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Abstract. The usage of detailed chemical kinetics for the mathematical modeling of com-
bustion processes is desirable, but leads to a high computational effort. In the present work
one of the methods of simplification of chemical kinetics - Intrinsic low-dimensional man-
ifolds (ILDMs) is considered. Whereas in most CFD applications ILDMs are calculated in
terms of a fixed parameterization given by, e.g., concentrations of major species, a locally
adapted parameterization procedure is introduced in terms of so-called generalized coordi-
nates. The problem of non-existence of ILDMs in parts of the domain of interest of the
state space is overcome by an extension procedure based on simplified stationary solutions.
These modifications improve numerical stability, performance and guarantee uniqueness
of tabulated manifolds. Sample calculations of laminar flames verify the approach.

1 INTRODUCTION

The simulation of reacting flows using detailed chemistry introduces a large number
of species (sometimes it may reach more than 1000) and reactions. This leads to a
large number of species conservation equations and to a time consuming evaluation of
the chemical source terms. Furthermore, the non-linearity of the the chemical source
terms leads to a high stiffness of the governing equation system. As a result, detailed
chemical kinetics are usually computationally prohibitive for modeling combustion flows
and it is necessary to devise methods to reduce chemical kinetics[1]. The concept of ILDM
(Intrinsic Low Dimensional Manifolds)[2, 3] is one of these techniques that has proven
to be an efficient tool for an automatic simplification of chemical kinetics. Based on
an eigenvalue analysis of the Jacobi matrix of the chemical source term, it generates
automatically reduced mechanisms to describe the chemical kinetics by a small number
of reaction progress variables without significant sacrificing accuracy.

For the successful implementation of the ILDM method two sub-tasks arise: first, an
efficient generation of the reduced mechanism defined in the whole domain, and, second,
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the projection of the governing equations in the CFD code to the low dimensional manifold
approximating the reduced system dynamics. Concerning the first task, one point has to
be underlined: in spite of many advantages of the ILDM type automatic reduction models
there is principal drawback. Namely, an attractive manifold containing reduced system
dynamics does not exist everywhere in the whole domain of interest in the state space.
It means that the system dynamics cannot be reduced by the ILDM in some parts or in
some sub-domains of the whole domain in the state space. Therefore, in such domains an
alternative to the standard ILDM must be found. To overcome this a concept of domain
splitting is developed and implemented in the following.

As for the projection onto the ILDM, there are several possibilities to project the gov-
erning equation system onto an ILDM. In CFD applications it is calculated in terms of
a fixed parameterization. In this case, the governing equation system is projected to 2-4
major species concentrations characterizing the reaction progress (e.g. CO2 and H2O).
This approach is intuitive, because the physical meaning of the reduced variables remains
constant and is familiar. However, the use of a fixed parameterization can introduce nu-
merical problems in zones, where the reaction progress and the ILDM are ill represented
by the fixed reduced variables (i.e. the reduced variables change not significantly but the
other variables do, or the representation of the ILDM is not unique). A projection of
the original ILDM grid to a new grid parameterized by another set of reduced variables
avoids this problem, but requires additional post-processing steps and can introduce an
ill-conditioning. To avoid problems with this a calculation of the ILDM in terms of gen-
eralized coordinates is used. The ILDM is parameterized by means of a unit grid which
is built up during its generation. The parameterization is locally adapted in the state
space such that it follows the manifold. The use of generalized coordinates is not intu-
itive, because the physical meaning of the reduced variables changes and is not ostensive.
The generalized coordinates are everywhere ideally adapted to the reaction progress on
the reduced manifold and uniqueness is guaranteed. In particular, this corresponds to a
projection of the governing equation system to local grid coordinates of the ILDM. Fur-
thermore, due to the orthogonal structure of the grid the interpolation during the CFD
calculation turns out to be robust and efficient.

The structure of the paper is the following: first a calculation of the standard ILDM in
terms of generalized coordinates and the extension of the ILDM to cover all the domain
of interest in the state space will be presented. After that the implementation scheme is
outlined and, finally, simple calculations of 1-dimensional free and strained flames using
detailed and reduced chemistry are presented and discussed.

2 EFFICIENT CALCULATION OF ILDMS

The mathematical model of the ILDM method is described in details in previous
works[2]−[7]. Here, only a short repetition to outline the meaning of generalized coor-
dinates in the context of standard ILDM shall be presented.

Typically, in chemically reacting systems (chemical reaction, flow, molecular transport)
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course with time scales differing by many orders of magnitude (they vary in combustion
processes from 10−10 to 100 s). This disparity in time scales leads to partial equilibria of
chemical reactions and to steady states of species (i.e. fast processes are not rate limiting
and correlations between species concentrations occur). By means of a separation or
decomposition into fast and slow processes it is possible to decouple these fast processes
and, consequently, to reduce the system dimension.

In order to present the essence of main idea, let us consider a homogeneous reaction sys-
tem. The thermochemical state is completely determined by the (n = ns +2)-dimensional
vector Ψ = (h, p, w1

M1
... wns

Mns
)T where h denotes the enthalpy, p the pressure, w1, ..., wns

the

species mass fractions and M1, ..., Mns
the molar masses. Denote X = (x1, ..., xns

) a vec-
tor of species mole fractions - xi = wi

Mi
. The n-variables span up the n-dimensional state

space [5, 8]. Accordingly, particular chemical reaction corresponds to a movement along a
trajectory in this state space and is governed by the ODE equation

∂Ψ

∂t
= F (Ψ), (1)

here F (Ψ) is the n-dimensional vector of chemical source term and t denotes the time.
The (n by n)-dimensional Jacobi matrix FΨ ((FΨ)ij = ∂Fi

∂Ψj
) of the chemical source terms

is used to identify fast/slow decomposition of chemical processes by an invariant subspace
decomposition of the Jacobi matrix yields

FΨ = (Zs Zf) ·

(

Ns 0
0 Nf

)

·

(

Z̃s

Z̃f

)

. (2)

The matrices Z, Z̃ span up the right invariant subspace and the left invariant subspace
correspondingly,

Z̃ = Z−1 = (Zs Zf)
−1 =

(

Z̃s

Z̃f

)

, (3)

here Zs is the (n by ms)-dimensional and Zf the (n by mf )-dimensional invariant
subspace belonging to the ms eigenvalues having the smallest real parts (Ns) and the mf

eigenvalues (Nf) having the largest real parts respectively, where ms and mf denotes the
number of eigenvalues according to slow and fast processes[9, 10]. The general assumption
that the fast processes have already relaxed define a ms-dimensional manifold in the state
space. This subspace is composed of points where the reaction rates in direction of the
nf fast processes vanish

Z̃f(Ψ)F (Ψ) = 0, (4)

where Z̃f is the (mf by n)-dimensional matrix of left invariant subspace corresponding
to the fast relaxing processes. Since the equation system is under-determined m = n−mf
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equations have to be added for the unique solution during the generation process of the
ILDM (4)

Pz(Ψ − Ψp) = α, (5)

Pr(Ψ)(Ψ − Ψp) = ∆θ, (6)

nz equations parameterize the conserved quantities (element composition, enthalpy,
pressure) and nr = m − nz equations parameterize the reaction progress. α is the nz-
dimensional vector characterizing the parameters of conserved variables (in adiabatic,
premixed and constant pressure systems they are kept constant and thus, α is zero), ∆θ
denotes the nr-dimensional vector characterizing the parameters for the reaction progress.
As a result, reduced mechanisms are obtained, where the thermochemical state of the
system is represented by a small number of variables only, which are denoted by θ. Ψ is
the demanded new point and Ψp is an existing point of the manifold in the neighborhood,
Pz denotes the (nz by n)-dimensional parameterization matrix which defines the mapping
from the state vector to the vector of conserved variables. It is kept constant during the
generation of the ILDM. By means of a further development of the solution procedure up
to a multi-dimensional continuation procedure it was possible to dismiss the approach of a
fixed parameterization (Pr is constant) and, instead of, to use an optimal parameterization
for each point of the state space (i.e., the solution procedure adapts the parameterization
in a multi-dimensional parameter space from state to state). Therefore, the (nr by n)-
dimensional parameterization matrix Pr(Ψ) is adapted for each point of the manifold.
Equations (4)-(6) are given locally in a neighborhood of Ψ and define a ms-dimensional
manifold in the state space where, if the state is assumed to be an element of the manifold,
Ψ can be given as a function of α and θ

Ψ = Ψ(α, θ). (7)

The numerical calculation is done by a path-following algorithm with predictor-corrector
procedure starts on a known initial point (e.g. the equilibrium point), generates an ms-
dimensional mesh in the different coordinate directions and solves equations (4)-(6) on
the nodes of the mesh cell by cell[11]. Then, the ms-dimensional domain of the manifold
is described by a mesh, which consists of ms-dimensional hypercubes (see Fig. 1). In the
following the grid indices are called generalized coordinates θ. The direction vectors of
the neighboring cells

Ψθi
= Ψp(θ) − Ψp(θ − δi), δi = (δi1, ..., δinr

)T (8)

are used to adapt the parameterization matrix Pr(Ψ), where Ψp(θ), Ψp(θ − δi) are cell

points, δij is Kronecker delta and Ψθ =
(

Ψθ1
, ..., Ψθnr

)

is an approximation of the (n by

nr)-dimensional gradient of Ψ based on cell vertices with respect to θ of a neighboring
cell. Insertion into equation (6) gives
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Pr · Ψθ = I, (9)

and Pr(Ψ) is defined as

Pr = Ψ+
θ , (10)

where I is the (ms by ms)-dimensional unity matrix and Ψ+
θ the (nr by n)-dimensional

Moore-Penrose pseudo-inverse of Ψθ of the neighboring cell. As a result, the parame-
terization directions are, with a first order approximation, tangent to the manifold and,
therefore, the grid coordinates ideally adapted to the ILDM where the parameterization
direction corresponds to the direction of the slow eigenvectors.

The state Ψ and the invariant subspaces Zs(Ψ), Zf(Ψ) are then obtained as known
functions of the ms-dimensional vector of mesh coordinates θ

Ψ = Ψ(θ). (11)

2.1 Extension of the ILDM

It is known that the ILDM[12], especially with attractive properties, does not exist
everywhere in the domain of interest of the composition space. There are several reasons
for this; a major reason is the so-called low temperature domain, called “no chemistry”
domain in the following where the source term is negligibly or exponentially small. In a
flame this domain in the state space corresponds to the pre-heating zone.

Accordingly, the domain of interest can be separated into three different sub-domains
such that in the first one the chemical kinetics governs the system dynamics, which means
that the fast chemical processes always equilibrate towards some low dimensional manifold
which contains the slow system dynamics and interaction of the slow sub-processes with
convection diffusion ones. In the second domain the chemical and convection/diffusion
processes are strongly coupled. The third one is the domain of very (infinitely) slow
chemistry where the chemical source term is negligible and the system dynamics is gov-
erned by convection/diffusion only. A typical system trajectory in the state space links
the equilibrium point, which always belongs to the ILDM manifold with the initial point
(the initial point corresponds to a given boundary condition - unburnt point) that can be
located in any of the three defined domains. Fortunately, in many practical combustion
problems the second domain asymptotically shrinks into the boundary between first and
third domains due to strongly non-linear (exponential) dependence of the source term on
system parameters and, consequently, can be ignored or neglected without essential loss
of accuracy.

The basic idea now is to overcome this problem and exploit the behavior in the different
domains and to construct a matching procedure between the two domains[13]. Specifically,
in the first domain the standard ILDM can be applied to obtain the reduced dynamics and
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Figure 1: Stages of generation of the ILDM mesh in the state space. Vertices indices correspond to the
generalized coordinates.

then extended to the third one. To understand what might be used as a suitable extension
of the ILDM, consider the system (15) in the third domain with an absence of the source
term and with the additional assumption of equal diffusivities. In this case the nature of
the diffusion term gives rise to the fact that each linear manifold in the composition space
constitutes an invariant manifold. In the case of non-equal diffusivities, the situation
is more complex, but a similar (non-linear) invariant manifold can be obtained by an
additional analysis of the eigenspaces of the diffusion matrix and full solution of (15). In
other words, the system in (15) becomes linear, and therefore, any linear combination
in the state space would be invariant under the degenerated system without the source
term. Moreover, the fact that in the stationary limit the system solution is close to the
so called mixing line allows us to use locally linear manifolds starting from the boundary
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domain till the initial/unburnt point. The term linear only means that the extended
manifold locally belongs to a linear hyper-plane joining the boundary of the ILDM with
the unburnt point (see Fig. 2).

Thus, by reaching during the generation the boundary domain between the two intro-
duced domains, which is given or approximated by the limit of existence of the standard
ILDM (a gap condition with user specified small parameter ε)

Ψ∗ :







Re
(

λms

λms+1

)

≥ ε
1/τphys

Re(λms+1)
≥ ε

, (12)

here λi are eigenvalues and τphys is the typical physical time scale, the manifold equation
(4) is replaced by

P⊥ (Ψp)
(

I − V · V ⊥
)

(Ψ − Ψub) = 0. (13)

Here P (Ψ) =

(

Pz

Pr (Ψ)

)

, P⊥ (Ψ) denote the parameterization matrix and its orthog-

onal complement, I - the identity matrix, Ψub - the unburnt point and V = (Ψ − Ψub) ·
e+T (Ψp), where e is the unit vector e = (1, ..., 1)T , and T (Ψp) is the local tangent space
of the manifold boundary[14]. It can be shown by simple algebra that all points fulfilling
(13) ly on the linear hyper-plane spanned by the cell boundary and unburnt point.

In other words, the tabulation procedure for the ILDM continuously checks the bound-
ary condition (12) and thus identifies the boundary manifold (see Fig. 2). This condition
normally reflects the situation when an additional chemical mode becomes slow and there-
fore the dimension of the slow subsystem has to be increased, which is normally the case
in the boundary manifold. Then it continues to generate the manifold based on (13).

At this point, it is obvious that the questions of definition of the boundary manifold as
well as determination of the minimal dimension of the slow manifold in the fast chemistry
domain is a crucial point of the method and must be investigated before generating
the matched manifold. Complete answers on these questions can not be given in the
general case; they strictly depend on local properties of the considered model and on the
accepted level of reduced model accuracy, but they can be obtained and controlled during
the generation of the ILDM.

Finally, note that the use of grid coordinates θ with the projection defined by (10) is an
ideal choice of reactive variables in both domains and, furthermore, the successive addition
of cells is ideally suited for an ILDM generation. Furthermore, the generalized coordinates
are very well adopted for an on-demand generation of the ILDM simultaneously with the
CFD calculation. All terms necessary for subsequent use in the CFD calculation with
reduced chemistry can be pre-calculated and stored during the generation of the ILDM if
they are only functions of Ψ and θ respectively:

• the n by ms-dimensional gradient of the manifold and its pseudo-inverse
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Figure 2: Treatment of the domain of slow chemistry: ILDM before (left) and after (right) extension.

• the chemical source term F (Ψ(θ)) is projected according to the reduced variables

• the projection matrix ZsZ̃s for the transport term

In addition, besides the straight forward way described above, the hierarchical structure
of ILDMs offers alternative methods to generate the manifold[15].

2.2 Projection of the governing equations

For an implementation of the developed method of system reduction into a reactive
flow calculation it is necessary to derive reduced set of conservation equations. Let us
start from a detailed equation system of a typical reacting flow process in symbolic vector
form

∂Ψ

∂t
= F (Ψ) − v · grad (Ψ) −

1

ρ
div (D · grad (Ψ)) (14)

where v represents the velocity field, ρ the density and D is the (n by n)-dimensional
matrix of the transport coefficients[14, 16].

According to the basic assumption of the ILDM method, the state Ψ is, at any point
of the flow and at any time, close to the manifold (i.e. the system dynamics in the state
space are completely described as a movement within the manifold). If all thermochemical
states everywhere in chemical reacting system are elements of the manifold, neither the
chemical source term nor the convective term causes, by definition, movements in the
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state space perpendicular to the manifold[3, 17]. However, a projection of the transport
term is required and can be done by a transformation of the transport term into local
coordinates of the invariant slow subspace

∂Ψ

∂t
= F (Ψ) − v · grad (Ψ) −

1

ρ
ZsZ̃s · div (D · grad (Ψ)) . (15)

Accordingly, the system (15) calculates the full n-dimensional state Ψ, but it restricts
the evolution to a movement tangent to the manifold. Remind that ZsZ̃s is the (n
by n)-dimensional projection operator for the diffusion term. Now, the n-dimensional
governing equation system (14) has to be projected to the ms-dimensional reduced ILDM
i.e. described by the generalized coordinates θ such that Ψ is assumed to be only a
function of θ, which leads to the following representation

Ψθ
∂θ

∂t
= F (Ψ) − v · Ψθ · grad (θ) −

1

ρ
ZsZ̃s · div (D · Ψθ · grad (θ)) , (16)

it is an n-dimensional equation system for ms unknowns and, therefore overdetermined.
In order to obtain the governing equation system in terms of the reduced variables the
(ms by n)-dimensional pseudo-inverse Ψ+

θ (10) of Ψθ is given by

Ψ+
θ = (ΨT

θ · Ψθ)
−1

· ΨT
θ . (17)

Ψ+
θ exists and can be found, if the ms columns of Ψθ are linear independent vectors.

Since the column vectors of Ψθ approximately corresponds to parameterization directions
in the state space (7)-(10) linearly independence in Ψθ should be ensured. Multiplication
of (16) with Ψ+

θ yields the equation system in terms of θ only

∂θ

∂t
= Ψ+

θ · F (Ψ) − v · grad (θ) −
1

ρ
Ψ+

θ · ZsZ̃s · div (D · Ψθ · grad (θ)) . (18)

3 IMPLEMENTATION SCHEME

The ILDM table is generated in a pre-processing step, first the state vector Ψ, the
chemical source term F (Ψ), the matrices of slow invariant subspaces Zs(Ψ), Z̃s(Ψ) and
an array containing several physical quantities (temperature, density etc.) are calculated
at each mesh point as it was introduced in Section 2. The next stage is calculation of
the terms Ψ+

θ · F , 1/ρ Ψ+
θ · ZsZ̃s, and D(Ψ) · Ψθ after finishing the generation of the

ILDM, which are needed for the solution of (18), at each point of the generated ILDM
table. This is possible, because of Ψ, Ψθ, D, Zs and Z̃s are functions of θ only. Ψθ, the
gradient of Ψ on the manifold, is approximated by central differencing and its pseudo-
inverse Ψ+

θ is calculated as described above (17). Multiplication of Ψ+
θ with F (Ψ) yields

the ms-dimensional projected source term S(θ)

S(θ) = Ψ+
θ (θ) · F (Ψ(θ)).
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The (ms by n)-dimensional matrix Π(θ) projects the transport term onto the manifold
and parameterize it to reduced coordinates. Π(θ) is given by multiplication of the matrix

of right eigenvectors Zs(θ) with the matrix of left eigenvectors ˜Zs(θ). A subsequent
multiplication with Ψ+

θ (θ) yields

Π(θ) = −
1

ρ
Ψ+

θ (θ) · Zs(θ)Z̃s(θ).

A multiplication of D(Ψ(θ)) by Ψθ(θ) yields the (n by ms)-dimensional transport matrix

Ξ(θ) = D (Ψ(θ)) · Ψθ (θ) .

Thus, the reduced equation system can be rewritten as

∂θ

∂t
= S(θ) − v · grad (θ) + Π(θ) · div (Ξ(θ) · grad (θ)) . (19)

Equation (19) is implemented and integrated in the 1-dimensional CFD code INSFLA[18].
It solves equations for mass, momentum, energy and the generalized coordinates under
usage the ILDM table generated beforehand. The INSFLA reads the ILDM table and
creates an initial profile over the spatial coordinate in terms of ms-generalized coordinates
θ. The partial differential equation system is described in space, and the resulting dif-
ferential/algebraic system is solved by the implicit differential equation solver LIMEX[19].
The calculation of the right hand side is done by a finite differencing method. Within a
loop over each spatial grid point the following steps are performed

• an interpolation in the ILDM table depending on the reduced coordinates θ is per-
formed to get the terms S(θ), Π(θ) and Ξ(θ)

• the ms-dimensional term grad (θ) is calculated

• the n-dimensional transport term div (Ξ · grad (θ)) is computed and projected to
the ms-dimensional reduced manifold Π · div (Ξ · grad (θ))

• the ms-dimensional convective term v · grad (θ) is calculated

• S(θ), v · grad (θ) and Π · div (Ξ · grad (θ)) are summed up to the right hand side

Additionally, since the mesh is locally orthogonal and equidistant and is, therefore,
ideally structured for an efficient linear interpolation, a point-by-point search is not nec-
essary. Finally, after finishing of each iteration step, a back-transformation of the solution
in terms of reduced coordinates θ to detailed variables Ψ(θ) is performed by performing
another interpolation in the ILDM table. This means that the primary results are spa-
tial profiles of the generalized coordinates, and the species profiles can be recovered by a
back-transformation (see Fig. 3).
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Figure 3: Stationary solution profiles in terms of generalized coordinates (left) and major species mole
fractions profiles (right).

4 FLAME COMPUTATIONS AND DISCUSSION

In order to verify our method presented above, results obtained using detailed and cor-
responding reduced mechanism in terms of generalized coordinates are compared. Com-
putations of adiabatic premixed syngas/air 1-dimensional free flames in a laminar flow
field are performed [20, 21]. The unburnt mixture composition consists of xCO = 0.150,
xO2

= 0.131, xH2
= 0.112 and xN2

= 0.606. Constant pressure, Le = 1 and equal dif-
fusivities are assumed, but an extension to detailed transport models is possible without
principal difficulties.

At first, ms=2 is chosen as dimension of the reduced system (i.e. 2 generalized co-
ordinates acts as reaction progress variables see Fig. 3. A 2-dimensional ILDM with
corresponding element composition, pressure and enthalpy is generated and provided to
the CFD code. In the free flame configuration Dirichlet conditions are used on the left
boundary. The left boundary point corresponds to the unburnt point at 290K. On the
right boundary, zero gradients are assumed (Neumann conditions). The regime of the
1-dimensional ILDM, starting with the unburnt point and ending up with the equilibrium
point is used as initial profile. The results of the free flame computation are presented
in Figures 4, 5. In Figure 4 concentration profiles of major species, in terms of wi

Mi
, are

plotted versus the spatial coordinate and in a projection of the composition space.
Although a very small chemical mechanism (only 13 species) and a quite simple flow

configuration is chosen, the economy of computational time is considerable. The reduced
calculation requires only about fourth of the computational time to reach the stationary
solution than the corresponding computation using the detailed mechanism. Figure 4
shows, that even the use of a 2-dimensional reduced mechanism yields accurate results
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Figure 4: Comparison of major species of an unstrained flame solution using detailed kinetic model (solid
lines), 2-dimensional reduced model (non filled symbols) and 3-dimensional model (filled symbols).

for the major species.
The boundary or the slow chemistry domain effect can be seen in Figure 4, which

is rescaled Figure 3 (right) and corresponds to pre-heating zone in a flame or to the
boundary domain in the composition space. In this domain more then 2 chemical time
scales have become slow, such that they are of the order of magnitude of the physical
processes. In Figure 4 (right) some major species are plotted against CO2 molar fraction.
The agreement is good, but in the boundary between the fast and slow chemistry, similar
to the left figure, some deviations occur compared with the detailed mechanism (see the
range of molar fraction of CO2 from 1 to 3 in both right and left figures).

Figure 5 (left) shows the behavior of minor species - CH2O over the spatial coordinate.
It can be seen that a better description of those species can be obtained by increase
of the ILDM dimension, in particular, 3-dimensional extended ILDM produces already
not only qualitative but quantitative description. Figure 5 (right) illustrates that each
additional reaction progress variable varies in a smaller range, it means the assumption
of fast relaxation for the corresponding chemical processes is better and better fulfilled
with increasing dimension.

5 CONCLUSIONS

A representation of ILDMs in terms of generalized coordinates together with a multi-
dimensional extension procedure offer the advantage of a robust and efficient implemen-
tation. It is based on natural choice of the local manifold coordinates and on assumptions
widely used in combustion theory. It is assumed, in particular, that there exists a sharp
subdivision (splitting) of the state space into sub-domains with predomination of chemical
kinetics or convection/diffusion terms. Accordingly, in the domain of fast chemistry the
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Figure 5: Mole fraction profile of CH2O (left), comparison of detailed model (solid line), 2-dimensional
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model.

standard ILDM method is used to approximate an invariant manifold of slow motions
whereas in the no chemistry or low-temperature domain the locally linear extension of
the ILDM and matching procedures have been proposed. It is suggested to increase the
ILDM dimension to improve the performance of the ILDM near the boundary manifold.
The reduced calculations yield a good agreement to the results obtained from the detailed
calculation.
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