
visone
Software for the Analysis and Visualization of Social

Networks

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Fakultät für Informatik
der Universität Fridericiana zu Karlsruhe (TH)

genehmigte

Dissertation

von

Michael Baur

aus Ravensburg

Tag der mündlichen Prüfung: 13. November 2008
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Chapter 1

Zusammenfassung

1.1 Überblick

Seit einigen Jahren werden wirtschaftliche und gesellschaftliche Entwicklungen im-
mer häufiger unter dem Aspekt der “Vernetzung” betrachtet. Für das Verständnis
von Ereignissen ist dabei nicht mehr die institutionelle Position des Einzelnen, son-
dern die Verbindungen der Handelnden untereinander und das sich daraus erge-
bende Netzwerk entscheidend. Außer in sozialen Prozessen treten Netzwerke auch
in vielen weiteren Bereichen auf, beispielsweise als elektronische Schaltkreise, tech-
nische Kommunikationsnetze oder als weltumspannende Transportnetzwerke. Ent-
sprechend diesem breiten Anwendungsbereich sind die relevanten Fragestellungen
sehr vielfältig und die betrachteten Netzwerke unterscheiden sich deutlich in Größe
und Ausprägung. Bereiche der Informatik, die Methoden für die Netzwerkanalyse
bereitstellen können, sind offensichtlich die Graphentheorie, und da sich die Visua-
lisierungen der Netzwerke anbietet, das Graphenzeichnen, aber auch viele andere
Bereiche wie Algorithmik und Kombinatorik.

Entsprechend der gestiegenen Relevanz wird auch geeignete Software zur Analyse
und Visualisierung von Netzwerken wichtiger. In dieser Arbeit wird die Software
visone für diese Aufgabe vorgestellt, die kostenlos von der Homepage [vpt] bezo-
gen werden kann. Obwohl das Projekt ursprünglich in Kooperation mit Sozialwis-
senschaftlern gestartet wurde und deshalb den Begriff soziale Netzwerkanalyse im
Namen führt, lag ein Schwerpunkt der Entwicklung immer auf der allgemeinen An-
wendbarkeit. Da viele der verwendeten Modelle und Methoden universell sind, ist
eine strikte Abgrenzung auch kaum möglich und sinnvoll. Wichtige weitere Design-
ziele sind

• die Bereitstellung eines geeigneten universellen Dateiformats,

• exakt definierte und allgemein anwendbare Analyseverfahren,

• Netzwerkvisualisierungen, die sowohl die Analyseergebnisse exakt wiedergeben
als auch die Netzwerkstruktur übersichtlich darstellen und

• eine für nicht-technische Benutzer verständliche Bedienung.
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visone ermöglicht durch die vollständig integrierte graphische Anzeige- und Edi-
torkomponente einen fast spielerischen Zugang zur Netzwerkanalyse. Speziell ent-
wickelte Visualisierungen und eine flexible Verknüpfung mit den Analysemethoden
ermöglichen schnelles Experimentieren und Überprüfen verschiedener Hypothesen.

Andere oft verwendete Programme zur Netzwerkanalyse sind UCINET und Pajek.
UCINET ist ein sehr umfangreiches Programm, dass viele verschiedene Arten von
Analyseverfahren bereitstellt. Das Hauptprogramm ist allerdings vollständig Text-
beziehungsweise Datei-basiert und die separate Visualisierungskomponente enthält
deutlich weniger Funktionalität. In Pajek ist die graphische Darstellung integriert,
erlaubt aber nur eingeschränkte Editiermöglichkeiten und erschwert somit für Ein-
steiger die Anwendung der zahlreichen Funktionen.

1.2 Grundlagen von visone

Da der Begriff “Netzwerk” unterschiedlichste Assoziationen weckt, wird im Folgen-
den die strenge Terminologie der Graphentheorie verwendet. Das in visone verwende-
te allgemeine Graphenmodell deckt fast alle denkbaren Anwendungsgebiete ab und
ermöglicht unter anderem gerichtete und ungerichtete Kanten, Schleifen und Multi-
Kanten zwischen einem Knotenpaar. Zusätzlich können in sogenannten Attributen
beliebige weitere Daten für Knoten und Kanten verwaltet werden, beispielsweise
Kantengewichte, vorgegebene externe Knotengruppierungen oder textuelle Bezeich-
nungen. Geeignete Attribute können als Eingabeparameter für Analyse- und Vi-
sualisierungsmethoden verwendet werden. Zur dauerhaften Speicherung wird das
standardisierte XML-basierte Dateiformat GraphML verwendet, in dem sich alle
Daten abbilden lassen.

1.3 Analyse

Für die Analyse der Netwerke stehen in visone sowohl neue, in den Arbeitsgruppen
von Prof. Wagner und Prof. Brandes entwickelte Verfahren, als auch klassische,
häufig verwendete Methoden zur Verfügung. Alle Analysemethoden wurden, wenn
nötig, für das allgemeine Graphmodell generalisiert. Entsprechend dem analysierten
Objekt werden die Verfahren oft in die drei Kategorien Element- (Knoten- und
Kanten), Gruppen- und Netzwerk-Ebene eingeteilt. Folgende Analysearten sind in
visone enthalten:

• Elementebene: Zentralitätsmaße, z. B. Closeness und Betweenness, und das
lokale Dichtemaß Clustering Coefficient

• Gruppenebene: Clusterung, Indentifizierung von strukturell dichten Grup-
pen, z. B. Cliquen, Zusammenhangskomponenten und strukturelle Rollen
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(a) Radialvisualisierung
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Abbildung 1.1: Beispiele für Radial- und Statusvisualisierungen. Die Knotenposi-
tionen geben jeweils Zentralitätsmaße wieder. Durch Farbe, Form,
Knotengröße und Kantenbreite werden weitere Eigenschaften visua-
lisiert.

• Netzwerkebene: allgemeine Grapheigenschaften und Statistiken der Maße
der Elementebene

Ausgewählt wurden nur Verfahren, die häufig verwendet werden, allgemeine Rele-
vanz besitzen und sich algorithmisch effizient berechnen lassen. Die Ergebnisse einer
Analyse werden als Attribute gespeichert und sind dadurch flexibel als Eingabepa-
rameter für Visualisierungmethoden verwendbar.

1.4 Visualisierung

Mit dem Begriff “Visualisierung” werden in visone Darstellungsverfahren bezeichnet,
die ein Analyseergebnis bzw. Attributwerte akkurat wiedergeben. Einfache und na-
heliegende Visualisierungen sind die proportionale Skalierung von Knotengröße oder
Kantendicke bezüglich eines numerischen Maßes und die Abbildung einer Clusterung
auf verschiedene Farben. Fortgeschrittene Verfahren ändern das eigentliche Layout
des Graphen, also die Position der Knoten und den Verlauf der Kanten, um Attri-
butwerte wiederzugeben. Typischerweise werden dabei die grundlegende Layoutart
und gewisse Nebenbedingungen festgelegt, in deren Rahmen für die Lesbarkeit und
Ästhetik der Darstellung relevante Kriterien, etwa die Anzahl der Kantenkreuzun-
gen oder die Varianz der Kantenlängen, optimiert werden müssen. Im Allgemeinen
ergeben sich sehr komplexe Optimierungskriterien, die meist sogar NP-schwer sind.
Visualisierungen, die auf unterschiedliche graphische Eigenschaften abbilden, lassen
sich problemlos kombinieren, um verschiedene Attribute gleichzeitig darzustellen.
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(a) Multi-Kreis-Visualisierung (b) die Benutzeroberfläche von visone

Abbildung 1.2: (a) Multi-Kreis-Visualisierung eines Netzwerks mit sechs Gruppen.
Die Gruppenstruktur ist klar erkennbar. Knotenhöhe und -breite
geben die Anzahl der Kanten innerhalb der Gruppe und zu anderen
Gruppen an. (b) Oberfläche von visone mit großer Graphansicht,
kleiner Übersichtsanzeige und Bereich für Eingabekomponenten.

Radialvisualisierung Bei der Radialvisualisierung werden die Knoten proportio-
nal zu einer numerischen Bewertung näher im Zentrum der Zeichnung platziert (siehe
Abb. 1.1(a)), Knoten mit gleichem Wert liegen also auf dem gleichen Orbit. Opti-
mierungskriterien sind die Reduzierung der Kreuzungsanzahl und eine gleichmäßige
Verteilung der Knoten in der Fläche [BB04a].

Lagenvisualisierung Die Lagenvisualisierung dient ebenfalls zur Darstellung nu-
merischer Bewertungen, Knoten mit gleichem Wert werden aber nicht wie im Radi-
allayout auf Orbits, sondern auf horizontalen oder vertikalen Lagen platziert (siehe
Abb. 1.1(b)). Für entsprechende Layouts mit disjunkten Lagen existieren einige
Verfahren zur Kreuzungsreduzierung, die auf dem bekannten Sugiyama-Framework
basieren. Die neue Herausforderung besteht hier in einer guten Umwandlung der
kontinuierlichen Positionen in disjunkte Lagen und der Behandlung langer Kanten.

Multi-Kreis-Visualisierung Ein Verfahren zur Darstellung von Clusterungen und
anderer disjunkter Gruppierungen ist das Multi-Kreis-Layout [BB08], welches gleich-
zeitig die Elementebene des Graphen und die Gruppenstruktur, also die Cluster und
ihre Verbindungen (siehe Abb. 1.2(a)) zeigt. Für die Gruppenstruktur wird ein Lay-
out erstellt, in dem die Cluster genügend Fläche für ihre Knoten reservieren und ihre
Verbindungen breit genug sind, um die entsprechenden Kanten aufzunehmen. Die
Knoten jedes Clusters werden auf einem Kreis innerhalb der reservierten Fläche plat-
ziert. Kanten innerhalb eines Clusters verlaufen innerhalb dieser Kreise und Kanten
zwischen Clustern winden sich um diese Kreise herum, um dann dem Verlauf der
Cluster-Verbindungen zu folgen. Eine kombinatorische Beschreibung dieser Layouts
erlaubt es, Verfahren zur Reduzierung der Kreuzungsanzahl anzuwenden.
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Allgemeine Gruppenvisualiserung Die Visualisierung nicht-disjunkter Gruppen
wie der Cliquenzugehörigkeit ist ein schwieriges Problem, da sich üblicherweise viele
paarweise Überlappungen mit komplexen Abhängigkeiten ergeben. In visone gibt
es deshalb eine Gruppenvisualisierung, die in einem festen Layout jeweils eine aus-
gewählte Gruppe besonders hervorhebt. Dazu wird zuerst ein Kreislayout des Ge-
samtgraphen bestimmt und die Knoten der jeweils ausgewählten Gruppe unter Bei-
behaltung der anderen Positionen auf einem zweiten Kreis in der Mitte platziert.
Zur Optimierung dieses Layouts können die Kreuzungsreduzierungstechniken der
Radialvisualisierung verwendet werden.

1.5 Weitere Funktionen

Neben den unter die beiden genannten Bereiche fallende Methoden sind in visone
noch viele andere für die Netzwerkanalyse wichtige Verfahren implementiert. All-
gemeine Graphlayoutverfahren wie Kreis-, Spektral- und MDS-Layout vermitteln
einen Eindruck der Struktur des Graphen und liefern teilweise schwache Analyseaus-
sagen, das Spektrallayout etwa platziert strukturell ähnliche Knoten nahe beieinan-
der. Durch umfangreiche Selektionsmöglichkeiten nach strukturellen und Attribut-
basierten Kriterien lassen sich nahezu beliebige Teilgraphen bestimmen. Graphgene-
ratoren für die bekannten Modelle Gn,p, Small World, Preferential Attachment und
für Graphen mit vorgegebener k-Core-Struktur [BGG+07] erlauben das Erstellen
von Zufallsgraphen, etwa um neue Methoden zu erproben.
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Chapter 2

Motivation

Over the past years, “networking” has become a common aspect in the analysis of
political and social processes. From this point of view, the key to understanding
certain events is no longer the institutional role of an individual but the intercon-
nections of actors and the resulting network. Besides social sciences, networks also
occur in many other fields of application, for example in the design of integrated
circuits, in telecommunication, in the global linkage of financial transactions, or in
the planning of transportation routes. In accordance with this broad range of appli-
cation, the relevant questions are manifold and the resulting networks are of great
diversity in size and characteristic.

Along with the increased relevance of network analysis and the growing size of
considered networks, adequate software for social network analysis is becoming more
and more important. In this dissertation, we present the software tool visone

1, which
was developed in the homonymous DFG-funded project, aiming to bring together
efficient algorithms for methods of analysis and suitable graph drawing techniques
for the visualization of networks.

The beginning of the visone project dates back to June 1996 when Ulrik Brandes,
Patrick Kenis, Jörg Raab, Volker Schneider, and Dorothea Wagner set up an inter-
disciplinary project group at University of Konstanz for the visualization of social
networks. In the course of this project, the ideas for analytic visualizations based
on circular and hierarchical graph layouts were born [BKR+99, BW00b]. After
experimental studies endorsed the usefulness and exploratory power of these meth-
ods [BRW01], the first version of the visone software was created at the Algorithmics
Group in Konstanz [BBB+02] which complemented the visualizations with shortest-
path and feedback centrality indices and basic graph layout algorithms. While this
version served its purpose very well, limitations of the utilized user interface library
prevented the addition of new features. Finally, in 2004, it was decided to develop
the more comprehensive version of the software presented in this work on a more
permissive basis.

1visone is available free of charge for academic and non-commercial purpose from the homepage
http://visone.info.

http://visone.info


14 Chapter 2: Motivation

visone was and is intended both as a testbed for the work of our groups and as an
everyday tool for students and researchers in network analysis. Therefore, we adapt
all algorithms to a consistent and comprehensive graph model and put in great
efforts to provide a simple but flexible user interface hiding unnecessary complexity.
In contrast to common tools like UCINET [Ana08], which present to the user only
a matrix representation of the data, we build on the expressiveness and explanatory
power of graph layouts and provide a complete graphical view of the network (see
Figure 1.2(b)). Observations indicate that users enjoy the playful nature of our
approach. Besides our original work which is describe below, we have included
novel algorithms developed by other members of the project and by members of
related groups at the universities of Karlsruhe and Konstanz, in order to cover fields
like centrality indices [Bra08], clusterings [Gae07], structural similarity [Ler07], and
spectral layouts [Fle07]. The functionality is completed by well-known commonly-
used methods for network analysis.

Visualizing social networks is more than simply creating intriguing pictures, it is
about generating learning situations: “Images of social networks have provided in-
vestigators with new insights about network structure and have helped them com-
municate those insights to others” [Fre00]. Additionally, inappropriate drawings of
networks are misleading or at least confusing. Therefore, we pay special attention
to the visualization of the networks. Selected general graph layout algorithms pro-
vide an uncluttered view on the network and reveal its overall structure, but the
unique feature of visone are the analytic visualizations which exactly depict analysis
results, like centrality scores and clusterings, by means of tailored and suggestive
graph layouts (see Figures 1.1 and 1.2(a)). Combinatorial models of these visualiza-
tions allow for the optimization of esthetic properties to improve the expressiveness
and exploratory power without changing their analytic signification. We focus on
edge crossings, since these have a prominent effect on the layout quality and present
improved crossing reduction heuristics.

Countless hours of work have been spend to the design of the software tool in order
to offer a pleasant and productive user experience. Besides this, our main theoretical
contributions are:

• the multi-circular visualization of partitions of the vertex set,

• an improved crossing reduction heuristic, used in the radial and status visual-
ization,

• an experimental visualization in two-and-a-half dimensions, and

• a network model that uses a preferential-attachment process to establish a
predefined nested decomposition of the vertices.
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Structure

This dissertation is structured as follows.

Chapter 3: visone Basics After a brief compilation of fundamental graph-
theoretical notation and concepts, we introduce the general network model used
throughout visone and present the main features – apart from analysis and visual-
ization – of the software tool.

Chapter 4: Analysis The available analysis methods, including centrality in-
dices, identification of connected or cohesive groups, clustering algorithms, and net-
work statistics, cover a wide range of applications. We paid special attention to
utilizing efficient algorithms and we strived to implement them as general as possi-
ble, i. e., they should not impose unnecessary restrictions on the input data.

Chapter 5: General Graph Layout General graph layout algorithms convey a
first impression of the structure of the network, and some of them even give a deeper
structural insight. In visone, a circular, a spectral, and various force-directed layout
algorithms are available.

Chapter 6: Analytic Visualization In this chapter we describe drawing methods
for the exact representation of given values for the vertices or edges, e. g., previously
computed analysis results. Besides basic visualizations of values as size or color of
the elements, we also present layout models unique to visone which convey both the
structure of the graph and the given values in suggestive and expressive drawings,
namely the radial, the status, and the multi-circular visualization.

Chapter 7: Layout Algorithms Our advanced visualizations are partially based
on new layout models, or at least on improved algorithms. We explicate an improved
crossing reduction heuristic for circular layouts, a combinatorial model as well as
crossing reduction heuristics for multi-circular layouts, and an experimental visual-
ization in two-and-a-half dimension.

Chapter 8: Network Models visone provides efficient implementations of three
of the most popular network models: general random graphs G(n, p), small world,
and preferential attachment. These are accompanied by our newly developed graph
generator which realizes a predefined k-core structure in a preferential-attachment
process.

Parts of this work have been published in [BB04a, BB04b, BBGW04, BBGW05,
BGG+07, BGG+08, BB08].
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Chapter 3

visone Basics

Networks are used to describe relational data of various fields of application. While
the basic concepts of graph theory apply to all of these fields, every application im-
poses specific restrictions, e. g., directedness/undirectedness, connectedness/uncon-
nectedness, and weighted/binary relations, on the characteristics of the network.
On the other hand, each graph-theoretic method is defined for graphs of specific
characteristics only.

In common tools, users sometimes face the problem that the characteristic of their
network data does not fit the requirements of an analysis method simply because
the implementation is more restrictively than necessary: for example, eigenvector
centrality is only available for undirected graphs in UCINET. Of course, a network
can be converted manually to the required format, but this task is error-prone and
forces the user to manage a large number of files for the same data. In visone, special
attention was paid to defining methods for the widest possible range of network
characteristics. In order to achieve this, we followed a two-fold approach. On the one
hand, we carefully analyzed algorithms for finding straight-forward relaxations or
meaning-preserving extensions of the original method. If, nevertheless, the data does
not fit the requirements, we automatically transform the network in a reasonable
way most likely intended by the user. Clearly, this neither liberates users from the
decision whether a method is reasonable for their application or not nor does it
prohibit the usage of a custom transformation.

In this chapter, we define the theoretical concepts of visone’s network model, explain
how this ties together analysis and visualization in a powerful, flexible, and easy-to-
understand way, and finally describe the realization of these concepts in the graphical
user interface. First, however, we give some fundamental definitions of graph theory.
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3.1 Graph Theory

In this section, we introduce common notation and fundamental concepts of graph
theory. We closely adhere to [BE05a] but exclude concepts not used in visone.

A graph G = (V,E) consists of a set V of vertices and a set E ⊆ V ×V of edges. The
cardinality of V is usually denoted by n, the cardinality of E by m. An edge e ∈ E
connects its two endvertices u, v ∈ V . The vertex v is said to be adjacent to u and
the edge e is incident to u and v. Adjacent vertices u, v ∈ V are called neighbors.
An edge is either directed e = {u, v} or undirected e = (u, v). For a directed edge
e = (u, v) ∈ E, v is called the head or target of e and u is called its tail or source.
An edge connecting a vertex to itself, is called a loop. We will assume all graphs to
be loop-free unless specified otherwise.

A pair of vertices is called a dyad regardless whether it is connected by an edge or
not. A (graph) element x ∈ X ∈ {V,E} is either a vertex or an edge. This notion
is used whenever a statement is valid for vertices and edges.

Multi-Graphs We may allow multiple edges between the same dyad by extending
the edge set E to a multiset. Such edges are called parallel edges and graphs with
parallel edges are called multi-graphs. For directed graphs, only edges having the
same head and the same tail are parallel. A graph without parallel edges is called
simple.

Weighted Graphs For many applications, it is useful to associate numerical
values (weights) with the edges or vertices of a graph G = (V,E). Numerical
weights can be represented as a function ω : X → R, X ∈ {V,E}, that assigns
to each element x ∈ X a weight ω(x). For a given subset X ′ of the vertices or
edges, we use ω(X ′) as shorthand for the total weight of the elements in X ′, i. e.,
ω(X ′) =

∑
x∈X′ ω(x).

For the vast majority of analysis methods used in network analysis, only edge weights
are relevant. However, a generalization of weights to attributes is a powerful and
flexible way to associate any type of data with vertices and edges (see Section 3.2.3).

Mixed Graphs Graphs that can have directed edges as well as undirected edges
are called mixed graphs. Such graphs are rarely required by an application and
combinatorial methods almost always require either a strictly directed or undirected
graph. However, often mixed graphs can be transformed into any of these types.
The offer maximum flexibility, the network model of visone allows mixed graphs (see
Section 3.2).

For a mixed graph G = (V,E), the underlying undirected graph is the undirected
graph with vertex set V that has an undirected edge {u, v} between two vertices
u, v ∈ V for every edge (u, v) ∈ E. Its simple underlying undirected graph does not
contain any parallel edges, i. e., for each adjacent dyad u, v ∈ V all except one edge
{u, v} are discarded.
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Subgraphs A graph G′ = (V ′, E ′) is a subgraph of the graph G = (V,E), denoted
by G′ ⊆ G if V ′ ⊆ V and E ′ ⊆ E. A (vertex) induced subgraph for a given subset
of vertices V ′ ⊆ V contains exactly the edges of e ∈ E that join vertices in V ′ and
is denoted by G[V ′]. Similarly, the (edge-)induced subgraph for a given subset of
edges E ′ ⊆ E contains exactly the vertices which are endvertices of at least one
edge in E ′ and is denoted by G[E ′].

Density The density ρ(G) of a graph G = (V,E) is the fraction of the number
of present edges to the maximum number of edges in a graph with the same number
of vertices, i. e., the density is ρ(G) = 2m/(n(n− 1)) if G is undirected and ρ(G) =
m/(n(n − 1)) if the graph is directed. The density of a subgraph G′ = (V ′, E ′) of
G is defined analogously as ρ(G′) = 2|E ′|/|V ′|(|V ′| − 1) if G′ is undirected and as
ρ(G′) = |E ′|/|V ′|(|V ′| − 1) if G′ is directed.

Graphs and subgraphs of density one, i. e., every vertex is connected to every other
vertex by an edge, are called complete.

Degree In an undirected graph G = (V,E), the degree deg(v) of a vertex v ∈ V
is the number of its incident edges. The set of incident edges of a vertex v is denoted
by E(v) and the set of neighbors of v is denoted by N(v).

In a directed graph G = (V,E), the out-degree outdeg(v) of v ∈ V is the number of
edges in E that have source v. Accordingly, the in-degree indeg(v) of v ∈ V is the
number of edges with target v. The set of edges with source v is denoted by Eout(v)
and the set of edges with target v by Ein(v). The set of neighbors of v which are the
source of the connecting edge is denoted by Nout(v) and the set of neighbors which
are the target of a connecting edge by Nin(v).

If G is a multi-graph, parallel edges are counted according to their multiplicity in
E. For a graph with given edge weight, the degree is generalized by summing over
the weights of the respective edges.

Paths and Cycles A walk from vertex x0 to vertex xk is an alternating sequence
x0, e1, x1, e2, x2, . . . , xk−1, ek, xk of vertices and edges, where ei = {xi−1, xi} in the
undirected case and ei = (xi−1, xi) in the directed case. The length of a walk
is defined as its number of edges. If context permits with introducing ambiguity,
walks are specified in terms of vertices or edges only. A path is a walk in which
every edge occurs only once, i. e., ei 6= ej for i 6= j, and a path is a simple path if no
vertex occurs twice, i. e., xi 6= xj for i 6= j. A path ending with its first vertex, i. e.,
x0 = xk, is called a cycle. A cycle is a simple cycle if xi 6= xj for 0 ≤ i < j ≤ k − 1.

Distance In the context of paths, a weight is also called length. For a given edge
length ` : E → R, the length `(p) of a path p is defined as the total length values of
the edges of p. A path from u to v in G is a shortest path if its length is the smallest
possible among all paths from u to v. The length of a shortest path from u to v is
also called the (shortest-path) distance d(u, v) of u and v
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Shortest-Path Problems The single-source shortest-paths problem (SSSP) is
to find shortest paths from a given (source) vertex s to all other vertices. For non-
negative edge weights, this problem can be solved in time O(m + n log n) using an
efficient implementation of Dijkstra’s algorithm [CLRS01]. Note that SSSP is not
well-defined if the graph contains a cycle of negative length. For unweighted graphs,
the problem can be solved in linear time using breadth-first search (BFS).

Connected Components An undirected graph G = (V,E) is connected if every
vertex can be reached from every other vertex, i. e., if there is a path from every
vertex to every other vertex, and disconnected otherwise. A directed graph G =
(V,E) is strongly connected if there is a directed path from every vertex to every
other vertex. A directed graph is called weakly connected if its underlying undirected
graph is connected.

For a given undirected graph G = (V,E), a connected component of G is an in-
duced subgraph G[V ′] that is connected and maximal, i. e., there is no connected
subgraph G[V ′′] with V ′′ ⊃ V ′). For directed graphs, weakly and strongly con-
nected components are defined analogously. For all three types of connectedness,
checking whether a graph is connected and computing all its connected components
can be done in time O(n + m) using modifications of depth-first search (DFS) or
breadth-first search (BFS). For more details on connectedness, see Section 4.6.

Partitions A partition is a subdivision of the vertex set V into pairwise disjoint,
non-empty subsets V = V1∪̇ . . . ∪̇Vk. An edge e = {u, v} ∈ Vi× ∈ Vj is called an
intra-partition edge if i = j and inter-partition edge otherwise. The set of intra-
partition edges of a partition Vi is denoted by E(Vi), or Ei for short, the set of inter-
partition edges of two partitions Vi, Vj by E(Vi, Vj), or Ei,j for short. A partition is
called trivial if either k = 1 (1-partition) or k = n (singletons). A partition with k =
2 is also called a cut. For a given edge weight ω, the weight of a cut (V ′, V \ V ′) is
defined as the sum of the weights of its inter-partition edges, i. e., ω((V ′, V \ V ′)) =
ω(E(V ′, V \ V ′)).

Graph Isomorphism Two undirected graphs G1 = (V1, E1) and G2 = (V2, E2)
are isomorphic (written as G1 ' G2) if there is a bijection φ : V1 → V2 with

∀u, v ∈ V : {u, v} ∈ E1 ⇔ {φ(u), φ(v)} ∈ E2 .

Such a bijection is called an isomorphism. An isomorphism that maps a graph onto
itself is called an automorphism. Usually two graphs are considered to be the same
if they are isomorphic. Isomorphism and automorphism for directed graphs are
defined analogously.

Graph Matrices Let G = (V,E) be a simple directed graph with n vertices and
m edges. The adjacency matrix A(G) of G is an n× n matrix with entries

au,v =

{
1 if (u, v) ∈ E ,

0 otherwise.
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The rarely used incidence matrix B(G) of G is a n×m matrix defined by

bv,e =


−1 if v is the source of e,

1 if v is the target of e,

0 otherwise.

For an undirected graphs G, the adjacency matrix A(G) is symmetric and has entries
au,v = av,u = 1 if u and v are adjacent. The entries bv,e of its incidence matrix B(G)
equal one if v is incident to the edge e. For weighted graphs, the non-zero entries of
all of this matrices are ω(e) rather than 1, where e ∈ E is the respective edge of the
entry.

The (weighted) Laplacian matrix L(G) ∈ Rn×n of an undirected graph G with edge
weight ω is defined by the elements

lu,v =


∑

w∈V ω({u,w}) if u = v ,

−ω({u, v}) if u 6= v and {u, v} ∈ E ,

0 otherwise.

In matrix notation, this can be expressed as L(G) = D(G)− A(G), where D(G) is
the diagonal matrix of (weighted) vertex degrees, i. e., dvv = deg(v). For unweighted
graphs, unit weights can be assumed.

Eigenvectors Let M ∈ Cn×n be a matrix. A value λ ∈ C is called an eigenvalue
of M if there is a non-zero vector x ∈ Cn such that Mx = λx. Such a vector x is
called an eigenvector of M (with eigenvalue λ). The (multi-) set of all eigenvalues
of a matrix is called its spectrum.

3.2 Network Model

In order to achieve maximum generality, the network model of visone is a mixed
multi-graph to which an unlimited number of weights for the vertices and edges can
be attached. However, algorithms are typically designed to work on undirected or
directed edges only, allow or forbid parallel edges, and can handle either weighted or
binary data. While we have striven to formulate the algorithms in the most general
way, some methods impose inherent restrictions. In this case, graphs not adhering to
the requirements have to be transformed. In the following, we describe the relevant
characteristics and the respective reasonable transformations.

3.2.1 Direction

Typically, a formulation of an algorithm allowing directed edges is more general than
one for undirected edges since for almost all purposes, each undirected edge {u, v}
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(a) undirected,
confirmed

(b) directed,
confirmed

(c) undirected,
unconfirmed

(d) directed, re-
ceiver confirms

(e) directed,
sender confirms

Figure 3.1: Directed and undirected edges of different confirmation.

is replaced equivalently by two symmetric, contrariously directed edges (u, v) and
(v, u). The transformation from directed to undirected data is not equally simple
because the inverse operation is not well-defined for all undirected graphs, i. e.,
it fails for dyads linked in only one of the two directions. Thus, our alternative
approach is to use the underlying undirected graph (see Section 3.1). Note that
the number of vertices and edges stays the same in the original graph and the
underlying undirected graph since each directed edge is replaced by a undirected
one. In particular, two symmetric, contrariously directed edges (u, v) and (v, u) are
replaced by two undirected edges {u, v} which may be unintentional.

3.2.2 Confirmation

In many real-world applications, the inherent uncertainty of the data collection
process results in another important property of edges: confirmation, also called
reciprocity. Unconfirmed edges emerge for example when two actors have divergent
perceptions of the existence or specificity of their relation or when one of them
simply lies. Such unconfirmed connections exhibit an additional form of direction
induced by the actor who testifies for it. A directed edge is called sender confirmed
if it is confirmed by its tail and receiver confirmed if it is confirmed by the head. The
appropriate handling of unconfirmed edges is a controversial issue in social network
analysis. Typically solutions are either to ignore them completely or to treat them
all as confirmed.

Common tools for network analysis do not feature a specific handling of unconfirmed
relations. Thus, users are forced either to finally decide about the notion of uncon-
firmedness in the beginning or to manage a large number of data files in order to test
different hypotheses. In either way, the original meaning of the unconfirmed edges
is likely to be inapparent in the final results, especially in visualizations generated
thereof.

In contrast, confirmation is modeled as explicit edge property in visone allowing
simple and reproducible handling of these edges. For distinction and in order to
lower their visual impact, unconfirmed edges are drawn in semi-transparent colors.
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The direction of confirmation is depicted by additional hollow arrows which are
easily distinguishable from the filled arrows indicating direction. Algorithms for
analyses ignore unconfirmed edges by default but the ones that are selected by the
user are included. This allows a quick comparison of different states and supports
the user in his final decision about the handling of these edges. In visualization
and layout methods, unconfirmed edges are included in the computation since they
are present in the drawing anyway. In addition to the weakened conspicuousness
achieved by the semi-transparent drawing, some visualizations further highlight the
core layout of the confirmed subgraph (e. g., see Sections 6.2.3 and 6.3.3).

3.2.3 Weights and Attributes

Often, one is not only interested in the existence of edges but in a quantification of
the interconnections. Depending on the application, this may be the frequency of
meetings, the helpfulness of advice, or the costs of exchange. The common model
for a quantification are numerical weights for the edges or, rarely, the vertices of
the graph, i. e., a function ω : X → R which assigns each element x ∈ {V,E} a
real value ω(x) ∈ R. Typically, a large number of additional semantical data is
known about the actors and links of a network, e. g., personal data of the actors like
names and sex or a classification like department membership. While this may not
be relevant for analysis methods, it is often desirable to include these information
into a visualization.

In visone, we have consolidated weights and semantical data into attributes. In
general, an attribute is a function f : X → Y which assigns each element x ∈ {V,E}
a value f(x) of the specified type Y . Available types are binary, integer, double, text,
and lists of these basic types. Furthermore, each attribute has a unique name for
identification and, optionally, a textual description and a default value. An unlimited
number of attributes for vertices and edges can be associated with each graph.

The main use cases of attributes are:

• store user data, e. g., weights and semantical element information,

• specify input parameters of analyses methods, typically as edge weights,

• store the result of analyses methods, e. g., centrality indices, a partitioning, or
clique membership, and

• specify input parameters of visualizations, e. g., the index or the partitioning
to depict in a drawing.

Using the type system, only valid attributes are offered as input parameters for each
method to guarantee consistency and to guide the user in the analysis process. For
the present analysis methods and visualization algorithms, only a small number of
differing characteristics of the attributes occur. These are

• weights, indices, scores and so on which can be represented by numerical at-
tributes of the types integer and decimal,
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• partitionings like a clustering or the connected components which are induced
by any attribute of a basic type through a grouping into elements of the same
value, and

• families of overlapping subgraphs, e. g., cliques or biconnected components,
which we represented as lists of the group identifiers a element is affiliated to.

Network-Level Attributes In addition to information about individual elements,
many applications require to store data which applies to the complete graph, for ex-
ample a textual description of the network, the number of connected components,
the centralization, or any other result of a network-level analysis. For this purpose,
we provide network-level attributes which store single values of one of the types
named before. Additionally, they are identified by a name and optionally provide a
textual description, similarly to element-level attributes.

3.2.4 Data Representation

The native file format of visone is GraphML [BEH+01], a comprehensive and
extensible file format for graphs based on XML and available free of charge under
the Creative Commons Attribution License. Its main features cover all requirements
of our network model. In particular, GraphML supports mixed graphs with an
unlimited number of attribute data, and, through its extension mechanism, edge
confirmation and a comprehensive set of graphical properties of the vertices and
edges.

For interoperability, visone can also deal with other common file formats. Since these
formats typically support only a small number of attributes and few basic graphical
properties, exporting to one of them is typically accompanied by information loss.
Available formats for im- and export include

• adjacency matrices in plain text files,

• dl files of UCINET [Ana08] – structured plain text files with support for
vertex and edge labels which allow the representation of a graph as adjacency
matrix, adjacency list, or edge list [BEF99] – and

• the net format of Pajek [BM03].

Additionally, pictures of a network can be saved in various vector-graphic and bitmap
formats, e. g., as pdf, svg, emf, png, jpeg, or gif.

3.3 visone User Interface

The visone software is a powerful visual graph editor providing tailored means of
analysis and visualization for social network analysis. The overall appearance and
many concepts of user interaction are closely related to common vector graph-
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Figure 3.2: The main window of visone features an editable and zoom-able view
(main view) of the graph, an overview depicting a sketch of the complete
graph, a panel to control various operations, and standard elements like
a menu bar, a toolbar, and a status bar.

ics software and is similar to other graph editor tools like yEd [yWo08a], Cy-
toscape [SMO+03], or SONIVIS [tea08]. The used terminology is adapted to social
network analysis and technicalities as well as complex settings are hidden whenever
possible.

3.3.1 Main Window

The main window contains the standard elements of typical graphical user interfaces:
a menu bar and a toolbar on top and at the bottom a status bar (see Figure 3.2).
Most of the window’s area is reserved for the main views of the open networks.
Each network is displayed in full detail in its own view in a separate tab in order
to allow users to work on related data simultaneously and to compare results of
different networks or even different analyses of the same network. An overview of
the network and the control panel which provides fast access to frequently used
methods like analyses, visualizations, and transformations are located on the left
side.

Adhering to common practice, the menu bar provides access to all functions of
visone (except the ones easily reachable in the controls area), grouped into the
self-explanatory menus file, edit, and view. In addition, the menus nodes and links
provide functions specific to vertices and edges, respectively. In the menu layout,
general graph layout algorithms are available which are described in detail in Chap-
ter 5. In the toolbar, the most frequently used operations are duplicated for conve-
nience. The status bar continuously displays the numbers of vertices and edges and
the current mouse coordinate and occasionally shows messages about the progress,
success, or failure of user triggered actions.
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(a) analysis (b) visualization (c) templates (d) geometry

Figure 3.3: The components of the control panel to manage analyses, visualizations,
templates, and geometric transformations.

Main View The main view depicts the graph in full detail and allows interactive
changes to the graph structure and the graphical properties of the vertices and
edges. The current point of view and the zoom level are freely adjustable by simple
mouse movements. Subsets of the vertices and edges can be selected (indicated
by selection markers and darker element color) to restrict the range of application
of many functions to these elements. A context menu for the vertices and edges
provides in-place access to frequently used functions.

In order to prevent users from accidental modifications of the graph structure, there
are three modes of operation of a view. In edit mode, the main mouse operation is
element creation and users can add, delete, and edit vertices and edges by simple
mouse clicks. In analysis mode, new elements cannot be created since a mouse click
now moves vertices or selects elements. Finally, in navigation mode, neither the
structure nor the layout of the graph can be changed. Instead, the main operations
are the moving of the drawing area and zooming in and out.

Control Panel The control panel is placed side-by-side to the main view. There-
fore, it is always easily accessible and does not overlap with the display of the graph.
Here, users can execute an analysis and a visualization, manage the lists of stored
selections and templates, and apply geometric transformations to the graph (see Fig-
ure 3.3). In anticipation of the detailed definitions and algorithms for the available
analysis measures and visualization methods in Chapters 4 and 6, we describe their
control panels here. The other panels are described together with their respective
functions in the following Sections 3.3.2-3.3.4.

The analysis control consists of three parts from which the middle one contains the
components specific to a given measure and the upper and lower parts are common to
all methods (see Figure 3.3(a)). The upper part covers the selection of the analysis
method, divided into the three stages level, objective, and name as described in
Chapter 4. For example, a clique analysis belongs to the group-level measures of
objective cohesiveness. In the lower part, the name of the attribute to save the
result to can be specified. Furthermore, users can choose to do an analysis not only
for the active network but for all open ones.
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(a) properties of vertices (b) properties of edges (c) properties of labels

Figure 3.4: The properties dialogs for vertices, edges, and labels.

The control panel for visualizations also consists of three parts: the choice of a
method, the selection of the attribute to visualize, and, optionally, components to
define additional parameters of the visualization. The available visualizations are
grouped according to the graphical property modified by them, e. g., color or size,
following the structure of Chapter 6. Figure 3.3(b) shows exemplary the selection
of the vertex color visualization.

3.3.2 Graphical Properties and Templates

The main view of a graph allows to specify various graphical properties of vertices
and edges. These properties comprise the shape, the color, and the border style of
vertices and the shape, the color, the style, and the width of edges. Additionally,
there are extensive options to change the appearance of the labels of the vertices
and edges. Figure 3.4 depicts the components to change these properties.

In visone, a template is a model for all graphical properties of a vertex or an edge, re-
spectively. These models are presented in graphical lists in the template control (see
Figure 3.3(c)). Templates can be either created by coping the appearance of any
existing element or specified in the properties dialogs and assigned to individual
elements or any selection. Newly created elements inherit their initial appearance
from the active template.

Graphical properties are not only important to create visually pleasing drawings
but also to depict attributes of the elements of the network like edge weights or
a classification of the vertices. Methods which change graphical properties of the
elements to exactly reflect a given attribute are called visualizations in visone and
described in Chapter 6.

3.3.3 Geometric Transformations

A number of geometric transformations of the layout of a graph, namely transla-
tion, rotation, scaling, and reflection, are available through the geometry control
panel (see Figure 3.3(d)). A geometric transformation is applied to the selected ver-
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tices or, if there are no selected vertices, to the whole graph. In either way, the base
point of the transformation is the center of the bounding box of the affected vertices,
e. g., for a horizontal reflection, the axis of reflection is a horizontal line through this
center. In addition to the transformations according to explicit values, e. g., a given
angle of rotation or a given scaling factor, there are options to translate vertices to
the center of the current view and to apply the best scaling, i. e., the layout is scaled
to fit best inside of the current view. Note that such a best-fit scaling is executed
automatically after most of the graph layout algorithms, thus users can control the
dilation of the layout by simply choosing a zoom level.

3.3.4 Selections

At first sight, a selection is just a user defined collection of vertices and edges.
Similar to equivalent concepts in other graphics tools, elements can be selected by
clicking with the mouse and, typically, methods act on all the selected elements at
once. This makes it easy for example to change the graphical properties of a large
number of elements or to delete them. Besides facilitation of handling, selections
can play an important role in the process of analysis. For this purpose, we provide
two additional components: an extensive selection dialog and a list of selections.

The selection dialog allows the selection of elements of any given visual property
or attribute value, for example to select exactly the vertices which are red and of
rectangular shape and have an attribute value above a specified threshold (see Fig-
ure 3.5(a)). Another available criterion is the adjacency to already selected vertices
and edges which optionally considers the direction and the confirmation of the re-
spective connection (see Figures 3.5(b) and 3.5(c)). A prominent and important
application is the selection of the ego-network of a vertex, i. e., the subgraph in-
duced by a given vertex and its neighborhood. Individual queries can be combined
to complex selections using modifiers. The modifier defines how the selection de-
fined by the settings in the dialog is merge with the selection currently present in
the view. The available options are:

• replace the current selection by the one of the dialog, i. e., the current selection
is not considered at all,

• add elements selected in the dialog to the current selection,

• remove elements selected in the dialog from the current selection, and

• restrict the current selection to the elements also selected in the dialog, i. e.,
only elements which are selected in the current view and by the dialog remain
selected.

While for an individual query exactly the elements for which all specified criteria
are fulfilled are selected, the selection of, for example, all vertices which are red or of
rectangular shape can be composed of two simple queries using the modifier “add”.

Often one has to handle more than one selection or wants to store the current
selection for later usage. For this purpose, visone provides a tabular list of named
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(a) visual properties of vertices (b) adjacency of vertices (c) adjacency of edges

Figure 3.5: The selection dialog offers comprehensive selection criteria: visual prop-
erties, attribute values, and adjacency structure. Individual queries can
be combined with the current selection in several ways, specified by the
so called modifier.

selections in the control panel (see Figure 3.6). Besides the user-defined name, this
list displays the number of affiliated vertices and edges of each selection and can be
sorted according to any of these columns, e. g., to identify the largest selections. At
any time, users can add the current selection to this list or re-establish a selection
previously stored. Since every selection is obviously a subgraph, the entirety of
selections can be seen as a family of subgraphs or, for disjoint selections, even
as partition and therefore represented as attribute as described in Section 3.2.3.
Conversely, any attribute represents either a partition or a family of subgraphs and
can therefore be used to fill up the list. A typical example of application is the clique
analysis described in Section 4.5.2. Such an analysis yields a family of non-disjoint
subgraphs which is stored as attribute and can be loaded into the list of selections.
There, the sizes of the cliques are immediately apparent and the members of any
given clique can be selected easily.

The interplay of these two components provides fast and simple means to handle
collections of vertices and edges in order either to change their visual appearance or
to alter the graph structure. Since a selection itself does not change the graph in any
way but clearly highlights the affected elements, its usage is safe and comprehensible.
Through the conversion from and to attributes, user defined selections can even be
used as as input data for analysis and visualization methods.

3.3.5 Edge Transformations

The network model of visone allows mixed graphs, i. e., graphs which contain di-
rected and undirected edges, and applies automatic transformations if the current
graph does not fit the requirements of an analysis method (see Sections 3.2 and 4.1).
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(a) the list of selections (b) controls to convert from
and to an attribute

Figure 3.6: The list of selections provides immediate access to any given subgraph,
whether user defined or computed by an analysis.

If this automatism is not appropriate or the user wants to enforce a specific presen-
tation of the connections, manual intervention is required. Therefore, we provide
typical transformations to split edges and to merge edges between the same dyad.

The split operation can replace an undirected edge {u, v} by two directed edges (u, v)
and (v, u) or separate a confirmed edge into the two directions of confirmation. An
optional attribute specifies the multiplicity of newly create edges, i. e., a multiplicity
value of three would split a confirmed edge into three unconfirmed edges in each
of the two directions of confirmation. In either case, all attribute values are copied
from the original edge to each of the newly created ones, thus no information is lost
by a split operation. Figure 3.7(a) shows the controls of the split operation.

A merge operation combines two or more edges between the same pair of vertices
into one edge. Since such an operation can become complicated if candidates for
a merge have different attribute values, we first concentrate on the three different
cases imposed by structural properties only, which are

• the unification of two contrary directed edges (u, v) and (v, u) of the same
confirmation into an undirected edge {u, v},

• the merging of two edges of the same direction but of different confirmation
into a confirmed edge of this direction, and

• the combination of multiple edges of the same direction and confirmation into
one edge of this type.

Optionally, the multiplicity of the new edges, i. e., the number of original edges
merged into each new one, is stored as attribute.

If the candidates for a merge have different attribute values, various approaches may
be reasonable, depending on the application and on the meaning of the attribute.
Therefore, we leave this decision to the user and provide the following options. In
the simplest case, an attribute is irrelevant for the merging and can be ignored.
Contrarily, the values may distinguish different types of connections which prevents
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(a) split of edges (b) merger of edges (c) list of attributes

Figure 3.7: Controls to split and to merge edges and the component to manage the
list of attributes.

any merge of edges of unequal value. For numerical attributes, statistical aggrega-
tion like summation, minimum, or maximum may also be appropriate. Note that
disregarding and aggregation of attribute values will result in information loss. In
the example in Figure 3.7(b), symmetrically directed edges will be joined into undi-
rected edges if they have the same value of the attribute “length”. The “id” of the
edges is ignored and the value of the “weight” of each new edge will be the average
of its original edges.

3.3.6 Attributes

The management of attributes is equal for vertices and edges but separated into
two different components. Both feature a list of all respective attributes, a panel
to execute a number of operations on the values of an attribute, and the possibility
to import and export attributes from and to a file, respectively. The tabular list
of attributes shows the name, the type, the default value, and the description of
each attribute and allows the modification, creation, and removal of attributes (see
Figure 3.7(c)). We provide only a rather small number of operations which comprise
copying of an attribute, ranking of its values, and basic arithmetic operations. For
complex operations, the export and import allows the transfer of attributes to any
spreadsheet program and back. Of course, any additional data can be imported
into attributes just as well. The file format we use is the widely supported comma
separated values format (csv).
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Chapter 4

Analysis

The purpose of social network analysis is to identify important actors, crucial links,
roles, dense groups, and so on, in order to answer substantive questions about struc-
ture.

Hardly something is annoying users more than a program not accepting their data.
visone is very liberal in handling input data but nevertheless rigorous in the com-
putation of analysis results. We achieve this by a two-fold approach. First, we have
analyzed existing algorithms carefully and relaxed restrictions on the input data if
possible. Second, if the characteristics of the data does not meet the requirements
of an analysis method, we apply transformations which preserve the intuition of
the analysis. In Section 4.1 we describe the relevant characteristics and possible
transformations in detail.

The analysis methods available in visone are divided into four main categories ac-
cording to the level or subject of interest: vertex, dyad, group, and network level.
These levels break further down into measures of the same objective, e. g., connect-
edness or cohesiveness. The purpose of this categorization is to guide the user in the
analysis process and to clarify the user interface. It is not intended as a rigorously
defined classification of analysis methods since some methods conform to multiple
categories equally well.

The description of the analysis methods in this section follows the categorization
in levels and objectives. We start with centrality and density measures on the
element level in Sections 4.3 and 4.4. In the following Sections 4.5-4.7, we describe
measures for the group level, namely cohesiveness, connectedness, clustering, and
role assignment. We conclude by network-level statistics in Section 4.8.

4.1 Characteristics of Input Data

While every analysis algorithm has its own domain there are some criteria which
are common to all graph algorithms and most relevant in the context of network
analysis.
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Direction Typically, analysis methods are defined either for directed or undi-
rected data. Since visone allows the usage of mixed-mode graphs, i. e., undirected
and directed edges coexist in one graph, the symmetrized directed graph or the un-
derlying undirected graph are used when a method requires directed or undirected
edges respectively (see Section 3.2).

Note that for virtually every analysis method, the transformation into the sym-
metrized directed graph preserves the original meaning while the underlying undi-
rected graph contains multi-edges for oppositely directed edges which may be unin-
tentional. In this sense, the directed version of an analysis algorithm is more general
and therefore preferred in visone.

Edge Weights What is commonly referred to as edge weight often one of two
different meanings, has depending on the context: strength (larger is better) or
length (smaller is better). This distinction translates from the data to the analysis
methods. For each method, it is clearly labeled if a weight is considered as strength
or as length. For some methods, even two weights of different meaning can be
specified. However, it is the user’s responsibility to select a reasonable attribute
as weight. In general, unit weights can be safely assumed for unweighted data and
methods for unweighted data simply ignore all weights.

Since the results for negative weights are almost always hard to interpret or even
undefined, we restrict ourselves to non-negative numerical weights, which we also call
score or index. Sometimes negative values are used to invert the effect of a weight,
which is rendered unnecessary in visone by the notions of strength and length.

Multi-Edges If an algorithm cannot handle multi-edges, the underlying simple,
either directed or undirected, graph is used. Note that in principle this transforma-
tion is prohibitive then edge weights are used.

On the over hand, there is a direct correspondence between edge strength and multi-
edges: duplicating an edge should have the same effect as doubling its strength.
Therefore, every algorithm that supports a strength is defined for multi-edges.
Multi-edges of unequal length behave differently, e. g., only the shortest edge is
significant for shortest-path based methods. In general, they cannot be handled
uniformly, thus, every algorithm using lengths is defined explicitly for multi-graphs
in visone.

Loops An algorithm which cannot handle loops simply ignores them. Note
that for many applications, self-loops are either irrelevant or dispensable, e. g., for
shortest-path based methods.

Connectedness If an algorithm cannot be carried out on an unconnected graph,
we provide a meaningful composition of the final result from the provisional results
of the (weakly) connected subgraphs. Note that directed methods may even require
strongly connectedness. Algorithms which require a higher vertex or edge connec-
tivity are seldom used in network analysis.
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4.2 Size of the Graph

The numbers of vertices and edges are simple but important characteristics of net-
works and are therefore continuously displayed in the status bar of visone. Moreover
the number of selected elements are also shown here allowing quick inspection of the
size of the currently selected group, e. g., a connected component or a set of vertices
of the same attribute value. For a closer inspection of the size and membership of
groups the selection dialog and the selection control panel can be used.

4.3 Centrality

Centrality is a core concept for the analysis of social networks and refers to an
intuitive feeling that in most networks some vertices or edges are more central than
others. The first concepts of centrality date back to the 1950s, e. g., the Bavelas
index [Bav48, Bav50] or degree centrality [PL51]. Despite this long time, or maybe
on that account, the term ’centrality’ is by no means clearly defined.

We purposely have not striven for a complete collection of centrality indices and
selected only methods for visone which are amongst the most frequently used and
least controversial ones. In addition, we do not want to argue about the meaning of
‘importance’ and adopt the rather technical definition for centrality from [BE05b].
As a minimal requirement, we demand that the result of a centrality index is given
in real numbers and depends only on the structure of the graph. This is called a
structural index.

Definition 4.1 (Structural Index) Let G and H be weighted, directed or undi-
rected multi-graphs, let φ be an isomorphism between G and H, and let X represent
the set of vertices or edges of G, respectively. A real-valued function s is called a
structural index if and only if:

∀x ∈ X : G ' H ⇒ sG(x) = sH(φ(x)) ,

where sG(x) denotes the value of s(x) in G.

A centrality index c is required to be a structural index and thus induces at least
a semi-order on the set of vertices or edges. By means of this order we can say
that x ∈ X is at least as central as y ∈ X with respect to a given centrality c if
c(x) ≥ c(y).

Centrality measures for edges are clearly outnumbered by the vast amount of central-
ity indices for vertices. This is reflected by the measures presented in the following
which almost exclusively compute vertex centralities with the notable exception of
shortest-path edge centralities in Section 4.3.5.
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4.3.1 Normalization

In general, the absolute values of a centrality index have no meaning by themselves,
and the difference or ratio of two centrality values of the same graph cannot be
interpreted as a quantification of how much more central one element is than the
other. Consequently, centrality values of vertices of different graphs are also not
comparable. Often absolute values are higher in larger graphs. To overcome these
problem and to achieve better manageable values, different methods of normalization
have been proposed. Freeman [Fre79] suggested to divide by the maximum possible
value in any network of the same number of vertices. This seems rather arbitrary
since the actual values can be much smaller and, moreover, may be not well-defined
for weighted or multi-graphs. For distinction, we call this method standardization.

We propose a different normalization independent of graph size and applicable to
all types of graphs, namely dividing by the sum of all scores. The resulting indices
are non-negative and have unit sums, i. e., they can be viewed as percentage values
and interpreted as the share of importance of a vertex in its graph. This method is
called percentage in the following.

Most of the centralities available in visone are originally defined for strongly con-
nected, directed graphs (or connected undirected graphs). A common way to deal
with insufficient connectivity is to compute the measure for each connected compo-
nent separately and multiply each value by the size of its component. This can be
problematic if the measure does not scale proportional to the graph size [PBM00].
We propose a variation, namely to scale the values of each component to sum up to
the component’s share of size. When used together with percentage values, results
are reasonable for many graph instances.

In visone, users can choose between the computation of pure values, normalization
to percentages, and, if applicable, traditional standardization.

4.3.2 Degree

Degree centrality is defensibly the most simplest reasonable centrality. Originally
the centrality value of a vertex of an undirected, unweighted graph is defined as its
degree [PL51]. The reformulation of degree as the number of incident edges leads
to the straight-forward generalizations to weighted multi-graphs.

Definition 4.2 (Degree Centrality [PL51]) Let G = (V,E) be an undirected,
weighted multi-graph with edge strength ω. The degree centrality cD : V → R≥0 of a
vertex v ∈ V is defined as the sum of the strengths of its incident edges, i. e.,

cD(v) =
∑
{u,v}∈E

ω({u, v}) . (4.1)

For directed networks two variants of the degree centrality may be appropriate.
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Definition 4.3 (In- and Out-Degree Centrality) Let G = (V,E) be a directed,
weighted multi-graph with edge strength ω. The in-degree centrality ciD : V → R≥0

and the out-degree centrality coD : V → R≥0 of a vertex v ∈ V are defined as the
sum of the strengths of its incident incoming and outgoing edges respectively, i. e.,

ciD(v) =
∑

e=(u,v)∈E

ω(e) and coD(v) =
∑

e=(v,w)∈E

ω(e) . (4.2)

Since the values for a vertex v depend only on its incident edges no special handling
of unconnected graphs and self-loops is needed. For unweighted graphs we can
assume unit weights and get the usual equality of degree centrality and degree:
cD(v) = deg(v), ciD = indeg(v), and coD = outdeg(v). The standardization constant
for all degree centralities is 1/(n − 1), because n − 1 is the maximum degree in an
unweighted simple graph.

There are two well-known connections between directed and undirected degree cen-

trality. For the symmetric network
−→
G of a graph G we have cD = ciD = coD and for

the underlying undirected network G cD = ciD + coD.

Obviously, degree centrality is a very local measure, i. e., only the adjacencies of the
vertex are considered. In the next sections we investigate global centrality measures.

4.3.3 Distance

In this section we describe centrality measures based on the assumption that a vertex
is more central when its distance to others is small. Closeness centrality, defined as
the reciprocal of the total distance, is by far the most commonly used centrality of
this type.

Definition 4.4 (Closeness Centrality [Bea65, Sab66]) Let G = (V,E) be a
directed, strongly connected multi-graph with edge length `. The closeness centrality
cC : V → R≥0 of a vertex v ∈ V is defined as the reciprocal of the sum of the
distances to all other vertices v 6= u ∈ V , i. e.,

cC(v) =
1∑

v 6=u∈V
d(v, u)

. (4.3)

There are two variants of this approach. Hage and Harary [HH95] exchanged the to-
tal distance to all other vertices by the eccentricity ε(v), i. e., the maximum distance
to any other vertex v 6= u ∈ V .

Definition 4.5 (Eccentricity Centrality [HH95]) Let G = (V,E) be a directed,
strongly connected multi-graph with edge length `. The eccentricity centrality cE :
V → R≥0 of a vertex v ∈ V is defined as the reciprocal of the maximum of the
distances to all other vertices v 6= u ∈ V , i. e.,

cE(v) =
1

max
v 6=u∈V

d(v, u)
=

1

ε(v)
. (4.4)
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In both closeness and eccentricity the multiplicative inverse is used to achieve in-
creasing centrality values with decreasing distance. Valente and Foreman [VF98]
proposed to use a reverse value instead, i. e., to subtract the distance from the
diameter of the graph.

Definition 4.6 (Radiality Centrality [VF98]) Let G = (V,E) be a directed,
strongly connected multi-graph with edge length `. The radiality centrality cE : V →
R≥0 of a vertex v ∈ V is defined as the sum of reverse distances to all other vertices
v 6= u ∈ V , i. e.,

cR(v) =
∑

v 6=u∈V

diam(G) + 1− d(v, u) . (4.5)

Note that the edge length ` is not used explicitly in the above definitions but af-
fects the computation of vertex distances and graph diameter. Neither self-loops
nor multi-edges conflict with the definition of distance, so no special handling for
graphs containing such connections is needed. While no standardization is needed
for eccentricity since the maximum possible value is one, a common standardization
factor for closeness is nC = n − 1. For both centralities the maximum value is
achieved for a vertex directly connected to all other vertices. Sometimes, radiality
is defined with a normalization factor nR = 1/(n − 1) but generally this does not
bound the values to the unit interval [0, 1].

Since all these centralities base on the reachability between all pairs of vertices,
weakly connected and unconnected graphs need special attention. Often, the dis-
tance between unreachable pairs of vertices is defined to be infinity but this will
render these centrality indices meaningless. Therefore, we only take the distances
between vertices of the same connected or weakly connected component into ac-
count. In order to account for varying sizes of the components, we assume that each
component’s share of the total centrality is proportional to its number of vertices
minus one and scale the values accordingly.

Implementation All these distance based centralities can be computed directly
from the solution of the all-pairs shortest-paths problem (APSP). APSP can be
efficiently computed from n shortest-paths trees, one for each vertex v ∈ V as source.
Using Dijkstra’s algorithm (see Section 3.1 for details) yields a total running time of
O(nm+n2 log n) for non-uniform edge length and O(nm) otherwise. If intermediate
results are not stored the required storage space is O(n+m).

4.3.4 Shortest Paths

The measures under consideration in this section, betweenness [Ant71, Fre77] and
stress [Shi53], implicitly assume that communication is conducted along shortest
paths only. Intuitively speaking, an actor is regarded to be central if it is part of
many of these paths. Clearly, distance and shortest paths are closely related, namely
the length of a shortest path between two vertices u, v ∈ V is the distance d(u, v)
between u and v. But in contrast to the previous section, these measures consider
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the number of shortest paths and not their length.

First, we want to recall some of the definitions from Section 3.1. Let σ(s, t) be
the number of shortest (s, t)-paths and denote by σ(s, t|v) the number of shortest
(s, t)-paths passing through a vertex v. By convention, let σ(s, t) = 1 if s = t, and
let σ(s, t|v) = 0 if v ∈ {s, t}.

Definition 4.7 (Betweenness Centrality [Ant71, Fre77]) Let G = (V,E) be
a directed multi-graph with edge length ` and edge strength ω. The betweenness
centrality cB : V → R≥0 is defined as

cB(v) =
∑
s,t∈V

σ(s, t|v)

σ(s, t)
, (4.6)

where 0
0

= 0 by convention.

Since loops have no influence on distance – and shortest paths – they can be ignored.
The definition of betweenness applies directly to disconnected graphs [Fre77] since
the number of shortest paths between unconnected pairs of vertices is zero, result-
ing in the desired contribution of zero. A common standardization for unweighted
betweenness is multiplying a factor of nB = 1/(n − 1)(n − 2) but for the reasons
described in Section 4.3.1 we propose to scale to percentage values instead.

Note that neither the edge length ` nor the edge strength ω are mentioned explic-
itly in the above definition. Similar to distance based centralities, edge length is
concealed in the definition of shortest paths. The influence of the edge strength has
to conform to the correspondence between multi-edges and integer edge strength
explained in Section 4.1. If there are multi-edges between more than one pair of
vertices on a path, any edge between one pair combined with any edge between the
other pair yields a different path, so that the total number of paths obtained is the
product of the multiplicities of its edges. Therefore, the strength of a shortest path
is the product of the strength values of its edges. Brandes [Bra08] pointed out that
alternative measures of betweenness for weighted graphs [FBW91, New05] are not
based on shortest paths and therefore are not proper generalizations of shortest-path
betweenness.

A “simplification” of betweenness does not consider the fraction of shortest paths
passing through a vertex but their absolute number. Sometimes this approach is also
referred to as betweenness [LGH06, PS06], but in fact, it yields a different measure
called stress by Shimbel [Shi53] long before the introduction of betweenness.

Definition 4.8 (Stress Centrality [Kat53]) Let G = (V,E) be a directed multi-
graph with length ` and edge strength ω. The stress centrality cS : V → R≥0 is
defined as

cS(v) =
∑
s,t∈V

σ(s, t|v) . (4.7)

All remarks for betweenness about self-loops, disconnected graphs, and edge length
and edge strength apply also to stress centrality.
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Implementation A naive implementation of these centrality measures has two
steps. First, compute the length and number of shortest paths between each pair of
vertices and store them in a table. In the second step, for each vertex v ∈ V look-up
for all other pairs of vertices s, t the fraction of shortest s-t-paths passing through v
and sum these fractions to get the betweenness value. Clearly, this approach has a
running time in O(n3) and needs space in O(n2) for the look-up table.

By considering the recursive dependency of each vertex’s shortest paths on the
dependencies of its neighbors [Bra01a], Brandes incorporated all computations into
the traversal of n directed acyclic graphs, each consisting of the shortest paths from
a selected source to all other vertices. This avoids the time and space penalty of the
table look-ups resulting an a running time in O(nm+n2 log n) for non-uniform edge
length and O(nm) otherwise. Since intermediate results are not stored the required
storage space is in O(n+m). Recently, Brandes extended his original betweenness
algorithm into a framework for shortest-path centralities and pointed out extentions
for weighted graphs and the computation of stress centrality [Bra08].

4.3.5 Shortest-Path Edge Centralities

The intuition of shortest-path centralities naturally extends to measures for edges by
replacing σ(s, t|v) by σ(s, t|e), the number of shortest (s, t)-paths passing through
an edge e ∈ E.

Definition 4.9 (Edge Betweenness Centrality [Ant71]) Let G = (V,E) be a
directed multi-graph with edge length ` and edge strength ω. The edge betweenness
centrality cB : E → R≥0 is defined as

cB(e) =
∑
s,t∈V

σ(s, t|e)
σ(s, t)

, (4.8)

where 0
0

= 0 by convention.

In an analogous manner, we can replace the fraction of shortest paths passing
through an edge by the absolute number to define edge stress centrality.

Definition 4.10 (Edge Stress Centrality) Let G = (V,E) be a directed multi-
graph with edge length ` and edge strength ω. The stress centrality cS : E → R≥0 is
defined as

cS(e) =
∑
s,t∈V

σ(s, t|e) . (4.9)

Clearly, all remarks for shortest-path vertex centrality about self-loops, disconnected
graphs, and edge length and edge strength apply also to edge centralities. Further-
more, the computation of edge betweenness and edge stress can be easily incorpo-
rated into the general framework by Brandes [Bra08].
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4.3.6 Current-Flow

Neglecting flow of information along non-shortest paths by betweenness and other
shortest path based measures is a disadvantage commonly complained about which
limits their applicability. Recently, a variation of betweenness based on the flow
of electrical current has attracted considerable attention [New05] and inspired a
generalization of closeness in a similar way [BF05]. Before we give the definition
of these centrality indices, we briefly describe the employed concept of electrical
networks.

Electrical Networks An electrical network N is an undirected, simple, connected
graph G = (V,E) together with positive edge weights ω : E → R+ indicating the
conductance or strength of an edge. Equivalently, the network could be defined in
terms of positive edge weights ` : E → R+ indicating the resistance or length of an
edge, where conductance and resistance are related by ω(e) = 1/`(e) for all e ∈ E.

A supply function b : V → R specifies there external electrical current enters and
leaves this network. The amounts of entering and leaving currents have to be equal,
i. e.,

∑
v∈V b(v) = 0. For our purpose, we consider only unit s-t-supplies, i. e.,

a unit current enters the network at vertex s and leaves it at vertex t, that is,
bst(s) = 1, bst(t) = −1, and bst(v) = 0 for all v ∈ V \ {s, t}.
Since it is useful to talk about the direction of a current in the undirected graph,
each edge e ∈ E is arbitrarily oriented to obtain an oriented edge −→e , which results

in an oriented edge set
−→
E .

A function I :
−→
E → R is called a (electrical) current in N = (V,E, ω) if∑

(v,w)∈
−→
E

I(v, w)−
∑

(w,v)∈
−→
E

I(w, v) = b(v) for all v ∈ V

and

∑
e∈C

I(−→e ) = 0 for every (undirected) cycle C ⊆ E.

The former equation is known as Kirchhoff’s current law, and the latter as Kirch-
hoff’s potential law. Negative values of I are to be interpreted as current flowing
against the direction of an oriented edge.

Alternatively to the current I, an electrical flow can also be represented by po-
tentials. A function U : V → R is a (electrical) potential if U(v) − U(w) =

I(v, w)/ω(v, w) for all (v, w) ∈
−→
E . As an electrical network N = (V,E, ω) has

a unique current I for any supply b, it also has a potential U that is unique up to
an additive factor [Bol98].
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Recall that the weighted Laplacian matrix L = L(N) of the electrical network N is
defined as

Lvw =


∑

e∈E(v) ω(e) if v = w

−ω(e) if e = {v, w} ∈ E
0 otherwise

for v, w ∈ V . Then, a potential U for an electrical network N = (V,E, ω) and a
supply b can be found by solving the linear system LU = b.

Current-Flow Centralities In electrical networks, the fraction of a unit s-t-
current flowing through a vertex v is the correspondent of the fraction σst(v) of
shortest s-t-paths passing through that vertex. Given an s-t-current, the throughput
of a vertex v ∈ V is therefore defined as

τst(v) =
1

2

−|bst(v)|+
∑
e∈E(v)

|I(−→e )|

 .

The term −|bst(v)| ensures that a given unit s-t-current counts only for the through-
put of inner vertices v 6∈ {s, t}, and the term 1

2
adjusts for the fact that the summa-

tion counts both the current into and out of the vertex v.

Definition 4.11 (Current-Flow Betweenness Centrality [New05]) Let G =
(V,E) be a undirected multi-graph with edge length ` and edge strength ω. The
current-flow betweenness centrality cCB : V → R≥0 is defined as

cCB(v) =
∑
s,t∈V

τst(v). (4.10)

In the original definition of current-flow betweenness, the same standardization as
for shortest path betweenness is proposed, i. e., multiplication by the constant factor
of nCB = nB = 1/(n− 1)(n− 2).

Current-flow betweenness is called random-walk betweenness in [New05] because of
the following correspondence. A simple random s-t-walk is a random walk that
starts at s, ends in t, and continues at vertex v 6= t by picking an incident edge
e ∈ E with probability ω(e)/

∑
e′∈E(v) ω(e′). Then, given an s-t-current, the amount

of current flowing through a particular edge −→e equals the expected difference of the
number of times that the simple random s-t-walk passes edge −→e along and against
its orientation (see, e. g., [Bol98]).

The difference in electrical potential of vertices in electrical networks can be seen
as the analog of shortest-path distance in distance-based networks and is therefore
used for the definition of a correspondent closeness measure.

Definition 4.12 (Current-Flow Closeness Centrality [BF05]) Let G = (V,E)
be a undirected multi-graph with edge length ` and edge strength ω. The current-flow
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closeness centrality cCC : V → R≥0 is defined as

cCC(v) =
1∑

t6=v Uvt(v)− Uvt(t)
. (4.11)

The classical standardization constant nC = n − 1 of shortest path closeness does
not translate to current-flow closeness because of different possible maximum values.
Instead a factor of nCC = 2(n− 1)/n can be used for normalization.

Brandes and Fleischer [BF05] showed that current-flow closeness is equal to infor-
mation centrality defined by Stephenson and Zelen [SZ89].

Computation For the computation of the current-flow centralities the efficient
algorithm of Brandes and Fleischer [BF05] is used. It is based on the inversion of
the restricted Laplacian matrix of the graph G. The total running time for current-
flow betweenness is in O(M(n − 1) + mn log n) and for current-flow closeness in
O(M(n − 1) + n, respectively, where M(n) is the time required to compute the
inverse of an n × n-matrix. Using Gaussian elimination for matrix inversion we
have M(n) ∈ O(n3). Since social networks are typically sparse, a method better
suited for this case can be used resulting in a running time for matrix inversion in
M(n) ∈ O(mn1.5). The memory requirement for the computation of closeness is in
O(m). In the worst case, for betweenness the memory requirement is O(n2) but the
authors give a heuristic method to reduce this significantly in many cases.

4.3.7 Feedback

In this section we present centrality indices in which a vertex’s score depends on the
score of its neighbors, i. e., a vertex is the more central the more central its neighbors
are. In general, such feedback relations can be specified in terms of linear systems.
Special care has to be taken to get solvable and properly defined systems.

Since feedback centralities do not count concrete structural properties like shortest
paths or distances, usually no standardization is used. On the over hand, some
kind of normalization is advisable since the results can differ by a constant factor
depending on the method of calculation. Therefore, we have the following lemma.

Convention 4.13 All feedback centralities are normalized to percentages, i. e., given
a non-normalized measure c′ : V → R≥0, the normalized centrality is defined as

c(v) =
c′(v)∑

u∈V
c′(u)

. (4.12)

Status The first realization of the concept of feedback was given by Katz [Kat53]
in 1953. His idea can be interpreted as a generalization of degree centrality, where
the number of neighbors at distance k is also counted but attenuated by αk, where
α > 0 is a damping factor. Recall from Section 3.1 that (Ak)uv holds the number
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of paths of length k from u to v, where A is the adjacency matrix of the graph G.
Therefore, Katz’s centrality can be defined as

cKS(v) =
∞∑
k=1

∑
u∈V

ak(Ak)uv ,

if the infinite sum converges. We reformulate this definition to emphasize the feed-
back nature of the centrality.

Definition 4.14 (Status Centrality [Kat53]) Let G = (V,E) be a weakly con-
nected, directed multi-graph with edge strength ω. The status centrality cKS : V →
R≥0 is defined as the normalized values of

cKS(v) = α ·
∑

(u,v)∈E(v)

ω
(
(u, v)

)
·
(
1 + cKS(u)

)
, (4.13)

where 1/α = min
{

max
v∈V

indegω(v),max
v∈V

outdegω(v)
}

.

Note that in contrast to the original definition by Katz, we define status in terms of
incoming edges to conform to the other centralities in this section.

Eigenvector While status depends on both the number of neighbors and their
scores, Bonacich [Bon72] introduced a measure which considers solely the centrality
values of the neighbors, i. e., which is a solution of the equation system

c(v) =
∑
u∈V

Auv · c(u)

or, equally, c = A ·c, where the vector c ∈ Rn contains the values c(v) for all v ∈ V .
IfG is a weakly connected multi-graph, the largest eigenvalue λ1 of the corresponding
Eigenvalue problem λc = Ac is simple and the entries of the eigenvector for λ1 are
of the same sign. Therefore, we can define eigenvector centrality in the following
way.

Definition 4.15 (Eigenvector Centrality [Bon72]) Let G = (V,E) be a di-
rected, weakly connected multi-graph with edge strength ω. The eigenvector centrality
cE : V → R≥0 is defined as the normalized values of

cE(v) =
1

λ
·
∑

(u,v)∈E(v)

ω
(
(u, v)

)
·cE(u) , (4.14)

where λ is the largest eigenvalue of the adjacency matrix A of G.

Hubs & Authorities Closely related to eigenvector centrality are Hubs & Au-
thorities introduced by Kleinberg [Kle99] for scoring Web pages with respect to two
different purposes, where

“a good hub is a page that points to many good authorities”
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and

“a good authority is a page that is pointed to by many good hubs”.

Despite their original scope there are no concerns against their general usage.

Definition 4.16 (Hubs & Authorities [Kle99]) Let G = (V,E) be a directed,
weakly connected multi-graph with edge strength ω. The authorities centrality cA :
V → R≥0 is defined as the normalized values of

cA(v) =
1

λ
·
∑

(u,v)∈E(v)

ω((u, v)) ·
( ∑
(u,w)∈Eu

ω((u,w)) · cE(w)
)
, (4.15)

where λ is the largest eigenvalue of the matrix ATA, and the hubs centrality cH :
V → R≥0 is defined as the normalized values of

cH(v) =
1

λ
·
∑

(v,w)∈E(v)

ω((v, w)) ·
( ∑
(u,w)∈Ew

ω((u,w)) · cE(u)
)
, (4.16)

where λ is the largest eigenvalue of the matrix AAT .

Intuitively speaking, a vertex v is the more central in terms of authority centrality
the more vertices u point both to u and to other central vertices w. Similarly, its
hub score gets higher if more important vertices u point to successors w of v. There
is also a descriptive analogy of Hubs & Authorities and eigenvector centrality.

Observation 4.17 Let G = (V,E) be a directed multi-graph. The symmetric multi-
graph B(G) with adjacency matrix AB(G) = AGA

T
G is called bibliographic coupling

and the symmetric multi-graph C(G) with adjacency matrix AC(G) = ATGAG is called
co-citation, respectively. Hub centrality c(G)H in G equals eigenvector centrality
c(B(G))E in B(G) and authority centrality c(G)A in G equals eigenvector centrality
c(C(G))E in C(G), i. e., for all v ∈ V

c(G)H(v) = c(B(G))E(v) and c(G)A(v) = c(C(G))E(v) .

Figure 4.1 gives an example of bibliographic coupling and co-citation graphs.

PageRank Since the initial stage of Google, PageRank [PBMW99] is one of the
main ingredients of the search engine [BP98]. Over the years, the original measure
was refined and extended to keep up with new developments in the Web like dubious
score optimization techniques, but for general social networks the measure has lost
nothing of its value. The basic idea is to combine eigenvector centrality with a
uniform initial score assigned to each vertex.

Definition 4.18 (PageRank Centrality [BP98] ) Let G = (V,E) be a directed
multi-graph with edge strength ω. The PageRank centrality cPR : V → R≥0 is defined
as the normalized values of

cPR(v) = α
1

n
+ (1− α)

∑
(u,v)∈E(v)

ω((u, v)) · cPR(u) , (4.17)

where 0 < α < 1 is a free parameter.
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Figure 4.1: Bibliographic coupling and co-citation for the example graph shown in
the middle. The multiplicity of edges is shown as labels and reflected by
the line width.

Insufficient Connectivity All these centralities except PageRank are only well-
defined on at least weakly connected graphs. The first term in the definition of
PageRank can be interpreted as an edge of low weight between each dyad, therefore
this measure assumes a connected graph implicitly. For the other measures, we
use a generalization similar to the distance-based centralities, i. e., we compute the
centrality separately for each connected component and account for varying sizes of
the components by scaling each component’s share proportionally to its number of
vertices minus one.

Computation The exact computation of eigenvectors is a non-trivial problem.
Since we are only interested in the largest absolute eigenvalue and its corresponding
eigenvector the rather simple power iteration can be used. Starting with arbitrary
initial values, e. g., cE(v) = 1 for all v ∈ V , this methods iteratively calculates better
approximated values. Exploiting the fact that the value of each vertex depends only
on its neighbors, the running time for one iteration is O(n+m). The overall running
time depends on the convergence rate and a good stop criterion. Note that special
care has to be taken if the graph is bipartite. Details on the power iteration can be
found in many textbooks on linear algebra, e. g., Wilkinson [Wil65] and for advanced
techniques and algorithms for special matrices, see textbooks like [GVL96, PTVF92].

For the computation of hubs & authorities, we do not use the analogy to eigenvector
centrality because, even for a sparse graph G, coupling B(G) and co-citation C(G)
are typically dense, resulting in an unnecessary increase in running time and memory
requirement. Instead, we use the directed iteration proposed by Kleinberg [Kle99]
which exploits the following mutual dependence of hub and authority scores:

ckH = Ack−1
A and ckA = ATckH .
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Figure 4.2: A triangle contains exactly three triples.

4.4 Neighborhood Density

For a long time, density has been a frequently used concept to characterize groups
and complete networks. In 1998, Watts and Strogatz [WS98] introduced the clus-
tering coefficient, a local density measure for the neighborhood of a vertex. The
clustering coefficient cc(v) of a vertex v ∈ V represents the likeliness that two neigh-
bors of v are connected.

Definition We will define the clustering coefficient in terms of triangles and
triples of a vertex. Let G be a simple, undirected graph. A triangle 4 is a complete
subgraph of three vertices and a triple is a subgraph of three vertices and two edges,
i. e., a path of length 2 (see Figure 4.2). A triangle 4 is a triangle of vertex v if v
is any of the vertices of 4 and a triple is a triple at vertex v if v is incident to both
edges of the triple.

The clustering coefficient of a vertex v ∈ V is defined as the fraction of the number
of triangles λ(v) of v and the number of triples τ(v) at v, i. e.,

cc(v) =
λ(v)

τ(v)
, (4.18)

where 0
0

:= 0 by convention. Note that the number of triples τ(v) at a vertex v can
be formulated in terms of its degree deg(v) as

τ(v) =

(
deg(v)

2

)
=

deg(v)2 − deg(v)

2
. (4.19)

Graph Measures Watts and Strogatz [WS98] defined the clustering coefficient
cc(G) of a graph G as the average of the clustering coefficients cc(v) of all vertices
v ∈ V with degree deg(v) ≥ 2, i. e.,

cc(G) =
1

|V ′|
∑
v∈V ′

cc(v) =
1

|V ′|
∑
v∈V ′

λ(v)

τ(v)
,

where V ′ = {v ∈ V | deg(v) ≥ 2}.
This average has become a popular measure in network analysis, provoking ‘alter-
native formulations’ by Barrat and Weigt [BW00a] and by Newman et al. [NSW02].
Their reformulations really turned out to be equivalent to each other but not to the
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(a) graph with 4 vertices

1 2 3 n

(b) family of graphs

Figure 4.3: Clustering coefficient and transitivity are different. The graph on the
left has clustering coefficients cc(a) = cc(c) = 2/3, cc(b) = cc(d) = 1,
cc(G) = (2 + 4/3)/4 ≈ 0.83 and transitivity t(G) = 3 · 2/8 = 0.75. For
the family of graphs on the right we have t(G) → 0 and cc(G) → 1 for
n→∞.

original clustering coefficient. The transitivity of a graph is defined dependent on
the number of triangles λ(G) in G and the number of triples τ(G) in G as

t(G) = 3
λ(G)

τ(G)
= 3

∑
v∈V λ(v)∑
v∈V τ(v)

,

where the factor of 3 accounts for the exactly three triples in each triangle (see
Figure 4.2). Figure 4.3 illustrates this difference. The example graph exhibits similar
values of clustering coefficient and transitivity while in the given family of graphs
the values approach one and zero, respectively, for increasing n.

Computation The number of triples τ(v) for all vertices v ∈ V can be computed
in linear time using Equation 4.19. The common method to compute the number
of triangles λ(v) for all vertices iterates over all vertices and checks whether the
edge between any two neighbors is present. This algorithm has running time in
O(n · ∆(G)2) where ∆(G) = max{deg(v) | v ∈ V } if the test for edge existence
requires constant time, e. g., by using an efficient hashing schema as proposed by
Schank [Sch07].

Another approach is to use matrix multiplication since the diagonal elements of
A3, where A is the adjacency matrix of a graph G, contain two times the number of
triangles of the corresponding vertex. The resulting running time is in O(nγ), where
γ is the matrix multiplication coefficient. For advanced methods, γ ≤ 2.376 [CW90].
An algorithm by Alon, Yuster, and Zwick [AYZ97] combines both methods by using
the standard approach for low degree vertices and fast matrix multiplication on
the subgraph induced by the high degree vertices, resulting in a running time of
O(m3/2).

Note that for the transitivity, in principle, it suffices to compute λ(G) for the whole
graph but it is unknown whether there is an algorithm that is asymptotically faster
in computing the number of triangles globally than iterating locally over all vertices.
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4.5 Cohesiveness

Groups of actors can be defined according to extrinsic properties like common goals,
interests, preferences, or other similarities. In contrast, we are interested in groups
defined by structural properties of the network. A vast number of semantically very
different concepts for defining structural groups have been developed in the past. In
the following sections, we describe connectedness, clustering, and role assignment in
more detail. In this section, we concentrate on the discovery of cohesive groups.

Two concepts of cohesive groups have been implemented in visone. First, we de-
scribe the k-core decomposition in Section 4.5.1 which computes a sequence of nested
groups of increasing cohesiveness. Thereafter, concepts of complete and nearly com-
plete groups like cliques are presented in Section 4.5.2. In contrast to cores, these
groups are typically overlapping and not all-encompassing, i. e., vertices can be mem-
bers of several groups and not every vertex belongs to a group.

The groups in this section are defined according to a graph-theoretic property. Such
a property is called local if the membership of a vertex depends only on the con-
nections within the group, i. e., the group exists also in the induced subgraph of the
vertices of this group. Typically, only maximal groups are considered. A group is
called maximal, if it is not contained in a larger group.

In this section, all algorithms are defined for the case of unweighted, undirected
simple graphs G = (V,E). Note that group is used as intuitive notation for subgraph
in the following and has no implicit meaning.

4.5.1 k-core

The concept of cores was originally introduced by Seidman [Sei83] and generalized
by Batagelj and Zaveršnik [BZ02b]. Constructively speaking, the i-core of an undi-
rected graph is defined as the unique subgraph obtained by iteratively removing all
vertices of degree less than i. This procedural definition immediately gives rise to
a construction algorithm that can easily be implemented. Moreover, it is equiva-
lent to the closed definition of the i-core as the set of all vertices with at least i
adjacencies to other vertices in the i-core. Obviously, this is a local and maximal
property as described above. The core number of a graph is the smallest i such
that the (i + 1)-core is empty, and the corresponding i-core is called the core of a
graph. Since each (i + 1)-core is complete contained in the i-core, the cores can be
seen as a decomposition of the graph in nested groups of increasing cohesiveness.
Figure 4.4 depicts the core decomposition of an example graph with a core number
of 4. The core decomposition can be computed in linear time with respect to the
graph size [BZ02a].

A vertex has coreness i if it belongs to the i-core but not to the (i + 1)-core. Note
that the shells form a partition of the vertices. Informally speaking, the coreness of
a vertex can be seen as a robust version of the degree, i. e., a vertex of coreness i
retains its coreness even after the removal of an arbitrary number of vertices of
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Figure 4.4: A k-core decomposition with core number 3. Core-shells are indicated
by vertex colors from light blue to dark blue.

smaller coreness.

4.5.2 Cliques & Co

A subset U ⊆ V is a clique if the induced subgraph G[U ] is a complete graph [LP49].
Often, we identify the vertex set u and the induced subgraph G[U ] of a clique. A
clique u is a maximal clique, if there is no other clique U ′ ⊆ V with U ⊆ U ′, i. e.,
U is not contained in a larger complete subgraph of G. A maximum clique is a
maximal clique of the maximum number of vertices.

Since every member of a clique is adjacent to every other member, cliques have
a number of desirable properties. The density of cliques has the maximum value
of 1. The distance between ever pair of vertices is the minimum value of 1. The
vertex and edge connectivity of a clique U = {u1, . . . , uk} is the maximum value
of k − 1, i. e., at least k − 1 vertices or k − 1 edges have to be removed in order to
disconnect G[U ].

In social network analysis, one is typically interested in either a maximum clique or
an enumeration of all maximal cliques. Despite the rather simple structure of cliques,
both problems are NP-hard to solve [Kar72, LLK80]. Therefore, we have imple-
mented an algorithm for the enumeration of all maximal cliques with a polynomial
delay of O(n3) [TIAS77], i. e., the delay until the first output, between consecutive
outputs, and past the last output is bounded by O(n3). Furthermore, this algorithm
requires only linear space O(n+m). Note that the total running time is not polyno-
mial since a tight upper bound for the number of maximal cliques is 3d

n
3
e [MM65].

Relaxations Since the structural requirements of cliques are very strong, it is
likely that there are only few cliques of large size in real-world networks, especially
if the existence of edges is afflicted with uncertainty. Typical approaches to handle
this problem relax the requirement either of direct connectivity to connections by
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paths of a given length k or of completeness to the allowance of a small number k
of missing edges per vertex. An example for the latter are k-plexes [SF78, Sei80].

In visone, two relaxations of the first type are available: k-cliques and k-clans. A
subset U ⊆ V is a k-clique if for all vertices u, v ∈ U , dG(u, v) ≤ k. A k-clan U
is a k-clique with diam(G[U ]) ≤ k. Note that k-cliques are defined with respect to
distances in G and not in G[U ], thus, it is not a local property. In fact, k-cliques
can even be disconnected for k > 1. Since many real-world networks have small
diameter, large values of maximum distance k are rarely reasonable.

4.6 Connectedness

There are many concepts for the strength of the connectivity of a graph. Common
measures consider for example the minimum number of vertices or edges which have
to be removed in order to split the graph into disconnected components or the
minimum number of vertex- or edge-disjoint paths between dyads. We provide only
a small number of rather basic methods to investigate connectivity in visone. These
comprise the identification of connected and biconnected components.

Recall from Section 3.1 the definitions of connected components. The connected
component of an undirected graph can be computed in linear time using any graph
search algorithm like DFS or BFS. All vertices reachable from a single source vertex
belong to the same component. As long as unvisited vertices exist, one of them
is chosen as next source vertex. By ignoring the direction of the edges, the same
algorithm can be used for the calculation of weakly connected components of an
directed graph.

Strongly Connected Components The computation of the strongly connected
components of a directed graph requires a more elaborate method. The basic idea
of a linear-time algorithm presented first by Tarjan [Tar72] is to detect simple cycles
during the execution of a DFS since vertices belong to the same strongly connected
component if they are part of at least one common (directed) cycle. Note that,
if DFS finds an edge (u, v) to a visited vertex v which lies on the current search
path from the source, the search path below v obviously induces a cycle. Using
a numbering of the vertices in traversal order from 1 to n, we can identify during
back-tracking vertices v of the lowest number of any vertex in the same strongly
connected component. Finally, these vertices can be used to divide the search tree
into the strong components.

Biconnected Components A vertex whose removal increases the number of
connected components of an undirected graph is called a cut-vertex. A cut-edge
is defined analogously. A biconnected component, also called block is a maximal
subgraph which cannot be disconnected by removing only one vertex. In contrast
to connected components, the biconnected components do not imply a partition of
the vertices since the cut-vertices belong to more than one biconnected component.
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A linear-time algorithm for the computation of the biconnected components by
Hopcroft and Tarjan [HT73] is based on the same idea of cycle detection in DFS as
the algorithm for strongly connected components.

4.7 Clustering

The purpose of clustering is the decomposition of a set of entities into ‘natural
groups’. Originally, clustering was introduced in the data mining research for auto-
matic classification of patterns into groups [JD88]. In the classic clustering theory,
entities are embedded in metric spaces and their similarity is derived from the dis-
tances between them. Thus, all pairwise similarities were known at the beginning.
In social network analysis, the networks are typically sparse. Therefore, tailored
concepts and algorithm are needed which take advantage of this special setting.

According to [Gae07], there are two main combinatorial aspects of clustering: the
measuring of the quality of a given clustering and the identification of good cluster-
ings. In this section, we follow this classification. First, we present measurements
for the quality of clusterings based on the intuitive paradigm of intra-cluster density
versus inter-cluster sparsity, i. e., in a good clustering, the subgraph induced by each
cluster is dense while there are only few edges between different clusters. Then,
we describe selected algorithms for the identification of clusterings. Typically, an
algorithm uses (some of) these measures in its computation to decide whether to
keep or discard an intermediate state. Based on the findings of Gaertler [Gae07],
we restrict the domain of input parameters to appropriate values – or even preset
them to a fixed value – in order to simplify their application. For a comprehensive
introduction to the clustering of networks, including various concepts not mentioned
here, we refer to [Gae07, Gae05].

Preliminaries Let G = (V,E) be an undirected graph. A clustering C =
(C1, . . . , Ck) of G is a partition of the vertex set V into k pairwise disjoint, non-
empty subsets Ci. Since every clustering is also a partition, the notation introduced
for partitions in Section 3.1 can be used without modifications. Furthermore, the
number of intra-cluster edges is denoted by m (C) and the number of inter-cluster
edges by m (C). In the following, we often identify a cluster C with its induced
subgraph in G, i. e., the graph G(C) = (C,E(C)). Recall that a cut is a clustering
into exactly two parts.

The set of all possible clusterings is denoted by A (G). The set A (G) is partially
ordered with respect to inclusion. Given two clusterings C1 = (C1, . . . , Ck) and C2 =
(C ′1, . . . , C

′
l), the partial ordering is defined as

C1 ≤ C2 : ⇐⇒ ∀ 1 ≤ i ≤ k : ∃ j ∈ {1, . . . , `} : Ci ⊆ C ′j (4.20)

Clustering C1 is called a refinement of C2, and C2 is called a coarsening of C1.



4.7 Clustering 53

Typically, we consider graphs where a positive edge weight ω : E → R+ represents
the similarities of the incident vertices. For the unweighted case, a uniform weight
of one is assumed. For any set of edges E ′, we use ω(E ′) as shorthand for ω(E ′) =∑

e∈E′ ω(e). For simplicity, we require ω(E ′) 6= 0. Methods for negative similarities
or dissimilarities are not available in visone and therefore not considered in the
following.

4.7.1 Quality Measures

All presented clustering measures are based on the paradigm of intra-cluster density
versus inter-cluster sparsity. More formally, each measure can be expressed as a
combination of two independent functions f, g : A (G) → R≥0 which measure the
density inside the clusters and the sparsity between clusters, respectively, in the
following general schema:

index(C) =
f(C) + g(C)

max {f(C ′) + g(C ′) | C ′ ∈ A (G)}
, (4.21)

where index(C) = 0 by convention if all clusterings C ′ ∈ A (G) are evaluated to zero.
Note that index(C) ∈ [0, 1] by definition. If a measure considers only one aspect,
either density or sparsity, the respective other function f or g is constantly zero.
Through the normalization of the quality measures by the maximum possible value
for any clustering of this graph, they can be used to compare clustering of different
graphs.

Typically, a quality measure is based on some intuition of the structure of a good
clustering and, consequently, highlights this idea. In order to achieve a more bal-
anced result, different measures can be used in combination with appropriate ratios.

Coverage

The coverage cov (C) of a given clustering C is defined as the fraction of the weights
of intra-cluster edges of the total edge weight, i. e.,

cov (C) =
ω(E(C))
ω(E)

=

∑
e∈E(C) ω(e)∑
e∈E ω(e)

. (4.22)

Using f(C) = ω(E(C)) and g ≡ 0, coverage fits into the general schema given in
Equation 4.21.

Optimum values of coverage are achieved for clusterings of only one cluster or if
all clusters are unions of connected components. Furthermore, if more than one
cluster is required for a connected graph, the clustering of optimal coverage value
corresponds to a minimum cut, which often separates only a small portion of the
graph. In order to avoid this undesired behavior, coverage is seldomly used as the
only quality measure.
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Conductance Cuts

Although minimum cuts are often not appropriate for clustering, cuts in general are
a valuable concept. In this section, we consider the cut measure conductance. Let
C = {C1, C2 = V \ C1} be a cut. The conductance evaluates the total weight of
the edges e ∈ E(C1, C2) between the two parts and the total weight of the edges
e′ ∈ E(Ci, V ) incident to one of the two parts of the cut. More formally, the
conductance-weight a(Ci) of the part Ci of the cut is defined as

a(Ci) =
∑

{u,v}∈E(Ci,V )

ω({u, v}), i ∈ {1, 2},

and the conductance ϕ(C) of the cut C is defined as

ϕ(C) =
ω(E(C1, C2))

min{a(C1), a(C2)}
. (4.23)

Note that a(Ci) > 0 since the definition of clustering forbids empty clusters. Finally,
we can define the conductance ϕ(G) of a graph G as

ϕ(G) = min{ϕ({C1, V \ C1}) | ∅ 6= C1 ( V } . (4.24)

The only graphs of maximum conductance ϕ(C) = 1 are stars and connected
graphs of at most three vertices. The calculation of the conductance of a graph
is NP-hard [ACG+02] but there are approximation algorithms with a guarantee
of O(log n) [KVV00] and O(

√
log n) [ARV04], respectively.

Now, we can define two quality measures based on conductance. The intra-cluster
conductance α(C) [KVV00] of a clustering C is defined as the minimum conductance
of the subgraphs G[C] induced by the clusters C ∈ C, i. e., the measuring functions
are

f(C) = min{ϕ(G[C]) | C ∈ C} and g(C) ≡ 0 .

and, since the maximum of f + g is one,

α(C) = f(C) = min{ϕ(G[C]) | C ∈ C} . (4.25)

Since the conductance of a subgraph is small if there is a cut of low value for the
respective cluster, a low intra-cluster conductance can be evidence for a too coarse
overall clustering and the minimum conductance cut itself may be a good split.

In contrast to intra-cluster conductance, which evaluates cuts inside of clusters, the
inter-cluster conductance δ(C) [BGW07] considers the cuts induced by a clustering C
in the original graph G, i. e., the measuring functions are

f(C) ≡ 0 and g(C) = 1−max{ϕ({C, v \ C}) | C ∈ C} ,

and, since the maximum of f + g is also one,

δ(C) = g(C) = 1−max{ϕ({C, v \ C}) | C ∈ C} , (4.26)

where g({V }) = 1 by convention. A low value of inter-cluster conductance indi-
cates a clustering in which at least one cluster C ∈ C is strongly connected to the
remainder V \ C.
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Performance

The intuition of performance [vD00] is very close to the paradigm of intra-cluster
density versus inter-cluster sparsity. For a given clustering, it counts the pairs of
vertices which are ‘correctly’ assigned, i. e., pairs of adjacent vertices in the same
cluster and pairs of non-adjacent vertices in different clusters. According to the
general schema in Equation 4.21, the resulting index can be formalized as

f(C) =
∑
C∈C

|E(C)| and

g(C) =
∣∣∣{{u, v} ∈ V × V | {u, v} 6∈ E and u ∈ Ci, v ∈ Cj, i 6= j

}∣∣∣ .
Calculating the maximum of f + g is NP-hard [SST02], thus, a the trivial upper
bound of n(n− 1)/2, the number of different pairs of vertices, is used in the compu-
tation of performance instead. Using some simplifications, the performance perf (C)
of a given clustering C can be defined as

perf (C) = 1− 2

n(n− 1)
·m(1− 2

m(C)
m

) +
1

2

∑
C∈C

|C|(|C| − 1) . (4.27)

In contrast to coverage, there is no general characterization of clusterings with max-
imum performance. Typically, clusterings of many small clusters tend to have a
high value of performance. The main disadvantage of performance is the handling
of very sparse graphs since f(C), which evaluates only present edges, tends to be
negligible in comparison to g(C).
For the generalization to weighted performance, we have to define how to take non-
adjacent pairs of vertices into account since, obviously, there is no weight defined for
them. The straight-forward approach is to assume a uniform weight of M ∈ Real
for each of these dyads. M should be a reasonable upper bound for the edge weights,
usually, their maximum is a good choice. The resulting generalized measuring func-
tions are

f(C) = ω(E(C)) and

g(C) =
∑

u∈Ci,v∈Cj ,i 6=j,{u,v}6∈E

M .

Since this approach neglects the weights of the inter-cluster edges, we use the slight
variation

g′(C) = g(C) +
∑

u∈Ci,v∈Cj ,i 6=j,{u,v}∈E

M − ω({u, v})

= m (C) ·M −
∑

u∈Ci,v∈Cj ,i 6=j,{u,v}∈E

ω({u, v}) ,

in which the weight of the actual inter-cluster edges is subtracted from the weight
which would be counted if no such edges are present at all.
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Modularity

The modularity measure [CNM04] has recently gained a lot of attention. Its intuition
is to compare the ratio of intra-cluster edges and an approximation of this fraction
in a random model. The modularity q (C) of a given clustering C is defined as

q (C) =
∑
C∈C

ω(E(C))
ω(E)

− 1

4ω(E)2

∑
v∈C

∑
{u,v}∈E

ω({u, v})

2 . (4.28)

Note that modularity does not directly realize the intra-cluster density versus inter-
cluster sparsity paradigm but an experimental evaluation of Gaertler [Gae07] showed
that the resulting clusterings also conform to it. In order to fit modularity into the
schema of Equation 4.21, we have to relax the range of the function g(C) to include
negative values and then define

f(C) = ω(E(C)) and g(C) = − 1

4ω(E)2

∑
v∈C

∑
{u,v}∈E

ω({u, v})

2

.

Also the value of modularity as a whole can become negative. For an unweighted,
undirected graph, the following inequalities hold: −0.5 ≤ q (C) ≤ 1. Recently Bran-
des et al. [BDG+06] showed that maximizing modularity is NP-hard but some prop-
erties of clusterings of maximum modularity are known: there is always a clustering
of maximum modularity in which each cluster induces a connected subgraph and all
maximum clusterings are of this type if the graph contains no isolated vertices.

4.7.2 Clustering Methods

In this part, we give a short summary of general clustering strategies and then
describe the algorithms available in visone. There are three main concepts for com-
puting a clustering, which can often be found in literature: greedy linkage, greedy
splitting, and shifting.

In greedy linkage, one starts with a given fine clustering, e. g., singletons, and itera-
tively merges two clusters until the 1-clustering is reached. In every step, a cheapest
merge operation according to some measure should be performed, which can be
evaluated locally, i. e., only the two affected clusters are considered, or globally, i. e.,
for the complete clustering. Finally, the best intermediate clustering according to a
clustering measure as presented in Section 4.7.1 is selected.

In greedy splitting, the process of greedy linkage is reversed. Starting from an initial
coarse clustering, e. g., the 1-clustering, iteratively one cluster is selected and split
into two parts. Again, the split operation should be cheapest according to some
measure. Note that, in general, splitting is more complex than linkage if every
non-trivial cut of each cluster is considered. A common method to overcome this
drawback is to evaluate only appropriate candidates.



4.7 Clustering 57

Shifting is a more local approach. A given initial clustering is iteratively modified
using simple operations until a local optimum is achieved. Typical operations are:
move a vertex from one cluster to another, assign a vertex to a newly created cluster,
and exchange two vertices of different clusters at once. Methods based on shifting
are rarely ever used on their own but are common post-precessing steps of greedy
algorithms.

Markov Clustering (MCL)

The basic intuition of Markov Clustering (MCL) is that a “random walk that visits
a dense cluster will likely not leave the cluster until many of its vertices have been
visited” [vD00]. Actually, MCL does not simulate random walks but modifies a
matrix M of transition probabilities by a series of expansion and inflation operations
until a recurrent state is reached.

In more detail, the matrix M is initially defined as the normalized adjacency ma-
trix M(G) of G, i. e., M = M(G) = D(G)−1A(G) where A(G) is the (weighted)
adjacency matrix and D(G) is the diagonal matrix of the (weighted) node degrees.
Note, that M(G) corresponds to random walks of a length of at most one. Then,
alternately, an expansion operation simulates e steps of a random walk by taking
M to the power of e ∈ N>1 and the inflation operation takes every entry Mij to the
power of r ∈ R+ and re-normalizes M . The algorithm is stopped when a previous
state of the matrix M recurs. According to [vD00], it is likely that if a recurrent
state is reached once it repeats in every iteration. Finally, the clustering is induced
by the connected components of the graph underlying the recurrent matrix.

probabilities of

The running time of the computation of MCL is dominated by the matrix multi-
plication in the expansion operation. To drastically reduce the cubic complexity
of a straight-forward implementation, van Dongen [vD00] suggests to maintain the
matrix M sparse by keeping only a fixed number of largest values per row. For the
user’s convenience, we predefine all parameters in accordance with the experimental
evaluation of Gaertler [Gae07] and set the exponent for the expansion e = 2 and the
exponent for the inflation r = 1.5.

Iterative Conductance Cutting (ICC)

A prototypical example of a splitting algorithm is Iterative Conductance Cutting
(ICC) [KVV04]. As the name suggests, the basic idea is to iteratively split clusters
using minimum conductance cuts. Since finding a cut with minimum conductance is
NP-hard, a poly-logarithmic approximation algorithm is used. For a cluster C ∈ C,
the vertices are ordered according to an eigenvector of the second largest eigenvalue
of the normalized adjacency matrix M(C) of C. Among all cuts that split this order
into two parts, one of minimum conductance is chosen. Clusters are split as long as
the approximation value of the conductance is below a threshold α ∈ [0, 1].



58 Chapter 4: Analysis

The overall running time of ICC depends on the number of iterations and on the
eigenvector computation in each iteration which dominates the conductance cut
approximation. The runtime of such an eigenvector computation highly depends on
the structure of a subgraph and is in O((n+m) log n) in the worst case.

The threshold α can be used to adjust the granularity of the final clustering. Since
not all possible values are reasonable, its domain is restricted to [0, 1

2
] in visone.

Geometric MST Clustering (GMC)

Geometric MST Clustering (GMC) combines spectral positioning and a geometric
clustering technique [Gae02, BGW07]. First, a d-dimensional embedding is con-
structed from d distinct eigenvectors x1, . . . , xd of M(G) associated with the largest
eigenvalues less than 1. Then, edge lengths ` are defined by the distances in the em-
bedding and a minimum spanning tree (MST) of the weighted graph is determined.
Finally, for a threshold value τ , a clustering is defined by the connected components
of the forest F (T, τ) which emerges when all edges e ∈ E(T ) with `(e) > τ are
excluded from T .

Note that the connected components of F (T, τ) induce a clustering for each threshold
τ and that there are at most n − 1 thresholds resulting in distinct clusterings.
Furthermore, the final clustering depends only on the threshold and is independent
of the MST [Gae02]. Therefore, we chose a threshold which optimizes a quality
measure like the one described in Section 4.7.1.

The running time of GMC depends on the computations of the eigenvectors, the
MST, and quality measure. In contrast to ICC, only one eigenvector computation
is needed. Assuming that the quality measure can be computed fast, the asymp-
totic time and space complexity of the main algorithm is dominated by the MST
computation.

In visone, the range of the dimension is restricted to d ∈ [3, 5]. Furthermore, four
combinations of the quality measures described in Section 4.7.1 are predefined for
the calculation of the threshold τ :

• Coverage: only Coverage is considered.

• Coverage and Performance: the combination of Coverage and Performance
is considered with a weighting of 1 : 2.

• Modularity: only Modularity is considered.

• Mean of all Three: the combination of Coverage, Performance, and Modu-
larity is considered with a weighting of 1 : 2 : 2.

4.7.3 Conclusion

Gaertler [Gae07] gives an extensive experimental evaluation of the properties of the
presented clustering algorithms for different classes of graphs. For dense graphs,
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all algorithms tend to coarse clusterings containing a low number of clusters only.
For sparse graphs, ICC and MCL compute clusterings of a large number of clusters.
While it is unclear if, or how, these two algorithms can be modified to calculate a
more balanced number of clusters, GMC is easily extended to respect upper or lower
bounds, or even both, for the number of clusters by limiting the search space of the
threshold τ .

In general, all three algorithm compute clusterings with high values of the presented
quality measures. While ICC and MCL have advantages with respect to perfor-
mance, GMC outperforms MCL with respect to inter-cluster conductance and ICC
with respect to coverage.

4.8 Network Statistics

Network statistics are used to describe essential properties of vertices, edges, groups,
or the whole graph with reduced information, e. g., in a single value or a series of
numbers. Thereby, we can disregard the probably large structure of the underlying
graph and concentrate on a restricted set of statistics. Another common application
is the differentiation between dedicated classes of graphs there the main focus is not
the reduction of information but to decide whether a graph belongs to a class or
not.

In general, network statistics can have very different peculiarities. Four different
types are identified in [BS05] and can be described by two pairs of exclusive at-
tributes:

• single-valued vs. distribution and

• global vs. local,

where the term distribution denotes multiple-valued statistics and local refers to any
kind of local graph item like a vertex, an edge, or any subset of vertices and edges. In
this section, we concentrate on global (single-valued) statistics, i. e., methods which
assign a single value to the whole graph. Examples of local single-valued statistics
are all centralities and the clustering coefficient for vertices (see Sections 4.3 and 4.4).

We have already seen some examples of network statistics in previous sections al-
though not explicitly called this way, namely

• the number of vertices and edges of the graph in Section 4.2,

• the clustering coefficient and the transitivity in Section 4.4,

• the core number of a graph in Section 4.5.1, and

• the number of connected components in Section 4.6.

Aggregation of Element-Level Indices In principle, a global statistic can be
derived for every element-level index f : X → R≥0 by statistical methods of ag-
gregation like summation, averaging, the calculation of the variance of all f(x), or
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(a) a star (b) a clique (c) a cycle

Figure 4.5: Graphs with high (star) and low centralization (cycle, clique). Centrality
scores are visualized as radial positions and vertex sizes (see Section 6.2).
As a rule of thumb, keep in mind that classes of graphs whose name starts
with the character ‘c’ feature a uniform centralization.

the maximum/minimum operator. This approach is called globalization in [BS05].
The core number and the clustering coefficient are such statistics while, for example,
the transitivity is not. In the following, we describe additional statistics aggregated
from element-level indices which have attracted special attention in the literature.

Centralization Intuitively, it is clear that some graphs are more centralized than
others, i. e., they are more biased on the most central vertex than others. A star is a
prototypical example of a very centralized graph (for reasonably defined centrality
indices) whereas uniform graphs like cliques or cycles feature a perfectly balanced
centralization (see Figure 4.5).

Definition 4.19 (Centralization [Fre77]) Let cχ : X → R≥0 be a centrality in-
dex of a graph G. The centralization cχ(G) of G with respect to cχ : X → R≥0 is
defined as

cχ(G) =
1

n− 1

∑
x∈X

cχ − cχ(x) , (4.29)

where cχ is the maximum score.

Intuitively speaking, the centralization is defined as the average difference of the
centrality scores from the maximum. Note that this method can be used to calculate
a global statistic for any other element-level index equally well and that also other
statistical methods are occasionally called centralization.

Distance A number of commonly used, intuitive statistics are based on shortest-
path distances. In order to highlight the derivation from centrality indices, we state
the directed definitions and also give reformulations in terms of the distance-based
centralities introduced in Section 4.3.3.
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The average or characteristic distance d(G) of a graph G is the arithmetic mean of
all distances in the graph, i. e.,

d(G) =
1

n2 − n
∑

u6=v∈V

d(u, v) =
1

n2 − n
∑
v∈V

1

cC(v)
.

For disconnected graphs, we obviously have d =∞, hence it might be useful to re-
strict the averaging to all connected pairs P =

{
{u, v} ∈ V ×V | u 6= v and d(u, v)

}
,

leading to the average connected distance

d(G) =
1

|P |
∑
{u,v}∈P

d(u, v) .

We denote both statistics with d, since they are equal for (strongly) connected
graphs and only the second is meaningful otherwise.

Recall the definition of the eccentricity ε(v) of the vertex v as the maximum distance
to all other vertices v 6= u ∈ V . The radius rad(G) of a graph G is defined as the
minimum eccentricity of all vertices, i. e.,

rad(G) = min
v∈V

ε(v) = min
v∈V

1

cE(v)
.

In contrast, the diameter of a graph G is defined as the maximum eccentricity of all
vertices, i. e.,

diam(G) = max
v∈V

ε(v) = max
v∈V

1

cE(v)
.

Conclusion The running time for the calculation of global statistics of an element-
level index is dominated by the computation of the index itself since the relevant
statistical operations for aggregation require linear time only. The distance-based
statistics presented above require the solution of the all-pairs shortest-paths prob-
lem (see Section 3.1), thus, they can be computed from the respective centrality
indices. Since no additional costs are introduced, visone calculates the described
global statistics automatically whenever the respective local measure is computed.
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Chapter 5

General Graph Layout

Network visualization deals with all aspects of representing relational structures and
spans a diverse field ranging from matrix-like representations to figurative drawings
of nodes connected by lines. The use of visual images is common in many branches
of science and can also be found in social network analysis since the very beginning.
While accuracy, expressiveness, and workmanship of the drawings has increased with
the broad availability of computational power, there is a lack of automatic drawing
routines tailored for the special needs of social network analysis.

In visone, we concentrate on the representation most common in practice, figurative
two-dimensional drawings of vertices as graphical symbols and edges as straight lines,
curves, etc. connecting vertices [Fre00]. The entirety of the defining topological and
geometric features of such a representation is commonly called a graph layout. For
example, the layout is fully defined by the positions of the vertices if only straight-
line edges are allowed. Properly chosen graphical features like colors, shapes, and
relative sizes of the elements are very important for the overall appeal of the drawing
and an inadequate selection can drastically reduce the usefulness of an otherwise
informative layout. They are not part of the methodological core of the layouts but
can either be incorporated in the algorithms or be considered in post-processing.

We distinguish two types of drawings of graphs, general layouts and analytic visu-
alizations. General graph layout techniques like force-directed or spectral layouts
depend only on the link structure (and maybe present edge weights) of the net-
work. Clearly these layouts can be used to get a first impression and an overview
of the general graph structure but often they also convey deeper analytical insights.
For example, force-directed methods can be used to distinguish sparse and dense
subgroups and to display similarities. In this chapter, the describe the circular,
force-directed, and spectral layout algorithms present in visone.

Analytic visualization refers to drawings which express the exact results of an anal-
ysis. Basic visualizations can be as simple as scaling the width of the edges propor-
tionally to numerical values or coloring the vertices according to a clustering but
more elaborate visualizations incorporate a constrained layout, i. e., analytic result
are mapped to the positions of the vertices and a special edge routing is employed.
We present analytic visualizations in Chapter 6 and detail our novel algorithms used
in the visualizations in Chapter 7.
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5.1 Preliminaries

For simplicity we consider only connected, undirected simple graphs G = (V,E) in
this chapter. Since none of the presented methods considers the direction of edges,
direction is safely ignored by resorting to the underlying undirected graph. Multi-
edges can be added either in a post-processing step in parallel to existing edges or
are easily handled by straight-forward modifications of the presented algorithms.
Unless otherwise noted, disconnected components of a graph are laid out separately
and afterwards arranged side by side.

Edges are represented as straight lines by all layouts presented in this section, there-
fore a two-dimensional layout is fully defined by a function p : V → R2 which assigns
each vertex v ∈ V a two-dimensional position p(v) = (x(v), y(v)). Sometimes we
use the equivalent vector notation pv = (xv, yv) instead.

For the illustration of the layout algorithms in this section, we use the underlying
undirected graph uGCN1996 of the German company network of 1996 from a study
of by Höpner and Krempel [HK03]. From the network of capital interlocks of the
100 largest German-based companies in 1996, this graph is formed by the largest
connected component (for a more detailed description, see Section 6.6). It consists
of 60 vertices and, in its simple, undirected version, of 125 edges.

5.2 Criteria of Good Layouts

Drawings must neither be misleading nor hard to read. Hence, there are two obvious
criteria for the quality of social network visualizations:

• Is the information represented accurately?

• Is the information conveyed efficiently?

Following Brandes et al. [BKR+99], these criteria translate to three aspects which
should be carefully considered when creating visualizations:

• the substance the viewer is interested in,

• the design which maps the data to graphical features, and

• the algorithm employed to realize the design.

For network visualization, frequently named common criteria for layout quality are:

• Vertices should spread well on the drawing area.

• Adjacent vertices should be close and non-adjacent vertices should not.

• Vertices and edges should not cover each other.

Besides these, concrete properties of good layouts in graph drawing literature are
small edge length, few edge crossings, and high angular resolution of incident edges.
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(a) radial visualization of stress
centrality

(b) random layout (c) circular layout

Figure 5.1: A radial visualization of stress centrality, a random layout, and a circu-
lar layout of the underlying undirected graph of the German company
network of 1996 (uGCN1996) with 60 vertices and 125 edges.

5.3 Random Layout

As the name suggests, vertices are placed at random positions in a random layout.
The applicability of this method is very limited because typically resulting layouts
are cluttered even for small, sparse graphs (see Figure 5.1(b)). In visone, a random
layout is used for the drawing of networks imported from file formats which do not
contain positional information like plain-text adjacency matrices or UCINET’s dl.

5.4 Circular Layout

In a circular layout, the vertices are constrained to distinct positions along the
perimeter of a circle. An important optimization criterion is to minimize the num-
ber of edge crossings in such layouts. As a side effect, this tends to reduce the total
edge length, since shorter edges typically cross fewer edges. Note that the number
of crossings depends only on the cyclic order of the vertices and not on the exact
positions. Nevertheless, circular crossing minimization is NP-hard [MKNF87]. In
Section 7.1, we present a two-phase heuristic for crossing reduction in circular lay-
outs which is fast, conceptually simpler than previous heuristics, and our extensive
experimental results indicate that it also yields fewer crossings.

Circular layouts are a very popular representation of social networks because the
uniform placement induces no implicit hierarchy between the vertices, edges and
vertices are clearly separated and do not cover each over, and last but not least
they are easy to understand. Although the visual appeal of circular layouts can be
increased dramatically by a good crossing reduction algorithm, many applications,
e. g., the nowadays ubiquitous visualizations of Web 2.0 services, obviously fail to
apply one (for an example, see Figure 5.2). This is not only an esthetic issue but also
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(a) original drawing (b) layout of the original
drawing

1.0

(c) optimized layout

Figure 5.2: Circular layouts of an email communication network. The original layout
is produced by the software email map of Christopher Paul Baker [Bak].
For an example of suboptimal placement, observe the vertices of degree 1
which are part of a small disconnected subgroup.

promotes incorrect analytic assumptions, for example a miss-perception of individual
connections and global density.

The circular layout algorithm available in visone applies the described crossing re-
duction heuristics to compute a suitable order of the vertices. For the user’s con-
venience, it chooses the diameter of the circle to fit the screen best. Finally, the
vertices are positioned on the perimeter either equidistantly or with respect to their
sizes, i. e., the share of the length of the perimeter of each vertex is proportional to
the size of an enclosing disc around it.

Note that a circular layout is also the base for the radial and group visualizations
and, with extensions, for the multi-circular visualization.

5.5 Force-Directed Layouts

Force-directed approaches use a physical analogy to model the graph drawing prob-
lem, namely a system of forces acting on the vertices. Typically, there are forces
striving to maintain given distances between adjacent vertices and repulsive forces
between all other pairs of vertices. Then, the objective is to find a drawing where
the net force acting on each vertex is zero. Equivalently, a potential energy is asso-
ciated with the drawing and a configuration is sought for which this energy is local
minimum. Therefore, a force-directed approach consists of two parts: the energy
model that quantifies the interactions of the vertices (and maybe the edges) and an
optimization algorithm for computing an (approximated) equilibrium configuration
of the model.
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Common Characteristics Force-directed layouts are very popular for a couple of
reasons. Often, they lead to fairly good layouts, especially for medium-sized graphs.
For such graphs, the interplay of attracting and repelling forces realizes the first two
criteria of good layouts stated above. Additionally, they are very intuitive because
of their relation to the real physical world. Furthermore, it is comparably easy to
incorporate custom constraints into these models, e. g., to consider not only ‘points
and lines’ but also the area of the elements or varying preferred distances between
different pairs of vertices.

Generally speaking, force-directed layouts are particularly suited for sparse graphs
with few shortcuts only, i. e., only some edges connect very different regions of
the graph. Resulting layouts often expose the inherent symmetric and clustered
structure of a graph, and feature a well-balanced distribution of vertices and few
edge crossings. Contrarily, in dense graphs or graphs of low diameter, vertices tend
to cluster in the central area of the drawing.

Fundamental Methods Early applications of force-directed methods for circuit
layout [FI65] date back to the 1960s. The seminal work of Eades in 1984 on his
‘spring embedder’ [Ead84] caused large interest in force-directed methods lasting
until today. In his model, edges attract their endvertices following a logarithmic force
law like imaginary springs and vertices repel each other with an inverse-squared force
law like positively charged electrical items. For nearby positioned adjacent vertices
the repulsive force dominates the attraction resulting in an implicitly defined rest
length of the edges. Eades’s optimization algorithm iteratively improves an initial
random layout by moving all vertices simultaneously in proportion to the net force
acting on them.

In the following, endless modifications of the original spring embedder have been
developed in order to speed up computation and to improve layout quality. Fruchter-
man and Reingold [FR91] enhanced the original model by modifying the force laws
to allow faster evaluation. Furthermore, their algorithm ignores the repulsive forces
between vertices far away from each other and introduces a cooling parameter which
increasingly limits vertex movement in later iterations. These modifications intro-
duce a trade-off between quality and computation time: the algorithm converges
faster to a stable state but this state is typically not a local optimum. Other
variations proposed incorporate various constraints into the model, e. g., avoidance
of overlapping vertices, restricted vertex positions, and clustering constraints that
cause the algorithm to treat subgraphs independently of each other [HM98, WM96].

Kamada and Kawai [KK89] discarded the electrical charges and instead introduced
springs acting in accordance with the more realistic Hooke’s Law between every pair
of vertices. These springs are characterized by individual rest lengths and exert a
force linearly proportional to their deformation on their endvertices, i. e., vertices
are attracted if their distance is larger than the rest length and repelled otherwise.
For defining the rest length, Kamada and Kawai used the shortest-path distance be-
tween the vertices, which is backed by the assumption that every path in the graph
is best represented by a straight line. Instead of moving all vertices in the direction
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indicated by the force acting on them, their optimization reduces the inherent po-
tential energy of the model by changing one vertex at a time. Later, Cohen [Coh97]
pointed out that this approach is closely related to multidimensional scaling (MDS)
which shifted attention from custom optimization algorithms to powerful numerical
optimization methods like stress majorization [GKN05]. These techniques improve
computational speed and sometimes even layout quality.

In the following we describe the three force-directed methods available in visone,
namely a highly customizable classical force-directed layout and layouts based on
classical MDS and on stress majorization. See Figure 5.3 for a comparison of the
layouts generated by these methods.

5.5.1 Classical Force-Directed Layout

The classical force-directed layout algorithm is based on the smart organic layouter
available in the yfiles graph library [yWo08b], which extends the model of Fruchter-
man and Reingold [FR91] by support for various constraints, e. g., preferred edge
lengths and avoidance of overlapping vertices, and incorporates heuristics to speed-
up the optimization. For convenience, we hide the technical constraints from the
user of visone and instead provide more intuitive parameters.

Typically, the dilation of drawings created by similar methods depends on the in-
terplay of parameters like the strength of the repulsive and attractive forces, the
preferred edge lengths, and specific compaction methods. We liberate users from
tampering with these parameters. In order to keep the dilation of the drawing
roughly constant, the sum of the preferred edge length Lp is set to equal the cur-
rent total edge length L, where L =

∑
{u,v}∈E d(u, v). Since this cannot guarantee

perfect fit, the layout is rotated and scaled to the currently visible viewing area.
Nevertheless, experienced users can customize the exact behavior by changing the
following properties of the algorithm.

• The scope defines whether the algorithm is allowed to move all vertices, only
selected ones, or mainly selected vertices. The last option allows the movement
of unselected vertices by a small degree only.

• If preferred edge length is set to uniform, the preferred length of each edge
equals 1/m ·L, Otherwise, an edge index ` is selected and the preferred length
of an edge e is set proportional to its share of the total value of `, i. e., it
equals `(e)/

∑
e′ `(e

′) · L.

• The dilation d is an exponential scaling for the total preferred edge length Lp,
i. e., Lp = 1/32 · 210d · L, where 0 ≤ d ≤ 1. Note that Lp = L for d = 0.5.

• If the vertex size is considered, the length of the edges is measured between
the borders of the vertices. Normally, the distance is measured from center to
center.

• By default, vertex overlaps are avoided by the algorithm. Note that the fi-
nal scaling phase can move vertices on top of each other again but typically
overlaps are reduced significantly by this option.
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(a) classical force-directed (b) classical MDS (c) stress majorization

Figure 5.3: Drawings of the network uGCN1996 using the three different force-
directed methods of visone. Uniform edge lengths and uniform vertex
sizes are used for all methods.

• The quality/time ratio allows to balance the layout quality versus the time
consumption. Higher values result in a nicer layout but also in an increase of
running time.

• The maximum duration imposes a strict upper bound on the running time
of the algorithm by aborting the optimization process independently of the
current convergence ratio.

• In deterministic mode, the algorithm is initialized in the same way as in the
preceeding run, therefore, for an unchanged network, the same layout is pro-
duced.

5.5.2 Classical Multidimensional Scaling

Multidimensional scaling (MDS) refers to a family of techniques that are used to
represent high-dimensional data in a lower dimensional space. Given a symmetric
matrix ∆ ∈ Rn×n of metric distances or dissimilarities δuv between all pairs of items
u, v ∈ {1, . . . , n}, the objective is to find positions pu ∈ Rd in d-dimensional space
for each item u, such that ‖pu − pv‖ ≈ δuv, i. e., the distances in the d-dimensional
space are close to the given distances. In graph drawing, the dimension d is either
two or three and the dissimilarities typically equal the shortest-path distance, i. e.,
δuv = d(u, v).

According to Kadushin, MDS methods have been used for social network visual-
ization as early as in the 1960s [Bra01b], and they are still in use today [KBM94,
KBM06]. As for general force-directed methods, a large number of variations for
specific application domains and to speed up computation have been proposed. In-
terestingly, the model of Kamada and Kawai [KK89] corresponds to a variant of
MDS introduced by Kruskal [Kru64], the so-called distance scaling. Reformulated
in terms of MDS, its objective is to fit Euclidian geometric distances directly to
given shortest-path distances, i. e., the considered matrix consists of the shortest-
path distances as mentioned above.
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The term classical MDS or classical scaling refers to the first MDS algorithm pro-
posed by Torgerson [Tor52]. Its objective is to fit inner products rather than dis-
tances. In contrast to distance scaling, its global optimum can be computed di-
rectly by a spectral decomposition using power-iteration. Since the running time
is O(nm) for the shortest-path computation and O(n2) for each iteration, with-
out modifications, this method is not suitable for large graphs but satisfactory for
many typical applications. Recently, sampling-based approximations for classical
MDS were proposed which yield layout algorithms fast enough even for very large
graphs [BP07, dST02].

visone contains only a basic implementation of classical MDS which does not sup-
port advanced features like the specification of preferred edge lengths since stress
majorization, described in the next part, is a similar but superior method.

5.5.3 Stress Majorization

In the MDS community, the potential energy of the model of Kamada-Kawai [KK89]
is known as stress function and a powerful method for its optimization – stress ma-
jorization – has been used for more than two decades now. Gansner et al. [GKN05]
adapted this technique for graph drawing and showed empirically that it is supe-
rior to the original optimization both in terms of layout quality and running time.
Furthermore, they proposed some smaller extensions to the original model which
for example improve the usage of the drawing area. Many extension of the original
model [DKM06, DM08] and applications for the drawing of large graphs [BBP08]
showed the usefulness and efficiency of this method.

The basic idea is to iteratively minimize an appropriate upper bound of the stress
function, the so-called majorization. This upper bound decreases monotonically
until it converges at the same optimum as the stress itself. Its iterative minimization
is efficiently computed using simple matrix operations which are available in highly
optimized libraries. A small experimental evaluation of Gansner et al. [GKN05]
showed that the number of iterations increases only moderately with the number of
vertices, making this method suitable for graphs of thousands of vertices. Regarding
the quality, they claim that this method and the method of Kamada and Kawai
achieve in many cases about the same stress level and that majorization is sometimes
significantly superior.

Experiments by Gansner et al. [GKN05] and application of stress majorization to
draw the AS network [BBP08] suggest that a uniform preferred edge length “makes
the neighborhood of high degree vertices too dense” [GKN05] if the degree distribution
is very skewed. Instead, they both propose to scale edges by the degree of their
endvertices. Therefore, the implementation of stress majorization in visone allows
varying preferred edge lengths specified by attribute values (see Figure 5.4). Note
that other force-directed methods like the classical force-directed layout can benefit
from such a scaling as well. Furthermore, users can restrict the layout algorithm to
change the positions in one dimension only.



5.5 Force-Directed Layouts 71

(a) classical force-directed (b) with adjustment

(c) stress majorization (d) with adjustment

Figure 5.4: Drawings of the network uGCN1996 using original and adjusted force-
directed layouts, i. e., preferred edge lengths are set proportional to the
degree of the incident vertices. For this graph, the benefit for stress ma-
jorization is apparent while our classical force-directed layout improves
only marginally.
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5.5.4 Conclusion

Force-directed methods often expose the inherent symmetric and clustered structure
of a graph, and feature a well-balanced distribution of vertices and few edge cross-
ings, especially for sparse graphs with few shortcuts. The advantage of the classical
force-directed method is its customizability, in particular the attention to the sizes
of the vertices, while stress majorization combines a low computation time and a
good layout quality. Both methods can benefit significantly from adjusted preferred
edge lengths. The classical MDS layout can be useful for specific applications but
is inferior to the other methods in general. Since the absolute positions of the ver-
tices and the absolute lengths of the edges are typically insignificant, all layouts are
rotated and scaled to fit the current visible viewing area best.

5.6 Spectral Layout

Spectral layout, first introduced in 1970 by Hall [Hal70], denotes the use of eigen-
vectors of graph-related matrices such as the adjacency or the Laplacian matrix
as coordinate vectors. In visone, this method is defined for simple, undirected
graphs G = (V,E) with positive edge weights ω : E → R+. The weight repre-
sents similarity of vertices and can therefore be seen as an edge strength in terms
of Section 4.1. For multi-graphs, parallel edges are deleted and their weights are
accumulated.

Spectral layouts are good at displaying symmetries of the graph, and structurally
equivalent vertices (vertices with identical neighborhood) are even placed in the
same location.

Definition For any graph-related matrix M(G), a (two-dimensional) spectral
layout of G is defined by two eigenvectors x and y of M(G). We will only consider
layouts derived from the Laplacian matrix L = L(G) of G, which is defined by the
elements

lu,v =


∑

w∈V ω({u,w}) if u = v ,

−ω({u, v}) if u 6= v and {u, v} ∈ E ,

0 otherwise.

In matrix notation, this can be expressed as L(G) = D(G) − A(G), where A(G)
is the (weighted) adjacency matrix and D(G) is the diagonal matrix of (weighted)
vertex degrees.

The Laplacian matrix has many interesting properties (see, e. g., [Moh91]), which
are useful for the computation of layouts. The rows of L(G) sum up to 0, thus,
the vector 1 := (1, . . . , 1)T is a trivial eigenvector for the eigenvalue 0. Since G is
undirected and its weights are non-negative, L(G) is symmetric, all eigenvalues λi
are non-negative real numbers, and the corresponding eigenvectors are pairwise or-
thogonal. Hence, the spectrum can be written as 0 = λ1 ≤ λ2 ≤ · · · ≤ λn with
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(a) Laplacian, α = 0.0 (b) modified Laplacian, α = 0.2 (c) modified Laplacian, α = 0.4

(d) modified Laplacian, α = 0.6 (e) modified Laplacian, α = 0.8 (f) adjacency matrix, α = 1.0

Figure 5.5: Drawings of the network uGCN1996 by spectral layouts derived from
the modified Laplacian for different values of α. Extremal values result
in a dense central cluster while middle values diffuse the vertices in a
larger area.

corresponding unit eigenvectors u1, . . . , un.

In a spectral layout based on the Laplacian, the two-dimensional coordinates pv =
(xv, yv) of each vertex v are defined by its corresponding entries of the unit eigen-
vectors u2 and u3 as xv = (u2)v and yv = (u3)v, where u2 and u3 are the orthogonal
unit eigenvectors to the second and third smallest eigenvalues λ2 and λ3 of the corre-
sponding Laplacian matrix L(G). Since these eigenvectors are also orthogonal to 1,
these layouts are centered around the origin.

Modified Laplacian If the graph is unbalanced, the spectral layout of the Lapla-
cian matrix clusters most vertices in the center of the drawing and places only some
loosely connected vertices far away. This effect can be countered by a modified
Laplacian

L′(G) = (1− α)D(G)− A(G) ,

in which the diagonal is weakened by a constant factor α, 0 ≤ α ≤ 1. Note that this
approach includes spectral layouts derived from the unmodified Laplacian for α = 0
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and from the adjacency matrix for α = 1 respectively. Figure 5.5 highlights the
effect of different values of α on the graph uGCN1996.

Computation For sparse graphs of moderate size like the ones addressed by
visone, a practical method to determine the corresponding eigenvectors is power
iteration. As proposed in [BFP07], we use the matrix L̂ = g · I − L instead of L to
increases the numerical stability. Note that L̂ has the same eigenvectors as L but in
reversed order. After each step, orthogonality is restored. Spectral layouts of larger
graphs can be computed efficiently using multi-scale methods [KCH03].

Appliance The spectral layout algorithm in visone leaves the choice of the value
of α to the user to allow application-specific optimization of the drawing. Further-
more, good values are not easily computed from structural properties of the graph.
For unexperienced users, a feasible value of α = 0.6 is preset and the common set-
tings α = 0.0 and α = 1.0 can be selected by their familiar names ‘Laplacian’ and
‘adjacency’ matrix respectively.
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Analytic Visualization

In network analysis, drawings of networks are often used in combination with an
explicit analysis result, e. g., a centrality score. Therefore, an adequate visualization
should highlight the graph structure and the result of the analysis measure simulta-
neously. In such a drawing, a graphical feature like the position of a vertex or the
width of an edge should depict the measure under consideration as exact as a table.
In contrast to a general graph layout, we call such drawing methods visualizations.

Before the first ideas for visone were described [BKR+99], there were no appropriate
layout algorithms which could take such scores into account. Pajek [BM98] provided
the option to map vertex scores to layout dimensions but had no dedicated layout
algorithm to produce readable drawings given such constraints. Alternative visu-
alizations, available also in other tools, allow the mapping of scores to vertex sizes
and numerical labels or separated from the drawing in an additional table.

According to Cleveland and McGill [CM84], positions are the most accurate means
for visually representing numbers. Among the most notable features of visone are
therefore the dedicated visualization methods based on graph layouts – the radial
and layered visualization for numerical vertex weights and the multi-circular visu-
alization for clustering information. These are accompanied by visualizations for
arbitrary weights as basic graphic properties like sizes and colors.

The explanatory power of the presented advanced visualization methods stems to a
large extent from the usage of intuitive geometric counterparts of analytical concepts
like centrality, status, and grouping.

Type of Input Parameter The visualizations in visone can be categorized ac-
cording to the type of input parameter they can depict, either numerical or categor-
ical. Visualizations of numerical parameters exploit the linear order of the elements
and typically feature a representation proportional to the given weights. Clearly,
numerical parameters comprise exactly the integer and decimal attributes, i. e., ver-
tex and edge weights ω : G → [R|Q]. In contrast, categorical visualizations only
rely on differences of values and not on an order but can be applied on any type of
attribute.
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The numerical visualizations of visone are vertex size, edge width, (linear) vertex
and edge color, coordinate in z-position, radial visualization, and parallel visualiza-
tion. Additionally, there are categorical visualizations as vertex and edge labels, as
(categorical) vertex and edge colors, for clusters in a multi-circular layout and for
general groups.

6.1 Basic Visualizations

Basic graphical features like the color and size of the elements are very important for
the overall appearance of network drawings. Visualizations based on these features
thus offer great potential for creating nice drawings. Furthermore, these visual-
izations are very powerful when used in combination with sophisticated positional
visualizations like the status visualization to display the results of different analyses
simultaneously in one drawing.

6.1.1 Sizes

One of the most commonly used visualization methods is most likely the scaling of
the size of elements proportionally to a given weight. In visone, there are methods
to scale the width, the height, and the area of vertices, the edge width, and the font
size of vertex and edge labels linearly proportional to a given weight (see Figure 6.1).
Typically, such a linear scaling is defined by the sizes of the two extremal weights.
For convenience, we have chosen a different approach which goes without any pa-
rameter and instead maintains the total of the sizes under consideration. This keeps
the appearance of the drawing and users do not need to specify detailed parameters.

In more detail, let ω : G → R≥0 be a non-negative element weight to be visualized
as element size s : G→ R≥0. Then, the new size of an element x ∈ G is defined as

s(x) :=
ω(x)∑
z∈G ω(z)

·
∑
z∈G

s(z) ,

if this is larger than a preset minimum element size smin. Otherwise, the new size
is set to s(x) = 0.75smin, keeping the element visible and depicting its small value
at the same time. Table 6.1 gives an overview of the preset minimum sizes for the
different visualizations. Note that application of the minimum size can change the
total size but this effect is typically negligible.

At first sight, the visualization as area of the vertices may seem to be a redundant
combination of the respective visualizations as width and height. In fact, the area
is linear to the weight only for the direct method and quadratic for the combination
of width and height. Furthermore, the direct method keeps the aspect ratio of the
vertices constant.
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graphical feature minimum smin

vertex width 5

vertex height 5

vertex area 25

edge width 1

label font size 10

Table 6.1: Preset minima of the different size visualizations.

(a) degree as area of vertices (b) in- and out-degree as width
and height of vertices

(c) external weights as width of
edges

Figure 6.1: Visualizations of degree centrality as vertex sizes and of an external edge
weight as edge width.

6.1.2 Colors

The problem of choosing colors for data visualization is expressed by this quote from
information visualization guru Edward Tufte: “. . . avoiding catastrophe becomes the
first principle in bringing color to information: Above all, do no harm.” [Tuf90] Color
used well can enhance and clarify a presentation while color used poorly will obscure,
muddle, and confuse.

visone assists the user in the selection of good colors and offers three methods to
map dissimilar colors to elements of different weight: the categorical coloring, the
unichrome color gradient, and the dichromatic color gradient. All these methods can
be used likewise to color the area of vertices and the lines of edges, their borders,
and their labels. Note that the objective of this visualization is different from the
classic graph coloring problem in algorithmic graph theory (e. g., see [BM76]). Given
a graph G, the traditional version of this problem is to color the vertices of G with
as few colors as possible so that adjacent vertices always have different colors.

Categorical Coloring For the categorical coloring, elements of different weight
should be colored to be as dissimilar as possible. Choosing such a coloring adequately
is a well-known problem of information visualization [Sto03, Tuf90, Tuf07] for which
various sophisticated methods have been proposed (e. g., see [Hea96]). Many of these
methods concentrate on the selection of colors which can be rapidly distinguished
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Red Green

Yellow Blue

Black White

Pink Cyan

Grey Orange

Brown Purple

Dark Red Dark Green

Dark Blue Orange

Light Red Light Green

Light Blue Yellow

Brown Purple

Pink Medium Grey

Light Grey Dark Grey

Table 6.2: From the twelve basic colors proposed by Ware [War07] (left), we derived
14 colors used in visone (right).

and neglect a visual pleasing appeal. Furthermore, experiments by Healey [Hea96]
showed that only up to ten different colors can be perceived rapidly. Therefore,
visone comes with a preset palette of 14 handpicked colors derived from the set of
twelve basic colors proposed by Ware [War07]. Table 6.2 lists these preset colors and
Figure 6.2(a) gives an example coloring. In the rare cases when even more colors
are needed, we create HSV colors with random hue and maximum saturation and
value. The HSV color space is described in the next paragraph.

Unichrome Color Gradient The unichrome color gradient uses one of the most
basic properties of perception – the lightness – to represent numerical weights. Gen-
erally, darker colors are used to represent higher values: light-to-dark for low-to-
high. Similar concepts are used for example for the display of numerical data in
maps [Bre99]. For a given color, its representation as HSV color is used to compute
a gradient from one of its light shapes to a dark one. HSV stands for hue, satura-
tion, value and is a representation of an RGB color space which describes perceptual
color relationships more accurately than pure RGB while remaining computationally
simple. Hue, saturation, and value typically range between 0 and 1.

In more detail, let ω : G→ R≥0 be a non-negative element weight and let (H,S, V )
be a given color in HSV representation. Furthermore, we normalize the weights to
the unit interval by ω′(x) :=

(
ω(x) − minz ω(z)

)
/
(
maxz ω(z) − minz ω(z)

)
. Then

the new color c(x) = (h, s, v) of an element x ∈ G is defined by

c(x) = (h, s, v) :=

{(
H, 2ω′(x) · (1− smin) + smin, 1

)
if ω′(x) < 0.5 ,(

H, 1, 2(1− ω′(x)) · (1− vmin) + vmin

)
otherwise,

where smin and vmin are preset minimum saturation and value, respectively. Intu-
itively speaking, the value of hue H is kept constant and saturation and value are
linearly scaled from (H, smin, 1) via (H, 1, 1) to (H, 1, vmin) (see Figure 6.2(b)). The
boundaries smin and vmin are introduced, since colors of low saturation and low value
are very similar to white and black, respectively, and hard to distinguish. They are
preset to smin = 0.15 and vmin = 0.2.

For the selection of the defining color of the color gradient, visone offers a graphical
color selection item so that users are not troubled by color space considerations.
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(a) discrete coloring (b) unichrome color gradient
for red

(c) dichromatic color gradient
for yellow and red

Figure 6.2: Color visualizations of the degree of the vertices. For clarification, the
degree is also depicted as size of the vertices.

Dichromatic Color Gradient The dichromatic color gradient uses a linear tran-
sition between two given colors. Let ω : G→ R≥0 be a non-negative element weight,
let ω′(x) :=

(
ω(x) −minz ω(z)

)
/
(
maxz ω(z) −minz ω(z)

)
be its normalization into

the unit interval and let (R1, G1, B1) and (R2, G2, B2) be two given colors in RGB
representation. Then the new color c(x) = (r, g, b) of an element x ∈ G is defined
by

c(x) = (r, g, b) :=
(
R1 + ω′(x)(R2 −R1),

G1 + ω′(x)(G2 −G1),

B1 + ω′(x)(B2 −B1)
)
.

Intuitively speaking, each component of the color is scaled proportionally to the
weight between the first and second reference color (see Figure 6.2(c)).

Appliance All three color visualizations are controlled by the same operation
panel in visone. This panel offers two graphical color selection items. Depending on
how many colors are selected by the user, the categorical, unichrome, or dichromatic
variant is executed.

Note that all color visualizations fit their available range of colors to the actual
range of weights. In particular, the unichrome variant assigns the lightest color to
the smallest existing weight and not to an (imaginary) weight of zero. This is for
example in contrast to the size visualization but common practice in information
visualization.

In rare cases, it can be useful to apply the methods based on color gradients to
categorically weighted elements. visone allows this by creating a virtual numerical
weight defined by equidistantly spacing the lexicographically ordered categorical
weights.
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(a) uniform label placement
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(b) optimized label placement
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(c) optimized label placement

Figure 6.3: Labels are powerful means of visualization but without an optimized
placement even good layouts appear cluttered. The automatic label
placement largely improves readability and overall appearance.

6.1.3 Labels

The label visualization displays weights as textual labels of the vertices or edges.
Unlike all other visualizations, this is a permanent mapping of the weight to the label,
i. e., a label is immediately updated if the value of the weight changes. Furthermore,
there is no alternative method to change the text of labels. Together this prevents
the accidental display of incorrect or old values of a weight.

Textual labels are a powerful way to display textual and exact numerical informa-
tion but introduce an additional graphical element to the drawing and must be
carefully placed to not occlude the vertices and edges. The task of manual label
placement is very tedious. Therefore, visone offers a powerful automatic label place-
ment algorithm which disburdens users from this task and significantly improves the
readability of the drawing. This algorithm can be customized in various ways: the
scope can be restricted to the labels of vertices, edges, or selected elements, overlaps
of the labels and vertices or edges can be forbidden, and the preferred optimization
criterion can be specified.
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6.1.4 z-Coordinate

A graphical aspect of layouts which is often disregarded is the z-coordinate of the
elements, i. e., which elements lies one top of the other if they overlap. This is
especially important if the size of the vertices is skewed so that smaller vertices are
potentially entirely covered by larger ones. Let ω : V → R be a numerical vertex
weight. The visualization assigns to each vertex v a z-coordinate z(v) such that

∀u ∈ V : z(u) ≤ z(v)⇐⇒ ω(u) ≤ ω(v) ,

i. e., the vertex v is drawn above all vertices of lower weight and below all vertices
of larger weight. Vertices of the same weight are ordered arbitrarily.

Edges are handled separately and are independent of the z-coordinates of the ver-
tices. They are drawn below all vertices by default, and above all vertices otherwise.

6.2 Radial Visualization

The original inspiration for this type of visualization was the notation of central-
ity which provides an immediate model for graphical representation – geometric
centrality. We therefore place vertices such that their distance from the center
of the drawing is proportional to their centrality score, i. e., they are positioned
at a fixed radius. While this type of visualization is clearly suited for central-
ity scores [BKR06, BKR+99, BKW03], it can be used for any non-negative vertex
weight equally well.

A historic precursor of this idea is the target diagram of Northway from 1940 [Nor40]
which we discovered after the original model had been set up. She placed actors
inside of rings corresponding to centrality quantiles (see Figure 6.4(a)) and arranged
them manually. Some general graph layout methods like the force-directed variants
sometimes happen to place vertices of high score close to the center of the drawing
but this is a rough approximation of the actual scores at best. Typically, they are
more often misleading than not.

The design described so far constrains vertices to lie on radii proportional to the
given weight. We still have to determine the actual position of the vertices which
should be used to achieve a good readability of the drawing, i. e., a uniform dis-
tribution of vertices and few edge crossings. An energy-based placement was used
for this purpose in a previous version of visone [BKW03] which yielded appealing
layouts but was too slow for an interactive tool. Therefore, we switched to a purely
combinatorial approach based on a two-phase crossing reduction algorithm for a
derived logical circular layout.
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(a) target diagram (b) ring diagram (c) radial level layout

Figure 6.4: Drawings of networks similar to the radial visualization: a tar-
get diagram of Northway [Nor40], a ring diagram of Reggiani and
Marchetti [RM88], and a radial level layout of Bachmaier [Bac07].

6.2.1 Layout Algorithm

For layout optimization, we assume all vertices to be constrained to distinct positions
along the perimeter of a single circle. This allows us to use combinatorial methods
for the reduction of the number of edge crossings, since in such circular layouts their
number depends only on the order and not the actual coordinates of the vertices.
Studies indicate that the number of crossings significantly affects the readability
of a drawing [Pur98]. Note that typically, the values of scores are not uniformly
distributed but dominated by a large number of small values. Therefore, many
vertices will lay on the outer parts of the radial visualization and the circular model
is legitimate.

Since crossing minimization is an NP-hard problem even in such rather simple cir-
cular layouts [MKNF87], we propose a two-phase heuristic for obtaining circular
layouts with few crossings. In the first phase, vertices are iteratively added to either
end of a linear order. For the second phase, we adopt an optimization procedure pre-
sented originally for layered layouts, sifting [MSM00], to the circular case. Roughly
speaking, sifting picks one vertex at a time and determines the locally optimal posi-
tion within the order by probing all of them. Our algorithm is described in detail in
Section 7.1. Since it allows for weighted crossing reduction, an adequate handling
of visual or semantically important edges can be enforced by an appropriate edge
strength, i. e., high weights are assigned to important edges to discourage crossings
of them.

Closely related types of graphical presentations are ring diagrams introduced by Reg-
giani and Marchetti [RM88] and radial level layouts presented by Bachmaier [Bac07]
(see Figure 6.4). In both cases, vertices are constrained to circumferences of circles
which correspond to levels in a hierarchy and vertices are placed iteratively one
level at a time. Unfortunately, the first method is designed only for graphs in which
the edges do not span layers. In contrast, Bachmaier proposes a complete drawing
framework similar to Sugiyama’s method [STT81] and the layout algorithm of Bran-
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des and Köpf [BK02] for (linear) layered layouts. In principle, radial level layouts
can be used as a basis for radial visualizations using methods similar to the ones
proposed for the status visualization in Section 6.3. Unfortunately, we had no time
to implement and test this.

6.2.2 Final Placement

The position of each vertex v ∈ V in a radial visualization can be described in
polar coordinates p(v) = (r(v), ϕ(v)), where r(v) is the radius and ϕ(v) is the angle
with respect to a fixed direction from the center. We set the radii by allocating the
vertices at equidistant angles of 2π/n in the order given by the layout algorithm.
The radius r(v) of a vertex v ∈ V with ω(v) > 0 is fixed at

r(v) :=
ω − ω(v)

ω − ω
,

where ω and ω are the maximum and minimum non-zero weights, respectively. If
the two highest weights differ only marginally, the radii of the vertices of maximum
weight are increased by a fixed offset and the range of radii is reduced accordingly
to avoid vertex overlaps in the center. Vertices of weight zero are placed at an outer
orbit.

6.2.3 Confirmation

One of the unique features of visone is the differentiation between confirmed and
unconfirmed edges. This distinction is implemented not only in the analysis mea-
sures but also immanent to each drawing since confirmed edges are rendered more
conspicuously in opaque colors than unconfirmed edges which are drawn semi-
transparent. This visual dominance renders uniform treatment of all edges inap-
propriate. Therefore, we first establish a core layout of the confirmed subgraph,
i. e., the subgraph G[Ec] = (Vc, Ec) induced by the confirmed edges Ec. Then, we
insert the unconfirmed edges while maintaining the core layout.

In more detail, in the first step, we apply both phases of our layout algorithm
to G[Ec] to compute an order of its vertices Vc. In the second step, we first use
insertion sifting to complete the layout order by all other vertices v ∈ V \ Vc, i. e.,
vertices are incrementally added at one end of the order and sifted to their currently
optimal position (see Section 7.1.5). At each iteration, a vertex with the largest
number of already placed neighbors is selected, where ties are broken in favor of
vertices with fewer unplaced neighbors, i. e., the processing sequence equals the one
of the greedy phase (see Section 7.1.3). Then, we apply sifting to improve this order
where vertices v ∈ Vc are skipped to maintain the core layout and a higher weight
is assumed for confirmed edges e ∈ Ec to discourage crossings with these edges.

Figure 6.5 illustrates the importance of a good layout of the confirmed subgraph.
Note that this may be achieved at the expense of other parts of the final layout.
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0.041

0.2

(a) confirmed subgraph

0.0020

0.2

(b) uniform treatment of all edges

0.041

0.2

(c) preferential treatment of confirmed
edges

(d) preferential treatment in the previ-
ous layout algorithm

Figure 6.5: Layout of the core subgraph and effect of preferential and non-
preferential treatment of confirmed edges. For comparison, the pref-
erential treatment in the previous layout algorithm is also shown (for a
different graph).
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weight range δ distance of levels typical levels

0.1 ≤ δ < 0.2 0.02 0.02, 0.04, 0.06, 0.08, . . .

0.2 ≤ δ < 0.5 0.05 0.05, 0.1, 0.15, 0.2, . . .

0.5 ≤ δ < 1.0 0.1 0.1, 0.2, 0.3, 0.4, . . .

Table 6.3: Levels of the scale of the radial and status visualizations for a range δ =
ω − ω of the weight ω of 0.1 ≤ δ < 1.0. For other ranges, the levels are
scaled by appropriate powers of ten.

Similar to the computation of analysis measures, the user can indicate that certain
unconfirmed edges should be considered as confirmed simply by selecting them.

6.2.4 Scale

Showing levels as thin circles in the background of the drawing allows us to compare
scores exactly so that no tabular presentation is needed. If the number of levels is too
small, metering is inexact, and if the number is too large, individual levels are hard to
follow. Therefore, we aim for five to ten equidistant levels marking prominent values
and choose the distance between levels accordingly (see Table 6.3). Furthermore,
we mark the minimum non-zero weight by a dashed circle to separate the outer
orbit. If a fixed offset for the radii is used because the two highest weights differ
only marginally, this offset is also marked by a dashed circle.

6.2.5 User Interaction

Since we decoupled the centrality constraints from the readability criteria, we are
able to provide the following forms of interaction which proved particularly useful
for explanatory centrality analysis.

Snap to Orbits All vertices are moved to have a distance from the center of the
drawing that is determined by the selected weight. This movement is along a ray
emanating from the center and passing through the current position of the vertex.
If a vertex is currently in the center, a randomly oriented ray is chosen.

Improve Distribution Prior to the movement of ‘snap to orbits’, the vertices are
positioned at equidistant angles, preserving the current order around the center of
the drawing.

Improve Layout Instead of computing a layout from scratch, the first phase of
the layout algorithm is skipped and the second phase is initialized by the current
order around the center of the drawing. Subsequently, the vertices are positioned at
equidistant angles and moved to their orbits as described in ‘improve distribution’.
This option is particularly useful if the optimization algorithm became stuck in a
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(a) German company network

0.0020

0.06

(b) extract of an email communica-
tion network

Figure 6.6: Fully featured examples of the radial visualization.

local minimum which the user can improve, for example by exchanging more than
two vertices.

Complete Layout The complete layout algorithm as described above, including
both optimization phases, is carried out.

6.2.6 Final Remarks

The exploratory and explanatory power of the radial visualization is exemplified in
a study by Brandes, Kenis, and Raab [BKR06]. Since their study we were able to
further improve the quality and the running time of the radial visualization due to
the novel layout algorithm. The most obvious drawback of the previous method
was the tendency to accumulate non-core vertices in one sector of the drawing (see
Figure 6.5(d)).

Figure 6.6 gives two examples of radial visualizations. The left drawing shows a
radial visualization of status centrality of the German company network. Addition-
ally, other characteristics of the network are depicted by basic visualizations in order
to further increase the information density. This drawing is described in more detail
in Section 6.6.

The drawing on the right shows a subgraph of small institutes of the email communi-
cation network described in Section 6.6. Here, a radial visualization of current flow
centrality is enhanced by visualizations of institute affiliation as colors and number
of connections as vertex size.
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6.3 Status Visualization

Organizational charts are well-known, widely spread visualizations of interconnec-
tions in hierarchical networks, e. g., to display the chain of command between the
departments of a public authority or a company. All these drawings take advantage
of the everyday notion of ‘higher’ and ‘lower’ status by mapping status to vertical
positions (see Figure 6.7(a)).

Already some early network visualizations employed the same notion of status as ver-
tical positions. In his famous book ‘Street Corner Society’ [Why43], Whyte arranged
actors vertically so that positions indicate relative actor status (see Figure 6.7(b)).
It should be noted, however, that the network does not form the basis for this hi-
erarchy, since status is determined by other factors and that levels are discrete like
in organizational charts. Northway used horizontal stripes to indicate the quartile
in which her measure, the sociometric choice status of an actor, lies. However, she
only shows the ego-network of a particular actor, probably because the arrangement
of an entire network in this fashion was too cumbersome.

We adopt this intuitive graphical representation of status for the visualization of any
non-negative vertex weight ω : V → R≥0 as described in Brandes et al. [BRW01].
In this status visualization, vertices are placed at vertical positions that exactly
represent their score and horizontal positions are determined algorithmically in such
a way that the overall visualization is readable.

The drawings in Figure 6.7 show that the suggestive power of a status sociogram
largely depends on the placement of the vertices on distinctive levels which can be
further backed by an appropriate edge routing. The drawing of Northway lacks
both features and constitutes the impression of status solely by drawing scale levels.
Since a typical score imposes a continuous placement of the vertices, we utilize a
conspicuous edge routing backed by the drawing of scale levels to clarify the meaning
of the drawing.

The description of the visualization in the remainder of this part adds some addi-
tional features to the original method presented in [BRW01]. Since a combinatorial
layout model similar to the radial visualization is used, we can adopt the methods for
interaction and reciprocation and employ an improved crossing reduction algorithm.

6.3.1 Layout Algorithm

The most commonly used framework for linear layered drawings of graphs is pre-
sented in Sugiyama et al. [STT81]. It consists of the following generic steps:

1. assign each vertex to a layer, then

2. subdivide each edge by dummy vertices at each layer it crosses and determine
the order of the vertices for each layer, and finally

3. assign horizontal and vertical coordinates to each vertex and replace dummy
vertices by bend points.
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(a) organizational chart

(b) status ordered network (c) sociometric choice status

Figure 6.7: Drawings of networks similar to the status visualization: a typical or-
ganizational chart, status ordered network by Whyte [Why43], and a
sociometric choice status of Northway [Nor54].

The separation of steps 2 and 3 enables the use of combinatorial methods for the
optimization of the layout in the second step. Since edge crossings significantly af-
fect the readability of a drawing [Pur98], our objective is to reduce their number.
Through the introduced dummy vertices, the number of crossings between two ad-
jacent layers is fully determined by the relative order of the vertices, independent of
the actual coordinates.

Layer Assignment A trivial layer assignment is to partition the vertices into
sets of equal weight and to place each set in its own layer, vertically ordered with
respect to the score. Analysis scores often differ only marginally leading to a large
number of close layers that can increase the number of dummy vertices significantly.
Furthermore, since these dummy vertices are replaced by bend points in the final
layout, this results in perceptual problems like several crossing or non-crossing line
segments running almost horizontally.

Instead, we cluster the vertices according to their weights and assign all vertices in
the same cluster to the same logical layer. In principle, any clustering scheme can
be used. To achieve a good spacing between layers, we establish a fixed number of
clusters, e. g., ten or less, of equal range.

Crossing Reduction In this step, we are given a layering of the vertices and
introduce additional dummy vertices where edges need to cross a layer. Our goal
is to find horizontal orders of all the vertices in each layer such that the number of
crossing edges is small.
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Finding orders that minimize the number of crossings is anNP-hard problem [GJ83],
even if there are only two layers and one of them is fixed [EW94]. Commonly, the
global problem is split into two-layer problems by the layer-by-layer sweep. Initially,
the order in the first layer is fixed and the second layer is reordered. Then, itera-
tively, the layer reordered last is fixed and the order of the next layer is improved.
After reaching the last layer, the process is reversed and repeated up and down the
layering until no further improvement is made.

There are a couple of heuristics for a simplified two-layer problem without intra-
layer edges, i. e., no edge connects vertices of the same layer (for an overview, see,
e. g., [ML03]). Furthermore, this problem can be solved optimally for medium-size
instances using computationally involved methods [JM97, ZB07]. Since in general
we cannot avoid intra-layer edges and the overall number of crossings will not be
minimum anyway, we use simpler heuristics. In order to obtain the initial order,
each vertex is placed at the average position of its neighbors in the next layer, similar
to the barycenter heuristic [STT81]. Then, the modification of our circular sifting
algorithm for linearly layered layouts is applied to further reduce the number of
remaining crossings (see Section 7.1.5). Roughly speaking, sifting picks one vertex
at a time and determines the locally optimal position within a layer by probing
all of them. In combination, these heuristics perform quite satisfactory, and our
experiences suggest that the additional effort caused by sifting is indeed worth it.
Again, the algorithm supports adequate handling of edge strengths by weighted
crossing reduction.

Horizontal Placement Given a layering and an order of vertices and bend points
within each layer, it remains to compute actual x-coordinates respecting the hori-
zontal orders. Pleasing visualizations are obtained by ensuring that long lines run
vertically as much as possible, and by reducing the horizontal distance spanned when
it is not. We are using the linear-time algorithm of Brandes and Köpf [BK02] for
this task.

6.3.2 Final Positions

The x-coordinates of the vertices are given by the horizontal placement of the layout
algorithm. The y-coordinate of each vertex v ∈ V of non-zero weight is defined as

y(v) :=
ω(v)− ω
ω − ω

,

where ω and ω are the maximum and minimum non-zero weights, respectively.
Vertices of weight zero are placed beneath at an outer level.

6.3.3 Confirmation

Since the visual dominance of confirmed edges over unconfirmed ones renders uni-
form treatment of all edges inappropriate, we first establish a core layout of the
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confirmed subgraph, i. e., the subgraph G[Ec] = (Vc, Ec) induced by the confirmed
edges Ec and then insert the unconfirmed edges while maintaining the core layout.

Similar to the radial visualization (see Section 6.2.3), we compute an initial order
of the vertices of G[Ec] by applying both phases of our layout algorithm. Then, we
insert all remaining vertices into this order by ‘insertion sifting’ and improve this
order by sifting where vertices v ∈ Vc are skipped to maintain the core layout. Fur-
thermore, high logical weights of confirmed edges e ∈ Ec impede crossings between
them and unconfirmed edges.

6.3.4 Scale

We support metering of the scores by showing levels as thin lines in the background.
Similar to the radial visualization we aim for five to ten equidistant levels marking
prominent values and choose the distance between levels accordingly (see Table 6.3).
Note that these levels typically do not correspond to the clusters used for the layer
assignment which can be bounded by arbitrary values. Furthermore, we mark the
maximum and the minimum non-zero weight by dashed lines to separate outlying
areas.

6.3.5 User Interaction

The separation of combinatorial layout and exact placement allows us to provide
the following forms of interaction for the status visualization which are similar to
the ones provides for radial visualizations.

Snap to Levels All vertices are moved vertically to have a distance from the
top of the drawing that is determined by the given weight and an appropriate edge
routing is established. To achieve this, the crossing reduction phase of the layout
algorithm is skipped and the vertices are ordered in their respective layer according
to their current x-coordinates instead.

Improve Layout This option is similar to ‘snap to levels’ but rather than skip-
ping the crossing reduction phase entirely, the orders given by the current x-coor-
dinates of the vertices are improved by sifting crossing reduction. This allows user
to restart the algorithm after manual improvements, e. g., to resolve a bad local
minimum.

Complete Layout The complete layout algorithm as described above, including
both optimization phases, is carried out.
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Figure 6.8: Fully featured examples of the status visualization.

6.3.6 Final Remarks

As an additional feature, the orientation of the status visualization can be changed
from horizontal to vertical, i. e., the layout is mirrored at the diagonal and the score
of the vertices increases from left to right. The usefulness of the status visualiza-
tion for the exploration and communication of social networks has been outlined in
various studies [BKR06, BRW01, BKR+99]

6.4 Multi-Circular Visualization

An important aspect in the visualization of many types of networks is the interplay
between fine- and coarse-grained structures. While the micro-level graph is given,
a macro-level graph is induced by a partitioning of the micro-level vertices. For
example it may originate from a group-level network analysis such as a clustering
(see Sections 4.7, from an attribute-based partitioning of the vertices, or may just
be given in advance.

visone includes a tailored visualization for networks with micro/macro structure like
a partitioning based on a novel multi-circular drawing convention. Given a layout
of the macro-level graph with large nodes and thick edges, each vertex of the mi-
cro-level graph is drawn in the area defined by the macro-vertex it belongs to, and
each micro-edge is routed through its corresponding macro-edge. In more detail,
each micro-vertex is placed on a circle inside of the area of its corresponding mac-
ro-vertex and micro-edges whose end vertices belong to the same macro-vertex are
drawn inside of these circles. All other micro-edges are then drawn inside of their
corresponding macro-edges and at constant but different distances from the border
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(a) geometric grouping and
straight-line edges

(b) multi-circular layout (c) corresponding macro
graph

Figure 6.9: (a) Example organizational network with geometric grouping and
straight-line edges (redrawn from [Kre96]). In our multi-circular lay-
out (b), all details are still present and the macro-structure induced by
the grouping becomes visible. Additionally, the height and width of the
vertices reflects the number of connections within and between groups.

of the macro-edge, i. e., in straight-line macro-edges they are drawn as parallel lines.
These edges must also be routed inside the area of macro-vertices to connect to
their endpoints, but are not allowed to cross the circles. Figure 6.9 shows a concrete
example of this model. Micro-edges connecting vertices in the same macro-vertex
are drawn as straight lines. Inside of macro-vertices, the other edges spiral around
the circle of micro-vertices until they reach the area of the macro-edge. For this
micro-level layout we define a combinatorial multi-circular embedding and present
corresponding layout algorithms based on edge crossing reduction strategies.

We do not impose restrictions on the macro-level layout other than sufficient thick-
ness of edges and vertices, so that the micro-level graph can be placed on top of the
macro-level graph, and provide layout algorithms and tailored means of interaction
to support the generation of appropriate macro-layouts.

While the drawing convention consists of proven components (geometric grouping is
used, e. g., in [Kre96, ST04], and edge routing to indicate coarse-grained structure is
proposed in, e. g., [BD07, Hol06], our approach is novel in the way we organize micro-
vertices to let the macro-structure dominate the visual impression without cluttering
the micro-level details too much. Note also that the setting is very different from lay-
out algorithms operating on structure-induced clusterings (e. g., [AMA07, KW03]),
since we cannot make any assumptions on the structure of clusters (they may even
consist of isolates). Therefore, we neither want to utilize the clustering for a better
layout, nor do we want to display the segregation into dense subregions or small
cuts. Our aim is to represent the interplay between a (micro-level) graph and a
(most likely extrinsic) grouping of its vertices.
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6.4.1 Macro-Level Layout

We do not require a specific layout strategy for the macro-graph as long as its el-
ements are rendered with sufficient thickness to draw the underlying micro-graph
on top of them. For example, post-processing can be applied to any given lay-
out [GN99] or methods which consider vertex size (e. g., [HK02, WM96]) and edge
thickness (e. g., [DEKW02]) have to be used. Since, depending on the particular
application domain and other contexts, different layout methods will be appropriate
for the macro-graph, we provide interactive means for its creation.

Given a partition assignment φ : V → {0, . . . , k − 1}, the corresponding macro-
graph Q(G, φ) = (VQ, EQ), called quotient graph, contains a vertex for each partition
of G and two vertices Vi, Vj ∈ VQ are connected if and only if E contains at least
one edge between a vertex in Vi and a vertex in Vj (see Figure 6.9 for an example).
visone displays this graph in an additional view along with the micro-graph and
propagates changes to the position and thickness of its elements to the micro-layout.
This view behaves like any other view offering all kinds of interactive and automatic
layout improvement to users. Initially, we set vertex size and edge width in the
quotient graph to be proportionally to the number of corresponding micro-level
elements and compute a layout by the classical force-directed layout with appropriate
preferred edge length and option ‘avoid vertex overlaps’ enabled (see Section 5.5).
For convenience, additional graphical features like colors and shapes are also adopted
by the micro-graph.

6.4.2 Micro-Level Layout Algorithm

Recall that our multi-circular layout convention requires each vertex of the mi-
cro-level graph to be drawn in the area defined by the macro-vertex it belongs to
and each micro-edge is routed through its corresponding macro-edge. Through a
combinatorial model of this layout convention, we can employ crossing reduction
algorithms to improve the drawing [Pur98]. Again, we use a local optimization
strategy in combination with a simple initial placement.

Our model is an extension and combination of ideas for (single) circular and radial
layer layouts and consists of three parts:

1. circular layouts of the subgraphs inside of each macro-vertex, i. e., a circular
vertex order for each partition,

2. the (fixed) circular orders of the incident macro-edges of each macro-vertex
given by the macro-layout, and

3. the winding of micro-edges between different partitions around the circular
positions of the vertices.

In order to meter windings, we introduce for each partition a ray from its center
to infinity and determine how often and in which direction each edge crosses these
rays.
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(a) original drawing (b) multi-circular

Figure 6.10: Original drawing of an organizational network by Krebs [Kre96] and the
corresponding multi-circular visualization. The box reads Marketing
[light green] is completely disconnected from Sales [yellow] and from
Research & Development [dark green], which is much more apparent in
the right layout.

Crossing minimization in multi-circular layouts is an NP-hard problem since it is
already hard in (single) circular layouts [MKNF87]. Therefore, we employ an ini-
tial barycenter placement for each partition separately. For optimization, we again
adapt the sifting procedure [MSM00] which is also used for radial and status visu-
alizations. Note that for multi-circular layouts, exclusive relocation of the vertices
is not sufficient since the number of crossings depends also on the winding of the
edges. Roughly speaking, multi-circular sifting picks one vertex at a time, probes
for every position within the order reasonable windings of its incident edges, and
finally sets position and windings of the locally optimal state. Our algorithm which
again allows for weighted crossing reduction, is described in detail in Section 7.2.

6.4.3 Final Placement

From the micro-layout algorithm we get a combinatorial description of the lay-
out, i. e., circular vertex orders for each partition and edge windings, which allows
arbitrarily rotating each circular order without introducing new crossings (see Sec-
tion 7.2.4). Therefore, for each partition, we choose a rotation which minimizes the
total angular span of the inter-partition edges, reserve space for the drawing of these
edges, and place the vertices accordingly at a uniform distance from the border of
the macro-vertex.

Another critical factor is the transition of the route of inter-partition edges from arcs
to straight-lines at the border of the macro-vertices. If many edges bend exactly
at the cut of macro-edge and -vertex, the individual curves are hard to distinguish.
Therefore, it might be advisable to use rounded bends but this will occupy additional
space.
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6.4.4 Final Remarks

Similar to the radial and the status visualization, the combinatorial layout model in
combination with the sifting crossing reduction algorithm enables a different han-
dling of confirmed and unconfirmed edges and interactive layout improvement. Due
to time constraints, this is not implemented yet. Clearly, multi-circular visualiza-
tions can be enriched further when used in combination with basic visualizations.

The redrawing of a network of work interactions from a study of Krebs [Kre96] in
Figure 6.10 exemplifies the usefulness of this visualization. One of his findings is
that Marketing is completely disconnected from Sales and from Research & Devel-
opment, a conclusion which is not highlighted by his drawing. In fact, the proximity
of marketing and sales suggests a connection at first. In the multi-circular layout
of the network, the disconnection is apparent and, furthermore, more communica-
tion deficits become visible, e. g., sales (the yellow group) is also not connected to
Research & Development (dark green). Another, larger example is given in Sec-
tion 6.6.2.

6.5 Additional Positional Visualizations

visone features two more methods to depict attribute data as positions which we
describe in this section. The coordinate visualization is a rather simple assignment
of the horizontal or vertical coordinate of the vertices proportional to a given non-
negative numerical weight. The group visualization can be used for interactive
exploration of an ambiguous grouping.

6.5.1 Coordinate Visualization

The coordinate visualization assigns the horizontal or vertical coordinate of the
vertices proportionally to a given non-negative numerical weight ω : V → R≥0 while
keeping the other coordinate unchanged. The new coordinate c(v) of each vertex
v ∈ V of non-zero weight is defined equally to the status visualization as

c(v) :=
ω(v)− ω
ω − ω

,

where ω and ω are the maximum and minimum non-zero weights, respectively, and
vertices of weight zero are just as well placed at an outer level, either beneath or
left of the others. Furthermore, an appropriate scale is drawn.

When the horizontal and vertical coordinate visualization are executed one after the
other, the resulting layout equals a two-dimensional scatter plot. As an additional
feature, the scale displays both axes simultaneously in this case.
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Figure 6.11: Examples of the coordinate visualization. The right-most figure shows
a scatter plot created by combining visualizations in vertical and hori-
zontal direction.

(a) circular layout (b) highlighting a clique (c) highlighting another
clique

Figure 6.12: Example of the group visualization. Two different groups, in this case
cliques, are highlighted while the fundamental circular layout is pre-
served. Note that selections are not exported to images and are there-
fore not visible in the figures.

6.5.2 Group Visualization

visone provides the sophisticated multi-circular visualization to depict a partitioning,
i. e., a grouping in which each vertex belongs to a unique group. While many
common analysis methods yield a partitioning, e. g., clusterings and structural roles,
others do not. Prominent examples of ambiguous grouping are cliques and related
structurally dense groups. Since the affiliation of vertices to ambiguous groups
can instantiate complex interconnections, we propose an interactive method which
maintains the overall layout of the graph and highlights only one group at a time.

The fundamental layout of this visualization is a circular order of all vertices on
an outer circle. When a group is chosen by the user, its vertices are placed on the
perimeter of an inner concentric circle while the positions of all other vertices are kept
fixed on the outer circle (see Figure 6.12). The method described so far can thus be
seen as a radial visualization of appropriate scores (see Section 6.2). Its distinctive
features are an animated movement of the vertices of the chosen group from the
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outer to the inner circle and back when another group is chosen, the highlighting of
the neighborhood of the group as selection, and an improved placement of the inner
vertices. They are relocated to equidistant angles in the order given by the circular
layout and exact positions are chosen such that the total length of their incident
edges is minimal.

6.6 Examples

In the following, we give some examples for the power and usefulness of our visual-
izations, especially then used in combination.

6.6.1 The Network of the Deutschland AG

Since the 1990s an obvious and highly discussed erosion of what was previously
known as the Deutschland AG has taken place. A review of this process presented
by Höpner and Krempel in 2003 [HK03, HK04] attracted a lot of attention not only
because of its profound theoretical analysis but also because of its demonstrative,
colorful and visually pleasing drawings of the network.

The studied network consists of all companies, among the 100 largest German-
based companies, which were entangled with others of these companies by capital
interlocks, i. e., a source company holds shares of a target company. Besides the
edge structure Höpner and Krempel depict additional interesting characteristics of
the data by various graphical features:

• The colors of vertices and edges reflect affiliation to different sectors, financial
or industrial.

• The width of an edge corresponds to the value of the shares.

• The size of the vertices “represents degrees of involvement in the network”,
i. e., the sum of in- and out-degree.

• Important vertices are placed in the center of the layout.

While the pictures clearly depict the decline of the connectedness of the network
they also exhibit some visual and analytic shortcomings: edges do not start and end
in the middle of the vertices, labels hide edges even if there is enough space, the
local vertex placement is not good (see the yellow edges of ‘GD Bank’ and ‘R+V
Versicherung’ in the lower left), and the global layout is misleading since vertices of
lesser importance are positioned in the center like the Big Players. This indicates
that the pictures were created in a time-consuming process by hand using a general
diagramming software and not in a tailored network visualizing tool.

The basic visualizations available in visone can be used to depict the characteristics
described above in a similar fashion as in the original drawing without any manual
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Figure 6.13: Drawings of the German company network as of 1996, the original
image by Höpner and Krempel [HK03] and a replication using a com-
bination of the radial and additional basic visualizations.

action. Furthermore, the radial visualization provides an accurate and expressive
placement of the vertices.

6.6.2 Email Communication Network

The strength of a multi-circular layout is the coherent drawing of vertices and edges
at two levels of detail. It reveals structural properties of the macro-graph and
allows identification of micro-level connections at the same time. The showcase
for the benefits of our micro/macro layout is an email communication network of
a department of the Universität Karlsruhe (TH). The micro-graph consists of 442
anonymized department members and 2 201 edges representing at least one email
communication in the considered time frame of five weeks. At the macro-level, a
grouping into 16 institutes is given, resulting in 66 macro-edges. In the following
drawings, members of the same institute are colored identically.

We start by inspecting drawings generated by a general force-directed approach sim-
ilar to the method of Fruchterman and Reingold [FR91] and by multidimensional
scaling (MDS) [CC01], see Figure 6.14. As described in Section 5.5, both methods
tend to place adjacent vertices near each other but ignore the additional grouping
information. Therefore, it is not surprising that the drawings do not show a geomet-
ric clustering and the macro-structure cannot be identified. Moreover, it is difficult
or even impossible to follow edges since they massively overlap each other.

More tailored for the drawing of graphs with additional vertex grouping are the
layout used by Krebs [Kre96], and the force-directed attempts to assign vertex po-
sitions by Six and Tollis [ST04] and Krempel [Kre05]. All three methods place the
vertices of each group on circles inside of separated geometric areas. While some
efforts are made to find good vertex positions on the circles, edges are simply drawn
as straight lines. Figure 6.15(a) gives a prototypical example of this layout style.
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Figure 6.14: Drawings of the email network generated by a force-directed method
(left) and by multidimensional scaling (MDS, right). The colors of the
vertices depict the affiliation to institutes.

Although these methods feature a substantial progress compared to general layouts
and macro-vertices are clearly visible, there is no representation of macro-edges and
so the overall macro-structure is still not identifiable.

Finally, we layouted the email network with our multi-circular visualization. Its
combinatorial descriptions allows for enrichments with analytical visualizations of
the vertices. For this special application, we experimented with visualizations not
available in visone by default. In Figure 6.15 the angular width of the circular arc
a vertex covers is proportional to its share of the total inter-partition edges of this
group. The height from its chord to the center of the circle reflects the fraction of
present to possible intra-edges.
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(a) straight-line layout

(b) multi-circular layout

Figure 6.15: Straight-line circular and multi-circular layout of the slightly modified
email network (some small groups are pruned).



Chapter 7

Layout Algorithms

In this chapter, we give detailed descriptions of the layout algorithms used for the
radial and the multi-circular visualization. Furthermore, we present a layout con-
vention for two and a half dimensional visualization which we have not included in
the visone software due to its requiring of a three-dimensional layout engine. In-
stead we exemplify its usefulness in a visualization of the Internet at the level of
Autonomous Systems.

7.1 Circular Crossing Reduction

In this section, we present a two-phase heuristic for crossing reduction in circular
layouts. While the first algorithm uses a greedy policy to build a good initial layout,
an adaptation of the sifting heuristic for crossing reduction in layered layouts is used
for local optimization in the second phase. Both phases are conceptually simpler
than previous heuristics, and our extensive experimental results indicate that they
also yield fewer crossings. An interesting feature is their straightforward general-
ization to the weighted case. Furthermore, we present various modifications of the
second phase which proved useful in practice and allow the handling of intra-layer
edges in layered layouts, a case which was excluded so far.

7.1.1 Introduction

In circular graph layouts, the vertices of a graph are constrained to distinct posi-
tions along the perimeter of a circle, and an important objective is to minimize the
number of edge crossings in such layouts. Since circular crossing minimization is
NP-hard [MKNF87], several heuristics have been devised [Mäk88, DMM97, ST99].
Moreover, there is a factor O(log2 |V |) approximation algorithm [SSSV94].

We propose a two-phase approach for obtaining circular layouts with few crossings.
In the first phase, vertices are iteratively added to either end of a linear layout.
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This leaves three degrees of freedom: the start vertex, the insertion order, and the
end at which to append the next vertex. For the different strategies tried, empirical
evidence suggests that a particular one outperforms both the others and previous
heuristics.

For the second phase, we adapt a local optimization procedure for layered layouts,
sifting [MSM00], to the circular case. Note that, similar to two-layer layouts, the
number of crossing is completely determined by the (cyclic) order of vertices. The
thus related one-sided crossing minimization problem in two-layer drawings of bi-
partite graphs is NP-hard as well [EW94], but significantly better understood. It
turns out that circular sifting reduces the number of crossings both with respect to
our first phase and previous heuristics.

After defining some terminology in Section 7.1.2, we describe our greedy append
and circular sifting algorithms for the phases in Sections 7.1.3 and 7.1.4. Both are
evaluated experimentally in Section 7.1.6.

7.1.2 Preliminaries

Throughout this part, let G = (V,E) be a simple undirected graph with n = |V |
vertices and m = |E| edges. Furthermore, let N(v) = {u ∈ V : {u, v} ∈ E}
denote the neighborhood of a vertex v ∈ V . A circular layout of G is a bijection
π : V → {0, . . . , n− 1}, interpreted as a clockwise sequence of distinct positions on
the circumference of a circle. By selecting a reference vertex s ∈ V , we obtain linear
orders ≺πs from π by defining

u ≺πs v ⇐⇒ (π(u)− π(s) mod n) < (π(v)− π(s) mod n)

for all u, v ∈ V , i. e., u is encountered before v in a cyclic traversal starting from s.
We say that u, v ∈ V are consecutive, denoted by u yπ v, if π(v) − π(u) ≡ 1
mod n. A subset W ⊂ V is consecutive if there is an order of the vertices of W so
that w0 yπ w1 yπ . . . yπ w|W |−1, wi ∈ W .

Let

χπ({u1, v1}, {u2, v2}) =

{
1 if u1 ≺πu1

u2 ≺πu1
v1 ≺πu1

v2 ,

0 otherwise .
(7.1)

for all {u1, v1}, {u2, v2} ∈ E and w.l.o.g. π(ui) < π(vi). We say that e1, e2 ∈ E
cross in π if and only if χπ(e1, e2) = 1, i. e., the endvertices of e1, e2 are encountered
alternately in a cyclic traversal. The crossing number of a circular layout π is

χ(π) =
∑

e1,e2∈E

χπ(e1, e2)

and χ(G) = minπ χ(π) is called the circular crossing number of G. We will omit π
from our notation whenever the circular layout is clear from context.

Theorem 7.1 ([MKNF87]) Circular crossing minimization is NP-hard.
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Figure 7.1: The circular crossing number of a graph is the sum of those of its
biconnected components (cutpoints shown in lighter color.)

On the other hand, a graph has a circular layout with no crossings if and only if it
is outerplanar. A linear time recognition algorithm for outerplanar graphs [Mit79]
is easily extended to yield a crossing-free circular layout [ST99].

Since, in particular, trees have circular layouts with no crossings, it is possible to
consider the biconnected components of a graph separately, and insert their circu-
lar layouts into a crossing-free layout of the block-cutpoint-tree without producing
additional crossings. See Figure 7.1 for an illustration. Hence, only biconnected
graphs are used in the experimental evaluation summarized in Section 7.1.6.

7.1.3 Initial Greedy Layout

Our approach for an initial layout is inspired by a heuristic algorithm for the mini-
mum total edge length problem in circular layouts [Mäk88]. This problem is some-
what related to crossing minimization, since shorter edges tend to cross few other
edges.

The basic idea is simple: start with a layout consisting of a single vertex and place
the other vertices, one at a time, at either end of the current (linear) layout (see
Algorithm 1). After all vertices are inserted, the final layout is considered to be
circular. This method leaves us with three parameters to choose:

• the start vertex s,

• the processing sequence, and

• the end to append the next vertex at.

Note that the processing sequence need not to be fixed in the beginning, but may
be determined while the algorithm proceeds. Since, in our experiments, the rules
for choosing a start vertex had little influence on the final result, it is chosen at
random. In the following we describe instantiations for the other two parameters.

During the algorithm some vertices are already placed while others are not. An edge
is called open if it connects a placed vertex with an unplaced one, and closed if both
its vertices have been inserted.
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Algorithm 1: Greedy-Append Heuristic

place start vertex s ∈ V arbitrarily;
V ← V \ {s};
while V 6= ∅ do

greedily choose v ∈ V ;
append v at either end of the current layout;
V ← V \ {v};

v

(a) adding v on the left

v

(b) adding v on the right

Figure 7.2: Incident edges of an inserted vertex v (red) cross open edges (blue).

Four rules for determining an insertion order are investigated. The rationale behind
these heuristics is to keep the number of open edges low because they tend to result
in crossings later on.

1. Degree. Vertices are inserted in non-increasing order of their degree.

2. Inward Connectivity. At each step, a vertex with the largest number of already
placed neighbors is selected, i. e., a vertex which closes the most open edges.

3. Outward Connectivity. At each step, a vertex with the least number of un-
placed neighbors is selected, i. e., a vertex which opens the fewest new edges.

4. Connectivity. At each step, a vertex with the largest number of already placed
neighbors is selected, where ties are broken in favor of vertices with fewer
unplaced neighbors.

The other degree of freedom left is the selection of an end of the current layout at
which to append the next vertex. Again, four rules of choice are investigated.

1. Random. Select the end at which to append randomly each time.

2. Fixed. Always append to the same end.

3. Length. Append each vertex to the end that yields the smaller increase in total
edge length.

4. Crossings. Append each vertex to the end that yields fewer crossing of edges
being closed with open edges. In Figure 7.2, there are eight such crossings for
the left end and only six for the right end. Note that crossings with closed
edges not incident to the currently inserted vertex do not need to be considered
because they are the same for both sides. It should also be noted that crossings
with open edges are independent of the positions at which the unplaced vertex
will eventually be placed.
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The experiments outlined in Section 7.1.6 show that the combination of the Con-
nectivity insertion order with Crossings outperforms all other combinations, and it
can be implemented efficiently.

Theorem 7.2 The Greedy-Append heuristic with Connectivity insertion order and
end-to-append selection based on Crossings can be implemented to run in O((n +
m) log n) time.

Proof The insertion sequence can be realized by storing all unplaced vertices
in a two-dimensional priority queue, in which the first key gives the number of
already placed neighbors and the second the number of unplaced neighbors. With
an efficient implementation, update and extract operations require O(log n) time.
Since each vertex is extracted once, and each edge triggers exactly one update, the
total running time for determining the insertion order is O((n+m) log n).

The number of crossings with open edges can be determined from prefix and suffix
sums over vertices already in the layout. These can be maintained efficiently using
a balanced binary tree storing in its leaves the number of open edges incident to
a placed vertex, and in its inner nodes the sum of the values of its two children.
The prefix sum at a vertex is the sum of all values in the left children of nodes
on the path from the corresponding leaf to the root. The suffix sum is determined
symmetrically. Insertion of a vertex thus requires O(log n) time to determine the
crossing numbers from prefix and suffix sums and O(deg(v) log n) for updating the
tree. The total is again O((n+m) log n). �

Note that the heuristic is easily generalized to weighted graphs. In the next section
we show how to further reduce the number of crossings, given an initial layout.

7.1.4 Improvement by Circular Sifting

Sifting was originally introduced as a heuristic for vertex minimization in ordered
binary decision diagrams [Rud93] and later adapted for the one-sided crossing min-
imization problem [MSM00]. The idea is to keep track of the objective function
while moving a vertex along a fixed order of all other vertices. The vertex is then
placed in its (locally) optimal position. The method is thus an extension of the
greedy-switch heuristic [EK86].

For crossing reduction the objective function is the number of crossings between the
edges incident to the vertex under consideration and all other edges. The efficient
computation of crossing numbers in sifting for layered layouts is based on the crossing
matrix. Its entries correspond to the number of crossings caused by pairs of vertices
in a particular linear order and are computed easily in advance. Whenever a vertex
is placed in a new position only a smallish number of updates is necessary.

It is not possible to adapt the crossing matrix to the circular case since two vertices
cannot be said to be in a (linear) order in general. Thus, we define the crossing
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u1v2
v1u2

(a) no crossings between the
green edges

u1v2
v1u2

(b) only the green edges cross

Figure 7.3: After swapping consecutive vertices u y v, exactly those pairs of edges
cross that did not before.

number
cuv(π) =

∑
x∈N(u)

∑
y∈N(v)

χπ({u, x}, {v, y}) (7.2)

only for pairs of consecutive vertices u y v ∈ V and use the following exchange
property, which is the basis for sifting and holds nevertheless.

Lemma 7.3 Let u y v ∈ V be consecutive vertices in a circular layout π and let π′

be the layout with their positions swapped, then the number of crossings in the new
layout is

χ(π′) = χ(π)− cuv(π) + cvu(π
′)

= χ(π)−
∑

x∈N(u)

∣∣{y ∈ N(v) : y ≺πx u
}∣∣+

∑
y∈N(v)

∣∣{x ∈ N(u) : x ≺π′

y v
}∣∣

Proof Since u and v are consecutive, edges incident to neither u nor v do not
change their crossing status. The first equality follows immediately. For the second
equality, observe that the sums are obtained from (7.2) by inserting (7.1). See
Figure 7.3 for an illustration. �

Based on the above lemma, the locally optimal position of a single vertex can be
found by iteratively swapping the vertex with its neighbor and recording the change
in crossing count, which is computed by considering only edges incident to one of
these two vertices. After the vertex has been moved past every other vertex, it is
placed where the intermediary crossing counts reached their minimum. Reposition-
ing a vertex in this way is called sifting a vertex and sifting every vertex once in this
way is called a round of sifting.

If adjacency lists are ordered according to the current layout, the sums in Lemma 7.3
are over suffix lengths in these lists. Updating the crossing count therefore corre-
sponds to merging the adjacency lists, where the length of the remaining suffix is
added or subtracted.

Theorem 7.4 One round of circular sifting takes O(nm) time.

Proof Sorting the adjacency lists according to the vertex order is easily done in
O(m) time (traverse the vertices in order, and add each to the adjacency lists of
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Algorithm 2: Circular Sifting

for (u ∈ V ) do
let v0 = u ≺u v1 ≺u . . . ≺u vn−1 denote the current layout;
for (v ∈ V ) do

sort adjacency list of v according to the current layout;
χ← 0; χ∗ ← 0; v∗ ← vn−1;
for (k ← 1, . . . , n− 1) do

let x0 ≺vk . . . ≺vk xr−1 denote the adjacency list of u without vk;
let y0 ≺vk . . . ≺vk ys−1 denote the adjacency list of vk without u;
c← 0; i← 0; j ← 0;
while (i < r and j < s) do

if (xi ≺vk yj) then
c← c− (s− j); i← i+ 1;

else if (yj ≺vk xi) then
c← c+ (r − i); j ← j + 1;

else
c← c− (s− j) + (r − i); i← i+ 1; j ← j + 1;

χ← χ+ c;
if (χ < χ∗) then χ∗ ← χ; v∗ ← vk;

move u so that v∗ y u;

its neighbors). If adjacency lists are stored cyclically, a head pointer yields ≺v for
arbitrary v, i. e., the adjacency lists need not be reordered before a swap. The final
relocation of u takes constant time.

When swapping u with neighbor vk, the time for the traverse of the adjacency lists
is in O(dG(u) + dG(vk)). Since∑

u∈V

∑
v∈V

(
degG(u) + degG(v)

)
=
∑
u∈V

∑
v∈V

degG(u) +
∑
u∈V

∑
v∈V

degG(v) = 2 · n · 2m

the total running time is in O(nm). �

At the end of the outer loop each vertex is placed at its locally optimal position,
so that circular sifting can only decrease the number of crossings. Our experiments
outlined in Section 7.1.6 suggest that a few rounds of sifting suffice to reach a local
minimum.

7.1.5 Constraint Crossing Reduction

Applications sometimes impose specific constraints on the circular layout. For ex-
ample, the handling of unconfirmed edges in the radial visualization requires main-
taining a given order for the core vertices (see Section 6.2.3). Our algorithm can be
altered to consider the following constraints.
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Edge Weights

For a given edge weight ω : E → R≥0, we can define the weighted crossing number
by counting each crossing with the product of the two edge weights involved, i. e.,
Equation 7.1 can be generalized to

χπ({u1, v1}, {u2, v2}) =

{
ω({u1, v1}) · ω({u2, v2}) if u1 ≺πu1

u2 ≺πu1
v1 ≺πu1

v2 ,

0 otherwise .

(7.3)

In order to adapt Lemma 7.3 to the weighted case, we replace suffix cardinalities by
suffix sums of weights, i. e.,

χ(π′) = χ(π)− cuv(π) + cvu(π
′)

= χ(π)−
∑

x∈N(u)

ω({u, x})
( ∑
{y∈N(v) : y≺πxur}

ω({v, y})
)

+
∑

y∈N(v)

ω({v, y})
( ∑
{x∈N(u) :x≺π′

y v}

ω({u, x})
)
.

Modifying the algorithm accordingly is straightforward.

Insertion Sifting

Sifting can be used to compute an initial layout by iteratively adding a new vertex to
the current layout and sifting it, i. e., we relocate it to all positions and finally place
it there the running crossing count reached the minimum. Since the greedy phase
is faster and avoids some pathologic cases, it is preferable for computing an order
from sketch. However, insertion sifting can be used when an initial order of a subset
of the vertices is given which should be preserved (see also the next paragraph).

Fixed Vertices and Forbidden Positions

The fundamental idea of sifting, iteratively select a vertex and find a better position
for it while keeping all other vertices fixed, allows for not moving every vertex
and not testing every position at the cost of an increase in the crossing number.
Therefore, a given initial order of a subset of the vertices can be respected by simply
not sifting the contained vertices. Similarly, some positions can be prohibitive for
specific vertices and are therefore not considered as target for the relocation to the
minimum position.

Linear Layered Layouts

The modification for linear layered layouts is an ably combination of fixed vertices
and prohibited positions. According to Sugiyama’s framework which is described
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(a) two-layered layout
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6
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(b) circular layout for
both layers

5

6

7

89

(c) circular layout for the
upper layer

Figure 7.4: A (linear) two-layer layout with intra-layer edges and its corresponding
circular layouts.

in more detail in Section 6.3.1, typical algorithms iteratively compose the overall
layout from sub-layouts for two consecutive layers. Edges connecting vertices of
the same layer often occur in practice, e. g., in the layer assignment of the status
visualization, but are commonly ignored by crossing reduction algorithms for such
layouts.

When drawn as straight lines, intra-layer edges overlap both each other and the
vertices. Therefore, we draw them as curves and, for simplicity, restrict them to run
above the layer of their endvertices. Figure 7.4 gives an example of this layout con-
vention and also suggests how to form corresponding circular layouts by connecting
the appropriate endings of the linear orders. In order to maintain the base layered
layout during sifting, we fix all vertices of the reference layer and forbid all positions
between them for the vertices of the layer to reorder.

For multi-layered graphs, the classical layer-by-layer sweep considers in each step
two consecutive layers and reorders one of them while keeping the other one fixed.
Crossings of edges between the current layer and its other neighboring layer are
disregarded in this step. Sifting allows to take both adjacent layers into account by
simply summing the individual crossing counts of each side.

Bachmaier and Forster [BF06] introduce the same layout convention but propose
a more complicated, separated treatment of inter- and intra-layer edges. Their
experiments suggest that considering intra-edges significantly reduces the number
of crossings compared to previous methods.

7.1.6 Experimental Evaluation

We performed extensive experiments to determine the relative behavior of the dif-
ferent variants of our heuristics. As a base reference we use CIRCULAR [ST99],
the currently most effective heuristic for circular crossing minimization. CIRCU-
LAR consists of two phases as well: an initial placement (CIRCULAR 1) derived
from a recognition algorithm for outerplanar graphs [Mit79], and a subsequent im-
provement phase (CIRCULAR 2) that probes alternative positions for each vertex
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Figure 7.5: Circular layouts for a random order and for our algorithm.

and relocates if the number of crossings is reduced. The second phase is similar to
circular sifting but vertices are restricted to specific candidate positions and thus
may miss optimum positions. Note also that CIRCULAR 2 actually counts cross-
ings (rather than just changes) so that its running time depends on the number of
crossings. When restricting replacements to a subset of positions, circular sifting
simulates CIRCULAR 2 with an improved worst-case performance but in our ex-
periments we rather implemented an improved method for counting crossings since
realistic graphs have relatively few crossings anyway.

We have implemented all algorithms in C++ using LEDA [MN99]. Our experiments
were carried out on a standard desktop computer with 1.5 GHz and 512 MB running
Linux. Each data point is the average of 10 runs with different internal initializations
(in particular, permuted adjacency lists).

The experiments were run on three families of undirected, biconnected graphs (recall
from Section 7.1.2 that crossings between edges in different biconnected components
can be avoided altogether):

• Rome graphs. A set of 10 541 biconnected components with 10 to 80 vertices
used in [DBGL+97]. These are sparse real-world graphs with m ≈ 1.3n.

• Fixed average degree. Three sets of random graphs with 10 to 200 vertices
and variable edge probability of 3

n−1
, 5
n−1

, and 10
n−1

, resulting in graphs with
expected average degree of 3, 5, and 10.

• Fixed density. Three sets of random graphs with 10 to 200 vertices and fixed
edge probability of 0.02, 0.05, and 0.1, resulting in graphs with expected den-
sity of 0.02, 0.05, and 0.1, respectively.

A comprehensive selection of results is given in the appendix. We here summarize
our conclusions and show a layout computed by the combination of greedy-append
and circular sifting for a sample graph (see Figure 7.5).

Initialization using Greedy Append The performance of various combinations
of insertion orders for greedy append is shown in Figure 8.7 relative to CIRCULAR 1.
While for some rules of choice the results depend on number of edges in the graph, the
Connectivity variant consistently outperforms all others, including CIRCULAR 1.

The results in Figure 8.8 indicate that appropriate placement is indeed important,
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but has a much smaller effect than the insertion order. On random graphs, the
combinations of Connectivity insertion with Length and Crossings selection criteria
perform almost equally well, with a slight advantage for Crossings.

The two best combinations, Connectivity with Length or Crossings, compare favor-
ably with CIRCULAR 1, both in terms of the resulting number of crossings and
running time (see Figures 8.10, 8.11, and 8.15). Note that the running time of the
initialization methods is negligible when compared to the improvement strategies.

Subsequent Improvement using Circular Sifting Circular sifting reaches a lo-
cal minimum in few rounds. As can be expected, the improvement is larger in early
rounds and the number of rounds required depends on the initial configuration (see
Figure 8.9). It can be concluded that the improvement algorithms (circular sifting
and CIRCULAR 2) should not be used by themselves but only in combination with
a good initialization method.

With any of the good initialization strategies identified in the previous subsection,
circular sifting is able to further reduce the number of crossings produced by CIR-
CULAR 2 as can be seen in Figures 8.10 and 8.13 and is also confirmed by an
independent study of He and Sýkora [HS04]. This suggests that the additional po-
sitions considered for relocation indeed pay off. However, there is a slight runtime
penalty if sifting is run until there is no further improvement (Figure 8.14).

7.1.7 Conclusion

We have presented an approach for circular graph layouts with few crossings. It
consists of two phases: in the first phase, we greedily append vertices to either end
of a partial (linear) layout according to some criteria, and in the second we further
reduce the number of crossings by repeatedly sifting each vertex to a locally optimal
position. Furthermore, we have shown that our algorithm can easily be adopted for
some modified circular crossing reduction problems relevant in practice and even for
two-layer layouts with existing intra-layer edges.

Our experimental evaluation clearly shows that the method of choice is to initial-
ize circular sifting with a greedy-append approach using the Connectivity insertion
order with the Crossings placement rule and that this combination consistently out-
performs previous heuristics. They also show that both phases are necessary. While
circular sifting yields a substantial improvement over the initial layouts, a good ini-
tialization significantly reduces the number of rounds required and thus the overall
running time at essentially no extra cost.
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7.2 Multi-Circular Layout of Micro/Macro
Graphs

We propose a layout algorithm for micro/macro graphs, i. e., relational structures
with two levels of detail. While the micro-level graph is given, the macro-level graph
is induced by a given partition of the micro-level vertices. A typical example is a
social network of employees organized into different departments. We do not impose
restrictions on the macro-level layout other than sufficient thickness of edges and
vertices, so that the micro-level graph can be placed on top of the macro-level graph.

For the micro-level graph we define a combinatorial multi-circular embedding and
present corresponding layout algorithms based on edge crossing reduction strategies.
Each micro-vertex is placed on a circle inside of the area of its corresponding mac-
ro-vertex and micro-edges whose endvertices belong to the same macro-vertex are
drawn inside of these circles. All other micro-edges are then drawn inside of their
corresponding macro-edges and at constant but different distances from the border
of the macro-edge, i. e., in straight-line macro-edges they are drawn as parallel lines.
These edges must also be routed inside the area of macro-vertices to connect to their
endpoints but are not allowed to cross the circles. In principle, an arbitrary layout
strategy can be used as long as it complies with these requirements. Figure 7.6 shows
a concrete example of this model. Micro-edges connecting vertices in the same mac-
ro-vertex are drawn as straight lines. Inside of macro-vertices, the other edges spiral
around the circle of micro-vertices until they reach the area of the macro-edge.

We give a combinatorial description of the above model and then focus on the
algorithmically most challenging aspect of these layouts, namely crossing reduction
by cyclic ordering of micro-vertices and choosing edge winding within macro-vertices.

After defining some basic terminology in Section 7.2.1, we state required properties
for macro-graph layout in Section 7.2.2 and recapitulate related micro layout models
in Section 7.2.3. Multi-circular micro-graph layout is discussed in more detail in
Section 7.2.4 and crossing reduction algorithms for it are given in Section 7.2.5.

7.2.1 Preliminaries

Throughout this part, let G = (V,E) be a simple undirected graph with n = |V |
vertices and m = |E| edges. Furthermore, let E(v) = {{u, v} ∈ E : u ∈ V } denote
the incident edges of a vertex v ∈ V , let N(v) = {u ∈ V : {u, v} ∈ E} denote its
neighbors, and let sgn : R→ {−1, 0, 1} be the signum function.

Since each micro-vertex is required to belong to exactly one macro-vertex, the mac-
ro-structure defines a partition of the micro-vertices. Contrary to this top-down
approach, we can also start from the bottom. Recall from Section 3.1 that a partition
assignment φ : V → {0, . . . , k − 1} for G subdivides the (micro-)vertex set V into
k pairwise disjoint, non-empty subsets V = V0∪̇ . . . ∪̇Vk−1, where Vi = {v ∈ V :
φ(v) = i} = φ−1(i). An edge e = {u, v} ∈ Vi× ∈ Vj is called an intra-partition edge
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(a) geometric grouping, straight-line edges (b) multi-circular layout

Figure 7.6: (a) Example organizational network with geometric grouping and
straight-line edges (redrawn from [Kre96]). In our multi-circular layout
(b), all details are still present and the macro-structure induced by the
grouping becomes visible. The height and width of the vertices reflects
the number of connections within and between groups.

if and only if i = j, otherwise it is called an inter-partition edge. The set of intra-
partition edges of a partition Vi is denoted by Ei, the set of inter-partition edges of
two partitions Vi, Vj by Ei,j. We use G = (V,E, φ) to denote a graph G = (V,E)
and a related partition assignment φ.

A circular order π = {π0, . . . , πk−1} defines for each partition Vi a vertex order πi
as a bijective function πi : Vi → {0, . . . , |Vi| − 1} with u ≺ v ⇔ πi(u) < πi(v) for
any two vertices u, v ∈ Vi. An order πi can be interpreted as a counter-clockwise
sequence of distinct positions on the circumference of a circle.

7.2.2 Macro Layout

A prototypical macro-graph, the quotient graph, is defined by a partition assignment.
Given a partition assignment φ : V → {0, . . . , k − 1}, the corresponding quotient
graph Q(G, φ) = (VQ, EQ) is defined as VQ = {V0, . . . , Vk−1} and EQ =

{
{Vi, Vj} :

∃u ∈ Vi,∃v ∈ Vj, {u, v} ∈ E
}

, i. e., Q(G, φ) contains a vertex for each partition of G
and two vertices Vi, Vj ∈ VQ are connected if and only if E contains at least one
edge between a vertex in Vi and a vertex in Vj.

We do not require a specific layout strategy for the macro-graph as long as its
elements are rendered with sufficient thickness to draw the underlying micro-graph
on top of them. In order to achieve this, post-processing can be applied to any
given layout [GN99] or methods which consider vertex size (e. g., [HK02, WM96])
and edge thickness (e. g., [DEKW02]) have to be used.
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(a) some incident
edges

(b) node 4 is at posi-
tion 0

(c) node 4 rotated to
position 2

(d) without parting

Figure 7.7: Examples of Radial layouts. Edges are labeled with their winding value.

From a macro-layout we get partition orders Πi : NQ(Vi) → {0, .., deg(Vi) − 1} for
each partition Vi, defined by the sequence of its incident edges in Q(G, φ), and
a partition order Π = {Π0, . . . ,Πk−1} for G. For each macro-vertex this can be
seen as a counter-clockwise sequence of distinct docking positions for its incident
macro-edges on its border.

7.2.3 Related (Micro-) Layout

Before we discuss the multi-circular layout model for the micro-graph, let us recall
the related concepts of (single) circular and radial embeddings. In (single) circular
layouts all vertices are placed on a single circle and edges are drawn as straight lines.
Therefore, a (single) circular embedding ε of a graph G = (V,E) is fully defined by
a vertex order π, i. e., ε = π [BB04a]. Two edges e1, e2 ∈ E cross in ε if and only if
the endvertices of e1, e2 are encountered alternately in a cyclic traversal.

In radial level layouts the partitions are placed on nested concentric circles (levels)
and edges are drawn as curves between consecutive partitions. Therefore, only
graphs G = (V,E) with a proper partition assignment φ : V → {0, . . . , k − 1} are
allowed, i. e., |φ(u) − φ(v)| = 1 for all edges {u, v} ∈ E. Note that this prohibits
intra-partition edges and edges connecting non-consecutive partitions. For technical
reasons, edges are considered to be directed from lower to higher levels.

Recently, Bachmaier [Bac07] investigated such layouts. They introduced a ray from
the center to infinity to mark the start and end of the circular vertex orders. Using
this ray, it is also possible to count how often and in which direction an edge is
wound around the common center of the circles. We call this the winding ψ :
E → Z of an edge (Bachmaier called this offset). |ψ(e)| counts the number of
crossings of the edge with the ray and the sign reflects the mathematical direction
of rotation. See Figure 7.7 for some illustrations. Finally, a radial embedding ε of a
graph G = (V,E, φ) is defined to consist of a vertex order π and an edge winding
ψ, i. e., ε = (π, ψ).

There is additional freedom in radial drawings without changing the crossing num-
ber: the rotation of a partition Vi. A rotation moves a vertex v with extremal
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position in πi over the ray. In Figure 7.7 layout (c) is a clockwise rotation of lay-
out (b). Rotations do not modify the cyclic order, i. e., the neighborhood of each
vertex on its radial level is preserved. However, the winding of the edges incident to
v and all positions of πi must be updated.

Crossings between edges in radial embeddings depend on their winding and on the
order of the endvertices. There can be more than one crossing between two edges
if they have very different windings. We denote the number of crossings between
two edges e1, e2 ∈ E in an radial embedding ε by χε(e1, e2). The (radial) crossing
number of an embedding ε and a level graph G = (V,E, φ) is then naturally defined
as

χ(ε) =
∑

{e1,e2}∈E,e1 6=e2

χε(e1, e2)

and χ(G) = min{χ(ε) : ε is a radial embedding of G} is called the radial crossing
number of G.

Theorem 7.5 ([Bac07]) Let ε = (π, ψ) be a radial embedding of a two-level graph
G = (V1∪̇V2, E, φ). The number of crossings χε(e1, e2) between two edges e1 =
(u1, v1) ∈ E and e2 = (u2, v2) ∈ E is

χε(e1, e2) = max
{

0,
∣∣∣ψ(e2)− ψ(e1) +

b− a
2

∣∣∣+
|a|+ |b|

2
− 1
}

,

where a = sgn(π1(u2)− π1(u1)) and b = sgn(π2(v2)− π2(v1)).

Bachmaier also states that in crossing minimal radial embeddings every pair of edges
crosses at most once and adjacent edges do not cross at all. As a consequence, only
embeddings need to be considered where there is a clear parting between all edges
incident to the same vertex u. The parting is the position of the edge list of u that
separates the two subsequences with different winding values. See Figure 7.7 for
layouts with and without proper parting. Furthermore, only embeddings with small
winding are considered because large winding values correspond to very long edges
which are difficult to follow and generally result in more crossings.

7.2.4 Multi-Circular Layout

Unless otherwise noted, vertices and edges belong to the micro-level in the following.
In the micro-layout model each vertex is placed on a circle inside of its corresponding
macro-vertex. Intra-partition edges are drawn within these circles as straight lines.
Inter-partition edges are drawn inside their corresponding macro-edges and at con-
stant but different distances from the border of the macro-edge. To connect to their
incident vertices, these edges must also be routed inside of macro-vertices. Since
they are not allowed to cross the circles, they are drawn as curves around them.
We call such a drawing a (multi-)circular layout. Since intra- and inter-partition
edges cannot cross, all crossings of intra-partition edges are completely defined by
the vertex order πi of each partition Vi. Intuitively speaking, a vertex order defines
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a circular layout for the intra-partition edges. In the following we thus concentrate
on inter-partition edges.

The layout inside each macro-vertex Vi can be seen as a two-level radial layout. The
orders can be derived from the vertex order πi and the partition order Πi. Similar
to radial layouts we introduce a ray for each partition and define the beginning of
the orders and the edge winding according to these rays. Note that for each edge
e = {u, v} ∈ E, u ∈ Vi, v ∈ Vj, two winding values are needed, one for the winding
around partition Vi denoted by ψi(e) = ψu(e), and one for the winding around
partition Vj denoted by ψj(e) = ψv(e). If the context implies an implicit direction
of the edges, we call windings either source or target windings, respectively. Since
radial layouts can be rotated without changing the embedding, rays of different
partitions are independent and can be directed arbitrarily. Finally, a multi-circular
embedding ε is defined by a vertex order π, a partition order Π, and the winding of
the edges ψ, i. e., ε = (π,Π, ψ).

Observation 7.6 For each partition Vi in a multi-circular embedding ε = (π,Π, ψ)
a two-level radial embedding εi = ((πi, π

′), ψi) is defined by the vertex order πi, the
partition order Πi, and the edge winding ψi, where π′(v) = Πi(φ(v)), v ∈ V \ Vi.

There is another connection between radial and multi-circular layouts. A two-level
radial layout can easily be transformed into a two-partition circular layout and vice
versa. Given a graph G = (V1∪̇V2, E, φ) and a radial embedding ε = (π, ψ) of G, the
two-partition circular embedding ε∗ = (π∗,Π∗, ψ∗) defined by π∗1 = π1, π

∗
2 = −π2,

Π∗1 = 0, Π∗2 = 0, and ψ∗1(e) = ψ(e), ψ∗2(e) = 0 realizes exactly the same crossings
(see Figure 7.8 for an example). Intuitively speaking, the topology of the given
radial embedding is not changed if we drag the two circles apart and reverse one
of the vertex orders. If a two-partition circular embedding ε∗ = (π∗,Π∗, ψ∗) is
given, a related radial embedding ε = (π, ψ) is defined by π1 = π∗1, π2 = −π∗2, and
ψ(e) = ψ1(e)− ψ2(e).

Observation 7.7 There is a one-to-one correspondence between a two-level radial
embedding and a two-circular embedding.

Crossings in the micro-layout are due to either the circular embedding or crossing
macro-edges. Since crossings of the second type cannot be avoided by changing the
micro-layout, we do not consider them in the micro-layout model. Obviously, pairs
of edges which are not incident to a common macro-vertex can only cause crossings
of this type. For pairs of edges which are incident to at least one common macro-
vertex we can define corresponding two-level radial layouts using Observations 7.6
and 7.7 and compute the number of crossings by modifications of Theorem 7.5.

Theorem 7.8 Let ε = (π,Π, ψ) be a multi-circular embedding of a graph G =
(V,E, φ) and let e1 = {u1, v1}, e2 = {u2, v2} ∈ E be two inter-partition edges. If e1
and e2 share exactly one common incident macro-vertex, e. g., Vi = φ(u1) = φ(u2),
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Figure 7.8: A two-level radial layout and its corresponding two-circular layout.

φ(v1) 6= φ(v2), then the number of crossings of e1 and e2 is

χε(e1, e2) = max
{

0,
∣∣∣ψi(e2)− ψi(e1) +

b− a
2

∣∣∣+
|a|+ |b|

2
− 1
}

,

where a = sgn(πi(u2)− πi(u1)) and b = sgn(Π(φ(v2))− Π(φ(v1))).

Proof Let e1 = {u1, v1}, e2 = {u2, v2} ∈ E be two edges with exactly one common
end partition, e. g., Vi = φ(u1) = φ(u2), φ(v1) 6= φ(v2). All crossings between e1 and
e2 not caused by the macro layout occur in the macro-vertex Vi. According to
Observation 7.6, we can regard the fraction of the layout in Vi as a two-level radial
layout defined by ε′ = (πi,Πi ◦ φ). Applying Theorem 7.5 to the embedding ε′, the
theorem follows. �

Theorem 7.9 Let ε = (π,Π, ψ) be a multi-circular embedding of a graph G =
(V,E, φ) and let e1 = {u1, v1}, e2 = {u2, v2} ∈ E be two inter-partition edges. If e1
and e2 belong to the same macro-edge, e. g., Vi = φ(u1) = φ(u2), Vj = φ(v1) = φ(v2),
then the number of crossings between e1 and e2 is

χε(e1, e2) = max
{

0,
∣∣∣ψ′(e2)− ψ′(e1) +

b− a
2

∣∣∣+
|a|+ |b|

2
− 1
}

,

where a = sgn(πi(u2)− πi(u1)), b = sgn(πj(v1)− πj(v2)) and ψ′(e) = ψi(e) + ψj(e).

Proof Let e1, e2 ∈ E be two inter-partition edges which belong to the same mac-
ro-edge. Since only two partitions are involved, we can define a two-level radial
embedding ε′ for e1 and e2 according to Observation 7.7. In ε′ the two edges e1 and
e2 cause the same crossings than in ε. Applying Theorem 7.5 to the embedding ε′,
the theorem follows. �

Similar to radial layouts, in a crossing minimal multi-circular embedding incident
edges do not cross and there is at most one crossing between every pair of edges.
Therefore, only embeddings need to be considered where there is a clear parting
between all edges incident to the same vertex u ∈ Vi. Since in multi-circular layouts
winding in different macro-vertices can be defined independently, we split the edge
list E(u) of u by target partitions and get edge lists E(u)j = {{u, v} ∈ E(u) : v ∈
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(a) parting (b) edge {u, v} violates parting

Figure 7.9: Not all winding combinations for the incident edges of u result in a good
layout.

Vj}. For each list E(u)j, we get a position `j that separates the two subsequences
with different values of winding ψj and defines the parting for this partition. Fur-
thermore, there is also a parting for Vi defined on the edge list E(u). The order of
E(u) for this parting depends on the partings `j in the target partitions Vj. Edges
are sorted by the partition order and for edges to the same partition Vj, ties are
broken by the reverse vertex order started not at the ray but at the parting position
`j. Then, the parting for Vi is the position `i which separates different values of
winding ψi in the so ordered list. See Figure 7.9 for a layout with parting and a
layout where the edge {u, v} violates the parting.

Corollary 7.10 Multi-circular crossing minimization is NP-hard.

Proof Single circular and radial crossing minimization [Bac07, MKNF87] are
NP-hard. As we have already seen, these two crossing minimization problems
are subproblems of the multi-circular crossing minimization problem, proving the
corollary. �

As a consequence, we do not present exact algorithms for crossing minimization in
multi-circular layouts. Instead, we propose extensions of some well-known crossing
reduction heuristics for horizontal and radial crossing reduction.

7.2.5 Layout Algorithms

Since the drawing of inter-partition edges inside a macro-vertex can be seen as a
radial drawing, a multi-circular layout can be composed of separate radial layouts
for each macro-vertex (for instance using the techniques of [ST04, GK07, Bac07]).
However, such a decomposition approach is inappropriate since intra-partition edges
are not considered at all and inter-partition edges are not handled adequately due to
the lack of information about the layout at the adjacent macro-vertices. For example,
choosing a path with more crossings in one macro-vertex can allow a routing with
much less crossings on the other side.

Nevertheless, we initially present in this section adaptations of radial layout tech-
niques because they are quite intuitive, fast, and simple, and can be used for the
evaluation of more advanced algorithms.
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Barycenter and Median Layouts

The basic idea of both the barycenter and the median layout heuristic is the fol-
lowing: each vertex is placed in a central location computed from the positions of
its neighbors - in either the barycenter or the median position - to reduce edge
lengths and hence the number of crossings. For a two-level radial layout, the Carte-
sian Barycenter heuristic gets the two levels and a fixed order for one of them.
All vertices of the fixed level are set to equidistant positions on a circle and the
component-wise barycenter for all vertices of the second level is computed. The
cyclic order around the center defines the order of the vertices and the edges are
routed along the geometrically shortest-path. The Cartesian Median heuristic is
defined similar. Running time for both heuristics is in O(|E|+ |V | log |V |).
Both heuristics are easily extended for multi-circular layouts. The layout in each
macro-vertex Vi is regarded as a separate two-level radial layout as described in
Observation 7.7 and the partition orders Πi are used to define the orders of the fixed
levels. Because of the shortest-path routing, no two edges cross more than once
and incident edges do not cross at all in the final layout. On the other hand, the
used placement and winding strategies are based on edge length reduction and avoid
crossings only indirectly.

Multi-Circular Sifting

To overcome the drawbacks of the radial layout algorithms described before, we pro-
pose an extension of the sifting heuristic which computes a complete multi-circular
layout and considers edge crossings for optimizing both vertex order and edge wind-
ing, and thus is expected to generate better layouts.

Recall from Section 7.1.4 the basic idea of sifting. A vertex is moved along the fixed
order of all other vertices. For each position, the number of crossings between the
edges incident to the vertex under consideration and all other edges is computed. Fi-
nally, the vertex is placed in its (locally) optimal position. In multi-circular layouts,
the number of crossings depends on both the vertex order and the edge winding.
Therefore, we have to find for each position of a vertex the winding values for its
incident edges which result in the minimal crossing number.

The efficient computation of crossing numbers in sifting for layered and single cir-
cular layouts is based on the locality of crossing changes, i. e., swapping consecutive
vertices u y v only affects crossings between edges incident to u with edges incident
to v. In multi-circular layouts this property clearly holds for intra-partition edges
since they form (single-)circular layouts. For inter-partition edges the best routing
path may require an update of the windings. Such a change can affect crossings
with all edges incident to the involved partitions.

Since swapping the positions of two consecutive vertices (and keeping the winding
values) only affects incident edges, the resulting change in the number of crossings
can be computed efficiently. Therefore, we need an efficient update strategy for
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Algorithm 3: Multi-Circular Sifting

for (0 ≤ i < k) do
for (u ∈ Vi) do

let n = |Vi|;
let v0 = u ≺u v1 ≺u . . . ≺u vn−1 denote the current layout;

// set initial windings to 1
for ({u, v} ∈ E(u)) do

φu(e)← 1, φv(e)← 1;

// set counters for position and crossing number
p∗ ← 0, c∗ ← c← 0, initialize counters for parting;

// find best position and corresponding winding for u
for (p← 0, . . . , n− 1) do

repeat
improve parting of source partition according to step 1

until no crossing reduction ;
repeat

improve parting of target partition according to step 2
until no crossing reduction ;
repeat

improve parting of target partition according to step 3
until no crossing reduction ;

c← c + crossing number change;
// store best position
if (c < c∗) then

p∗ ← p, c∗ ← c, store counters for parting;

// swap vertices u and up+1

c← c− c(u, v);
π(u)← p+ 1, π(vp+1)← p;
c← c+ c(v, u);

move u to position p∗;
apply edge windings according to counters for parting;
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edge windings while u ∈ Vi moves along the circle. We do not consider each possible
combination of windings for each position of u but keep track of the parting of the
edges. Note that we have to simultaneously alter the parting for the source partition
and all the partings for the target partitions because for an edge, a changed winding
in the source partition may allow a better routing with changed winding in the target
partition. Intuitively speaking, the parting in the source partition should move
around the circle in the same direction as u but on the opposite side of the circle,
while the parting in the target partitions should move in the opposite direction.
Otherwise, edge lengths increase and with them the likelihood of crossings. Thus,
we start with winding values ψu(e) = 1 and ψv(e) = 1 for all e = {u, v} ∈ E(v) and
iteratively move parting counters around the circles and mostly decrease this values
in the following way:

1. First try to improve the parting at Vi, i. e., iteratively, the value of ψu for the
current parting edge is decreased and the parting moves counter-clockwise to
the next edge until this parting can no longer be improved.

2. For edges whose source winding are changed in step one, there may be better
target windings which cannot be found in step three because the value of ψj
has to be increased, i. e., for each affected edge, the value of ψj for the edge is
increased until no improvement is made any more.

3. Finally try to improve the parting for each target partition Vj separately, i. e.,
for each Vj, the value of ψj for the current parting edge is decreased and
the parting moves clockwise to the next edge until this parting can not be
improved any further.

After each update, we ensure that all counters are valid and that winding values
are never increased above 1 and below −1. Algorithm 3 gives an overview of this
procedure.

Based on the above, the locally optimal position of a single vertex can be found by
iteratively swapping the vertex with its neighbor and updating the edge winding
while keeping track of the change in crossing number. After the vertex has passed
each position, it is placed where the intermediary crossing counts reached their
minimum. Repositioning each vertex once in this way is called a round of sifting.

Theorem 7.11 The running time of multi-circular sifting is in O(|V ||E|2).

Proof Computing the difference in cross-count after swapping two vertices re-
quires O(|E|2) running time for one round of sifting. For each edge, the winding
changes only a constant number of times because values are bounded, source winding
and target winding are decreased in steps one and three, respectively, and the target
winding is only increased for edges whose source winding decreased before. Counting
the crossings of an edge after changing its winding takes time O(|E|) in the worst-
case. Actually, only edges incident to the at most two involved macro-vertices have
to be considered. For each vertex u ∈ V , the windings are updated O(|V | · deg(u))
times, once per position and once per shifted parting. For one round, this results in
O(|V ||E|) winding changes. Together, the running time is in O(|V ||E|2). �
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(a) straight-line (b) random (75 400 crossings)

(c) barycenter (68 300 crossings) (d) sifting (57 400 crossings)

Figure 7.10: Multi-circular layouts of the email network

Short Evaluation

Here, we give a primary comparison of the presented crossing reduction techniques.
A detailed discussion of the benefits of the multi-circular drawing convention is
given in Section 6.6.2. Again, our test-case is the email communication network of
a department of the Universität Karlsruhe (TH) consisting of 442 vertices and 2 201
edges at the micro-level and 16 vertices and 66 edges at the macro-level.

To investigate the effect of improved vertex orders and appropriate edge windings,
we compare two variations of multi-circular layouts: shortest-path edge winding
combined with random vertex placement and with barycenter vertex placement, see
Figure 7.10. The macro-structure of the graph is apparent at first sight. Since the
placement of the vertex circles is the same as in Figure 7.10 (a), this improvement
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clearly follows from the grouping of micro-edges. A closer look reveals the drawback
of random placement: edges between different groups have to cover a long distance
around the vertex circles and are hard to follow. Also a lot of edge crossings are
generated both inside of the groups and in the area around the vertex placement
circles. Assigning vertex positions according to the barycenter heuristic results in
a clearly visible improvement and allows the differentiation of some of the micro-
edges. Using sifting improves the layout even further, resulting from a decrease of
the number of crossings from more than 75 000 to 57 400 in the considered email
network. The time for computing the layout of this quiet large graph is below
10 seconds.

7.2.6 Conclusion

We have presented a drawing convention for micro/macro graphs where micro-level
elements are drawn on top of the elements of the coarse macro-graph so that the con-
tribution of micro-level elements to macro-level structure becomes apparent. Since
there is no need to place restrictions on the layout of the macro-graph, we assumed it
is given and focused on layouts of the micro-graph. Furthermore, we have presented
a multi-circular layout model and investigated layout strategies based on crossing
reduction techniques for it.

Backed by the visualizations of the email communication network computed by an
initial implementation of our algorithms, we claim that the grouping of micro-edges
into macro-edges according to the micro/macro drawing convention exhibits benefits
over layouts which group the vertices. Furthermore, since vertex orders and edge
windings have a large effect on the readability of multi-circular layouts, it is justified
to spend a larger effort to improve them.

A major benefit of the multi-circular layout is its combinatorial description since it
allows the combination with other visualization techniques to highlight some graph
properties or to further improve the visual appearance. A very interesting aspect
would be the combination with Holten’s [Hol06] edge bundling technique.

7.3 Visualizing Hierarchies in Two and a Half
Dimensions

In this part, we propose a method for the visualization of hierarchical information in
a 2.5D graph layout. The levels of the hierarchy are represented by 2D layouts whose
interdependence for increasing height is displayed by the third dimension. Initially,
a layout is chosen for the maximum level thus emphasizing on the most important
part of the hierarchy. The lower levels are added iteratively by force-based methods.

In this study, we consider the core hierarchy of the AS network but in principle,
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any network and hierarchy can be used. In contrast to alternative approaches to
visualize AS network data, our method illustrates the entire AS network structure.
Moreover, it is generic with regard to the hierarchy displayed by the third dimension.

7.3.1 Introduction

Current research activities in computer science and physics are aiming at under-
standing the dynamic evolution of large and complex networks like the physical Inter-
net, World Wide Web, peer-to-peer systems and the relation between Autonomous
Systems (AS). The design of adequate visualization methods for such networks is
an important part of this research. As these graphs are on one hand large or even
huge, on the other hand evolving, customized visualizations concentrating on their
intrinsic structural characteristics are required.

For a given hierarchy, our method first obtains a two-dimensional spectral layout
to display the maximum level and then iteratively adds the lower cores by force-
based methods. Using 2.5D graph visualization, we then represent the hierarchy by
stacking the induced 2D layouts of the levels in increasing height on top of each
other in the third dimension.

For the demonstration of our method, we have chosen the AS network which recently
attracted much attention in the complex systems community. A few samples of
visualizations of AS networks are already available. However, they either focus on
the geographic location of the AS [CAI03], on the routing structure seen from a
selected AS [DBMPP04, CAI02], or on a high level view created by clustering the
vertices [SW04]. In contrast, our method displays the entire AS network structure
without using external information.

Previous attempts to analyze the structure of the AS network propose the existence
of meaningful central vertices that are highly connected to a large fraction of the
graph [GP04]. It seems that this structural peculiarity is interpreted very well by
the notion of k-cores [Sei83, BZ02b]. This concept is already rudimentarily used for
initial cleaning in [GMZ03]. Accordingly, our approach is based on the hierarchical
core decomposition of the AS network.

Other visualizations of network data in 2.5D have been proposed recently, for ex-
ample to display other graph hierarchies [BDS04, EF97] or evolving graphs over
time [BC03a].

The new 2.5D visualization method for AS networks is explained in Section 7.3.3.
In Section 7.3.4 we present and discuss the results obtained for various AS network
data sets and Section 7.3.5 gives the conclusions.

7.3.2 Preliminaries

LetG = (V,E) be an undirected, connected graph and let V = V0 ⊃ V1 ⊃ . . . ⊃ Vk 6=
∅ be a given hierarchy of the vertices of G with levels Vi. A vertex has levelness i if it
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belongs to the level i but not to the level (i+1). We call the collection of all vertices
having levelness i the i-shell. An edge {u, v} is an intra-shell edge if both u and v
have the same levelness, otherwise it is an inter-shell edge. For our algorithm, we
assume that the induced subgraph G[Vi] of every level i, 0 ≤ i ≤ k, is connected as
well.

Recall from Section 4.5.1 that the k-core decomposition yields a hierarchy. The
i-core of a graph is defined as the unique subgraph obtained by iteratively removing
all vertices of degree less than i. In general, the core decomposition can result in
disconnected levels but for the AS network, all i-cores stay connected.

7.3.3 Layout Method

Before describing our layout method, we state out layout paradigm. Then, we
introduce a generic method to generate a 2.5D layout of a hierarchical decomposition
of the graph based on a 2D layout. Finally, we describe how to set parameters to
fulfill the requirements induced by the specific structure of AS networks.

Layout Paradigm Visualizations of hierarchies are often based on the abstrac-
tion to the levels of the hierarchy. However, this abstraction is typically accompanied
by a loss of information that should be avoided. Therefore, we establish the following
layout paradigm:

1. all vertices and edges are displayed,

2. the levels of the hierarchy are emphasized, and

3. inter- and intra-shell connections are made clear.

Layout Algorithm The first step of the algorithm constructs a spectral layout
for the highest level of the hierarchy. Then, iteratively, the lower levels are added
using a combination of barycentric and force-directed placement. Algorithm 4 gives
a formal description of this procedure based on the core hierarchy.

Studies indicate that a spectral placement does not lead to a satisfactory layout of
the AS network as a whole [Gae07]. However, the results improve for increasing
core value. We therefore choose a spectral layout as initial placement for the core

Algorithm 4: Generic AS layout algorithm

Input: graph G = (V,E)
let k ← maximum coreness, Gl ← the l-core, Cl ← l-core layer
calculate spectral layout for Gk

for l← k − 1, . . . , 1 do
if Cl 6= ∅ then

calculate barycentric layout for Cl in Gl, keeping Gl+1 fixed
calculate force-directed layout for Cl in Gl, keeping Gl+1 fixed
calculate force-directed layout for Gl
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of the graph. Then, for the iterative addition of the other level of hierarchy, we
first calculate a barycentric placement in which all new vertices are placed in the
barycenter of their neighbors in this level.

Unfortunately, barycentric layouts also have a number of drawbacks. Firstly, ver-
tices that are structurally equivalent in the current subgraph are assigned to the
same position. Secondly, all vertices are placed inside the convex hull of the already
positioned vertices. In particular this means that the outermost placed vertices are
those in the highest level which is clearly contradictory to the intuition of impor-
tance. To overcome these difficulties, we use the barycentric layout as an initial
placement for a subsequent force-directed refinement step, where only newly added
vertices are displaced. In addition, a force-directed approach is applied for all ver-
tices in order to relax the whole graph layout. However, the number of iterations
and the maximal movement of the vertices is carefully restricted not to destroy the
previously computed layout. A special feature of this relaxation step is the use of
non-uniform preferred spring lengths l(u, v), where l(u, v) scales with the smaller
core value of the two incident vertices u and v. Thus, the effect of a barycentric
layout is modeled since edges between vertices of high coreness are longer than edges
between vertices of low coreness. Accordingly, these springs prevent vertices with
high coreness from drifting into the center of the layout.

Fitting the Parameters Beside the choice of the hierarchical decomposition,
the algorithm offers a few more degrees of freedom that allow an adjustment to
a broad range of applications. Our choice of parameters originates from the core
structure of the AS network. For the spectral layout we propose a modified Laplacian
matrix L′ = 1/4 · D − A [BC03b]. Our experiments showed that the normalized
adjacency matrix results in comparably good layouts while the standard Laplacian
matrix performs significantly worse.

The force-directed placement is computed by a variant of the algorithm from Fruch-
terman and Reingold [FR91]. Unlike the original algorithm, we calculate the dis-
placement only for one vertex at a time and update its position immediately. Fur-
thermore, we use the original forces but with non-uniform preferred edge lengths
l(u, v) proportional to the square of min{level(u), level(v)}. For the local refinement
step we perform at most 50 iterations and for the global roughly 20 iterations.

7.3.4 Results

We illustrate the results of our method for real AS data sets as well as for generated
graphs. For a more detailed discussion, we also refer to [BBGW04]. The section is
concluded by techniques to aid the human perception.

Our real world data consist of three AS networks collected by the Oregon Routeview
Project [Rou] on June 1st in 2001, 2002, and 2003, respectively. The sizes of these
networks are given in Table 7.1. In addition, we used the Internet topology generator
INET 3.0 [WJ02] to create artificial graphs that should exhibit a similar topology.
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AS 2001-06-01 AS 2002-06-01 AS 2003-06-01

Number of Nodes 11 211 13 315 15 415

Number of Edges 23 689 27 703 34 716

Core Number 19 20 25

Table 7.1: Sizes of the AS network snapshots.

We discuss two different two-dimensional types of figures, the 2D layout produced by
Algorithm 4 and the projection of the 2.5D layout into one of the full dimensions, also
referred to as level projection. Vertices are represented by ellipses of size decreasing
with coreness and with colors fading from black to white. Edges are always drawn
as straight lines.

AS Network The 2D layouts are dominated by the vertices with small coreness
leading to a huge periphery. This is reflected in Figures 7.11(a), 7.11(c), and 7.11(e)
that show a large amount of small and bright vertices in the outer regions. On the
other hand, most vertices with higher coreness are contained in the convex hull of
the core, which is apparent in Figures 7.11(b), 7.11(d), and 7.11(f).

A closer examination reveals three almost separated radial areas around the center.
The first one mainly contains the 3-core shell, while the 2-core shell forms the
second and third area that are distinguished by their density (see Figure 7.12(a)-
7.12(c)). This reflects the heterogenous importance distribution within these areas.
In contrast, a large part of the 1-core shell is attracted to the central region. These
properties can be observed for all three instances. The well-known growth of the
AS network affects especially the 2- and 3-core shells. We observe that the spatial
distances of these two shells decrease over time.

Generated Graphs There are significant differences of the generated graphs to
the real AS networks, e. g., in the number of edges (35 300 vs. 23 700) and core
levels (8 vs. 19), a finding that is confirmed by a later study on graph generators
(see Section 8.2.3). An obvious difference of the generated graphs is the more uni-
form distribution of cardinalities of the core shells (Figure 7.13). Accordingly, the
separation of the different core shells is less visible in the layout.

Supporting Perception There are several means for visual aid in 2.5D layouts,
i. e., choice of perspective (in 3D), additional geometric objects emphasizing the
levels of hierarchy, and colors. The choice of perspective is very powerful. We
have already used this feature when presenting only the 2D layout and the level
projection, respectively. More general, a user can focus on individual aspects, i. e.,
a global oriented view, a hierarchical version, or a mixture of both. A beneficial
consequence might be that unintended information is automatically masked out by
the perspective.

In order to simplify navigation in the three dimensional space, one can also introduce
additional objects that mark the levels of hierarchy, i. e., rectangles, discs, or planes.
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(a) 2D layout (2001) (b) level projection (2001)

(c) 2D layout (2002) (d) level projection (2002)

(e) 2D layout (2003) (f) level projection (2003)

Figure 7.11: 2D layout and level projection of the AS network in 2001, 2002, and
2003.
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(a) 1-core shell only (b) 2-core shell only (c) 3-core shell only

Figure 7.12: 2D layout and level projection of the AS network 2002-06-01.

(a) 2D layout (b) level projection

Figure 7.13: Layouts of the generated graph for June 1st, 2002 with 11 211 vertices.

Transparency or filters might even increase their effectiveness. Color can be used
in various ways, e. g., to highlight vertices and edges of special interest, to code the
levels of hierarchy, or to improve the overall perception.

We used semi-transparent rectangles to mark levels and colored the vertices accord-
ing to their coreness. The color of the edges are determined by a linear interpolation
between the colors of their endvertices (see Figure 7.14).

7.3.5 Conclusion

Representing the hierarchy of a network on levels of increasing height is a sugges-
tive and obvious visualization method. We have introduced a layout paradigm for
drawings in two and a half dimensions which implements this idea and overcomes
drawbacks inherent to common methods like barycenter placement.

For the k-core decomposition of the AS network, we have explicated how our vi-
sualization supports the recognition of the details of the hierarchy. Especially, it
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(a) view from above, light levels (b) view from above, light levels

(c) diagonal view from above (d) diagonal view from above

(e) horizontal view to one side (f) horizontal view to one side

Figure 7.14: Drawings of a small example and the AS network of 2001 using graphical
features to support perception. The level of the vertices and edges are
marked by colors.
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emphasizes the characteristics of the lower core shells and their connections with
the highest shells. Furthermore, we have been able to recover known effects of the
evolution of the AS network in the drawings and to distinguish generated and real
AS networks by their specific, observable effects on the layout.
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Chapter 8

Network Models

The first models for the generation of random graphs by Gilbert [Gil59] and Erdős
and Rényi [ER59] created edges entirely uniformly at random. While such graphs
have a small average distance over all vertices, real-world networks often exhibit
significant other characteristics not obtainable by these models, e. g., a high local
density or a specific degree distribution. Therefore, a plethora of models for random
graphs was proposed thereafter. These procedures model the natural growth of
networks by means of iteratively adding vertices, geometric positioning information,
a definition of link connectivity based on the preference for nearest neighbors or
already highly connected vertices, or combine several of these approaches.

In Section 8.1 we present some of the most prominent and fundamental models
for the generation of random networks, namely G(n, p) [Gil59], small world [WS98],
and preferential attachment [BA99]. These three methods are implemented in visone
using the efficient linear time algorithms of Batagelj and Brandes [BB05].

In Section 8.2 we introduce our novel model that brings together the well-know
concepts of k-cores [Sei83, BZ02b] and of preferential attachment. Recent studies
exposed the significant k-core structure of several real world systems, e.g., the AS
network of the Internet. We present a simple and efficient method for generating
networks which at the same time strictly adhere to the characteristics of a given k-
core structure, called core fingerprint, and feature a power-law degree distribution.
We showcase our algorithm in a comparative evaluation with two well-known AS
network generators.

8.1 Fundamental Models

8.1.1 General Random Graphs G(n, p)

One of the first models for random graphs was introduced by Gilbert in 1959 [Gil59].
In his model G(n, p), the n(n− 1)/2 potential edges of an undirected simple graph
with n vertices are included independently with probability 0 < p < 1. The prob-
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ability p is usually chosen depending on the number of vertices n since for a fixed
edge probability p the expected number of edges is proportional to n2.

Shortly after Gilbert, Erdős and Rényi [ER59] introduced a closely related model
G(n,m), in which all simple undirected non-isomorphic graphs with n vertices and
exactly m edges are equally probable. For m = pn(n − 1)/2 these two models
stochastically converge as n→∞.

Efficient Implementation The direct implementation of the model G(n, p) –
independently for each candidate edge draw uniformly at random a number r ∈ (0, 1)
and insert the edge if r < p – yields a running time in Θ(n2), regardless of the number
of edges actually generated. For small values of p, i. e., for the generation of sparse
graphs, this method is not suitable since most trials will be unsuccessful.

In visone we therefore use the algorithm proposed by Batagelj and Brandes [BB05]
which samples the waiting time, i. e., the number of rejected edges until the next
accepted edge is found instead of drawing edge probabilities. Using the geometric
method [FMR62], the running time for generating a graph with n vertices and
m edges is in O(n+m), which is optimal.

Algorithm 5: G(n, p)

Input: number of vertices n, probability 0 < p < 1
Output: undirected graph G = (V,E)

V ← {0, . . . , n− 1}; E ← ∅;
v ← 1; w ← −1;
while v < n do

r ← draw from [0, 1) uniformly at random;
w ← w + 1blog(1− r)/ log(1− p)c;
while w ≤ v and v < n do

w ← w − v;
v ← v + 1;

if v < n then
E ← E ∪ {{v, w}};

The geometric method requires an enumeration of the candidate edges, for example
in lexicographical order. In each step, the probability for accepting the next edge
after k trials is

q(k) = (1− p)k−1p ,

i. e., waiting times are geometrically distributed. In order to sample waiting times,
each positive integer k is assigned an interval Ik of length q(k) and these intervals
are ordered consecutively starting at 0. Therefore, we have

∞∑
k=1

q(k) = 1



8.1 Fundamental Models 135

and the interval Ik ends at 1 − (1 − p)k. In each step, we accept the k-th next
edge for which a randomly chosen r ∈ [0, 1) is contained in Ik, i. e., we choose
k = 1 + blog(1− r)/ log(1− p)c , since r < 1− qk ⇔ k > log(1− r)/ log(1− p).
The pseudocode in Algorithm 5 implements a row-wise traversal of the lower half of
the adjacency matrix which corresponds to an enumeration of undirected candidate
edges in lexicographical order. The algorithm is easily modified to generate other
classes of graphs by enumerating different sets of candidate edges. In visone we
use a row-wise traversal of both halfs of the adjacency matrix to generate directed
graphs. Furthermore, we take care of the cases p ∈ {0, 1}, which are omitted in the
algorithm, since the term log(1− r)/ log(1− p) is undefined for p ∈ {0, 1}.

8.1.2 Small World

The defining characteristics of a small world networks are a small average distance
over all vertices combined with a high local density. Intuitively speaking, a small
world shows a distinct local clustering but some shortcuts connect very different
parts of the network. More precisely, in a small world the average shortest-path
distance grows only logarithmically with the number of vertices while the clustering
coefficient (see Section 4.4) is high.

One of the first studies highlighting short average distance in a large social network
is the famous experiment by Milgram [Mil67]. He asked several people in the US to
deliver a message by passing it on only to people they knew personally. The initial
senders knew only the name, the locality, and the profession of the recipients. The
letters which reached their destination traveled on average over six mediators but
only around 20% of them reached their target at all. Nevertheless, the popular claim
of six degrees of vicinity was coined. In a recent and more elaborate study, Leskovec
and Horvitz [LH08] found the average distance to be 6.6 in the communication
network of the MSN instant messenger community, which consisted of 180 million
vertices and 1.3 billion undirected edges at the time of the study in June 2006.

Many types of relationship induce graphs in which there are many direct connections
between the neighbors of a vertex resulting in a high clustering coefficient. For ex-
ample, in networks of acquaintance like the one considered in Milgram’s experiment
and the MSN instant messenger network it is likely that people one knows personally
also know each other. In contrast, graphs following the model G(n, p) indeed show
a small average distance even for small values of p whereas the clustering coefficient
is small except for very high values of p.

The popular model of Watts and Strogatz [WS98] for undirected small world graphs
starts at a fixed graph with a distinct local clustering and rewires a small fraction
of the edges to generate shortcuts. More precisely, the initial graph Ck

n is the k-th
power of a n-cycle, i. e., a cycle of n vertices in which each vertex is connected to
its k neighbors to the left and to its k neighbors to the right. Then, each of the nk
edges is rewired with probability p by replacing one of its endvertices by a randomly
selected target.
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Efficient Implementation The straight-forward implementation of this model
creates in linear time an n-cycle and decides for each edge whether to rewire it or
not. This method may generate loops and multi-edges. Furthermore, small values
of probability p result in a large number of unsuccessful random trials. Nevertheless,
since each created edge is tested only once, the asymptotic running time is still in
O(n + m) and the few expected loops and multi-edges have an insignificant effect
on the properties of the graphs. Algorithm 6 gives the pseudocode for this simple
method. Batagelj and Brandes [BB05] propose an extention based on maintaining a
list of candidate vertices for the replacement of an endvertex of an edge which goes
without unsuccessful trials and avoids loops and multi-edges.

Algorithm 6: Small World

Input: number of vertices n, number of neighbors 1 ≤ k ≤ b(n− 1)/2c,
replacement probability 0 < p ≤ 1

Output: undirected small world G = (V,E)

V ← {0, . . . , n− 1}; E ← ∅;
for v ← 0 to n− 1 do

for w ← v + 1 to v + k do
w ← w mod n;
r ← draw from [0, 1) uniformly at random;
if r < p/2 then // replace ’target’ vertex w

v′ ← d2r(n− 1)/pe;
E ← E ∪ {{v, v + v′ mod n}};

else if r > 1− p/2 then // replace ’source’ vertex v
w′ ← d2(1− r)(n− 1)/pe;
E ← E ∪ {{w,w + w′ mod n}};

else
E ← E ∪ {{v, w}} ; // no replacement

8.1.3 Preferential Attachment

In a number of real-world graphs some properties have been identified that are un-
likely to emerge in the models presented so far, most notably a distribution of vertex
degrees that roughly obeys a power-law, a fact that has been identified by Faloutsos
et al. [FFF99]. More precisely, the number of vertices with degree d is proportional
to d−γ for some constant γ. Graphs with this property are commonly referred to as
scale-free. Barabási and Albert describe a growth process coined preferential attach-
ment [AB02] that generates graphs with such a degree distribution. Starting out
with an initial graph G0, e. g., an empty graph, this process iteratively adds a new
vertex that is adjacent to a fixed number d of already existing vertices. The choice
of a specific neighbor is made with probability proportional to the current degree of
the vertices.
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This process is inspired by two typical facts of the evolution of social networks:
growth and preferential attachment. Already highly connected vertices are likely to
become even more connected, for example new web sites rather link to well-known
sites like Wikipedia than to a small private page and popular people attract new
relationships more easily – the so-called “the rich get richer”-phenomenon.

Efficient Implementation Based on the following observation, Batagelj and
Brandes [BB05] present an efficient algorithm for the generation of scale-free graphs:
in a list of all edges created so far the occurrence of each vertex is equal to its degree.
Therefore, this list can be used to sample vertices according to the current degree
distribution. In Algorithm 7 an array M containing the endvertices of each edge
is used to implement this list. Both its running time and space requirement are in
O(n+m). Note that the algorithm resolves the ambiguity of how to select a set of
d > 1 neighbors in each step according to Bollobás’s model [BRST01].

Algorithm 7: Preferential Attachment

Input: number of vertices n, minimum degree d ≥ 1
Output: undirected scale-free multi-graph G = (V,E)

V ← {0, . . . , n− 1}; E ← ∅;
array M ← ∅;
for v ← 0 to n− 1 do

for i← 0 to d− 1 do
j ← 2(vd+ i);
M [j]← v;
r ← draw from [0, . . . , j] uniformly at random;
M [j + 1]←M [r];
E ← E ∪ {{v,M [r]}} ; // note that {v,M [r]} = {M [j],M [j + 1]}

For directed graphs, the minimum degree d can be specified separately for minimum
in- and out-degree and the neighbor selection probability can be restricted to the
in-, out-, or total degree distribution by sampling from even, odd, or all positions
in M , respectively. In visone, d specifies the minimum out-degree and all positions
are considered for sampling. In the original paper [BB05], a number of other modi-
fications are described, e. g., an arbitrary initial graph G0 can be used by filling M
with the endvertices of the edges of G0.

8.2 Augmenting k-Core Generation with Pref-
erential Attachment

The interest in modeling specific classes of graphs has significantly increased by
recent studies of complex systems such as the Internet, biological networks, river
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basins, or social networks. While random graphs have been studied for a long time,
the standard models appear to be inappropriate because they do not share certain
abstract characteristics observed for those systems. One of these characteristics is
the k-core structure which can be interpreted as a nested decomposition separat-
ing parts of the network based on their density. This decomposition is commonly
applied in order to identify central parts of the networks since it peels the net-
work layer by layer, filtering out less important parts that are sparsely connected
with the remaining graph. Example applications are network fingerprinting with
LunarVis [GGW08] and LaNet-vi [AHDBV06], protein network analysis [WA05], or
the exploration of modern social networks [DYNM06].

A crucial field of application of graph generators is the simulated evolution of a
given network, granting insights in both its past development and its anticipated
future behavior. One prominent example is the Internet at the Autonomous Sys-
tem (AS) level where various models have emerged over the last few years including
BRITE [MLMB01], Inet [JCJ00], nem [Mag02], and various models presented by
Pastor-Satorras and Vespignani [PSV04]. While this network has been observed to
possess a very distinct k-core structure [AHDBV05, CHK+07], kept track of over a
long period of time, all generating tools so far ignore this structure, and thus largely
fail to do justice to this significant and stable property [DGM06]. Overall, up to our
knowledge an approach to create networks with a given k-core structure is missing
so far.

To address this issue, we refine the abstract measurement of core sizes to a core
fingerprint that additionally includes information on the inter-connectivity of each
pair of shells. This allows us to design a simple and efficient method to incrementally
generate randomized networks with a predefined k-core structure, starting with the
maximum core. By utilizing two results on edge rewiring, we thus achieve a structure
that precisely matches the core fingerprint.

Predefining the core fingerprint of a network still leaves many degrees of freedom
open. Since we focus on the network of Autonomous Systems as a case study, we
exploit this fact and optionally bias the randomness in the adjacency of vertices
towards preferential attachment (see Section 8.1.3). This paradigm of setting up
links in a network has been proven to introduce a power-law degree distribution,
which has first been observed by Faloutsos et al. [FFF99] for the Internet. Our
approach imposes almost no modifications on a vanilla realization of preferential
attachment, a fact that is reflected by our experimental results. We thus manage to
coalesce two of the most fundamental concepts in the theory of complex networks
of the recent past.

The rest of this section is organized as follows: in the preliminaries we recall some
definitions and state basic properties for k-core structures and on preferential at-
tachment in Section 8.2.1, then we give the description of the network generator in
Section 8.2.2. In Section 8.2.3 we evaluate our model in comparison to two well-
known generators with respect to commonly used network properties. Finally, we
give some concluding remarks.
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8.2.1 Preliminaries

In this section, let G = (V,E) be a simple, undirected graph. A subset V ′ ⊆ V of
the vertex set induces a subgraph G[V ′] = (V ′, E ′) where the edge set E ′ is defined
by E ′ = {{u, v} |u, v ∈ V ′, {u, v} ∈ E}. A nested decomposition of G is a finite
sequence (V0, . . . , Vk) of subsets of vertices such that V0 = V , Vi+1 ⊆ Vi for i < k,
and Vk 6= ∅.
Cores, as introduced in Section 4.5.1, are a widely used realization of nested de-
compositions. Constructively speaking, the i-core of an undirected graph is defined
as the unique subgraph obtained by iteratively removing all vertices of degree less
than i. This procedural definition immediately gives rise to a construction algorithm
that can easily be implemented. Moreover, it is equivalent to the closed definition
of the i-core as the set of all vertices with at least i adjacencies to other vertices in
the i-core. The core decomposition can be computed in linear time with respect to
the graph size [BZ02a].

The core number of a graph is the smallest i such that the (i + 1)-core is empty,
and the corresponding i-core is called the core of a graph. A vertex has coreness i,
if it belongs to the i-core but not to the (i + 1)-core. We call the collection of all
vertices having coreness i the i-shell. An edge {u, v} is an intra-shell edge if both u
and v have the same coreness, otherwise it is an inter-shell edge.

Edges in a Core Hierarchy

The following two lemmas summarize two facts about the relation of intra- and
inter-shell edges. We later exploit this interaction and interchangeability of edges in
our network generation algorithm.

Lemma 8.1 (Rewiring) Let G = (V,E) be a graph. Let u, v ∈ V be two non-
adjacent vertices with the same coreness and {u,w}, {v, w′} ∈ E two edges such
that coreness (u) < min{coreness (w) , coreness (w′)}. Then G′ = (V,E ′) with E ′ =
E \ {{u,w}, {v, w′}} ∪ {u, v} has the same core decomposition as G. Conversely,
let u, v ∈ V be two adjacent vertices with the same coreness k and with at most k−1
neighbors in higher cores, and let w,w′ ∈ V be two vertices such that coreness (u) <
min{coreness (w) , coreness (w′)} and {u,w}, {v, w′} 6∈ E. Then, G′′ = (V,E ′′)
with E ′′ = E \ {u, v} ∪ {{u,w}, {v, w′}} has the same core decomposition as G.

Lemma 8.2 (Swapping) Let G = (V,E) be a graph, u, v, w, w′ ∈ V be four ver-
tices all having the same coreness, {u, v}, {w,w′} ∈ E be two intra-shell edges, and
{u,w}, {v, w′} 6∈ E. Then the graph G′ = (V,E ′) with E ′ = E \ {{u, v}, {w,w′}} ∪
{{u,w}, {v, w′}} has the same core decomposition as G.

It is not hard to see that the correctness of both lemmas follows from the definition of
cores. The cumbersome prerequisites can be understood more easily by the concept
of a removal order that will be introduced later in Section 8.2.2. Informally speaking,
Lemma 8.1 allows for most pairs of disconnected vertices of the same coreness to each
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(a) original graph (b) after rewiring (c) after swapping

Figure 8.1: Rewiring and swapping edges in the left graph. The labels show the
coreness of the vertices.

remove one edge to some vertices of higher coreness and instead become connected,
and vice versa, without changing the decomposition. Furthermore, according to
Lemma 8.2 we can swap the endvertices of intra-shell edges if this does not interfere
with existing connections. Figure 8.1 illustrates these two lemmas for an example
graph. Using these statements, we can now establish (tight) bounds of the sizes of
cores and shells.

Lemma 8.3 (Size of i-Cores) Let G = (V,E) be a graph, (V0, . . . , Vk) its core
decomposition and Gi = (Vi, Ei) = G[Vi] the i-core. Then the size of every i-core is
bounded as follows:

i+ 1 ≤ |Vi| and
(i+ 1)i

2
≤ |Ei| . (8.1)

Let ni = |Vi \ Vi+1| be the number of vertices with coreness i and mi = |Ei \ Ei+1|
the number of all edges whose endvertices with minimum coreness have coreness i
for 0 ≤ i ≤ k (for convenience we define Vk+1 = ∅ and Ek+1 = ∅). Then the size of
the i-shell is bounded as follows:

0 ≤ ni ≤ |V | (8.2)⌈
i·|ni|

2

⌉
, if ni > i(

ni
2

)
+ ni · (i− ni + 1) , if ni ≤ i

}
≤ mi ≤

{
i · ni , if i < k

i · ni − i2+i
2

, if i = k
(8.3)

Note that the bounds for the i-core (Eq. 8.1) are trivially obtained from the def-
inition. The bounds for the i-shell (Eq. 8.2 and 8.3), however, use the above two
lemmas, i. e., the shell has the minimum number of edges if it has the maximum
possible number of intra-shell edges since each such edge contributes twice and a
minimum number of inter-shell edges. An analogous reasoning yields the upper
bounds. We omit proofs for the bounds of this lemma except of the following.

Proof [of Upper Bound 3] By definition, there exists a removal order σ that itera-
tively removes a vertex v from Vk with deg(v) ≤ k, such that eventually all vertices
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in Vk are removed. The maximum number of edges that still allow such an order
of removal σ(v), v ∈ Vk, is calculated by counting the maximum numbers of inci-
dent edges the removed vertices in such an removal order can have. For the first
nk−(k+1) vertices (which can be zero), the removal order σ implies that the current
vertex v can have a maximum degree of k. For the last k + 1 vertices (minimum
number of vertices for a k-shell) however, the number of incident edges during the
removal order is even less, resulting in a (k+1)-clique supported by (k2 +k)/2 edges.
Thus, there are

(nk − (k + 1)) · k︸ ︷︷ ︸
by vertices beyond k + 1

+
(k + 1) · k

2︸ ︷︷ ︸
by clique of last k + 1 vertices

= k · nk −
k2 + k

2
(8.4)

edges in total, which proves the bound. It is easy to see that this bound is sharp,
since our arguments induce a straight-forward construction.

Note that this bound also applies to lower shells when excluding edges to higher
shells. �

8.2.2 Core Generator

In this section, we first introduce a set of relevant parameters for the construction
of core structures and discuss which combinations of these lead to feasible instances,
i. e., are capable of realizing a graph with a predefined core structure. Then, we
describe our basic algorithm for generating such graphs and point out several vari-
ations.

As the 0-shell only contains isolated vertices and in order to reduce technical pecu-
liarities, we restrict ourselves to generating graphs with an empty 0-shell.

Input Parameters

There are several possibilities to specify core structures. The most obvious quanti-
tative approach is to give the number of vertices per shell, the number of intra-shell
edges, and the number of inter-shell edges (for each pair of shells). This can be
coded by a combination of a vector N ∈ Nk

0, where ni is the number of vertices in
the i-shell, and a symmetric matrix M ∈ Nk×k

0 , where mi,j contains the number of
edges connecting the i-shell with the j-shell. We call this the core fingerprint. For
example, the graph (omitting isolated vertices) given in Figure 4.4 has the following
fingerprint:

N = (4, 3, 2, 5) and M =


3 1 0 0

1 2 2 0

0 2 0 6

0 0 6 10


Clearly, the implied sizes of the shells have to respect the bounds established in
Lemma 8.3. This kind of specification of core structures provides the maximum
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degree of freedom, i. e., the user can configure the size distribution of each shell and
is only limited by constraints ensuring consistency.

One can easily relax the requirement of absolute values in the input by replacing
them by parameters that correspond to the ratio of edges with respect to the tight
bounds established in Equation 8.3. To further simplify the structure of the input,
these ratios could be replaced by a density function. Such a function could, e.g.,
follow a simple power-law.

Algorithmic Approach

Our generator builds a graph by iteratively adding new shells beginning at the
maximum core. When adding a new shell, we create vertices and edges according
to the given core fingerprint and take care to not change the coreness of vertices
in previously built higher shells. The detailed pseudocode is given in Algorithm 8.
We omit in-depth explanations of supplementary operations such as appendAll
or removeAllOccurences since these methods have one-to-one equivalences in
most high-level programming languages.

In order to guarantee that the coreness of vertices in the i-shell will not exceed i, we
define an order σi which will be maintained as a valid removal order for this shell
(line 4). It is of vital importance to ensure that for every vertex in Vi the sum of
the number of neighbors in the shell i with a higher value of σi and the number of
neighbors in higher shells does not exceed i. To model this, newly created edges
are directed such that inter-shell edges point from the lower shell to the higher shell
and intra-shell edges are directed in accordance to our predefined order σi and each
vertex in Vi is restricted to a maximum out-degree of i (line 18). We are left to
guarantee that the coreness is exactly i and not less. An example where this is not
yet satisfied is given in Figure 8.2(a).

While lines 3 to 25, called the element generation phase, avoid erroneously high
values of coreness, as further detailed below, the rewiring phase in lines 27 to 37
solves the problem of erroneously low values of coreness by a sophisticated movement
of edges. We choose a vertex v with insufficient degree and a vertex w with degree
greater than i (line 30). Then, we select a neighbor c ∈ neighbors(w) which is
not yet adjacent to v (lines 31 and 32) and replace this adjacency {w, c} by a new
edge {v, c} (line 33).

Before we revisit the element generation phase in detail, we recapitulate the mech-
anism of preferential attachment . The network is grown from an arbitrary, small
seed such as a single vertex or a triangle. Iteratively vertices are added and con-
nected to a fixed number of neighbors. These neighbors are randomly selected from
existing vertices with probability proportional to their degree. This behavior can be
modeled by maintaining a list of vertices to which both endvertices of each newly
inserted edge are appended. Thus, this list contains each vertex with multiplicity
equal to its current degree. Drawing uniformly at random from this list is a legiti-
mate and efficient realization of preferential attachment introduced by Batagelj and
Brandes [BB05] (see also Section 8.1.3).
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Algorithm 8: Core Generator

Input: integer k, vector N ∈ Nk
0, valid symmetric matrix M ∈ Nk×k

0

Output: graph G = (V,E)

V ← ∅; E ← ∅; targetVertices ← ∅;1

for i← k to 1 do // introduce next shell2

list Vi ← {ni new vertices};3

σi : Vi → {1, . . . , ni} defined by σ−1
i (`) = Vi[`] ; // removal order4

u← Vi[ni] ; // last vertex in removal order5

list sourceVertices ← Vi \ {u} ; // u cannot source intra-edges6

list targetVertices[i] ← {u} ; // u into PA-list7

list unconnectable ← {u} ; // see line 218

for j ← i to k do // select target shell9

for m← 1 to mi,j do // introduce mij edges10

s← sourceVertices[random] ; // source of new edge11

C ← targetVertices[j] ; // target candidates list12

C.removeAllOccurences(neighbors(s) ∪ {s});13

if j = i then // check removal order σ14

C.removeAllOccurences({` ∈ Vi | σ(`) < σ(s)});15

t← C[random] ; // target of new edge16

E ← E ∪ (s, t) ;17

if outdeg(s) = i then // source saturated18

sourceVertices.remove(s);19

else if j = i and outdeg(s) ≥ ni − σi(s) then20

sourceVertices.remove(s) ; // no more intra-targets21

unconnectable.append(s) ; // store for inter-targets22

targetVertices[i].append(s, t);23

if j = i then24

sourceVertices.appendAll(unconnectable) ; // restore25

remove direction of edges;26

list poorVertices ← {v ∈ Vi | deg(v) < i} ;27

list richVertices ← {v ∈ Vi | deg(v) > i} ;28

while poorVertices 6= ∅ do // rewire unsaturated vertices29

v ← poorVertices[random]; w ← richVertices[random];30

C ← neighbors(w) \ neighbors(v) ; // pivot candidates31

c← C[random];32

E ← E \ {{w, c}} ∪ {{v, c}};33

if deg(v) = i then // v saturated34

poorVertices.remove(v);35

if deg(w) = i then // w no longer rich36

richVertices.remove(w);37

V ← V ∪ Vi ; // shell i completed38
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(a) before rewiring (b) after rewiring

Figure 8.2: Example of rewiring. The fingerprint N = (0, 0, 7) and m3,3 = 11 re-
sulted in the left hand graph. Clearly, vertex 1 has insufficient degree.
In the rewiring phase we can choose either vertex 3 or 5 as the rich
vertex. For the right hand graph we selected vertex 3 and vertex 5
as the rich vertex and the pivot vertex, respectively. Thus, we get
E = E \ {{3, 5}} ∪ {{1, 5}}.

Shells are created iteratively, starting with the maximum core. First, the predefined
number ni of vertices are created (line 3) together with an arbitrary removal order σi
on them (line 4). In the element generation phase, some subtlety has been put into
the choice of incident vertices of new edges. Since we only predefine the connectivity
between shells, there is no fixed number of neighbors newly inserted vertices can
be connected to. Instead, we maintain a list of sourceVertices which initially
contains each vertex of shell i (line 6) exactly once, and an initially empty list
targetVertices into which we insert the endvertices of each new edge, following
the approach of Batagelj and Brandes [BB05].

We now iterate over each shell j that has already been created, starting with the
very shell that has just been created (j = i), and create mij edges from shell i to
shell j (loop starting at line 10). Each time an edge is created, we draw its source
uniformly at random from sourceVertices (line 11) and check whether it now has
the maximum outdegree for belonging to shell i (line 18), in which case we remove
it from sourceVertices. Further, in the case j = i, if there are no more feasible
targets for this source, i.e., it is already connected to all vertices with a higher value
of σi, we remove it from sourceVertices (line 21). However, such a vertex is not
yet saturated and therefore stored in the list unconnectable (line 22) for later
use in the case j 6= i (line 25). Note that as a consequence, the highest ranking
vertex u = argmaxv∈Viσi(v) in the current shell i is removed before the loop from
sourceVertices (lines 5 and 6) and instantly added to the list unconnectable.

Since edges can be directed towards any higher shell, we maintain the list of tar-
getVertices[i] for each shell i throughout the algorithm. As mentioned above,
these lists are the key for realizing preferential attachment. We initialize tar-
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getVertices[i] with u (line 7) since u is the only feasible target for all v ∈ Vi. For
each choice of s in line 11, a list of feasible target vertices C is created (line 12).
To this end, we prune list C of illegal choices, which are the source itself and its
neighbors (line 13), and, in the case of j = i, vertices v ∈ Vi with a lower value of
σ(v) (line 15). Concluding the creation of a new edge, we append its source and
target to the list of targetVertices (line 23).

Analysis of the Algorithm

Based on the observations in the previous section, we prove the correctness of Al-
gorithm 8 and analyze its running time in the following.

Observation 8.4 Algorithm 8 generates valid core structures for the maximum
number of intra-shell edges, i. e., mii = i · ni − (i2 + i)/2 for 1 ≤ i ≤ k.

Proof Let m = i · ni− (i2 + i)/2. A vertex is removed from sourceVertices if
either its out-degree is equal to i or it is connected to all vertices with a higher value
of σi. If sourceVertices is empty, we have inserted (ni−(i+1))·i+(i+1)·i/2 = m
edges (see Equation 8.4). �

Based on this observation, Lemmas 8.5 and 8.6 prove the correctness of Algorithm 8
inductively.

Lemma 8.5 Given a matrix M belonging to a valid core fingerprint and a valid
subgraph G[Vk ∪ · · · ∪ Vi+1], the element generation phase constructs the subgraph
G[Vk ∪ · · · ∪ Vi] such that M is obeyed and all vertices u ∈ V` have coreness (u) ≤ `,
for all i ≤ ` ≤ k.

Proof Let j = i. Lines 15 and 18 guarantee that σi is a valid removal order.
Thus, all vertices v ∈ Vi have coreness (v) ≤ i and the coreness of all other vertices
remains unchanged. Due to Observation 8.4 the upper bounds in Lemma 8.3 can
be attained, thus any valid mii can be realized.

Now let j > i. Analogously, requiring outdeg(v) ≤ i preserves the removal order
and thus a coreness of i or less for vertices in Vi. Again, the coreness of all other
vertices remains unchanged, and the upper bound in Lemma 8.3 can be attained. �

The above lemma shows that the element generation phase fits in all vertices and
edges required by the fingerprint and grants to each vertex a coreness equal to or
less than the required value. We are left to prove that the rewiring phase refines the
edge set such that equality holds.

Lemma 8.6 Given a matrix M belonging to a valid core fingerprint and a valid
subgraph G[Vk ∪ · · · ∪Vi+1]. If coreness (v) ≤ i holds for all v ∈ Vi, then the rewiring
phase moves edges such that the subgraph G[Vk ∪ · · ·∪Vi] is valid, i. e., M is obeyed,
and all vertices u ∈ V` have coreness (u) = `, for all i ≤ ` ≤ k.

Proof We have to prove that the list poorVertices defined in line 27 is
empty when the algorithm terminates. Suppose there exists at least one vertex
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v ∈ poorVertices. Since deg(v) < i, clearly coreness(v) < i. Then, the list
richVertices is not empty since otherwise all vertices u ∈ Vi have deg(u) ≤ i con-
tradicting Lemma 8.3. Let w ∈ richVertices, i. e., w ∈ Vi and deg(w) > i. Since
deg(w) > deg(v), the set of pivot candidates C = neighbors(w) \ neighbors(v)
is not empty. Choosing c ∈ C, the new set of edges E ′ = E \ {{w, c}} ∪ {{v, c}}
still obeys M , decrements deg(w), and increments deg(v), increasing coreness(v) by
at most one.

Thus, the rewiring phase maintains the invariant. Furthermore, due to the strict
increase and decrease of deg(v) and deg(w), respectively, |poorVertices| strictly
decreases to 0, which terminates the algorithm. �

Since the base case, i. e., the empty graph, is trivial, Lemmas 8.5 and 8.6 inductive
yield that Algorithm 8 constructs a graph in accordance with M and Vi, 0 ≤ i ≤ k.

In terms of running time the crucial parts of the algorithm are the updates and
random accesses of the lists sourceVertices, targetVertices, poorVertices,
and richVertices, and the creation of the target candidate and pivot candidate
lists (lines 12–15 and 31). We use array-backed lists to guarantee constant-time
access to random elements. When we remove an element e, we fill its position with
the last element of the list, avoiding moving all successive elements of e. Since
we only have random access to the lists, preserving their orders is not required.
This technique is similarly to Durstenfeld’s modification [Dur64] of a Fisher-Yates
shuffle [FY48].

Lemma 8.7 The asymptotic running time of Algorithm 8 is bounded by O((m2 +
n2k) log(n)).

Proof The runtime of the element generation phase is dominated by the assem-
bling of target candidates in lines 12–15. Building a decision tree for the vertices to
be removed in O(n log n) time, based on the ordering σ, we can prune list C in time
O(m log n+ n log n) per edge, which dominates lines 3 to 25.

The running time of the rewiring phase is dominated by determining the list of
pivot candidates in line 31 using O(n log n) time per rewiring. The total number of
rewirings is bounded by n · k. This dominates lines 27 to 37 as well as the element
generation phase and all peripheral steps. Assuming the graph is connected, in total,
both phases sum up to a running time of O((m2 + n2k) log(n)). �

Since real-world networks seldom exhibit pathologic characteristics, we replaced
the eager computation of the candidate list in lines 12–15 by a lazy selection from
targetVertices[i] that is repeated until a valid t has been drawn. Clearly, this
does not improve worst-case running time but works faster for virtually all applica-
tions.

We performed our experiments on a recent standard PC, running SUSE Linux 10.2
with an implementation in Java. Absolute running times ranged between 100 and
500 milliseconds for the AS network which is comparable to BRITE. The running
time of Inet is in the order of minutes. See Section 8.2.3 for the description of these
generators.
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Refinements

Although the core fingerprint is the prime characteristic we focus on in this work,
together with the inclusion of a preferential attachment mechanism, a number of
potentially describing features of a network exist. In this section, we briefly discuss
other relevant features that can easily be integrated in our generator.

Connectivity is a very basic characteristic of a network, boiling down to the num-
ber of connected components. Building upon the core decomposition, this can be
refined to the number of connected components per shell. While the whole graph
or even the i-core can be connected, the i-shell can still have several disconnected
components. If this is not desired, the user can specify the number and the sizes
of connected components. The generator will then first create a spanning forest,
where each tree is the seed of a component, and mark these edges as not rewirable.
Note that requiring a specific set of connected components restricts the set of valid
shell-connectivity matrices. However, this can be resolved by allowing the number
of edges or the number and sizes of connected components to slightly deviate from
the predefined values, depending on the user’s interests.

Returning our focus to the degree distribution, the approach described in Sec-
tion 8.2.2, depending on not a single parameter, can clearly be further elaborated.
We tested two variants of our implementation of preferential attachment. In the
first variant, we require the degree distributions of each shell as an input. Based on
these we then prefill the array targetVertices[i] in line 7 with the vertices in Vi,
using the exact multiplicities as given by the degree distribution and an ordering
analogous to σ. This approach clearly biases the preferential attachment process to-
wards the desired degree distribution (see Figure 8.3). Alternatively, we can solely
rely on a post-processing step. In this case we can completely abandon preferential
attachment and simply apply a sequence of rewirings (Lemma 8.1) and swappings
(Lemma 8.2) in order to approach a given degree distribution. Although both of
these techniques yielded very good results, we exclude them from further evaluation
due to their requiring rather specific parameters in addition to the core fingerprint.

8.2.3 Modeling the AS Network

An important application of a core-aware network generator is the simulation of the
Internet at the AS level. In this section we compare networks generated by our
method and established topology generators with three exemplary snapshots of the
real AS network at the router level taken by the Oregon Routeviews project [Rou] at
midnight on January 1st, 2002 (oix-full-snapshot-2002-01-01-0000), on January 1st,
2006 (oix-full-snapshot-2006-01-01-0000), and on July 1st, 2007 (oix-full-snapshot-
2007-07-01-0000). Table 8.1 shows the sizes of these graphs.
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Figure 8.3: The number of vertices with degree at least d for the AS network, the
original, and the refined Core generator for January 2006. A graph
generated by preferential attachment of approximately the same size is
shown for comparison.

AS 2002-01 AS 2006-01 AS 2007-07

Number of Nodes 12 485 21 419 25 787

Number of Edges 25 980 45 638 53 014

Table 8.1: Sizes of the AS network snapshots.

Topology Generators

The first methods to generate networks with Internet-like structure date back to the
1990s and a multitude of techniques has been proposed since then. Among the most
popular and widely used tools we have chosen Inet 3.0 [JCJ00] and BRITE [MLMB01]
for our comparison since these are commonly included in other studies which cover
a broader range of existing models [MP02, JCJ00]. The generator nem [Mag02] also
seems promising, but we do not take it into account because of its limitation to
networks not greater than 4000 vertices.

The Internet topology generator Inet [JCJ00] generates an AS-level representation
of the Internet. Its developers claim that “it generates random networks with char-
acteristics similar to those of the Internet from November 1997 to February 2002,
and beyond”. Basically, Inet generates networks with a degree distribution which
fits to one of the power laws originally found by Faloutsos et al. [FFF99], namely
that the frequency of vertices with degree d is proportional to d raised to a power of
a constant α: f(d) ∝ dα. Since this law does not cover all vertices and in order to
match other relevant properties as well, optimizations for various specific conditions
were added to the original procedure over time. The complete generation method
is explained in [JCJ00]. Since the procedures of Inet are already customized to AS
networks, only a small number of input parameters can be specified: the total num-
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ber of vertices, the fraction of degree-one vertices, and the size of the square used
for vertex placement.

The Boston university Representative Internet Topology gEnerator BRITE [MLMB01]
can generate networks for different levels of the Internet topology. Beside this, it
offers various other options to customize the generation procedure.

Drawing area. The vertices of the generated topology are distributed in a square
of a certain size.

Node distribution. In the drawing area, vertices are either distributed uniformly
at random or Pareto.

Outgoing links. New vertices are connected with a specific number of outgoing
links to other, already existing vertices.

Connectivity. The neighborhood of a vertex is selected based on certain guidelines
such as geometric locality, preferential attachment, or a combination of both.

Procedure. Nodes can either be placed before the addition of edges or in an
incremental fashion. In the latter case each new vertex introduces a number of new
edges that can only connect to already existing vertices.

Characteristics

In [JCJ00], an extensive collection of characteristics is evaluated that judge the
fitness of a generated graph with respect to its real world counterpart. We repeated
this evaluation for a representative selection of these properties with a focus on the
assessment of the core generator. In the following, we summarize the properties we
employed in our analysis. Many of these statistics can be computed with visone and
are described in Section 4.8.

General statistics. To see how well the generated networks fit to the most obvious
characteristics, we computed some basic properties: the number of edges, the mini-
mum and the maximum degree. Note that all models strictly meet the given number
of vertices, so the number of edges corresponds to density and average degree.

Cores. The core decomposition is a significant structural property of an AS network.
We compare not only the core number but also the extensive core fingerprint.

Clustering coefficient. The clustering coefficient is a measure for the local den-
sity around a vertex. It counts how many of a vertex’s pairs of neighbors are
themselves adjacent. These values are averaged to get a single measure for the net-
work. Closely related characteristics are the numbers of triangles and triples and
the transitivity (see Section 4.5.1).

Distance. We compare two properties based on distance: characteristic distance,
which is the average of the distances of all vertex pairs and average eccentricity.
The eccentricity of a vertex is its maximum distance to all other vertices. Average
eccentricity then is the average of all vertices’s eccentricities.



150 Chapter 8: Network Models

Frequency versus degree. One of the classic power laws found by Faloutsos
et al. [FFF99] is f(d) ∝ dα , that is, the frequency of vertices with degree d is
proportional to d raised to a power of a constant α. Since this power law does not
hold for nearly 2% of the highest degree vertices, we use a modified version [BT02,
CCGJ02]:

F (d) =
∑
i>d

f(i) ∝ dα .

Size of k-neighborhood. Another power law identified in [FFF99] is N (k) ∝ kβ,
where N (k) is the sum over all vertices of their neighborhood sizes within distance k,
i. e., N (k) =

∑
u∈V

∑
v∈V distk(u, v), where

distk(u, v) =

{
1 , if dist(u, v) ≤ k

0 , otherwise.

Note that this characteristic can also be measured as an average over all vertices,
and it is also known as the number of pairs within k hops.

Evaluation

In the following, we detail the findings of our systematic evaluation. We gathered
results on the three generators as described in Sections 8.2.2 and 8.2.3 and on the
real AS network for all the properties listed in Section 8.2.3.

Based on the previous studies, we set appropriate parameters for the generators Inet
and BRITE. For Inet we have chosen the default input parameters except for the
number of vertices and the random seed. As the results in [MMB00] suggest, we
have used preferential attachment and incremental growth for BRITE. Furthermore,
we add two edges for each new vertex to fit the average degree of AS networks.

By construction, the numbers of vertices match the reference AS network, however,
the numbers of edges already differ heavily. While the number of edges is only
slightly lower for graphs generated by BRITE, and exactly fits the reference for our
core generator (called Core in the following), the edge set created by Inet is larger
by one third.

The well-known phenomenon of highly connected hubs in the AS network accompa-
nied by the power-law degree distribution is regarded as one of the most significant
properties of the Internet. Inet reproduces these quite well but overstates the max-
imum degree. In contrast, the degree distribution of Core oscillates around the
reference but fails to produce high-degree vertices due to its lack of preferential at-
tachment and the degree distribution of BRITE suggests that the preference of new
vertices to connect to existing hubs is not strong enough either. These facts can be
observed in Figure 8.4.

At a first glance, BRITE clearly fails to build up any kind of deep core structure
(the core number is 2). The reason for this becomes evident from the incremental
generation process of BRITE: the iterative addition of vertices incident to two new
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AS 2002-01 Core BRITE Inet

Number of Nodes 12 485 12 485 12 485 12 485

Number of Edges 25 980 25 980 24 967 27 494

Minimum Degree 1 1 2 1

Maximum Degree 2 538 644 302 2 154

Core Number 20 20 2 9

Number of Triples 7 258 817 3 140 777 347 443 6 821 628

Number of Triangles 22 832 17,272 157 11 144

Transitivity 0.009 0.016 0.001 0.005

Clustering Coeff. 0.45 0.24 0.00 0.29

Avg. Path Length 3.63 3.69 5.09 3.29

Avg. Eccentricity 8.74 9.71 8.35 6.85

Table 8.2: Characteristics of the AS network of January 2002 and the three genera-
tors.

AS 2006-01 Core BRITE Inet

Number of Nodes 21 419 21 419 21 419 21 419

Number of Edges 45 638 45 638 42 835 58 069

Minimum Degree 1 1 2 1

Maximum Degree 2 408 662 411 3 572

Core Number 26 26 2 19

Number of Triples 12 161 105 5 631 122 637 716 30 643 658

Number of Triangles 46 256 36 052 177 75 770

Transitivity 0.011 0.019 0.001 0.007

Clustering Coeff. 0.38 0.17 0.00 0.53

Avg. Path Length 3.81 3.84 5.31 3.07

Avg. Eccentricity 8.52 10.36 8.63 6.45

Table 8.3: Characteristics of the AS network of January 2006 and the three genera-
tors.
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Figure 8.4: The number of vertices with a degree at least d (left) and the k-
neighborhood for distances k ∈ [0, 10] (right) for the AS network and
the generated graphs for 2002, 2006, and July 2007.
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AS 2007-07 Core BRITE Inet

Number of Nodes 25 787 25 787 25 787 25 787

Number of Edges 53 014 53 014 51 571 76 467

Minimum Degree 1 1 2 1

Maximum Degree 2 391 838 393 5 168

Core Number 22 22 2 26

Number of Triples 13 889 150 6 759 443 757 653 56 514 215

Number of Triangles 39 646 29 612 174 162 889

Transitivity 0.009 0.013 0.001 0.009

Clustering Coeff. 0.33 0.15 0.00 0.65

Avg. Path Length 3.89 3.92 5.39 2.99

Avg. Eccentricity 10.24 10.64 8.72 6.52

Table 8.4: Characteristics of the AS network of July 2007 and the three generators.

edges can simply be reversed, resulting in a valid removal sequence for the 2-core that
ultimately yields an empty 3-core. Figure 8.5 plots both the number of vertices and
the number of edges per k-core exemplary for January 2006. Inet builds up a decent
core hierarchy but fails to attain a sufficient depth for earlier snapshots, obviously
resulting in larger mid-level shells, in terms of both vertices and edges. However, as
Inet seems to systematically overestimate the number of edges, for later snapshots,
the core hierarchy becomes too deep. By construction, Core perfectly matches the
reference. The plots in Figure 8.6 show the numbers of vertices and edges per k-
shell, again exemplary for January 2006. They confirm the above observations and
additionally grant an insight into the absolute numbers of elements per shell.

The shallow core structure created by BRITE is accompanied by a very low tran-
sitivity alongside a negligible number of triangles and a tiny clustering coefficient,
suggesting that the BRITE graph is primarily composed of a set of paths of length
two. The high average path length further corroborates this conjecture since by
virtue of preferential attachment hubs of high degree evolve, which, however, are
interconnected via paths of length two by construction.

The absolute numbers of triples and triangles as well as the transitivity and the
clustering coefficient are acceptable for both Core and Inet. The discrepancy of the
latter generator from the reference can quite generally be explained by the increased
number of edges. The behavior of Core with respect to these values is largely due to
the absence of high-degree vertices since, intuitively speaking, star-shaped structures
yield a high number of triples. The relatively high number of triangles thus yields an
increased transitivity. The low clustering coefficient, however, suggests that there
is a large number of vertices with a sparse direct neighborhood. Since, at the same
time, Core exhibits a high number of triangles, the majority of these triangles is
incident to vertices with higher degree.

Figure 8.4 depicts the size of the neighborhood within k hops (sum over all vertices).
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Figure 8.5: The numbers of vertices (left figure) and of edges (right figure) per k-
core. Note that BRITE generates only vertices in the 2-core and that
the lines of the AS 2006 and Core perfectly match by construction.
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shell (BRITE omitted). An edge is considered to belong to the k-shell if
its endvertex with smallest coreness has coreness k. Note that the lines
of the AS 2006 and Core perfectly match by construction.
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Note that the high average path length of BRITE mentioned earlier comes along
with the slow growth of the neighborhood size. The low average path length and
the low average eccentricity exhibited by Inet are, again, due to the large edge set.
With respect to these values, Core excels. Both the average path length and the
k-neighborhood practically match the reference.

8.2.4 Conclusion

In the recent past, the core decomposition has been found to be a crucial charac-
teristic of real world complex systems. We have presented a novel algorithm for the
generation of graphs that brings together the well-known concepts of k-cores and
preferential attachment. After scrutinizing and clarifying how to specify the core
fingerprint of a network by examining the inter-connectivity of each pair of shells,
we employ this core fingerprint to introduce a simple and efficient algorithm for the
generation of random graphs based on the core decomposition.

We exemplify the feasibility of our technique in a case study using the AS network
of the Internet, comparing our generator to the established topology generators
BRITE [MLMB01] and Inet [JCJ00]. Our results yield that our generator is highly
suitable for the simulation of AS topologies, confirming the importance of the core
decomposition. Moreover, we show that BRITE largely fails to capture significant
characteristics of the AS network, including its core structure, and that Inet roughly
matches the reference except for its general tendency to be too densely connected.
While our core generator and BRITE create a topology within seconds, a major
drawback of Inet is its generation time of several minutes.

The high customizability of our rather generic core generator suggests several adap-
tations that can further increase the fitness to the specific peculiarities of the AS
network. Such adaptations to special networks can be realized by employing a num-
ber of structural modifications such as swapping and rewiring without interfering
with the core decomposition.
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[BRST01] Béla Bollobás, Oliver M. Riordan, Joel Spencer, and Gábor Tusnády.
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[HK03] Martin Höpner and Lothar Krempel. The Politics of the German Com-
pany Network. Technical Report 03/9, MPI für Gesellschaftsforschung,
2003.
Cited on pages 64, 97, and 98.
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Experimental Results of the Circular Layout
Algorithm

Due to size constraints, figures start on the following page.
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Figure 8.13: Results on random graphs relative to CIRCULAR
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Figure 8.14: Running time: combinations of initial and improvement algorithms
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