh
j (ṽ)

= max
j∈SH

ṽ j

ṽ j
ṽmax

1∫
0

∏
k∈SH
k 6= j

(
1− s ṽk

ṽmax

)
ds

= max
j∈SH

ṽmax
1∫
0

∏
k∈SH
k 6= j

(
1− s ṽk

ṽmax

)
ds

.

Thus, one gets that

argmax
j∈SH

ṽ j

x j
= argmin

j∈SH

∫ 1

0
∏

k∈SH
k 6= j

(
1− s

ṽk

ṽmax

)
ds.

It is now shown that

argmin
j∈SH

∫ 1

0
∏

k∈SH
k 6= j

(
1− s

ṽk

ṽmax

)
ds = argmin

j∈SH
ṽ j. (D.1)

Assume the term ∫ 1

0
∏

k∈SH

(
1− s

ṽk

ṽmax

)
ds

must be minimized by removing one sub-term
(

1− s ṽk
ṽmax

)
. This is achieved by removing the

term
(

1− s ṽk
ṽmax

)
with the minimal ṽk across all k ∈ SH. Consequently,

argmin
j∈SH

ṽ j ⊆ argmin
j∈SH

∫ 1

0
∏

k∈SH
k 6= j

(
1− s

ṽk

ṽmax

)
ds.

The fact that the left hand side of Equation D.1 is a subset of the right hand side can be shown
by contradiction.

Assume there is a request

i ∈ argmin
j∈SH

∫ 1

0
∏

k∈SH
k 6= j

(
1− s

ṽk

ṽmax

)
ds

with i 6∈ argmin j∈SH ṽ j, i.e. ṽi > min j∈SH ṽ j.

D.5 PROOF OF COROLLARY 1 179

However, then the value of the term∫ 1

0
∏

i∈SH
i6= j

(
1− s

ṽk

ṽmax

)
ds

can be made smaller by interchanging i with an element in argmin j∈SH ṽ j. Thus it can be
concluded that

i 6∈ argmin
j∈SH

∫ 1

0
∏

k∈SH
k 6= j

(
1− s

ṽk

ṽmax

)
ds,

and hence

argmin
j∈SH

∫ 1

0
∏

k∈SH
k 6= j

(
1− s

ṽk

ṽmax

)
ds⊆ argmin

j∈SH
ṽ j.

180 APPENDIX TO CHAPTER 6

Bibliography

Adar, E. and Huberman, B. (2000). Free Riding on Gnutella. First Monday, 5(10), 2.

Amar, L., Barak, A., Levy, E., and Okun, M. (2007). An On-line Algorithm for Fair-Share
Node Allocations in a Cluster. In Proceedings of the International Symposium on Cluster
Computing and the Grid, pages 83–91, 14–17, Rio de Janeiro, Brazil.

Amar, L., Stößer, J., Levy, E., Shiloh, A., Barak, A., and Neumann, D. (2008a). Harnessing
Migrations in a Market-based Grid OS. In Proceedings of the 9th IEEE/ACM International
Conference on Grid Computing, page 85, 29 September – 1 October 2008, Tsukuba, Japan.

Amar, L., Mu’alem, A., and Stößer, J. (2008b). On the Importance of Migration for Fairness
in Online Grid Markets. In Proceedings of the 9th IEEE/ACM International Conference on
Grid Computing, page 65, 29 September – 1 October 2008, Tsukuba, Japan.

Amar, L., Mu’alem, A., and Stößer, J. (2008c). The Power of Preemption in Economic Online
Markets. In Proceedings of the 5th International Workshop on Grid Economics and Business
Models, pages 41–57, 25–26 August 2008, Las Palmas, Spain.

Anandasivam, A. and Neumann, D. (2008). Reputation-Based Pricing for Grid Computing in
eScience. In Proceedings of the 16th European Conference on Information Systems, 9–11
June, Galway, Ireland.

Anandasivam, A. and Neumann, D. (2009). Managing Revenue in Grids. In Proceedings of the
42nd Hawaii International Conference on System Sciences, 5–8 January, Waikoloa, Hawaii,
USA. Forthcoming.

Archer, A. and Tardos, E. (2001). Truthful Mechanisms for One-Parameter Agents. In Pro-
ceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pages 482–491,
14–17 October, Las Vegas, Nevada, USA.

Archer, A., Papadimitriou, C., Talwar, K., and Tardos, E. (2003). An Approximate Truthful
Mechanism for Combinatorial Auctions with Single Parameter Agents. In Proceedings the

182 BIBLIOGRAPHY

14th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 205–214, 12–14 January,
Baltimore, ML, USA.

Arndt, O., Freisleben, B., Kielmann, T., and Thilo, F. (2000). A Comparative Study of Online
Scheduling Algorithms for Networks of Workstations. Cluster Computing, 3(2), 95–112.

AuYoung, A., Chun, B., Snoeren, A., and Vahdat, A. (2004). Resource Allocation in Federated
Distributed Computing Infrastructures. In Proceedings of the 1st Workshop on Operating
System and Architectural Support for the On-Demand IT Infrastructure, 9 October, Boston,
MA, USA.

Awerbuch, B., Azar, Y., and Meyerson, A. (2003). Reducing Truth-Telling Online Mechanisms
to Online Optimization. In Proceedings of the 35th Annual ACM Symposium on Theory of
Computing, pages 503–510, 9–11 June, San Diego, CA, USA.

Baker, M., Fox, G., and Yau, H. (1995). Cluster Computing Review. Technical Report CRPC-
TR95623, Northeast Parallel Architectures Center, Syracuse University.

Bapna, R., Das, S., Garfinkel, R., and Stallaert, J. (2008). A Market Design for Grid Computing.
INFORMS Journal on Computing, 20(1), 100–111.

Barak, A., Shiloh, A., and Amar, L. (2005). An Organizational Grid of Federated MOSIX
Clusters. In Proceedings of the 5th of the IEEE/ACM International Symposium on Cluster
Computing and the Grid, pages 350–357, 9–12 May, Cardiff, UK.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
and Warfield, A. (2003). Xen and the Art of Virtualization. In Proceedings of the 19th

ACM Symposium on Operating Systems Principles, pages 164–177, 19–22 October, Bolton
Landing, NY, USA. ACM Press New York, NY, USA.

Beladym, C. (2007). In the Data Center, Power and Cooling Costs More than the IT Equipment
it Supports. Electronics Cooling Magazine, 13(1). http://electronics-cooling.
com/articles/2007/feb/a3/.

Bell, G. and Gray, J. (2002). What’s Next in High-Performance Computing? Communications
of the ACM, 45(2), 91–95.

Blau, B. and Schnizler, B. (2008). In Proceedings of the Multikonferenz Wirtschaftsinformatik,
26–28 February, Munich, Germany.

Blau, B., Lamparter, S., Neumann, D., and Weinhardt, C. (2008). Planning and Pricing of Ser-
vice Mashups. In Proceedings of the IEEE Joint Conference on E-Commerce Technology and

http://electronics-cooling.com/articles/2007/feb/a3/
http://electronics-cooling.com/articles/2007/feb/a3/

BIBLIOGRAPHY 183

Enterprise Computing, E-Commerce and E-Services, pages 19–26, 21–24 July, Washington,
DC, USA.

Bodenbenner, P., Stößer, J., and Neumann, D. (2007). A Pay-as-Bid Mechanism for Pricing
Utility Computing. In Proceedings of the 20th Bled eConference, Merging and Emerging
Technologies, Processes, and Institutions, 4–6 June, Bled, Slovenia.

Bolton, G., Katok, E., and Ockenfels, A. (2002). How Effective are Online Reputation Mech-
anisms? Discussion Papers on Strategic Interaction 2002-25, Max Planck Institute of Eco-
nomics, Strategic Interaction Group.

Bonabeau, E. (2002). Agent-Based Modeling: Methods and Techniques for Simulating Human
Systems. Proceedings of the National Academy of Sciences, 99(90003), 7280.

Bonorden, O., Gehweiler, J., and Heide, F. (2006). A Web Computing Environment for Parallel
Algorithms in Java. Lecture Notes in Computer Science, 3911, 801.

Borodin, A. and El-Yaniv, R. (1998). Online Computation and Competitive Analysis. Cam-
bridge University Press.

Boss, G., Malladi, P., Quan, D., Legregni, L., and Hall, H. (2007). Cloud Computing. Technical
report, IBM High Performance On Demand Solutions.

Böttcher, J., Drexl, A., Kolisch, R., and Salewski, F. (1999). Project Scheduling Under Partially
Renewable Resource Constraints. Management Science, 45(4), 543–559.

Bridge, P. and Sawilowsky, S. (1999). Increasing Physicians’ Awareness of the Impact of Statis-
tics on Research Outcomes Comparative Power of the t-test and Wilcoxon Rank-Sum Test in
Small Samples Applied Research. Journal of Clinical Epidemiology, 52(3), 229–235.

Brunner, R., Freitag, F., and Navarro, L. (2008). Towards the Development of a Decentralized
Market Information System: Requirements and Architecture. In Proceedings of the 22nd

IEEE International Symposium on Parallel and Distributed Processing, 14–18 April, Miami,
FL, USA.

Burke, S., Campana, S., Lorenzo, P., Nater, C., Santinelli, R., and Sciaba, A. (2008). gLite 3.1
User Guide. CERN-LCG-GDEIS-722398.

Buyya, R., Abramson, D., Giddy, J., and Stockinger, H. (2002). Economic Models for Resource
Management and Scheduling in Grid Computing. Concurrency and Computation: Practice
and Experience, 14(13-15), 1507–1542.

184 BIBLIOGRAPHY

Buyya, R., Yeo, C., Venugopal, S., Broberg, J., and Brandic, I. (2008). Cloud Computing
and Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th

Utility. http://www.gridbus.org/reports/CloudITPlatforms2008.pdf.

Byde, A., Salle, M., and Bartolini, C. (2003). Market-Based Resource Allocation for Utility
Data Centers. Technical Report HPL-2003-188, HP Lab, Bristol.

Carr, N. (2003). IT Doesn’t Matter. Harvard Business Review, 811(5), 41–53.

Carr, N. (2005). The End of Corporate Computing. MIT Sloan Management Review, 46(3), 67.

Chaubal, C. (2005). Scheduler Policies for Job Prioritization in the Sun N1 Grid Engine 6
System. Technical report, Sun BluePrints Online, Sun Microsystems, Inc., Santa Clara, CA,
USA.

Chekuri, C. and Khanna, S. (2006). A PTAS for the Multiple Knapsack Problem. SIAM Journal
on Computing, 35(3), 713–728.

Christodoulou, G., Koutsoupias, E., and Vidali, A. (2007). A Lower Bound for Scheduling
Mechanisms. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1163–1170, 7–9 January, New Orleans, LA, USA.

Chun, B. and Culler, D. (2000). Market-based Proportional Resource Sharing for Clusters.
Technical Report CSD-00-1092, Computer Science Division, University of California at
Berkeley.

Chun, B. N. and Culler, D. E. (2002). User-Centric Performance Analysis of Market-Based
Cluster Batch Schedulers. In Proceedings of the 2nd of the IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, page 30, 21–24 May, Berlin, Germany.

Cirne, W., Brasileiro, F., Andrade, N., Costa, L., Andrade, A., Novaes, R., and Mowbray, M.
(2006). Labs of the World, Unite!!! Journal of Grid Computing, 4(3), 225–246.

Correa, J. and Wagner, M. (2005). LP-Based Online Scheduling: From Single to Parallel Ma-
chines. Integer Programming and Combinatorial Optimization, 3509, 196–209.

Crites, R. and Barto, A. (1996). Improving Elevator Performance Using Reinforcement Learn-
ing. Advances in Neural Information Processing Systems, pages 1017–1023.

Czajkowski, K., Foster, I., and Kesselman, C. (1999). Resource Co-Allocation in Computa-
tional Grids. In Proceedings of the 8th IEEE International Symposium on High Performance
Distributed Computing, pages 219–228, 3–6 August, Redondo Beach, CA, USA.

http://www.gridbus.org/reports/CloudITPlatforms2008.pdf

BIBLIOGRAPHY 185

de Vries, S. and Vohra, R. (2003). Combinatorial Auctions: A Survey. INFORMS Journal on
Computing, 15(3), 284.

Degermark, M., Köhler, T., Pink, S., and Schelén, O. (1997). Advance Reservations for Predic-
tive Service in the Internet. Multimedia Systems, 5(3), 177–186.

Dellarocas, C. (2003). The Digitization of Word-Of-Mouth: Promise and Challenges of Online
Feedback Mechanisms. Management Science, 49(10), 1407–1424.

Dobzinski, S. (2007). Two Randomized Mechanisms for Combinatorial Auctions. Lecture
Notes in Computer Science, 4627, 89–103.

Dobzinski, S., Nisan, N., and Schapira, M. (2006). Truthful Randomized Mechanisms for
Combinatorial Auctions. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing, pages 644–652, 21–23 May, Washington, DC, USA.

Dongarra, J., Sterling, T., Simon, H., and Strohmaier, E. (2005). High-Performance Computing:
Clusters, Constellations, MPPs, and Future Directions. Computing in Science & Engineering,
pages 51–59.

Emmerich, W., Butchart, B., Chen, L., Wassermann, B., and Price, S. (2005). Grid Service
Orchestration Using the Business Process Execution Language (BPEL). Journal of Grid
Computing, 3(3), 283–304.

Eymann, T., Neumann, D., Reinicke, M., Schnizler, B., Streitberger, W., and Veit, D. (2006).
On the Design of a Two-Tiered Grid Market Structure. In Business Applications of P2P and
Grid Computing, Multikonferenz Wirtschaftsinformatik, 20-22 February, Passau, Germany.

Fahrmeir, L., Künstler, R., Pigeot, I., and Tutz, G. (2004). Statistik. Springer-Verlag Berlin
Heidelberg. In German.

Feitelson, D. (2002). Workload Modeling for Performance Evaluation. Lecture Notes in Com-
puter Science, 2459, 114–141.

Feitelson, D. (2008). Workload Modeling for Computer Systems Performance Evaluation.
Draft. Available at http://www.cs.huji.ac.il/˜feit/wlmod/.

Figueiredo, R. J., Dinda, P. A., and Fortes, J. A. B. (2003). A Case For Grid Computing
On Virtual Machines. In Proceedings of the 23rd International Conference on Distributed
Computing Systems, pages 550–559, 19-22 May, Providence, RI, USA.

Foster, I. (2002). What is the Grid? A Three Point Checklist. Grid Today, 1(6), 22–25. http:
//www.gridtoday.com/02/0722/100136.html.

http://www.cs.huji.ac.il/~feit/wlmod/
http://www.gridtoday.com/02/0722/100136.html
http://www.gridtoday.com/02/0722/100136.html

186 BIBLIOGRAPHY

Foster, I. and Kesselman, C. (1997). Globus: a Metacomputing Infrastructure Toolkit. Interna-
tional Journal of High Performance Computing Applications, 11(2), 115.

Foster, I., Kesselman, C., and Tuecke, S. (2001). The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal of High Performance Computing Applications,
15(3), 200.

Foster, I., Kishimoto, H., Savva, A., Berry, D., Grimshaw, A., Horn, B., Maciel, F., Siebenlist,
F., Subramaniam, R., Treadwell, J., et al. (2006). The Open Grid Services Architecture.
Technical report, Open Grid Forum. Version 1.5.

Freitag, S., Yahyapour, R., Jankowski, G., and Januszewski, R. (2008). Virtualization Manage-
ment for Grids and SOA. White paper WHP-0005, CoreGRID.

Friedman, E. and Parkes, D. (2003). Pricing WiFi at Starbucks: Issues in Online Mechanism
Design. In Proceedings of the 4th ACM Conference on Electronic Commerce, pages 240–241,
9–12 June, San Diego, CA, USA. ACM Press New York, NY, USA.

Gillan, C., Graham, S., Levitt, M., McArthur, J., Murray, S., Turner, V., Villars, R., and Whalen,
M. (1999). The ASP’s Impact on the IT Industry: An IDC-Wide Opinion. IDC Bulletin No.
20323, http://www.amsys.net/pdf/idpwhitepaper.pdf.

Globus, A. (2001). Towards 100,000 CPU Cycle-Scavenging by Genetic Algorithms. Technical
report, NAS technical report NAS-0-011, October 2001.

Goemans, M., Queyranne, M., Schulz, A., Skutella, M., and Wang, Y. (2002). Single Machine
Scheduling with Release Dates. SIAM Journal on Discrete Mathematics, 15(2), 165–192.

Goldberg, A., Hartline, J., Karlin, A., Saks, M., and Wright, A. (2006). Competitive Auctions.
Games and Economic Behavior, 55(2), 242–269.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Kan, A. H. G. R. (1979). Optimization
and approximation in deterministic sequencing and scheduling theory: a survey. Annals of
Discrete Mathematics, 5, 287–326.

Green, J. and Laffont, J. (1979). Incentives in Public Decision-making. North-Holland.

Green, P. and Rao, V. (1971). Conjoint Measurement for Quantifying Judgmental Data. Journal
of Marketing Research, 8(3), 355–363.

Guo, Z., Koehler, G., and Whinston, A. (2007). Market-Based Optimization Algorithms for
Distributed Systems. Management Science, 53(8), 1345.

http://www.amsys.net/pdf/idpwhitepaper.pdf

BIBLIOGRAPHY 187

Harchol-Balter, M. and Downey, A. (1997). Exploiting Process Lifetime Distributions for Dy-
namic Load Balancing. ACM Transactions on Computer Systems, 15(3), 253–285.

Heydenreich, B., Müller, R., and Uetz, M. (2006). Decentralization and Mechanism Design for
Online Machine Scheduling. Lecture Notes in Computer Science, 4059, 136–147.

Huang, K. and Thulasiram, R. (2005). Parallel Algorithm for Pricing American Asian Options
with Multi-Dimensional Assets. In Proceedings of the 19th International Symposium on High
Performance Computing Systems and Applications, pages 177–185, 15–18 May, Guelph, ON,
Canada.

Hurwicz, L. (1972). On Informationally Decentralized Systems. Decision and Organization,
pages 297–336.

Hurwicz, L. (1975). On the Existence of Allocation Systems Whose Manipulative Nash Equi-
libria are Pareto Optimal. Presented at the 3rd World Congress of the Econometric Society
(unpublished).

Hurwicz, L. and Walker, M. (1990). On the Generic Nonoptimality of Dominant-Strategy Allo-
cation Mechanisms: A General Theorem That Includes Pure Exchange Economies. Econo-
metrica, 58(3), 683–704.

IEEE (1990). IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Com-
puter Glossaries. IEEE, , New York, NY, USA.

Insight Research (2006). Grid Computing – A Vertical Market Perspective 2006–2011. Market
study, The Insight Research Corportation, New Jersey, USA. Executive summary.

Irwin, D., Grit, L., and Chase, J. (2004). Balancing Risk and Reward in a Market-Based Task
Service. In Proceedings of the 13th IEEE International Symposium on High Performance
Distributed Computing, 4–6 June, Honolulu, Hawaii, USA.

Johari, R. and Tsitsiklis, J. (2004). Efficiency Loss in a Network Resource Allocation Game.
Mathematics of Operations Research, 29(3), 407–435.

Joseph, J., Ernest, M., and Fellenstein, C. (2004). Evolution of Grid Computing Architecture
and Grid Adoption Models. IBM Systems Journal, 43(4), 624.

Kaelbling, L. (1993). Learning to Achieve Goals. In Proceedings of the 13th International
Joint Conference on Artificial Intelligence, pages 1094–1098, 28 August – 3 September,
Chambéry, France.

188 BIBLIOGRAPHY

Kaelbling, L., Littman, M., and Moore, A. (1996). Reinforcement Learning: A Survey. Journal
of Artificial Intelligence Research, 4, 237–285.

Klems, M., Nimis, J., and Tai, S. (2008). Do Clouds Compute? A Framework for Estimating the
Value of Cloud Computing. In Proceedings of the 7th Workshop on e-Business, 13 December,
Paris, France. Forthcoming.

Knolmayer, G. (2000). Application Service Providing (ASP). Wirtschaftsinformatik, 42(3),
443–446. In German.

Lai, K. (2005). Markets Are Dead, Long Live Markets. ACM SIGecom Exchanges, 5(4), 1–10.

Lai, K., Rasmusson, L., Adar, E., Zhang, L., and Huberman, B. (2005). Tycoon: An Imple-
mentation of a Distributed, Market-Based Resource Allocation System. Multiagent and Grid
Systems, 1(3), 169–182.

Lavi, R. and Nisan, N. (2005). Online Ascending Auctions for Gradually Expiring Items. In
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1146–
1155, 23–25 January, Vancouver, BC, Canada.

Lavi, R., Mu’alem, A., and Nisan, N. (2003). Towards a Characterization of Truthful Combi-
natorial Auctions. In Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science, page 574, 11–14 October, Cambridge, MA, USA. IEEE Computer Soci-
ety Washington, DC, USA.

Lawton, G. (2008). Moving the OS to the Web. Computer, 41(3), 16–19.

Lehmann, D., O’Callaghan, L., and Shoham, Y. (2002). Truth Revelation in Approximately
Efficient Combinatorial Auctions. Journal of the ACM, 49(5), 577–602.

Luce, R. and Tukey, J. (1964). Simultaneous Conjoint Measurement: A New Type of Funda-
mental Measurement. Journal of Mathematical Psychology, 1(1), 1–27.

MacKie-Mason, J. K. and Wellman, M. (2006). Automated Markets and Trading Agents. In
L. Tesfatsion and K. Judd, editors, Handbook of Computational Economics, vol. 2: Agent-
Based Computational Economics. North-Holland.

Marena, M., Marazzina, D., and Fusai, G. (2008). Option Pricing, Maturity Randomization and
Grid Computing. In Proceedings of the 22nd IEEE International Symposium on Parallel and
Distributed Processing, pages 1–8, 14–18 April, Miami, FL, USA.

Martello, S. and Toth, P. (1990). Knapsack Problems: Algorithms and Computer Implementa-
tions. John Wiley & Sons, Inc. New York, NY, USA.

BIBLIOGRAPHY 189

Mas-Colell, A., Whinston, M., and Green, J. (1995). Microeconomic Theory. Oxford University
Press New York.

Maskin, E. and Riley, J. (2000). Asymmetric Auctions. The Review of Economic Studies, 67(3),
413–438.

Megow, N. (2007). Coping with Incomplete Information in Scheduling – Stochastic and Online
Models. Ph.D. thesis, Technische Universität Berlin.

Megow, N. and Schulz, A. (2004). On-line Scheduling to Minimize Average Completion Time
Revisited. Operations Research Letters, 32(5), 485–490.

Milojicic, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S., and
Xu, Z. (2002). Peer-to-Peer Computing. HP Laboratories Palo Alto, March.

Minoli, D. (2005). A Networking Approach to Grid Computing. Wiley Hoboken, NJ.

Motwani, R., Phillips, S., and Torng, E. (1993). Non-Clairvoyant Scheduling. In Proceedings
of the 4th Annual ACM-SIAM Symposium on Discrete algorithms, pages 422–431, 25–27
January, Austin, TX, USA. Society for Industrial and Applied Mathematics Philadelphia,
PA, USA.

Moulin, H. (2008). Proportional Scheduling, Split-proofness, and Merge-proofness. Games
and Economic Behavior, 63(2), 567–587.

Mu’alem, A. and Feitelson, D. (2001). Utilization, Predictability, Workloads, and User Runtime
Estimates in Scheduling the IBM SP2 with Backfilling. IEEE Transactions on Parallel and
Distributed Systems, 12(6), 529–543.

Mu’alem, A. and Nisan, N. (2008). Truthful Approximation Mechanisms for Restricted Com-
binatorial Auctions. Games and Economic Behavior, 64(2), 612–631.

Mu’alem, A. and Schapira, M. (2007). Setting Lower Bounds on Truthfulness. In Proceedings
of the 18th Annual ACM-SIAM Symposium on Discrete algorithms, pages 1143–1152, 7–9
January, New Orleans, LA, USA. Extended abstract.

Myerson, R. and Satterthwaite, M. (1983). Efficient Mechanisms for Bilateral Trading. Journal
of Economic Theory, 29(2), 265–281.

Nash, J. (1951). Non-Cooperative Games. Annals of Mathematics, 54(2), 286–295.

Neumann, D. (2004). Market Engineering – A Structured Design Process for Electronic Mar-
kets. Ph.D. thesis, Universität Karlsruhe (TH).

190 BIBLIOGRAPHY

Neumann, D., Lamparter, S., and Schnizler, B. (2006a). Automated Bidding for Trading Grid
Services. In Proceedings of the 14th European Conference on Information Systems, 12–14
June, Gothenburg, Sweden.

Neumann, D., Veit, D., and Weinhardt, C. (2006b). Grid Economics: Market Mechanisms for
Grid Markets. In T. Barth and A. Schüll, editors, Grid Computing: Konzepte, Technologien,
Anwendungen, pages 64–83. Vieweg Verlag. In German.

Neumann, D., Stößer, J., and Weinhardt, C. (2007a). Bridging the Grid Adoption Gap – Devel-
oping a Roadmap for Trading Grids. In Proceedings of the 20th Bled eConference, Merging
and Emerging Technologies, Processes, and Institutions, 4–6 June, Bled, Slovenia.

Neumann, D., Stößer, J., Anandasivam, A., and Borissov, N. (2007b). SORMA – Building an
Open Grid Market for Grid Resource Allocation. Lecture Notes in Computer Science, 4685,
194.

Neumann, D., Stößer, J., Weinhardt, C., and Nimis, J. (2008a). A Framework for Commercial
Grids – Economic and Technical Challenges. Journal of Grid Computing, 6(3), 325–347.

Neumann, D., Borissov, N., Stößer, J., and See, S. (2008b). Best Myopic vs. Rational Re-
sponse: An Evaluation of an Online Scheduling Mechanism. In Proceedings of the 70.
Wissenschaftliche Jahrestagung des Verbands der Hochschullehrer fr Betriebswirtschaft e.V.,
page 53, 15–17 May, Berlin, Germany.

Neumann, D., Stößer, J., and Weinhardt, C. (2008c). Bridging the Adoption Gap–Developing a
Roadmap for Trading in Grids. Electronic Markets, 18(1), 65–74.

Nickalls, R. (1993). A New Approach to Solving the Cubic: Cardan’s Solution Revealed. The
Mathematical Gazette, 77, 354–359.

Nisan, N. (2006). Bidding Languages for Combinatorial Auctions. In P. Cramton, Y. Shoham,
and R. Steinberg, editors, Combinatorial Auctions, chapter 9, pages 215–233. MIT Press,
Cambridge, MA.

Nisan, N. and Ronen, A. (2001). Algorithmic Mechanism Design. Games and Economic
Behavior, 35(1-2), 166–196.

Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V. (2007). Algorithmic Game Theory.
Cambridge University Press, New York, NY, USA.

Ong, T., Lim, T., Lee, B., and Yeo, C. (2002). Unicorn: Voluntary Computing Over Internet.
ACM SIGOPS Operating Systems Review, 36(2), 36–51.

BIBLIOGRAPHY 191

Papazoglou, M. (2003). Service-Oriented Computing: Concepts, Characteristics and Direc-
tions. In Proceedings of the 4th International Conference on Web Information Systems Engi-
neering, 10–12 December, Rome, Italy.

Parkes, D. (2001). Iterative Combinatorial Auctions: Achieving Economic and Computational
Efficiency. Ph.D. thesis, University of Pennsylvania.

Parkes, D., Kalagnanam, J., and Eso, M. (2002). Achieving Budget-Balance with Vickrey-
Based Payment Schemes in Combinatorial Exchanges. Technical Report RC 22218 W0110-
065, IBM T.J. Watson Research Center.

Phelps, S. (2007). Evolutionary Mechanism Design. Ph.D. thesis, University of Liverpool.

Porter, R. (2004). Mechanism Design for Online Real-Time Scheduling. In Proceedings of
the 5th ACM Conference on Electronic Commerce, pages 61–70, 17–20 May, New York, NY,
USA. ACM New York, NY, USA.

Ramsey, P. (1980). Exact Type 1 Error Rates for Robustness of Student’s t Test with Unequal
Variances. Journal of Educational and Behavioral Statistics, 5(4), 337.

Rana, O., Warnier, M., Quillinan, T., Brazier, F., and Cojocarasu, D. (2008). Managing Viola-
tions in Service Level Agreements. In D. Talia, R. Yahyapour, and W. Ziegler, editors, Grid
Middleware and Services, pages 349–358. Springer US.

Rappa, M. (2004). The Utility Business Model and the Future of Computing Services. IBM
Systems Journal, 43(1), 32–42.

Regev, O. and Nisan, N. (2000). The POPCORN market – Online Markets for Computational
Resources. Decision Support Systems, 28(1-2), 177–189.

Resnick, P., Zeckhauser, B., Friedman, E., and Kuwabara, K. (2000). Reputation Systems.
Communications of the ACM, 12(43), 45–48.

Roberts, D. and Postlewaite, A. (1976). The Incentives for Price-Taking Behavior in Large
Exchange Economies. Econometrica, 44(1), 115–127.

Roth, A. (2002). The Economist as Engineer: Game Theory, Experimentation, and Computation
as Tools for Design Economics. Econometrica, 70(4), 1341–1378.

Roth, A. and Ockenfels, A. (2002). Last-Minute Bidding and the Rules for Ending Second-Price
Auctions: Evidence from eBay and Amazon Auctions on the Internet. American Economic
Review, 92(4), 1093–1103.

192 BIBLIOGRAPHY

Sääksjärvi, M., Lassila, A., and Nordström, H. (2005). Evaluating the Software as a Service
Business Model: From CPU Time-Sharing to Online Innovation Sharing. In Proceedings of
the IADIS International Conference e-Society, pages 177–186, 27–30 June, Qawra, Malta.

Saaty, T. (1990). Multicriteria Decision Making – The Analytic Hierarchy Process: Planning,
Priority Setting, Resource Allocation. RWS Publications.

Sandholm, T. and Crites, R. (1996). On Multiagent Q-Learning in a Semi-Competitive Domain.
Lecture Notes in Computer Science, pages 191–205.

Sandholm, T., Suri, S., Gilpin, A., and Levine, D. (2005). CABOB: A Fast Optimal Algorithm
for Winner Determination in Combinatorial Auctions. Management Science, 51(3), 374–390.

Sanghavi, S. and Hajek, B. (2004). Optimal Allocation of a Divisible Good to Strategic Users.
In Proceedings of the 43rd IEEE Conference on Decision and Control, 14–17 December,
Atlantis, Bahamas.

Sarmenta, L. (2001). Volunteer Computing. Ph.D. thesis, Massachusetts Institute of Technology.

Sawilowsky, S. and Blair, R. (1992). A More Realistic Look at the Robustness and Type II Error
Properties of the t-test to Departures from Population Normality. Psychological bulletin,
111(2), 352–360.

Schnizler, B. (2007). Resource Allocation in the Grid – A Market Engineering Approach. Ph.D.
thesis, Universität Karlsruhe (TH).

Schnizler, B., Neumann, D., Veit, D., and Weinhardt, C. (2008). Trading Grid Services –
A Multi-Attribute Combinatorial Approach. European Journal of Operational Research,
187(3), 943–961.

Schwartz, A. (1993). A Reinforcement Learning Method for Maximizing Undiscounted Re-
wards. In Proceedings of the 10th International Conference on Machine Learning, 27–29
June, Amherst, MA, USA.

Shao, G., Berman, F., and Wolski, R. (2000). Master/Slave Computing on the Grid. In Pro-
ceedings of the 9th Heterogeneous Computing Workshop, page 3.

Shneidman, J., Ng, C., Parkes, D., AuYoung, A., Snoeren, A., Vahdat, A., and Chun, B. (2005).
Why Markets Could (But Don’t Currently) Solve Resource Allocation Problems in Systems.
In Proceedings of the 10th Conference on Hot Topics in Operating Systems, page 7, 12–15
June, Santa Fe, NM, USA.

BIBLIOGRAPHY 193

Smith, A. (1904). An Inquiry Into the Nature and Causes of the Wealth of Nations. Methuen &
Co. Based on E. Cannan’s 1904 compilation of Smith’s 5th edition of the book (1789).

Smith, V. (1982). Microeconomic Systems as an Experimental Science. American Economic
Review, 72(5), 923–955.

Smith, W., Foster, I., and Taylor, V. (1998). Predicting Application Run Times Using Historical
Information. Lecture Notes on Computer Science, 1459(122-142), 203.

Smith, W. E. (1956). Various Optimizers for Single-Stage Production. Naval Resource Logistics
Quarterly, 3, 59–66.

Snelling, D., van den Berghe, S., von Laszewski, G., Wieder, P., MacLaren, J., Brooke, J.,
Nicole, D., and Hoppe, H. (2002). A Unicore Globus Interoperability Layer. Computing and
Informatics, 21(4), 399–411.

SORMA Consortium (2007). Preliminary Specification and Design Documentation of the
SORMA Components. Deliverable D2.1 of the EU FP6 project 034286 “SORMA – Self-
Organizing ICT Resource Management”.

Stoica, I., Abdel-Wahab, H., Jeffay, K., Baruah, S., Gehrke, J., and Plaxton, C. (1996). A
Proportional Share Resource Allocation Algorithm for Real-Time, Time-Shared Systems. In
Proceedings of the 17th IEEE Real-Time Systems Symposium, pages 288–299, 4–6 December,
Washington, DC, USA.

Stoica, I., Abdel-Wahab, H., and Jeffay, K. (1997). On the Duality between Resource Reser-
vation and Proportional Share Resource Allocation. Multimedia Computing and Networking
Proceedings, SPIE Proceedings Series, 3020, 207–214.

Stößer, J. (2008). A Randomized Pay-as-Bid Mechanism for Grid Resource Allocation. In
Proceedings of the IEEE Joint Conference on E-Commerce Technology and Enterprise Com-
puting, E-Commerce and E-Services, pages 11–18, 21–24 July, Washington, DC, USA.

Stößer, J. and Neumann, D. (2007). GREEDEX – A Scalable Clearing Mechanism for Utility
Computing. In Proceedings of the Networking and Electronic Commerce Research Confer-
ence, pages 221–231, 18–21 October, Riva Del Garda, Italy.

Stößer, J. and Neumann, D. (2008). GREEDEX – A Scalable Clearing Mechanism for Utility
Computing. Electronic Commerce Research, 8(4), 235–253.

Stößer, J., Neumann, D., and Anandasivam, A. (2007a). A Truthful Heuristic for Efficient
Scheduling in Network-Centric Grid OS. In Proceedings of the 15th European Conference
on Information Systems, pages 1052–1063, 7–9 June, St. Gallen, Switzerland.

194 BIBLIOGRAPHY

Stößer, J., Neumann, D., and Weinhardt, C. (2007b). Market-based Pricing in Grids: On Strate-
gic Manipulation and Computational Cost. Presented at the Journal of AIS Sponsored Theory
Development Workshop, 12 December, Montréal, Canada.

Stößer, J., Bodenbenner, P., See, S., and Neumann, D. (2008). A Discriminatory Pay-as-Bid
Mechanism for Efficient Scheduling in the Sun N1 Grid Engine. In Proceedings of the 41st

Hawaii International Conference on System Sciences, page 382, 7–10 January, Waikoloa,
Hawaii, USA.

Sun Microsystems (2008). Sun N1 Grid Engine 6 User’s Guide. Sun Microsystems, Inc., Santa
Clara, CA, USA, http://docs.sun.com/app/docs/doc/817-6117/.

Sutherland, I. (1968). A Futures Market in Computer Time. Communications of the ACM,
11(6), 449–451.

Sutton, R. and Barto, A. (1998). Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, USA.

Tesauro, G. and Kephart, J. (2002). Pricing in Agent Economies Using Multi-Agent Q-
Learning. Autonomous Agents and Multi-Agent Systems, 5(3), 289–304.

The451Group (2007). Grid Computing – The State of the Market. Market study, The451Group,
Boston, USA. Executive summary.

Turner, M., Budgen, D., and Brereton, P. (2003). Turning Software into a Service. Computer,
36(10), 38–44.

van Dinther, C., Blau, B., and Conte, T. (2009). Strategic Behavior in Service Networks un-
der Price and Service Level Competition. In Proceedings of the 9. Internationale Tagung
Wirtschaftsinformatik, 25–27 February, Vienna, Austria. Forthcoming.

Waldspurger, C., Hogg, T., Huberman, B., Kephart, J., and Stornetta, W. (1992). Spawn: A
Distributed Computational Economy. IEEE Transactions on Software Engineering, 18(2),
103–117.

Walker, M. (1980). On the Nonexistence of a Dominant Strategy Mechanism for Making Opti-
mal Public Decisions. Econometrica, 48(6), 1521–1540.

Wang, D. (2007). Meeting Green Computing Challenges. In Proceedings of the International
Symposium on High Density Packaging and Microsystem Integration, pages 1–4, 26–28 June,
Shanghai, China.

Watkins, C. (1989). Learning From Delayed Rewards. Ph.D. thesis, Cambridge University.

http://docs.sun.com/app/docs/doc/817-6117/

BIBLIOGRAPHY 195

Watkins, C. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3), 279–292.

Weidlich, A. (2008). Engineering Interrelated Electricity Markets – An Agent-Based Compu-
tational Approach. Ph.D. thesis, Universität Karlsruhe (TH).

Weinberg, M. and Rosenschein, J. (2004). Best-Response Multiagent Learning in Non-
Stationary Environments. In Proceedings of the 3rd International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pages 506–513, 19-23 August, New York, NY,
USA.

Weinhardt, C., Holtmann, C., and Neumann, D. (2003). Market Engineering. Wirtschaftsinfor-
matik, 45(6), 635–640.

Weinhardt, C., Anandasivam, A., Blau, B., and Stößer, J. (2008). The Advent of Cloud Com-
puting in the Service World. Submitted to IT Professional.

Weiss, A. (2007). Computing in the Clouds. netWorker, 11(4), 16–25.

Wellman, M., Walsh, W., Wurman, P., and MacKie-Mason, J. (2001). Auction Protocols for
Decentralized Scheduling. Games and Economic Behavior, 35(1-2), 271–303.

Wolski, R., Plank, J., Brevik, J., and Bryan, T. (2001). Analyzing Market-Based Resource
Allocation Strategies for the Computational Grid. International Journal of High Performance
Computing Applications, 15(3), 258.

196 BIBLIOGRAPHY

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Research Outline
	Structure of this Work
	Related Publications

	Preliminaries and Related Work
	Distributed Computing Concepts
	Cluster Computing
	Voluntary Computing
	Grid Computing
	A Classification

	Why Markets for Scheduling in Distributed Computing Systems?
	Technical Challenges
	Layer 1: Applications and Resources
	Layer 2: Intelligent Tools
	Layer 3: Resource Market
	Layer 4: Core Market Services

	Economic Challenges
	A Classification of the Trading Objects
	A Two-Tiered Market Structure
	Scheduling in Resource-Near Markets

	Methodologies
	Theoretical Analyses
	Empirical Studies
	Simulations

	Outcome Determination in Large-Scale Grid Settings
	Introduction
	Requirements and Design Desiderata
	Related Work
	The Mechanism
	Expressing Job Requests and Node Offers
	Allocating Jobs to Nodes
	Pricing the Outcome

	Numerical Evaluations
	What Makes Instances Hard?
	Strategic Behavior

	Implications
	Discussion

	Randomization and Distributed Outcome Determination
	Introduction
	Related Work
	A Randomized Pay-as-Bid Mechanism
	The Mechanism
	Monotone and Strongly Convex Allocation Probabilities
	Evaluation in a Simplified Setting

	Distributed Problem Solving
	Numerical Simulations
	Strategic Behavior
	Efficiency
	Implications

	Discussion

	The Power of Preemption
	Introduction
	The Problem Setting
	Baseline Model -- A Decentralized Local Greedy Mechanism
	Adding Preemption
	Empirical Analysis
	Experimental Setup
	Experimental Results

	Related Work
	Discussion

	Allocating and Pricing Shared Resources
	Introduction
	Related Work
	The Setting
	Proportional Share
	The Discriminatory Pay-as-Bid Mechanism by Sanghavi and Hajek

	Comparison for Two Users
	User Strategies and Mechanism Performance
	Analytical Comparison: User Strategies, Provider's Revenue, and Efficiency
	A Numerical Example
	Intermediate Summary

	Comparison Based on Real-World Workloads
	Experimental Setup
	Empirical Analysis

	Service Levels Guarantees for Business-Critical Applications
	The Allocation
	The Pricing of Reservation Requests
	A Numerical Example
	Special Situations

	Integration into State-of-the-Art Schedulers
	Sun N1 Grid Engine
	The Pay-as-Bid Mechanism as Additional Policy
	The Pay-as-Bid Mechanism as Scheduler
	Implications of the Approaches

	Discussion

	Conclusions and Future Work
	Summary of Contributions
	Possible Extensions and Open Questions
	Specific Extensions to This Work
	Complementary Research

	Final Remarks

	Appendix to Chapter 3
	Appendix to Chapter 4
	Pseudo-Code of the Randomized Heuristic
	Proofs of Lemma 1 and Lemma 2

	Appendix to Chapter 5
	Appendix to Chapter 6
	Workload Statistics
	Correlation -- Spearman Correlation Coefficient
	Rationality -- Mean Request Utility
	Robustness Against Varying Random Number Seeds
	Proof of Corollary 1

	Bibliography

