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Summary. One of the popular methods (Intrinsic Low-Dimensional Manifolds –
ILDM)) of decomposition of multiscale systems into fast and slow sub-systems for
reduction of their complexity is considered in the present paper. The method suc-
cessfully locates a position of slow manifolds of considered system and as any other
numerical approach has its own disadvantages. In particular, an application of the
ILDM-method produces so-called “ghost”-manifolds that do not have any connec-
tion to the true dynamics of the system. It is shown analytically that for two-
dimensional singularly perturbed system (for which the fast-slow decomposition has
been already done in analytical way) the “ghost”-manifolds appear. The problem
of discrimination/identification of the “ghost”-manifolds is under consideration and
two numerical criteria for their identification are proposed. A number of analyzed
examples demonstrate efficiency of the suggested approach.

1 Introduction

In this paper, following Maas and Pope [16] we consider Intrinsic Low- Dimensional
Manifolds Method (ILDM) for systems of ordinary differential equations. The main
aim of this paper is to demonstrate that application of the conventional ILDM ma-
chinery can produce additional artificial objects (“ghost” manifolds) that do not
have any connection to the true slow invariant manifold of considered system. Two
various approaches for the “ghost” manifolds identification/discrimination are sug-
gested and their application is demonstrated.

The paper is organized as follows. In Sect. 2, we give a review of several reduction
methods, which are used in combustion and chemical kinetics problems. In Sect. 3,
we give the examples of the “ghost” manifolds phenomenon. In Sect. 4, we suggest
two criteria for identification/discrimination of the “ghost” objects. In Sect. 5, we
conclude the results.
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2 Theoretical Background

In this section the method of invariant manifolds, iterative method of Fraser,
Inflector-method, Intrinsic Low-Dimensional Manifolds (ILDM) method and its
modification (TILDM) will be briefly described.

2.1 Method of Invariant Manifolds (MIM)

Consider a singularly perturbed system of ordinary differential equations

ε
dx

dt
= f(x,y, ε) (1)

dy

dt
= g(x,y, ε) (2)

Here x ∈ �m, y ∈ �n are vectors in Euclidean space, t ∈ (t0,+∞) is a time-like
variable, 0 < ε < ε0 << 1, functions f : �m × �n → �m, g : �m × �n → �n are
supposed to be sufficiently smooth for all x ∈ �m, y ∈ �n, 0 < ε < ε0. The values
|fi(x,y, ε)|, |gi(x,y, ε)|, (i = 1, ...m; j = 1, ...n) are assumed to be comparable with
the unity as ε→ 0.

Definition 1. A smooth surface in the phase space M ∈ �m × �n × � is called
an invariant manifold of the system (1)-(2), if any phase trajectory (x(t, ε),y(t, ε))
such that (x(t1, ε),y(t1, ε)) ∈ M belongs to M for any t > t1. If the last condition
holds only for t ∈ [t1, T ], then M is called a local invariant manifold.

The simplest examples of invariant manifolds are phase trajectory and phase space.
The manifold’s existence leads to the fact that the analysis of the system’s

behaviour can be considerably simplified by reducing a dimension of the system. We
are interested in the invariant manifolds of dimension m (the dimension of the slow
variable) that can be represented as a graph of the vector-valued function:

x = h(y, ε). (3)

The invariant manifolds mentioned above are called manifolds of slow motions (this
term was adopted from the nonlinear mechanics). The system’s dynamics on this
manifold is described by the equation

dy

dt
= g(h(y, ε),y, ε). (4)

If y(t, ε) is a solution of the Eq.(4), then the pair x(t, ε),y(t, ε) where x(t, ε) =
h(y(t, ε), ε) is a solution of the original system (1)-(2), since it determines a trajec-
tory on the invariant manifold.

A usual approach in the qualitative study of (1)-(2) is to consider first the
degenerate system, which is obtained by substituting ε = 0 into the system

0 = f(x,y, 0) (5)

dy

dt
= g(x,y, 0), (6)

and then to draw conclusions for the qualitative behaviour of the full system for
sufficiently small ε. The Eq.(5) determines the slow surface. The slow surface is the
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zeroth approximation of the slow invariant manifold. It is assumed that the Eq.(5)
has an isolated smooth solution x = h0(y). Moreover, the next relation should take
place

limε→0h(y, ε) = h0(y)

In addition, only these manifolds are important here that are stable (attractive).
By the famous Tikhonov’s theorem, the question of stability of an invariant manifold
can be reduced to study of its zeroth approximation stability.

Invariant manifold x = h(y, ε) of the system (1)-(2) is stable, if the real parts of
all eigenvalues of the matrix Dxf(h0(y),y, 0) are negative.

Points of the slow surface determined by (5) are sub-divided into two types:
standard points and turning points. A point (x,y) is a standard point of the slow
surface if in some neighborhood of this point the surface can be represented as a
graph of a function x = h0(y) such that f(h0(y),y, 0) = 0. It means that the
condition of the Implicit Function Theorem Dxf(h0(y),y, 0) �= 0 holds and the
slow surface has the dimension of slow variable. Points where this condition does
not hold are turning points of the slow surface. In other words, turning points are
defined as solutions of the following system

f(x,y, 0) = 0

fx(x,y, 0) = 0

The asymptotic method described below can not be applied there.
Problems of existence, uniqueness and stability of invariant manifolds have been

studied by many authors. The main results of these studies can be summarized in
the following theorems.

Theorem 1. (Mitropolsky and Lykova, 1973) Let the system (1)-(2) satisfies the
following conditions:

(i) The equation f(x,y, 0) = 0 has an isolate solution x = h0(y) in some domain
G = {(x,y, ε) : y ∈ �n, 0 < ε < ε0, ||x− h0(y)|| ≤ ρ}.

(ii) The functions f ,g,h0 and their first and second partial derivatives are uni-
formly continues and bounded in G.

(iii) The eigenvalues λi(y), i = 1, 2, ..., n of the matrix Dxf(h0(y),y, 0) satisfy
the condition Re[λi(y)] ≤ −β, i = 1, 2, ..., n, y ∈ �n for some β > 0.

Then there exists an ε1 : 0 < ε1 < ε0, such that for every ε : 0 < ε < ε1 the
system (1)-(2) has a unique invariant manifold x = h(y, ε), where the function h
satisfies the equality h(y, 0) = h0(y).

Theorem 2. (Strygin and Sobolev, 1988) Let the assumptions (i)-(iii) of the pre-
vious theorem hold. Then there exists an ε1 : 0 < ε1 < ε0, such that for every
ε : 0 < ε < ε1 the invariant manifold x = h(y, ε) is stable.

In general situations the determination of the exact form and location of the slow
invariant manifold is impossible. Therefore, methods of approximation are necessary.
One of them finds the slow invariant manifold as a power series with respect to the
small parameter ε:

h(y, ε) = h0(y) +Σεihi(y)
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Theorem 3. (Strygin and Sobolev, 1988) Let the assumptions of the previous theo-
rem hold. Then the invariant manifold x = h(y, ε) can be represented as

h(y, ε) = h0(y) +Σk
i=1ε

ihi(y) + h∗(y, ε) (7)

for some k, where h∗(y, ε) is a smooth function with a bounded norm, such that
|h∗(y, ε)| = O(εk+1) for all y ∈ �n.

It is not hard to see from the Eq. 7 that the slow surface x = h0(y) is O(ε)
approximation of the slow invariant manifold, except the turning points. Thus, the
general scheme of application of this technique for singularly perturbed system can
be subdivided to analysis of the fast and slow motions. The analysis can be consid-
erably simplified by this decomposition and reducing the dimension of the system
to the dimension of the slow variable y and to the dimension of the fast variable x.
It means that in O(ε) approximation of the slow invariant manifold, the analysis of
the original system can be reduced to the analysis of system’s dynamics on the slow
surface. On the slow surface the changes of the slow and fast variables are compa-
rable (i.e. the fast and the slow processes are balanced). Beyond the slow surface
the slow variables are fixed (quasi-stationary). Hence, each system’s trajectory can
be approximated by fast motions (which are beyond the slow manifold) that are
described by the fast sub-system

ε
dx

dt
= f(x,y0, ε); y = y0 = const,

and slow motions (which are on the slow manifold) that are given by the slow sub-
system (4) with h(y, ε) = h0(y).

The method of invariant manifolds has been used for study of singularly per-
turbed systems of ordinary differential equations by many authors (see, for example
[4], [12], [32]). The asymptotics of the slow invariant manifold are given explicitly,
for example, in [17], [20].

2.2 Iterative Method of Fraser

The method of functional iteration for finding slow manifold was supposed in [5],
further developed and applied to enzyme kinetics in [3], [18], [26], [27], [25]. In [13]
there was done the asymptotic analysis of the method and comparison with the
ILDM-method.

The method was inspired by the phase space geometry of an enzyme kinetics
model involving a fast and a slow species, where the slow manifold is a curve in
the phase plane, and extended naturally to multidimensional systems with higher-
dimensional slow manifolds.

The idea of the method is as follows. Consider the planar dynamical system

ẋ = f(x, y)

ẏ = g(x, y),

where x can be considered as a slow variable and y as a fast one. Taking g = 0 as
a zeroth iteration the procedure matches the slope of the slow manifold. From the
trajectory equation
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y′(x)f(x, y) = g(x, y)

there is obtained functional equation

y = ϕ(x, y′)

and from here iterative scheme

yn+1 = ϕ(x, y′n).

The procedure is explicit if the vector field is linear in the fast variable and im-
plicit otherwise. In [13] there was considered general singularly perturbed system of
ordinary differential equations, which is linear for the fast variable

ẏ = f1(y, ε)z + f2(y, ε),

εż = g1(y, ε)z + g2(y, ε)

It was shown that for such system the iterative method generates, term by term, the
asymptotic expansion of the slow invariant manifold. Starting from the slow surface,
the i-th iteration of the algorithm yields the correct expansion coefficient at O(εi).
Thus, after l applications, the expansion is accurate up to and including the terms
of O(εl).

2.3 Inflector method

In this sub-section we describe very briefly the definition of inflector and some its
properties. This object was introduced by Japanese mathematician Masami Okuda
in the early eighties [21], [22], [23]. This investigation is interest for us because
the Inflector can be considered as some prediction of Intrinsic Low-Dimensional
Manifolds. The study deals with two-dimensional dynamical systems, but can be
naturally generalized for higher dimensional problems.

Definitions of Inflector, A-inflector and R-inflector

Here we remind the definitions of inflector, A-inflector and R-inflector. Consider
two-dimensional dynamical system of the type

ẋ = F(x), (8)

where

x =

�
x
y

�
, F(x) =

�
f(x, y)
g(x, y)

�
.

Let A = A(x) be a Jacobian matrix of F = F(x):

A =
∂F

∂x
=

�
fx fy
gx gy

�
.

Let λi = λi(x) (i = 1, 2) be the eigenvalues of A, and assume |λ1| ≤ |λ2|. For the
dynamical system (8) the author defined three sets: C (inflector), Ca (A-inflector),
Cr (R-inflector) by
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C = {x | (A− λiI)F = 0, i = 1 or 2}, (9)

Ca = {x | λ2 < 0, | λ1/λ2 |< 1, (A− λ1I)F = 0}, (10)

Cr = {x | λ2 > 0, | λ1/λ2 |< 1, (A− λ1I)F = 0}, (11)

where I is the unit matrix. The definition (10) means that the A-inflector is found
as all the points in the phase plane where the vector field is parallel to the slow
eigenvector. Notice here that A-inflector (R-inflector) was called attractor (repellor)
in the previous author’s study (1976).

Eliminating λi from Eq. (9), one can obtain another expression for C

C = {x | f(gxf + gyg)− g(fxf + fyg) = 0} (12)

It is obvious that
Ca ⊂ C, Cr ⊂ C,

but Ca ∪ Cr is not always C.

The relation between the A-inflector (R-inflector) and the
attracting (repelling) naive trajectory

In [21], [23] and [22] the author investigated properties of the inflector. Let us remind
here very briefly one of them concerning asymptotics of the inflector.

Consider according [23] the system

ẋ = u(x, y, ε) (13)

εẏ = v(x, y, ε), (14)

where ε > 0 and the functions u and v have the power-series expansions in powers
of ε. It is assumed that the trajectory equation

εu(x, y, ε)dy = v(x, y, ε)dx (15)

has solution y = Y 0(x, ε) in the neighborhood of ε = 0 in some region Ω in the
phase plane. The author denoted this trajectory as

T 0(ε) = {x | y = Y 0(x, ε)} (16)

and called T 0(ε) a naive trajectory (NT) in the neighborhood of ε = 0.
¿From the definition of the function Y 0(x, ε) follows that it has the power-series

expansion
Y 0(x, ε) = Σ∞i=0ψj(x)εj (17)

which converges in the neighborhood of ε = 0 uniformly in x in ∩|ε|<ε0{x | x ∈
T 0(ε)} with some ε0 > 0. For calculation of the functions ψj(x) in [23] the standard
procedure was used:substitution of Eq. (17) into Eq. (15) and equating coefficients
of like powers of ε. Then we have

v0(x,ψ0(x)) = 0, (18)

ψ1(x) = −(ū0v̄0x + v̄1 ¯v0y)/v̄
2
0y , (19)

where ū0 = u0(x, ψ0(x)), v̄0y = v0y(x,ψ0(x)), etc.
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An attracting part and a repelling part of the naive trajectory was defined as
follows:

T 0
a (ε) = {x | y = Y 0(x, ε), D(x) < 0} (20)

T 0
r (ε) = {x | y = Y 0(x, ε), D(x) > 0}, (21)

where D(x) is so-called a repulsion rate. This object was introduced by the author in
[22] for stability analysis in transient states. In that article he gave the mathematical
expression for the repulsion rate and found two properties of the inflector with
relation to it. The repulsion rate D(x) has the following properties for the dynamical
system (8) [22]: (i) Let T (x) be a section of the trajectory passing through a point
x. If D(x) < 0, then any state point in the neighborhood of x will approach T (x) at
that point of time, and if D(x) > 0 it will go away from T (x). (ii) If x is a regular
point belonging to the A-inflector Ca (R-inflector Cr), then D(x) < 0 (D(x) > 0).

Let Ω0(χ) be the region {x | | v0
y |≥ χ}, where χ is an arbitrary positive

constant independent of ε and v0 ≡ v(x, y, 0) = v0(x, y). Then the repulsive rate can
be written as

D(x) = v̄0yε
−1 +O(1) (22)

for a regular point x ∈ T 0(ε) as ε→ 0 in the region Ω0(χ).
The following important property was proved in [23] (Property 1.1): The A-

inflector (R-inflector) is a first order approximation to T 0
a (ε) (T 0

r (ε)) for sufficiently
small ε in Ω0(χ) except singular points.

2.4 Intrinsic Low-Dimensional Manifold Method (ILDM)

Let us describe here very briefly the essential steps of the ILDM method. Consider
differential system

dZ

dt
= F(Z) (23)

Assume that this system can be represented locally as a multi-scale system for a
corresponding choice of a local basis. The last depends on the choice of an arbitrary
point Z in the n-dimensional Euclidean space �n. It means that in this local basis a
separation of variables in accordance with their rates of changes is possible (i.e. the
considered system can be rewritten in this local basis for some neighborhood of the
point Z as singularly perturbed system). According to the assumption, the system
can be subdivided locally into fast relaxing and slow or non-relaxing subsystems.
Suppose that the fast sub-system has the same dimension nf (nf < n) at any point
Z ⊆ �n.

For typical situations a set of all steady states of the fast subsystem represents
an ns-dimensional slow manifold (ns = n − nf ) and our aim is to determine its
location. The authors of ILDM suggested that the dynamics of the overall system
from arbitrary initial condition should decay very quickly onto this ns-dimensional
manifold. The ILDM allows to identify approximately (as a set of separate points)
the slow invariant manifolds (so-called intrinsic low-dimensional manifolds – ILDM-
manifolds). These manifolds can be found in the following manner [16]. Suppose
a local basis of the original phase space is formed by the invariant subspaces of
the Jacobi matrix Mj of the vector field F at an arbitrary point Z0. If the set of
eigenvalues λi can be sub-divided into two groups

max{Re[λi], i = 1, ..., nf} << τ < min{Re[λi], i = nf + 1, ..., n} (24)
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(where τ < 0) one can introduce invariant sub-spaces Tf and Ts. The sub-space Tf is
spanned by the eigenvectors corresponding to eigenvalues with large negative (fast)
real parts. In turn, the sub-space Ts is spanned by the eigenvectors corresponding
to eigenvalues with small negative or positive (slow) real parts. Therefore, the new
basis Q(Z), which is constructed from the eigenvectors of the Jacobi matrix and
transition matrix from the standard basis to this local basis Q−1(Z) can be written
like two block matrices

Q =

Qf Qs

�
; Q−1 =

�
Q̃f
Q̃s

�
(25)

where matrices Qf and Qs correspond to the fast and slow subspaces (Qf is n×nf
matrix of the fast eigenvectors, Qs is n× ns matrix of the slow eigenvectors, Q̃f is
nf × n matrix and Q̃s is ns × n matrix). The parameter τ is a time scale splitting
parameter. This splitting parameter determines the dimensions of the slow (ns) and
fast (nf ) sub-spaces.

Using a standard lineaization of the RHS of (23) at the point Z0 we get

dZ

dt
= F(Z) ≈ F(Z0) +

∂F

∂Z
|Z=Z0 (Z− Z0) (26)

The Jacobian at the point Z0 can be represented as a product of three matrices:
the transition matrix Q, a two-blocks representation JMJ of the Jacobian in the
eigenvectors basis and inverse of the transition matrix Q−1

∂F

∂Z
|Z=Z0= MJ (Z0) = QJMJQ

−1 = MJ =

Qf Qs

��JMf 0
0 JMs

��
Q̃f
Q̃s

�
(27)

The square (n× n) matrix JMJ is decomposed into a two-block matrix. The blocks
JMf , JMs correspond to fast and slow invariant sub-spaces. The matrix JMf is
nf × nf and the matrix JMs is ns × ns.

Introduce the intermediate variable φ = Z−Z0 and rewrite the expression (26)
in the form

dφ

dt
= F(Z0) +MJ (Z0)φ = F(Z0) +Q(Z0)JMJ (Z0)Q−1(Z0)φ (28)

Multiply both sides of (28) by the inverse matrix Q−1(Z0)

Q−1(Z0)
dφ

dt
= Q−1(Z0)F(Z0) + JMJ (Z0)Q−1(Z0)φ

and introduce new variable (this is a point of the transition from the original basis
to the new one, which allows the decomposition into fast and slow motions)

Ψ = Q−1(Z0)φ

With respect to the new variable the equation can be written in the form

dΨ

dt
= φ

dQ−1

dt
(Z0) +Q−1(Z0)F(Z0) + JMJ (Z0)Ψ

One can show that the first term in the RHS of the last equation is negligible under
certain special conditions [16]. The equation is reduced to the simple equation in
the form
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dΨ

dt
≈ Q−1(Z0)F(Z0) + JMJ (Z0)Ψ

According to the original algorithm of Maas and Pope (1992) the Intrinsic Low-
Dimensional Manifold (ILDM) is determined by the following system of equations

Q̃f (Z)F(Z) = 0 (29)

This definition means that the fast component of the original vector field F(Z), that
corresponds to the (“big”) fast block JMf of the Jacoby matrix representation, is
vanished.

ILDM-algorithm for singularly perturbed system

Suppose that we initially have differential system in singularly perturbed form and
we are interested in asymptotic expansion of ILDM equation in order to compare
it with the invariant manifold. In this case the transition matrix Q, its inverse Q−1

and the vector field have the following representation

Q =

�
Qff Qsf
Qfs Qss

�
, Q̃ =

�
Q̃ff Q̃fs
Q̃sf Q̃ss

�
, F =

�
ε−1f
g

�
, (30)

where Q̃ff is nf ×nf matrix, Q̃fs is nf ×ns matrix, Q̃sf is ns×nf matrix and Q̃ss
is ns × ns matrix.

The ILDM-equation gets the form

Q̃ff f + εQ̃fsg = 0

In the zero approximation ε→ 0 the equation is

Q̃ff f = 0.

If det Q̃ff = 0, then the last equation gets additional solutions (“ghost” manifolds)
except the slow manifold f = 0. This is one of reasons for “ghost” manifolds ap-
pearance. The others will be considered in the future works of the authors.

Connection of the ILDM and the Ca-inflector

Consider a two-dimensional system (8):

ẋ = F(x), x =

�
x
y

�
, F(x) =

�
f(x, y)
g(x, y)

�
.

Assume that |λ1| < |λ2| and λ2 < 0 hold in some domain D of the phase plane.
According to the definition of the Ca-inflector (10) its equation can be written as

fgx + g(gy − λ1) = 0 (31)

According to the ILDM-method, λ1 is a slow eigenvalue and λ2 is a fast eigen-
value in D. The equation for the ILDM in this case looks as

1

det(Q)
(fgx + g(gy − λ1)) = 0, (32)
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where Q is the new basis matrix, which is built from the eigenvectors of the Jacobi
matrix of the system.

¿From the direct calculation we get

det(Q) = gx(λ2 − λ1) (33)

Equations (31) and (32) show that in D ILDM coincides with Ca-inflector up to the
expression gx.

Remarks about possible non-coincidence of ILDM and slow
invariant manifold

The interesting fact is that the concept of the Intrinsic Low-Dimensional Manifolds
is well known and widely used in the reduction methods [21]-[23], [25]. The following
hints of “ghost”-manifolds existence are given in these studies:

(i) Consider the definition of the A-inflector (Eq.10) Sect. 2.3. We see that the
points where the eigenvalues of the Jacobian are equal are out of that definition. In
our study (see, for example, [6]) we show that the original algorithm cannot treat
these points (curves, surfaces). It can be easily shown by formula (33). Namely, the
expression 1/ det(Q) is always involved into an ILDM-equation and λ1 − λ2 = 0 is
one of possibilities to the determinant to vanish. Therefore numerical application of
the ILDM-algorithm yields “ghost”-objects in the points λ1 − λ2 = 0.

(ii) Note, that the asymptotic comparison between the A-inflector (R-inflector)
and T 0

a (ε) (T 0
r (ε)) in [23] was performed in the region Ω0(χ) = {x | | v0

y |≥ χ}. One
can show that the original algorithm does not work in the zones where v0

y = 0 and
their neighborhoods.

(iii) In some cases it can be shown for a two-dimensional singularly perturbed
system that in turning zones eigenvalues of Jacobi matrix are complex. It means
that their real parts are identical. By the definition, v0

y = 0 in turning points. ¿From
the above we can conclude that turning zones are problematic for ILDM-method.
The analysis of the algorithm shows that existence of complex eigenvalues is one of
the main problems of the method.

(iiii) It should be noticed that the ILDM-method was used in [25] for analysis
of fast-slow planar dynamical systems. In this study the Intrinsic Low-Dimensional
Manifold was called a slow tangent manifold. It was defined as the curve on which
the slow eigenvector is parallel to the velocity field (this definition coincides with
the ILDM definition, see [16], [13]). It was shown that the slow tangent manifold lies
close to the slow invariant manifold. In our study we demonstrate that in some situ-
ations the ILDM does not coincide with the slow invariant manifolds, and different
disruptions of the original algorithm are reasoned by different types of non-linearity
of a vector field of the considered ODE system.

2.5 TILDM

The remarks (i)-(iiii) show that the ILDM-algorithm has several disadvantages and
some improved version is needed.

TILDM-method [2] is a modified version of the original ILDM approach of Maas
and Pope. The additional letter “T” comes from the word “Transpose”. The basic
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difference between the algorithms is that the TILDM uses the symmetric matrix
T = J ·Jt instead of the Jacobi matrix J . It is known that any symmetric matrix has
real eigenvalues and orthogonal eigenvectors. This solves one of the main problems
of the ILDM-approach (complex eigenvalues with a large negative real part of the
Jacobi matrix) and also problems connected to non-orthogonality of the eigenvectors.
Note, that idea to exploit properties of a symmetrized (in some special sense) matrix
was suggested in [9, 10].

Consider the differential system

ẏ = f(y, z, ε)

εż = g(y, z, ε),

where y ∈ K1 ⊂ �m, z ∈ K2 ⊂ �n, 0 < ε ≤ ε0, functions f , g derivatives are
proportional to the unity when ε→ 0.

Fix an arbitrary point (y, z). The Jacoby matrix is

J =

�
Dyf Dyg

ε−1Dzf ε
−1Dzg

�
The corresponding symmetric matrix T is

T = J · Jt =

�
T11 T12

T21 T22

�
T11 is m×m matrix with the elements proportional to O(ε0), T12 is m× n matrix
with the elements proportional to O(ε−1), T21 is n × m matrix with the elements
proportional to O(ε−1), T22 is n×nmatrix with the elements proportional to O(ε−2).
For arbitrary point (y, z) the matrix T has positive eigenvalues and orthogonal
eigenvectors. The eigenvalues of T fall into two distinct groups: n fast eigenvalues
( proportional to O(ε−2) and m slow ones (proportional to O(ε0)). ¿From linear
algebra we know that in some orthonormal basis Q the matrix T has a diagonal
form with its eigenvalues in the diagonal. The eigenvalues can appear along the
diagonal in any desirable order.

T = QTdQ
t,

where

Q =

�
Q11 Q12

Q21 Q22

�
, Qt =

�
Qt11 Q

t
21

Qt12 Q
t
22

�
Here

�
Q11

Q21

�
is the orthonormal basis of the fast sub-space,

�
Q12

Q22

�
is the ortho-

normal basis of the slow sub-space. Td is a following diagonal matrix

Td =

�
Λf 0
0 Λs

�
Here Λf is a fast block (n × n block of the fast eigenvalues), Here Λs is a slow
block (m × m block of the slow eigenvalues). By the definition, the equation for
TILDM manifold is multiplication of the fast part of the matrix Qt by the vector
field F = (f , ε−1g)t:

Qt11f + ε−1Qt21g = 0. (34)
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Asymptotic analysis with respect to the small parameter ε shows that zeroth approx-
imation of the TILDM coincides with the zeroth approximation of the slow invariant
manifold (slow surface g = 0). It must be noticed that the turning points are not
problematic for the TILDM-algorithm and this fact is one of the most important
advantages of the method.

3 “Ghost” ILDM-Manifolds Examples

In this section the examples of “ghost”-manifolds appearance will be demonstrated.
The examples 1-3 are theoretical ones; the example 4 is practical one. All presented
systems are written in the singularly perturbed form. Nevertheless the “ghost” ob-
jects appear when we apply the ILDM method.

Example 1. This example will demonstrate appearance of a large number of “ghost”
manifolds because of non-correct fast direction defined by the ILDM method. It
should be noticed that the slow manifold of this system does not have turning
points and also it is stable. Consequently according to the conjecture [24] the ILDM
manifold should coincide with the invariant manifold, but this statement is not
true for this example. In other words, the present example can be considered as a
counterexample for the conjecture suggested in [24].

Consider the following system of differential equations with small parameter ε :

εẋ = −x− sin(x)− sin(y)

ẏ = −y
The slow manifold (the manifold of critical points) is given by the equation

−x− sin(x)− sin(y) = 0 (35)

The slow manifold is shown as the central object on Fig.1(below). Application of
the ILDM method for this example provides us with two equations for domains with
different hierarchy of the eigenvalues λ1,2:

−x− sin(x)− sin(y) +
εy cos(y)

−1 + ε − cos(x)
= 0, |λ1| > |λ2|

y = 0, |λ2| > |λ1|
Fig.1(upper) demonstrates two ILDM manifolds (solid lines)and a system’s tra-

jectory (thick dashed line). Fig.1(below) demonstrates the slow curve (solid line)and
a system’s trajectory (thick dashed line). On the figure we can see that the trajec-
tory with arbitrary initial conditions approaches the ILDM curve passing through
“ghost” manifolds (fast motion, almost parallel to the x axe). it must be noticed
that one of the ILDM-manifolds (the central part of Fig.1(upper)) is very close to
the slow manifold.

Example 2. This example will demonstrate the essential perturbations produced by
the ILDM algorithm on unique slow manifold. Consider the following system of
differential equations with small parameter ε

εẋ = −x− sin(x)− sin(y) + 10
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Fig. 1: Example 1. Upper graph – ILDM and trajectory, lower graph – slow curve
and trajectory

ẏ = −2y − sin(y)

The method of invariant manifolds provides us with the slow manifold as follows
(dashed line on Fig.2).

−x− sin(x)− sin(y) + 10 = 0 (36)

As in the previous example we get two ILDM-equations (it depends on which
of the eigenvalues is “fast” in the considered domain) applying the algorithm. Fig.2
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Fig. 2: Application of ILDM algorithm for Theoretical Example 2

demonstrates two ILDM manifolds (solid lines), the slow curve (central dashed line)
and a system’s trajectory (thick dashed line).

Example 3. Consider the following system of differential equations with small para-
meter ε

εẋ = −x/2− sin(x)− sin(xy)

ẏ = −y
We will show that this example is pathological for the ILDM algorithm in some
sense. The method of invariant manifolds provides us with the slow manifold

−x/2− sin(x)− sin(xy) = 0

The analysis of the eigenvalues shows that either |λ1| >> |λ2| or |λ1| = O(|λ2|)
and the last relation holds in almost all points of the phase plane. On Fig.3 the
curve is depicted, on which λ1 = λ2. Then, in some small vicinity of this curve the
eigenvalues are comparable. We see that the curve fills up the whole plane and has
a very interesting form. Let us remark that the system is written in the singularly
perturbed form with explicit small parameter.

Fig. 4 shows that the ILDM method approximates the slow manifold very well.

Example 4. Consider classical model of thermal explosion in a gas. The dimensionless
model reads as

ε
dθ

dt
= η exp

�
θ

1 + βθ

�
− αθ = f(θ, η) (37)

dη

dt
= −η exp

�
θ

1 + βθ

�
= g(θ, η) (38)

θ(0) = 0, η(0) = 1 (39)

Here θ is a dimensionless temperature, η is a dimensionless concentration, α is a
dimensionless heat loss parameter, ε is a reciprocal of the dimensionless adiabatic
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Fig. 3: The curve on which the eigenvalues of the Jacobian in Example 3 are equal
one to another

temperature rise, β is a dimensionless ambient temperature. For realistic combustible
gas mixtures typical values of ε lie in the interval (0.01, 0.1) and the following
relation is satisfied: β2 < ε < β. Therefore this system can be considered as a
singularly perturbed system with small parameter ε, where θ is a fast variable, η is
a slow variable.

Note that the dynamics of the system is known very well, see, for example, [2],
[6], [7], [8]. In particular, in [7], [8] the dynamics of the system was analyzed in
framework of the method of invariant manifolds (MIM); in [6] the detailed analysis
of the ILDM algorithm application to the system (37)-(39) was performed; in [2] the
modification of ILDM (TILDM) was applied. Here we remind only basic results of
the ILDM-method application.

According to the ILDM-method, the Jacobian of the system is

J =

�
ε−1fθ ε

−1fη
gθ gη

�
The eigenvalues are

λ1,2 = 1/2(ε−1fθ + gη ±
�
D(θ, η)),

where
D(θ, η) = (ε−1fθ + gη)

2 − 4ε−1(fθgη − fηgθ)
There are three possibilities depending on the sign of the discriminant D(θ, η):

a) D(θ, η) > 0. The Jacobi matrix provides us with two real different eigenvalues.
Depending on order of magnitude of the eigenvalues two ILDM equations are ob-
tained for different domains of the phase space.
b) D(θ, η) = 0. The Jacobian provides us with two identical eigenvalues. In this
case one of the main assumptions of the ILDM approach does not hold, namely,
the eigenvalues can not be sub-divided into two different groups (24). It means that
there is no splitting on fast and slow eigenvalues and the ILDM-method can not be
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Fig. 4: Example 3. Upper graph – the slow manifold, lower graph - ILDM

applied.
c) D(θ, η) < 0. The Jacobian provides us with two complex eigenvalues. It means
that their real parts are identical. We can repeat the previous argument to conclude
that the original technique does not work in this case. The region in the phase plane
corresponding to this case is the domain between the curves Y+ and Y− (see Fig. 5).

Fig. 5 shows all the curves (M1,M2, Y±) obtained by the ILDM-algorithm (thick
solid lines) and the slow manifold (dashed line).



“Ghost” ILDM-Manifolds and their Identification 67

The functions Y±(θ) are the solutions of the equation D(θ, Y±(θ)) = 0 and they
have their own sense. These functions serve as the separating lines on the phase
plane between domains of real and complex eigenvalues.

Fig. 5: ILDM and the slow curve for the Semenov’s model

Let us now illustrate briefly the basic steps of the system’s analysis by the
method of invariant manifolds.

In accordance with Sect. 2.1, the slow curve of the system (37)-(39) is given by

f(θ, η) ≡ η exp

�
θ

1 + βθ

�
− αθ = 0 (40)

Eq.(40) has a unique isolated solution θ(η) for all η, except at the turning points, at
which f = 0, fθ = 0. The slow curve has two turning points. On Fig. 5 we can see
one of them T . The second point has a very big θ-coordinate for reasonable values
of the system’s parameters. On the slow curve the relative rates of the processes are
comparable, and the system’s dynamics is governed by the reduced system on the
slow curve:

dη

dt
= −η exp

�
θ(η)

1 + βθ(η)

�
where θ(η) is given by (40).

The first approximation of the slow invariant manifold reads

η = αθ exp

�
− θ

1 + βθ

�
+ ε

θ(1 + βθ)

θ − (1 + βθ)2

Fig. 6 represents both the slow curve (dashed line) and the first approximation
(solid line) of the exact manifold.

If we compare Fig. 5 and Fig. 6 we see that the first approximation of the
invariant manifold and the intrinsic low-dimensional manifolds are identical, except
the lines Y±(θ). These lines separate in the phase plane domains of real and complex
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Fig. 6: The zeroth and the first approximations of the slow invariant manifold for
the Semenov’s model

eigenvalues. Between Y− and Y+ the “transition zone” is located (the “gray zone” in
[6]), which is large in this example, because of the existence of complex eigenvalues
far from the “transition point”. In this zone the ILDM method does not work and
it confirms [7] that there is no division into fast and slow processes in “transition
zone”.

3.1 Conclusions

We can see that there exist “ghost” manifolds as a result of ILDM-method appli-
cation. The first example demonstrated that even for two-dimensional singularly
perturbed system the slow manifold of which is stable and does not have turning
points the ILDM does not coincide with the invariant manifold. The second exam-
ple demonstrated appearance of “ghost”- manifolds in neighborhoods of the turning
points. It is known (see, for example[1], [2], [6]) that in these zones the original
ILDM method doesn’t work. Let us remind that the Ca-inflector (see Sect. 2.3) is
not defined in zones containing turning points. The third example is pathological
for the ILDM-algorithm in some sense. In spite of the original system of equations is
done in the standard singularly perturbed form the processes involved are compara-
ble in almost all phase plane. Nevertheless, the algorithm locates the slow manifold
well. The application of the algorithm gives “ghost” manifolds. The forth exam-
ple demonstrated one of the main ILDM-method’s problems: existence of complex
eigenvalues of the Jacobi matrix.

4 Criteria for “ghost”-manifolds identification

In Sect. 3 we demonstrated that application of the original Maas and Pope algorithm
produces so-called “ghost”-manifolds. In this section we suggest two criteria that
allow to distinguish the “ghost”-manifolds from the correct ones.



“Ghost” ILDM-Manifolds and their Identification 69

4.1 Criterion 1: “Normal vector”

The idea of the criterion “Normal vector” can be described as follows. Fix an ar-
bitrary point that belongs to the invariant manifold of the system (1)-(2). In this
point the vector field F = (ε−1f, g)T and vector normal to the invariant manifold
n are ε-close to orthogonal pair, i.e. the value of (F, n) is comparable with ε. If a
point is far from the invariant manifold then the vector field and the normal have
some angle | α− π/2 |∼ O(1) and (F, n) cannot be small.

Apply the suggested criterion for discrimination of “ghost”-manifolds in theo-
retical example 1. The slow manifold for this system is exactly known (Eq. (35),
Fig.1). Fig.7 demonstrates result of application of the criterion. The horizontal axe
is x-coordinate of the checked point, the vertical axe shows values of log(F,n) for
different x. For x ∈ (−1, 1) we have log(F,n) = O(1). It means that (F,n) = O(ε).
According to the suggested criterion the point belongs to the correct ILDM-branch.
For x from any other zone we have (F,n) = O(1). That is, the point belongs to
“ghost”-manifold.

Fig. 7: Application of criterion “Normal vector” for Theoretical Example 1

The obtained results are confirmed by Fig.1. For x ∈ (−1, 1) the ILDM coincides
with the slow manifold (we do not see “ghost” manifolds in this zone); for x out of
this interval there is only “ghost” ILDM.

Apply the suggested criterion for discrimination of “ghost”-manifolds in theo-
retical example 2. The slow manifold for this system is exactly known (Eq. (36),
Fig.2).

Application of the criterion is shown on Fig.8. Difference of values log(F,n) is
easily seen. According to Fig.8 points from x ∈ (11, 12) belong to the real ILDM,
because log(F,n) = O(1) and so (F,n) = O(ε). Points from other intervals belong
to “artificial” ILDM-branches. This result is confirmed by Fig.2. We can see that for
x ∈ (11, 12) the ILDM coincides with the slow manifold. For x out of this interval
there is only “ghost” ILDM.
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Fig. 8: Application of criterion “Normal vector” for Theoretical Example 2

4.2 Criterion 2: “Slow Matrix”

Consider the system of ordinary differential equations (23). Suppose that this system
can be represented as a singularly perturbed system (1)-(2) in some coordinate
system. In this sub-section we find an invariant that does not depend on a choice
of coordinate system and can distinguish between ILDM-manifolds that correspond
to true invariant manifold and ILDM-manifolds that are far from any invariant
manifold. Our analysis is asymptotic one.

We know from Sect. 2.3 that that ILDM-manifolds are solutions of Eq. (29).
Denote the intrinsic low-dimensional manifold by S. Let us analyze values of
Q̃s(Z)F(Z) = 0 for different points (x, y). The matrix Q̃s can be represented
as Q̃s = (Q̃sf Q̃ss) see Eq. (30). That is, we have

Q̃sF =
1

ε
Q̃sf f + Q̃ssg (41)

Let us remind that zeroth approximation of the slow invariant manifold is defined
by f = 0. If the ILDM-manifold S belongs to ε-neighborhood of the slow invariant
manifold, then the term ε−1f has the order O(1) on S. If the ILDM-manifold is far
from the slow invariant manifold, then the term ε−1f is comparable with the value
O(ε−1) on S.

¿From (41) we can conclude that
(i) If ILDM-manifold S belongs to ε-neighborhood of slow invariant manifold,

then Q̃s(Z)F(Z) has the order O(| g |) on S.
(ii) If ILDM-manifold is far from any slow invariant manifold then

Q̃s(Z)F(Z) >>| g | on S.
Then, the described criterion suggests to use values of Q̃s(Z)F(Z) for discrimi-

nation of “ghost”-manifolds.
Apply the suggested criterion for discrimination of “ghost” manifolds in the the-

oretical Example 1. The eigenvalues of the Jacobi matrix are λ1 = (−1− cos(x))/ε,
λ2 = −1. Consider any artificial branch, for example, x ∈ (2, 4). The eigen-
values analysis shows that in this region |λ2| > |λ1|. Then, Q̃fF = −y and
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Table 1: Application of criterion “Slow matrix” for Theoretical Example 1

x y Q̃sF

2.588 0 -311.375
3.439 0 -314.597
2.89 0 -313.92

Q̃sF = −x− sin(x)− sin(y) + εy cos(y)
−1+ε−cos(x)

. The result of application of the criterion
is given in Table 1.

Table 1 shows that the values of Q̃sF are much bigger than g. Therefore according
to the suggested criterion the points from this region belong to “ghost” manifold.

Check the points of the ILDM that belong to ε-neighborhood of the slow invariant
manifold, x ∈ (−1, 1). Then, Q̃fF = −x− sin(x)− sin(y)+ εy cos(y)

−1+ε−cos(x)
and Q̃sF =

−y ≡ g. Therefore for these points |Q̃sF| = O(|g|). According to the criterion
this means that all the points from the considered interval belong to correct ILDM
manifold.

Results of the suggested criterion are conformed by the method of invariant
manifolds, criterion 1 and Fig.1.

5 Conclusions

The present paper represents a natural continuation of the authors work on a com-
parative analysis of the two powerful asymptotic methods ILDM and MIM.

As any other algorithm, ILDM has its own restrictions, which were partly demon-
strated in the present paper on a number of examples. It was shown, that ILDM
can not treat the regions of the phase space, where the leading eigenvalues of the
Jacobi matrix are equal. In particular, it means, that the ILDM approach may face
problems in the vicinity of the turning surfaces, where the leading eigenvalues are
normally complex (their real values are equal and there is no splitting in rates of
change of the processes involved). As a result of the ILDM application in these re-
gions of the phase space, so called ghost manifolds can appear. It is illustrated by a
number of examples.

The problem of the determination and elimination of the ghost manifolds is of
high importance. A numerical criterion allowing distinguishing the ghost manifolds
from the true ones is suggested in the present paper. The criterion is based on the
unique properties of the true invariant manifolds. The efficiency of the suggested
criterion is demonstrated on the number of the examples introduced earlier.
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