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Abstract

We consider a piecewise-deterministic Markov process governed by a jump inten-
sity function, a rate function that determines the behaviour between jumps, and a
stochastic kernel describing the conditional distribution of jump sizes. We study
the point process N b

+ of upcrossings of some level b. Our main result shows that a
suitably scaled point process N b

+(ν(b)t), t ≥ 0, converges, as b → ∞, weakly to a
geometrically compound Poisson process. We also prove a version of Rice’s formula
relating the stationary density of the process to level crossing intensities. This for-
mula provides an interpretation of the scaling factor ν(b). While our proof of the
limit theorem requires additional assumptions, Rice’s formula holds whenever the
(stationary) overall intensity of jumps is finite.

Keywords: level crossings, Rice’s formula, compound Poisson limit theorem, piecewise-
deterministic Markov process, first passage time
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1 Introduction

We consider a real-valued piecewise-deterministic Markov process (Xt)t≥0 whose dis-
tribution is determined by a drift coefficient µ : R → R, a jump intensity function
λ : R → [0,∞), and a stochastic kernel J(x, dz) from R to R. The process (Xt) is right-
continuous and jumps at (positive) epochs T1 < T2 < . . .. Between the jumps it moves
along an integral curve determined by µ. We assume that µ is right-continuous and that
Dµ := {u : µ(u) = 0} is a locally finite set. The occurence of jumps is governed by the
stochastic jump intensity λ(Xt). Given the n-th jump epoch Tn, the conditional distribu-
tion of the size Zn of the n-th jump is J(XTn−, ·), where Xt− is the value of the process
just before t > 0. We will assume that the process has an invariant distribution π and
refer to the Appendix for conditions guaranteeing the existence of a unique stationary
distribution. It is then essentially well-known ([10], [27]) that the stationary distribution
π is absolutely continuous on R \ Dµ, and we let p denote its density. We note that π
might have atoms in Dµ.
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The process (Xt) is a generic model of applied probablity. Special cases have been
extensively studied in the literature. We just mention storage processes ([14],[24]), stress
release models ([7], [26],[27]), queueing models ([9],[24]), and repairable systems ([18]). It
is mostly assumed that J(x, ·) does not depend on x ∈ R and that the jumps are either only
non-negative or only non-positive. An extensive discussion of several ergodicity properties
for a constant (positive) µ and negative jumps is given in [16]. General properties of
piecewise-deterministic Markov processes are studied in [11].

Now assume that X0 has the distribution π. Then (Xt) is a stationary process, and
the sequence (Tn) forms a stationary point process. We assume that the intensity of (Tn)
(the expected number of points in an interval of unit length) is finite. Again we refer to
the Appendix for an explicit assumption that is sufficient for this finiteness. We say that
(Xt) has an upcrossing (resp. downcrossing) of level u ∈ R at time s > 0 if there is some
δ > 0 such that Xt < u (resp. Xt ≥ u) for s − δ ≤ t < s and Xt ≥ u (resp. Xt < u) for
s < t ≤ s + δ. If, in addition, Xs− = Xs(= u) then we speak of a continuous upcrossing
(resp. downcrossing). It is easy to see that the set of all continuous up- and downcrossings
forms a stationary point process Nu. Note that there are no continuous downcrossings
in case µ(u) > 0 and no continuous upcrossings in case µ(u) < 0. The intensity of N u is
denoted by ν(u). As the intensity of (Tn) is assumed finite, it is easy to see that ν(u) is
finite for any u ∈ R.

Our first aim in this paper is to prove the following version of Rice’s formula:

ν(u) = |µ(u)|p(u), u /∈ Dµ. (1.1)

The simplicity of this formula is striking. If (Xt) is ergodic, (1.1) can be explained by
looking at the long-run proportion of time that (Xt) spends in an infinitesimal interval
containing u. Formula (1.1) is a direct analog of the classical Rice formula [25], which
holds for smooth processes and plays a rather important role in engineering. A rigorous
treatment of Rice’s formula is given in [19] and a more recent discussion in [21]. An analog
of (1.1) for (discontinuous) Poisson shot-noise processes has been studied in [4].

Let ν+,d(b) and ν−,d(b) denote resp. the intensities of discontinuous up- and downcross-
ings of the level b. Our proof of (1.1) uses the simple relation ν(u) = |ν+,d(u)− ν−,d(u)|,
see Lemma 3.2. In fact, (1.1) can be rewritten as

ν−,d(u)− ν+,d(u) = µ(u)p(u), u /∈ Dµ. (1.2)

Such equalities for level crossing intensities are widely used in queueing theory. We refer
here to the early reference [8] and the survey [12]. It is quite remarkable that the queueing
literature does not take notice of the close relationship between (1.2) and the results in
[25] (or [4]). Equation (1.2) is mostly derived for Poisson driven models. In principle,
the level crossing method can also be applied in more general cases (see e.g. [12]). There
are, however, many implicit model assumptions, that make a direct derivation of (1.1)
non-trivial. So to the best of our knowledge, the result (1.1) must be considered as new.
Moreover, we will establish this formula under a minimal set of assumptions. In particular,
the existence of the stationary density need not be assumed, but is a consequence of our
model assumptions. Even ergodicity is not needed.

Our second and main aim in this paper is to derive limit results for the point process
N b

+ of all upcrossings of the level b→∞. Whenever the intensity ν+(b) of N b
+ is positive,
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we introduce the scaled point process M b(t) := N b
+(ν+(b)−1t), t ≥ 0. It is stationary

and has intensity 1. Under our assumptions (see the scenarios below), equation (1.1) will
imply that the intensity ν+(b) can be explicitly expressed as

ν+(b) = |µ(b)|p(b), (1.3)

for all sufficiently large b. We refer here to Section 4 for more details. We will study
the limiting behavior of M b under the following three scenarios and some additional
assumptions, see (4.4)-(4.6).

Scenario 1. We have µ(y) → −∞ as y → ∞, and there exists a u0 ∈ R such that
J(x, (−∞, 0)) = 0 for x ≥ u0 (no negative jumps from states x ≥ u0).

Scenario 2. We have λ(y) → ∞ as y → ∞, µ(y) is positive for all sufficiently large y,
and J(x, (0,∞)) = 0 for all x ∈ R (no positive jumps).

Scenario 3. As y →∞ we have µ(y)→ µ(∞) ∈ R \ {0} and λ(y)→ λ(∞) ∈ [0,∞). In
case µ(∞) < 0 there exists a u0 ∈ R such that J(x, (−∞, 0)) = 0 for x ≥ u0 and in case
µ(∞) > 0 we have J(x, (0,∞)) = 0 for all x ∈ R. Moreover, J(y, ·) converges weakly, as
y →∞, to a probability measure J(∞, ·) on R.

In the first two scenarios the point process M b will converge, as b→∞, in distribution
to a Poisson process. The explanation of this phenomenon is quite simple. Fixing a
level u > u0, the trajectory of the process (Xt) can be split into i.i.d. cycles between the
successive continuous crossings of this level. Then hitting a high level b during a particular
cycle will be a ‘rare event’. In both scenarios, with a probability arbitrary close to 1 for
large enough b, given that the level b was exceeded during a cycle there is exactly one
upcrossing of that level during this cycle.

In the third scenario the limiting behaviour of M b is slightly more complicated. The
crossing of a high level b is still a rare event. However, given the level b was exceeded
during a cycle, the conditional distribution of the number of continuous crossings of that
level during this cycle will be geometric with a parameter that converges as b−u→∞ to
some number ρ ∈ (0, 1). Therefore the limit is a geometrically compound Poisson process
Πρ which is defined as follows. Each point of a homogeneous Poisson process of intensity
(1 − ρ) gets (independently of the other points) a mass k ∈ {1, 2, . . .} with probability
(1 − ρ)ρk−1. The resulting stationary point process Πρ has independent increments and
geometrically distributed multiplicities. As the above geometric distribution has mean
1/(1− ρ), the intensity of Πρ is 1.

For Gaussian processes it is well-known that the point process of times of crossing a
high level are asymptotically Poisson, see e.g. [22] and the references given there. But to
the best of our knowledge the present paper is the first to establish such a limit theorem for
jump processes. Compound Poisson limits for exceedances and upcrossings of sequences
are summarized in [13]. A general compound Poisson limit theorem for strongly mixing
random measures has been derived in [20]. We are not aware of any straightforward way
to derive our theorem from these results. An immediate consequence of our main theorem
is that the first time of crossing a high level is asymptotically exponentially distributed.
A discussion of this well-known phenomenon can be found, for instance, in [1] and Section
VI.4 of [2]. However, in the present framework the result seems to be new.

3



This paper is organized as follows. Section 2 contains the detailed definition of the
process as well as some of its fundamental properties. Section 3 provides the proof of
Rice’s formula. The Poisson limit theorem is the topic of the final and main Section 4.

2 Definition and basic properties of the process

We consider a right-continuous function µ : R → R such that the set Dµ of zeros of µ is
locally finite. We assume that, for any x ∈ R, there exists a unique continuous function
q(x, ·) : [0,∞)→ R satisfying the integral equation

q(x, t) = x+

∫ t

0

µ(q(x, s)) ds, t ≥ 0. (2.1)

The jump intensity λ is asumed to be measurable, locally bounded and such that
∫ ∞

0

λ(q(x, s))ds =∞, x ∈ R. (2.2)

For the jump distribution we assume that J(x, {0}) = 0 for all x ∈ R (see also Remark
2.1).

Formally, our process (Xt) is defined as follows. We consider a measurable space (Ω,F)
that is rich enough to carry a marked point process Φ = ((Tn, Zn))n≥1 on [0,∞) with real-
valued random variables (marks) Zn and a real-valued random variable X0. Between the
jumps the process is defined by Xt := q(X0, t) on [0, T1) and Xt = q(XTn, t − Tn) on
[Tn, Tn+1), n ≥ 1. At the jump epochs Tn we have XTn := XTn− + Zn, where XTn− :=
lims→Tn−Xs = q(XTn−1 , Tn − Tn−1). Finally, we define X(t) := ∆ for t ≥ T∞, where ∆ is
a point external to R and T∞ := limn→∞ Tn.

For any probability measure σ on R we consider a probability measure Pσ on (Ω,F)
such that Pσ(X0 ∈ ·) = σ and the following properties hold. The conditional distribution
of T1 given X0 is specified by

Pσ(T1 ≤ t|X0) = 1− exp

[
−
∫ t

0

λ(q(X0, s))ds

]
Pσ-a.s. (2.3)

Similarly we assume for n ≥ 1 that, Pσ-almost surely,

Pσ(Tn+1 − Tn ≤ t|X0, T1, Z1, . . . , Tn, Zn) = 1− exp

[
−
∫ t

0

λ(q(XTn , s))ds

]
. (2.4)

By (2.2) the jump epochs Tn are indeed all finite a.s. The conditional distributions of the
jump sizes are given by

Pσ(Zn+1 ∈ ·|X0, T1, Z1, . . . , Tn, Zn, Tn+1) = J(XTn+1−, ·) Pσ-a.s., n ≥ 0. (2.5)

Since J(x, {0}) = 0, x ∈ R, we can assume that Zn(ω) 6= 0 for all n ≥ 1 and ω ∈ Ω.
The conditional distribution of Φ given X0 is now completely specified. Our as-

sumptions imply that (Xt) is a homogeneous Markov process with respect to the family
{Px : x ∈ R}, where Px := Pδx is the measure correponding to the initial distribution
supported by x. The expectations with respect to Pσ and Px are denoted by Eσ and Ex
respectively. Actually, (Xt) is piecewise-deterministic Markov process in the terminology
of [11].
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Remark 2.1. As Zn 6= 0 for all n ≥ 1 there is a one-to-one correspondence between Φ
and (Xt). The former condition can be easily dispensed with by suitably augmenting the
process (Xt).

Remark 2.2. In many applications (queueing and dam models, repairable systems) the
process (Xt) is non-negative, in the sense that Xt ≥ 0 for all t ≥ 0 whenever X0 ≥ 0. Such
a situation can be accomodated by choosing the characteristics so that (−∞, 0) becomes
transient for the process. A possible choice is µ(x) = 1 and λ(x) = 0 for x < 0. Any
stationary distribution of (Xt) is then concentrated on [0,∞).

Remark 2.3. We assumed that the solution q(x, t) of (2.1) is defined for all t ≥ 0. This
could be generalized as follows. Suppose that for any x ∈ R there is a t∞(x) ∈ (0,∞]
such that q(x, ·) is the unique continuous function on [0, t∞(x)) satisfying (2.1) for all

t ∈ [0, t∞(x)). Assuming instead of (2.2) that
∫ t∞(x)

0
λ(q(x, s))ds =∞, x ∈ R, we can still

use (2.3), (2.4), and (2.5) to define a marked point process Φ such that a.s. T1 < t∞(X0)
and Tn+1−Tn < t∞(XTn), n ≥ 1. Hence we can define the Markov process (Xt) as before.
All results of this paper remain valid in this more general framework.

The next result provides the (generalized) infinitesimal generator of (Xt). Set

τm := inf{t ≥ 0 : |X(t)| ≥ m}, m ∈ N.

Proposition 2.4. Let f : R→ R be absolutely continuous with a Radon–Nikodym deriva-
tive f ′ and let f ′ as well as the function x 7→ λ(x)

∫
(f(x + z) − f(x))J(x, dz) be locally

bounded. Then, for any probability measure σ on R,

Eσf(Xt∧τm) = Eσf(X0) + Eσ
∫ t∧τm

0

f ′(Xs)µ(Xs)ds

+ Eσ
∫ t∧τm

0

∫

R
(f(Xs + z)− f(Xs))λ(Xs)J(Xs, dz)ds. (2.6)

Proof: Denote by (Ft) the filtration generated by X0 and the restriction of Φ to
[0, t] × R. Using basic results on marked point processes (see e.g. chapter 4 in [17]) we
obtain from (2.3), (2.4), and (2.5) that

Eσ
∞∑

n=1

h(Tn, Zn) = Eσ
∫ ∞

0

∫

R
h(t, z)λ(Xt)J(Xt, dz)dt, (2.7)

for all predictable h : Ω× [0,∞)× [0,∞)→ [0,∞). We can now proceed as in Section 8
of [16] to obtain the result.

We have to make two basic assumptions on the process. They will be discussed in the
Appendix.

Assumption 2.5. We have Px(T∞ =∞) = 1 for all x ∈ R, and the process (Xt) has an
invariant distribution π.
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In view of Remark 2.1, the marked point process Φ is stationary under Pπ, see [3] for
more detail on this stationarity. In particular, the distribution of (N(t + s) − N(s))t≥0

does not depend on s ≥ 0, where N(t) := card{n ≥ 1 : Tn ≤ t} is the number of jumps in
the time interval [0, t]. The (stationary) intensity of N is defined by

λπ := EπN(1).

Assumption 2.6. We have λπ <∞.

Let g : [0,∞) × R × R → [0,∞) be measurable. Applying (2.7) with σ = π and
h(t, z) := g(t, Xt−, z), and using Fubini’s theorem, we obtain

Eπ
∞∑

n=1

g(Tn, XTn−, Zn) =

∫ ∞

0

∫

R

∫

R
g(s, x, z)λ(x)J(x, dz)π(dx)ds. (2.8)

Choosing g(s, x, z) = 1{0 ≤ s ≤ 1} we obtain the equality in

λπ =

∫
λ(x)π(dx) <∞. (2.9)

A quick consequence of Proposition 2.4 is the following (basically well-known) integral
equation for π.

Proposition 2.7. Let f : R→ R be bounded and absolutely continuous with a continuos
Radon–Nikodym derivative f ′ that has a compact support. Then

∫
f ′(x)µ(x)π(dx) =

∫∫
λ(x)(f(x)− f(x+ z))J(x, dz)π(dx).

Proof: The assumptions on f allow to use formula (2.6). Because of Assumption 2.5
the process (Xt) is real-valued and locally bounded. Hence we have Pπ-a.s. that τm →∞
as m→∞. As f is bounded, the left-hand side of (2.6) converges to Eπf(Xt) = Eπf(X0).
As f ′ has a compact support and µ is locally bounded, the second term on the right-
hand side of (2.6) converges as well. For the third term we can use (2.9) and bounded
convergence to conclude that

0 = Eπ
∫ t

0

f ′(Xs)µ(Xs)ds+ Eπ
∫ t

0

∫

R
λ(Xs)(f(Xs + z)− f(Xs))J(Xs, dz)ds.

Using Fubini’s theorem and stationarity again, we obtain the assertion.

Some relationships between π and the stationary distribution of the imbedded process
(XTn) can be found in [10].

3 Rice’s formula

In this section we will prove the following assertion, establishing the Rice formula (1.1):

Theorem 3.1. Under Assumptions 2.5 and 2.6 the stationary distribution π has a right-
continuous density p on R \Dµ satisfying ν(u) = |µ(u)|p(u) for all u /∈ Dµ.
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We prepare the proof with an auxiliary result and start with introducing some notation.
We say that (Xt) has a discontinuous upcrossing (resp. discontinuous downcrossing) of
level u at time s > 0 if Xs ≥ u > Xs− (resp. Xs− ≥ u > Xs). The point processes of these
discontinuous down- and upcrossings are denoted by Nu

+,d and Nu
−,d. In this section we

take Pπ to be the underlying probability measure. Then Φ is a stationary marked point
process, and Nu

+,d and Nu
−,d are (jointly) stationary point processes. Their intensities are

denoted by ν+,d(u) and ν−,d(u), respectively.

Lemma 3.2. For any u ∈ R we have ν(u) = ν+,d(u)− ν−,d(u) in case µ < 0 on (u, u+ ε)
for some ε > 0 and ν(u) = ν−,d(u)− ν+,d(u) in case µ > 0 on (u, u+ ε) for some ε > 0.

Proof: Assume that µ < 0 on (u, u + ε) for some ε > 0. (The argument for the
other case is the same.) As the solution of (2.1) is unique and µ is right-continuous, there
are no continuous upcrossings of level u. Therefore, between any two (discontinuous or
continuous) successive downcrossings there must be exactly one discontinuous upcrossing
of u. Hence we have for any t ≥ 0 that

Nu
+,d(t)− 1 ≤ Nu

−,d(t) +Nu(t) ≤ Nu
+,d(t) + 1.

Taking expectations gives

ν+,d(u)t− 1 ≤ ν−,d(u)t+ ν(u)t ≤ ν+,d(u)t+ 1.

Dividing by t and letting t→∞, yields the assertion.

Proof of Theorem 3.1: Let u ∈ R. Choosing g(s, x, z) := 1{0 ≤ s ≤ 1, x < u ≤
x + z} (resp. g(s, x, z) := 1{0 ≤ s ≤ 1, x ≥ u > x + z}) in (2.8) yields

ν+,d(u) =

∫∫
1{x < u ≤ x + z}λ(x)J(x, dz)π(dx), (3.1)

ν−,d(u) =

∫∫
1{x ≥ u > x + z}λ(x)J(x, dz)π(dx). (3.2)

Let f be a function satisfying the assumptions of Proposition 2.7. By (3.1) and (3.2)
we have

∫
f ′(u)(ν−,d(u)− ν+,d(u))du =

∫∫∫
f ′(u)1{x > u ≥ x+ z}duλ(x)J(x, dz)π(dx)

−
∫∫∫

f ′(u)1{x+ z > u ≥ x}duλ(x)J(x, dz)π(dx)

=

∫∫
1{z < 0}(f(x)− f(x+ z))λ(x)J(x, dz)π(dx)

−
∫∫

1{z > 0}(f(x+ z)− f(x))λ(x)J(x, dz)π(dx)

=

∫∫
(f(x)− f(x+ z))λ(x)J(x, dz)π(dx).
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Therefore we obtain from Proposition 2.7 that
∫
f ′(u)(ν−,d(u)− ν+,d(u))du =

∫
f ′(u)µ(u)π(du).

The class of functions f ′ that are allowed in the above formula is rich enough to conclude
first that π is absolutely continuous on R \Dµ and second, that the density p satisfies

µ(u)p(u) = ν−,d(u)− ν+,d(u) (3.3)

for almost all u /∈ Dµ. By (3.1) and (3.2) the function ν−,d − ν+,d is left-continuous so
that Lemma 3.2 shows that ν is left-continuous on R \Dµ. In fact, for u /∈ Dµ the lemma
remains true, if ν−,d and ν+,d are replaced by the corresponding right-continuous versions.
Hence ν is even continuous on R \Dµ, and we can use (3.3) to redefine a right-continuous
density p. Lemma 3.2 implies the assertion.

4 Asymptotics of level crossings

In this section we write P := Pπ. Consider the point process N b
+ of all upcrossings of some

level b ∈ R and let ν+(b) denote its intensity (under P). It is given by

ν+(b) = 1{µ(b) > 0}ν(b) + ν+,d(b), b /∈ Dµ,

where we refer to the Introduction and Section 3 for the definition of the intensities ν(b)
and ν+,d(b). From Lemma 3.2, (3.1), and (3.2) we obtain that ν+(b) → 0 as b → ∞. If
µ(x) < 0 and J(x, (−∞, 0)) = 0 for all x ≥ u0 (no negative jumps from levels above u0),
we conclude from (3.2) and Lemma 3.2 that ν−,d(b) = 0 and ν+(b) = ν+,d(b) = ν(b) for
b ≥ u0. If J(x, [(u0 − x)+,∞)) = 0 for all x ∈ R (no positive jumps to levels above u0)
and µ(x) > 0 for all x ≥ u0, we conclude from (3.1) and Lemma 3.2 that ν+,d(b) = 0 and
ν+(b) = ν−,d(b) = ν(b) for b ≥ u0. (Here a+ := max{a, 0} denotes the positive part of a.)
In either case, Theorem 3.1 implies that (1.3) holds for b ≥ u0. Whenever ν+(b) > 0 we
introduce the scaled point process M b (on [0,∞)) by

M b(t) := N b
+(ν+(b)−1t), t ≥ 0.

In each of Scenarios 1–3 described in the Introduction we will prove (under additional
technical assumptions) the convergence

M b d−→ Πρ as b→∞, (4.1)

where
d−→ denotes weak convergence of point processes (see e.g. [15]) under the prob-

ability measure P, ρ ∈ [0, 1) is explicitly determined by the characteristics of (Xt) (see
Theorem 4.5), and the geometrically compound Poisson process Πρ was defined in the
Introduction. If ρ = 0, then Πρ is a unit rate Poisson process. Actually we will prove the
weak convergence of Pσ(M b ∈ ·) for an essentially arbitrary initial distribution σ.

In Scenarios 1 and 2 we assume that the jumps (from high enough levels) in the
respective processes are dominated in distribution. This means that there exists a u0 ∈
R and a family of non-increasing (right-continuous) functions (H(u, ·))u≥u0 such that
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supx≥u J(x, (z,∞)) ≤ H(u, z) for all z ∈ R and u ≥ u0. In other words, denoting by ξ(x)

a generic r.v. with the distribution J(x, ·), this means that there exist r.v.’s ξ(u) such that

ξ(x)
d
≤ ξ(u), x ≥ u ≥ u0. (4.2)

We assume that Eξ(u) < ∞. In Scenario 3 we will assume in addition that there exist
r.v.’s ξ(u) such that

ξ(u)
d
≤ ξ(x), x ≥ u ≥ u0. (4.3)

Further, put

µ(u) := sup
x≥u

µ(x), λ(u) := sup
x≥u

λ(x), λ(u) := inf
x≥u

λ(x).

Next we will make Scenarios 1–3 more precise.

Assumption 4.1. We have µ(y)→ −∞ as y →∞, and there exists a u0 ∈ R such that
(4.2) holds and J(x, (−∞, 0]) = 0 for all x ≥ u0. Moreover,

Eξ(u0) + µ(u0)/λ(u0) < 0. (4.4)

Assumption 4.2. We have λ(y) → ∞ as y → ∞. Furthermore, there is a u0 ∈ R such
that (4.2) holds, µ(y) > 0 for all y ≥ u0, J(x, [(u0 − x)+,∞)) = 0 for all x ∈ R, and

Eξ(u0) + µ(u0)/λ(u0) < 0. (4.5)

Assumption 4.3. As y → ∞ we have µ(y)→ µ(∞) ∈ R \ {0}, λ(y)→ λ(∞) ∈ [0,∞).
There is some u0 ∈ R such that (4.2) and (4.3) hold, J(x, (−∞, 0)) = 0 for all x ≥ u0 in
case µ(∞) < 0, and J(x, [(u0−x)+,∞)) = 0 for all x ∈ R in case µ(∞) > 0. Furthermore

we have for y →∞ that ξ(y), ξ(y)
d−→ ξ(∞), where ξ(∞) is an integrable r.v. satisfying

Eξ(∞) + µ(∞)/λ(∞) < 0. (4.6)

Remark 4.4. Each of the inequalities (4.4)-(4.6) implies the ergodicity condition (5.3).
In case of (4.4) and (4.5) this is due to the monotonicity properties of ξ(u), µ, λ, and λ.

To state the theorem we write H for the set of all x ∈ R such that Px(τ(u) <∞) = 1
for some u ∈ R satisfying ν(u) > 0, where

τ(u) := inf{t > 0 : Nu(t) ≥ 1}, u ∈ R, (4.7)

is the smallest point of Nu and inf ∅ :=∞.

Theorem 4.5. Let one of Assumptions 4.1-4.3 be satisfied and assume that ν(b) > 0
for all sufficiently large b. Let σ be a distribution on R that is supported by H. Then
Pσ(M b ∈ ·) converges weakly to P(Πρ ∈ ·) as b→∞. The number ρ is given by ρ = 0 in
case of 4.1, 4.2, and in case 4.3 by

ρ =

{
−λ(∞)
µ(∞)

Eξ(∞), if µ(∞) < 0,

1− wµ(∞)
λ(∞)

, if µ(∞) > 0,
(4.8)

where w is the only positive number satisfying the equation

Eewξ(∞) = 1− wµ(∞)/λ(∞). (4.9)
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Remark 4.6. If λ > 0 on Dµ then π cannot be concentrated on Dµ, and (1.1) implies the
existence of a u ∈ R such that ν(u) > 0. Lemma 4.12 below then implies that π-almost
all x ∈ R belong to H.

Remark 4.7. Let g : R→ R be a strictly increasing continuously differentiable function
such that g(x)→∞ as x→∞. Then (Xg

t ) := (g(Xt)) is again a piecewise-deterministic
Markov process as defined in Section 2. The characteristics of (X g

t ) are given by µg(y) =
g′(g−1(y))µ(g−1(y)), λg(y) = λ(g−1(y)), and Jg(y, ·) = J(g−1(y), g−1(y + ·) − g−1(y)).
If the point processes of upcrossings defined in terms of Xg satisfy a compound limit
theorem as in Theorem 4.5, then so do the corresponding processes defined in terms of
(Xt). Therefore the assertion of the theorem remains true in the more general case, when
one of the Assumptions 4.1-4.3 holds for the transformed process (X g

t ).

As a corollary we obtain that the first crossing time

T (b) := inf{t > 0 : Xt ≥ b}
is asymptotically exponentially distributed.

Corollary 4.8. Under the assumptions of Theorem 4.5, we have for any s ≥ 0 that

Pσ((1− ρ)ν(b)T (b) > s)→ e−s as b→∞. (4.10)

Proof: For any s ≥ 0 and b ≥ u0 we have ν+(b) = ν(b) and

Pσ((1− ρ)ν(b)T (b) > s) = Pσ(X0 < b,M b((1− ρ)−1s) = 0)

= Pσ(M b((1− ρ)−1s) = 0)− Pσ(X0 ≥ b,M b((1− ρ)−1s) = 0). (4.11)

The second term on the right-hand side of (4.11) converges to 0 as b→∞. As any fixed
finite number of points (in our case 0 and (1− ρ)−1s) are almost surely not contained in
Πρ, we obtain from (4.1) and a standard property of weak convergence of point processes
(see [15]) that the first term in (4.11) converges to P(Πρ((1− ρ)−1s) = 0) = e−s.

Remark 4.9. Define T1(b) := T (b) and, inductively, Tn+1(b) := inf An, n ≥ 1, where An
is the set of all t > Tn(b) such that Xt ≥ b and Xs < b for some s ∈ (Tn(b), t). Under the
assumptions of Theorem 4.5, we obtain for any n ≥ 1 and s ≥ 0 as above that

Pσ((1− ρ)ν(b)Tn(b) > s)→ P(Πρ((1− ρ)−1s) ≤ n− 1) as b→∞. (4.12)

An easy calculation shows that, for instance,

P(Πρ((1− ρ)−1s) ≤ 1) = e−s(1 + (1− ρ)s),

P(Πρ((1− ρ)−1s) ≤ 2) = e−s
(

1 + (1− ρ2)s+
(1− ρ)3s2

2

)
.

Corollary 4.10. Let the assumptions of Theorem 4.5, be satisfied and let B ⊂ [0,∞) be

a bounded Borel set whose boundary has Lebesgue measure 0. Then M b(B)
d−→ ζB as

b→∞, where ζB is a non-negative integer-valued r.v. with the Laplace transform

E exp[−zζB ] = exp
[
− |B|(1− ρ)

(
1− 1− ρ

ez − ρ
)]
, z ≥ 0. (4.13)

Here |B| denotes the Lebesgue measure of B.
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Proof: The right-hand side of (4.13) is just the Laplace transform of Πρ(B), see also
the comments after (4.28). Hence the result is a direct consequence of Theorem 4.5 and
Theorem 16.16 in [15].

Remark 4.11. The random variable ζB
d
= Πρ(B) is infinitely divisible with a Lévy

measure having the mass |B|(1− ρ)2ρk−1 at k ≥ 1.

Before proving Theorem 4.5 we will provide several lemmas. For u ∈ R we write
Nu(∞) := limt→∞Nu(t). We also recall definition (4.7).

Lemma 4.12. Assume that u ∈ R satisfies ν(u) > 0. Then P(τ(u) < ∞) = 1 and
P(Nu(∞) =∞) = Pu(Nu(∞) =∞) = 1. Moreover, ν(u) = (Eu(τ(u))−1.

Proof: Take x ∈ R. The strong Markov property implies that (Xt)t≤τ(x) and
(1{τ(x) < ∞}Xτ(x)+t)t≥0 are independent for any initial distribution. This fact will
be often used in the sequel. In particular, Nx is a renewal process (with a possibly defec-
tive distribution of interpoint distances). Under P, Nx is also a stationary point process.
If ν(x) > 0 this clearly implies that P(τ(x) <∞) = 1. The equation ν(x) = (Ex(τ(x))−1

is then a consequence of the elementary renewal theorem. In particular Exτ(x) < ∞, so
that the equations P(Nx(∞) =∞) = Px(Nx(∞) =∞) = 1 are obvious.

For u ∈ R we define an increasing sequence τn(u), n ≥ 0, of stopping times inductively
by τ0(u) := 0 and τn+1(u) := inf{t > τn(u) : Nu(t) ≥ n + 1}. Hence τ1(u) = τ(u) and
Nu(t) is the cardinality of {n ≥ 1 : τn(u) ≤ t}. If ν(u) > 0 then Lemma 4.12 implies for
all n ≥ 1 that P(τn(u) <∞) = Pu(τn(u) <∞) = 1.

Lemma 4.13. Assume that u ∈ R satisfies ν(u) > 0 and let b ∈ R. Then ν(b) > 0 iff
Pu(τ(b) <∞) > 0. In this case Pu(τ(b) <∞) = 1.

Proof: Assume that ν(b) > 0. Since P(τ(u) <∞) = 1 by Lemma 4.12 we must have
that Pu(τ(b) < τ(u)) > 0. Since Pu(Nu(∞) = ∞) = 1 we can use a geometrical trial
argument to get Pu(τ(b) < ∞) = 1. Assume, conversely, that Pu(τ(b) < ∞) > 0. Then
we must have Pu(τ(b) < τ(u)) > 0 and hence Pu(τ(b) < ∞) = 1. Lemma 4.12 implies
that P(τ(b) <∞) = 1. Therefore N b is a non-empty and stationary point process under
P and must hence have a positive intensity ν(b).

Our next lemma deals with the probabilities

γ(u, b) := Pb(τ(u) > τ(b)), u, b ∈ R. (4.14)

Lemma 4.14. Let u ∈ R satisfy ν(u) > 0. Then we have for all b ∈ R that

Pu(N b(τ(u)) = k) =
ν(b)

ν(u)
(1− γ(u, b))2γ(u, b)k−1, k ≥ 1, (4.15)

Pu(N b(τ(u)) = 0) = 1− ν(b)

ν(u)
(1− γ(u, b)). (4.16)

In particular,

EuN b(τ(u)) =
ν(b)

ν(u)
, (4.17)

Eu
[
1− exp[−rN b(τ(u))]

]
=
ν(b)

ν(u)

(
1− γ(u, b)− (1− γ(u, b))2

er − γ(u, b)

)
, r ≥ 0. (4.18)
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Proof: Equation (4.17), i.e. ν(u)EuN b(τ(u)) = ν(b) is an equilibrium equation that
can be formulated for general stationary point processes. But in our case we can give a
simpler argument as follows. We assume that Pu is the underlying probability measure.
For any n ≥ 1 the process (Xτn(u)+t)t≥0 is Markov with distribution Pu((Xt) ∈ ·). This
fact and the strong Markov property imply that Xn := N b(τn(u))− N b(τn−1(u)), n ≥ 1,
are i.i.d. From the law of large numbers we obtain Pu-a.s. that n−1

∑n
k=1 Xn → EuX1 =

EuN b(τ(u)) as n → ∞. Assume that ν(b) > 0. From Lemma 4.13 we have Pu(τ(b) <
∞) = 1 so that we can use the laws of large numbers for independent random variables
and renewal processes to obtain Pu-a.s. that

1

n

n∑

k=1

Xn =
τn(u)

n

1

τn(u)
N b(τn(u))→ Euτ(u)

Ebτ(b)
=
ν(b)

ν(u)
as n→∞,

where we have again used Lemma 4.12. This implies (4.17). In case ν(b) = 0 we have
Pu(τ(b) < τ(u)) = 0, so that (4.17) is valid as well.

Next we use the strong Markov property to obtain for k ≥ 1

Pu(N b(τ(u)) = k) = Pu(τ(b) < τ(u), N b(τ(u)) = k)

= Eu1{τ(b) < τ(u)}Pb(N b(τ(u)) = k − 1) = pγ(u, b)k−1(1− γ(u, b)),

where p := Pu(τ(b) < τ(u)) = Pu(N b(τ(u)) > 0). If γ(u, b) < 1, then we have, in
particular, that

EuN b(τ(u)) =
p

1− γ(u, b)
.

Comparing this with (4.17) yields p = (1− γ(u, b))ν(b)/ν(u) and hence (4.15) and (4.16).
In case γ(u, b) = 1 these relations are true as well. Equation (4.18) follows from a direct
computation.

The assumptions of Theorem 4.5 are used in the following key lemma.

Lemma 4.15. If one of the Assumptions 4.1 or 4.2 is met, then

lim
b→∞

γ(u, b) = 0 (4.19)

for all sufficiently large u. If Assumption 4.3 is satisfied, then

lim
u→∞

lim inf
b→∞

γ(u, b) = lim
u→∞

lim sup
b→∞

γ(u, b) = ρ ∈ (0, 1), (4.20)

where ρ is defined in (4.8).

Proof: Without loss of generality, we can assume that H(·, z) is non-increasing for

any z ∈ R (or, equivalently, that ξ(u)
d
≤ ξ(v) for u > v) and that H(·, z) is non-decreasing.

In the whole proof we will assume that u0 is chosen according to one of the Assumptions
4.1-4.3. Note that the drift condition (4.4) (resp. (4.5)) holds with u in place of u0. It is
then no loss of generality to assume that µ(u) 6= 0 for all u ≥ u0. We always take u, b ∈ R
such that b > u ≥ u0. In both cases 4.1 or 4.2 the argument will run roughly as follows.
Due to the imposed conditions, for a large enough initial value b, the trajectory of (Xt)
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will very quickly drop by a given large quantity C. Since in the part of the state space
above the level u the process can be shown to be dominated (at its jump points) by a
random walk with i.i.d. jumps and a negative trend, we can choose C large enough to
ensure that the process will not climb back by C prior to dropping below the level u. If
(Xt) does not drop quickly enough from a high level, then it is likely there will be several
crossings of that level before the process returns to the range of its ‘normal values’. This
case requires the more restrictive conditions formulated in Assumption 4.3.

First assume that Assumption 4.1 is met. Fix an arbitrary ε > 0. Since the process
has a negative drift in the half-line [u,∞), it can only exceed the level b > u by a jump,
so we can restrict ourselves to considering the values XT1 , XT2 , . . .:

Px
(
τ(b) < τ(u)

)
≤ Px

(
sup{XTk : Tk ≤ τ(u)} ≥ b

)
, x ≥ u. (4.21)

Further, for x, t such that q(x, t) > u we have

Px(T1 > t) = exp

[
−
∫ t

0

λ(q(x, s))ds

]
≥ exp[−λ(u)t] = P

(
τ(λ(u)) > t

)
, (4.22)

where τ(w) is a r.v. following the exponential distribution with parameter w. Therefore
one can easily see that the right-hand side of (4.21) does not exceed P(S ≥ b− x), where
S := supk≥1 Sk is the global supremum of a random walk

Sk = ζ1 + · · ·+ ζk, k ≥ 1, (4.23)

with i.i.d. jumps ζk
d
= ξ(u) + µ(u)τ(λ(u)), where ξ(u) and τ(λ(u)) are independent of

each other. Since Eζk < 0 by (4.4), S is a proper r.v., and we can choose C so large that
P(S ≥ C) < ε.

Next we assume b ≥ u + C. For any t ≥ 0 the equation q(b, t) = b − C has a unique
solution t = t(b, C). Since µ(y) → −∞ as y → ∞, we have t(b, C) → 0 as b → ∞. In
particular, we obtain from (4.22) that Pb(T1 ≤ t(b, C)) < ε for all large enough b. Then
we have Pb(Xt(b,C) = b − C) > 1− ε, and finally, due to (4.21) and our choice of C, that
Pb(τ(b) < τ(u)) < 2ε. Since ε was arbitrary small, this completes the proof of the lemma
in the first case.

Now suppose that Assumption 4.2 holds. In this case, jumps from levels x ≥ u
are negative, and we can concentrate on the values XT1−, XT2−, . . .. For a given ε > 0
choose an C < ∞ such that P(S ≥ C) < ε for the random walk (4.23) with i.i.d. jumps

ζk
d
= ξ(u) +µ(u)τ(λ(u)), where ξ(u) and τ(λ(u)) are independent of each other. Consider

a stopping time T with values in {T1, T2, . . .}. Then, as one can easily see, given that
XT− < b−C, the probability of the process exceeding b on the time interval [T,∞) prior
to dropping below u will again be less than ε.

Since the deterministic drift is now positive on (u0,∞),

Px(T1 > t) = exp

{
−
∫ t

0

λ(q(x, s))ds

}
≤ exp{−λ(x)t} = P

(
τ(λ(x)) > t

)
, x ≥ u.

Therefore, given X0 = b, one has XT1−
d
≤ b + µ(u)τ(λ(b)), and it is not difficult to see
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that, for m ≥ 1, Xm := supT1≤t≤Tm Xt, Xm := infT1≤t≤Tm Xt,

Pb
(
{Xm ≥ b} ∪ {Xm ≥ b− C}

)

≤ P
(

max
1≤k≤m

Sk ≥ −µ(u)τ(λ(b− C))
)

+ P(Sm ≥ −C), (4.24)

where (Sk) is a random walk given by (4.23) with i.i.d. jumps ζk
d
= ξ(u) + µ(u)τ(λ(b −

C)), and (Sk), τ(λ(b − C)) that appear together under the probability sign in (4.24) are
independent of each other. Now choose m so large that P(Sm ≥ −C) < ε (this is possible
due to (4.5)), and then b so large that the first term on the right-hand side of (4.24) is
also less than ε. The latter is possible due to the following observation. Setting

S ′k := ξ′1 + · · ·+ ξ′k, S ′′k := ξ′′1 + · · ·+ ξ′′k , k ≥ 1,

where (ξ′k) and (ξ′′k) are independent sequences of i.i.d. r.v.’s with ξ ′k
d
= ξ(u), ξ′′k

d
= τ(λ(b−

C)), the event in that term is contained in

max
1≤k≤m

S ′k ≥ −µ(u) max
1≤k≤m

S ′′k − µ(u)ξ′′m+1.

The r.v. on the left-hand side is a.s. negative, with a distribution independent of b. Because
it is assumed that λ(y)→∞ as y →∞, the distribution of the right-hand side converges
to δ0 as b→∞.

Thus, on the event complementary to the one on the left-hand side of (4.24), the
process (Xt) will drop at one of the times T1, . . . , Tm below the level b − C (denote this
epoch by T ∗), without having continuously crossed the level b prior to that time. Also,
due to our choice of C and to the strong Markov property, the process will reach the
level b on the time interval [T ∗, τ(u)] with probability less than ε. This means that
Pb(τ(b) < τ(u)) < 3ε and hence proves the lemma in the case when Assumption 4.2
holds.

Now consider the case when Assumption 4.3 holds. Assume first that µ(∞) < 0. Then
crossing the level b can only occur due to a jump, and since to get from a level x > b
down to level u will require a continuous downcrossing of b, we obtain that

Pb(τ(b) < τ(u)) = Pb
(
sup{XTk − b : Tk < τ(u)} > 0

)
. (4.25)

Next we observe that, for the segment of the process in the time interval [0, τ(u)], one has

Sk
d
≤ XTk − b

d
≤ Sk, where (Sk)k≥1 and (Sk)k≥1 are random walks with i.i.d. jumps

ξk
d
= ξ(u) + µ(u)τ(λ(u)), ξ

k

d
= ξ(u) + µ(u)τ(λ(u)),

respectively, where we again make the usual independence assumptions. Due to (4.6) and
uniform integrability of (ξ(u)), we get Eξ

k
≤ Eξk < 0 for all large enough u, so that then

Su := sup
k≥1

Sk
d
≤ S

u
:= sup

k≥1
Sk <∞ a.s.
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It is not difficult to see that, for b > 2u,

P(Su > 0) +R(u, b) ≤ Pb
(
sup{XTk − b : Tk < τ(u)} > 0

)
≤ P(S

u
> 0),

where

R(u, b) := P(sup{Sk : k ≤ η} > 0)− P(Su > 0)− P(µ(u)τ(λ(u)) > b/2− u),

and η := inf{k > 0 : Sk < −b/2}. Since clearly η →∞ a.s. as b→∞, we obtain that

lim
b→∞

R(u, b) = 0. (4.26)

By virtue of Theorem 6 and Condition B on p.114 of [5], we obtain that

lim
u→∞

P(Su > 0) = lim
u→∞

P(S
u
> 0) = P(S > 0),

where S = supk≥1 Sk for a random walk with i.i.d. jumps ζk
d
= ξ(∞) + µ(∞)τ(λ(∞)).

Because (Sk) has a negative drift, it is well-known that P(S > 0) is given as in (4.8), see
e.g. Theorem VIII.5.7 and Corollary III.6.5 in [2].

The argument in the case when µ(∞) > 0 is very similar, with the main difference
being the value of P(S > 0). But again it is well-known that this value is given as in
(4.8), see e.g. Theorem X.5.1 in [2].

Lemma 4.16. Assume that one of the Assumptions 4.1-4.3 is satisfied and that ν(u) > 0
for all sufficiently large u. Then we have, for any δ > 0,

lim
u→∞

lim sup
b→∞

1

ν(b)
Eu
∫ ∞

0

1{τ(u) ≥ s > δ/ν(b)}N b
+(ds) = 0.

Proof: We take u0 ∈ R according to Assumptions 4.1-4.3. and assume that µ(u) 6= 0
and ν(u) > 0 for all u ≥ u0. The numbers u, b are always chosen so that b > u ≥ u0. We
first note that

Pu(N b
+(τ(u)) = N b(τ(u))) = 1, u ≥ u0. (4.27)

In case µ < 0 on (u0,∞) this is due to the absence of negative jumps from a level above
b. In case µ > 0 on (u0,∞) we even have N b

+ = N b because there is no positive jump to a
level above b. Next we define the stopping times τ+

k (b), k ≥ 1, in terms of of N b
+ as τk(b)

in terms of N b. Then we have for any integer m ≥ 1 that

1

ν(b)

∫ ∞

0

1{τ(u) ≥ s > δ/ν(b)}N b
+(ds) = ηm(u, b) + ζm(u, b),

where

ηm(u, b) :=
1

ν(b)

m∑

k=1

1{τ(u) ≥ τ+
k (b) > δ/ν(b)},

ζm(u, b) :=
1

ν(b)

∫ ∞

0

1{τ(u) ≥ s > δ/ν(b), s > τ+
m(b)}N b

+(ds),
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Under Pu we have {τ(u) ≥ τ+
1 (b)} ⊂ {τ(u) > τ(b)}. This follows as at (4.27). Hence we

get

Euηm(u, b) ≤ m

ν(b)
Eu1{τ(u) > τ(b) > δ/ν(b)}

≤ m

δ
Eu1{τ(u) > τ(b)}τ(u)

by Markov’s inequality. Furthermore,

Pu(τ(u) > τ(b)) = Pu(N b(τ(u)) > 0) ≤ EuN b(τ(u)) =
ν(b)

ν(u)
,

where the last equality comes from (4.17). Because Euτ(u) = 1/ν(u) <∞ and ν(b) → 0
as b → ∞, we can use dominated convergence to conclude, for any fixed m ≥ 1, that
Euηm(u, b)→ 0 as b→∞.

To deal with ζm(u, b) we use the simple estimate

Euζm(u, b) ≤ 1

ν(b)
Eu1{N b

+(τ(u)) ≥ m+ 1}N b
+(τ(u))

=
1

ν(b)
Eu1{N b(τ(u)) ≥ m+ 1}N b(τ(u))

and (4.15) to obtain

Euζm(u, b) ≤ (1− γ(u, b))2

ν(u)

∞∑

k=m+1

kγ(u, b)k−1 =
γ(u, b)m

ν(u)
(m(1− γ(u, b)) + 1),

where the equality comes from a direct calculation. Let ε > 0. By Lemma 4.15 we then
find an m ≥ 1 such that lim supb→∞ Euζm(u, b) ≤ ε as soon as u is sufficiently large.
Together with the first part of the proof this implies the assertion.

Proof of Theorem 4.5: We first prove the result in the stationary case, i.e. we
take σ := π. Let f : [0,∞)→ [0,∞) be a continuous function with compact support and

L(f, b) := E exp
[
−
∫
f(ν(b)s)N b

+(ds)
]
, b ∈ R.

We will show that

lim
b→∞

L(f, b) = exp

[
− (1− ρ)

∫ ∞

0

(
1− 1− ρ

ef(t) − ρ

)
dt

]
. (4.28)

The right-hand side of (4.28) coincides with E exp
[
−
∫
f(s)Πρ(ds)

]
, as can easily be

confirmed by using Lemma 12.2 (i),(iii) in [15]. Hence Theorem 16.16 in [15] implies the
assertion (4.1).

We assume now that u0 ∈ R has been chosen according to one of the Assumptions
4.1-4.3. Without loss of generality we can also assume that u /∈ Dµ and ν(u) > 0 for
all u ≥ u0. In the following we will always pick b > u ≥ u0. We use the notation
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introduced before Lemma 4.14. By the strong Markov property, the restrictions of N b
+ to

the (random) intervals (τn(u), τn+1(u)], n ≥ 0, are independent. Therefore,

L(f, b) =
∞∏

n=0

E exp
[
−
∫

(τn(u),τn+1(u)]

f(ν(b)s)N b
+(ds)

]

= L0(u, b)

∞∏

n=1

∫
Eu exp

[
−
∫

(0,τ(u)]

f(ν(b)(s+ t))N b
+(ds)

]
P(τn(u) ∈ dt), (4.29)

where the second equality is again a consequence of the strong Markov property, and

L0(u, b) := E exp
[
−
∫

(0,τ(u)]

f(ν(b)s)N b
+(ds)

]
.

We claim that P(N b
+(τ(u)) > 0) → 0 as b → ∞, so that dominated convergence implies

that

R0(u, b) := − lnL0(u, b)→ 0 as b→∞. (4.30)

To prove the claim, we pick numbers ε > 0 and s > 0 to obtain that

P(N b
+(τ(u)) > 0) = P(τ+

1 (b) ≤ τ(u))

= P(τ+
1 (b) ≤ τ(u), τ(u) > s) + P(τ+

1 (b) ≤ τ(u), τ(u) ≤ s)

≤ P(τ(u) > s) + P(τ+
1 (b) ≤ s).

For large enough s the first term is smaller than ε. For the second term we have

P(τ+
1 (b) ≤ s) = P(N b

+(s) > 0) ≤ EN b
+(s) = ν(b)s.

The right-hand side is getting smaller than ε for all large enough b.
Defining

h(u, b, t) := Eu exp
[
−
∫

(0,τ(u)]

f(ν(b)(s + t))N b
+(ds)

]

we obtain from (4.29) that

− logL(f, b) = −
∞∑

n=1

logEh(u, b, τn(u)) +R0(u, b)

=
∞∑

n=1

(1− Eh(u, b, τn(u))) +R0(u, b) +
∞∑

n=1

θ(1− Eh(u, b, τn(u))),

where |θ(r)| ≤ cr2 for some (universal) constant c > 0. Using Campbell’s theorem for the
stationary point process Nu (see e.g. equation (1.2.18) in [3]) gives

− logL(f, b) = ν(u)

∫ ∞

0

(1− h(u, b, t))dt+R0(u, b) +R1(u, b), (4.31)
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where the remainder term R1 is defined by

R1(u, b) :=
∞∑

n=1

θ(1− Eh(u, b, τn(u))). (4.32)

Using Jensen’s inequality, the inequality (1−e−x) ≤ x, x ≥ 0, and Campbell’s theorem
again we get

|R1(u, b)| ≤ c
∞∑

n=1

(1− Eh(u, b, τn(u)))2 ≤ c
∞∑

n=1

E(1− h(u, b, τn(u))2

≤ c

∞∑

n=1

∫ ∞

0

(
Eu
∫

(0,τ(u)]

f(ν(b)(s + t))N b
+(ds)

)2

P(τn(u) ∈ dt)

= cν(u)

∫ ∞

0

(
Eu
∫

(0,τ(u)]

f(ν(b)(s + t))N b
+(ds)

)2

dt

= c
ν(u)

ν(b)

∫ ∞

0

(
Eu
∫

(0,τ(u)]

f(ν(b)s + r)N b
+(ds)

)2

dr

= c
ν(u)

ν(b)

∫ ∞

0

(∫ ∞

0

f(ν(b)s+ r)mu,b(ds)
)2

dr,

where the measure mu,b is given by

mu,b(·) := Eu
∫ ∞

0

1{s ∈ ·, 0 < s ≤ τ(u)}N b
+(ds).

By (4.17) the measure m∗u,b := ν(u)
ν(b)

mu,b has total mass 1. Hence we can use Jensen’s
inequality to obtain that

|R1(u, b)| ≤ c
ν(b)

ν(u)

∫ ∞

0

(∫ ∞

0

f(ν(b)s+ t)m∗u,b(ds)
)2

dt

≤ c
ν(b)

ν(u)

∫ ∞

0

∫ ∞

0

f(ν(b)s + t)2m∗u,b(ds)dt.

By Fubini’s theorem and a change of variables

|R1(u, b)| ≤ c
ν(b)

ν(u)

∫ ∞

0

∫ ∞

0

1{t ≥ ν(b)s}f(t)2dtm∗u,b(ds) ≤ c
ν(b)

ν(u)

∫ ∞

0

f 2(t)dt. (4.33)

The main term in (4.31) equals

ν(u)

∫ ∞

0

(1− h(u, b, t))dt =
ν(u)

ν(b)

∫ ∞

0

Eu
[
1− exp

[
−
∫

(0,τ(u)]

f(ν(b)s+ t)N b
+(ds)

]]
dt

=
ν(u)

ν(b)

∫ ∞

0

Eu
[
1− exp

[
− f(t)N b

+(τ(u))
]]
dt+R2(u, b)

=(1− γ(u, b))

∫ ∞

0

(
1− 1− γ(u, b)

ef(t) − γ(u, b)

)
dt+R2(u, b). (4.34)
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where (recall (4.27))

R2(u, b) :=
ν(u)

ν(b)

∫ ∞

0

Eu
[

exp
[
− f(t)N b(τ(u))

]
− exp

[
−
∫

(0,τ(u)]

f(ν(b)s+ t)N b
+(ds)

]]
dt,

and we have used (4.18) to obtain the last equality.
To deal with the remainder term R2(u, b), we use the inequality

∣∣∣
n∏

i=1

zi −
n∏

i=1

wi

∣∣∣ ≤
n∑

i=1

|zi − wi|,

for numbers z1, . . . , zn, w1, . . . , wn of absolute value less than or equal to 1. This yields in
case X0 = u

∣∣∣∣∣ exp
[
− f(t)N b(τ(u))

]
− exp

[
−
∫

(0,τ(u)]

f(ν(b)s+ t)N b
+(ds)

]]∣∣∣∣∣

≤
∫

(0,τ(u)]

∣∣ exp[−f(t)]− exp[−f(ν(b)s + t)]
∣∣N b

+(ds).

Hence we obtain for any δ > 0 that

|R2(u, b)| ≤ ν(u)

ν(b)
Eu
∫ ∞

0

∫

(0,τ(u)]

1{ν(b)s ≤ δ}
∣∣ exp[−f(t)]− exp[−f(ν(b)s + t)]

∣∣N b
+(ds)dt

+
ν(u)

ν(b)
Eu
∫ ∞

0

∫

(0,τ(u)]

1{ν(b)s > δ}
∣∣ exp[−f(t)]− exp[−f(ν(b)s + t)]

∣∣N b
+(ds)dt. (4.35)

As b → ∞ we can use the uniform continuity of f and (4.17) to make the first term
arbitrarily small just by choosing δ small enough. The second term (4.35) is smaller than

ν(u)

ν(b)
Eu
∫ ∞

0

∫

(0,τ(u)]

1{ν(b)s > δ}
∣∣1− exp[−f(ν(b)s + t)]

∣∣N b
+(ds)dt

+
ν(u)

ν(b)
Eu
∫ ∞

0

∫

(0,τ(u)]

1{ν(b)s > δ}
∣∣1− exp[−f(t)]

∣∣N b
+(ds)dt

≤ν(u)

ν(b)
Eu
∫ ∞

0

∫

(0,τ(u)]

1{ν(b)s > δ}f(ν(b)s+ t)N b
+(ds)dt

+
ν(u)

ν(b)
Eu
∫ ∞

0

∫

(0,τ(u)]

1{ν(b)s > δ}f(t)N b
+(ds)dt

≤2ν(u)

ν(b)

(∫ ∞

0

f(t)dt
)
Eu
∫

(0,τ(u)]

1{ν(b)s > δ}N b
+(ds).

Hence we conclude from Lemma 4.16 that

lim
u→∞

lim sup
b→∞

|R2(u, b)| = 0. (4.36)
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Summarizing (4.31) and (4.34) gives

− logL(f, b) = (1− γ(u, b))

∫ ∞

0

(
1− 1− γ(u, b)

ef(t) − γ(u, b)

)
dt +R0(u, b) +R1(u, b) +R2(u, b).

From Lemma 4.15, (4.30), (4.33), and (4.36) we obtain (4.28) and hence the assertion of
the theorem in case σ = π.

Coupling is a well-known and elegant method to extend limit theorems beyond the
stationary setting. As we have not assumed ergodicity it is not possible to use exact
coupling as in Theorem 10.27 (i) in [15]. And the shift-coupling assertion (ii) of that
theorem does not seem to be sufficient for our goals. So our strategy is to use Thorisson’s
shift-coupling of point processes, see Lemma 11.7 in [15]. Unless started otherwise we are
working under the stationary probability measure P. In a first step we extend (Xt)t≥0 to
a stationary process X := (Xt)t∈R, such that the extended process is still right-continuous
with left-hand limits. We refer here to [3] for more details. For u ∈ R we introduce
as before the point process Nu

+ on R. As usual we are identifying a point process on
R with a random (counting) measure on R. The scaled point process Mu is defined
by Mu(B) := Nu

+(ν+(u)−1B) for any Borel set B ⊂ R. Also Πρ can be extended to a
stationary point process Π′ρ on R. By stationarity it is then immediate that the weak
convergence (4.1) extends to R.

Next we introduce the space D of all mappings z = (zt)t∈R : R → R that are right-
continuous with left-hand limits equipped with the σ-field D generated by the Skorohod
topology (see e.g. Theorem A2.2 in [15]). For any s ∈ R we define the shift θs : D →
D by θsz := (zt+s)t∈R. The distribution P′ := P(X ∈ ·) is stationary, i.e. invariant
under all these shifts. Let I ⊂ D denote the invariant σ-field, i.e. the system of all
sets A ∈ D satisfying θsA = A for all s ∈ R. From the ergodic theorem (see Corollary
10.9 and Exercise 10.6 in [15]) we have for all bounded and measurable f : D → R
that (2t)−1

∫ t
−t f(θsX)ds converges P-almost surely to E[f(X)|X−1I] as t → ∞. The

regenerative structure of X implies on the other hand that this limit must be a.s. constant.
Hence f(X) and X−1I are independent. In particular, the σ-field X−1I is a.s. trivial, so
that P′ is ergodic (in the sense of ergodic theory).

Let u ∈ R have ν(u) > 0 and introduce the probability measure

P0
u(A) := ν(u)−1E

∫ 1

0

1{θsX ∈ A}Nu(ds), A ∈ D. (4.37)

(This is nothing but the Palm probability measure of Nu.) A conditioning w.r.t. X−1I
shows that P0

u is also trivial on I. By Lemma 11.7 in [15] we can hence assume without
loss of generality that there is a real-valued random variable τ satisfying P(θτX ∈ ·) = P0

u.
For any b ∈ R the scaled point process of upcrossings of the level b can be written as a
measurable function M b ≡ M b(X) of X. Using stationarity it is easy to derive the weak
convergence of P(M b(θτX) ∈ ·) to P(Π′ρ ∈ ·) from the weak convergence proved above.
Let X+(z) := (zt)t≥0 be the restriction of the function z on [0,∞). Since P(0 ∈ Π′ρ) = 0
we have weak convergence of P0

u(M
b(X+) ∈ ·) to P(Πρ ∈ ·). From the strong Markov

property and (4.37) we have on the other hand that P0
u(X

+ ∈ ·) = Pu((Xt)t≥0 ∈ ·). Hence
we conclude the assertion for σ = δu.

Finally we will prove the assertion for σ = δx, where x ∈ R satisfies Px(τ(u) <∞) = 1
for some u ∈ R with ν(u) > 0. This is enough to conclude the theorem. By the last
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assertion of Lemma 4.14 we can assume that u > u0. For f as in (4.28) we have

Ex exp
[
−
∫ ∞

0

f(ν(b)s)N b
+(ds)

]
= L(b)− R(b),

where

L(b) := Ex exp
[
−
∫ ∞

τ(u)

f(ν(b)s)N b
+(ds)

]
,

R(b) := Ex
(

1− exp
[
−
∫ τ(u)

0

f(ν(b)s)N b
+(ds)

])
exp

[
−
∫ ∞

τ(u)

f(ν(b)s)N b
+(ds)

]
.

By the strong Markov property,

L(b) =

∫
Eu exp

[
−
∫ ∞

0

f(ν(b)(s + t))N b
+(ds)

]
Px(τ(u) ∈ dt)

=

∫
Eu exp

[
−
∫ ∞

0

f(s+ ν(b)t)M b(ds)
]
Px(τ(u) ∈ dt).

Since ν(b)→ 0 as b→∞ we can use the continuous mapping theorem (see Theorem 4.27
in [15]) to conclude the convergence of the above integrand to E exp

[
−
∫
f(s)Πρ(ds)

]
.

Therefore the integral has this limit as well. It remains to prove that R(b)→ 0 as b→∞.
It is clearly sufficient to show that Px(N b

+(τ(u) > 0) = Px(τ(b) < τ(u)) → 0, where we
recall that u > u0 and (4.27). Let ε > 0. As in the proof of Lemma 4.15 we choose a
random walk with negative drift that is dominating our process as long as it stays above
u. We can then choose C > 0 large enough so that the maximum of this random walk is
less than C with probability at least 1 − ε. Next we can choose b > C large enough so
that Px(Xτ+

1 (u) > b− C) ≤ ε. This yields Px(τ(b) < τ(u)) ≤ 2ε.

Remark 4.17. The positivity assumption in Theorem 4.5 can be checked with the help
of Lemma 4.13. To indicate how this can be done, we fix a u ∈ R satisfying ν(u) > 0
(see Remark 4.6). Assume first that q(u, t) → ∞ as t → ∞. Since λ is locally bounded
we then have Pu(τ(b) < ∞) > 0. Assume second that there are ε, δ > 0 such that
λ(x)J(x, [ε,∞)) > 0 for all x ≥ u − δ. Due to the possibility of many positive jumps in
a small period of time we then have Pu(τ+

1 (b) < ∞) > 0. If we now assume in addition
that limt→∞ q(x, t) < u for all x ≥ u, then there is a positive probability for the process
to drop to level b in a continuous way. Hence we have again that Pu(τ(b) <∞) > 0.

5 Appendix

First we formulate some assumptions that will imply Assumptions 2.5. Let us introduce
the mean values

m−(x) := −
∫ 0

−∞
zJ(x, dz), m+(x) :=

∫ ∞

0

zJ(x, dz), x ∈ R,

and

m(x) := m+(x)−m−(x) =

∫
zJ(x, dz), x ∈ R.
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Assumption 5.1. m−(x) + m+(x) < ∞ for all x ∈ R and λ(x)(m−(x) + m+(x)) is a
locally bounded function on R.

In the next assumption we use the convention 0/0 := 0.

Assumption 5.2. We have

lim
x→−∞

1

m+(x)

∫ ∞

−x
(x+ z)J(x, dz) = lim

x→∞
1

m−(x)

∫ −x

−∞
(x + z)J(x, dz) = 0. (5.1)

Next we formulate a basic ergodicity assumption.

Assumption 5.3. There is an ε > 0 such that

lim inf
x→−∞

(µ(x) + λ(x)m+(x)(1− ε)− λ(x)m−(x)) > 0, (5.2)

lim sup
x→∞

(µ(x) + λ(x)m+(x)− λ(x)m−(x)(1− ε)) < 0. (5.3)

Remark 5.4. Assume that two of the limits limx→−∞ µ(x), limx→−∞ λ(x)m−(x) and
limx→−∞ λ(x)m+(x) exist and are finite, and make a similar assumption on the corre-
sponding limits as x→∞. Then Assumption 5.3 is equivalent to

lim inf
x→−∞

(µ(x) + λ(x)m(x)) > 0 > lim sup
x→∞

(µ(x) + λ(x)m(x)). (5.4)

For a constant (positive) µ and negative jumps this is the well-known ergodicity condition
for the stress release model (see [26], [27], [16]).

The next assumption is saying that all bounded sets are small for the process (see [24]).
Previous studies (see e.g. [27],[16],[24]) show that this is a rather weak though sometimes
tedious to check assumption. We will not discuss it any further.

Assumption 5.5. For any bounded interval I ⊂ R there is a t0 > 0 and a non-trivial
measure Q on R such that

Px(Xt0 ∈ ·) ≥ Q(·), x ∈ I.
Theorem 5.6. If Assumptions 5.1, 5.2, 5.3 and 5.5 are satisfied, then Px(T∞ =∞) = 1
for all x ∈ R and (Xt) has a unique invariant distribution π.

Proof: We proceed similarly to [16]. For any m ≥ 1 the process (Xt∧τm) is again
Markov. By (2.6) its generalized generator Am (cf. [24]) is given by

Amf(x) = µ(x)f ′(x) + λ(x)

∫
(f(x + z)− f(x))J(x, dz), |x| < m, (5.5)

where f satisfies the assumptions of Proposition 2.4. By Assumption 5.1 we can take
f(x) := |x| to obtain for |x| < m that

Amf(x) = sgn(x)µ(x) + λ(x)

∫
(|x + z| − |x|)J(x, dz)

= sgn(x)µ(x) + sgn(x)λ(x)m+(x)− sgn(x)λ(x)m−(x) (5.6)

+ 2

(
1{x < 0}λ(x)

∫ ∞

−x
(x + z)J(x, dz)− 1{x ≥ 0}λ(x)

∫ −x

−∞
(x + z)J(x, dz)

)
,
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where sgn(x) ∈ {−1, 1} is the sign of x ∈ R, defined in a right-continuous way, and where
the second equality comes from

|x+ z| − |x| = 2(1{−z < x < 0} − 1{z < −x ≤ 0})(x+ z) + sgn(x)z, z 6= 0.

We define

ε(x) := 1{x < 0} 1

2m+(x)

∫ ∞

−x
(x + z)J(x, dz)− 1{x ≥ 0} 1

2m−(x)

∫ −x

−∞
(x+ z)J(x, dz).

Then ε(x) ≥ 0 and from (5.1) we have that ε(x) → 0 as |x| → ∞. We can now rewrite
(5.6) as

Amf(x) = sgn(x)µ(x) + sgn(x)λ(x)m+(x)(1− 1{x < 0}ε(x))

− sgn(x)λ(x)m−(x)(1− 1{x ≥ 0}ε(x)). (5.7)

Using our assumptions in (5.7), we easily get numbers ε > 0, x0 > 0, and d ≥ 0 such that

Amf(x) ≤ −ε+ 1{|x| ≤ x0}d, |x| < m,m ∈ N. (5.8)

In particular, we can apply Theorem 2.1 in [24] to conclude for any x ∈ R that τm →∞
Px-almost surely as m→∞. This proves the first assertion. We are then in a position to
apply Theorem 4.2 in [24] to complete the proof of the theorem.

Remark 5.7. Under the conditions of Theorem 5.6, the process (Xt) is even positive
Harris recurrent, see [24]. Only a weak additional assumption is needed to obtain Harris
ergodicity, i.e. the total variation convergence of Px(Xt ∈ ·) to π for any x ∈ R. By
Theorem 6.1 in [23], one such assumption is irreducibility of one skeleton chain.

We next discuss Assumption 2.6. If λ is a bounded function, then this assumption is
trivially satisfied. If not, then we can impose the following slightly stronger version of
Assumption 5.3 and a weak positivity assumption on m−(x) +m+(x).

Assumption 5.8. There is an ε > 0 such that

lim inf
x→−∞

(µ(x) + λ(x)m+(x)(1− ε)− λ(x)m−(x)(1 + ε)) > 0, (5.9)

lim sup
x→∞

(µ(x) + λ(x)m+(x)(1 + ε)− λ(x)m−(x)(1− ε)) < 0. (5.10)

Theorem 5.9. If Assumptions 5.1, 5.2, 5.5 and 5.8 are satisfied and, moreover,

lim inf
|x|→∞

(m−(x) +m+(x)) > 0, (5.11)

then Px(T∞ = ∞) = 1 for all x ∈ R and (Xt) has a unique invariant distribution π
satisfying

∫
λ(x)π(dx) <∞.

Proof: Using the assumptions in (5.7), we can easily strengthen (5.8) to

Amf(x) ≤ −max{ε, λ(x)}+ 1{|x| ≤ x0}d, |x| < m,m ∈ N. (5.12)

Hence we can apply Theorem 4.2 in [24] to obtain that
∫
λ(x)π(dx) <∞.

Remark 5.10. In the framework described in Remark 2.2, Assumption 5.3 can be reduced
to (5.3). A similar remark applies to Assumptions 5.2 and 5.8, and to (5.11).
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[13] Falk, M., Hüsler, J. and Reiss, R.-D. Laws of Small Numbers: Extremes and
Rare Events. Birkhäuser, Basel.
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