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Abstract 
 
This work focuses on the construction of low dimensional manifolds representing the slow 
system dynamics in the state space. The technique is based on decoupling of the chemical and 
convection/diffusion processes. This idea is widely exploited in combustion theory in both 
analytical and numerical aspects due to the strongly non-linear and singular structure of 
combustion models. The method of Intrinsic Low Dimensional Manifolds (ILDM) is used for 
the decomposition of detailed chemical kinetics and for the approximation of the system 
dynamics on the intrinsic manifold in the domain of the fast chemistry. In the domain of the 
slow chemistry the low dimensional manifold of special type is used to approximate the 
system dynamics. The matching/projecting procedure in this domain can be treated as a 
projection of the system dynamics in composition space onto a manifold containing an initial 
point and an intersection of the boundary of the fast chemistry domain with the slow 
manifold. 

Slightly modified to satisfy the general assumption the two-dimensional model (Davis and 
Skodje 1999) is presented to illustrate the approach. An extension to more complex systems is 
possible without principle difficulties and it is verified by analysis of premixed singas/air one-
dimensional laminar flame structure with detailed chemistry. Preliminary results show that 
one and two-dimensional reduced models can be successfully applied for approximate the 
dynamics of the full model with detailed chemistry. 
 
Introduction 
 
Mathematical models describing complex reactive flow are typically high dimensional 
systems of high order and complexity their exhibit behavior on widely differing time scales of 
the involved sub-processes. In combustion processes with detailed chemical kinetics these 
scales have orders of magnitude form 1 s to 10-10 s and the number of species is some 
hundreds. This disparity in time scales leads to a stiffness of the mathematical models that 
makes their numerical treatment problematic from the point of view of amount of 
computational recourses needed for integration. Hence, in order to overcome this difficulty 
methods for reduction of both dimensionality and stiffness of such systems are frequently 
used. 

At present there are a number of asymptotic or numeric tools able to treat the multi-scale 
system of equations. An incomplete list includes the computational singular perturbation 
(CSP) method (Lam and Goussis 1994), the method of integral manifolds (MIM) (Fenichel 
1979, Gol'dshtein and Sobolev 1992) and the functional iteration method (Roussel and Fraser 
2001). One of the reduction techniques is the ILDM manifolds method (Maas and Pope 
1992), which allows exploring the hierarchical structure of the system by a spectral 
decomposition of the Jacobain field. It gives a good approximation for an invariant manifold 
of slow motions (up to the second order (Rhodes et al 1999)) when a gap condition of the 
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Jacobian eigenvalues is satisfied. For typical combustible mixtures and in most industrial 
applications dealing with reactive flows this condition is fulfilled and found to be natural. 

In order to present mathematical and geometrical essence of the used technique (more 
detailed description can be found in (Maas 1994)) let us determine a vector ( )n1 Z,...,ZZ = , 
which defines the thermo-chemical state of the system in vector space, here

iZ

 iZ  represents 
such thermodynamic quantities as the pressure of mixture, the enthalpy, the mass fraction of 
chemical species etc. In these vector notations a system of governing equations for reacting 
flow can be written as 
 

( ) ( )Z,Z,ZGZF
t
Z 2∇∇+=
∂
∂ ,    (1) 

 
where the first term related to chemical kinetics and the second one describes convection and 
diffusion processes. Now, we outline general assumptions concerning properties of the 
considered model related to the reaction flows. 

First, we assume that the domain of interest in the state or phase space can be separated 
into three different sub-domains such that in the first one 1Ω  (see sketch on Fig. 1(a)) the 
chemical kinetics governs the system dynamics, which means that the fast chemical processes 
always equilibrate towards some low dimensional manifold which contains the slow system 
dynamics and interaction of the slow sub-processes with convection diffusion ones. In the 
second domain 2Ω  the chemical and convection/diffusion processes are strongly coupled or 
in other words have the same order of magnitude. The third one 3Ω  is the domain of very 
(infinitely) slow chemistry where the chemical source term is negligible and the system 
dynamics is governed by convection/diffusion only. 
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Figure 1. Sketch of the phase space with asymptotical domains and. ILDM 
manifolds is sketched by solid lines, stationary system solutions – dashed lines. 

 
The second assumption already mentioned above is the spectral gap condition (2). That is, 

for each point in the domain of strong chemistry 1Ω  the eigenvalues of the Jacobian are 
separated into two groups and the following inequalities are valid: 
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where ZF  is the Jacobian of the chemical term. If this condition is satisfied then the locally 
invariant subspaces related to these eigenvalues are used to find corresponding projection 
operators: sf Q~,Q~ . These projectors define both the system decomposition and reduced 
system dynamics. According to the ILDM method a manifold containing slow system 
dynamics is given as the manifold that annihilates the sub-processes spanned into the fast 
subspace:  
 

0FQ~ f =⋅ .      (3) 
 

Consequently, when the system trajectory reaches the first domain the system trajectory 
relaxes fast towards the slow manifold (3) and slow processes which are coupled with the 
physical processes govern the system dynamics. 
 
Simplified projection strategy 
 
Unfortunately, only in pure homogeneous reactors and in some simple problems the whole 
system dynamics is contained only in the first asymptotical domain. Commonly, the system 
trajectory in the state space links the equilibrium point, which always belongs to the ILDM 
manifold as well as to the slow invariant manifold, with the initial point (typically the initial 
point corresponds to a given boundary condition) that can be located in any of three defined 
domains (see Fig. 1). Therefore, we have three different situations depending on the location 
of the initial point. Fortunately, in many practical models the second domain asymptotically 
shrinks into the boundary between first and third domains (see Fig. 1(b)) and can be ignored 
without essential loss of accuracy. This might be considered like an additional assumption, 
but in real combustible mixtures it is fulfilled automatically due to strong dependence of the 
chemical reaction term on system quantities (strongly non-linear dependence). 

The basic idea is now to exploit this behavior of the different domains and to construct a 
matching procedure between the different domains. To illustrate the idea let us analyze a test 
case similar to the well-studied by Davis and Skodje (Davis and Skodje 1999). Two 
modifications are applied: the addition of a diffusion term and the assumption that the 
chemical source term becomes negligible in part of the composition space. The system of 
governing equations is 
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where chemical term is multiplied by ( ) ( ) 2/1//)y21(arctany 11 +πγ−−=χ  which is in fact a 
truncation function and used here to model/satisfy the general assumption of shrinking the 
second asymptotical domain 
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here both ε  and γ/1  are small system parameters. The system (4) is considered with the 
following initial and boundary conditions: ( ) xx,0y1 α= , ( ) xx,0y2 β= , ( ) 00,ty1 = , 

( ) 00,ty2 = , ( ) α=1,ty1 , ( ) β=1,ty2 . Initial conditions are chosen to be straight lines, they 
satisfy the general assumption – join initial and equilibrium values on boundaries. 
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Figure 2. (a) - Extended ILDM curve – dashed line, stationary solutions – solid 
lines for 100,10=γ , 25.0;1 =β=α , 1.0=ε  and original ILDM curve – 
dotted line; (b) - extended ILDM curves – dashed lines, full system stationary 
solution – solid lines for 100=γ , 1=α , 1,75.0,5.0,25.0=β  and truncation 
boundary – dotted line. 

 
Let us start from analysis of the modified reaction term. First of all, in this model system 

both eigenvalues of the Jacobian of the chemical reaction term have constant values: γ−=λ f  
and 1s −=λ  so that a gap condition is automatically satisfied and the ILDM curve has a 
simple analytical form: 
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In Figure 2(a) this curve is shown by dotted line. The boundary of domain of the fast 

chemical process is asymptotically presented by curve: 02/1y1 =−  (see definition of the 
functionχ ). One can see that if the value of the parameter γ  increases then along this line the 
phase plane will be sharply subdivided into the fast and no chemistry domains. 
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It is evident that the system solution in stationary limit and without chemical term has a 
linear structure because of resulting equation is pure linear. Moreover, any linear dependence 
of the variables in phase/composition space is conserved in this domain. Additionally, the 
presence of the asymptotically large parameter γ  gives a decomposition of the system 
dynamics into fast and slow and the slow manifold may be used to reduce the dimension in 
the fast chemistry domain. Hence, in the considered example the one-dimensional invariant 
system manifold in phase space may be approximated by straight line in the no chemistry 
domain and by ILDM manifold in the fast chemistry domain. 

The problem of low dimensional manifold construction is reduced to finding the boundary 
between the domains. Let us assume that the boundary is defined then the natural way to 
match the different asymptotical manifolds is join the ends of these curves at the boundary. In 
other words, the intersection of this boundary with the ILDM curve yields the point, where 
the curves are matched. A basis for this matching is a continuity assumption of the reduced 
manifold. It has to be continuous at stationary limit, which is of interest of many applications, 
as an approximation of the system solution. 

As an illustration of the proposed approach the results of the integration are presented in 
Figure 2 (b). It is not hard to see that with increasing the large system parameter γ  the system 
solution follows the constructed manifold which is consisting of two parts: pure linear curve 
in the no chemistry domain and the ILDM curve in the fast chemistry domain. Figure 2 shows 
that the full system solutions and the reduced solutions obtained by matching the different 
domains are in a good agreement as far as the large asymptotic system parameter goes to 
infinity. In addition, the proposed strategy of matching the reduced dynamics in both 
asymptotical domains to produce low dimensional manifolds approximating the system 
dynamics can be applied in high dimensional cases too. 

To generalize the idea let us consider the complex situation when it is needed to increase 
the accuracy of the reduced model and therefore one has to add an extra dimension to the 
slow manifold in the fast chemistry domain. It may happen also that in the case when the 
boundary manifold separating the dynamics is not negligible then one has to increase the 
dimension in order to improve the situation on this boundary domain. Of course, the system 
dimension is no longer limited by two and the system might be of any dimension. In this case 
the same one-dimensional structure is preserved in the no chemistry domain - 2Ω , but the 
slow manifold in the fast chemistry domain has its increased dimension. In fact this case does 
not differ much from the mentioned above. In particular, intersection of the m -dimensional 
slow manifold with the boundary becomes to be ( )1m − -dimensional manifold boundary 
manifold, but the system dynamics outside of the fast chemistry domain is still having a linear 
structure. Therefore, to extend the m -dimensional slow manifold onto the no chemistry 
domain one can take a manifold consisting of lines and joining the boundary manifold with 
the initial point. This will allow the reduced system to approach the system dynamic more 
accurately near the boundary manifold. 

It should be mentioned here that in the case of strong interaction of some chemical modes 
with convection/diffusion processes close to the boundary domain that can be considered as 
boundary manifold, it is possible to reduce the problem to current formulation by increasing 
the dimension of the slow subsystem or by applying refinement procedure to the ILDM 
manifold with additional terms that takes into account the interaction. 

Finally, in complex systems the behavior might be complicated by the fact that there exist 
multiple timescales and the domains of fast and slow chemistry may have different 
dimension. Nevertheless, the method presented above can also be applied to these more 
complex systems, if the points of intersection are generalized to hyper-surfaces of 
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intersection, and if “linearity” in the domain of slow chemistry is generalized to “geodesic 
surfaces on non-linear hyper-surfaces”. 
 
Application to syngas/air premixed laminar flame 
 

To verify the approach let us show the results of one-dimensional premixed adiabatic free 
syngas/air flame with detailed chemical mechanism. In order to simplify the presentation, the 
main physical assumptions are as the following: constant pressure, equal diffusivity, Lewis 
number equals to unity. 

On the figures below, the one-dimensional ILDM manifold is shown together with the 
stationary solutions for different boundary conditions. In Figure 3 (left) phase space is 
projected onto CO2 – H2O plane. These variables are often used to parameterize the ILDM 
manifold and are relatively slow ones. As one can see the projected part of the phase plane 
might be roughly subdivided according to the suggested line. Near the boundary part all the 
system trajectories are follow the straight lines, then near the boundary manifold they start to 
deviate in both directions - the system trajectory leaves the one-dimensional ILDM manifold 
and the system trajectory is not longer a straight line from the other hand. Since the chosen 
variables are relatively slow their modes are strongly coupled with convection-diffusion 
processes in the boundary manifold which becomes to be no longer negligible. 
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Figure 3. Projections of the state space onto CO2 – H2O plane and CO2 – H2O 
– OH space. Color lines are stationary solutions, blue line is the one-
dimensional ILDM manifold, and red mesh represents the two-dimensional 
ILDM manifold. 

 
It does not shrink to the boundary, therefore, in this case the use of two-dimensional 

manifold may improve the accuracy of the reduced model, and it can be extended to the new 
level. On the right figure the projection onto 3-dimenaional space is given, here two-
dimensional ILDM manifold is shown with color contour lines related to different mixture 
temperatures. To indicate the boundary contour lines are truncated at the temperature equals 
to 1300°K. This example clearly shows how the additional dimension improves the low 
dimensional manifold. Figure 4 provides further qualitative information about the structure of 
the system stationary solution for some minor species. 
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Figure 4. Projections of the state space onto different planes of minor species. 
Color lines are stationary solutions starting at different initial points and having 
the same element composition and enthalpy. Blue line is the one-dimensional 
ILDM manifold. 

 
Although on the left figure the one-dimensional structure looks as a reasonable 

approximation on the right one the use of one-dimensional manifold gives very rough 
approximation for molar fraction of HO2. Nevertheless, all the stationary trajectories at initial 
stage are linear and near the maximum their approaches the higher dimensional slow manifold 
which can be successfully approximated by two-dimensional ILDM manifold. Hence the 
questions of definition of the boundary manifold as well as determination of the minimal 
dimension of the slow manifold in the fast chemistry domain is crucial point of the suggested 
method and must be investigated before generating the matched manifold. Complete answers 
on these questions can not be given in general case; they strictly depend on local property of 
considered model and on accepted level of reduced model accuracy. Yet the results of many 
applications of the ILDM strategy in CFD modeling and simulations show that application of 
two-dimensional manifolds only produce rather accurate solutions and are in a good 
agreement qualitatively with detailed calculations. 
 
Conclusions 
 
A method for constructing of the approximation for the manifold of slow motions has been 
discussed. It is based on natural assumptions widely used in combustion theory. Namely, it is 
assumed that there exists a sharp subdivision (splitting) of the state space into sub-domains 
with predomination of chemical kinetics or convection/diffusion terms. Accordingly, in the 
domain of fast chemistry we use the ILDM method to approximate invariant manifold of slow 
motions whereas in no chemistry or sometimes called as low temperature domain some 
projection and matching procedure on the ILDM manifold can be used to describe the system 
dynamics. In this domain the choice of the manifold (curve, hyper-surface etc.) with the linear 
structure (consisting of lines) is motivated by the fact that in the limiting case, when chemical 
term is neglected, the system is pure linear and therefore its dimension can be reduced 
automatically to one dimension. Fortunately, this property may be preserved in more 
complicated problems with additional conditions made. The two-dimensional model example 
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has been used with some additional diffusion and truncated condition terms, which is chosen 
to illustrate and verify of the proposed approach. Simple calculations show a good 
asymptotical agreement of the constructed manifold with full system solution. In addition the 
one-dimensional premixed adiabatic syngas/air free flame with detailed chemical mechanism 
was used to verify the proposed approach on real combustion problem. Preliminary analysis 
of the full model shows a potential for suggested method. 
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