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Extreme nonlinear optics of two-level systems
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For Rabi frequencies comparable to, or even larger than, the transition frequency of a two-level system, the
regime of extreme nonlinear optics is reached. Here, we give an overview of the radiated light intensity as a
function of carrier frequency of light, transition frequency, Rabi frequency, spectrometer frequency, as well as
of the shape and duration of the exciting optical pulses. The graphical representations reveal an amazing
complexity and beauty of the nonlinear optical response. Analytical results within the “square-wave approxi-
mation” qualitatively reproduce many of the intricate features of the exact numerical calculations.
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[. INTRODUCTION such effects have recently been discussed on two different
experimental exampldgl—6], it turns out that they also oc-
For many systems such as solids, molecules, or atoms, tleur at many other points within the complete parameter
light-matter interaction can be described by a two-level sysspace.
tem to first approximation. Although the two-level system is  This paper is organized as follows: In Sec. Il we briefly
one of the most fundamental paradigms of both quantundefine the equations of motion under investigation. After pre-
mechanics and nonlinear optigk—3], its behavior for exci- senting a rather complete overview on the basis of exact
tation with extremely intense femtosecond optical pulses stilhumerical calculations in Sec. Ill, we discuss the “frozen-
reveals surprises. wave approximation” in Sec. IV and the “square-wave ap-
The intensity of light is best encoded in the Rabi fre- proximation” in Sec. V before concluding in Sec. VI.
quency( g, which is proportional to the laser electric field.
The regime of traditional nonlinear optics, i.€g/Q<1 Il. DEEINITION OF THE PROBLEM
with the transition frequenc§) has been studied extensively. . ) o ]
The regime of extreme nonlinear optics, on the other hand, Within the dipole approximatiof], but without employ-
whereQg/Q~1 or evenQg/Q>1, has attracted much less N9 the.rotgtmg wave approximation and Wlt.hout transverse
attention. This might have to do with the fact that this regime©r longitudinal damping12], the Bloch equations of a two-
was considered inaccessible, unphysical, or irrelevant for ¥Vvel system with transition frequendy for the Bloch vec-
long time. Indeed, in the famous textbook of Allen andtor (U,v,w)T can be written in matrix form as
Eberly [1] the authors write on page 42...Obviously it :
becomes questionable whether the existence of an atom is u 0 +Q 0 u
possible in thg presence of such an.external field. Certainlyz o =l -0 0 —2Qx(1) v|. (1)
resonant transitions could not be defined. The consequence is ]
that we may safely take the inequalifyn words Rabi fre- w 0 +20g(1) 0 w
guency< transition frequencylo be well-satisfied in every
situation of interest in optical resonance.” The dots denote the derivative with respect to timelere
Recent experiments on semiconductors witlwo~1  We have introduced thdinstantaneous)Rabi frequency
[4,5]andQ/wy~2 [6], wherew, is the carrier frequency of Qg(t) with
the exciting laser pulses, have shown that this is no longer
true. There, the regime ddz/wy~1 was indeed reached at AQR(t)=dE(1) @)
laser intensities in excess of *¥0N/cn?, and a description
in terms of two-level systems has been able to reproduce the
experimental results amazingly well. Thus, it is natural to ask
what would happen for yet larger Rabi frequencies. A few

important publications can be found in Refg-11]. How- . o .
ever, we are not aware of any work which gives a comp|eté5(t) is the electric-field envelopey, the carrier frequency

overview of the rich behavior as a function of the four in- Of light, and ¢ the so-called carrier-envelope phase. Note
volved frequencies: Carrier frequency of lighg, transition that the Ra_bl frequency |ts_elf oscillates Wlt_h the carrier fre-
frequency ), Rabi frequencyQg, and spectrometer fre- guency of light and _penodmally changes sign. We sh.all call
quencyw. It is the aim of this work to give such an over- the peak of the Rabi frequenéyr [rather thar)(t)] with
view. Only from the corresponding graphical representationg{ gr=dE,, whereE, is the peak of the electric-field enve-
the amazing beauty of the nonlinear optical response bdope. As usualw(t) is the inversion of the two-level system.
comes apparent. One of the interesting aspects is that peakbe macroscopic optical polarization entering into the Max-
can occur at the spectral position of even harmonics, evewell equations is given by the dipole density of two-level
though the two-level system has inversion symmetry. Whilesystems times th@eal) componenu(t) of the Bloch vector.

ith the dipole matrix elemerd and the laser electric field

E(t)=E(t)coq wot+ ¢). (3)
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Ill. OVERVIEW USING EXACT NUMERICAL
N=30 CALCULATIONS

The simplest and cleanest situation is given when the en-
velope Rabi frequency is either constant or zero. Let us start
our discussion with such box-shaped optical pul6igs-
trated in Fig. 3, which areN= 30 optical cycles in duration

FIG. 1. lllustration of the box-shaped optical pulég$) usedin  (for, e.g.,hwy=1.5 eV, this would roughly correspond to a
Figs. 2 and 3. The integer number of cycles in t[le pulse is called g fg long pulsg To get an overview we can either X/ w,
The gray area indicates the electric-field envel&ite). and depict the radiated intensity versQg/w, and w/wg

(Fig. 2 or, alternatively, fix(Qg/wy and plot the signals ver-
The light intensity radiated by the two-level system is pro-susQ/w, and o/ wq (Fig. 3).
portional to the square modulus of the second temporal de- For Qr/wy<1 on the vertical axis of Fig. (2), where
rivative of the polarization, hence proportional|?u(w)|?*  Q/wy=1 (resonant excitation conventional Rabi oscilla-
in the Fourier domain, where is the spectrometer fre- tions[13] occur and the well-known Mollow tripldtl4] can
quency. It is natural to relate all frequencies to the carriebe seen aiv/ wy=1 on the horizontal axis. At largé g/ w
frequency of lightwg, in which case the dependence of the approaching unity, carrier-wave Rabi oscillatioht5,16]
radiated intensity on the three dimensionless parametetake place and additional carrier-wave Mollow triplgts
Olwgy, Qrlwg, andw/wqy has to be studied. In all calcula- appear around odd integess wy. BeyondQg/wy=1, the
tions, we start from the ground state of the two-level systemMollow sidebands are “repelled” by the central peaks of the

i.e., from Bloch vector (0,6;1)". adjacent Mollow triplets. They oscillate around even integer
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FIG. 2. Gray-scale images of the ra-
diated intensity spectra | )
«|w?u(w)|? (normalized and on a
logarithmic scalgfrom exact numerical
solutions of the two-level system Bloch
equationg1). The peak Rabi frequency
Qg of the excitingN=30 cycles long
-1 box-shaped optical pulses, illustrated in
Fig. 1, is plotted along the vertical axis.
The transition frequency) is param-

-2 eter. (@ Q/wg=1 and (b) Q/wp=5.
wy is the carrier frequency of the laser
pulses.
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values ofw/wq and finally converge towards these values in  For more realistic smoothed box-shaped optical pulses the
the limit Qg/wy>1. On the way, they periodically cross at overall behavior remains the same. If, e.g., the electric-field
even integerso/ wq versusQ g/ wy with a period ofw7/2 for  envelope is switched on and off by Fermi functions rising
Qgrl/we>1 (whereas the first crossing occurs(@k/wo~1  and decaying within a few optical cycles, respectively, the
[4]). For off-resonant excitation, e.d)/wy=5 in Fig. 2b), behavior of Fig. 3 is slightly smeared out and the contribu-
the behavior is different fof)g/we<1 andQg/we=1, but  tions at spectrometer frequenci@s- () + 2M w, decay more

becomes similar to Fig.(d) for Qg/we>1. rapidly for large values of)/ w, as compared to box-shaped
The other way to look at the parameter space is to fix theyptical pulses.
Rabi frequency()g/w,. For large{)/w, but not too large For other pulse envelopes, the envelope Rabi frequency is

peak Rabi frequencieQg/wq in Fig. 3, well separated high not constant within the pulse, which effectively averages
harmonics are observed, as expected from traditional nonlingong the vertical axis of Fig. 2. This is further illustrated in

ear tOptiﬁS' On thet dif?gcinal, whg&ezﬂa V_I‘?LY I"_’“gel re.:,o- fFig. 4 for the example of Gaussian pulses with an electric-
nant enhancement effects are observed. This is also true far, | o1 iven bE(t) = E, exp(— (t/t0)?). The tem.

the adjacent harmonics at spectrometer frequeneoied) . . . .
iZMaJO with integerM, whichr;ltogether Ieadgto a band of poral full width at half maximum(FWHM) of the intensity
enhancement around the diagonal in Fig. 3. Especially notprofile is given bthWHM:tOZ\/In\/E and translates into a
that large contributions can occur at the spectral positions dFWHM of N=trywuu/(27/wg) optical cycles in Fig. 4. In
even harmonics, as already discussed for Fig. 2. These cofig. 4(@), whereN=30 and¢$=0, the anticipated averaging
tributions are especially pronounced for even integer valuesan be seen clearly. As a result, the contributions at odd
of O/ wq [6]. integersw/ wy have almost disappeared in favor of even con-
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FIG. 4. Same as Fig. (3, i.e.,
Olwy=1, but for Gaussian optical

pulses with¢o=0 and with a FWHM of
0 (a) N=30 and(b) N=3 optical cycles.
-1

2 3
Naae”
e
o)
Ke)

o/ ®,

tribution. This is exactly opposite to what one might havespace inversion. Thus, the solution for the Bloch vector
expected intuitively. FON=30 and¢ = 7/2 (not shown, the  (u(t),v(t),w(t))" is also unchanged. Finally, the macro-
behavior is similar, apart from fine details which are hardlyscopic optical polarization, which is given DbyP(t)
visible on this scale. For few-cycle optical puld€sg. 4b)]  =n, du(t) with the concentration of two-level systems
the various contributions get largely broadened spectrally]ZLS, transforms according tB(t)— — P(t). Consequently,
and their mutual interference leads to rather “messy” specin an expansion of the polarization in terms of powers of the
tl’a, which have lost all of the beautiful fine details of F|g 2. electric field up to infinite Order, Strictly no even orders oc-
It is clear that this interference also introduces a dependencgyr, even for arbitrarily large electric fields. Thus, we delib-
on the carrier-envelope phask as discussed in detail in erately avoid to call a peak at, e.gu/w,=2, second-
Refs.[4-6]. harmonic generatioiSHG). As discussed in detail in Ref.
One might be tempted to argue that the peaks at evefg] a strict definition of SHG must be based on its carrier
integersw/wq in the optical spectra at largr/w, arise  frequency or its phase, which areg and 24, respectively.
from the fact that the complete system, i.e., two-level systenthe peaks atw/wy,=2 from the two-level system are not
plus light field, no longer has inversion symmetry at largeconsistent with this definition. Thus, in Rei6] we have
electric fields. This reasoning is, however, not consistenfytroduced the notion ofhird-harmonic generation in dis-
with the Bloch equations. Space inversion means that wguise of second-harmonic generatifam this unusual contri-
have to replace— —r. As a result, the dipole matrix ele- bution. A similar argument obviously holds for all the other
ment transforms ad— —d and the electric field ag(t) — even integers/ wg, which must not be calledven harmon-
—E(t). Hence, we havé ~1dE(t)=Qg(t)— +Qg(t) and ics in the framework of nonlinear optics. In most of the
the Bloch equationgl) remain completely unchanged under literature—written before the importance of the carrier-
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envelope phaseb had been appreciated—these peaks ardhis leads to the Bloch vector
nevertheless called even harmonics.

u(t) u(0)
IV. FROZEN-WAVE APPROXIMATION
_ _ v(t) | =M(t)| v(0) |, (4)
For times much shorter than a cycle of lightyl2vg, we
AN . w(t) w(0)
can employ the frozen-wave approximation, i.e., we approxi-
mate Qx(t)=Qg as constant in time. In this limit, it is
straightforward to solve the Bloch equatiofis analytically.  with the (3X 3) rotation matrix
|
402+ 0%cogQet) O 2004
—sin(Qegt) ——(cogQest)—1)
Qgﬁ Qeff n( eff) Qéﬁ ( 3 eff)
Q 20g
M(t)= ~ o Sin(Qert) cog et — . Sin(Qeqt) . (5)
eff eff
2004 20x 02+ 4023 cod Qet)
7 (COgQert) = 1)~ sin(Qet) Y
eff eff eff

Obviously, all three components of the Bloch vector oscillate

with the effective frequenc¥).s, which is given by

V. SQUARE-WAVE APPROXIMATION

The Bloch equation$l) describe rotations of the Bloch

vector on the Bloch sphere. Within the regime of extreme
nonlinear optics, the behavior becomes “enriched” by the
fact that one of the rotation frequencies, namely)g2t)
itself oscillates with the carrier frequency of light and peri-
Remember that this frozen-wave approximation is only jus-odically changes sign. This oscillation is sinusoidal, yet one
tified for times t<2w/wy, hence relevant in the limit might ask whether it is really so important that it is sinu-
Qel wo>1. It can be viewed as the opposite of the rotatingsoidal. Having in mind what we have said about the frozen-
wave approximatior{1-3]. There, almost nothing is sup- wave approximation in Sec. IV, it is simple to extend that
posed to happen on the time scale of light, whereas here alésult to piecewise constant electric fieBgt) or Rabi fre-

the significant dynamics takes place within an optical cyclequencies(Qx(t), respectively. This leads us to investigating
ForQgr/Q>1, we have) 4~ 2, which means that twice the square-wave approximation in which we approximate the
the peak Rabi frequency is the largest occurring frequencyRabi frequency for constant envelope via

hence the highest harmonic generated is roughly given by
wlwg~2Qg/wy. This has previously been discussed in

Qo= 402+ 02, (6)

2
Ref. [8]. QR(t)=Qrcog wot + ) — — Qg SO wot + ¢)),
Starting from the ground state, i.e., from Bloch vector ™
(0,0—1)T at timet=0, the inversion according to Eq&l) ®)

and (5) is given by
where the signum function is defined as sgni€ + 1 for x
>0, sgnk)=—1 for x<0, and sgnX)=0 for x=0. The
Q%+407 cod Q) prefactor 24 ensures that the average Rabi frequency within
N 02 . (7) half an optical cycle is the same for the square-wave approxi-
ef mation and the exact problem. In that half of the optical
cycle where the Rabi frequency is positiveegative, the
Thus, the two-level system can even perform Rabi oscillaBloch vector rotates via the matrikt,. (M_), where M.
tions for far off-resonant conditions, i.e., f/ w,>1, ifthe  results fromM by replacingQg— *(2/7)Qg in Egs. (5
intensity is so large that it roughly corresponds to a Rabiand(6). For more than half an optical cycle, the dynamics of
frequency of Qr/Q=1, which leads tow(t)=-1/5 the Bloch vector is described by
—4/5cos(/5Qxt) with maximum inversion w= +3/5

w(t)=

(+80% maximum occupation of the excited sjaté is u(t) u(0)

clear that, within a quantum optical description of the light

field, this behavior could be interpreted as multiphoton v(t) | =M(t)| v(0) ], 9)
carrier-wave Rabi oscillations. w(t) w(0)
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where the total matrix\1,; is a product of simple analytical
(3% 3) rotation matrices: For timesafter theN-cycle long

pulse we have

, (10

o

o
o

where M, results fromM by replacingQlg—0 in Egs.(5)
and (6). Within the optical pulse, we get for timeswith
Qgr(t)>0

2 T
Mtot(t):MO(tN”M< >M+
o

21 ) | TN
Mtot(t):M+(t—Nl )[M( )M+( ,

wo \ W,

and for timest with x(t) <0,
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FIG. 5. Same as Fig. 2, but based on
the analytical solution of the two-level
system Bloch equations within the

-1 square-wave approximatiotia) Q/w
=1 and(b) Q/wy=5.
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Here we have introduced the integer number of cydles
completed up to time:

X (l)ot
N¢= mt( 277) . (13
The value of the integer functiof@lso known as the “Gauss
bracket”) int(x) is given by the largest integes x.

We first test the square-wave approximation by depicting
its solutions in Fig. 5. Parameters are identical to those of the
exact numerical calculations in Fig. 2. The overall qualitative
agreement is amazing, especially for Fig$a)2and Fa).
There,Q)/ wy=1 (resonant excitation which is nothing but
the generalization of Rabi oscillations and Mollow triplets.
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For instance, the periodically occurring constrictions of thetion, the instantaneous Rabi frequen@y(t) varies within
repelling Mollow sidebands at even integangw, versus half an optical cyclgsomewhat similar to a “chirped” opti-
Qg/wy with period /2 (see discussion in Sec. Jlare very  cal pulse, which also introduces peaks at other even integers
nicely reproduced. For off-resonant excitatidd/wo=5) i w/w,. This altogether shows that the constrictions formed by
Figs. 2b) and 3b), the square-wave approximation is lessthe crossing Mollow triplets in Fig. 2 can be interpreted as
convincing. This aspect can be understood intuitively. Fopoints of commensurability of the carrier frequency of light
resonant excitation(}/ wo= 1) the transition frequency reso- ,, the transition frequenc{2, and the peak Rabi frequency
nantly enhances those frequency components of the squafg;. Here an integer number of Rabi oscillations is com-
wave which have frequency,. Thus, the artificial higher pleted after half an optical cycle and, thus, peaks at even
harmonics of the square wave at frequencies 35wq, ... integersw/w, occur in the optical spectrum. For, e.d/,
are relatively suppressed. Clearly, the square-wave approxi=1 and Qlwy=1 in Eq. (17), we get Qr/wo= J3wl4
mation does not properly recover the limit of linear optics, in~ 1.36(Fig. 5), which roughly agrees witflg/wo~1 in the
the sense that(t) is not sinusoidal in that limitas it should  exact numerical calculationgFig. 2. For integers M
be), equivalent to higher harmonics of the carrier frequencys()/w, we getQr/wy=M /2. This period ofm/2 is also
wg in the Fourier domain. Thus, the lower right-hand side ofprecisely found in the exact numerical calculatigRy. 2).
Figs. Ha) and 8b) [which is dark in Figs. &) and 2b)]isan |t is also implicitly contained in Eq(15) of Ref. [8], which
obvious artifact of the square-wave approximation. This armolds under certain approximations specified there and arises
tifact is unimportant because we are rather interested in thgom the zeros of the Bessel functialy. For large Rabi
regime of extreme nonlinear optics. frequencies, commensurability is easily achieved and these
The simplest cases of commensurability of the frequen<eyen harmonics” become the rule rather than the exception,
cieswg, (), and{)g within the square-wave approximation despite the fact that the two-level system has inversion sym-

are given by metry. In between these points of commensurability, it takes
some optical cycles to again approach the initial state. In the
Qeﬁlz M2, (14) ~ Fourier domain, this obviously corresponds to nearby side-

o bands around those even integeriy, (see Figs. 2 and)5

with integerM, for which we have
VI. CONCLUSIONS

1 00
™ ™ We have given a systematic overview of the nonlinear
M+(w_o) :M<w_o>: 0 10/ (15 optical response of the two-level system in the regime of
0 01 extreme nonlinear optics as a function of carrier frequency of
. . , . light wg, transition frequency), peak Rabi frequenc{ly,
Under these conditions, an integer number of Rabi OSC'”a'spectrometer frequenay, and optical pulse shape and du-

tions is completed after half an optical cycle. Inserting ration. A part of the intricate fine structures can be under-
> stood within the square-wave approximation. Within that ap-
Q= la —Qg| +02 (16)  proximation, exact analytical results are derived.
™ It remains to be seen which of the described aspects can

be observed in actual experiments in future. Let us recall,
however, that the regime dg/wy=1 has recently been
subject of several experimental studies in solids, for which

into Eq. (14), we get that commensurability occurs for spe-
cific Rabi frequencies according to

Qn 7 1702 the two-level system has provided an adequate description
— == 2 - —) , (170  indeed. It thus seems conceivable to us that an increase of the
wy 2 41 wo Rabi frequency toward®g/wy=2 or more is possible. It is
with M=1,2,3 .... Forthese Rabi frequencies, peaks atmore than likely that intgresting dev?ations from_ _the two-
even integers Ie_vel system response will be fqund in any spe_cmc system
with more than just two electronic levels, especially if con-
o Qe tinua of states or correlation effects are involved. Neverthe-
w—oz . =2M (18 less, the simple two-level system—one of the most funda-

mental paradigms of nonlinear optics—can still serve as a

are observed in the optical spectrum, apart from the leskeference point.

interesting peaks at odd integargw,, which also occur in

traditional nonlinear optiqs. These .peall<s at even integers ACKNOWLEDGMENTS
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