Visualisierung von Temperaturfluktuationen in einem Ottomotor mit laserinduzierter Fluoreszenz

Dipl.-Ing O. Maiwald, Dr.-Ing R. Schießl, Prof. U. Maas
Institut für Technische Verbrennung (ITV), Universität Stuttgart
Pfaffenwaldring 12, D-70569 Stuttgart

1 Zusammenfassung

In dieser Arbeit wird ein Verfahren zur ortsaufgelösten Messung von Temperaturfluktuationen im Endgas von Motoren vorgestellt und angewandt. Die Methode benutzt Formaldehyd (H₂CO), das durch stark temperaturabhängige chemische Reaktionen gebildet wird, als hochsensitiven, nativen Marker für lokale Temperaturinhomogenitäten. H₂CO wird mit Hilfe der laserinduzierten Fluoreszenz (LIF) detektiert; aus örtlichen Fluktuationen des LIF-Signals lassen sich mit Hilfe von berechneten Korrelationen zwischen Temperatur und Formaldehydkonzentration im Endgas örtliche Fluktuationen der Temperatur abschätzen.

Wir diskutieren die Grundlagen und die Anwendbarkeit der Technik, Messungen in einem Versuchsmotor demonstrieren, daß eine Visualisierung örtlicher Temperatur- schwankungen im Endgas bis unter 10K vor einem Hintergrund von 800K-1000K möglich ist. Die Applikation der Technik ist vor allem im Bereich der auf Selbstzündung basierenden HCCI-Motoren interessant, da sie recht detaillierte Informationen über lokale Inhomogenitäten des Temperaturfeldes im Zylinder und somit wichtige Hinweise auf das Selbstzündungsverhalten liefert.

2 Einführung

Endgastemperatur als möglich, als vielmehr auf die maximale Temperatur; diese kann stark vom Mittelwert abweichen, wenn das Temperaturfeld örtlich fluktuier.

3 Prinzip der Messung

Alle Temperaturmessungen beruhen auf der Beobachtung der Größen, die in bekannter Weise von der Temperatur abhängen. Die Messung wird umso empfindlicher, je stärker die beobachtete Größe von der Temperatur abhängt. Im Brennraum von Motoren gehören die Bildungsgeschwindigkeiten gewisser Spezies, die bei chemischen Reaktionen im Endgas während der Kompressionsphase entstehen, zu den am stärksten temperaturabhängigen Größen. Das Prinzip unserer Messmethode ist daher, chemische Spezies nachzuweisen, die an stark temperaturabhängigen Reaktionen des Endgases beteiligt sind.

Der Formaldehyd (H₂CO) eignet sich hierfür sehr gut. Er ist im Kraftstoff/Luft Gemisch nicht enthalten, entsteht jedoch in mehreren Vorreaktionen während der Kompressionsendsphase, und ist typischerweise in maximalen Molenbrüchen bis zu 1 % enthalten. Bei Einsetzen einer Zündung verschwindet der Formaldehyd sehr rasch. Kurz vor Einsetzen der Selbstzündung zeigt der Molenbruch von Formaldehyd eine sehr starke Temperaturabhängigkeit. Weiterhin ist bekannt, dass der Transport des Formaldehyds im Endgas gut mit laseroptischen Techniken visualisiert werden lässt. All dies spricht für die Nutzung des Formaldehyds zur indirekten Messung von Temperaturfluktuationen im Endgas. Die laserinduzierte Fluoreszenz (LIF) als ortsbundene, berührungslose diagnostische Technik ist bereits als gut geeignet für die Detektion von Formaldehyd im Endgas von Motoren ausgesagt worden [6, 7, 8].

3.1 Ermittlung der Korrelationen

Abbildung 1 Berechnete Korrelation zwischen der Temperatur und der Formaldehydkonzentration [H₂CO] im Endgas. Die Punkte stammen von 50 Rechnungen mit verschiedenen Zylinderdruckkurven; die y-Achse ist logarithmisch aufgetragen.

In dieser halblogarithmischen Darstellung erscheint die Korrelation in weiten Temperaturbereichen näherungsweise als Gerade, sodass

\[\ln([H₂CO]) = A \cdot \exp(B \cdot T) \]

oder in logarithmischer Form

\[\ln([H₂CO]) = \ln(A) + B \cdot T \]

mit temperaturunabhängigen Größen A und B, die sich aus der Korrelation leicht ermitteln lassen, gelten muss.

Wie in Abbildung 1 zu sehen ist, hängt diese Korrelation nicht davon ab, welche der experimentell bestimmten Zylinderdruckkurven als zeitliche Randbedingung für die Berechnung gewählt wird; die Korrelation ist ausserdem von der Temperatur des Gases am unteren Totpunkt unabhängig.

Für örtliche Fehlernotationen \(\Delta \ln([H₂CO]) = \ln([H₂CO]_1) - \ln([H₂CO]_2) \) und \(\Delta T = T_1 - T_2 \) zwischen zwei Punkten 1 und 2 gilt also (der Term \(\ln(A) \) fällt bei der Differenzbildung heraus):

\[\frac{\Delta \ln([H₂CO])}{\Delta T} = B \]

Somit lässt sich die Abweichung \(\Delta T \) der Temperatur vom örtlichen Mittelwert abschätzen, wenn die Abweichung \(\Delta \ln([H₂CO]) \) bekannt ist:

\[\Delta T = \frac{\Delta \ln([H₂CO])}{B} \]

3.2 Auswertung der Messsignale

Das gemessene Fluoreszenzsignal I hängt bei gegebenen Werten der Formaldehydkonzentration, Laser-Anregungsenergie und Detektoreffizienz noch von äusseren Bedingungen (Temperatur, Druck, Gemischzusammensetzung) ab. Da die Gemischzusammensetzung in unserem Motor sehr homogen ist, trifft das Formaldehyd überall im wesentlichen die gleichen Stoffpartner an, so dass die örtliche Änderung der

Der Gesamteffekt dieser Änderung der Fluoreszenzintensität bei gegebener Anzahllichte und Anregungsentnergie (vgl. Abbildung 2) aufgrund von lokalen Temperaturänderungen kann im betrachteten Temperaturbereich sehr gut durch eine Exponentialfunktion der Form $D \exp(ET)$ angenähert werden, mit temperaturunabhängigen Größen D und E.

Die Abhängigkeit des gemessenen Fluoreszenzsignals von der Temperatur kann somit in unserem Fall ausgedrückt werden als Produkt aus der Formaldehydkonzentration $A \exp(ET)$ der Fluoreszenzintensität $D \exp(ET)$ und einer Konstante K, die die Beeinflussung des Signals durch instrumentelle Größen wie Abbildung, Gesamttransmission des optischen Systems und Effizienz der Detektoren beschreibt:

$$I = A \exp(ET) \cdot D \exp(ET) \cdot K$$

Nach Bildung des Logarithmus

$$\log I = \log A + BT + \log D + ET + \log K$$

A, B, D, E, und K hängen nicht von der Endgasstemperatur ab. Demnach gilt für die Differenz $\Delta \log I$ der logarithmischen Signalsintensität zwischen 2 Ortspunkten 1 und 2:

$$\Delta \log I = \log I_2 - \log I_1 = B(T_2 - T_1) + E(T_2 - T_1) = 3 \Delta T + E \Delta T$$

da $\log A$, $\log D$ und $\log K$ bei Differenzbildung herausfallen. Damit ist
Mit dieser Gleichung kann die örtliche Temperaturfluktuation direkt aus der Variation des Logarithmus der gemessenen Fluoreszenzintensität I bestimmt werden; es sind nur noch die Größen B und E erforderlich, die sich durch kinetische bzw. spektroskopische Modellierung abschätzen lassen.

4 Experimentelles

4.1 Motor

4.2 Experimenteller Aufbau

Formaldehyd zeigt im nahen Ultraviolett eine sehr ausgeprägte Absorptionsstruktur. Diese kommt durch kombinierte elektronische und ro-vibronische Übergänge des Formaldehydmoleküls zustande; diese Übergänge sind von anderen Autoren untersucht worden [12]. Wir benutzten zur Auslösung der Formaldehydfluoreszenz eine Wellenlänge von 339,3 nm. Mit dieser Wellenlänge wird das 24Δ1-Schwingungsband im elektronischen A'2Π-X'2Σ Übergang angeregt.
Abbildung 3 Skizze des für die Untersuchungen verwendeten optisch zugänglichen Motors mit optische zugänglichem Brennraum.

Abbildung 4 Schema des experimentellen Aufbaus zur Detektion der Formaldehyd-Fluoreszenz im Endgas.

5 Resultate

5.1 Fluktuationen der LIF-Intensität

In Abbildung 5 ist oben ein H₂CO-LIF-Bild aus dem Endgas des gefeuerten Motors gezeigt. Es wurde am oberen Tstpunkt bei Motorbetrieb mit 95% iso-Oktan und 5% n-Heptan bei 1000 U/min aufgenommen und zeigt einen 3,5 cm langen Bereich in der Mitte des Brennraums, also weit von den Zylinderwänden entfernt. Unten ist das durch Summation der Grauwerte aus gleichen Bildspalten erhaltene Intensitätsprofil \(I(x) \) gezeigt. Das Intensitätsprofil wurde durch Subtraktion des örtlichen Mittelwertes und Teilung durch diesen Mittelwert normiert. Wie zu sehen ist, zeigen die LIF Profile durchwegs ausgeprägte örtliche Intensitätsfluktuationen. Diese sind in ähnlichen

Abbildung 5 LIF-Intensitätsprofil von Formaldehyd im Endgas des Motors, RON 95, aufgenommen bei OT. Oben ist ein typisches LIF-Bild gezeigt, unten das entsprechende, durch Summation der Grunwerte über Zeilen enthaltene, normierte Intensitätsprofil ΔI(x)/I, wobei I den Mittelwert des Profils bezeichnet.

5.2 Abschätzung von Temperaturfluktuationen

Gemäß den Ausführungen in Abschnitt 3.1 und 3.2 kann in unserem Fall die Temperaturfluktuation aus dem gemessenen Fluoreszenzsignal durch Gl. 3.1 abgeschätzt werden. In Abbildung 6 ist Beispielhaft ein LIF-Bild sowie das hieraus ermittelte Profil der Temperaturfluktuation gezeigt. Das Bild wurde am oberen Totpunkt (OT) aufgenommen und vor der Auswertung zur Rauschminimierung mit einem Medianfilter prozessiert. Durch Aufsummieren der Bildgrauwerte aus gleichen Spalten (Binning) wurde aus dem Bild ein eindimensionales LIF-Intensitätsprofil erhalten, aus dem sich das gezeigte Profil der Temperaturunschrankung berechnen lässt.

Aus dem Profil ist evident, dass merkliche Temperaturfluktuationen vorhanden sind; die Amplitude der Schwankungen ergibt sich mit den Werten für B und E zu etwa ±10 K; die Fluktuationen haben eine örtliche Ausdehnung im Bereich zwischen etwa 1 mm und 1 cm. Aus der Auswertung von 32 solchen Bildern wurde die in Abbildung 7 gezeigte Wahrscheinlichkeitsdichteverteilung (engl.: probability density function, pdf) der Abweichung von Endgastemperaturen vom örtlichen Mittelwert erhalten. Dabei wurden in der Auswertung nur Regionen aus dem mittleren Bereich des Brennrahmens betrachtet (stärksten 20 mm von der Zylinderwand entfernt). Das Signalrasschen bewirkte in unserem Fall eine unwesentliche Erhöhung der Temperaturfluktuation-Messwerte um etwa 5%. Aus dem guten Fit mit einer Gauss-Kurve kann auf eine Normalverteilung geschlossen werden.
Abbildung 6 Oben: LIF-Bild von Formaldehyd im Endgas, aufgenommen bei OT, RON 95. Unten: Das hieraus ermittelte Profil der örtlichen Temperaturfluktuation um den Mittelwert.

Abbildung 7 Wahrscheinlichkeitsdichteverteilung (pdf) örtlicher Temperaturfluktuationen im Endgas, ermittelt am oberen Totpunkt, RON=95.

6 Schlussfolgerungen und Ausblick

Anwendung der Technik auf einen Versuchsmotor zeigte, dass in nominell homogenen Endgas eines Versuchsmotors beträchtliche Temperaturfluktuationen vorhanden sind. Es konnte abgeschätzt werden, dass diese Fluktuationen typischerweise im Bereich von ±10 K liegen. Die Längenskalen reichen von 1 mm bis über 1 cm.

