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Abstract

Multi-lepton signatures appear in many new physics searches at the CERN Large

Hadron Collider LHC. In this thesis, WWZ as well as ZZW production with subse-

quent leptonic decay of the three vector bosons is considered as a Standard Model

source of multi-lepton events. The next-to-leading order QCD corrections for the full

pp → 6 lepton production cross sections in hadronic collisions have been computed.

Results are implemented in a fully flexible parton-level Monte Carlo program which

allows to calculate the QCD corrections for arbitrary distributions and acceptance

cuts. With K-factors as large as K = 2 at the LHC and a strong phase space de-

pendence, these next-to-leading order calculations need to be taken into account for

every phenomenological study involving the production of three weak bosons at the

LHC.

Zusammenfassung

Bei der Suche nach neuer Physik mit dem großem Hadronen-Beschleuniger LHC am

CERN, treten häufig Signaturen mit vielen Leptonen auf. In dieser Doktorarbeit,

werden die WWZ sowie die ZZW Produktion mit anschließendem Zerfall der drei

Eichbosonen in Leptonen als Mechanismen zur Produktion mehrerer Leptonen im

Standard Model betrachtet. Der volle Wirkungsquerschnitt für die Produktion von

sechs Leptonen in Hadron-Hadron Kollisionen inklusive der nächst-höheren Terme

in der QCD Störungsreihe wurde berechnet. Die Ergebnisse sind in ein flexibles

Monte Carlo Programm, das auf partonischen Reaktionen basiert, implementiert.

Es erlaubt die Bestimmung von QCD Korrekturen für beliebige Verteilungen und

Akzeptanz-Kriterien an die auslaufenden Teilchen. Am LHC können die K-Faktoren

Werte im Bereich K = 2 annehmen. Überdies sind die QCD Korrekturen sehr stark

vom betrachteten Phasenraum-Bereich abhängig. Deshalb sollten die Rechnungen

der nächst-höheren Terme in der QCD Störungsreihe in allen phänomenologischen

Studien für den LHC, die die Produktion von drei schwachen Eichbosonen beinhal-

ten, berücksichtigt werden.
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Chapter 1:

Introduction

Throughout the last decade, our understanding of the fundamental building blocks

of the world surrounding us and the forces between them has constantly increased.

This knowledge has been collected in the Standard Model of elementary particles

(SM), which comprises Quantum Chromodynamics (QCD), describing the theory

of strong interactions on the one hand, and the unified theory of electromagnetism

and the weak force on the other hand. Thus, three of the fundamental forces known

by now, the electromagnetic, the weak, and the strong force, are elaborated in a

standardized form. So far, an analogous treatment of the fourth force, gravitation,

has not been achieved. Therefore gravitation is not included in the SM. However,

gravitational effects, being really important on astrophysical scales, are supposed to

be tiny enough to safely neglect them in most calculations dealing with interactions

of elementary particles.

Nonetheless, from a more rigorous point of view, a final theory describing nature,

should, of course, contain gravitation. Moreover, experimental evidence for dark

matter and dark energy also questions the reliability of the SM, since it does not

offer a satisfactory explanation. These are just two examples for the limits of the

Standard Model and the reasons for the general belief among physicists, that the

SM is only a low energy effective theory, which describes physics within the reach

of nowadays collider experiments very well, but will break down at higher energies.

On the other side, experiments at various accelerators, such as the Large Electron

Positron collider (LEP) located at CERN near Geneva, and the Tevatron proton-

antiproton collider at Fermilab to just mention the most recent ones, have measured

the properties of SM particles with an incredible accuracy and confirm SM predic-

tions extraordinarily well. These experimental results laid the foundations of the

success of the Standard Model albeit the known insufficiencies. Therefore, no mat-

ter how the underlying theory describing nature might look like, in the limit of low

energies, it has to imitate the SM at least in some way.

The two opposing features of the Standard Model, being well tested but in any case

not a valid theory up to arbitrary scales, can be translated into two goals for future
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CHAPTER 1. INTRODUCTION

collider experiments. First, they have to measure with very high accuracy as many

properties of particles and couplings predicted by the SM as possible in order to

find even tiny deviations. Second, new theories, which have emerged over the years,

have to be tested carefully.

The Large Hadron Collider (LHC) at CERN, slated to take data soon, provides

from the experimental point of view an excellent tool to meet these demands. With

center of mass energies as large as 14 TeV, physics beyond the SM, as for instance a

supersymmetric extension, is probably in the reach of this proton-proton accelerator.

Moreover, the last particle in the SM, which has not been experimentally confirmed

yet, the Higgs boson, should, if it exists, be accessible.

The opportunity of penetrating so far unexplored territory of the SM or even beyond,

can only be utilized, if theoretical predictions with the same accuracy as the experi-

mental errors are available. In most of the cases, this requires at least calculations of

the next-to-leading order terms in the QCD perturbation series. Since, at the LHC,

one has to deal with various background processes, in part with cross sections larger

than the actual signal cross section, also backgrounds have to be calculated with

high accuracy. Furthermore, in order to account for geometrical specifications of the

detectors or to isolate specific phase space regions, these calculations are handed to

experimentalists preferably in the form of fully flexible Monte Carlo programs.

The importance of higher order calculations for the LHC is reflected in the wishlist,

formulated at the Les Houches workshop in 2005 [1]. It contains the most impor-

tant processes, for which next-to-leading order (NLO) QCD corrections were still

needed at that time. In the meantime, most of them have been attacked or even

been completely calculated [2–15]. Among the ones, which have been evaluated

quite recently is the production of three vector bosons in proton-proton collisions,

pp → VVV + X. The results, which have originated in the course of this thesis are

collected in Refs. [9, 14]. In addition, two other groups have presented results on

this topic in Refs [5] and [11].

Triple vector boson production processes are of particular interest because they are

sensitive to quartic electroweak couplings and they are a Standard Model background

for many new-physics searches, characterized by several leptons in the final state.

Concerning quartic couplings in the electroweak sector, some constraints have been

derived from LEP data and are combined in Ref. [16]. Analogous measurements

have been suggested for tri-boson production at hadron colliders [17–22]. However,

proton-antiproton collisions at Tevatron center of mass energies of
√

s = 1.96 TeV

yield very small production rates for three massive vector bosons in the final states.

The LHC on the other hand, might have the potential to directly measure quartic
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electroweak self-interactions in pp → VVV + X production, with three leptonically

decaying vector bosons.

With K-factors ranging from 1.5 to 2 at the LHC and a strong phase space de-

pendence, tri-boson production shows a behavior which is similar to that found

in di-boson production in hadronic collisions, where QCD corrections have been

known for a long time [23–30]. Thus, these NLO calculations need to be taken into

account for every phenomenological study involving triple vector boson production

processes at the LHC. However, since vector bosons are identified via their leptonic

decay products, the calculations should include the leptonic decays. Furthermore,

intermediate Higgs contributions are not negligible since they can enhance cross

sections significantly and lead to dramatic changes in the shapes of distributions for

certain observables.

In this thesis, the next-to-leading order QCD corrections to the three processes

pp → ZZW− + X, pp → ZZW+ + X, and pp → W+W−Z + X, with subsequent de-

cay of the vector bosons into final-state leptons are computed. All spin correlations

involved in vector boson decays as well as the effects due to intermediate Higgs

boson exchange and off-shell contributions have correctly been taken into account.

Two of the four processes, namely pp → ZZW− + X and pp → W+W−Z + X have

been computed for the first time in the course of this work. The third process

pp → ZZW+ + X, has first been presented in Ref. [11], albeit without leptonic de-

cays and without Higgs boson exchange contributions.

Results of the calculations have been implemented in a fully flexible parton-level

Monte Carlo program Vbfnlo [31]. The program allows for the computation of

cross sections and distributions in either pp, pp̄ or p̄p̄ collisions of arbitrary center

of mass energies. However, in this thesis, we will restrict ourselves to proton-proton

collisions, having LHC in mind.

The organization of the thesis is the following: Chapter 2 is devoted to an introduc-

tion into the particle content of the SM as well as some basics about perturbative

QCD and hadronic collisions. The third chapter describes in detail the calcula-

tion of the different contributions to the leading order (LO) and NLO cross section.

Chapter 4 contains the checks and comparisons performed. In Chapter 5 results

are presented for triple boson production at the LHC. The renormalization- and

factorization-scale dependence is discussed and further some sample distributions

with strongly phase space dependent K-factors are shown. Finally, in the last chap-

ter, the work presented here is summarized and discussed.
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Chapter 2:

Basics

This chapter serves as an introduction into the theory of perturbative Quantum

Chromodynamics and hadronic collisions. In the first section, the particle content of

the Standard Model is introduced. Next, special features of QCD, the theory relevant

for nucleon-nucleon interactions, is presented. The third section is devoted to the

theoretical description of hadronic collisions involving the concept of factorization.

In the last section of this chapter, next-to-leading order corrections in the QCD

perturbation series and the divergencies arising thereby are treated. All of these

topics are only discussed very briefly. A more detailed discussion of QCD and

hadronic collisions can be found in various standard text books as for example

Refs. [32–36].

2.1 The particle content of the standard model

During the last century almost all particles predicted by the Standard Model of

elementary particle physics have been found and their properties have been measured

with high accuracy. Thus, the SM is an extremely important and well tested theory

for the description of elementary particles and their interactions. According to

this SU(3) × SU(2) × U(1) gauge theory, all matter is composed of two kinds of

fermions. These fundamental spin-1
2

particles consist of leptons with the electron as

the most prominent representative and quarks, which are the basic constituents of

hadrons. Today, six different types of leptons and six different flavors of quarks are

known. They fall into three different generations or families and each of them can

be characterized by a special set of quantum numbers.

In the case of the leptons, every family consists of a charged lepton (e, µ, τ) and

a neutrino (νe, νµ, ντ ). In Table 2.1, all of these leptons are listed together with

their conserved quantum numbers, electron number Le, muon number Lµ, and tau

number Lτ . In addition, electric charge, Q, and the central values of the masses of

the charged leptons as well as upper limits on the neutrino masses are given.
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CHAPTER 2. BASICS

lepton Le Lµ Lτ Q mass

νe 1 0 0 0 < 2 eV

e 1 0 0 -1 511.00 keV

νµ 0 1 0 0 < 0.19 MeV

µ 0 1 0 -1 105.66 MeV

ντ 0 0 1 0 < 18.2 MeV

τ 0 0 1 -1 1.7768 GeV

Table 2.1: Leptons and their quantum numbers in the SM. The masses listed here

are only central values according to Ref. [37]. For neutrinos only upper bounds exist.

A complete overview on the properties of charged leptons and neutrinos, determined

in experiment, is given in Ref. [37].

In the case of the quarks, every family consists of an up-type quark up (u), charm

(c), or top (t) and a down-type quark down (d), strange (s), or bottom (b). Flavor

quantum numbers are strong isospin (I, Iz), strangeness S, charm C, bottomness

B, and topness T . These additive quantum numbers are preserved in all strong and

electromagnetic interactions but can be violated in weak interactions. Moreover, all

quarks carry baryon number B = 1
3
, which is conserved in all interactions observed

until now. The electric charge, Q, of quarks can be calculated using the generalized

Gell-Mann-Nichijima formula,

Q = Iz +
B + S + C + B + T

2
. (2.1)

In Table 2.2, the additive quantum numbers, describing the various quarks, together

with their electric charge, and the central value of their masses are summarized.

It is quite remarkable that in contrast to all other fundamental particles, up- and

down-type quarks carry electric charge +2
3

and −1
3

of the charge of the electron,

respectively. Furthermore, all quarks come in three colors, sometimes called, red,

blue and green. “Real” particles measured in experiment, however, are colorless and

have integer electric charge. The nucleons, neutrons and protons, for instance, are

two representatives of baryons, which are three-quark bound states, whereas pions,

being composed of a quark and an antiquark are examples for mesons. Together,

baryons and mesons form the hadrons.
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quark el. charge isospin strangeness charm bottomness topness mass

flavor
Q I Iz S C B T

u 2
3

1
2

1
2

0 0 0 0 2.55 MeV

d −1
3

1
2

−1
2

0 0 0 0 5.04 MeV

c 2
3

0 0 0 +1 0 0 1.27 GeV

s −1
3

0 0 -1 0 0 0 104 MeV

t 2
3

0 0 0 0 0 +1 172.4 GeV

b −1
3

0 0 0 0 -1 0 4.68 GeV

Table 2.2: Quarks and their quantum numbers in the SM. The masses given here,

only give the central values according to Ref. [37] for up, down, charm, strange

and bottom quarks. The most recent value for the top quark mass is taken from

Ref. [38].

Usually the quarks are defined as flavor or mass eigenstates of the strong force.

Unfortunately, the electromagnetic and the weak interaction do not conserve the

quantum numbers of the strong interaction, hence the eigenstates in the electroweak

sector are different from the ones in the strong sector. This feature results in the

so-called Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix VCKM which

gives the transformation between the mass eigenstates q and the eigenstates of the

quarks with respect to the weak interaction q′,





d′

s′

b′



 =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









d

s

b



 . (2.2)

For three different quark families, this unitary 3 × 3 matrix can be parameterized

by three rotation angles and one phase. If the number of quark generations is

restricted to two, the matrix is a 2 × 2 matrix and can be parameterized by the

so-called Cabibbo-angle θC ,

7
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VC =

(
cos θC sin θC

− sin θC cos θC

)

. (2.3)

The entries of the CKM matrix appear in the Feynman rules and lead for instance

in W-quark-couplings to the possibility of transitions of quarks from the first family

to quarks of the second or third family.

Concerning the masses, there are four rather light quarks up, down, charm, and

strange, often treated as massless particles and the quarks of the third family, top

and bottom, which are quite heavy. In the calculation presented here, only the

light quarks in the massless approximation are considered, which is a reasonable

approximation. The relevant quark-mixing matrix thus is the Cabibbo matrix VC

given in Eq. (2.3). Some more details on this topic with respect to the specific

processes computed in this thesis will be given in the next chapter.

In addition to the particles mentioned until now, each of the quarks and leptons has

its own antiparticle with the same mass but opposite quantum numbers.

The interactions between the fundamental fermions are dictated by three funda-

mental forces: the electromagnetic force, the weak force, which is responsible for

radioactive beta-decay and the strong force, binding the protons inside the nucleus.

In the Standard Model these forces are mediated via the exchange of vector bosons,

which are particles of spin 1. The mediator in the case of the electromagnetic force

is the massless photon, the gauge bosons for the strong force are the eight massless

gluons and in the case of the weak interactions the mediators are the W+-, W−- and

the Z-boson with masses,

mZ = 91.1876 ± 0.0021 GeV, mW = 80.398 ± 0.025 GeV, (2.4)

according to the latest analysis of the particle data group [37]. For each of these

forces a charge exists and particles only interact strongly, weakly, or electromagnet-

ically if they carry the corresponding charge.

Quarks, for example, carry the electromagnetic and the weak charge as well as color,

the charge of the strong force. Thus, they couple to photons, W- and Z-bosons, and

gluons. Specifically, the Feynman rules for the coupling of quarks to W-bosons are

given by:

8



q̄j = d̄, s̄, b̄

qi = u, c, t

W + µ
= − i g√

2
γµ 1

2
(1 − γ5) Vqiqj

q̄j = ū, c̄, t̄

qi = d, s, b

W−µ
= − i g√

2
γµ 1

2
(1 − γ5) V ∗

qjqi

Here, Vqiqj
and V ∗

qjqi
are the (complex conjugated) CKM matrix elements as given

in Eq. (2.2). They lead to transitions of quarks of one family to quarks of another

family, as has been pointed out above.

In the case of the neutral Z-bosons on the other hand, the Feynman rules describing

the interactions with the quarks are given by:

q̄ = ū, c̄, t̄

q = u, c, t

Zµ

= − i gγµ

cos θw

(
1

4
− 2

3
sin2 θw − 1

4
γ5

)

.

q̄ = d̄, s̄, b̄

q = d, s, b

Zµ
= − i gγµ

cos θw

(

−1

4
+

1

3
sin2 θw +

1

4
γ5

)

.

In this case, charge conservation prohibits couplings between up- and down-type

quarks. Furthermore, unitarity of the CKM-matrix then only allows interactions

between quarks of the same flavor as for instance, uūZ and dd̄Z couplings.

9



CHAPTER 2. BASICS

In the bosonic sector, the photon is not charged, while gluons themselves carry the

charge of the strong force. Therefore gluons couple to each other. This is one major

difference between Quantum Electrodynamics (QED), the theory describing electro-

magnetic interactions and Quantum Chromodynamics, the gauge theory describing

strong interactions between quarks and gluons.

In addition to the fermions and gauge bosons described above, another particle,

called the Higgs boson, is predicted by the SM. This particle has been introduced

into the theory in order to account for the masses of the heavy gauge bosons and

of the fermions. However, up to now the existence of the Higgs boson has not been

verified by experiment. Thus, its mass is still an unknown parameter of the theory.

2.2 QCD and asymptotic freedom

Quantum Chromodynamics is the non-abelian SU(3) gauge theory describing the

strong interactions of fundamental particles. The QCD Lagrangian is given by

LQCD =
∑

q

q̄i(iγ
µDµ − mq)ijqj −

1

4
F a

µνF
aµν + Lghost + Lgauge−fix (2.5)

with the field strength tensor

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gsf

abcAb
µA

c
ν (2.6)

and the covariant derivative

(Dµ)ij = δij∂µ + igsT
a
ijA

a
µ. (2.7)

Here gs is the strong coupling constant, Aa
µ and qi are the gluon and quarks fields, fabc

are the structure constants, T a
ij are the generators of the Lie group which defines

the gauge symmetry and mq are the quark masses with (mq)ij = mq δij . In the

calculation presented here, the so-called Feynman-t’Hooft gauge has been chosen,

i.e. the gauge-fixing term in the lagrangian is given by:

10



Lgauge−fix = −1

2
(∂µAa

µ)2. (2.8)

Being not relevant for the discussion given here, the ghost term Lghost in Eq. (2.5) is

not discussed any further. Readers interested in a complete description of QCD are

referred to standard text books as for instance the book by Peskin and Schroeder [33].

In the QCD lagrangian, the first term contains the mass and kinetic terms of the

quarks as well as the quark-gluon interactions. Here, the latter enters via the gluon

fields in the covariant derivative Dµ given in Eq. (2.7). The second term in Eq. (2.5)

describes the kinetic term of the gluons. Unlike QED, this term also leads to three-

gluon and four-gluon self-interaction terms. These vertices are due to the last term in

Eq. (2.6), which does not appear at all in QED. The reason for these self-interaction

terms being of such fundamental importance is that they have a profound impact on

the running of the strong coupling constant αs(µ) and lead to a completely different

behavior compared to the running coupling constant in the electromagnetic theory.

In QED, the coupling constant at some characteristic scale Q2 of the process under

investigation is given by:

α(Q2) =
α(µ2)

1 − α(µ2)
3 π

log
(

Q2

µ2

) , (2.9)

with α(µ2) being the value of the coupling constant at some reference scale µ2, e.g.

α (m2
e) = e2

4 π
≃ (137.036)−1. In Eq. (2.9), vacuum polarization diagrams enter.

These graphs lead to screening effects just as in the case of a charge in a dielectric

medium. Thus, for large distances, the effective coupling is smaller and it grows for

smaller distances becoming more and more the bare charge.

In the case of QCD not only the vacuum diagrams already appearing in QED,

but also loop diagrams with gluon self vertices appear. An example for each of

these loop diagrams is given in Fig. 2.1. Substituting the gluons in Fig. 2.1a by

photons, this diagram looks exactly as the vacuum polarization diagrams in QED.

The diagram in Fig. 2.1b in contrast, is one example for loop induced graphs, which

only appear for gauge bosons with self interaction terms. These kind of graphs lead

to an opposite sign in the determination of the running coupling constant at one

11
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a) b)

Figure 2.1: Feynman graphs appearing in the one-loop calculation of the running

coupling constant in QCD.

specific scale compared to the diagrams with a fermion loop and therefore to anti-

screening effects. In total, the effective strong coupling constant at one-loop is given

by:

αs(Q
2) =

g2
s(Q

2)

4 π
=

αs(µ
2)

1 + αs(µ2)
12π

(33 − 2nf ) ln(Q2

µ2 )
(2.10)

where Q2 gives the scale of the momentum transfer, µ is the reference scale at which

αs is known and nf is the number of quark flavors with masses less than the energy

scale µ.

For nf < 33
2
, which is certainly the case in QCD, the opposite behavior of QED

is found. That means, for large values of Q2, the effective coupling becomes small

whereas for small momentum transfers, αs(Q
2) becomes large. This property of

αS(Q2) → 0 as Q2 → ∞ is known as asymptotic freedom and has been discovered

by Gross, Wilczek and Politzer in 1973 [42,43]. It implies that in the regime of small-

distance interactions quarks and gluons appear as almost free particles. Moreover,

since in those cases the coupling is small, it is safe to use perturbative QCD.

On the other hand, for small momentum transfers the coupling becomes large, which

is a property of QCD called confinement, and is the reason, why no isolated quarks or

gluons can be observed. The scale where αs(Q
2) becomes infinite is usually denoted

by ΛQCD and defined as

Λ2
QCD = µ2 exp

−12π

(33 − 2nf)αs(µ2)
. (2.11)

This leads to the well known formula for the running coupling up to one-loop order,

12



αs(Q
2) =

12π

(33 − 2nf ) ln( Q2

Λ2
QCD

)
. (2.12)

In the calculations of NLO QCD corrections described in this thesis, the running

coupling up to two-loop order is needed. The formula used in the code is given by:

αs(Q
2) =

4 π

β0 ln (Q2/Λ2
QCD)

[

1 − 2β1

β2
0

ln
[
ln(Q2/Λ2

QCD)
]

ln (Q2/Λ2
QCD)

]

, (2.13)

with β0 = 11 − 2
3

nf and β1 = 51 − 19
3

nf .

The value of ΛQCD has been measured in various experiments and is of the order of

200 MeV [39–41], which is then consistent with the size of a proton of about 1 fm.

2.3 Hadronic collisions

At hadron colliders as the LHC the scattering processes can be divided into soft

and hard contributions. Soft processes, meaning processes with small momentum

transfer, are dominated by non-perturbative QCD. These effects are not very well

understood and can not be calculated by the usual approach with Feynman rules.

For hard processes, the running coupling constant αs(µ) is small as explained in

the previous section, and therefore perturbative QCD can be applied. Nonetheless,

hadronic collisions are collisions between hadrons, perturbative QCD on the other

hand deals with quarks and gluons. Therefore a description how to get valid pre-

dictions for hadronic collisions on the basis of the fundamental constituents, the

partons, is needed.

In deep inelastic lepton-nucleon scattering, as pictured in Fig. 2.2, it was found that

the nucleons were made of a collection of point-like constituents with almost no mass.

These were identified as the quarks. Subsequently the so-called näıve parton model

was formulated. In this model, the main idea is that for hard processes, the nucleon

can be viewed as a loose collection of free partons and the total four-momentum of

the nucleon P µ, is shared between these partons. More specifically, a parton i inside

the nucleon carries momentum pµ
i = xi P

µ with probability density fi/N (xi). Thus,

the probability to find parton i with momentum fraction between xi and xi + dxi

13
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γ(Q2)

X
P

ℓ

ℓ

Figure 2.2: Sketch of Feynman-graph for lepton-proton scattering, via the exchange

of one virtual photon. X represents any number of unobserved final-state hadrons.

inside the nucleon is given by fi/N (xi) dxi. The total lepton-nucleon cross section

can then be calculated by

σ =
∑

i=q,q̄,g

∫ 1

0

dxi fi/N (xi) σ̂i. (2.14)

That means, all partonic cross sections σ̂i multiplied with the corresponding weight

fi/N (xi) and integrated over all possible momentum fractions are added up.

The partonic cross sections for the hard-scattering events can be calculated with

the help of Feynman rules, the parton density functions (pdfs) on the other hand,

include QCD of the non-perturbative regime and can not be calculated from first

principles but need experimental input. However, the pdfs needed in the calculations

are process-independent. Therefore, once measured in deep inelastic lepton-nucleon

scattering experiments, they also give the probability to find parton i with momen-

tum fraction xi in any other interaction involving hadrons.

Thus, this näıve parton model can not only be used in the calculation of lepton-

nucleon scattering, where it has been invented, but can also be applied to other

processes with hadrons in the initial state. The fundamental principle allowing peo-

ple to calculate arbitrary processes with this method is called factorization. It is the

ability to factorize short-range QCD and long-range QCD from each other.

The strongest evidence for the sub-nuclear structure was the so-called scaling be-

havior, i.e. the fact that cross sections only depend on x, the momentum fraction

14



low Q2 high Q2

Figure 2.3: Pictorial representation of vacuum fluctuations as they are resolved for

low and high momentum transfer Q2 according to Ref. [35].

of the parton inside the nucleon actually struck by the intermediate gauge boson.

This feature is directly related to scattering centers being point-like, dimensionless

and non-interacting. However, improved measurements revealed that scaling is only

approximately true. In general, with increasing energy, the point-like constituents

inside the nucleon are not so point-like any more. Besides the expected constituents

of the hadrons, so-called sea-quarks were found. Moreover, it was detected that the

charged partons inside the hadron, i.e. the valence quarks and the sea-quarks to-

gether, only carry about one half of the total momentum of the nucleon. Thus, other

neutral components, identified as the gluons, are also present inside the hadrons.

These additional particles inside the nucleons are due to vacuum fluctuations, which

simply cannot be resolved at low energies. At higher energies, on the other hand,

more and more particles can be resolved and the average momentum fraction 〈x〉
of each parton is decreased. To illustrate these effects, pictures for both cases, with

low and high momentum transfer are given in Fig. 2.3.

The experimental discovery of scaling violation hence made it necessary to intro-

duce parton density functions (pdfs) fp/N (xp; Q
2), which depend on the characte-

ristic scale Q2 of the process and thus the resolution. The Q2-dependence of the

pdfs is determined by the DGLAP evolution equations, named after Dokshitzer,

Gribov and Lipatov and Altarelli and Parisi, who first derived them [44–46]. The

phenomenological Q2-dependent pdfs used nowadays have extracted the structure

of these evolution equations and fitted free parameters in their approach by data,

giving thereby reliable pdf-weights at almost arbitrary momentum fraction x and

scale Q2 for the partons.

However, the factorization of short- and long distance parts of the hadronic cross

section is not unique. Although, the singular pieces have to be divided in a way,

that the partonic cross section is infrared safe, i.e. no singular terms due to soft
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and collinear partons are included and the pdfs contain all of the universal singular

pieces which are left-over, the finite pieces can be shifted from one piece to the other.

Therefore, a specific factorization scheme has to be chosen. Examples are the MS

and the DIS scheme.

The renormalized pdfs including all divergencies, which do not cancel in the partonic

cross sections, depend in these schemes on the momentum fraction of the parton x

and a so-called factorization scale µF , which defines the point, where short-distance

physics goes into long-distance QCD. This scale does not appear in the final results

for the cross section if all orders of the perturbation series are taken into account. For

a fixed-order calculation as described in this thesis, however, physical observables

depend on the factorization scale. In principle, µF can be chosen arbitrarily, but if

set to a characteristic scale of the process under investigation, higher-order effects

are reduced.

The generalized cross section for the production of n partons in hadron-hadron

interactions including these scheme dependent pdfs is then given by:

σn =
∑

i,j,k1,...,kn=q,q̄,g

∫

dx1 dx2 fi/N (x1; µ
2
F ) fj/N (x2; µ

2
F ) σ̂ij→k1,...,kn. (2.15)

Thus, the cross section is factorized into the parton density functions fi/N (x1; µ
2
F ),

fj/N (x2; µ
2
F ) and the partonic cross section σ̂ij→k1,...,kn. The latter can be computed

perturbatively up to a given order in αs by evaluating matrix elements squared

according to the Feynman rules, multiply them with the flux factor of the incoming

partons and integrate over the whole phase space of the final-state particles,

σ̂ij→k1,...,kn =

∫
1

4
√

(p1 p2)2 − M2
1 M2

2

|M(p1 + p2 → k1, ..., kn)|2

(2 π)4 δ(4)

(

p1 + p2 −
n∑

i=1

ki

)

d3
k1

(2 π)3 2 E1

...
d3

kn

(2 π)3 2 En

.

(2.16)

2.4 Next-to-leading order corrections in QCD

At hadron colliders, the LO cross section unfortunately only gives a rough estimate

of the real cross section. The reasons are twofold. First, the unphysical factorization
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scale (µF ) in the parton distribution functions fi/N (xi; µ
2
F ) and the renormalization

scale dependence of αS (µR) appear in the final result. The physical cross section, on

the other hand, is independent of the choice of these scales. Second, at NLO often

new production modes appear, which are not allowed at LO. These can increase the

cross section dramatically, but can also have a major impact on the shape of distri-

butions. Thus NLO corrections are of special importance in this kind of calculations.

As has been pointed out in the previous section, the cross section consists of the

process-independent parton distribution functions and a partonic part, which can be

calculated perturbatively at high energies, i.e. order by order in the strong coupling

constant αs(µ),

σ̂ = A1 + A2 αs + A3 α2
s + .... (2.17)

The first term in this series, A1, only appears in the calculation of purely electroweak

processes, such as the Drell-Yan process qq̄ → ℓ+ℓ− and can be calculated from tree-

level diagrams by applying the usual Feynman rules. In fact, concerning its QCD

structure, triple vector boson production also can be regarded as a Drell-Yan type

process. Thus, in the following discussion we will restrict ourselves to this type of

processes.

The second term of the series in Eq. (2.17) comprises virtual contributions and real

emission contributions. Loop diagrams as sketched in Fig. 2.4 give rise to the former.

They interfere with the LO matrix elements resulting in contributions to the cross

section of order αs. The matrix elements squared of one-loop diagrams, however,

are already of order α2
s and therefore do not contribute at NLO.

In the virtual contributions, two different types of divergencies arise. The so-called

ultraviolet divergencies disappear upon renormalizations, i.e. by multiplying the

bare masses and couplings by renormalization constants. The resulting renormalized

masses and couplings are physical observables which are finite and can be measured

in experiment. In actual calculations one common procedure is to add suitable

counter terms to the Lagrangian which take care of these divergencies.

The infrared or soft divergencies on the other hand, are due to virtual massless

particles in the loop integrals which become soft, i.e. with momentum kµ → 0.

These divergencies can not be renormalized, but their pole structure can be extracted

by using for example the technique of dimensional regularization in D = 4 − 2ǫ

dimensions.

The other type of diagrams contributing to the NLO cross section are real emission
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propagator
correction

vertex
correction

box

Figure 2.4: Sample one-loop graphs with two external legs, three external legs and

four external legs.

gluon emission of an
external quark

gluon emission of an
internal quark

g → qq̄ splitting

Figure 2.5: Sample Feynman diagrams for the real emission contribution in a Drell-

Yan type process such as pp → V or pp → V V .

graphs. They contain all diagrams with an additional parton in the final state. Here,

gluon emission from an internal or external quark line as well as g → qq̄ splitting

is possible in the case of Drell-Yan type processes. Both types are illustrated in

Fig. 2.5.

In the case of the real emission, infrared divergencies arise for soft gluons, pg → 0

and collinear divergencies come from q → qg and g → qq̄ splittings, if the angle

between the outgoing parton and the initial-state parton becomes too small.

Adding up all contributions to the partonic cross section at NLO, only initial-state

collinear divergencies are left, whereas the soft divergencies cancel between the real

emission and the virtual contributions. However, these collinear divergencies are

identical to those found in the computations of NLO corrections to deep-inelastic
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lepton-nucleon scattering. They can thus be absorbed into the pdfs resulting in

renormalized pdfs. That means, the parton distribution functions are process-

independent at NLO, in the sense, that the structure of divergencies is unique for

any NLO calculation. In fact, the factorization theorem even states that collinear

singularities can be absorbed into the pdfs at every order in perturbation theory.

The finite remainders of this factorization of collinear singularities into the parton

distribution functions depend on the factorization scheme and differ from process to

process.

Therefore, the total NLO cross section is given by:

σNLO = σLO + σV IRT + σREAL + σCOLL. (2.18)

Only the LO contribution σLO and the collinear remainder after factorization of

collinear singularities into the parton distribution functions σCOLL, are finite in this

formula. The other two contributions are separately infrared divergent. Since in the

real emission calculation an additional parton in the final state appears, this part

of the total NLO cross section involves an integration over an (m+1)-particle phase

space whereas all other parts only need to be integrated over an m-particle phase

space. The obvious difficulties in performing these integrations numerically in spite

of the divergencies appearing thereby, have been overcome in this thesis by applying

the Catani-Seymour dipole subtraction formalism [47,48]. A detailed description of

this method will be given in the next chapter as well as in Appendix A.
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Chapter 3:

Elements of the calculation

In this chapter the calculation of the NLO QCD corrections for ZZW+, ZZW−, and

W+W−Z production at hadron colliders will be presented in detail.

The first section of this chapter covers the calculation and implementation at tree-

level as well as an error estimate of the assumed approximations. In detail, the

calculated matrix elements are given, and it is discussed, which contributions can

be neglected. Moreover, a feature of our implementation in the Fortran program

Vbfnlo is explained, which speeds up the program dramatically.

In the second section the calculation at next-to-leading order in the QCD pertur-

bation series, that is up to order αs, is outlined. At first, the formalism of Catani

and Seymour is presented [47, 48]. Subsequently, some details on the evaluation of

the real emission terms as well as the finite collinear terms are given. The last two

paragraphs deal with the different contributions to the virtual corrections in general

and with various aspects of the implementation of the pentagon contribution.

3.1 Tree-level contributions

For each of the different final states,

W+W−Z : pp → νℓ1 ℓ+
1 ℓ−2 ν̄ℓ2 ℓ−3 ℓ+

3 + X, (3.1)

ZZW+ : pp → ℓ−1 ℓ+
1 ℓ−2 ℓ+

2 νℓ3 ℓ+
3 + X, (3.2)

ZZW− : pp → ℓ−1 ℓ+
1 ℓ−2 ℓ+

2 ℓ−3 ν̄ℓ3 + X, (3.3)

the full set of Feynman graphs up to order (α0
s) α6 has been considered in the cal-

culation. This includes the Higgs contribution and all off-shell diagrams. Details on

the calculation and implementation of partonic cross sections are given in the first

part of this section.
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In order to simplify the computations and to improve the performance of the nu-

merical implementation, a number of approximations and assumptions have been

made. First, interference terms due to identical particles in the final state have not

been taken into account. In addition, any fermion mass effects are neglected. Fur-

thermore the CKM matrix is approximated by a unit matrix. A discussion to what

extent these assumptions are justified and some estimates on the resulting errors on

the total cross section are given in the second part of this section.

3.1.1 Calculation and implementation

The partonic cross section at LO can be split into four different types of subprocesses

in the case of W+W−Z production and into two different classes of subprocesses in

the case of ZZW+ and ZZW− production. In the W+W−Z case they are specifically,

uū → νℓ1 ℓ+
1 ℓ−2 ν̄ℓ2 ℓ−3 ℓ+

3 ,

ūu → νℓ1 ℓ+
1 ℓ−2 ν̄ℓ2 ℓ−3 ℓ+

3 ,

dd̄ → νℓ1 ℓ+
1 ℓ−2 ν̄ℓ2 ℓ−3 ℓ+

3 ,

d̄d → νℓ1 ℓ+
1 ℓ−2 ν̄ℓ2 ℓ−3 ℓ+

3 ,

(3.4)

where u stands for an up-type quark and d for a down-type quark. In the calculation

they can be up or charm and down or strange, respectively. The matrix elements for

the q̄q - initiated contributions are obtained in the program from the qq̄ - initiated

processes by a simple crossing, i.e., they are calculated with the same subroutine

but with the momenta of the initial-state partons interchanged.

The same is true for the two subprocesses for the ZZW+ production,

ud̄ → ℓ−1 ℓ+
1 ℓ−2 ℓ+

2 νℓ3 ℓ+
3 ,

d̄u → ℓ−1 ℓ+
1 ℓ−2 ℓ+

2 νℓ3 ℓ+
3 ,

(3.5)

and the ones for the ZZW− production,

dū → ℓ−1 ℓ+
1 ℓ−2 ℓ+

2 ℓ−3 ν̄ℓ3,

ūd → ℓ−1 ℓ+
1 ℓ−2 ℓ+

2 ℓ−3 ν̄ℓ3.
(3.6)

22



a)

W

W

γ,Z

+ ... b)
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Figure 3.1: Some representative tree-level Feynman diagrams of the process

pp → 4 ℓ + 2 ν. They show the three different topologies appearing in this calcu-

lation.

Here, different quark flavors are required in the initial state. Again, u stands for an

up-type quark, whereas d refers to a down-type quark.

In total there are 209 diagrams for each subprocess of ZZW production and 180

diagrams for each subprocess of WWZ production. Because of the large number of

Feynman diagrams the helicity method of Refs. [49,50] is used for the evaluation of

matrix elements. However, for each of the subprocesses in the various triple vector

boson production processes, the general structure of the matrix elements is the same.

For all processes the tree-level graphs can be grouped into three distinct topologies.

These topologies give rise to different one-loop contributions, as discussed later in

this chapter. Moreover, the topologies are also used to optimize the calculation of

matrix elements by extracting leptonic tensors which appear several times in the

evaluation of matrix elements. Some sample diagrams for the three topologies are

given in Fig. 3.1 for the case of the W+W−Z production. As indicated by the

labels, virtual Z-bosons as well as photons are taken into account. Both of them are

assumed to decay leptonically, V → ℓ+ℓ−, thus leading to the same final state with

two charged leptons.

In the calculation of leptonic tensors, special care has to be taken in the treatment of

finite-width effects in massive vector boson propagators. In the code, the modified

complex-mass scheme as implemented in MadGraph is used, that is m2
V is globally

replaced with m2
V − i mV ΓV , while a real value is kept for sin2 θW [51–53].
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In Fig. 3.1a three vector bosons with subsequent decay are emitted from the quark

line. In order to account for the decay of these vector bosons, the polarization vectors

ǫµ
W+(pW+), ǫν

W−(pW−), and ǫρ
Z(pZ) are replaced by leptonic tensors Γµ

W+, Γν
W−, and

Γρ
Z . These are the effective decay currents together with a propagator factor for the

intermediate vector boson. The decay W+ → νe e+ together with the propagator

factor 1
p2

W+
−m2

W
+imW Γ

, for instance, is then given by the leptonic tensor Γµ
W+. The

effective polarization vectors for the decay of the vector bosons into two leptons

appear in many different Feynman graphs. In order to speed up the calculation,

they are determined numerically at the beginning of the evaluation of the matrix

elements for a given phase space point and reused wherever they appear.

In Fig. 3.1b two vector bosons are attached to a quark line and then decay into two

or four leptons. All Feynman graphs for a four-lepton decay can again be combined

to an effective polarization vector. For all subprocesses such as ud̄ → 5 ℓ + ν,

dū → 5 ℓ+ν for ZZW and uū → 4 ℓ+2 ν, d̄d → 4 ℓ+2 ν for WWZ, these polarization

vectors are identical for one specific phase space point and do not depend on the

quark polarization. Furthermore, they appear in several Feynman diagrams. In our

code these polarization vectors are therefore calculated once per phase space point,

stored and reused wherever possible.

The last topology is the one in which only one vector boson is attached to the quark

line. The polarization vector corresponding to the “decay” of this virtual vector

boson can be calculated once per phase space point, stored and reused. The method

of precalculating effective polarization vectors renders our code for the WWZ Born

process about four times faster and our code for the ZZW Born processes about two

times faster than a direct evaluation with MadGraph [51–53].

An additional increase in speed has been achieved by performing the helicity summa-

tion for the final-state leptons stemming from the Z-bosons and photons randomly.

In detail, for every phase space point one helicity configuration of the final-state lep-

tons is selected. Since only left-handed leptons couple to W-bosons, this selection

only affects the Z-bosons and the virtual photons. The matrix element squared for

this special configuration of helicities is subsequently calculated and multiplied by

the number of actual helicity configurations, i.e. by a factor of two in the WWZ case

and by a factor of four in the ZZW case. For the next phase space point one of the

other helicity configurations is selected and the matrix element is computed. This

procedure is then repeated for all the phase space points. Thus, only the matrix

elements of one helicity configuration have to be calculated per phase space point.
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3.1.2 Assumptions and approximations

In the calculation of LO cross sections as described in the previous paragraph, in-

terference terms due to identical particles in the final state have been neglected.

Including such effects at LO in the calculation of the W+W−Z production, it can be

confirmed, that this is an excellent approximation: LO cross sections change by less

than 0.1% when interference terms are integrated over the Breit-Wigner peaks. This

small effect is due to modest cancellations between contributions below and above

the Breit Wigner peaks. However, even the integration over the absolute values of

the interference terms yields contributions at the few percent level only, which is

below the scale variation of the final NLO cross sections.

An estimate on the validity of results when neglecting any effects of fermion masses

in the calculations is more involved. In the leptonic sector, the heaviest leptons

are the tau leptons. However, at LO cross sections with zero tau mass and with

mτ = 1.7768 GeV have been computed with Helac [54–56] and only deviations of

the order of 1% have been found. The leptons of the third family can then safely

be neglected in the calculation. Thus, we are left with the almost massless leptons

of the first two families only. In particular, this assumption implies that all graphs

with Higgs Yukawa couplings to leptons can be set to zero.

In the quark sector, we have to deal with four almost massless quarks (u, d, c, s) and

the quarks of the third family, top and bottom. Since the possibility to find a top

quark inside a proton is virtually zero, the contribution of top quarks in the initial

state can safely be neglected. Moreover, in the case of ZZW production always one

W-boson couples to the quark line. Thus, the flavor changes once along the quark

line. Since the CKM matrix element giving the transition probability from bottom

quarks to top quarks and vice versa

Vtb = 0.999133 +0.000044
−0.000043, (3.7)

is close to one [37], a bottom quark in the initial state would thus be accompanied by

a top quark in the initial state. Therefore, for this type of processes, the exclusion

of the latter also excludes bottom quarks in the initial state.

In the WWZ production, either two or zero W-bosons are attached to the quark

line. Hence, the quark flavor changes either twice along the quark line or not at

all. Taking into account that bottom quarks, with a very high degree of probability

transfer to top quarks and vice versa, mixing of quarks of the third family with
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Figure 3.2: Typical values for the LO parton distribution functions needed in the

tri-boson production at the LHC.

quarks of the other two families are very rare. Thus, either both initial-state quarks

are assumed to be bottom quarks or none of them. However, the corresponding

bottom quark pdf weights are suppressed compared to the other sea quark pdfs.

For instance, for a typical Feynman-x value in tri-boson processes of x = 0.03, the

probability to find a b quark inside a proton is suppressed by a factor two to four

compared to the other sea quarks as shown in Fig. 3.2 for the CTEQ6L1 pdf set.

Therefore, the heavy quarks of the third family can be neglected in the initial state,

and because they usually do not couple to the quarks of the other two families, they

can also be neglected in the intermediate states. In total that leaves us with the

four light quarks of the first two families with negligible masses.

The impact on the cross section by setting the CKM matrix to the unit matrix needs

to be considered separately for the WWZ and ZZW cases. Since only up, down,

charm, and strange quarks are taken into account, the CKM matrix is reduced to

the Cabibbo matrix VC given in Eq. (2.3).

In the WWZ production mode, the two topologies depicted in Figs. 3.1b and 3.1c

are independent of the CKM matrix since they do not contain a W-quark coupling.

For the topology, where two W-bosons couple to the quark line on the other hand,
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Figure 3.3: Sketch of the flavors in W+W−Z production.

one needs to argue differently. This case is sketched in Fig. 3.3 for i) up-type quarks

in the initial state and ii) down-type quarks in the initial state. The labels i, j, and

k in this figure are labeling the different quark flavors and at the W-quark vertices

the two W-bosons couple to the quark line yielding matrix elements proportional

to VijV
∗
kj, where Vij and V ∗

kj are CKM matrix elements. The labels i and k denote

the quark flavors of the initial-state quarks, whereas j stands for the flavor of the

intermediate quark. Since all flavors can appear in the intermediate state, one has to

sum over j. Taking into account unitarity of the quark mixing matrix, one obtains

in the approximation of massless quarks:

∑

j

VijV
∗
kj = δik. (3.8)

Therefore, for massless quarks, the flavor of initial- and final-state quarks is always

the same in the WWZ production and effects of the CKM matrix vanish at LO.

Including mass effects would lead to an additional contribution mik(j) in Eq. (3.8).

In the case of the ZZW production, approximating the CKM matrix by a unit matrix

leads to an error on the cross section, which will be estimated in the following. In

each of the different topologies depicted in Fig. 3.4 exactly one W-boson couples

to the quark line. Therefore, the transition matrix elements are proportional to

the CKM matrix element Vij entering via the coupling of initial-state quark i and

initial-state quark j to the W-boson. Bearing in mind that the calculation of the

matrix elements does not depend on the quark flavors except for this factorizable

CKM matrix element, on obtains for the matrix elements convoluted with the pdfs:
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Figure 3.4: Sketch of the quark flavors in the different topologies of ZZW+ produc-

tion.

|M(q (pa) + Q̄ (pb) → ZZW)|2 × PDFs

= |MBorn|2 ·
[

|Vud|2 fu/p (xa) fd̄/p (xb) + |Vus|2 fu/p (xa) fs̄/p (xb)

+ |Vcs|2 fc/p (xa) fs̄/p (xb) + |Vcd|2 fc/p (xa) fd̄/p (xb)
]

= |MBorn|2 ·
[

cos2 θC fu/p (xa) fd̄/p (xb) + sin2 θC fu/p (xa) fs̄/p (xb)

+ cos2 θC fc/p (xa) fs̄/p (xb) + sin2 θC fc/p (xa) fd̄/p (xb)
]

= |MBorn|2 ·
[ (

1 + sin2 θC

(
fs̄/p (xb)

fd̄/p (xb)
− 1

))

fu/p (xa) fd̄/p (xb)

+

(

1 + sin2 θC

(
fd̄/p (xb)

fs̄/p (xb)
− 1

))

fc/p (xa) fs̄/p (xb)
]

= |MBorn|2 ·
[

fu/p (xa) fd̄/p (xb) + fc/p (xa) fs̄/p (xb)

+ fu/p (xa) fd̄/p (xb) sin2 θC

·
(

1 − fc/p (xa)

fu/p (xa)

)(
fs̄/p (xb)

fd̄/p (xb)
− 1

) ]

.

(3.9)

Measurements of Vuc and hence the Cabibbo angle appearing in this formula yield

|Vud| = | cos θC | = 0.97419 ± 0.00022, according to Ref. [37]. The ratios of the pdfs

depend on the momentum fraction of the incoming partons and the factorization

scale. Setting the former to x = 0.03 and choosing the latter as Q2 = (3 mW )2, the

neglected terms for this special set of values are:

28



sin2 θC
︸ ︷︷ ︸

≃ 0.05

·
(

1 − fc/p (xa)

fu/p (xa)

)

︸ ︷︷ ︸

≃ 0.83

·
(

fs̄/p (xb)

fd̄/p (xb)
− 1

)

︸ ︷︷ ︸

≃ −0.31

· σLO (ud̄ → ZZW)

≃ −0.013 · σLO (ud̄ → ZZW).

(3.10)

In total, the error on the total LO cross section for the ZZW production at the

LHC induced by setting the CKM matrix to the unit matrix is anticipated to be

of the order of 1-2 percent. However, an explicit test of this expectation with

Helac [54–56] demonstrates that for the specific set of input variables chosen, the

error for the ZZW+ production is about 2%. As will be shown in Chapter 5, this

effect is thus slightly below the size of the uncertainties on the pdfs and well below

the scale uncertainty of the NLO cross section.

3.2 Next-to-leading order contributions

The full NLO cross section for hadronic collisions consists of real emission contri-

butions, virtual contributions and a finite collinear remnant, after the initial-state

collinear singularities are absorbed into the parton distribution functions. The real

emission contributions have to be integrated over an (m+1)-particle phase space

with m = 6 leptons, and the other two contributions only involve an m-particle

phase space,

σNLO =

∫

dσNLO =

∫

m+1

dσR +

∫

m

dσV +

∫

m

dσC . (3.11)

The real emission contribution
∫

m+1
dσR and the virtual contributions

∫

m
dσV are

separately infrared divergent in D = 4 dimensions and only their sum gives a well

defined finite result. Since in a numerical calculation it is impossible to calculate

these divergent pieces separately, another solution is needed to overcome this prob-

lem. The finite collinear term
∫

m
dσC on the other hand, can be evaluated directly

in D = 4 dimensions.

3.2.1 Catani-Seymour dipole subtraction

One common method to overcome the problem with divergencies in real emission and

virtual contributions is to regularize the divergencies using dimensional reduction
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(D = 4 − 2ǫ), and apply the dipole subtraction algorithm proposed by Catani and

Seymour [47, 48]. In this algorithm, terms dσA, which match the singular behavior

of dσR, are introduced. This means that the difference of these two terms can be

integrated numerically in four dimensions over the whole phase space. In order to

leave the total result unchanged, the additional subtraction terms have to be added

again and need to be integrated together with the virtual contributions.

However, the virtual contributions only have to be integrated over an m-particle

phase space, whereas the counter terms have to be integrated over an (m+1)-particle

phase space. Thus, first the integration over the one-particle phase space
∫

1
dσA is

carried out and the poles are extracted. These can be canceled analytically against

the poles from the virtual contributions. Finally, the finite result can be integrated

numerically.

The still missing contribution to the next-to-leading order cross section comes from

the absorption of collinear singularities into the pdfs. Since it is a finite remainder

by definition, it can be integrated in four dimensions without any alteration and in

total we get:

σNLO =

∫

m+1

[(
dσR

)

ǫ=0
−
(
dσA

)

ǫ=0

]

︸ ︷︷ ︸

+

∫

m

[

dσV +

∫

1

dσA

]

ǫ=0
︸ ︷︷ ︸

+

∫

m

dσC

︸ ︷︷ ︸

.

Can be integrated

numerically in 4

dimensions

Poles are

canceled

analytically

Finite

collinear

remainder

The general formulas for dσA,
∫

1
dσA and dσC given in Ref. [47, 48] have been

evaluated for the special case of triple vector boson production in hadronic colli-

sions, pp → VVV + X. Expressions for the dipoles, integrated dipoles and the finite

collinear terms are given explicitly in the following paragraphs and in Appendix A.

3.2.2 Real emission

The real emission matrix elements can be divided into two different sets of Feynman

graphs. The first class contains all diagrams where the emitted particle is a final-

state gluon. This case is shown in Fig. 3.5a, where the crosses represent possible

gluon vertex insertions. The other type of diagrams comprises Feynman graphs

where the emitted particle is a final-state quark and a gluon is present in the initial

state. These diagrams can be obtained by a simple crossing of the diagrams of the

previous class. Some sample diagrams are given in Fig. 3.5b. The second class is
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a)

W

W

γ,Z

+

W

W

γ,Z

γ,Z

+

W

Wγ,Z

γ,Z

+ ...

b)

W

W

γ,Z

+

W

W

γ,Z

+ ...

Figure 3.5: Sample diagrams, appearing in the calculation of the real emission terms

of the W+W−Z production.

a completely new channel, which appears only at NLO. As we will see later in this

thesis, this new channel dominates the scale dependence of the total NLO cross

section and also gives a large contribution to the K-factor.

The method of precalculating effective polarization vectors for leptonic decays, de-

scribed above for the tree-level diagrams, has also been used for the more compli-

cated real emission diagrams. In the calculation of the LO cross sections with an

additional jet, that is

W+W−Z j : pp → νℓ1 ℓ+
1 ℓ−2 ν̄ℓ2 ℓ−3 ℓ+

3 j + X, (3.12)

ZZW+ j : pp → ℓ−1 ℓ+
1 ℓ−2 ℓ+

2 νℓ3 ℓ+
3 j + X, (3.13)

ZZW− j : pp → ℓ−1 ℓ+
1 ℓ−2 ℓ+

2 ℓ−3 ν̄ℓ3 j + X, (3.14)

it leads to an increase in computational speed of a factor of almost 20 for the WWZ

production and even more for the ZZW production.

Concerning the real emission matrix elements, two different types of divergencies

appear. On the one hand, there are the so-called soft divergencies, where the energy

of the emitted gluon is too small to be identified experimentally as an isolated jet.

On the other hand, collinear divergencies emerge if the angle between the additional
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pg

k4

k6

pa

pb

k2

k1

k3

k5

W

W

Z

−→

k̃1

k̃2

W

p̃a

Z

k̃3

k̃5

k̃4

k̃6pb

W

Figure 3.6: Schematic illustration of the transformation from the (m+1)-particle

kinematic to the m-particle tilde kinematic as utilized in the dipole subtraction

formulas given by Catani and Seymour in Ref. [47, 48].

parton in the real emission diagrams and the parton which emits this parton is too

small to separate these two particles from each other. For both kinds of divergencies

the additional dipole dσA in the Catani Seymour algorithm works as a counter term.

An example of a Feynman graph, where infrared divergencies might appear, is de-

picted on the left side of Fig. 3.6. In this case, a gluon is emitted from the upper

incoming quark. It can therefore either be soft or collinear to the incoming parton.

The corresponding counter term according to Catani and Seymour is given by:

dσA =
1

2 x pa · pg
8παs CF

[
2

1 − x
− (1 + x)

]

·
∣
∣
∣MB

(

k̃1, ..., k̃6; p̃a, pb

) ∣
∣
∣

2

+ O(ǫ).

(3.15)

Here CF = 4
3

is the color factor, pa and pb are the momenta of the incoming quarks.

The gluon momentum is denoted by pg, and the parameter x is defined as

x = 1 − pg · (pa + pb)

pa · pb
. (3.16)

The dipole dσA in Eq. (3.15) is proportional to the squared Born matrix element

|MB(k̃1, ..., k̃6; p̃a, pb)|2 with a so-called tilde kinematic. This kinematic can be ob-

tained by a special transformation of the (m+1)-particle kinematic in such a way,
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that the momentum of the additional final-state parton pg vanishes, thus transform-

ing to an effective m-particle kinematic. For the example at hand, this transfor-

mation from an (m+1)-particle kinematic to an m-particle kinematic is sketched in

Fig. 3.6. In this special case the momentum of the upper incoming quark is only

shifted, p̃a = xpa, whereas the second incoming parton momentum p̃b = pb remains

unchanged.

Similar expressions for the counter terms are obtained for the Feynman graphs with

emission of a gluon from the lower incoming parton and also for the gluon induced

subprocesses. Exact transformation rules as well as dipoles for all cases occurring

in the triple vector boson production are given in Appendix A.

3.2.3 Finite collinear terms

The additional finite collinear terms dσC in Eq. (3.11) stem from the factorization

of collinear singularities into the parton distribution functions. The contributions

to the qQ̄-initiated subprocesses for instance, can be written in the compact form,

σNLO
coll (qQ̄ → 6 ℓ) =

∫ 1

0

dxa

∫ 1

0

dxb

∫

dΦ6 (k1, ..., k6; pa + pb)
1

ŝ

·
[

f c
q/p (xa; µ

2
F ) fQ̄/p (xb; µ

2
F ) + fq/p (xa; µ

2
F ) f c

Q̄/p (xb; µ
2
F )
]

·
∣
∣
∣ M qQ̄

Born(k1, ..., k6; pa, pb)
∣
∣
∣

2

.

(3.17)

Here, ŝ denotes the square of the partonic center of mass energy, |M qQ̄
Born|2 gives

the Born matrix element squared with initial-state quark flavors q and Q̄, and

dΦ6 (k1, ..., k6; pa + pb) represents the integration over the six-lepton final state. The

two different contributions with modified pdfs f c
q/p (xa; µ

2
F ) and f c

Q̄/p
(xb; µ

2
F ) arising

thereby are given by:

f c
Qi/p (xi; µ

2
F ) =

αs

2 π

∫ 1

xi

dx

x

{

fg/p

(xi

x
; µ2

F

)

A(x)

+
[

fQi/p

(xi

x
; µ2

F

)

− x fQi/p

(
xi, µ

2
F

)]

B(x)

+ fQi/p

(xi

x
; µ2

F

)

C(x)
}

+
αs

2 π
fQi/p (xi; µ

2
F ) D(xi)

(3.18)
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with the (anti) quark flavor Qi and the corresponding Feynman-x parameter xi.

The gluonic parton distribution functions appearing in Eq. (3.18) are due to g → qq̄

splittings of initial-state gluons. All other contributions come from the emission of

collinear gluons from the initial-state (anti) quarks. The integration kernels, A(x),

B(x), C(x), and D(xi) are universal, i.e. they do not depend on the specific qq̄ -

annihilation subprocess and they are given by:

A(x) = TR

[

2 x (1 − x) +
(
x2 + (1 − x)2

)
· ln
(

(1 − x)2 Q2

xµ2
F

)]

(3.19)

B(x) = CF

[
2

1 − x
ln

(
Q2 (1 − x)2

µ2
F

)]

(3.20)

C(x) = CF

[

1 − x − 2

1 − x
ln (x) − (1 + x) ln

(
Q2 (1 − x)2

xµ2
F

)]

(3.21)

D(xi) = CF

[3

2
ln

(
Q2

µ2
F

)

+ 2 ln (1 − xi) ln

(
Q2

µ2
F

)

+ 2 ln2 (1 − xi)
]

+ CF creal.

(3.22)

Here Q2 is defined as Q2 = 2 pa · pb, µF represents the factorization scale, and

CF = 4
3
, TR = 1

2
are color factors. In dimensional regularization, the finite term

creal appearing in Eq. (3.22) has the value creal = π2

3
− 5. More details on the

derivation of these formulae as well as a complete summary of the finite collinear

terms for all subprocesses are given in Appendix A.

In order to speed up the calculation, it is reasonable to evaluate the finite collinear

terms at the same time as the real emission contribution. Thus, they are integrated

over an (m+1)-particle phase space. This is possible because the two necessary

phase spaces are correlated,

1

2 pa · pb
dφ7 (pg, k1, ..., k6; pa + pb) =

∫ 1

0

dx

∫ 1−x

0

dv
1

2 p̃a · pb

Q2

8 π2
dφ6 (k̃1, ..., k̃6; p̃a + pb).

(3.23)

The parameter x, given in this formula is the one already defined in Eq. (3.16) and
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v =
pa · pg

pa · pb
. (3.24)

Relation (3.23) can then be used to rewrite Eq. (3.17) in the form, which is actually

implemented in the Fortran program Vbfnlo,

σNLO
coll (qQ̄ → 6 ℓ) =

∫ 1

0

dxa

∫ 1

0

dxb
1

2 pa · pb
dΦ7 (k1, ..., k6, pg; pa + pb)

4 π αs

Q2
fQ̄/p (xb; µ

2
F )
∣
∣
∣ M qQ̄

Born (k̃1, ...k̃6; p̃a, pb)
∣
∣
∣

2

·
[

fg/p (xa; µ
2
F ) A(x) + fq/p (xa; µ

2
F ) (B(x) + C(x))

+ x fq/p (xxa; µ
2
F )

{
D(xxa)

1 − xxa
− B(x)

}]

· 1

1 − x

+ (a ↔ b), (q ↔ Q̄).

(3.25)

The functions A(x), B(x), C(x) and D(xxa) are the integration kernels, already

defined in Eqs. (3.19)-(3.22) and the factor 1
1−x

compensates the integration
∫ 1−x

0
dv

in Eq. (3.23).

3.2.4 Virtual contributions

The virtual contributions consist of the square of tree-level diagrams and the in-

terference between tree-level diagrams and the virtual one-loop diagrams. In the

calculation of the one-loop diagrams, three different types of contributions, cor-

responding to the three topologies in the tree-level calculation appear. They are

schematically depicted in Fig. 3.7.

For the simplest topology (Fig. 3.7a) with one vector boson attached to the quark

line, only vertex corrections appear. In this case, the one-loop contribution is pro-

portional to the corresponding Born matrix element. The second topology Fig. 3.7b

leads to propagator corrections, vertex corrections and 4-point loop integrals. In

the calculation, the sum of the four virtual contributions to one specific tree-level

subamplitude is grouped together and will be called a boxline contribution in the

following. The most challenging topology, illustrated in Fig. 3.7c, leads to quark

propagator corrections, vertex corrections, boxes and pentagons. As in the previous
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a)

b) + + +

c) + + + 5 others

Figure 3.7: Schematic picture of the three one-loop topologies appearing in the

calculations.

case the sum of all these corrections to one specific tree-level Feynman graph is

grouped together and called pentline contribution in the following.

The singular pieces of all of these three types of virtual contributions are propor-

tional to the corresponding Born matrix element and the complete virtual one-loop

contribution for the three topologies is given by:

MV = M̃V +
αS

4π
CF

(
4πµ2

s

)ǫ

Γ(1 + ǫ)

[

− 2

ǫ2
− 3

ǫ
− 8 +

4 π2

3

]

MB, (3.26)

where MB denotes the full Born amplitude, s is the square of the partonic center of

mass energy, i.e. it corresponds to the invariant mass of the six-lepton system, and

M̃V is the finite part of the virtual boxline and pentline amplitudes. The interference

term between the Born and the one-loop amplitudes is therefore

2 Re [MV M∗
B ] = 2 Re

[

M̃V M∗
B

]

+
αS

2π
CF

(
4πµ2

s

)ǫ

Γ(1 + ǫ)

[

− 2

ǫ2
− 3

ǫ
− 8 +

4 π2

3

]

|MB|2. (3.27)
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As already mentioned in the description of the algorithm by Catani and Seymour,

it is possible to cancel the singular parts from the virtual contributions analytically

against ǫ poles appearing in the integrated dipole
∫

1
dσA. In the notation of Catani

and Seymour the corresponding term is given by:

〈 pa, pb | I(ǫ) | pa, pb 〉 =
αS

2 π
CF

(
4 π µ2

s

)ǫ

Γ(1 + ǫ) |MB|2

·
[

2

ǫ2
+

3

ǫ
+ 8 − 4 π2

3
+ cvirt

]

.

(3.28)

Hence, the ǫ-poles in the virtual contributions of Eq. (3.27) and in the integrated

dipole, given in Eq. (3.28), cancel exactly. In doing so only a finite rest proportional

to cvirt = 2 remains. This can be integrated numerically in four dimensions.

Apart from crossing a final-state quark to the initial state, and performing an an-

alytic continuation, the boxline and the pentline contribution have essentially the

same analytic expressions found in the calculation of NLO QCD corrections in vector

boson fusion processes, qq → V qq and qq → V V qq, discussed in Refs. [57] and [2–4]

respectively.

To deal with the finite boxline contribution, results have been obtained by using a

slightly modified version of the boxline routine presented in Ref. [57]. This routine

implements the Passarino-Veltman tensor reduction [58] and leads to quite stable

results.

For the pentline routine on the other hand this method still leads to serious numerical

instabilities. Thus, the pentline reduction needs a more stable reduction procedure.

In the calculation of tensor coefficients for the processes described here, the method

proposed by Denner and Dittmaier [59,60] has been implemented. The results have

been checked with the pentline routines computed in Refs. [2–4], after crossing and

analytic continuation. The new numerical tensor reduction subroutine turns out

to be 4.5 times faster and numerically more stable than the old code. A detailed

comparison of the two different ways to calculate pentline contributions is given in

the next section.

However, even with this increase in speed of the pentagon calculation, this part

of the calculation is still quite slow. Therefore, a method suggested in Refs. [2–4]

has been employed to reduce the magnitude of the true pentagon contribution. In
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fact, it is possible to split the effective polarization vector ǫµ
V of a vector boson of

momentum qV into a term proportional to the momentum itself and a remainder ǫ̃µ
V ,

ǫµ
V = xV qµ

V + ǫ̃µ
V . (3.29)

The pentline contributions with an external momentum instead of the polarization

vector (terms proportional to xV ) can then be expressed in terms of boxline contribu-

tions via Ward identities for the loop integrals. Therefore it is possible to shift parts

of the pentline contribution to the less time consuming boxline contributions and

calculate the remaining smaller true pentline contribution (the one obtained with

the contraction with ǫ̃µ
V ) with less statistics, without changing the overall Monte

Carlo statistical error on the total NLO result.

In practice several different possibilities have been tested for all three processes

under investigation. It turned out that the best choice for the W+W−Z production,

meaning the smallest true pentagon cross section, is obtained, when the shifted

polarization vectors have zero time component in the center of mass system of the

W-pair:

ǫ̃V · (qW+ + qW−) = 0 ⇒ xV =
ǫV · (qW+ + qW−)

qV · (qW+ + qW−)
. (3.30)

In performing this shift, a reduction of the magnitude of the pentline contribution

by a factor of eight could be achieved. In the case of the ZZW+ and the ZZW−

production a similar shift of the polarization vectors has been chosen:

ǫ̃V · (qZ1
+ qZ2

) = 0 ⇒ xV =
ǫV · (qZ1

+ qZ2
)

qV · (qZ1
+ qZ2

)
. (3.31)

In doing so, the pentline contribution could be reduced by a factor of 2.5.

3.2.5 Numerical stability and speed

For the calculation of the true pentline contributions, two different routines exist,

as already mentioned in the previous section. One of them has been obtained by
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Figure 3.8: a) Example for a pentagon graph and b) the result after contraction of

this graph with external momentum qµ2

2 .

crossing and analytic continuation of the subroutine described in Ref. [2–4]. The

other one has been programmed from scratch in the calculation of the virtual contri-

butions for W+W−γ production [61]. The existence of two completely independent

routines for the calculation of pentline contributions provides an excellent test for

the correctness of the results. In the triple vector boson production processes, both

codes have been implemented and for non-exceptional phase space points, agree-

ment at the level of 10−8 has been found for the two different codes. Besides this

test, we have seen in previous sections, that speed and numerical stability is an

issue. Therefore a careful comparison of the two computer codes under this aspects

is reasonable and necessary.

Both routines use the tensor reduction proposed by Denner and Dittmaier in order

to avoid numerical instabilities as much as possible. Nonetheless, there are phase

space points with too low numerical precision, which can lead to unnaturally large

contributions to the total cross section, thus changing the cross section significantly.

In order to extract these points, Ward identities for loop integrals are exploited.

These identities predict, that pentline contributions contracted with an external

momentum instead of a polarization vector can be expressed in terms of a difference

of two boxline contributions. This property can be illustrated by means of the easier

example of only one pentagon.

The formula of the pentagon, depicted in Fig. 3.8a, is given by:

Pµ1µ2µ3
=

∫
dDl

(2 π)D

γρ(l/+ k/1 − q/123)γµ3
(l/+ k/1 − q/12)γµ2

(l/+ k/1 − q/1)γµ1
(l/+ k1/ )γρ

l2 (l + k1)2 (l + k1 − q1)2 (l + k1 − q12)2 (l + k1 − q123)2
,

where the notation, q12 = q1+q2 and q123 = q1+q2+q3 is used for the sum of momenta

and the integral over the loop momentum l has to be performed. Contracting this
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expression for example with qµ2

2 results in

qµ2

2 Pµ1µ2µ3
=

∫
dDl

(2 π)D

γρ (l/+ k/1 − q/123) γµ3
(l/+ k/1 − q/12) γµ1

(l/+ k/1) γρ

l2 (l + k1)2 (l + k1 − q12)2 (l + k1 − q123)2

−
∫

dDl

(2 π)D

γρ (l/+ k/1 − q/123) γµ3
(l/+ k/1 − q/1) γµ1

(l/+ k1/ ) γρ

l2 (l + k1)2 (l + k1 − q1)2 (l + k1 − q123)2
.

This corresponds to the difference of two boxes, as given in Fig. 3.8b. Similar results

are achieved by contraction with the other two momenta and also for the full pentline

contribution. Thus, the difference of the contracted pentagon and the two box-type

integrals, qµ Pµ − Boxes, is analytically zero and this property can be utilized to

test the numerical precision of the results of the pentline contribution.

In order to ensure, that Ward identity tests only neglect terms, which contribute

very little to the cross section, the difference of the contracted pentagon and the

boxes is compared to the Born matrix element. Since in the actual program the

polarization vectors are decay currents with an additional propagator, these addi-

tional factors have to be taken into account. This is done by weighting the difference

between contracted pentline and box contributions with the zero component of the

effective polarization vector ǫ0, divided by the zero component of the corresponding

momentum q0. Furthermore, in the Born matrix element, the coupling factors of the

weak bosons to the quarks are taken into account, whereas at this stage of the Pen-

tagon calculation, they are not yet included. Therefore, an additional factor of the

size of these couplings, couplfac = 0.01, is multiplied. Finally, the factor αs/2π of

Eq. (3.27) has to be included. The absolute value of the weighted difference between

the contracted pentagon and the boxes compared to the Born matrix element,

∆P =
∣
∣
∣

qµ Pµ − Boxes

MBorn

|ǫ0|
q0
︸︷︷︸

eff.pol.vector

· couplfac
︸ ︷︷ ︸

V qq̄−coupl.

· αs

2 π

∣
∣
∣, (3.32)

is then calculated for all three possible contractions of the pentline contribution with

one of the external momenta. If the largest weighted difference ∆Pmax, is smaller

than a tiny number δ,

∆Pmax < δ, (3.33)
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the Ward identity test is passed. Otherwise, this pentagon contribution is discarded.

For both codes the full Pentagon contribution σPentagon and corresponding error bars

are plotted in Fig. 3.9 for various values of δ. The colored region in this figure gives

the 0.1% error on the total NLO cross section, as reference. Varying δ between 10−2

and 102, the cross sections stay almost constant and there is virtually no difference

between the two codes neither in the central value nor in the error bars. For larger

values, δ = 103 and δ = 104 the error bars become larger and so does the difference

between the two routines. Thus numerical stability breaks down in this region. For

low values of δ, the cross section gets smaller, which means, that in this case, too

many points are discarded.

In Fig. 3.10 the fraction of discarded points is plotted for both routines. For δ > 10−4

less than 1% of the points are neglected and for higher values of δ hardly any points

do not pass this Ward identity test. The curves for the two routines lie almost

on top of each other. Thus, concerning numerical stability, they are equivalent in

practise. However, the number of points that do not pass the test, described above,

is a little bit less for the new routine (corresponding to the the blue curve in Figs. 3.9

and 3.10). From that point of view it is then the better routine.

In the program a standard value of δ = 0.001, which means a deviation of 0.1 %, has

been chosen. This choice of δ ensures, that all neglected contributions to the NLO

cross section account for less than 0.1% of the Born cross section and can therefore

be discarded.

In the previous section it has already been mentioned that the new routine for the

determination of true pentline contributions is 4.5 times faster that the old one.

Moreover, as shown above, it is numerically slightly more stable. Consequently, this

new routine has been chosen as default routine to calculate the pentline contribution

in the program. Nonetheless, it is still possible to switch to the other code for testing

purposes.
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Figure 3.9: Dependence of the pentagon cross section from the parameter δ, which

reflects the numerical precision.
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Figure 3.10: Ratio of phase space points, which do not pass the Ward identity test

and points, which pass this test, depending on the parameter δ.
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Chapter 4:

Tests and comparisons

The complete next-to-leading order calculation, as described in the previous chapter,

has been implemented in the Fortran program Vbfnlo [31]. In order to check the

results of the various parts of the code and in order to exclude possible error sources,

numerous tests have been performed.

Among them are the comparisons with Helac [54–56] and MadEvent [51–53] for

the LO processes, which are presented in the first section of this chapter. Further-

more, ward identity tests as well as checks of the finite collinear terms and the real

emission are described in subsequent sections.

The most important tests are the comparisons with the NLO results for on-shell

W+W−Z and ZZW+ production, recently published by T. Binoth, C. Papadopoulos,

G. Ossola and R. Pittau [11]. The results of these comparisons are summarized in

the last section of this chapter.

4.1 Comparisons with MadGraph, MadEvent and

Helac

Concerning the LO calculations, all matrix elements have been checked against

MadGraph [51–53]. For individual matrix elements agreement at the 10−15 level

is found. Furthermore, this comparison has also been performed for all diagrams

with an additional parton in the final state as for instance qq̄ → 4ℓ + 2ν + g and

qg → 4ℓ + 2ν + q in the case of the WWZ production. Moreover, for each helicity

configuration the squared matrix elements have been checked against MadGraph

output for more than one million phase space points. Here, results agree at least at

the 10−3 level but for the vast majority of points the agreement is at the 10−10 level

or better.

In addition to these tests, the total LO cross sections for the W+W−Z, ZZW+,

and ZZW− production including the leptonic decays of the three vector bosons
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Higgs mass/width [GeV] program σLO [ab] error [%]

mH = 120 Vbfnlo 29.875 ± 0.033 0.11

Γ(H) = 0.004411 Helac 29.776 ± 0.092 0.31

mH = 140 Vbfnlo 49.571 ± 0.057 0.11

Γ(H) = 0.008979 Helac 49.551 ± 0.146 0.30

mH = 160 Vbfnlo 62.547 ± 0.037 0.06

Γ(H) = 0.077013 Helac 62.507 ± 0.152 0.24

mH = 180 Vbfnlo 52.201 ± 0.040 0.08

Γ(H) = 0.598135 Helac 52.221 ± 0.113 0.22

Table 4.1: Comparison of LO cross sections in Vbfnlo and Helac for the process

pp → W+W−Z + X within the cuts of Eq. (4.1) and for the electroweak parameters

explained in the text. Quoted cross sections effectively include branching ratios of

the W+, W− and Z for one generation of leptons.

Higgs mass/width [GeV] program σLO [ab] error [%]

mH = 120 Vbfnlo 2.5159 ± 0.0045 0.18

Γ(H) = 0.004411 Helac 2.5074 ± 0.0053 0.21

mH = 140 Vbfnlo 3.9962 ± 0.0047 0.12

Γ(H) = 0.008979 Helac 3.9929 ± 0.0084 0.21

mH = 160 Vbfnlo 3.2911 ± 0.0033 0.10

Γ(H) = 0.077013 Helac 3.2908 ± 0.0088 0.27

mH = 180 Vbfnlo 3.4339 ± 0.0031 0.09

Γ(H) = 0.598135 Helac 3.4282 ± 0.0065 0.19

Table 4.2: Comparison of LO cross sections in Vbfnlo and Helac for the process

pp → ZZW+ + X within the cuts of Eq. (4.1) and for the electroweak parameters

explained in the text. Quoted cross sections effectively include branching ratios of

the W+, W− and Z for one generation of leptons.
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Higgs mass/width [GeV] program σLO [ab] error [%]

mH = 120 Vbfnlo 1.4444 ± 0.0023 0.16

Γ(H) = 0.004411 Helac 1.4471 ± 0.0043 0.30

mH = 140 Vbfnlo 2.4337 ± 0.0036 0.15

Γ(H) = 0.008979 Helac 2.4358 ± 0.0049 0.20

mH = 160 Vbfnlo 1.9388 ± 0.0031 0.16

Γ(H) = 0.077013 Helac 1.9440 ± 0.0047 0.24

mH = 180 Vbfnlo 2.0219 ± 0.0029 0.14

Γ(H) = 0.598135 Helac 2.0135 ± 0.0053 0.26

Table 4.3: Comparison of LO cross sections in Vbfnlo and Helac for the process

pp → ZZW− + X within the cuts of Eq. (4.1) and for the electroweak parameters

explained in the text. Quoted cross sections effectively include branching ratios of

the W+, W− and Z for one generation of leptons.

and all off-shell contributions have been checked against Helac [54–56] for various

Higgs masses. Results of these comparisons for the LHC are given in Tables 4.1,

4.2, and 4.3. They have been obtained using CTEQ6L1 parton distributions [62].

Standard Model parameters were set to mW = 80.419 GeV, mZ = 91.188 GeV, and

GF = 1.16639 · 10−5 GeV−2. All other electroweak parameters have been calculated

using leading order relations. Besides, the factorization scale has been set to the

Z-boson mass µF = mZ . Furthermore, only minimal cuts on the final state leptons

have been applied. Specifically, they are:

pTℓ
> 10 GeV, |yℓ| < 2.5, ∆Rℓℓ > 0.4. (4.1)

These checks have also been performed with MadEvent, but due to its long run

time, only for one specific Higgs mass. For all three processes, the results agree

within the statistical accuracy of the Monte Carlo runs (1% for MadEvent and

maximally 0.3% for Helac).

For the LO processes with an additional jet, the complexity of the phase space and

the matrix elements is much higher, which leads to an enormous increase in run

time. Therefore, only a comparison with the faster of the two programs, Helac,

and only for one Higgs mass has been performed. However, also in these cases,
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CHAPTER 4. TESTS AND COMPARISONS

results agree within the accuracy of the Monte Carlo errors of about one percent.

4.2 Ward identity tests

The virtual contributions can be divided into parts proportional to the born matrix

element squared, and boxline and pentline contributions, which contain boxes and

pentagons, respectively. The Ward identity test, used to extract points with too low

numerical precision in the pentline routine, has already been discussed in detail in

the last section of the previous chapter. In this context also the comparison between

the two completely different subroutines has been covered.

Similarly, for the boxline contributions, two independent codes exist, which are

comparable in speed and numerical stability. The results of these two codes agree

at the 10−8 level for almost all points checked.

However, in the case of four-point integrals, the Ward identity test is somewhat

easier than in the case of pentagons, since the boxline contributions contracted with

an external momentum, have to be proportional to some constant times the Born

matrix element. In our implementation this constant is zero, due to the specific

definition of M̃V in Eq. (3.26) and therefore the boxline contributions contracted

with an external momentum have to vanish.

In the implementation into Vbfnlo, this contracted box result qµJ
µ
Box, weighted

with the corresponding contracted Born current, is neglected when the resulting

contribution is larger than a parameter δ. Specifically, phase space points are ne-

glected for

boxtest =
|qµ Jµ

Box|
max( |q0 J0

Born|, |q1 J1
Born|, |q2 J2

Born|, |q3 J3
Born| )

> δ. (4.2)

Here Jµ
Born gives the tree-level current corresponding to the uncontracted box con-

tribution, i.e. the expression for the same Feynman-graphs as in the box case but

without a loop.

For the parameter δ set to δ = 0.001, less than 0.2% of points are discarded. Thus,

only a tiny fraction of points does not pass the Ward identity test and the routine

to calculate boxline contributions yields for a vast majority of points numerically

stable and reliable results.

However, in order to specifically estimate the neglected cross section, the differential

boxline cross section for one specific box contribution is plotted in Fig. 4.1 over the
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Figure 4.1: Differential boxline cross section for one specific box contribution ap-

pearing in the calculation of the pp → W+W−Z + X process over the logarithm of

the parameter boxtest, defined in Eq. (4.2).

logarithm of the parameter boxtest defined in Eq. (4.2). For the neglected phase

sp5Aace region when boxtest > δ = 0.001, the integrated boxline cross section only

amounts to less than 0.05% of the total boxline contribution for this specific case.

In the actual calculation the boxline routine is called several times for various com-

binations of external vector bosons and momenta. However, for all boxline contri-

butions appearing in the tri-boson production at the LHC, the fraction of neglected

points as well as of discarded cross sections is very similar as in the above case.

Thus, the resultant relative error on the total box contribution is at the level of

10−3 − 10−4. This box contribution is about 4% of the total NLO cross section

and therefore, the resultant error on σNLO is of the order of 10−5 or less and hence

negligible.

Another very strong test of the correctness of the implementation of virtual correc-

tions, relies on the possibility to calculate parts of the pentline contribution together

with the boxline contribution. This method is used to reduce the magnitude of the

true pentagon contribution, as explained in the previous chapter. It has already

been pointed out in that context that the choice of the shifted polarization vectors,

defined in Eqs. (3.29), (3.30) and (3.31) is ambiguous. However, the result of the
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shift contribution cross section [ab]

boxline contribution −0.2667 ± 0.0012

no shift pentline contribution 0.6641 ± 0.0014

σboxline + σpentline 0.3974 ± 0.0018

boxline contribution 0.0911 ± 0.0007

ǫ̃V · qZZW = 0 pentline contribution 0.3073 ± 0.0012

σboxline + σpentline 0.3985 ± 0.0014

boxline contribution 0.1489 ± 0.0009

ǫ̃V · qZZ = 0 pentline contribution 0.2497 ± 0.0012

σboxline + σpentline 0.3985 ± 0.0015

Table 4.4: In this table, the cross sections of boxline and pentline contributions

and their sum are given for the ZZW+ production within the cuts of Eq. (4.1).

Three different choices for the shift of the external polarization vectors, analogous

to Eqs. (3.29), (3.30) and (3.31) are listed. The total NLO cross section for the

leptonic final state chosen here is σNLO = 5.762 ± 0.005 ab.

sum of boxline and pentline contributions on the other hand has to be the same

for every choice. In Table 4.4 three different choices and the corresponding boxline

and pentline cross sections are given for the ZZW+ production within the cuts of

Eq. (4.1).

The sum of boxes and pentagons agrees for all of these choices up to the accuracy

of the Monte Carlo errors, which are below 0.5%. For the other processes, presented

in this work, the same has been done. Also in those cases, the virtual contributions

do not change for different choices of the shifted polarization vectors.

4.3 Real emission and finite collinear terms

In the formalism of Catani and Seymour the subtraction terms dσA act as local

counter terms. Thus, they have to exactly cancel the real emission contribution

in the singular regions, that means for small energies of the emitted gluon and for

collinear partons. This property of the subtracted dipoles has been tested numeri-

cally for all processes under investigation.

For the W+W−Z production the real emission cross section divided by the dipoles

has been plotted in Fig. 4.2 over the energy of the final state gluon for about one

million phase space points. As expected, for gluon energies larger than 10 GeV,

48



µF = µR = µ, αs(µR) program σLO [fb] σNLO [fb]

µ = mW , αS = 0.12028 Vbfnlo 446.30 ± 0.26 735.01 ± 0.71

Mcfm 445.87 ± 0.43 735.59 ± 0.66

µ = 10 · mW , αS = 0.088978 Vbfnlo 532.12 ± 0.31 714.64 ± 0.63

Mcfm 531.48 ± 0.44 715.57 ± 0.64

Table 4.5: Comparison of the LO and NLO cross sections in Mcfm and Vbfnlo

for W+W− production at the LHC within the cuts of Eq. (4.1).

the real emission cross section and the dipoles differ heavily and as gluon energies

become smaller, the ratio of real emission cross section over dipole cross sections

approaches one.

In order to confirm the cancellation of collinear singularities, the ratio of real emis-

sion cross section over dipole cross sections has been plotted in Fig. 4.3 over the

minimum of the scalar products between momentum of an initial-state parton pinitial

and the one of the final-state parton pfinal. Again, for large values of this scalar

product, cross sections differ whereas in the collinear region pinitial · pfinal → 0, the

subtraction terms exactly cancel the real emission contributions resulting in a ratio

of real emission cross section divided by dipole cross sections of one.

The finite collinear terms have been checked by exploiting the fact that they are

generic for all Drell-Yan type processes and hence, should be exactly the same

for di-boson production. Therefore, the NLO QCD corrections for the process

pp → W+W− + X have independently been programmed and results have been com-

pared with the already existing parton level Monte Carlo program Mcfm [30]. The

results of the tests are given in Table 4.5. They have been obtained using CTEQ6L1

and CTEQ6M [62] pdfs for the calculation of LO and NLO cross sections. The strong

coupling constant has been chosen to be αs(mZ) = 0.118. In addition to that, the

electroweak parameters, already described in the comparison with Helac and the

cuts of Eq. (4.1) have been used. The comparison has been performed for two differ-

ent factorization and renormalization scales. For both of them the two Monte Carlo

programs agree within the error of the Monte Carlo runs, which is for LO and NLO

cross sections below 0.1%.
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Figure 4.2: Ratio of real emission cross section over cross section of the subtraction

terms for different values of the gluon energy.

Figure 4.3: Same as in Fig. 4.2 but for different values of the minimum of scalar

products between final-state parton momentum pfinal and initial-state parton mo-

mentum pinitial.
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4.4 Relation between m- and (m+1)-particle phase

space

A further check takes advantage of the fact that it is possible to integrate terms

proportional to the Born matrix element either together with the real emission part,

by integration over the (m+1)-particle phase space, or together with the virtual

part, by integrating over the m-particle phase space.

Specifically, the constant terms, creal of Eq. (3.22) and cvirt of Eq. (3.28) can be

chosen arbitrarily, and only their sum,

csum = creal + cvirt =
π2

3
− 5 + 2 =

π2

3
− 3, (4.3)

has to stay the same. That means, parts of the virtual calculation can be shifted to

the calculation of finite collinear terms or the other way around. For all processes

under investigation, various combinations of cvirt and creal have been tested and

results for the subtracted real emission cross section, the virtual cross section and

the total NLO cross section are given in Table. 4.6 for the three choices,

cvirt =
2 π2

3
− 3, creal = −π2

3
, ⇒ csum =

π2

3
− 3, (4.4)

cvirt = 20 +
π2

3
− 3, creal = −20, ⇒ csum =

π2

3
− 3, (4.5)

cvirt = −20 +
π2

3
− 3, creal = +20, ⇒ csum =

π2

3
− 3. (4.6)

The resulting cross sections for all three cases agree within the accuracy of the Monte

Carlo run and are thus independent of the specific choice of cvirt and creal but

only depend on their sum.

The purpose of this check is twofold. First, it confirms the relation between the m-

and the (m+1)-particle phase space given in Eq. (3.23). Thus the implementation

of finite collinear terms are tested. Second, it ensures, that in the virtual and the

real emission calculation all parameters like αs and the color factors are chosen in

the same way. Therefore this is a very powerful test, since it checks two completely

independent parts of the computer program against each other.
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process creal, cvirt σreal [ab] σvirtual [ab] σNLO [ab]

W+W−Z Eq. (4.4) 15.78 ± 0.05 44.63 ± 0.10 60.41 ± 0.11

Eq. (4.5) 4.79 ± 0.10 55.53 ± 0.16 60.32 ± 0.19

Eq. (4.6) 37.21 ± 0.18 23.02 ± 0.08 60.24 ± 0.20

ZZW+ Eq. (4.4) 1.998 ± 0.005 3.760 ± 0.010 5.758 ± 0.011

Eq. (4.5) 1.089 ± 0.012 4.671 ± 0.019 5.760 ± 0.023

Eq. (4.6) 3.760 ± 0.012 1.999 ± 0.007 5.759 ± 0.014

ZZW− Eq. (4.4) 1.277 ± 0.005 2.159 ± 0.008 3.436 ± 0.010

Eq. (4.5) 0.762 ± 0.005 2.667 ± 0.005 3.429 ± 0.007

Eq. (4.6) 2.294 ± 0.004 1.134 ± 0.002 3.429 ± 0.005

Table 4.6: Comparison of NLO cross sections for the three choices of creal and

cvirt given in Eqs. (4.4)-(4.6). The variables creal and cvirt are defined in

Eqs. (3.22) and (3.28). Quoted cross sections effectively include branching ratios of

the W+, W− and Z for one generation of leptons.

4.5 pp → ZZW vs. p̄p̄ → ZZW

In the program Vbfnlo, not only cross sections and distributions for proton induced

processes pp → VVV + X, but also for antiproton induced processes of the form

p̄p̄ → VVV + X, can be calculated. This feature of the program can be used for ano-

ther very important test of the ZZW production. The processes pp → ZZW+ + X

and p̄p̄ → ZZW− + X should give the same results for the LO and the NLO cross

sections and the same is also valid for the two processes pp → ZZW− + X and

p̄p̄ → ZZW+ + X. This statement is not only true for total cross sections, but

allows to test every individual part such as the real emission contribution and the

different virtual contributions. For the cuts given in Eq. (4.1) and the parameters

defined for the comparison with Helac in Section 4.1, the results for the comparison

are given in Table. 4.7 for a Higgs mass of mH = 120 GeV.

For all individual contributions to the cross section listed here, results agree within

the statistical errors of the Monte Carlo runs, which are well below 1%.

4.6 Comparison with independent calculations

During 2007 and 2008, several publications on next-to-leading order QCD corrections

to triple vector boson production at the LHC have appeared. The content of two of
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process σLO [ab] σvirtual [ab] σreal [ab] σNLO [ab]

pp → ZZW+ 2.524 ± 0.004 3.562 ± 0.008 2.142 ± 0.008 5.703 ± 0.011

p̄p̄ → ZZW− 2.517 ± 0.005 3.575 ± 0.010 2.157 ± 0.019 5.732 ± 0.022

pp → ZZW− 1.444 ± 0.002 2.064 ± 0.005 1.429 ± 0.007 3.493 ± 0.009

p̄p̄ → ZZW+ 1.443 ± 0.004 2.046 ± 0.006 1.421 ± 0.007 3.468 ± 0.009

Table 4.7: Comparison of the LO and NLO cross sections for pp → ZZW± + X and

p̄p̄ → ZZW± + X within the cuts of Eq. (4.1). Quoted cross sections effectively

include branching ratios of the W+, W− and Z for one generation of leptons.

them, Refs. [9,14], is described in this PhD thesis and in the diploma thesis by Stefan

Prestel. Besides, in Ref. [5], NLO QCD corrections for the process pp → ZZZ + X

are presented by A. Lazopoulos, K. Melnikov and F. Petriello, albeit without further

decay of the leptons and neglecting any Higgs contributions. Furthermore, a paper

on on-shell W+W−W+, W+W−Z, ZZZ, and ZZW+ production has been published

by T. Binoth, G. Ossola, C. G. Papadopoulos and R. Pittau [11]. In this paper, as

in the previous one, Higgs contributions have been neglected.

In order to be able to compare LO and NLO cross sections with the other two

groups, some modifications of the Vbfnlo code were necessary. First, since both of

them did not include Higgs contributions and leptonic decays, all Feynman graphs,

except the ones also appearing in their calculations, had to be neglected. This leaves

us with 15 diagrams for WWZ production and 13 diagrams for ZZW production at

LO. In addition, the results in narrow width approximation divided by the branch-

ing ratios had to be multiplied with suitable symmetry factors. They arise when

identical particles, as for instance two Z-bosons, appear in the final state.

Although Ref. [5] only provides results for the process pp → ZZZ + X, many of the

critical elements of the calculation performed in the work presented here also appear

in this related process. Therefore, the Vbfnlo code has been modified to describe

ZZZ instead of WWZ production and has been checked against the results of Ref. [5].

Using the same pdfs and αs (mZ) = 0.119 at NLO the numbers completely agree for

all of the given renormalization and factorization scales.

As a final and very important test, a comparison with the results of Ref. [11] has

been realized. In Tables 4.8 and 4.9 the results are shown for different factorization

and renormalization scale choices, here taken to be equal. The NLO results agree

at the one percent level, which is satisfactory given the same level of agreement for

the LO cross sections and the size of the Monte Carlo errors.
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scale program σLO [fb] σNLO [fb]

µF = µR = 2 · mW + mZ Vbfnlo 97.5 ± 0.1 186.5 ± 0.3

Ref. [11] 96.8 ± 0.6 185.5 ± 0.8

Table 4.8: Comparison between results of Ref. [11] and the ones obtained with

Vbfnlo for the process pp → W+W−Z + X. All parameters and settings are taken

from Ref. [11].

scale program σLO [fb] σNLO [fb]

µF = µR = 1
2
× (3 mZ) Vbfnlo 20.42 ± 0.03 43.02 ± 0.08

Ref. [11] 20.2 ± 0.1 43.0 ± 0.2

µF = µR = 2 · mZ + mW Vbfnlo 20.30 ± 0.03 39.87 ± 0.08

Ref. [11] 20.2 ± 0.1 40.4 ± 0.2

µF = µR = (3 mZ) Vbfnlo 20.24 ± 0.03 39.86 ± 0.07

Ref. [11] 20.0 ± 0.1 39.7 ± 0.2

µF = µR = 2 × (3 mZ) Vbfnlo 20.03 ± 0.03 37.39 ± 0.07

Ref. [11] 19.7 ± 0.1 37.8 ± 0.2

Table 4.9: Comparison between results of Ref. [11] and the ones obtained with

Vbfnlo for the process pp → ZZW+ + X. All parameters and settings are taken

from Ref. [11].
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Chapter 5:

Cross sections and distributions

The complete next-to-leading order calculations for the W+W−Z, the ZZW+, and

the ZZW− production cross sections have been implemented in the framework of a

fully flexible parton-level Monte-Carlo program, Vbfnlo, which has been used to

determine the QCD corrections for these triple vector boson production processes

at the LHC, i.e. for a proton-proton collider with 14 TeV center of mass energy.

The chapter at hand presents the results. In the first section, the default values

for the electroweak parameters, scales, and cuts are introduced. Next, the Higgs

mass dependence of the different processes is discussed. Section 5.3 covers the scale

dependence of the NLO cross section, which is often used as an indication of the

uncertainty of the results. Subsequently, the strong phase space dependence of NLO

results is proven by means of differential distributions and K-factors. The chapter

is finally closed by an estimate on the pdf uncertainties entering in the calculation

of the cross section.

5.1 Cuts, scales and parameters

For the generation of results the electroweak parameters have been chosen in the

following way:

mW = 80.398 GeV, mZ = 91.1876 GeV,

GF = 1.16637 · 10−5 GeV−2.
(5.1)

The other electroweak parameters, α−1 = 132.3407 and sin2 (θW ) = 0.22246, are

calculated in the program by using LO electroweak relations. The default value

for the Higgs mass is mH = 120 GeV. Furthermore, in the prediction of the Higgs

mass dependence of the cross section, the top quark mass is needed for Higgs masses
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Figure 5.1: Total Higgs width under variation of the Higgs mass. The plot has been

generated with Vbfnlo.

above the top-quark pair threshold. It is set to 172.4 GeV according to the current

world average [38].

The W- and Z-boson widths have been calculated in the program via tree-level

formulas with one-loop QCD corrections for the hadronic partial widths. For Higgs

boson decays, approximate formulas are used which incorporate running bottom-

quark mass effects and off-shell effects in Higgs decays to weak bosons. However,

Higgs boson widths computed in Vbfnlo have been checked against results from

Hdecay, a program which calculates Higgs widths and branching ratios including

all higher order QED and QCD corrections available at the moment [63, 64]. The

widths agree up to a Higgs mass of 300 GeV at the few percent level and even for

mH = 400 GeV results only differ by 8%. The total Higgs decay widths and also

the branching ratios used for the following plots are given in Figs. 5.1 and 5.2. In

particular for mH = 120 GeV, the resulting widths for all massive vector bosons are

ΓW = 2.0994 GeV , ΓZ = 2.5096 GeV , ΓH = 0.004411 GeV . (5.2)

As default value for the renormalization and factorization scale the fixed scale,

µ = µF = µR = 3 · mW has been chosen. If not specified otherwise, CTEQ6M
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Figure 5.2: Higgs branching ratios under variation of the Higgs mass. The plot has

been generated with Vbfnlo.

parton distributions with αs(mZ) = 0.118 have been applied for the NLO calcu-

lation and CTEQ6L1 pdfs have been used for LO predictions [62]. All fermions

are treated as massless and contributions involving bottom and top quarks are not

considered. The CKM matrix is approximated by a unit matrix throughout, which

is appropriate when neglecting fermion mass effects in a neutral Drell-Yan type pro-

cess, as has been pointed out in Chapter 3.

In order to keep most of the cross section only minimal cuts have been applied to

the final state leptons. This means that besides a cut on the minimal transverse

momentum and the maximal rapidity of the charged leptons, it is only required

that the invariant di-lepton mass, mℓ+ℓ−, of any combination of oppositely charged

leptons is larger than 15 GeV. Thus virtual photon singularities in γ∗ → ℓ+ ℓ− at

low mℓ+ℓ− are avoided. Specifically,

pTℓ
> 10 GeV, |yℓ| < 2.5, mℓ+ℓ− > 15 GeV, (5.3)

is required in all subsequent figures.
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All results given here have been calculated for three different lepton families in the

final state, i.e. interference terms due to identical particles have been neglected. Phe-

nomenologically more interesting are the cases of final states with electrons and/or

muons.

In the case of WWZ production, there are eight different final states with leptons

of the first two families only,

pp → νe e+ e− ν̄e e− e+ + X,

pp → νe e+ e− ν̄e µ− µ+ + X,

pp → νe e+ µ− ν̄µ e− e+ + X,

pp → νe e+ µ− ν̄µ µ− µ+ + X,

pp → νµ µ+ e− ν̄e e− e+ + X,

pp → νµ µ+ e− ν̄e µ− µ+ + X,

pp → νµ µ+ µ− ν̄µ e− e+ + X,

pp → νµ µ+ µ− ν̄µ µ− µ+ + X.

(5.4)

Neglecting interference terms due to identical particles in the final state, the cross

section for all of these processes is the same. Therefore, results for the WWZ

production have been multiplied with a combinatorial factor of eight in all figures.

In the case of the ZZW+ process, six different final states with electrons and muons

in the final state are possible,

pp → e− e+ e− e+ νe e+ + X,

pp → e− e+ e− e+ νµ µ+ + X,

pp → e− e+ µ− µ+ νe e+ + X,

pp → e− e+ µ− µ+ νµ µ+ + X,

pp → µ− µ+ µ− µ+ νe e+ + X,

pp → µ− µ+ µ− µ+ νµ µ+ + X.

(5.5)

However, for both Z-bosons decaying to electrons or both decaying to muons, the

cross sections only amount to one half of the cross section of processes with three
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Figure 5.3: Feynman graphs for the Higgs contribution in a) the WWZ production

and b) the ZZW production.

different families in the final state. The same is true for the ZZW− production.

Hence, results for the ZZW processes have been multiplied with a combinatorial

factor of four in all figures. A more detailed explanation for these combinatorial

factors is given in Appendix B.

5.2 Higgs mass dependence of the cross sections

The cross sections of the processes discussed here heavily depend on the assumed

Higgs mass. Since the mass of all fermions has been set to zero in the calculations

and Higgs-fermion-fermion couplings in the SM are proportional to the fermion mass

itself, Feynman graphs involving Hqq̄ and Hℓ+ℓ− vertices do not contribute to the

cross sections. Concerning vector bosons, only HWW and HZZ couplings, which

are proportional to the vector boson mass squared, appear at the leading order.

Therefore, the only diagrams with an intermediate Higgs boson are those given in

Fig. 5.3a for WWZ and in Fig. 5.3b for ZZW production.

In Fig. 5.3a, the Higgs boson decays into two W-bosons, and in Fig. 5.3b into two

Z-bosons. For a Higgs mass above twice the vector boson mass, these vector bosons

can become on-shell. Thus, for the W+W−Z case, one expects a maximum of the

cross sections slightly above mH = 2 · mW and slightly above mH = 2 · mZ for the

ZZW− and ZZW+ production modes. For low Higgs masses, on the other hand, i.e.

mH < mV , almost no contribution of the Higgs graph is anticipated, because neither

of the two vector bosons can be produced on-shell, hence the probability to find two

vector bosons with very small invariant masses is quite low. With increasing Higgs

mass, one vector boson can become on-shell, leading to larger and larger effects of

the Higgs graph, until both vector bosons can become on-shell. However, once the

Higgs mass has passed the vector boson pair threshold, the importance of Higgs

contributions decreases again with increasing Higgs masses. This behavior is due to
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the fact that the Higgsstrahlung cross section σ(qq̄ → HV ), itself decreases as the

Higgs mass goes further up. Finally, for very large Higgs masses almost no Higgs

contribution is expected.

In Fig. 5.4 exactly this behavior is confirmed for the W+W−Z cross section: For

small Higgs masses below mH ≤ mW , no effect of the Higgs graph is observed.

As the Higgs mass becomes larger, the LO and NLO cross sections increase. At

about 160 GeV there is a pronounced maximum and for even larger Higgs masses

the cross section decreases again. Finally, at the upper end of the plotted curve at

mH = 400 GeV, the impact of the Higgs contribution is almost zero.

Although the two curves for the LO and the NLO cross sections show qualitatively

the same features, quantitatively there is a difference between them. This discrepan-

cy is visualized in Fig. 5.5, where the corresponding K-factor, defined as the ratio of

NLO cross section divided by LO cross section, is plotted. For very small and very

large Higgs masses with virtually zero Higgs contribution, the K-factor is maximal

and amounts to K ≃ 2.1. Around the maximum of the cross section, on the other

hand, Higgs graphs lead to a sizeable enhancement of the cross section, but the

K-factor is minimal with K ≃ 1.5. These large differences result from the fact that

the QCD corrections to the Higgs contribution itself are only in the range of 30% of

the LO cross section [65–69]. Thus, the more dominant the Higgs contribution, the

closer is the K-factor to K ≃ 1.3.

In the case of the ZZW processes, a somewhat different Higgs mass dependence of

the LO as well as NLO cross sections is observed. The new features arising thereby

are illustrated in Fig. 5.6 by means of the ZZW+ production. Although the overall

shape is the same as already shown for W+W−Z production, besides the global

maximum at about mH = 2 · mZ a local minimum slightly above a Higgs mass of

160 GeV is found. This minimum is connected with a rise in the total Higgs decay

width. At 160 GeV, the H → WW partial decay width becomes large, because both

W-bosons can then be on-shell. Thus, the total decay width is strongly enhanced

as depicted in Fig. 5.1. Since the Higgs width enters in the calculation of the

ZZW+ cross section in the denominator, a large Higgs width leads to a smaller cross

section. However, exactly the same shape is observed for the H → ZZ branching

ratio, plotted in Fig. 5.2. In fact, the cross section for the Higgs contribution to the

on-shell ZZW production could be reproduced by calculating the process pp → HW

and multiplying the result with the branching ratio of H → ZZ. Regarding it that

way, the shape of the Higgs mass dependence is not astonishing.

Concerning K-factors, the features already observed in WWZ production also hold
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Figure 5.4: Higgs mass dependence of the cross section at LO and NLO for the

W+W−Z production at the LHC within the cuts of Eq. (5.3). The plotted cross

sections effectively include the branching ratios of the W- and Z-bosons for decays

into electrons and/or muons.
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Figure 5.5: Higgs mass dependence of the K-factor for W+W−Z production at the

LHC within the cuts of Eq. (5.3).
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Figure 5.7: Higgs mass dependence of the K-factor for ZZW+ production at the

LHC within the cuts of Eq. (5.3).
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for the ZZW processes as shown in Fig. 5.7. In more detail, in the ZZW+ production,

the maximal K-factor for Higgs masses with almost no Higgs contribution to the

cross section is K ≃ 2.2. For large cross sections, i.e. large Higgs graph effects, on

the other side, the K-factor is minimal and only amounts to K ≃ 1.6. Therefore,

K-factors for ZZW+ production are in total a little bit larger compared to the ones

in the WWZ production.

Being a related process, the behavior found for the ZZW− production is very similar

to the one found in ZZW+ production concerning cross sections as well as K-factors.

Specifically, the LO and NLO cross sections reflect the Higgs branching ratio of

H → ZZ and the Higgs contribution leads to a reduction of the K-factor.

5.3 Scale dependence

A very important topic in the calculation of NLO corrections is the estimate of the

remaining theoretical uncertainties due to higher order corrections. In the majority

of calculations, the difference of the cross section under variation of the factorization

and renormalization scale is considered since these scales are unphysical and the real

cross section should not depend on the choice of them. In the ideal case, the scale

dependence of the leading order cross section is larger than the scale dependence of

the next-to-leading order cross section, which is larger than the scale dependence

of the next-to-next-to-leading order cross section and so on. In this sense, the scale

dependence can, thus, be taken as a measure of the precision of the prediction.

Unfortunately, this estimate merely gives an indication and by no means can be

regarded as the true theoretical uncertainty on the cross section and other observ-

ables. Nonetheless, it is worthwhile to analyze the scale dependence for the NLO

cross section and try to give at least a rough picture on the remaining uncertainty

due to neglected higher order corrections. This will be done in this section for both

the ZZW and the WWZ production modes.

In Figs. 5.8, 5.9, and 5.10, the factorization (µF ) and renormalization scale (µR)

dependence of the LO and the total NLO cross section is shown for all the different

processes under investigation. At LO, triple vector boson production is a purely

electroweak process and hence no renormalization scale dependence appears in the

calculation. Therefore, the scale variation is only due to the variation of the fac-

torization scale in the parton distribution functions. The small variation at LO can

thus be explained by the fact that the pdfs are determined in a Feynman-x range of

small factorization scale dependence. At NLO, the dependence on the scales is more

complicated. Since the factorization scale dependence is quite small, the dependence
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Figure 5.8: Scale dependence of the LO and NLO cross section for 4-lepton final

states within the cuts of Eq. (5.3). Variation of the renormalization and/or the

factorization scale for the W+W−Z production.

under variation of µ = µR = µF is almost completely dominated by the dependence

on the renormalization scale and shows the expected αs(µR) dependence, which

means that for large scales cross sections are smaller.

For a more detailed analysis, the different contributions to the total NLO cross sec-

tion are shown in Figs. 5.11 and 5.12 for the example of W+W−Z + X production.

A qualitatively similar behavior is found for all triple vector boson processes investi-

gated here. In Fig. 5.11, the finite part of the virtual contributions (the M̃V term in

Eq. (3.27)), combined with the Born squared terms (including the LO contribution),

shows a remarkably small dependence under simultaneous variation of the renorma-

lization and the factorization scale. This can be understood by a comparison with

the factorization scale induced LO variation given in Fig. 5.9. Under variation of

µF , the virtual contribution shows the same behavior as the LO cross section, which

means that the cross section decreases for small scales. Under variation of µR, on

the other hand, the finite part of the virtual contribution increases for small scales,

due to the increase in αs. These two opposing behaviors cancel to some extent and

lead to the observed curve in Fig. 5.11.

For the subtracted real emission contributions and the finite collinear remnants,
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for pp → W+W−Z +X production at the LHC within the cuts of Eq. (5.3). The
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the analysis of the scale dependence is somewhat more involved, since the finite

collinear terms depend non-trivially both on the factorization and on the renor-

malization scale. Moreover, these contributions include gluon-induced subprocesses

like ug → WWZ u in addition to the quark-induced ones such as uū → WWZ g.

The gluon-induced finite collinear terms are exactly given by the A(x) terms in the

modified parton distribution functions in Eq. (3.25). In Fig. 5.12, the real emis-

sion contributions and the finite collinear remnants are separately shown for each of

these classes of subprocesses. The variable creal entering the formulas of the quark

induced finiter collinear remnants in Eq. (3.25) is chosen as creal = π2

3
− 5.

In the finite collinear terms, the quark- and gluon-induced contributions show oppo-

site behavior under variation of the scale. Due to these cancellations, the resulting

scale dependence and the size of their overall contribution is quite small. However,

the real emission contributions arising from the quark-induced subprocesses are al-

most constant for the scales shown here, while a comparatively large scale variation

is observed in the real emission terms of the gluon-induced contributions. These

are responsible for the large scale dependence of the overall real emission term in

Fig. 5.11. This is not surprising since gluon-initiated subprocesses open up for the

first time at NLO, and therefore, a LO-type scale dependence is expected.

Gluon-induced subprocesses are also responsible for a large fraction of the K-factor.

For instance, the K-factor for ZZW+ production at µF = µR = 3 mW is K = 2.1,

whereas the K-factor without gluon-initiated subprocesses only amounts to K = 1.5.

In the analysis presented here also other scale choices, as for example the invariant

three vector boson mass and the minimal ET of the three vector bosons have been

tested. However, neither in the cross section nor in the distributions an improved

scale dependence has been found. This again can be understood since the domina-

ting scale dependence comes from the gluon-induced subprocesses, which have to be

considered as LO processes.

5.4 Phase space dependence of the K-factor

In the program described in this thesis, observables for real final state particles, i.e.

charged leptons and jets, are calculated. These are available in form of differential

distributions. Neutrinos on the other hand, can not directly be detected in a detector

and lead to missing transverse momentum. For all processes studied, the size of

NLO QCD corrections shows a strong phase-space dependence. Thus differential

K-factors, defined as the NLO differential cross section divided by the LO differential

cross section,
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2
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effectively include the branching ratios of the W- and Z-bosons for decays into

electrons and/or muons.

K(x) =
dσNLO/dx

dσLO/dx
, (5.6)

can show a considerable variation.

The Higgs contribution is one reason for such a strong phase space dependence. In

Fig. 5.13, for instance, the invariant ZZ mass distribution in ZZW+ production is

shown for a Higgs boson mass of mH = 170 GeV. For all three different scale choices

µF = µR = 1
2
× (3 mW ), (3 mW ), and 2 × (3 mW ), the same characteristic shape

of differential distributions is observed. In particular, the Higgs boson contribution

gives rise to the narrow peak at about mZZ = 170 GeV. At tree-level, the only

Feynman graph with a Higgs boson exchange is the one depicted in Fig. 5.3b, where

the Higgs boson decays into two Z-bosons. This graph dominates near mZZ = mH ,

i.e. when the intermediate Higgs boson becomes on-shell. At LO the different curves
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Figure 5.14: The differential K-factor ratio as defined in Eq. (5.6) is shown for three

different scale choices.

corresponding to the three scale choices lie almost on top of each other and scale

variations are at the level of a few percent only. At NLO however, the variation

with the three different scales depends on the phase space region. For values of mZZ

near the Higgs resonance, the scale dependence is around 1% and thus very small.

For large values of mZZ on the other hand, increasing and lowering the scale by a

factor of two can even lead to changes in the differential cross section of about 10%.

Hence, the scale dependence at NLO is reduced in the regions where the Higgs graph

dominates.

In Fig. 5.14, the differential K-factor is plotted. Since the QCD corrections to the

Higgs boson contribution itself increase the cross section only by about 30% [65–69],

there is a pronounced dip in the differential K-factor at about the Higgs boson mass.

At this point the K-factor is, as anticipated, between 1.3 and 1.4 depending on the

scale choice. In other phase space regions, where the Higgs graph is less important,

the K-factor is almost twice as large. This influence of the NLO QCD corrections

on the shape of differential distributions is a very strong reason for the necessity to

include Higgs contributions into the calculations. Furthermore it gives a first hint

that for triple vector boson production at the LHC, leading order distributions can

not simply be multiplied by an overall K-factor to obtain NLO distributions.
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In Figs. 5.15, 5.16, 5.17 and 5.18, two more examples of the phase-space depen-

dence of the NLO corrections are given for W+W−Z production at mH = 120 GeV.

Figs. 5.15 and 5.16 show the transverse-momentum distribution and the K-factor of

the highest-pT charged lepton while in Figs. 5.17 and 5.18 the same for the charged

lepton of lowest-pT is depicted. Variations of the K-factor of almost 100% are ob-

served for the highest-pT lepton while for the lowest-pT lepton we have variations

up to 30% when considering “inclusive” event samples.

This pT -dependence of the K-factors can be traced to the kinematics of the real

emission contributions. The rise is mostly due to events with high pT jets which are

recoiling against the leptons. Imposing a veto on jets with pT > 50 GeV leads to a

fairly flat K-factor which, in addition, is close to unity for the lepton pT distributions

(curves labeled “with jet veto” in Figs. 5.16 and 5.18). Similar effects had previously

been observed for vector boson pair production at the LHC [24–27].

5.5 Pdf uncertainties

Another type of uncertainties apart from those coming from neglected higher order

corrections in the QCD perturbation series are due to the parton distribution func-

tions. In this work, the best fits from the CTEQ collaboration have been used for

LO and NLO calculations.

In the fit of the NLO pdfs twenty free parameters enter. In order to get an esti-

mate on the uncertainty of these sets of parton distribution functions, the CTEQ

collaboration has provided forty pdf sets which correspond to the 1σ endpoints of

the principal axes of the twenty dimensional error ellipsoid, in the twenty dimen-

sional parameter space. The estimated error on the total cross section can then be

obtained from the forty pdf sets via the formula

∆σ =
1

2

√
√
√
√

20∑

i=1

(
σ(2i − 1) − σ(2i)

)2
. (5.7)

In Fig. 5.19 the results for the LO and the NLO cross section obtained with the best

fit pdfs are plotted together with the uncertainty derived from runs with the forty

different pdf sets according to Eq. (5.7). This error estimate has been performed

for five different scales and leads to a few per cent inaccuracy. Thus the remaining

pdf uncertainty at NLO is not negligible but well below the scale uncertainty of the

NLO cross section.
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Figure 5.15: Differential cross section for the highest-pT lepton for µR = µF = 3 mW ,

µR = µF = 2 · (3 mW ), and µR = µF = 0.5 · (3 mW ) in W+W−Z production at the

LHC. The plotted cross sections effectively include the branching ratios of the W-

and Z-bosons for decays into electrons and/or muons.
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Figure 5.16: Differential K-factor, as defined in Eq. (5.6) for inclusive events without
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Figure 5.17: Differential cross section for the lowest-pT lepton for µR = µF = 3 mW ,

µR = µF = 2 · (3 mW ), and µR = µF = 0.5 · (3 mW ) in W+W−Z production at the

LHC. The plotted cross sections effectively include the branching ratios of the W-

and Z-bosons for decays into electrons and/or muons.
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Figure 5.18: Differential K-factor, as defined in Eq. (5.6) for inclusive events without

jet cuts and also for a veto on jets with pT, jet > 50 GeV.
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Figure 5.19: Estimate on the uncertainty induced by the pdfs for the W+W−Z

production at the LHC. The data obtained in this figure has been produced with

the variables and cuts given in Eqs. (5.1) and (5.3). The plotted cross sections

effectively include the branching ratios of the W- and Z-bosons for decays into

electrons and/or muons.
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Chapter 6:

Conclusions and Outlook

With the start of the LHC a trove of new data is anticipated, which can be used to

search for new physics and also to further probe the Standard Model. For the inter-

pretation of these data, precise predictions for both the desired signal processes and

backgrounds are needed, and this necessitates the calculation of next-to-leading or-

der QCD corrections. In order to determine cross sections for non-trivial acceptance

cuts, it is most useful to cast these NLO calculations into fully flexible Monte-Carlo

programs which can calculate cross sections as well as distributions.

The simulation of triple vector boson production at the LHC is important for two

reasons. These processes are a Standard Model background for new-physics searches

which are characterized by multi-lepton final states, and secondly they are sensitive

to quartic electroweak couplings.

In this thesis the results on the NLO QCD corrections to the full 2 → 6 processes

pp → νe e+ µ− ν̄µ τ− τ+, pp → e− e+ µ− µ+ ντ τ+, and pp → e− e+ µ− µ+ τ− ν̄τ or any

other combination of leptons from three distinct families are presented. All resonant

and non-resonant matrix elements including intermediate Higgs contributions as well

as the spin correlations of the final state leptons are considered in the calculation.

For simplicity, any identical lepton effects which might appear when using the re-

sults for final states with leptons from one or two generations only, are neglected.

Furthermore, the CKM matrix has been approximated by the unit matrix and any

fermion mass effects are neglected. However, the resulting error on the total NLO

cross section made by these approximations is estimated to be of the order of a few

percent only.

In order to deal with infrared divergencies arising in the real emission and the virtual

contribution, the Catani-Seymour subtraction algorithm [47,48] has been applied.

Virtual contributions are calculated using Fortran subroutines derived in Ref. [14,

57]. The four-point integrals are computed using the usual Passarino-Veltman tensor

reduction [58], whereas five-point integrals necessitate the recursion relations elabo-

rated by Denner and Dittmaier in Refs. [59, 60] in order to give numerically stable
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results. Moreover, since the evaluation of one-loop diagrams with five external legs

is quite time consuming, a trick has been applied to reduce the magnitude of the

pentagon contribution to a numerically less challenging level.

Concerning the subtracted real emission contribution, efficiency also is an issue. In

the WWZ production, the total number of real emission Feynman diagrams which

need to be calculated for one specific phase space point amounts to 4992 and to

3276 in the ZZW production modes. In addition, Born matrix elements appearing

in the subtracted dipoles are evaluated for two different kinematics. Summing them

up, 1440 graphs are computed in the WWZ case and 836 in the ZZW processes for

each phase space point. However, the time needed for the evaluation of these huge

numbers of Feynman graphs can be reduced considerably by identifying building

blocks which appear in various diagrams and only calculate them once per phase

space point.

All parts of the code have been carefully checked. In particular, LO cross sections

and distributions have been compared with MadEvent [51–53] and Helac [54–56]

for various Higgs masses. Furthermore, Ward identity tests for the virtual contribu-

tions have been implemented and the cancellation of divergences in the real emission

against the counter-terms, as given by Catani and Seymour [47,48] has been checked.

As a final and very important test, a comparison with the already published results

for the production of on-shell gauge bosons without leptonic decays of Ref. [11] has

been performed.

Although, in principle, Vbfnlo allows for the calculation of observables for the

Tevatron as well as for the LHC, in this thesis only results for the LHC have been

presented due to the smallness of cross sections at the Tevatron center of mass

energy. First determinations of cross sections, distributions and K-factors for the

LHC are then given in Chapter 5.

The scale dependence of the NLO cross section is substantially larger than the vari-

ation observed for the LO results. This can be quantified by increasing and lowering

the renormalization and factorization scale by a factor of two around µ = 3 · mW as

central value. At LO the scale dependence is very small with a variation of less than

± 1%, whereas at NLO variations of ± 5% appear. The NLO uncertainties which

are indicated by the scale dependence are, thus, typical for a NLO QCD prediction,

while the LO case must be considered as anomalously small, due to the absence of

initial-state gluon-induced subprocesses. Indeed, the tri-boson cross sections pro-

vide another example where the scale variation of a LO cross section does not give

a good estimate for the corrections due to higher order effects.
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The large K-factors (of order K = 2 and even larger in some phase space regions)

demonstrate the importance of including the NLO QCD corrections on top of the

LO predictions.

The differential K-factors for several distributions for both of these processes are

highly dependent on the Higgs boson mass. In general it is observed that the larger

the contributions from the Higgs boson are, the smaller is the K-factor. In the

case of the W+W−Z production, with µF = µR = 3 mW for instance, the K-factor

decreases from K = 1.6 for a Higgs boson mass of 120 GeV to K = 1.4 for a Higgs

boson mass of 150 GeV. At the same time the LO cross section increases by more

than a factor of two. Therefore, in all simulations, the Higgs boson contribution

has to be taken into account in order to obtain a valid prediction for the cross

sections and the K-factors. Besides these large K-factors, also a strong phase space

dependence of the size of the NLO corrections has been found which shows that a

mere multiplication of distributions by an overall K-factor is not sufficient.

Another source of uncertainties besides the ones from higher order corrections enter

the calculation in form of the parton distribution functions. In order to estimate

these uncertainties, forty different pdf sets are provided by the CTEQ collaboration.

Performing the error analysis as suggested in Ref. [62], an uncertainty of around 5%

is expected for the total NLO cross sections due to pdf errors.

Summarizing, the cross sections at NLO QCD accuracy for pp → W+W−Z + X,

pp → ZZW+ + X, and pp → ZZW− + X processes at the LHC are of the order

of 15 fb (ZZW−) to 150 fb (W+W−Z). Including the decays of the vector bosons

this corresponds to cross sections of σ(pp → ℓ−1 ℓ+
1 ℓ−2 ℓ+

2 ℓ−3 ν̄ℓ3) = 0.015 fb, σ(pp →
ℓ−1 ℓ+

1 ℓ−2 ℓ+
2 νℓ3 ℓ+

3 ) = 0.023 fb, and σ(pp → νℓ1 ℓ+
1 ℓ−2 ν̄ℓ2 ℓ−3 ℓ+

3 ) = 0.5 fb with ℓi = e, µ.

Hence, for an integrated luminosity of 300 fb−1 these results translate into a few to

a few hundred clean leptonic events. The estimated uncertainty on these numbers

stemming from approximations in the calculation, neglected higher order effects,

and parton distribution functions are in the range of 10% and thus modest.

However, due to the sizeable K-factors as large as K = 2 the effects of higher or-

der corrections still remain somewhat unclear. The only hint of the real size of

these corrections comes from the known next-to-next-to-leading order results for

the Drell-Yan production [70–74]. These suggest in most phase space regions mo-

dest modifications of the NLO results at the few percent level.
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Appendix A:

Catani-Seymour algorithm for

tri-boson production

In order to deal with the collinear and soft divergencies arising in the computation

of the real emission and virtual contributions to the total NLO cross section, the

Catani-Seymour algorithm presented in Refs. [47, 48] is used. A general outline of

this method is already given in Section 3.2.1. The purpose of this chapter, however, is

to present detailed information and exact expressions for the dipoles, the integrated

dipoles and the finite collinear terms as needed for the actual implementation into a

numerical computer program. Results are comprised in Sections A.1 through A.3. In

addition, Section A.4 lists the integrals used for the derivation of the finite collinear

terms in Section A.3.

A.1 Real emission and Catani-Seymour dipoles

In the program Vbfnlo, the real emission calculation is divided into six pieces,

which correspond to six different types of subprocesses. Two of them are subpro-

cesses with a final-state gluon and there are four subprocesses with an initial-state

gluon. Since all of them are related by crossing symmetries only one subroutine

to calculate the matrix elements is needed. The different subprocesses of the real

emission calculation are listed in the first paragraph of this section.

Furthermore, Born matrix elements with different kinematics are needed in the

calculation of the dipoles acting as local counter terms for the real emission contri-

bution. Part 2 of this section lists all necessary dipoles and covers the relevant Born

matrix elements as well as some details on the tilde kinematics. Finally, at the end

of this section a brief description on the actual implementation of the subtracted

real emission cross sections is given.
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Figure A.1: Illustration of the two quark induced subprocesses of the real emission

calculation.

A.1.1 The subprocesses in the real emission calculation

The cross section of the real emission contribution is a sum of different subprocesses.

Each of them consists of 546 Feynman diagrams in the ZZW case and 416 Feynman

diagrams in the WWZ case, respectively.

There are two kinds of subprocesses with a gluon in the final state:

a) In the first subprocess, q(pa) Q̄(pb) → VVV + g(pf), a quark from the first

proton with momentum pa = xaP1 and an antiquark from the second proton

with momentum pb = xbP2 interact, producing six leptons and one gluon. This

final-state gluon can either be emitted from the initial-state quark q(pa), the

initial-state antiquark Q̄(pb), or from an internal quark line. Examples for all

three possibilities are given in Fig. A.1a. The last case does not lead to any

divergencies, whereas a counter term is needed for each of the two other cases.

b) Some sample diagrams for the second subprocess with a gluon in the final

state, Q̄(pa) q(pb) → VVV + g(pf), are depicted in Fig. A.1b. In this case, the

initial- and final-state particles are the same as before. The only difference is

that the antiquark Q̄(pa), is part of the first proton, whereas the quark q(pb)

is emitted from the second proton. The matrix elements of this subprocess
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can easily be calculated with the same routine as before by interchanging the

momenta of the initial-state particles. For the cross section, however, it is of

fundamental importance, that the antiquark with momentum pa is part of the

first proton and the quark with momentum pb is part of the second proton.

The other subprocesses are gluon induced processes with a quark or an antiquark

in the final state. Here, the gluon can either be part of the first or the second pro-

ton. Further, the second initial-state parton can either be a quark or an antiquark.

Therefore, there are four different types of subprocesses with a gluon in the initial

state:

c) The first gluon induced subprocess g(pa) q(pb) → VVV + Q(pf) is schemati-

cally given in Fig. A.2c. Here a gluon g(pa) stemming from the first proton

interacts with a quark q(pb) coming from the second proton. The final-state

quark can become collinear to the initial-state gluon. This is the only source

of infrared divergencies for this class of diagrams. Therefore, only one dipole

is needed as counter term. The matrix elements of this subprocess can be ob-

tained by crossing from the matrix elements of the processes with a final-state

gluon. These matrix elements are then folded with the corresponding gluon

and quark distribution functions.

d) The second subprocess with an initial-state gluon, g(pa) Q̄(pb) → VVV+q̄(pf),

has similar features as the previous one. The only difference is that the quark

q(pb) is replaced by an antiquark Q(pb) (See Fig. A.2d). Again, only one

counter term is needed to absorb the infrared divergencies and the matrix

elements can be obtained with the same subroutine as above by a simple

crossing.

e) Sample diagrams for the third subprocess with a gluon in the initial state,

q(pa) g(pb) → VVV + Q(pf) are given in Fig. A.2e. In this case the gluon is

part of the second proton and the quark stems from the first proton. All other

features of this process are the same as for the gluon induced subprocesses

described before.

f) The last subprocess, Q̄(pa) g(pb) → VVV + q̄(pf), again needs only one dipole

to absorb infrared divergencies. Compared to the previous subprocess, the

quark q(pa) is replaced by an antiquark Q̄(pa). Some sample diagrams for this

case are shown in Fig. A.2f.

The total cross section of the real emission contribution is obtained by summing over

all different subprocesses. These consist of the subprocesses given in Figs. A.1 and
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Figure A.2: Illustration of the four gluon induced subprocesses of the real emission

calculation.
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A.2, if all possible flavor combinations are taken into account. Choosing the CKM

matrix to be the unit matrix and only taking into account light quarks, where the

massless approximation is reasonable, we find for the W+W−Z production q = Q

with q = u, d, c, s. For the two charged triple vector boson processes on the other

hand, the flavor changes once along the quark line, thus, q = u, c and Q = d, s for

the ZZW+ production and q = d, s and Q = u, c for the ZZW− production. Hence,

there are in total 12 subprocesses for the ZZW processes and 24 in case of the WWZ

production.

A.1.2 Catani-Seymour dipoles

For all different types of subprocesses, there are corresponding dipoles. The subpro-

cesses depicted in Fig. A.1 need two dipoles absorbing their infrared divergencies.

For the subprocesses illustrated in Fig. A.2, i.e. the ones with a gluon in the initial

state, one counter term is sufficient. The corresponding dipoles for the different

types of subprocesses discussed in the previous section are then given below:

a) q(pa) Q̄(pb) → VVV + g(pf)

The first subprocess given in Fig. A.1a, has several sources of infrared divergencies.

First, the gluon can become soft and second it can be collinear to the quark or the

antiquark. Hence, two counter terms corresponding to emission of the gluon from

the upper incoming quark or the lower incoming antiquark are needed.

The dipole for the quark being the emitter and the antiquark the so-called spectator,

is given by:

Dq(pa)g(pf ),Q̄(pb) =
1

2pa · pf

1

x
8π αs CF δss′

[
2

1 − x
− (1 + x)

]

·
∣
∣
∣ M qQ̄

Born(k̃1, ...k̃6; p̃a, pb)
∣
∣
∣

2

.

(A.1)

Here, CF = 4
3

is the color factor, αs the strong coupling constant, and the Born

matrix element appearing here is the one with a quark stemming from the first

proton and the antiquark from the second proton, i.e. M(q(p̃a) Q̄(pb) → VVV).

It is evaluated with a special tilde kinematic, which transforms an (m+1)-particle

phase space into an m-particle phase space. This is achieved by choosing,
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x = 1 − pf · (pa + pb)

pa · pb

, p̃a = xpa, p̃b = pb, p̃f = 0, (A.2)

with pf being the momentum of the final-state gluon as indicated in Fig. A.1a.

In addition to that, all the momenta of the final-state leptons k1, ..., k6 have to be

transformed in order to guarantee energy momentum conservation:

k̃µ
j = kµ

j − 2kj · (K + K̃)

(K + K̃)2
(K + K̃)µ +

2kj · K
K2

K̃µ (A.3)

with K and K̃ defined as,

Kµ = pµ
a + pµ

b − pµ
1 , K̃µ = p̃µ

a + pµ
b . (A.4)

In the case of the antiquark being the emitter and the quark being the spectator,

the dipole is given by:

DQ̄(pb)g(pf ),q(pa) =
1

2pb · pf

1

x
8παs CF δss′

[
2

1 − x
− (1 + x)

]

·
∣
∣
∣ M qQ̄

Born(k̃1, ...k̃6; pa, p̃b)
∣
∣
∣

2

.

(A.5)

Here the parameter x is the same as above, since it is invariant under interchange of

pa with pb. However, the matrix element appearing in Eq. (A.5) has to be evaluated

with a different tilde kinematic, defined by choosing

p̃a = pa, p̃b = xpb. (A.6)

In addition, all the other momenta of the final-state particles have to be rescaled

according to Eq. (A.3) but with a different K̃, given by:
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K̃µ = pµ
a + p̃µ

b . (A.7)

The two different kinematics defined until now are the only ones appearing in the

calculation of dipoles for Drell-Yan type processes such as the tri-boson production.

b) Q̄(pa) q(pb) → VVV + g(pf)

The second subprocess with a final-state gluon is sketched in Fig. A.1b. The anti-

quark is in this case a constituent of the first proton and the quark stems from the

second proton. As in the previous case two dipoles are needed to absorb infrared

divergencies arising in the calculation of matrix elements with emission of a gluon

from either the upper incoming antiquark or the lower incoming quark. Specifically,

they are:

DQ̄(pa)g(pf ),q(pb) =
1

2pa · pf

1

x
8π αs CF δss′

[
2

1 − x
− (1 + x)

]

·
∣
∣
∣ M Q̄q

Born(k̃1, ..., k̃6; p̃a, pb)
∣
∣
∣

2
(A.8)

and

Dq(pb)g(pf ),Q̄(pa) =
1

2pb · pf

1

x
8π αs CF δss′

[
2

1 − x
− (1 + x)

]

·
∣
∣
∣ M Q̄q

Born(k̃1, ..., k̃6; pa, p̃b)
∣
∣
∣

2

.

(A.9)

They only differ from the ones given in Eqs. (A.1) and (A.5) by the matrix elements.

In contrast to the Born matrix elements above, here the ones with an antiquark

coming from the first proton and a quark from the second proton M(Q̄(p̃a) q(pb) →
VVV) and M(Q̄(pa) q(p̃b) → VVV), are needed. The tilde kinematics are exactly

the same already calculated before. That is, if a gluon is emitted from the upper

line, the first transformation, Eqs. (A.2, A.3, A.4), is the one needed, whereas, if a

gluon is emitted from the lower line, the second, Eqs. (A.6, A.7), is needed.
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c) g(pa) q(pb) → VVV + Q(pf)

The first subprocess with a gluon in the initial state is sketched in Fig. A.2a. Here,

only one dipole is necessary to match the singular behavior. Evaluating the formulas

given in Refs. [47,48] for the triple vector boson production at hadron colliders, one

obtains:

Dg(pa)Q(pf ),q(pb) =
1

2pa · pf

1

x
8π αs TR δss′ [1 − 2x (1 − x)]

·
∣
∣
∣ M Q̄q

Born(k̃1, ..., k̃6; p̃a, pb)
∣
∣
∣

2

,

(A.10)

with TR = 1
2
. The dipole is again proportional to the Born matrix elements, appear-

ing already in Eq. (A.8). In order to speed up the calculation, the numerical results

for these matrix elements are stored and can then be reused for the evaluation of

this dipole.

d) g(pa) Q̄(pb) → VVV + q̄(pf )

The counter term for the subprocess, depicted in Fig. A.2d is given by:

Dg(pa)q̄(pf ),Q̄(pb =
1

2pa · pf

1

x
8π αs TR δss′ [1 − 2x (1 − x)]

·
∣
∣
∣ M qQ̄

Born(k̃1, ...k̃6; p̃a, pb)
∣
∣
∣

2

.

(A.11)

The Born matrix elements needed here have already been calculated for the dipole

in Eq.(A.1).

e) q(pa) g(pb) → VVV + Q(pf )

The dipole taking care of divergencies arising in graphs like Fig. A.2e is given by:

Dg(pb)Q(pf ),q(pa) =
1

2pb · pf

1

x
8π αs TR δss′ [1 − 2x (1 − x)]

·
∣
∣
∣ M qQ̄

Born(k̃1, ...k̃6; pa, p̃b)
∣
∣
∣

2

.

(A.12)
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It is very similar to the one above. Since the gluon now is part of the second proton,

the tilde kinematic with p̃a = pa and p̃b = x pb is needed. Again, the Born matrix

elements already appeared before in the calculation of Eq. (A.5) and are reused.

f) Q̄(pa) g(pb) → VVV + q̄(pf )

Finally, the dipole to get rid of divergencies appearing in the subprocess shown in

Fig. A.2f, can be obtained from the one given in Eq. (A.10) by interchanging a ↔ b:

Dg(pb)q̄(pf ),Q̄(pa) =
1

2pb · pf

1

x
8π αs TR δss′ [1 − 2x (1 − x)]

·
∣
∣
∣ M Q̄q

Born(k̃1, ...k̃6; pa, p̃b)
∣
∣
∣

2

.

(A.13)

The Born matrix elements already appeared in Eq. (A.9) and are not reevaluated

for this dipole. By always storing and reusing matrix elements, a quite significant

increase in speed is achieved in the program.

A.1.3 Implementation of the real emission and subtraction

terms

The cross section of the subtracted real emission contribution is obtained by inte-

grating the difference between the real emission matrix elements and the correspon-

ding dipole terms over the phase space. That means for the example of the first

subprocess, the subtracted real emission cross section is given by:

σReal
(
q(pa) Q̄(pb) → VVV + g(pf)

)

=

∫ 1

0

dxa

∫ 1

0

dxb

∫

dφ7(pa + pb → k1, ...k6, pf)
1

ŝ

· fq/P (xa; µ
2
F ) fQ̄/P (xb; µ

2
F )

·
[ ∣
∣M

(
q(pa) Q̄(pb) → VVV + g(pf)

) ∣
∣2

−Dq(pa)g(pf ),Q̄(pb) −DQ̄(pb)g(pf ),q(pb)
]

.

(A.14)
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As has already been pointed out, two dipole terms are needed here. For the Q̄q-

initiated subprocesses the formula for the subtracted real emission cross section is

very similar.

In the case of the gluon induced subprocesses, the contribution is alike, but only one

counter term has to be subtracted from the real emission matrix element squared.

The subtracted real emission cross section for the first gluon induced subprocess is

then given by:

σReal (g(pa) q(pb) → VVV + Q(pf ))

=

∫ 1

0

dxa

∫ 1

0

dxb

∫

dφ7(pa + pb → k1, ...k6, pf)
1

ŝ

· fg/P (xa; µ
2
F ) fQ̄/P (xb; µ

2
F )

·
[

|M ( g(pa) q(pb) → VVV + Q(pf ) ) |2 −Dg(pa)Q(pf ),q(pb)
]

.

(A.15)

Again, analogous expressions are obtained for the other gluon induced subprocesses.

Up to now, only the calculation of subtracted real emission cross sections for proton-

proton interactions has been discussed. However, the procedure described in this

Section is completely general in the way, that by simple taking antiproton parton

distribution functions instead of proton pdfs, the protons can be interchanged by

their antiparticles.

A.2 Virtual contribution and the integrated dipole

The infrared divergencies of the virtual contribution are analytically canceled against

the integrated dipole. In the notation of Catani and Seymour this cancellation reads,

σ
NLO,{6−particles}
ab (pa, pb)

=

∫

dΦ6

[
dσV

ab(pa, pb) + dσB
ab(pa, pb) ⊗ I

]

ǫ=0

=

∫

dΦ6

(

2 Re [ M1−loop M∗
Born ] + 〈 pa, pb |I(ǫ) | pa, pb 〉

)

,

(A.16)

with the insertion operator I defined as:
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I(pa, pb; ǫ) = −αs

2π

1

Γ(1 − ǫ)

∑

I

1

T 2
I

VI(ǫ)
∑

J 6=I

TI · TJ

(
4πµ2

2pI · pJ

)ǫ

= −αs

2π

1

Γ(1 − ǫ)

[ 1

T 2
a

Va(ǫ) (Tb · Ta)

(
4πµ2

2pb · pa

)ǫ

+
1

T 2
b

Vb(ǫ) (Tb · Ta)

(
4πµ2

2pb · pa

)ǫ ]

.

(A.17)

Here, indices a and b refer to the (anti) quarks in the initial state. No gluons in the

initial state appear in this expressions for the virtual counter term.

Thus, inserting

Vq(ǫ) = Vq̄(ǫ) = T 2
q

(
1

ǫ2
− π2

3

)

+ γq
1

ǫ
+ γq + Kq + O(ǫ) (A.18)

with γq and Kq defined as

γq = γq̄ =
3

2
CF , Kq = Kq̄ =

(
7

2
− π2

6

)

CF , (A.19)

the final result for the insertion operator in dimensional regularization up to O(ǫ)

is then given by:

〈 pa, pb | I(ǫ) | pa, pb 〉

=
αs

2π

1

Γ(1 − ǫ)
CF

(
4πµ2

Q2

)ǫ [
2

ǫ2
+

3

ǫ
− π2 + 10

]

· |MB|2

=
αs

2π
CF

(
4πµ2

Q2

)ǫ

Γ(1 + ǫ)

[
2

ǫ2
+

3

ǫ
− π2 + 10 − π2

3

]

· |MB|2

=
αs

2π
CF

(
4πµ2

Q2

)ǫ

Γ(1 + ǫ)

[
2

ǫ2
+

3

ǫ
+ 8 − 4 π2

3
+ cvirt

]

· |MB|2.

(A.20)
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In these expressions, the partonic center of mass energy squared Q2 = (pa + p2
b) =

2pa ·pb is used and |MB|2 denotes the full Born matrix element squared, i.e. the sum

of qQ̄-initiated matrix elements and Q̄q-initiated ones squared. The variable cvirt

depends on the regularization procedure. In dimensional regularization it is given

by cvirt = 2 and in dimensional reduction this factor is given by cvirt = 1.

The ǫ-poles in Eq. (A.20) are then canceled against the virtual contributions given

in Eq. (3.27) as described in Section 3.2.4.

A.3 Additional finite collinear terms

Collinear divergencies, arising if the angle between emitted parton and initial-state

parton becomes too small, are absorbed into the parton distribution functions leav-

ing a finite remainder. In the algorithm proposed by Catani and Seymour, they are

collected in the formula:

∫ 1

0

dx
[

σ̂
NLO,{0}
ab (x, xpa, pb; µ

2
F ) + σ̂

NLO,{0}
ab (x, pa, xpb; µ

2
F )
]

=
∑

a′

∫ 1

0

dx
[

dσB
a′b(xpa, pb) ⊗ (K + P)aa′

(x)
]

+
∑

b′

∫ 1

0

dx
[

dσB
ab′(pa, xpb) ⊗ (K + P)bb′(x)

]

=
∑

a′

∫ 1

0

dx 〈 xpa, pb |(Kaa′

(x) + Paa′

(xpa, x; µ2
F )) | xpa, pb 〉

+
∑

b′

∫ 1

0

dx 〈 pa, xpb |(Kbb′(x) + Pbb′(xpb, x; µ2
F )) | pa, xpb 〉.

(A.21)

For all the different types of subprocesses given in Section A.1, the corresponding

finite collinear terms are developed in this section. At the end of the section compact

formulas of these additional finite collinear contributions are given.

A.3.1 Quark induced subprocesses

Both types of subprocesses with emission of a gluon from the quark lines necessitate

two different dipoles in order to absorb their divergencies. Correspondingly two finite

collinear terms need to be calculated. For the first type of diagrams with a gluon
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emitted from the upper line, q(pa) Q̄(pb) → VVV + g(pf), the general expression for

the finite remainder in the notation of Catani and Seymour is:

〈 xpa, pb |
(
Kqq(x) + Pqq(xpa, x; µ2

F )
)
| xpa, pb 〉

=
αs

2π
CF 〈 xpa, pb | xpa, pb 〉 ·

{

1 − x − (1 + x) ln

(
(1 − x)2

x

)

+ δ(1 − x)

(
2π2

3
− 5

)

+

(
2

1 − x
ln (

1 − x

x
)

)

+

+

(
2

1 − x
ln (1 − x)

)

+

−
(

1 + x2

1 − x

)

+

ln

(
µ2

F

2xpa · pb

) }

.

(A.22)

Taking the convolution with the parton distribution functions into account and

performing a variable substitution (z = xxa) one obtains:

∫ 1

0

dxa

∫ 1

0

dxb fq/p (xa; µ
2
F ) fQ̄/p (xb; µ

2
F )

∫ 1

0

dx 〈 xpa, pb | xpa, pb 〉
αs

2π
CF

{

...
}

=

∫ 1

0

dxb

∫ 1

0

dz fQ̄/p (xb; µ
2
F ) 〈 zP1,in, pb | zP1,in, pb 〉

∫ 1

0

dx

x
fq/p

(z

x
; µ2

F

) αs

2π
CF

{

1 − x − (1 + x) ln

(
(1 − x)2

x

)

+ δ(1 − x)

(
2π2

3
− 5

)

+

(
2

1 − x
ln

(
1 − x

x

))

+

+

(
2

1 − x
ln (1 − x)

)

+

−
(

1 + x2

1 − x

)

+

ln

(
µ2

F

Q2

) }

θ(x − z)

(A.23)

The variable Q2 appearing in this expression is the partonic center of mass energy

in the new variables Q2 = 2 z P1,in · pb. The x-integration can then partly be carried

out and the + - distributions defined as
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∫ 1

0

dx g(x) f(x)+ θ(x − z)

=

∫ 1

z

dx ( g(x) − g(1) ) f(x) −
∫ z

0

dx g(1) f(x)

(A.24)

can be eliminated using Eqs. (A.41), (A.43), and (A.44) in Section A.4,

∫ 1

0

dx

x
fq/p

(z

x
; µ2

F

) {

1 − x − (1 + x) ln

(
(1 − x)2

x

)

+ δ(1 − x)

(
2π2

3
− 5

)

+

(
2

1 − x
ln

(
1 − x

x

))

+

+

(
2

1 − x
ln (1 − x)

)

+

−
(

1 + x2

1 − x

)

+

ln

(
µ2

F

Q2

) }

θ(x − z)

=

∫ 1

z

dx

x

(

fq/p

(z

x
; µ2

F

)

− x fq/p

(
z; µ2

F

))

[
2

1 − x
ln (1 − x)2 +

2

1 − x
ln

(
Q2

µ2
F

)]

+

∫ 1

z

dx

x
fq/p

(z

x
; µ2

F

) [ 2

1 − x
ln (1 − x)2 +

2

1 − x
ln

(
Q2

µ2
F

)]

+ fq/p

(
z; µ2

F

) [ 3

2
ln

(
Q2

µ2
F

)

+ 2 ln (1 − z) ln

(
Q2

µ2
F

)

+ 2 ln2 (1 − z) +
π2

3
− 5
]

.

(A.25)

For the emission of a gluon from the lower line, the expression which has to be

computed is

92



〈 pa, xpb |
(

KQ̄Q̄(x) + PQ̄Q̄(xpb, x; µ2
F )
)

| pa, xpb 〉

=
αs

2π
CF 〈 pa, xpb | pa, xpb 〉 ·

{

1 − x − (1 + x) ln

(
(1 − x)2

x

)

+ δ(1 − x)

(
2π2

3
− 5

)

+

(
2

1 − x
ln

(
1 − x

x

))

+

+

(
2

1 − x
ln (1 − x)

)

+

−
(

1 + x2

1 − x

)

+

ln

(
µ2

F

2 pa · x pb

) }

.

(A.26)

Thus the relevant Born matrix element is different. Otherwise the expression is the

same as before. Taking the convolution with the parton distribution functions into

account and performing a variable substitution (z̄ = xxb) one obtains:

∫ 1

0

dxa

∫ 1

0

dxb fq/p (xa; µ
2
F ) fQ̄/p (xb; µ

2
F )

∫ 1

0

dx 〈 pa, xpb | pa, xpb 〉
αs

2π
CF

{

...
}

=

∫ 1

0

dxa

∫ 1

0

dz̄ fq/p (xa; µ
2
F ) 〈 pa, z̄P2,in | pa, z̄P2,in 〉

∫ 1

0

dx

x
fQ̄/p

( z̄

x
; µ2

F

) αs

2π
CF

{

...
}

θ(x − z̄).

(A.27)

The x-integration is exactly the same already performed in Eq. (A.25) with z re-

placed by z̄ and 2p̃a · pb replaced by 2pa · p̃b.

In a completely analogous way the finite collinear expressions for the second sub-

process Q̄(pa) q(pb) → VVV + g(pf) are determined.

A.3.2 Subprocesses with an initial-state gluon

For the subprocess depicted in Fig. A.2c a gluon splits into a quark and an an-

tiquark. This splitting causes collinear divergencies, which are absorbed into the

parton distribution functions and leads to finite collinear remnants. In the notation

of Catani and Seymour we get:
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〈 xpa, pb |(Kgq(x) + Pgq(xpa, x; µ2
F )) | xpa, pb 〉

=
αs

2π
TR 〈 xpa, pb | xpa, pb 〉

{

2x(1 − x) + (x2 + (1 − x)2)

(

ln

(
(1 − x)2

x

)

− ln

(
µ2

F

2xpa · pb

))}

.

(A.28)

In the same way as before, a variable transformation (z = xxa) is performed, which

can directly be evaluated since no complicated + - distributions appear,

∫ 1

0

dxa

∫ 1

0

dxb fg/p (xa; µ
2
F ) fQ̄/p (xb; µ

2
F )

∫ 1

0

dx 〈 xpa, pb | xpa, pb 〉
αs

2π
TR

{

...
}

=

∫ 1

0

dxb fQ̄/p (xb; µ
2
F )

∫ 1

0

dz 〈 zP1,in, pb | zP1,in, pb 〉
∫ 1

z

dx

x
fg/p

(z

x
; µ2

F

) αs

2π
TR

{

2x (1 − x)

+ (x2 + (1 − x)2) ln

(
(1 − x)2 Q2

xµ2
F

)}

.

(A.29)

For all the other subprocesses with a gluon in the initial state the expressions are

very much alike, hence they won’t be calculated here in detail.

A.3.3 Compact expressions and implementation

Collecting all the expressions for the finite collinear remnants, one obtains:
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σNLO
coll =

∫ 1

0

dxa

∫ 1

0

dxb

∫

dΦ6 (k1, ..., k6; pa + pb)
1

ŝ

·
[

f c
q/p (xa; µ

2
F ) fQ̄/p (xb; µ

2
F ) + fq/p (xa; µ

2
F ) f c

Q̄/p (xb; µ
2
F )
]

·
∣
∣
∣ M qQ̄

Born(k1, ..., k6; pa, pb)
∣
∣
∣

2

.

+

∫ 1

0

dxa

∫ 1

0

dxb

∫

dΦ6 (k1, ..., k6; pa + pb)
1

ŝ

·
[

f c
Q̄/p (xa; µ

2
F ) fq/p (xb; µ

2
F ) + fQ̄/p (xa; µ

2
F ) f c

q/p (xb; µ
2
F )
]

·
∣
∣
∣ M Q̄q

Born(k1, ..., k6; pa, pb)
∣
∣
∣

2

.

(A.30)

where the terms calculated in Eqs. (A.25) and (A.29) have been absorbed into the

modified pdfs,

f c
Qi/p (xi; µ

2
F ) =

αs

2 π

∫ 1

xi

dx

x

{

fg/p

(xi

x
; µ2

F

)

A(x)

+
[

fQi/p

(xi

x
; µ2

F

)

− x fQi/p

(
xi, µ

2
F

)]

B(x)

+ fQi/p

(xi

x
; µ2

F

)

C(x)
}

+
αs

2 π
fQi/p (xi; µ

2
F ) D(xi),

(A.31)

with integration kernels,

A(x) = TR

[

2 x (1 − x) +
(
x2 + (1 − x)2

)
· ln
(

(1 − x)2 Q2

xµ2
F

)]

B(x) = CF

[
2

1 − x
ln

(
Q2 (1 − x)2

µ2
F

)]

C(x) = CF

[

1 − x − 2

1 − x
ln (x) − (1 + x) ln

(
Q2 (1 − x)2

xµ2
F

)]

D(xi) = CF

[3

2
ln

(
Q2

µ2
F

)

+ 2 ln (1 − xi) ln

(
Q2

µ2
F

)

+ 2 ln2 (1 − xi)
]

+
π2

3
− 5
]

.

(A.32)
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Though, in principal these expressions can be integrated over the m-particle phase

space, in the actual implementation of a NLO Monte Carlo program, it is optimal, if

these terms are calculated together with the real emission and subtraction terms. In

order to do that, the relation between the 7-particle phase space and the 6-particle

tilde kinematics given in Eqs. (3.23),

1

2 pa · pb

dφ7 (pg, k1, ..., k6; pa + pb) =

∫ 1

0

dx

∫ 1−x

0

dv
1

2 p̃a · pb

Q2

8 π2
dφ6 (k̃1, ..., k̃6; p̃a + pb),

(A.33)

is an essential ingredient. The parameter v needed in this expression is defined as

v =
pa · pg

pa · pb
or (pa ↔ pb). (A.34)

The finite collinear terms can then be reformulated as part of the 7-particle phase

space. In the case of the quark induced subprocesses, the additional finite collinear

terms are then given by:

σNLO
coll (q(pa) Q̄(pb) → 6ℓ + g(pg))

=

∫ 1

0

dxa

∫ 1

0

dxb
1

2 pa · pb
dΦ7(k1, ..., k6, pg; pa + pb)

·
{

4 π αs

Q2
fQ̄/p (xb; µ

2
F )
∣
∣
∣ M qQ̄

Born(k̃1, ...k̃6; p̃a, pb)
∣
∣
∣

2

· 1

1 − x

·
[

fq/p (xa; µ
2
F ) (B(x) + C(x)) + x fq/p (xxa; µ

2
F )

(
D(xxa)

1 − xxa
− B(x)

)]

+
4 π αs

Q2
fq/p (xa; µ

2
F )
∣
∣
∣ M qQ̄

Born(k̃1, ...k̃6; pa, p̃b)
∣
∣
∣

2

· 1

1 − x

·
[

fQ̄/p (xb; µ
2
F ) (B(x) + C(x)) + x fQ̄/p (xxb; µ

2
F )

(
D(xxb)

1 − xxb
− B(x)

)]
}

(A.35)
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for the collinear terms proportional to the qQ̄-type Born matrix elements, and

σNLO
coll (Q̄(pa) q(pb) → 6ℓ + g(pg))

=

∫ 1

0

dxa

∫ 1

0

dxb
1

2 pa · pb

dΦ7(k1, ..., k6, pg; pa + pb)

·
{

4 π αs

Q2
fq/p (xb; µ

2
F )
∣
∣
∣ M Q̄q

Born(k̃1, ...k̃6; p̃a, pb)
∣
∣
∣

2

· 1

1 − x

·
[

fQ̄/p (xa; µ
2
F ) (B(x) + C(x)) + x fQ̄/p (xxa; µ

2
F )

(
D(xxa)

1 − xxa
− B(x)

)]

+
4 π αs

Q2
fQ̄/p (xa; µ

2
F )
∣
∣
∣ M Q̄q

Born(k̃1, ...k̃6; pa, p̃b)
∣
∣
∣

2

· 1

1 − x

·
[

fq/p (xb; µ
2
F ) (B(x) + C(x)) + x fq/p (xxb; µ

2
F )

(
D(xxb)

1 − xxb

− B(x)

)]
}

(A.36)

for terms proportional to Q̄q-induced Born matrix elements. For the gluon induced

subprocesses, the corresponding expressions are:

σNLO
coll (g(pa) q(pb) → 6ℓ + Q(pg))

=

∫ 1

0

dxa

∫ 1

0

dxb
1

2 pa · pb
dΦ7(k1, ..., k6, pg; pa + pb)

4 π αs

Q2
fq/p (xb; µ

2
F )
∣
∣
∣ M Q̄q

Born(k̃1, ...k̃6; p̃a, pb)
∣
∣
∣

2

·
[

fg/p (xa; µ
2
F ) A(x)

]

· 1

1 − x
,

(A.37)

σNLO
coll (g(pa) Q̄(pb) → 6ℓ + q̄(pg))

=

∫ 1

0

dxa

∫ 1

0

dxb
1

2 pa · pb
dΦ7(k1, ..., k6, pg; pa + pb)

4 π αs

Q2
fQ̄/p (xb; µ

2
F )
∣
∣
∣ M qQ̄

Born(k̃1, ...k̃6; p̃a, pb)
∣
∣
∣

2

·
[

fg/p (xa; µ
2
F ) A(x)

]

· 1

1 − x
,

(A.38)
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σNLO
coll (q(pa) g(pb) → 6ℓ + Q(pg))

=

∫ 1

0

dxa

∫ 1

0

dxb
1

2 pa · pb
dΦ7(k1, ..., k6, pg; pa + pb)

4 π αs

Q2
fq/p (xa; µ

2
F )
∣
∣
∣ M qQ̄

Born(k̃1, ...k̃6; pa, p̃b)
∣
∣
∣

2

·
[

fg/p (xb; µ
2
F ) A(x)

]

· 1

1 − x
,

(A.39)

σNLO
coll (Q̄(pa) g(pb) → 6ℓ + q̄(pg))

=

∫ 1

0

dxa

∫ 1

0

dxb
1

2 pa · pb
dΦ7(k1, ..., k6, pg; pa + pb)

4 π αs

Q2
fQ̄/p (xa; µ

2
F )
∣
∣
∣ M Q̄q

Born(k̃1, ...k̃6; pa, p̃b)
∣
∣
∣

2

·
[

fg/p (xb; µ
2
F ) A(x)

]

· 1

1 − x
.

(A.40)

Inserting Eq. (3.23) into these expression, the original finite collinear term given in

Eq. (A.30) can then be obtained. In Vbfnlo, for all the different subprocesses, the

formulae given in Eqs. (A.35)- (A.40) are implemented and are integrated together

with the subtracted real emission terms.

A.4 List of relevant integrals

In the calculation of the finite collinear remnants according to the formalism devel-

oped by Catani and Seymour, various non-trivial integrals arise. Those, which are

needed for the calculation presented here are listed in the following.

The first integral needed in Eq. (A.25) is:
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∫ 1

0

dx

x
f
(z

x

) ( 1

1 − x
ln

(
1 − x

x

))

+

θ(x − z)

=

∫ 1

z

dx

x

(

f
(z

x

)

− x f(z)
) ( 1

1 − x
ln

(
1 − x

x

))

−
∫ z

0

dx f(z)

(
1

1 − x
ln

(
1 − x

x

))

=

∫ 1

z

dx

x

(

f
(z

x

)

− x f(z)
) ln (1 − x)

1 − x
−
∫ 1

z

dx

x
f
(z

x

) ln (x)

1 − x

+ f(z)

∫ 1

0

dx
ln (x)

1 − x
− f(z)

∫ z

0

dx
ln (1 − x)

1 − x

=

∫ 1

z

dx

x

(

f
(z

x

)

− x f(z)
) ln (1 − x)

1 − x
−
∫ 1

z

dx

x
f
(z

x

) ln (x)

1 − x

+ f(z)

(
1

2
ln2 (1 − z) − π2

6

)

.

(A.41)

In the last step,

∫ 1

0

dx
ln (x)

1 − x
ln (x) = −

∫ 0

1

du
ln (1 − u)

u
= −Li 2(1) = −π2

6
(A.42)

has been used. The second integral, which is used in Eq. (A.25) is given by:

∫ 1

0

dx

x
f
(z

x

) ( 1

1 − x
ln (1 − x)

)

+

θ(x − z)

=

∫ 1

z

dx

x

(

f
(z

x

)

− x f(z)
) ln (1 − x)

1 − x
−
∫ z

0

dx f(z)
ln (1 − x)

1 − x

=

∫ 1

z

dx

x

(

f
(z

x

)

− x f(z)
) ln (1 − x)

1 − x
+ f(z)

1

2
ln2 (1 − z).

(A.43)

Finally, the last +-distribution appearing in Eq. (A.25) can be solved in the following

way:
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∫ 1

0

dx

x
f
(z

x

) (1 + x2

1 − x

)

+

θ(x − z)

=

∫ 1

z

dx

x

(

f
(z

x

)

− x f(z)
) (1 + x2

1 − x

)

− f(z)

∫ z

0

dx

(
1 + x2

1 − x

)

=

∫ 1

z

dx

x

(

f
(z

x

)

− x f(z)
) 2

1 − x
+

∫ 1

z

dx

x
f
(z

x

)

(−1 − x)

+ f(z)

∫ 1

z

dx

x
(1 + x) + f(z)

(

z +
1

2
z2 + 2 ln (1 − z)

)

=

∫ 1

z

dx

x

(

f
(z

x

)

− x f(z)
) 2

1 − x
+

∫ 1

z

dx

x
f
(z

x

)

(−1 − x)

+ f(z)

(
3

2
+ 2 ln (1 − z)

)

.

(A.44)
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Appendix B:

Symmetry factors

In the calculation of tri-boson processes in Vbfnlo, three different lepton families

are assumed for the decay products of the vector bosons, i.e. the processes

W+W−Z : pp → νe e+ µ− ν̄µ τ− τ+ + X,

ZZW+ : pp → e− e+ µ− µ+ ντ τ+
3 + X,

ZZW− : pp → e− e+ µ− µ+ τ− ν̄τ + X,

are implemented. Phenomenologically more interesting are the cases of final states

with electrons and/or muons. All possible subprocesses with only leptons of the first

two families in the final state are given in Eq. (5.4) for the WWZ production and

in Eq. (5.5) for the ZZW production modes. The majority of those subprocesses

has identical leptons in the final state. Thus symmetry factors need to be taken

into account. In the chapter at hand, they are derived for the WWZ and the ZZW

production, separately.

B.1 WWZ production

In the WWZ production the two W-bosons always lead to distinguishable final

state leptons. Therefore, identical leptons can only appear if either one W-boson

and the Z-boson decay to the same lepton family or if all three vector bosons decay

to electrons and the corresponding neutrinos or if all of them decay to muons and

muon-neutrinos.

As an example for the first case, the subprocess pp → νee
+ µ−ν̄µ e−e++X is examined

in more detail. Since there are two positrons e+ in the final state, the cross section

for this subprocess has to be multiplied by a symmetry factor of 1
2
. However, this

symmetry factor is compensated by twice the number of Feynman graphs compared
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Figure B.1: Sketch of the different Feynman-graphs contributing to the WWZ cross

section with and without identical leptons in the final state.

to the case of three different lepton families in the final state. In Fig. B.1 an example

Feynman-graph for the case of electrons, muons and tau leptons in the final state

as well as the case of the W+ and the Z-boson both decaying to leptons of the first

generation is given. In the latter case, the two electrons can swap their places in the

Feynman-graph. Since this holds not only for the special diagram given in Fig. B.1

but for all graphs appearing in the calculation, two times the number of diagrams

have to be taken into account in the calculation of the matrix elements.

Since for the calculation of the cross section, the matrix elements squared is the

relevant quantity, in addition to the matrix elements squared of the first and the

second graph, also interferences between them appear,

|M1 + M2|2 = |M1|2 + |M2
2 | + (M1 · M∗

2 ) + (M∗
1 · M2). (B.1)

However, due to the resonance structure of the Feynman graphs, the two different

momentum configurations can not lead simultaneously to big contributions. There-

fore the interference terms are expected to be small. Neglecting these contributions,

the cross section for the subprocess with one W-boson and the Z-boson decaying to

the same type of leptons is therefore,

σ(pp → νee
+ µ−ν̄µ e−e+ + X) =

1

2
· 2 · σ(pp → νee

+ µ−ν̄µ τ−τ+ + X) (B.2)
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and thus the same as in the case of three different lepton families in the final state.

In a very similar way one can also show that also the case with all vector bosons

decaying to the same lepton family yields the same cross section. Results for the sum

of all eight subprocesses given in Eq. (5.4) thus are given by multiplying cross sections

and differential cross sections obtained for the process pp → νee
+ µ−ν̄µ τ−τ+ + X by

a factor of eight.

B.2 ZZW production

In the ZZW production modes, the decay products of the two Z-bosons can be

interchanged in the Feynman-graphs without altering the final state. Thus, two

different orderings of the leptons are possible. Both of them are taken into account

in the calculation implemented in Vbfnlo and for both of them an example diagram

symbolizing the sum of all possible matrix elements is drawn in Fig. B.2.

If only one of the W-bosons and one Z-boson would lead to identical particles in

the final state, the argumentation applied in the WWZ case can be adapted and the

symmetry factors are exactly absorbed into twice the number of Feynman graphs,

yielding cross sections,

σ(pp → e−e+µ−µ+νee
+) = σ(pp → e−e+µ−µ+νττ

+)

σ(pp → e−e+µ−µ+νµµ+) = σ(pp → e−e+µ−µ+νττ
+).

(B.3)

For the case of both Z-bosons decaying for instance to electrons, the relevant Feyn-

man diagrams are shown in Fig. B.2. Here, only twice the number of graphs is

possible without double counting. The symmetry factor for two electrons and two

positrons in the final state, however is 1
4
. Thus, neglecting any interference effects

due to identical particles in the final state, the cross section of both Z-bosons decay-

ing to electrons or both of them decaying to muons is only half of the cross section

with no identical leptons in the final state. A similar argumentation can also be

applied to the case with all vector boson decaying to the same lepton generation.

In total, the sum of all subprocesses contributing to the 5ℓ + p/T final state with

ℓ = e, µ yield a cross section, which is four times larger than the cross section

calculated in the program. Therefore, all results for the ZZW production modes

presented in Chapter 5 are multiplied with this combinatorial factor of four.
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Figure B.2: Sketch of the different Feynman-graphs contributing to the ZZW+ cross

section with and without identical leptons in the final state.
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