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Abstract. We study the Fredholm properties of parabolic evolution equations on R
with inhomogeneous boundary values. These problems are transformed into evolution
equations with inhomogeneities taking values in certain extrapolation spaces. Assuming
that the underlying homogeneous problem is asymptotically hyperbolic, we show the
Fredholm alternative for these equations.

1. Introduction

In recent years the Fredholm properties of evolution equations

u′(t) = A(t)u(t) + f(t), t ∈ R, (1.1)

on a Banach space X have attracted considerable interest. In this work we establish a

Fredholm alternative for a large class of parabolic inhomogeneous boundary value prob-

lems, see (1.4), which can be transformed into a problem similar to (1.1) with inhomo-

geneities f taking values in spaces X t
α−1 larger than X. Before discussing the contents of

our paper, we first want to recall related results concerning (1.1) with f : R → X.

A main line of research concentrates on parabolic problems, where the operators A(t)

generate an evolution family U(t, s), t ≥ s, having regularity properties similar to those

of analytic semigroups. Moreover, it is assumed that (1.1) possesses maximal regularity

on a space F of functions f : R → X (cf. [7]). Roughly speaking, this notion means

that the operator G0u = −u′ + A(·)u is closed in F on the ‘minimal’ domain D(G0) =

D(d/dt) ∩ D(A(·)) = {u ∈ F : u(t) ∈ D(A(t)), u′, A(·)u ∈ F}. This property typically

requires function spaces such as F = Lp(R, X) or Cα(R, X) with p ∈ (1,∞) or α ∈ (0, 1)

(the choice F = Lp leads to additional restrictions on X and A(t)). Finally, one supposes

that the operators A(t) converge to operators A±∞ as t → ±∞ in a suitable sense and that

iR belongs to the resolvent sets of A±∞, i.e., the problem is ‘asymptotically hyperbolic’.

It is then known that U(·, ·) has an exponential dichotomy on intervals [T, +∞) and

(−∞,−T ] for possibly large T ≥ 0, see [8], [28], [30].

In this setting, the (Semi–)Fredholmity of G0 was characterized in terms of properties

of the stable and unstable subspaces of U(t, s) at t = T , see [1], [14], [15], [16], [23], [26],

[27], and the references therein (compare also Theorem 3.6 below). This characterization
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implies that G0 is Fredholm if the unstable subspaces of A±∞ have finite dimensions d±
(e.g., if D(A±∞) is compactly embedded in X), and then G0 has the index d− − d+.

The above setting occurs if one linearizes a nonlinear parabolic problem on a bounded

domain along a heteroclinic orbit connecting two hyperbolic equilibria. In this case the

Fredholm property of G0 is crucial to study the bifurcation behaviour of the heteroclinic

orbit by means of the Lyapunov–Schmidt reduction, see e.g. [14], [26], [27]. We add that

the property of maximal regularity makes it posssible to show the persistence of Fredholm

properties under large classes of perturbations, see [16].

If one discards the strong assumption of maximal regularity, then it seems to be most

appropriate to define G via the ‘mild equation’

u(t) = U(t, s)u(s) +

∫ t

s

U(t, τ)f(τ) dτ, t ≥ s, (1.2)

for a given exponentially bounded ‘evolution family’ U(t, s), t ≥ s, with time interval R
(i.e., (2.3) below holds and (t, s) 7→ U(t, s) is strongly continuous for t ≥ s). We say that

a function u ∈ F belongs to the domain D(G) and Gu = f if there is a function f ∈ F

such that (1.2) holds for all t ≥ s in R. If the Cauchy problem

u′(t) = A(t)u(t), t ≥ s, u(s) = x, (1.3)

is well–posed, then G is the closure of G0 as defined above, where F = C0(R, X) or

F = Lp(R, X) with 1 ≤ p < ∞, cf. [11], [29]. In the recent paper [20] it is shown that G is

Fredholm on F if and only if U(·, ·) has exponential dichotomies on intervals (−∞, a] and

[b, +∞) and a certain ‘node operator’ connecting the dichotomies is Fredholm in X. We

refer to [21] for somewhat stronger results under stronger assumptions and also to [9]. In

fact, the ‘if’ implication of the results from [9], [20], [21] coincides with the corresponding

assertions in [14], [15], [16], see [14, §5.3]. We further mention that the invertibility of G

on F is equivalent to the exponential dichotomy of U(·, ·) on R, see [11].

In the present paper we study the (Semi–)Fredholm properties of the parabolic inho-

mogeneous boundary value problem

u′(t) = Am(t)u(t) + g(t), t ∈ R,

B(t)u(t) = h(t), t ∈ R.
(1.4)

Here the linear operators Am(t) and B(t) are defined on a subspace Zt of X (e.g., Zt =

W 2
p (Ω) if X = Lp(Ω)), Am(t) maps Zt into the state space X, and B(t) maps Zt into a

‘boundary space’ Y such as W
1−1/p
p (∂Ω). The inhomogeneities g and h are continuous

with values in X and Y , respectively. Typically, Am(t) is an elliptic differential operator

and B(t) is a differential operator of lower order. It is assumed that the restrictions A(t) of

Am(t) to the kernel of B(t) satisfy the Acquistapace–Terreni conditions stated in (2.1) and

(2.2). These conditions are quite flexible in so far they only require a Hölder condition in t

and they allow for non–dense and time varying domains D(A(t)). Under these conditions

the family A(·) generates an evolution family U(·, ·) on X having parabolic regularity due

to [3] and [4], as described in the following section.
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For a fixed operator A(t) and α ∈ (0, 1), we further define the real interpolation spaces

X t
α of order (α,∞) between D(A(t)) and X. In Section 2 we also introduce the extrap-

olation spaces X t
α−1 which are larger than X. In general, both X t

α and X t
α−1 depend on

t. The operator A(t) possesses an extension Aα−1(t) : X t
α → X t

α−1. We further suppose

that the abstract boundary value problem

(ω − Am(t))v = 0, B(t)v = ϕ,

has a unique solution v = D(t)ϕ for ϕ ∈ Y and that Zt ↪→ X t
α for some α ∈ (0, 1).

(Here ω is a fixed large real number.) As we see in Section 4, one can rewrite (1.4) as the

evolution equation

u′(t) = Aα−1(t)u(t) + f(t), t ∈ R, (1.5)

where f := g + (ω − Aα−1(·))D(·)h. This reformulation of a boundary value problem

seems to go back to work in boundary control theory, see e.g. [12], [25]. We also refer

to [2], [7], [10], [13], [18] and [22, §5.1] for related results and techniques. We then show

that f belongs to the space Eα−1 for some α ∈ (0, 1) which is the extrapolation space for

the multiplication operator A(·) defined on E := C0(R, X). It is crucial for our approach

that the operators U(t, s) have locally uniformly bounded extensions Uα−1(t, s) : Xs
α−1 →

X t
α−1 which map Xs

α−1 into X with norm less than c(t − s)α−1 for 0 < t − s ≤ 1, see

Proposition 2.1 and Lemma 5.1.

Thus we can define an operator Gα−1 as in (1.2): A function u ∈ E belongs to D(Gα−1)

and Gα−1u = f if there is an f ∈ Eα−1 such that

u(t) = U(t, s)u(s) +

∫ t

s

Uα−1(t, τ)f(τ) dτ ∀ t ≥ s in R. (1.6)

A function u ∈ C(R, X) satisfying (1.6) is called a ‘mild solution’ of (1.5). In Proposi-

tion 2.6 we show that a function u satisfying (1.6) indeed solves (1.5) pointwise in the

space X t
β−1 for every β ∈ (0, α). In so far the ‘mild definition’ of Gα−1 is justified. How-

ever, in this work we will concentrate on the asymptotic behaviour of (1.5), and we will

not study the local regularity of the solutions to (1.5) in further details. These matters

are treated in depth in [7, §V.2] assuming that for some α ∈ (0, 1) the spaces X t
α and

X t
α−1 do not depend on t, see also [2].

We further suppose that U(·, ·) has exponential dichotomies on half lines (−∞,−T ]

and [T, +∞) for some T ≥ 0. (This property holds in the asymptotically hyperbolic

case where the resolvents R(ω,A(t)) converge in norm as t → ±∞ to the resolvents of

operators A±∞ with iR ⊂ ρ(A±∞), see [30] and also [8], [28]). We prove in Proposition 2.2

that Uα−1(·, ·) inherits the exponential dichotomies of U(·, ·).
Our arguments are based on the properties of the extrapolated evolution family

Uα−1(·, ·), and they are insprired by the techniques of [15] and [16]. The main differ-

ence arises from the fact that we work with an ‘integral’ definition of Gα−1 instead of the

more explicit definition G0 = −d/dt + A(·). The approach via G0 would run into severe

difficulties here. First, even if we consider homogeneous boundary conditions h = 0 in

(1.4) (i.e., (1.5) on E = C0(R, X) with α = 1), we cannot expect that (1.5) has maxi-

mal regularity since we work with sup norm in time. This means that G0 is not closed
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with a rather complicated domain D(G) = D(G0). Second and more importantly, we

want to allow for f taking values in time depending extrapolation spaces X t
α−1 so that

a direct treatment of the differential equation (1.5) is quite unconvenient, cf. Section 5.

Fortunately, the mild description (1.6) of Gα−1 suffices for the questions studied in this

paper. On the other hand, the results from [20] or [21] do not apply since we work in

extrapolation spaces and (t, s) 7→ U(t, s) need not to be strongly continuous at t = s.

We characterize the (Semi–)Fredholm properties of Gα−1 in terms of the stable and

unstable subspaces of U(t, s) at T in Theorem 3.6. In the asymptotically hyperbolic

case, Gα−1 is Fredholm with index d− − d+ if the unstable subspaces of A±∞ have finite

dimensions d±. We further describe the kernel and range of Gα−1 in Propositions 3.5

and 3.8. We point out that our conditions do not involve the extrapolated spaces X t
α−1.

These results lead to a Fredholm alternative for the mild solutions u ∈ C0(R, X) of (1.5) in

Theorem 3.10. This theorem in turn implies a Fredholm alternative for the mild solutions

of (1.4) stated in Theorem 4.4. In Example 4.5 we study a variant of this result, namely

a diffusion equation formulated in the space X = C(Ω).

In the next section we collect the background material for our investigations. We further

show several auxiliary facts concerning the extrapolated evolution family Uα−1(t, s), its

exponential dichotomies, and the bounded solvability of Cauchy problems on half lines.

The third section contains our main results on the operator Gα−1 which are based on a

careful analysis of its behaviour of its restrictions to the intervals [T, +∞) and (−∞, T ].

Here the main difficulty comes from the fact that in general U(t, s) only has dichotomies

on disjoint intervals (−∞,−T ] and [T, +∞), see [15], [20], and [30, §4.2] for a discussion of

this phenomenon. In Section 4 we translate the results of Section 3 to the boundary value

problem (1.4). The last section contains a proof of the regularity result Proposition 2.6.

In a forthcoming paper we will treat perturbation results for the Fredholm index.

2. Notations, assumptions, and preliminaries

We denote by D(A), N(A), R(A), σ(A), ρ(A) the domain, kernel, range, spectrum and

resolvent set of a linear operator A. Moreover, R(λ, A) := (λI − A)−1 = (λ − A)−1 for

λ ∈ ρ(A) and L(X) is the space of bounded linear operators on a Banach space X. By

c(α, · · · ) we designate a generic constant depending on quantities α, · · · .
We investigate linear operators A(t), t ∈ R, on a Banach space X subject to the

following hypotheses introduced by P. Acquistapace and B. Terreni in [3] and [4]. There

are constants ω ∈ R, θ ∈ (π/2, π), K > 0 and µ, ν ∈ (0, 1] such that µ + ν > 1 and

λ ∈ ρ(A(t)− ω), ‖R(λ, A(t)− ω)‖ ≤ K

1 + |λ|
, (2.1)

‖(A(t)− ω)R(λ, A(t)− ω) [R(ω,A(t))−R(ω,A(s))]‖ ≤ K
|t− s|µ

|λ− ω|ν
(2.2)

for all t ∈ R and λ ∈ C \ {0} with | arg(λ)| ≤ θ. Observe that the domains D(A(t))

are not required to be dense. These conditions imply that the operators A(·) generate

an evolution family U(t, s), t ≥ s, t, s ∈ R. More precisely, for t > s the map (t, s) 7→
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U(t, s) ∈ L(X) is continuous and continuously differentiable in t, U(t, s)X ⊆ D(A(t)),

and ∂tU(t, s) = A(t)U(t, s). We further have

U(t, s)U(s, r) = U(t, r) and U(t, t) = I for t ≥ s ≥ r; (2.3)

Moreover, for s ∈ R and x ∈ D(A(s)), the function t 7→ u(t) = U(t, s)x is continuous at

t = s and u is the unique solution in C([s,∞), X)∩C1((s,∞), X) of the Cauchy problem

u′(t) = A(t)u(t), t > s, u(s) = x.

These facts have been established in [3] and [4], see also [2], [7], [22], [31], [32].

Before stating additional regularity properties of U(t, s), we have to introduce the inter-

and extrapolation spaces for A(t). We refer to [7], [17], and [22] for proofs and further

information. Let A be a sectorial operator on X (i.e., (2.1) holds with A(t) replaced by

A) and α ∈ (0, 1). We make use of the real interpolation space

XA
α := {x ∈ X : ‖x‖A

α := supr>0 ‖rα(A− ω)R(r, A− ω)x‖ < ∞},

which is a Banach space endowed with the norm ‖ · ‖A
α . For convenience we further write

XA
0 := X, ‖x‖A

0 := ‖x‖, XA
1 := D(A) and ‖x‖A

1 := ‖(ω − A)x‖. We also need the closed

subspace X̂A := D(A) of X. Moreover, we define the extrapolation space XA
−1 as the

completion of X̂A with respect to the norm ‖x‖A
−1 := ‖R(ω,A)x‖. Then A has a unique

continuous extension A−1 : X̂A → XA
−1. The operator A−1 satisfies (2.1) in XA

−1, it is

densely defined, it has the same spectrum as A, and it generates the semigroup etA−1 on

XA
−1 being the extension of etA. As above, we can then define the space

XA
α−1 := (X−1)

A−1
α with the norm ‖x‖A

α−1 := ‖x‖A−1
α = supr>0 ‖rαR(r, A−1 − ω)x‖.

The restriction Aα−1 : XA
α → XA

α−1 of A−1 is sectorial in XA
α−1 with the same type as A,

it has the same spectrum as A, and the semigroup etAα−1 on XA
α−1 is the extension of etA.

Observe that ω−Aα−1 : XA
α → XA

α−1 is an isometric isomorphism. We will frequently use

the continuous embeddings

D(A) ↪→ XA
β ↪→ D((ω − A)α) ↪→ XA

α ↪→ X̂A ⊂ X,

X ↪→ XA
β−1 ↪→ D((ω − A−1)

α) ↪→ XA
α−1 ↪→ XA

−1

(2.4)

for all 0 < α < β < 1, where the fractional powers are defined as usually. In general,

D(A) is not dense in the spaces XA
α and X and X is not dense in XA

α−1, but we have the

inclusions

XA
β ↪→ D(A)

‖·‖A
α

and XA
β−1 ↪→ X̂A

‖·‖A
α−1

(2.5)

for 0 < α < β < 1. More precisely, one has the following fact: For x ∈ XA
β−1, the vectors

xn = nR(n, A−1)x, n > ω, belong to X̂A, ‖xn‖A
β−1 ≤ c ‖x‖A

β−1 and xn → x in XA
α−1.

Moreover, X̂A is dense in D((ω − A−1)
α) and XA

−1.

Given operators A(t), t ∈ R, satisfying (2.1), we set

X t
α := XA(t)

α , X t
α−1 := X

A(t)
α−1 , X̂ t := X̂A(t)

for 0 ≤ α ≤ 1 and t ∈ R, with the corresponding norms. Then the embeddings in (2.4)

hold with constants independent of t ∈ R. Let J ⊂ R be a closed interval. We further
5



define on E = E(J) := C0(J, X) (the space of continuous functions, vanishing at infinity

if J is unbounded) the multiplication operator A(·) by

(A(·)f)(t) := A(t)f(t) for t ∈ J, D(A(·)) := {f ∈ E : f(t) ∈ D(A(t)), A(·)f ∈ E}.

It is clear that the operator A(·) is also sectorial. We can thus introduce the spaces

Eα := EA(·)
α , Eα−1 := E

A(·)
α−1 , and Ê := D(A(·))

for α ∈ [0, 1], where E0 := E and E1 := D(A(·)). We observe that E−1 ⊆
∏

t∈J X t
−1 and

that the extrapolated operator A(·)−1 : Ê −→ E−1 is given by (A(·)−1f)(t) := A−1(t)f(t)

for t ∈ J and f ∈ E. Further, Eα−1 has the norm

‖f‖α−1 := sup
r>0

sup
s∈J

‖rαR(r, A−1(s)− ω)f(s)‖.

Let (2.1) and (2.2) hold. Then there exists a constant C = C(t0) > 0 such that

‖(ω − A(t))αeτA(t)‖ ≤ C τ−α, (2.6)

‖U(t, s)x‖t
α ≤ C (t− s)β−α‖x‖s

β, (2.7)

‖U(t, s)(ω − A(s))θy‖ ≤ C (µ− θ)−1(t− s)−θ‖y‖, (2.8)

‖(ω − A(s))γ(R(ω,A(s))−R(ω,A(t)))‖ ≤ C (t− s)µ, (2.9)

‖(ω − A(t))γ−1 − (ω − A(s))γ−1‖ ≤ C (t− s)µ (2.10)

for all t, s ∈ R and t0 > 0 with 0 < t − s ≤ t0 and all 0 < τ ≤ t0, 0 ≤ β ≤ α ≤ 1,

0 ≤ θ < µ, 0 ≤ γ < ν, x ∈ Xs
β, and y ∈ D((ω − A(s))θ). Here, (2.6) is well known,

(2.7) follows from [4, Thm.2.3] by interpolation, and (2.8) was proved in [32, Thm.2.1] in a

slightly different setting, but the proof also works under the present assumptions. Finally,

(2.9) and (2.10) are straightforward consequences of (2.1) and (2.2), cf. [30] and [31]. We

state an easy consequence of (2.8) which is crucial for our work, see also Lemma 5.1.

Proposition 2.1. Assume that (2.1) and (2.2) hold and let 1−µ < α < 1 and 0 ≤ β ≤ 1.

Then the following assertions hold for s < t ≤ s + t0 and t0 > 0 with constants possibly

depending on t0.

(i) The operators U(t, s) have continuous extensions Uα−1(t, s) : Xs
α−1 → X satisfying

‖Uα−1(t, s)‖L(Xs
α−1,X) ≤ c(α)(t− s)α−1 , (2.11)

and Uα−1(t, s)x = Uγ−1(t, s)x for 1− µ < γ < α < 1 and x ∈ Xs
α−1.

(ii) The map {(t, s) : t > s} 3 (t, s) 7−→ Uα−1(t, s)f(s) ∈ X is continuous for f ∈ Eα−1.

(iii) For x ∈ Xs
α−1 we have

‖Uα−1(t, s)x‖t
β ≤ c(α)(t− s)α−β−1 ‖x‖s

α−1. (2.12)

Proof. Let s < t ≤ s + t0. Due to (2.8), we can uniquely extend U(t, s) to operators from

D((ω − A−1)
α±ε) to X, with norms bounded by c(t− s)α−1±ε, where 1− µ < α ± ε < 1.

Assertion (i) now follows by reiteration employing (2.4) and e.g. Theorem 1.2.15 and

Proposition 2.2.15 in [22]. The map Φ : (t, s) 7−→ Uα−1(t, s)f(s) ∈ X is continuous for
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t > s if f ∈ E. For f ∈ Eα−1, the continuity of Φ is shown by approximation using (2.11)

and (2.5). Finally, (2.7) and (2.11) yield

‖Uα−1(t, s)x‖t
β = ‖U(t, 1

2
(t + s))Uα−1(

1
2
(t + s), s)x‖t

β

≤ 2βC (t− s)−β ‖Uα−1(
1
2
(t + s), s)x‖ ≤ c(α)(t− s)α−β−1 ‖x‖s

α−1

for x ∈ Xs
α−1. �

Exponential dichotomies are another important tool in our study, cf. [11], [22], [29],

[30]. We recall that an evolution family U(·, ·) is said to have an exponential dichotomy

in an interval J ⊂ R if there exists a family of projections P (t) ∈ L(X), t ∈ J , being

strongly continuous with respect to t, and numbers δ,N > 0 such that

(a) U(t, s)P (s) = P (t)U(t, s),

(b) U(t, s) : Q(s)(X) → Q(t)(X) is invertible with inverse Ũ(s, t),

(c) ‖U(t, s)P (s)‖ ≤ Ne−δ(t−s),

(d) ‖Ũ(s, t)Q(t)‖ ≤ Ne−δ(t−s),

(2.13)

for all s, t ∈ J with s ≤ t, where Q(t) := I − P (t) is the ‘unstable projection.’ In the

parabolic case one easily obtains regularity properties of the exponential dichotomy, see

e.g. [30, Proposition 3.18]. For instance, ‖A(t)Q(t)‖ ≤ c(η) for t ∈ J , t − η > inf J and

each η > 0 since A(t)Q(t) = A(t)U(t, t−η)Ũ(t−η, t)Q(t). In the next proposition we state

some results concerning extrapolation spaces. We use the convention ±∞+ r = ±∞ for

r ∈ R, and we set J ′ = J \ {sup J}, i.e., J = J ′ if J is unbounded from above. Moreover,

we write U0(t, s) := U(t, s), P0(t) := P (t), and Q0(t) := Q(t), where X t
0 = X by definition.

Proposition 2.2. Assume that (2.1) and (2.2) hold and that U(t, s) has an exponential

dichotomy on an interval J . Let η > 0 and 1 − µ < α ≤ 1. Then the operators P (t)

and Q(t) admit continuous extensions Pα−1(t) : X t
α−1 → X t

α−1 and Qα−1(t) : X t
α−1 → X,

respectively, for t ∈ J ′; which are uniformly bounded for t < sup J − η. Moreover, the

following assertions hold for t, s ∈ J ′ with t ≥ s.

(a) Qα−1(t)X
t
α−1 = Q(t)X;

(b) Uα−1(t, s)Pα−1(s) = Pα−1(t)Uα−1(t, s);

(c) Uα−1(t, s) : Qα−1(s)(X
s
α−1) → Qα−1(t)(X

t
α−1) is invertible with inverse Ũα−1(s, t);

(d) ‖Uα−1(t, s)Pα−1(s)x‖ ≤ N(α, η) max{(t−s)α−1, 1}e−δ(t−s)‖x‖s
α−1 for x ∈ Xs

α−1 and

s < t < sup J − η;

(e) ‖Ũα−1(s, t)Qα−1(t)x‖ ≤ N(α, η)e−δ(t−s)‖x‖t
α−1 for x ∈ X t

α−1 and s ≤ t < sup J−η.

(f) Let J0 ⊂ J ′ be a closed interval and f ∈ Eα−1(J0). Then P (·)f ∈ Eα−1(J0) and

Q(·)f ∈ C0(J0, X).

Proof. Let t ∈ J such that t + η < sup J , 1 − β < θ < µ, and x ∈ D((ω − A(t))θ). The

estimates (2.8) and (2.13)(d) imply that

‖Q(t)(ω − A(t))θx‖ = ‖Ũ(t, t + η)Q(t + η)U(t + η, t)(ω − A(t))θx‖ ≤ c(η)‖x‖.

The embeddings (2.4) thus yield

‖Q(t)y‖ ≤ c(η)‖(ω − A−1(t))
−θy‖ = c(η)‖(ω − A−1(t))

1−θy‖t
−1 ≤ c(η)‖y‖t

β−1 (2.14)
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for all y ∈ X. Observe that (2.14) is true for α = β, in particular. Taking β < α and

using the remarks after (2.5) (with reversed roles of α and β), we see that Q(t) has a

uniformly bounded extension Qα−1(t) : X t
α−1 → X for t < sup J − η. Then the operator

I −Qα−1(t) ∈ L(X t
α−1) is a uniformly bounded extension of P (t).

Assertion (a) is a consequence of the fact that Qα−1(t) has values in X and that it is a

projection. Assertion (b) follows from (2.13)(a) by approximation using (2.5) and (2.11).

To show (c), let y ∈ Qα−1(t)X
t
α−1 = Q(t)X. Due to (2.13)(b), there is a unique vector

x ∈ Q(s)X = Qα−1(s)X
s
α−1 such that y = U(t, s)x = Uα−1(t, s)x.

Let t ≥ s + 1 and x ∈ Xs
α−1. Using the exponential dichotomy of U and the estimate

(2.11), we obtain

‖Uα−1(t, s)Pα−1(s)x‖ = ‖U(t, s + 1)P (s + 1)Uα−1(s + 1, s)x‖ ≤ ce−δ(t−s)‖x‖s
α−1.

If 0 ≤ t− s ≤ 1, assertion (d) follows from (b) and (2.11). Assertion (e) is a consequence

of (a), (2.13), and (2.14).

Let f ∈ Eα−1(J0). Then there are fn ∈ C0(J0, X) converging to f in Eβ−1(J0) for

β ∈ (1− µ, α). Then Q(·)fn converges in C0(J0, X) to Qα−1(·)f , whence (f) follows. �

We further use the operator family

Γα−1(t, s) =

{
Uα−1(t, s)Pα−1(s), t ≥ s, t, s ∈ J ′,

−Ũα−1(t, s)Qα−1(s), t < s, t, s ∈ J ′.
(2.15)

In some results we shall assume that A(·) is asymptotically hyperbolic, i.e., there are

two operators A−∞ : D(A−∞) → X and A+∞ : D(A+∞) → X satisfying (2.1) and

lim
t→−∞

R(ω,A(t)) = R(ω,A−∞), lim
t→+∞

R(ω,A(t)) = R(ω,A+∞) (in L(X)); (2.16)

σ(A+∞) ∩ iR = σ(A−∞) ∩ iR = ∅. (2.17)

Under assumptions (2.1), (2.2), (2.16), (2.17), there exists T ≥ 0 such that U(t, s) has

exponential dichotomies in (−∞,−T ] and in [T, +∞). For the interval [T, +∞), this has

been shown in Theorem 4.3 of [30]. The proofs given there extend in a straightforward

way to the interval (−∞,−T ]. The case of dense domains was treated before in [8] and,

for a slightly stronger version of (2.16), in [28]. Moreover, we have

dim Q(t)X = dim Q+∞X, t ≥ T, dim Q(t)X = dim Q−∞X, t ≤ −T, (2.18)

by [30, Thm.3.2], where Q±∞ are the projections for A±∞. Due to Proposition 2.2, our

extrapolated evolution family Uα−1(t, s) has then exponential dichotomies in (−∞,−T )

and in [T, +∞). From (2.18) and Proposition 2.2 (a), we conclude that

dim Qα−1(t)X
t
α−1 = dim Q+∞X, t ≥ T, dim Qα−1(t)X

t
α−1 = dim Q−∞X, t < −T,

if (2.1), (2.2), (2.16), and (2.17) hold.

Remark 2.3. In the proof of Theorem 4.3 of [30], the projections P (t) (for t ≥ T

and t ≤ −T , respectively) are obtained as the restriction of projections for a parabolic
8



evolution family having an exponential dichotomy on J = R. Hence, assumptions (2.1),

(2.2), (2.16), and (2.17) imply that

U(·, ·) has exponential dichotomies on [T, +∞) and (−∞,−T ] for some T ≥ 0

and the assertions of Proposition 2.2 are true with η = 0.
(2.19)

Definition 2.4. We assume that (2.1) and (2.2) hold, take 1 − µ < α ≤ 1, and let

J ⊂ R be a closed interval. Let f(t) ∈ X t
α−1, t ∈ J, such that f |[a, b] ∈ Eα−1([a, b]) for all

subintervals [a, b] ⊆ J . We say that u ∈ C(J, X) is a mild solution of

u′(t) = A−1(t)u(t) + f(t), t ∈ J, (2.20)

if the equation

u(t) = U(t, s)u(s) +

∫ t

s

Uα−1(t, σ)f(σ) dσ (2.21)

holds for all t ≥ s in J . If in addition u ∈ E(J) and f ∈ Eα−1(J), then we write

u ∈ D(Gα−1) and Gα−1u = f , where G0 =: G. If u is a mild solution of (2.20) for

J = [t0, +∞), resp. J = (−∞, t0], with u(t0) = x, then we call u a mild solution of the

initial, resp. final, value problems

u′(t) = A−1(t)u(t) + f(t), t ≥ t0, u(t0) = x; resp., (2.22)

u′(t) = A−1(t)u(t) + f(t), t ≤ t0, u(t0) = x. (2.23)

Remark 2.5. We make the assumptions stated in Definition 2.4. Then there always exists

a unique mild solution of (2.22) with u(t0) = x ∈ X̂ t0 . Moreover, a function u ∈ C(J, X)

can be the mild solution of (2.20) for at most one f , so that Gα−1 is single–valued. Finally,

Gα−1 : D(Gα−1) ⊂ E(J) −→ Eα−1(J) is a closed linear operator.

Proof. The first assertion follows easily from Proposition 2.1. For the second assertion,

take f and g such that f(t), g(t) ∈ X t
α−1 for t ∈ J, f |[a, b], g|[a, b] ∈ Eα−1([a, b]) for all

subintervals [a, b] ⊆ J , and (2.21) holds for some u ∈ C(J, X) and both f and g. Setting

h = f − g, we thus obtain∫ t

s

Uα−1(t, σ)h(σ) dσ = 0 ∀ t, s ∈ J with t ≥ s,

and hence Uα−1(t, s)h(s) = 0 for all t > s due to Proposition 2.1(ii). Take θ ∈ (1− ν, µ)

such that θ > 1−α. Then (ω−A−1(·))−θh ∈ Ê([a, b]) by (2.4), and thus Lemma 5.1 yields

h = 0, i.e., f = g. (We can take any α ∈ (1−µ, 1−θ) when applying Lemma 5.1. We point

out that in the proof of this lemma we use no results established after Proposition 2.1.)

The last assertion is a straightforward consequence of (2.11). �

The next proposition shows that a mild solution of (2.20) is in fact a differentiable

solution of (2.20) in a slightly weaker topology, see Section 5 for the proof. However, it

is more convenient for us to work with the integral equation (2.21).

Proposition 2.6. Assume that (2.1) and (2.2) hold and that f ∈ Eα−1(J) for 1 − µ <

α ≤ 1 and some closed interval J ⊂ R. Let u ∈ C(J, X) be a mild solution of (2.20) and
9



let 0 ≤ β < min{α, ν}. Then u(t) ∈ X t
β, the map s 7→ u(s) is differentiable at s = t in

the norm of X t
β−1, and (2.20) holds pointwise in X t

β−1, for each t ∈ J \ inf J .

Employing exponential dichotomies on halflines, we can derive existence results for

forward and backward Cauchy problems with inhomogeneities in extrapolation spaces.

Proposition 2.7. Assume that (2.1) and (2.2) hold, 1− µ < α ≤ 1, and that U(t, s) has

an exponential dichotomy on an interval [T, +∞). Let t0 ≥ T , f ∈ Eα−1([T, +∞)), and

x ∈ D(A(t0)). Then the mild solution u ∈ C([t0,∞), X) of (2.22) is bounded on [t0,∞)

if and only if

Q(t0)x = −
∫ +∞

t0

Ũα−1(t0, s)Qα−1(s)f(s)ds, (2.24)

in which case u is given by

u(t) = U(t, t0)P (t0)x+

∫ t

t0

Uα−1(t, s)Pα−1(s)f(s)ds−
∫ ∞

t

Ũα−1(t, s)Qα−1(s)f(s)ds. (2.25)

Proof. Let t0 ≥ T . The mild solution u of (2.22) satisfies

u(t) = Uα−1(t, t0)u(t0) +

∫ t

t0

Uα−1(t, s)f(s)ds, t ≥ t0.

Using Proposition 2.2 and (2.15), we can write this equality as

u(t) = U(t, t0)u(t0) +

∫ t

t0

Uα−1(t, s)Pα−1(s)f(s)ds−
∫ +∞

t

Ũα−1(t, s)Qα−1(s)f(s)ds

+

∫ +∞

t0

Ũα−1(t, s)Qα−1(s)f(s)ds

= U(t, t0)
[
u(t0) +

∫ +∞

t0

Ũα−1(t0, s)Qα−1(s)f(s)ds
]

+

∫ +∞

t

Γα−1(t, s)f(s)ds (2.26)

for t ≥ t0. Proposition 2.2 and the boundedness of f on [t0, +∞) show that u is bounded

if and only if the term in brackets [· · · ] belongs to P (t0)X which is equivalent to (2.24).

In this case, (2.25) follows directly from (2.26). �

In the next proposition we may also take t0 = −T in the situation of Remark 2.3.

Proposition 2.8. Assume that (2.1) and (2.2) hold, 1− µ < α ≤ 1, and that U(t, s) has

an exponential dichotomy on an interval (−∞,−T ]. Let t0 < −T , f ∈ Eα−1((−∞, t0])

and x ∈ X. Then there is a bounded mild solution u ∈ C((−∞, t0], X) of (2.23) on

(−∞, t0] if and only if

P (t0)x =

∫ t0

−∞
Uα−1(t0, s)Pα−1(s)f(s)ds, (2.27)

in which case u is given by

u(t) = Ũ(t, t0)Q(t0)x−
∫ t0

t

Ũα−1(t, s)Qα−1(s)f(s)ds+

∫ t

−∞
Uα−1(t, s)Pα−1(s)f(s)ds. (2.28)
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Proof. It is straightforward to check that (2.28) gives a bounded mild solution of (2.23)

satisfying (2.27). Let t0 < −T , s ≤ t ≤ t0, and let u be a bounded mild solution of (2.23).

As in Proposition 2.7, we can write

u(t) = U(t, s)
[
P (s)u(s)−

∫ s

−∞
Uα−1(s, τ)Pα−1(τ)f(τ)dτ

]
+

∫ t

−∞
Uα−1(t, τ)Pα−1(τ)f(τ)dτ

+ U(t, s)Q(s)u(s) +

∫ t

s

Uα−1(t, τ)Qα−1(τ)f(τ)dτ.

Since U(t, s)Q(s)u(s) +
∫ t

s
Uα−1(t, τ)Qα−1(τ)f(τ)dτ = Q(t)u(t), we have

P (t)u(t) = U(t, s)P (s)
[
P (s)u(s)−

∫ s

−∞
Uα−1(s, τ)Pα−1(τ)f(τ)dτ

]
+

∫ t

−∞
Uα−1(t, τ)Pα−1(τ)f(τ)dτ. (2.29)

Due to Proposition 2.2, the boundedness of u and f implies that the term in [· · · ] is

bounded for s ≤ t0. Therefore, letting s → −∞ in (2.29), we deduce from (2.13) that

P (t)u(t) =

∫ t

−∞
Uα−1(t, τ)Pα−1(τ)f(τ)dτ, (2.30)

and in particular the condition (2.27) for t = t0. Moreover, it holds

Q(t0)u(t0) = U(t0, t)Q(t)u(t) +

∫ t0

t

Uα−1(t0, τ)Qα−1(τ)f(τ)dτ,

Q(t)u(t) = Ũ(t, t0)Q(t0)u(t0)−
∫ t0

t

Ũα−1(t, τ)Qα−1(τ)f(τ)dτ.

The last equation together with (2.30) yield the formula (2.28). �

3. Properties of the operator Gα−1

In this section we assume that the operators A(t), t ∈ R, on X satisfy the hypotheses

(2.1), (2.2), and (2.19) (where the latter condition follows from (2.16) and (2.17)). Again,

U(t, s) is the evolution family on X generated by A(·) and Uα−1(t, s) is its extrapolated

evolution family on Xs
α−1. Both families have exponential dichotomies on (−∞,−T ] and

[T, +∞) for some T ≥ 0 with projections P (·) and Pα−1(·), respectively. To study the

operator Gα−1 on J = R, we introduce the stable and unstable subspaces of Uα−1(·, ·).

Definition 3.1. Let t0 ∈ R. We define the stable space at t0 by

Xs(t0) := {x ∈ X t0
α−1 : lim

t→+∞
‖Uα−1(t, t0)x‖ = 0},

and the unstable space at t0 by

Xu(t0) := {x ∈ X : ∃ a mild solution u ∈ C0((−∞, t0], X) of (2.23) with f = 0}.

Observe that the function u in the definition of Xu(t0) satisfies u(t) = U(t, s)u(s) for

s ≤ t ≤ t0 and u(t0) = x.
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Lemma 3.2. Assume that the assumptions (2.1), (2.2), and (2.19) are satisfied and that

1− µ < α ≤ 1. Then the following assertions hold.

(a) Xs(t0) = Pα−1(t0)X
t0
α−1 for t0 ≥ T ;

(b) Xu(t0) = Q(t0)X for t0 ≤ −T ;

(c) Uα−1(t, t0)Xs(t0) ⊆ Xs(t) for t ≥ t0 in R;

(d) U(t, t0)Xu(t0) = Xu(t) for t ≥ t0 in R;

(e) Xs(t0) is closed in X t0
α−1 for t0 ∈ R.

Proof. The inclusions ‘⊇’ in (a) and (b) are clear. Let t ≥ t0 +1 > t0 ≥ T and x ∈ Xs(t0).

Due to Proposition 2.2, we obtain

c ≥ ‖Uα−1(t, t0)x‖ ≥ ‖Uα−1(t, t0)Qα−1(t0)x‖ − ‖Uα−1(t, t0)Pα−1(t0)x‖

≥ N−1eδ(t−t0)‖Qα−1(t0)x‖ −Ne−δ(t−t0)‖Pα−1(t0)x‖t0
α−1.

Letting t → ∞, this estimate implies that Qα−1(t0)x = 0; i.e., (a) is verified. Let t ≤
t0 − 1 < t0 ≤ −T and x ∈ Xu(t0). Let u be as in Definition 3.1. We then have

P (t0)u(t0) = U(t0, t)P (t)u(t), and thus

‖P (t0)x‖ ≤ Ne−δ(t0−t)‖u(t)‖ ≤ ceδt.

Letting t → −∞, we deduce P (t0)x = 0 so that (b) holds. The assertions (c) and (d) are

easy consequences of Definition 3.1. To show (e), let t0 ∈ R. If t0 ≥ T , the closedness of

Xs(t0) in X t0
α−1 follows from (a). If t0 < T , take xn ∈ Xs(t0) such that xn → x in X t0

α−1.

Then assertions (a) and (c) and estimate (2.11) imply that

‖Uα−1(t, t0)x‖ = lim
n→∞

‖U(t, T )P (T )Uα−1(T, t0)xn‖ ≤ cNe−δ(t−T ).

for t ≥ T . Thus x ∈ Xs(t0). �

Let 1 − µ < α ≤ 1. The restrictions G+
α−1 and G−

α−1 of Gα−1 to the halflines [T, +∞)

and (−∞, T ] are defined as in Definition 2.4: A function u ∈ C0([T, +∞), X) (respectively

u ∈ C0((−∞, T ], X)) belongs to D(G+
α−1) (respectively D(G−

α−1)) if there is a function

f ∈ Eα−1([T, +∞)) (respectively f ∈ Eα−1((−∞, T ])) such that

u(t) = U(t, s)u(s) +

∫ t

s

Uα−1(t, σ)f(σ)dσ

holds for all t ≥ s ≥ T (respectively, for all s ≤ t ≤ T ).

As in [15] and [16], we introduce on Eα−1([T, +∞)) and on Eα−1((−∞, T ]) the right

inverses R+
α−1 and R−

α−1 for G+
α−1 and G−

α−1, respectively, by setting

(R+
α−1h)(t) = −

∫ ∞

t

Ũα−1(t, s)Qα−1(s)h(s)ds +

∫ t

T

Uα−1(t, s)Pα−1(s)h(s)ds, t ≥ T,

(R−
α−1h)(t) =


∫ t

−∞
Uα−1(t, s)Pα−1(s)h(s)ds−

∫ −T

t

Ũα−1(t, s)Qα−1(s)h(s)ds, t ≤ −T,∫ −T

−∞
Uα−1(t, s)Pα−1(s)h(s)ds +

∫ t

−T

Uα−1(t, s)h(s)ds, −T ≤ t ≤ T.
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Proposition 3.3. Assume that the assumptions (2.1), (2.2), and (2.19) are satisfied and

that 1− µ < α ≤ 1. Then the following assertions hold.

(a) R+
α−1 : Eα−1([T, +∞)) → C0([T, +∞), X) is bounded and G+

α−1R
+
α−1h = h for each

h ∈ Eα−1([T, +∞)).

(b) R−
α−1 : Eα−1((−∞, T ]) → C0((−∞, T ], X) is bounded and G−

α−1R
−
α−1h = h for each

h ∈ Eα−1((−∞, T ]).

Proof. (a) Proposition 2.2 shows that supt≥T ‖R+
α−1h(t)‖∞ ≤ c ‖h‖α−1 for a constant

c > 0 and h ∈ Eα−1. Moreover, R+
α−1h ∈ C0([T, +∞), X) if h ∈ C0([T, +∞), X). For

h ∈ Eα−1([T, +∞)) and 1 − µ < β < α, there are hn ∈ C0([T, +∞), X) converging to h

in Eβ−1([T, +∞)) due to (2.5). Therefore R+
β−1hn −→ R+

β−1h = R+
α−1h in Cb([T, +∞), X)

(the space of bounded continuous functions), and the first part of (a) is shown. For

t ≥ s ≥ T , we further compute

U(t, s)R+
α−1h(s) +

∫ t

s

Uα−1(t, τ)h(τ)dτ

=

∫ t

s

Uα−1(t, τ)h(τ)ds−
∫ +∞

s

Ũα−1(t, τ)Qα−1(τ)h(τ)dτ +

∫ s

T

Uα−1(t, τ)Pα−1(τ)h(τ)dτ

=

∫ t

T

Uα−1(t, τ)Pα−1(τ)h(τ)dτ −
∫ +∞

t

Ũα−1(t, τ)Qα−1(τ)h(τ)dτ = R+
α−1h(t).

Hence, R+
α−1h ∈ D(G+

α−1) and G+
α−1R

+
α−1h = h.

(b) The first part of (b) follows similarly as in (a). For h ∈ Eα−1((−∞, T ]) and

s ≤ t ≤ −T , we calculate∫ t

s

Uα−1(t, τ)h(τ)dτ + U(t, s)R−
α−1h(s)

=

∫ t

s

Uα−1(t, τ)h(τ)ds +

∫ s

−∞
Uα−1(t, τ)Pα−1(τ)h(τ)dτ −

∫ −T

s

Ũα−1(t, τ)Qα−1(τ)h(τ)dτ

=

∫ t

−∞
Uα−1(t, τ)Pα−1(τ)h(τ)dτ −

∫ −T

t

Ũα−1(t, τ)Qα−1(τ)h(τ)dτ = R−
α−1h(t).

For s ≤ −T ≤ t, it holds∫ t

s

Uα−1(t, τ)h(τ)dτ + U(t, s)R−
α−1h(s)

=

∫ t

s

Uα−1(t, τ)h(τ)ds +

∫ s

−∞
Uα−1(t, τ)Pα−1(τ)h(τ)dτ −

∫ −T

s

Ũα−1(t, τ)Qα−1(τ)h(τ)dτ

=

∫ −T

−∞
Uα−1(t, τ)Pα−1(τ)h(τ)dτ +

∫ t

−T

Uα−1(t, τ)h(τ)dτ = R−
α−1h(t).

Finally, for −T ≤ s ≤ t ≤ T , we compute∫ t

s

Uα−1(t, τ)h(τ)dτ + U(t, s)R−
α−1h(s)

=

∫ t

s

Uα−1(t, τ)h(τ)ds +

∫ −T

−∞
Uα−1(t, τ)Pα−1(τ)h(τ)dτ +

∫ s

−T

Uα−1(t, τ)h(τ)dτ
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=

∫ −T

−∞
Uα−1(t, τ)Pα−1(τ)h(τ)dτ +

∫ t

−T

Uα−1(t, τ)h(τ)dτ = R−
α−1h(t).

As a result, R−
α−1h ∈ D(G−

α−1) and G−
α−1R

−
α−1h = h. �

Lemma 3.4. Assume that (2.1), (2.2), and (2.19) hold and that 1 − µ < α ≤ 1. Let

x ∈ Q(T )(X). Then there exists u ∈ D(Gα−1) such that R+
α−1u(T ) = x, R−

α−1u(T ) = 0,

and ‖u‖E + ‖Gα−1u‖E ≤ K‖x‖, where K ≥ 0 is a constant independent of x.

Proof. We fix a test function ϕ with ϕ(t) = 0 for t ≤ T and
∫∞

T
ϕ(s)ds = −1, and define

the functions

u(t) := ϕ(t)U(t, T )x, t ≥ T, u(t) := 0, t ≤ T,

f(t) := ϕ′(t)U(t, T )x, t ≥ T, f(t) := 0, t < T.

It is easy to check that R+
α−1u(T ) = x and R−

α−1u(T ) = 0. We further obtain

u(t)− U(t, s)u(s) = (ϕ(t)− ϕ(s)) U(t, T )x

=

∫ t

s

Uα−1(t, τ)ϕ′(τ)U(τ, T )x dτ =

∫ t

s

Uα−1(t, τ)f(τ) dτ.

for t ≥ s ≥ T . The case s < T is treated similarly. As a result, u ∈ D(Gα−1) and

Gα−1u = f , so that the asserted estimate follows. �

We can now describe the range and the kernel of Gα−1.

Proposition 3.5. Assume that (2.1), (2.2), and (2.19) are satisfied and that 1 − µ <

α ≤ 1. Then the following assertions hold for Gα−1 defined on Eα−1 = Eα−1(R).

(a) N(G+
α−1) = {u ∈ C0([T, +∞), X)) : u(t) = U(t, T )x ∀ t ≥ T, x ∈ P (T )X̂T};

(b) N(G−
α−1) = {u ∈ C0((−∞, T ]) : u(t) = U(t, s)u(s) ∀ s ≤ t ≤ T, u(T ) ∈ Xu(T )};

(c) N(Gα−1) = {u ∈ C0(R, X) : u(t) = U(t, s)u(s) ∀ t ≥ s, u(T ) ∈ P (T )X ∩Xu(T )};
(d) R(Gα−1) = {f ∈ Eα−1 : R+

α−1f(T ) − R−
α−1f(T ) ∈ P (T )X + Xu(T )}, where for

f ∈ R(Gα−1) a function u ∈ D(Gα−1) with Gα−1u = f is given by (3.1) below;

(e) R(Gα−1) = {f ∈ Eα−1 : R+
α−1f(T ) − R−

α−1f(T ) ∈ P (T )X + Xu(T )}, where the

closure on the left (right) hand side is taken in Eα−1 (in X).

Proof. Assertions (a), (b) and (c) follow from Lemma 3.2 and P (T )X ∩Xu(T )P (T )X̂T ∩
Xu(T ). To show (d), let Gα−1u = f ∈ Eα−1 for some u ∈ D(Gα−1). Then the restric-

tions of f to [T, +∞) and (−∞, T ] belong to R(G+
α−1) and to R(G−

α−1), respectively.

Proposition 3.3 shows that the functions

v+ = (u|[T, +∞))−R+
α−1f and v− = (u|(−∞, T ])−R−

α−1f

belong to the kernel of G+
α−1 and G−

α−1, respectively . Thus

(R+
α−1f)(T )− (R−

α−1f)(T ) = v−(T )− v+(T ) ∈ Xu(T ) + P (T )X̂T

14



by (a) and (b). Conversely, let f ∈ Eα−1 with (R+
α−1f)(T ) − (R−

α−1f)(T ) = ys + yu ∈
P (T )X + Xu(T ). Set x0 := (R+

α−1f)(T )− ys = yu + (R−
α−1f)(T ) and

u(t) :=

{
u+(t) := −U(t, T )ys + (R+

α−1f)(t), t ≥ T,

u−(t) := ṽ(t) + (R−
α−1f)(t), t ≤ T,

(3.1)

where ṽ ∈ N(G−
α−1) such that ṽ(T ) = yu. Using Propositions 2.1 and 2.2, one checks

that R±
α−1f(T ) ∈ XT

ε for 0 < ε < α, so that ys ∈ X t
ε ⊆ X̂T . Hence, u ∈ C0(R, X).

Proposition 3.3 further yields

u±(t) = U(t, s)u±(s) +

∫ t

s

Uα−1(t, τ)f(τ)dτ

for all t ≥ s ≥ T and s ≤ t ≤ T , respectively. Let now s ≤ T ≤ t. Since u+(T ) =

u−(T ) = x0, we have

u(t) = u+(t) = U(t, T )u−(T ) +

∫ t

T

Uα−1(t, τ)f(τ)dτ

= U(t, T )
[
U(T, s)u−(s) +

∫ T

s

Uα−1(T, τ)f(τ)dτ
]

+

∫ t

T

Uα−1(t, τ)f(τ)dτ

= U(t, s)u(s) +

∫ t

s

Uα−1(t, τ)f(τ)dτ.

Therefore Gα−1u = f , and (d) is established.

The inclusion ‘⊆’ in assertion (e) follows from (d) and Proposition 3.3. Take f ∈ Eα−1

and z := (R+
α−1f)(T ) − (R−

α−1f)(T ) such that there is a sequence zn ∈ P (T )X + Xu(T )

converging to z in X as n → ∞. Set yn := z − zn and xn := Q(T )yn. Lemma 3.4

yields a function fn ∈ D(Gα−1) such that (R+
α−1fn)(T ) = xn, (R

−
α−1fn)(T ) = 0, and

‖fn‖E ≤ K‖xn‖ for a constant K independent of n. Then the vector

(R+
α−1(f − fn))(T )− (R−

α−1(f − fn))(T ) = z − xn = zn + P (T )yn

belongs to P (T )X + Xu(T ), so that f − fn ∈ R(Gα−1) by (d). Since E ↪→ Eα−1, we can

estimate

‖f − (f − fn)‖Eα−1 ≤ c ‖fn‖E ≤ cK ‖xn‖ ≤ c ‖z − zn‖,

and thus assertion (e) is shown. �

Using the above results, we are able to describe other properties of the operator Gα−1,

in particular its Fredholmity, in terms of properties of the subspaces Xs(T ) and Xu(T ),

using similar arguments as in [15], see also [16] for Lp spaces. For the convenience of

the readers, we give the complete proof. Recall that subspaces V and W of a Banach

space E are called a semi-Fredholm couple if V + W is closed and if at least one of the

dimensions dim(V ∩ W ) and codim(V + W ) is finite. The index of (V, W ) is defined

by ind(V, W ) := dim(V ∩ W ) − codim(V + W ). If the index is finite, then (V, W ) is a

Fredholm couple. Observe that in the next theorem the operator U(T,−T )|Q(−T )(X) is

trivially injective if T = 0.
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Theorem 3.6. Assume that (2.1), (2.2), and (2.19) are satisfied and that 1−µ < α ≤ 1.

Then the following assertions hold for Gα−1 defined on Eα−1 = Eα−1(R).

(a) R(Gα−1) is closed in Eα−1 if and only if P (T )X + Xu(T ) is closed in X.

(b) Gα−1 is surjective if and only if P (T )X + Xu(T ) = X.

(c) If Gα−1 is injective, then P (T )X ∩ Xu(T ) = {0}. The converse is true if

U(T,−T )|Q(−T )(X) is injective, in addition.

(d) If Gα−1 is invertible, then P (T )X ⊕ Xu(T ) = X. The converse is true if

U(T,−T )|Q(−T )(X) is injective, in addition.

(e) dim N(Gα−1) = dim(P (T )X ∩Xu(T )) + dim N(U(T,−T )|Q(−T )(X)).

If R(Gα−1) is closed in Eα−1, then codim(P (T )X + Xu(T )) = codim R(Gα−1).

(f) If Gα−1 is a semi-Fredholm operator, then (P (T )X, Xu(T )) is a semi-Fredholm

couple, and ind(P (T )X, Xu(T )) ≤ ind Gα−1. If in addition the kernel of

U(T,−T )|Q(−T )(X) is finite dimensional, then

ind(P (T )X, Xu(T )) = ind Gα−1 − dim N(U(T,−T )|Q(−T )(X)). (3.2)

Conversely, if (P (T )X, Xu(T )) is a semi-Fredholm couple and the kernel of

U(T,−T )|Q(−T )(X) is finite dimensional, then Gα−1 is a semi-Fredholm operator

and (3.2) holds.

Proof. The ‘if’ part of assertion (a) is a direct consequence of Proposition 3.5(d) and

(e). Assume that R(Gα−1) is closed in Eα−1. Take ys
n ∈ P (T )X and yu

n ∈ Xu(T ) with

ys
n + yu

n → y in X as n → ∞. Set z = Q(T )y. By Lemma 3.4, there is a function

h ∈ D(Gα−1) such that R+
α−1h(T ) = z and R−

α−1h(T ) = 0. Since

z = lim
n→∞

Q(T )(ys
n + yu

n) = lim
n→∞

Q(T )yu
n = lim

n→∞
(yu

n − P (T )yu
n),

we obtain R+
α−1h(T ) − R−

α−1h(T ) = z ∈ P (T )X + Xu(T ). Proposition 3.5 implies that

h ∈ R(Gα−1) = R(Gα−1), and thus z ∈ P (T )X + Xu(T ) by Proposition 3.5(d). As a

result, y = P (T )y + z ∈ P (T )X + Xu(T ), and so (a) holds. The ‘if’ part of assertion (b)

follows from Proposition 3.5(d), and the converse can be shown as in statement (a).

Proposition 3.5(c) yields the first part of (c). For the converse, assume that

U(T,−T )|Q(−T )(X) is injective and P (T )X ∩ Xu(T ) = {0}, and let u ∈ N(Gα−1).

Then u(t) = U(t, s)u(s) for all t ≥ s, and so u(T ) = 0 by Proposition 3.5(c).

From Lemma 3.2(b) we further deduce u(−T ) ∈ Q(−T )(X). Since 0 = u(T ) =

U(T,−T )|Q(−T )(X)u(−T ), our assumption yields u(−T ) = 0 and thus u(t) = 0 for t ≥ −T .

Finally, u(t) = Ũ(t,−T )u(−T ) for all t ≤ −T by Proposition 2.8, so that u = 0. We have

thus shown (c). Assertion (d) is an easy consequence of (b) and (c).

To show the first equality in (e), we define Γ := {u ∈ N(Gα−1) : u(t) = 0, t ≥ T} and

the linear mapping

K : N(Gα−1)/Γ −→ P (T )X ∩Xu(T ), [u] 7−→ u(T ).

Proposition 3.5(c) implies that K is well defined and bijective. Since also dim Γ =

dim N(U(T,−T )|Q(−T )(X)), the first identity holds. We next assume that R(Gα−1) is
16



closed in Eα−1. Hence, P (T )X + Xu(T ) is closed X by (a). Define the linear map

J : Eα−1/R(Gα−1) −→ X/(P (T )X + Xu(T )), [f ] 7−→ [(R+
α−1f)(T )− (R−

α−1f)(T )].

Due to Proposition 3.5(d), J is well defined and injective. Take x ∈ X. By Lemma 3.4

there is a function f ∈ Eα−1 such that (R+
α−1f)(T )− (R−

α−1f)(T ) = Q(T )x = x− P (T )x.

Hence, J [f ] = [(R+
α−1f)(T ) − (R−

α−1f)(T )] = [x]. Consequently, J is also surjective and

thus the second equality in (e) follows. Assertion (f) is a consequence of (a) and (e). �

Using (2.18) and the same arguments as in [15], we obtain the following sufficient

condition for the Fredholmity of Gα−1.

Corollary 3.7. Assume that (2.1), (2.2), (2.16), and (2.17) are satisfied and that 1−µ <

α ≤ 1. Further suppose that dim Q±∞X < ∞ (which holds if D(A±∞) are compactly

embedded in X). Then Gα−1 is Fredholm and ind Gα−1 = dim Q−∞X − dim Q+∞X.

We next characterize the range of Gα−1 in terms of the dual problem, see Remark 3.9

below. Related results have been shown in [16] and [20] for other settings by different

methods. We start with a simple observation. Let 0 ≤ θ < α ≤ 1. Then X t
α−1 is densely

embedded in D((ω−A−1(t))
θ) by (2.4). Since D((ω−A(t)∗)1−θ) ↪→ [D((ω−A−1(t))

θ)]∗, we

deduce that D((ω − A(t)∗)1−θ ↪→ (X t
α−1)

∗ for t ∈ R with a uniform embedding constant.

We denote by V the space of v ∈ C(R, X∗) such that v(s) = Uα−1(t, s)
∗v(t), v(t) ∈

D((ω − A(t)∗)1−θ), and (ω − A(·)∗)1−θv ∈ L1(R, X∗) for all t ≥ s in R.

Proposition 3.8. Assume that (2.1), (2.2), and (2.19) hold and that 1−µ < θ < α ≤ 1.

Then the closure of R(Gα−1) is equal to the space

E := {f ∈ Eα−1 :

∫
R
〈f(s), v(s)〉Xs

α−1
ds = 0 for all v ∈ V}.

Proof. We first show that under our assumptions it holds

V = {v ∈ L1(R, X∗) : v(s) = Uα−1(t, s)
∗v(t) ∀ t ≥ s} =: V ′. (3.3)

Clearly, V ⊂ V ′. Take v ∈ V ′. Then v ∈ C(R, X∗) since U(t, s) is norm continuous

for t > s. We denote by V (t, s) the extension of U(t, s)(ω − A(s))1−θ to L(X). For

x ∈ D((ω − A(s))1−θ), we then obtain

〈(ω − A(s))1−θx, v(s)〉 = 〈(ω − A(s))1−θx, Uα−1(s + 1, s)∗v(s + 1)〉
= 〈V (s + 1, s)x, v(s + 1)〉,

|〈(ω − A(s))1−θx, v(s)〉| ≤ c ‖v(s + 1)‖X∗‖x‖ (3.4)

due to (2.8). The estimate (3.4) yields

v(s) ∈ D((ω − A(s)∗)1−θ) and ‖(ω − A(s)∗)1−θv(s)‖X∗ ≤ c ‖v(s + 1)‖X∗ .

Thus v ∈ V and (3.3) is true. We now come to the main part of the proof. Proposition

3.5 shows that

f ∈ R(Gα−1) ⇐⇒ z := R+
α−1f(T )−R−

α−1f(T ) ∈ P (T )X + Xu(T ).
17



Employing also [24, Theorem 4.7] and [19, (IV.4.11)], we deduce

f ∈ R(Gα−1) ⇐⇒ z ∈ ⊥((P (T )X + Xu(T ))⊥) ⇐⇒ z ∈ ⊥((P (T )X)⊥ ∩ (Xu(T ))⊥)

where M⊥ := {x∗ ∈ X∗ : 〈x, x∗〉 = 0 ∀ x ∈ M} for M ⊆ X and ⊥N := {x ∈ X : 〈x, x∗〉 =

0 ∀ x∗ ∈ N} for N ⊆ X∗. Straightforward duality arguments imply that U(t, s)∗ has an

exponential dichotomy on [T, +∞) and (−∞,−T ] with projections P (t)∗ and that

(P (T )X)⊥ = Q(T )∗X∗, (Xu(T ))⊥ = N(Q(−T )∗U(T,−T )∗), (3.5)

using also Xu(T ) = U(T,−T )Q(−T )X, see Lemma 3.2. We further compute

〈z, y∗〉 = −
∫ +∞

T

〈Ũα−1(T, s)Qα−1(s)f(s), y∗〉X ds−
∫ T

−T

〈Uα−1(T, s)f(s), y∗〉X ds

−
∫ −T

−∞
〈Uα−1(T, s)Pα−1(s)f(s), y∗〉X ds

= −
∫

R
〈f(s), v(s)〉Xs

α−1
ds

for all y∗ ∈ (P (T )X)⊥ ∩ (Xu(T ))⊥, where v is given by

v(s) :=


Ũ(T, s)∗Q(T )∗y∗ = Ũ(T, s)∗y∗, s ≥ T,

U(T, s)∗y∗, −T ≤ s ≤ T,

U(−T, s)∗P (−T )∗U(T,−T )∗y∗ = U(T, s)∗y∗, s ≤ −T.

(3.6)

(Here we have used (3.5).) Summing up, we have shown that f ∈ R(Gα−1) if and only if∫
R
〈f(s), v(s)〉Xs

α−1
ds = 0

for all v as in (3.6) with y∗ ∈ Q(T )∗X∗ ∩N(Q(−T )∗U(T,−T )∗). It remains to show that

V consists precisely of the functions defined in (3.6).

First, one verifies by a duality argument that each function v in (3.6) belongs to V ′ = V ,

recall (3.3). Conversely, let v ∈ V . Then we have

P (T )∗v(T ) = U(t, T )∗P (t)∗v(t), ‖P (T )∗v(T )‖ ≤ Ne−δ(t−T )‖v(t)‖

for t ≥ T . There is a sequence tn →∞ such that ‖v(tn)‖ is bounded since v ∈ L1(R, X∗).

Therefore, P (T )∗v(T ) = 0. For s ≤ −T , one obtains

Q(s)∗v(s) = U(−T, s)∗Q(−T )∗v(−T ) = U(−T, s)∗Q(−T )∗U(T,−T )∗v(T ), (3.7)

‖Q(−T )∗U(T,−T )∗v(T )‖ = ‖Ũ(s,−T )∗Q(s)∗v(s)‖ ≤ Ne−δ(−T−s)‖v(s)‖. (3.8)

As above, it follows that Q(−T )∗U(T,−T )∗v(T ) = 0. Consequently, v is of the form (3.6)

with y∗ = v(T ) ∈ Q(T )∗X∗ ∩N(Q(−T )∗U(T,−T )∗). �

Remark 3.9. One can see that the functions v ∈ V , see (3.3), solve the dual evolution

equation

−v′(s) = A(s)∗v(s), s ∈ R, (3.9)

in a weak sense. The function v is a classical solution of (3.9) if also the adjoint operators

A(t)∗ satisfy the Acquistapace–Terreni conditions (2.1) and (2.2), see [2, Prop.2.9].
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Theorem 3.6, Corollary 3.7, and Propositions 3.5 and 3.8 now yield the following Fred-

holm alternative, where we focus on a simplified setting.

Theorem 3.10. Assume that (2.1), (2.2), (2.16) and (2.17) are true, that dim Q±∞X <

∞, and that 1 − µ < α ≤ 1. Let f ∈ Eα−1 = Eα−1(R). Then there is a mild solution

u ∈ C0(R, X) of (2.20) if and only if∫
R
〈f(s), w(s)〉Xs

α−1
ds = 0

for each w ∈ L1(R, X∗) with w(s) = Uα−1(t, s)
∗w(t) for all t ≥ s. The mild solutions u

are given by

u(t) = v(t)− U(t, T )ys + (R+
α−1f)(t), t ≥ T,

u(t) = v(t) + ṽ(t) + (R−
α−1f)(t), t ≤ T,

where R±
α−1 were defined before Proposition 3.3, (R+

α−1f)(T ) − (R−
α−1f)(T ) = ys + yu ∈

P (T )X + Xu(T ), ṽ ∈ C0((−∞, T ], X) with ṽ(T ) = yu and ṽ(t) = U(t, s)ṽ(s) for all

T ≥ t ≥ s, and v ∈ C0(R, X) with v(t) = U(t, s)v(s) for all t ≥ s.

Note that in the above result we obtain mild solutions which are unique modulo the

finite dimensional subspace N(Gα−1). We further remark that if U(·, ·) has an exponential

dichotomy on R with projections P (t), t ∈ R, then we can take T = 0 and we have

Xu(0) = (I −P (0))X. Hence, Gα−1 is invertible by Theorem 3.6(d). As a result, for each

f ∈ Eα−1 we obtain a unique mild solution of u ∈ C0(R, X) of (2.20) which is given by

u(t) =

∫
R

Γα−1(t, τ)f(τ) dτ, t ∈ R,

(3.1), cf. [11] for this formula in the case α = 1. We conclude this section with two

remarks indicating straightforward variants of the results established so far. The details

are left to the reader.

Remark 3.11. Note that we allow for the case α = 1, i.e., G0 = G on E0 = E = C0(R, X),

in this section. In fact, in this case the results shown in this section remain valid for

each exponentially bounded evolution family U(t, s), t ≥ s, (i.e., (2.3) holds) such that

(t, s) 7→ U(t, s) is strongly continuous for t ≥ s and U(·, ·) has exponential dichotomies

on halflines (−∞,−T ] and [T, +∞). (Here one sets X̂ t = X.)

Remark 3.12. All results established in this and the previous section remain valid with

the slightly simplified proofs if we replace the function spaces C0(J, X) by Cb(J, X)

in the assertions and in Definitions 2.4 and 3.1 and set Xs(t0) = {x ∈ X t0
α−1 :

supt≥t0+1 ‖Uα−1(t, t0)x‖ < ∞}. Moreover, one can replace throughout the space X t
α−1

by the closure of X in X t
α−1.

4. Non–autonomous parabolic boundary evolution equations

In this section we study the non–autonomous parabolic boundary evolution equation

u′(t) = Am(t)u(t) + g(t), t ≥ t0,
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B(t)u(t) = h(t), t ≥ t0, (4.1)

u(t0) = u0,

and its variant on the line

u′(t) = Am(t)u(t) + g(t), t ∈ R,

B(t)u(t) = h(t), t ∈ R.
(4.2)

Here t0 ∈ R, u0 ∈ X, and the operators Am(t) and B(t), t ∈ R, are defined on a

Banach space Zt ↪→ X and map into the state space X and the ‘boundary space’ Y ,

respectively. The inhomogeneities g and h take values in X and Y , respectively. In the

typical applications Am(t) is a differential operator with ’maximal’ domain not containing

boundary conditions and B(t) are boundary operators. We further introduce the operators

A(t)u := Am(t)u, u ∈ D(A(t)) := {u ∈ Zt : B(t)u = 0}.

More precisely, we make the following assumptions.

(A1) For every t ∈ R there is a Banach space Zt ↪→ X such that Am(t) ∈ L(Zt, X). The

opererators B(t) ∈ L(Zt, Y ) are surjective for t ∈ R.

(A2) The operators A(t) = Am(t)|N(B(t)), t ∈ R, satisfy (2.1) and (2.2).

Under these hypotheses, there is an evolution family (U(t, s))t≥s solving the problem with

homogeneous conditions g = h = 0. Moreover, by [18, Lemma 1.2 ] there exists the

Dirichlet map D(t) for ω − Am(t), i.e., v = D(t)y is the unique solution of the abstract

boundary value problem

(ω − Am(t))v = 0, B(t)v = y,

for each y ∈ Y . Fixing α ∈ (1− µ, 1] (where µ is given by (2.2)), we further assume that

(A3) supt∈R ‖D(t)‖L(Y,Xt
α) < ∞ and R 3 t 7−→ D(t)y is continuous in X for each y ∈ Y .

If (A1)–(A3) hold with R replaced by a closed interval J , we may extend Am(t), B(t),

and Zt constantly to t ∈ R, and then (A1)–(A3) hold on R for this extension. Hypotheses

(A1)–(A3) describe one convenient general setting for the application of our results, in

particular suited for parabolic problems formulated on Lp or Cβ spaces. But our approach

is more flexible. So we treat in Example 4.5 an initial boundary value problem on the state

space X = C(Ω) which does not fit in the above setting. We add a simple observation.

Lemma 4.1. Assume that assumptions (A1)–(A3) hold and that h ∈ C0(J, Y ) for a closed

interval J . Then (ω − A−1(·))D(·)h ∈ Eα−1(J).

Proof. Assumption (A3) yields D(·)h ∈ Eα(J) which implies the assertion. �

In order to apply the results from the previous sections to the boundary evolution

equation (4.1), we write it as the inhomogeneous Cauchy problem

u′(t) = A−1(t)u(t) + f(t), t ≥ t0,

u(t0) = u0,
(4.3)

setting f := g + (ω − A−1(·))D(·)h. We also consider the evolution equation

u′(t) = A−1(t)u(t) + f(t), t ∈ R. (4.4)
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If g ∈ C0(J, X) and h ∈ C0(J, Y ), then f ∈ Eα−1(J) by Lemma 4.1. As in Definition 2.4,

we call a function u ∈ C(J, X) a mild solution of (4.2) and (4.4) on J if the equation

u(t) = U(t, s)u(s) +

∫ t

s

Uα−1(t, σ)[g(σ) + (ω − A−1(σ))D(σ)h(σ)] dσ (4.5)

holds for all t ≥ s in J . The function u is called a mild solution of (4.1) and (4.3)

if in addition u(t0) = u0 and J = [t0,∞). Mild solutions for the corresponding final

value problems are defined in the same way. We note that a function u ∈ C1(J, X) with

u(t) ∈ Zt satisfies (4.1), resp. (4.2), if and only if it satisfies (4.3), resp. (4.4), and then it

is given by (4.5). These facts can be shown as in Proposition 4.2 of [13].

Propositions 2.7 and 2.8 immediately imply two results on the existence of bounded

mild solutions for forward and backward boundary evolution equations.

Proposition 4.2. Assume that assumptions (A1)–(A3) hold with 1 − µ < α ≤ 1

and that U(t, s) has an exponential dichotomy on an interval [T,∞). Let t0 ≥ T ,

g ∈ C0([T,∞), X), h ∈ C0([T, +∞), Y ), and u0 ∈ D(A(t0)). Then the mild solution

u ∈ C([t0, +∞), X) of the boundary evolution equation (4.1) is bounded on [t0,∞) if and

only if

Q(t0)u0 = −
∫ +∞

t0

Ũα−1(t0, s)Qα−1(s)[g(s) + (ω − A−1(s))D(s)h(s)] ds.

In this case u is given by

u(t) = U(t, t0)P (t0)u0 +

∫ t

t0

Uα−1(t, s)Pα−1(s)[g(s) + (ω − A−1(s))D(s)h(s)] ds

−
∫ ∞

t

Ũα−1(t, s)Qα−1(s)[g(s) + (ω − A−1(s))D(s)h(s)] ds, t ≥ t0.

Proposition 4.3. Assume that assumptions (A1)–(A3) hold with 1 − µ < α ≤ 1 and

that U(t, s) has an exponential dichotomy on an interval (−∞,−T ]. Let t0 < −T ,

g ∈ C0((−∞,−T ], X), h ∈ C0((−∞,−T ], Y ), and u0 ∈ X. Then there is a bounded

mild solution u ∈ C((−∞, t0], X) of the backward boundary evolution equation

u′(t) = Am(t)u(t) + g(t), t ≤ t0,

B(t)u(t) = h(t), t ≤ t0,

u(t0) = u0,

if and only if

P (t0)u0 =

∫ t0

−∞
Uα−1(t0, s)Pα−1(s)[g(s) + (ω − A−1(s))D(s)h(s)] ds.

In this case u is given by

u(t) = Ũ(t, t0)Q(t0)u0 −
∫ t0

t

Ũα−1(t, s)Qα−1(s)[g(s) + (ω − A−1(s))D(s)h(s)] ds

+

∫ t

−∞
Uα−1(t, s)Pα−1(s)[g(s) + (ω − A−1(s))D(s)h(s)] ds, t ≤ t0.

21



Moreover, Theorem 3.10 implies the following Fredholm alternative for the mild solu-

tions of (4.2).

Theorem 4.4. Assume that assumptions (A1)–(A3) hold with 1−µ < α ≤ 1, that (2.16)

and (2.17) are true, and that dim Q±∞X < ∞. Let g ∈ C0(R, X) and h ∈ C0(R, Y ).

Then there is a mild solution u ∈ C0(R, X) of (4.2) if and only if∫
R
〈f(s), w(s)〉Xs

α−1
ds = 0

for f = g + (ω − A−1(·))D(·)h and all w ∈ L1(R, X∗) with w(s) = Uα−1(t, s)
∗w(t) for all

t ≥ s. The mild solutions u are given by

u(t) = v(t)− U(t, T )ys + (R+
α−1f)(t), t ≥ T,

u(t) = v(t) + ṽ(t) + (R−
α−1f)(t), t ≤ T,

where R±
α−1 were defined before Proposition 3.3, (R+

α−1f)(T ) − (R−
α−1f)(T ) = ys + yu ∈

P (T )X + Xu(T ), ṽ ∈ C0((−∞, T ], X) with ṽ(T ) = yu and ṽ(t) = U(t, s)ṽ(s) for all

T ≥ t ≥ s, and v ∈ C0(R, X) with v(t) = U(t, s)v(s) for all t ≥ s.

We add an example dealing with a parabolic pde in a sup norm context. One could

treat more general problems, in particular systems, cf. [16], and one could weaken the

regularity assumptions.

Example 4.5. We study the boundary value problem

∂t u(t, x) = A(t, x,D)u(t, x) + g(t, x), t ∈ R, x ∈ Ω,

B(t, x,D)u(t, x) = h(t, x), t ∈ R, x ∈ ∂Ω,
(4.6)

on a bounded domain Ω ⊆ Rn with boundary ∂Ω of class C2 and outer unit normal vector

ν(x), employing the differential expressions

A(t, x,D) =
∑

k,l
akl(t, x)∂k∂l +

∑
k
ak(t, x) ∂k + a0(t, x),

B(t, x,D) =
∑

k
bk(t, x) ∂k + b0(t, x).

We require that akl = alk and bk are real–valued, akl, ak, a0 ∈ Cµ
b (R, C(Ω)), bk, b0 ∈

Cµ
b (R, C1(∂Ω)),

n∑
k,l=1

akl(t, x) ξk ξl ≥ η |ξ|2 , and
n∑

k=1

bk(t, x)νk(x) ≥ β

for constants µ ∈ (1/2, 1), β, η > 0 and all ξ ∈ Rn, k, l = 1, · · · , n, t ∈ R, x ∈ Ω resp.

x ∈ ∂Ω. (Cµ
b is the space of bounded, globally Hölder continuous functions.) We set

X = C(Ω),

Zt = {u ∈
⋂

p>1
W 2

p (Ω) : A(t, ·, D)u ∈ C(Ω)},

Am(t)u = A(t, ·, D)u and B(t)u = B(t, ·, D)u for u ∈ Zt, and A(t) = Am(t)|N(B(t)), i.e.,

D(A(t)) = {u ∈
⋂

p>1
W 2

p (Ω) : A(t, ·, D)u ∈ C(Ω), B(t, ·, D)u = 0 on ∂Ω},
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for t ∈ R. It is known that the operators A(t), t ∈ R, satisfy (2.1) and (2.2), see [4], [22],

or [30, Exa.2.9]. Thus A(·) generates an evolution family U(·, ·) on X. Let us fix numbers

α ∈ (1− µ, 1/2) and p > n
2(1−α)

. Then X t
α = C2α(Ω) with uniformly equivalent constants

due to Theorem 3.1.30 in [22]. So Sobolev’s embedding theorem yields W 2
p (Ω) ↪→ X t

α

with a uniform constant. Standard elliptic theory tells us that for each ϕ ∈ W
1−1/p
p (∂Ω)

there is a unique D(t)ϕ := u ∈ W 2
p (Ω) such that

(ω − A(t, ·, D))u = 0 on Ω, B(t, ·, D)u = ϕ on ∂Ω,

where D(t) : W
1−1/p
p (∂Ω) → W 2

p (Ω) is bounded uniformly in t ∈ R, see [6, Thm.15.2].

(The Slobodetskij spaces W s
p (∂Ω) are defined in e.g. [5, §7.51].) For ϕ ∈ W

1−1/p
p (∂Ω), the

properties of D(t) yield

(ω − A(t, ·, D))(D(t)ϕ−D(s)ϕ) = (A(t, ·, D)− A(s, ·, D))D(s)ϕ,

B(t, ·, D)(D(t)ϕ−D(s)ϕ) = (B(s, ·, D)−B(t, ·, D))D(s)ϕ,

so that [6, Thm.15.2] ) implies that

‖D(t)ϕ−D(s)ϕ‖W 2
p (Ω)

≤ c
(
‖(A(t, ·, D)− A(s, ·, D))D(s)ϕ‖Lp(Ω) + ‖(B(s, ·, D)−B(t, ·, D))D(s)ϕ‖

W
1−1/p
p (∂Ω)

)
≤ c |t− s|µ ‖D(s)ϕ‖W 2

p (Ω) ≤ c |t− s|µ ‖ϕ‖
W

1−1/p
p (∂Ω)

for constants independent of t, s ∈ R (using [5, §7.51]). So we see that D(·)h ∈ Eα if

h ∈ C0(R, W
1−1/p
p (∂Ω)). Further let g ∈ C0(R, X). We define mild solutions of (4.6)

again by (4.5). (Observe that a solution u ∈ C1(R, C(Ω)) of (4.6) with u(t) ∈ Zt for

t ∈ R solves (4.6) formulated on X = Lp(Ω). On this state space, (A1)–(A3) hold with

Zt = W 2
p (Ω) and Y = W

1−1/p
p (∂Ω) by the above mentioned results. In this setting we

have already justified the concept of mild solutions given (4.5).) We further assume that

aα(t, ·) → aα(±∞, ·) in C(Ω) and bj(t, ·) → bj(±∞, ·) in C1(∂Ω)

as t → ±∞, where α = (k, l) or α = j for k, l = 1, · · · , n and j = 0, · · · , n. We define the

sectorial operators A±∞ in the same way as A(t). As in [16, Exa.5.1] one can check that

(2.16) holds. Finally we assume that iR ⊂ ρ(A±∞). (Observe that the operators A±∞
have compact resolvent so that the spectrum consists only of eigenvalues. The spectrum

of A±∞ was studied in [16, Exa.5.1].) Then the Fredholm alternative Theorem 4.4 holds

for mild solutions of (4.6) on X = C(Ω) for g ∈ C0(J, X) and h ∈ C0(R, W
1−1/p
p (∂Ω)) due

to the results from Section 3.

5. Appendix: Proof of Proposition 2.6

We start with a lemma giving an additional estimate on Uα−1(t, s).

Lemma 5.1. Assume that (2.1) and (2.2) hold. Let s < t ≤ s+ t0, t0 > 0, 1−ν < θ < µ,

and 1−µ < α < 1− θ. Then the operators V (t, s) := (ω−A(t))−θUα−1(t, s)(ω−A−1(s))
θ

defined on X belong to L(X) with norms bounded by a constant c(t0, θ). We further

set V (s, s) := I. Then the map (t, s) 7→ V (t, s)f(s) is continuous for t ≥ s and every
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f ∈ Ê(J), where J ⊂ R is a closed interval. For 1− µ < α ≤ 1 the operators Uα−1(t, s) :

Xs
α−1 → X t

α−1 are locally uniformly bounded for s ≤ t ≤ s + t0,

Proof. Let s < t ≤ s + t0, t0 > 0, and 1 − ν < θ < µ. By rescaling, we may assume

that (2.1) and (2.2) hold for some ω < 0. Then the Yosida approximations An(t) =

nA(t)R(n, A(t)), t ∈ R, fulfill (2.1) and (2.2) with ω = 0 and possibly different, but

n–independent constants, for sufficiently large n ∈ N. Thus An(·) generates an evolution

family Un(·, ·) with estimates independent of n. These evolution families satisfy

Vn(t, s) := (−An(t))−θUn(t, s)(−An(s))θ (5.1)

= e(t−s)An(s) + [(−An(t))−θ − (−An(s))−θ](−An(s))θe(t−s)An(s)

+

∫ t

s

Vn(t, σ)(−An(σ))1−θ [(−An(σ))−1 − (−An(s))−1] (−An(s))1+θe(σ−s)An(s) dσ.

In view of the above integral equation for Vn(t, s), we introduce the operators

an(t, s) := [(−An(t))−θ − (−An(s))−θ] (−An(s))θe(t−s)An(s)

kn(t, s) := (−An(t))1−θ [(−An(t))−1 − (−An(s))−1] (−An(s))1+θe(t−s)An(s)

The estimates (2.6), (2.9) and (2.10) yield

‖an(t, s)‖ ≤ c (t− s)µ−θ and ‖kn(t, s)‖ ≤ c (t− s)µ−θ−1 (5.2)

with constants c = c(t0) independent of n. Setting bn(t, s) := e(t−s)An(s) + an(t, s), we can

rewrite (5.1) as

Vn(t, s) = bn(t, s) +

∫ t

s

Vn(t, τ)kn(τ, s)dτ =: bn(t, s) + (Vn ∗ kn)(t, s).

Theorem II.3.2.2 and Lemma II.3.2.1 of [7] now show that

Vn(t, s) = bn(t, s) +
∞∑

j=1

(bn ∗ [kn∗]j)(t, s) and ‖Vn(t, s)‖ ≤ c (5.3)

for s ≤ t ≤ s + t0 and the j–times ‘convolution’ [kn∗]j = kn ∗ · · · ∗ kn, where

‖[kn∗]j(t, s)‖ ≤ cj(t− s)−α with
∞∑

j=1

cj < ∞, (5.4)

and the constants c = c(t0) and cj = cj(t0) do not depend on n. It is straightforward to

show that

lim
n→∞

an(t, s) = a(t, s) := [(−A(t))−θ − (−A(s))−θ] (−A(s))θe(t−s)A(s),

lim
n→∞

bn(t, s) = b(t, s) := e(t−s)A(s) + [(−A(t))−θ − (−A(s))−θ] (−A(s))θe(t−s)A(s),

lim
n→∞

kn(t, s) = k(t, s) := (−A(t))1−θ [(−A(t))−1 − (−A(s))−1] (−A(s))1+θe(t−s)A(s)

in L(X) locally uniformly for t > s, cf. [31, Prop.2.1] and use Lemmas 4.1 and 4.2 of [3].

Moreover, the limit operators satisfy estimates analogous to (5.2) and (5.4). Therefore
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(5.3) implies that Vn(t, s) converges in L(X) and locally uniformly for t > s to an operator

V (t, s) satisfying ‖V (t, s)‖ ≤ c(t0) and

V (t, s) = e(t−s)A(s) + a(t, s) +

∫ t

s

V (t, τ)k(τ, s) dτ (5.5)

for s < t ≤ s + t0 and t0 > 0. Since Un(t, s) → U(t, s) in L(X) by e.g. Proposition 2.5 of

[30], Vn(t, s)x converges to (ω − A(t))−θU(t, s)(ω − A(s))θx for x ∈ D((ω − A(s))θ). We

then deduce the first assertion from Proposition 2.1 and embedding (2.4) by approxima-

tion. Further, the third assertion follows by the reiteration (see e.g. Theorem 1.2.15 and

Proposition 2.2.15 in [22]). The second assertion was shown in Proposition 2.1 for t > s.

Let f ∈ Ê(J) and ε > 0. Take g ∈ D(A(·)) with ‖f − g‖∞ ≤ ε. Using (5.5), we estimate

‖V (t, s)f(s)− f(r)‖ ≤ ‖(e(t−s)A(s) − I)f(s)‖+ ‖f(s)− f(r)‖+ c (t− s)µ−θ

≤ ‖(e(t−s)A(s) − I)g(s)‖+ cε + ‖f(s)− f(r)‖+ c (t− s)µ−θ .

This inequality shows that

lim sup
(t,s)→(r,r)

‖V (t, s)f(s)− f(r)‖ ≤ cε,

and so the last assertion is established, too. �

Proof of Proposition 2.6. By rescaling, we can assume that (2.1) and (2.2) hold with ω =

0. Let 1− µ < α ≤ 1, f ∈ Eα−1(J), 0 ≤ β < min{α, ν}, s < t in J , and let u ∈ C(J, X)

be a mild solution of (2.20). Formulas (2.21) and (2.12) yield

‖u(t)‖t
β ≤ ‖U(t, s)u(s)‖t

β +

∫ t

s

‖Uα−1(t, σ)f(σ)‖t
βdσ

≤ c(t− s)−β‖u(s)‖+ c

∫ t

s

(t− σ)α−β−1‖f(σ)‖s
α−1dσ

≤ c(t− s)−β‖u(s)‖+ c(t− s)α−β‖f‖α−1,

so that u(t) ∈ X t
β. Moreover, we have

1

h
(U(t + h, s)− U(t, s))u(s) −→ A(t)U(t, s)u(s)

in X as h → 0. So it remains to differentiate the term

v(t) :=

∫ t

s

Uα−1(t, σ)f(σ) dσ

for t ∈ J \ inf J . Fix θ with max{1− ν, 1−α} < θ < µ and let h > 0. Then we can write

1

h
(−A(t))−θ(v(t + h)− v(t))

= (−A(t))−θ 1

h
(U(t + h, t)− I)v(t) +

1

h

∫ t+h

t

(−A(t + h))−θUα−1(t + h, σ)f(σ) dσ

+
(
(−A(t))−θ − (−A(t + h))−θ

) 1

h

∫ t+h

t

Uα−1(t + h, σ)f(σ) dσ

=: S1 + S2 + S3 ,
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where we take a number α ∈ (1− µ, 1− θ) (thus α < α). Since (−A−1(·))−θf(·) ∈ Ê by

1− θ < α and (2.4), Lemma 5.1 shows that

S2 =
1

h

∫ t+h

t

V (t + h, σ)(−A−1(σ))−θf(σ) dσ −→ (−A−1(t))
−θf(t)

in X as h → 0. Using (2.10) and (2.11), we estimate

‖S3‖ ≤ chµ−1

∫ t+h

t

(t + h− σ)α−1 dσ ‖f‖α−1 ≤ chα+µ−1 −→ 0, h → 0.

We note that (5.5) applied to x ∈ Xβ
t can be shown also for θ = 0 (where V (t, s) =

U(t, s) and a(t, s) = 0) using similar methods, cf. [32, p.347]. The term S1 can thus be

transformed into

S1 =
1

h

(
ehA(t) − I

)
(−A(t))−θv(t) +

1

h

∫ t+h

t

V (t + h, σ)(−A(σ))1−θ

· [(−A(σ))−1 − (−A(t))−1] (−A(t))1−γe(σ−t)A(t)(−A(t))γv(t) dσ

+ [(−A(t))−θ − (−A(t + h))−θ]
1

h

∫ t+h

t

Uα−1(t + h, σ)(−A(σ))θ

· (−A(σ))1−θ[(−A(σ))−1 − (−A(t))−1] (−A(t))1−γe(σ−t)A(t)(−A(t))γv(t) dσ

=: S11 + S12 + S13 .

Here we take γ with 1 − µ < 1 − θ < γ < min{α, ν}. Since v(t) ∈ X t
γ, the embedding

(2.4) yields that (−A(t))−θv(t) ∈ D(A(t)), and hence

lim
h→0

1

h

(
ehA(t) − I

)
(−A(t))−θv(t) = A(t)(−A(t))−θv(t)

in X. Lemma 5.1 and the inequalities (2.6) and (2.9) allow to estimate

‖S12‖ ≤
c

h

∫ t+h

t

(σ − t)µ(σ − t)γ−1 dσ ‖(−A(t))γv(t)‖ = chγ+µ−1‖(−A(t))γv(t)‖ −→ 0.

Finally, we deduce from (2.6), (2.8), (2.9) and (2.10) that

‖S13‖ ≤ chµ−1

∫ t+h

t

(t + h− σ)−θ(σ − t)µ(σ − t)γ−1 dσ ‖(−A(t))γv(t)‖

≤ ch2µ+γ−θ−1 −→ 0, h → 0.

Therefore S1 converges to A(t)(−A(t))−θv(t) in X. Summarizing, we have established

lim
h→0

(−A(t))−θ 1

h

(
u(t + h)− u(t)

)
= (−A−1(t))

−θ
(
A−1(t)u(t) + f(t)

)
in X. By (2.4), this limit exists in X t

−θ, and so in X t
β−1 for 0 ≤ β ≤ 1−θ < min{α, ν}. �
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