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Abstract

We consider a stationary Poisson process Φ of k-flats in Rd with intensity measure
Λ and a random closed set S of k-flats depending on F1, . . . , Fn ∈ Φ, x ∈ Rd, and Φ
in a specific equivariant way. If (F1, . . . , Fn, x) is properly sampled, then Λ(S) has
a gamma distribution. This result is generalizing and unifying earlier work in [5],
[9], and [13]. As a new example we will show that the volume of the fundamental
region of a typical j-face of a stationary Poisson Voronoi-tessellation is conditionally
gamma-distributed.
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1 Introduction

Since the seminal work in [5] and [9] it is known, that the (generalized) integral-geometric
contents of several closed sets constructed on stationary Poisson processes of flats are
(conditionally) gamma-distributed. It is also known (see [13]) that the (intensity) measure
of certain stoppings sets defined on Poisson processes is conditionally gamma-distributed.
These are some of the rare cases in stochastic geometry where the distribution of non-
trivial geometric functionals of Poisson processes is explicitly known. The aim of this
paper is to generalize these results using a unified framework combining stopping sets
with Palm distributions.

We consider here a stationary Poisson process Φ of k-flats in Rd, where d ≥ 1 and
k ∈ {0, . . . , d−1}. This is a Poisson process on the space of all k-flats, whose distribution
is invariant under translation of the flats. Its distribution is determined by the intensity γ
(see (2.1)) and a probability measure Q on the space of all k-dimensional linear subspaces
of Rd, see (2.2). The intensity measure of Φ equals γΛ, where Λ is the intensity measure
of a stationary Poisson process of k-flats with intensity 1. Note that Φ is isotropic, if and
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only if Q is the uniform distribution. If k = 0 then Φ is just a stationary Poisson process
on Rd. We refer to [11] and [10] for these and other fundamental facts from stochastic
geometry.

We study a (random) set

S ≡ S(F1, . . . , Fn, x,Φ
!
F1,...,Fn

),

of k-flats depending on pairwise different F1, . . . , Fn ∈ Φ, x ∈ Rd, and Φ!
F1,...,Fn

:= Φ \
{F1, . . . , Fn}, where n ≥ 1 is a fixed integer. We assume that S(F1, . . . , Fn, x, ·) is a
stopping set for all k-flats F1, . . . , Fn and x ∈ Rd, see [13] and Subsection 2.3 for the
concept of a stopping set. We are also assuming that S is equivariant in the sense that
a joint scaling or translation of all arguments leads to the same scaling or translation
of the elements of S. For a momentarily fixed realization of Φ we are interested in the
distribution of the intensity measure Λ(S) of S under the following sampling scheme for
the tuple (F1, . . . , Fn, x). First we select only those tuples satisfying a given condition.
This condition has to be invariant with respect to scaling and translation (including
Φ) and to satisfy some measurabililty condition with respect to S(F1, . . . , Fn, x, ·) for
all (F1, . . . , Fn, x). Any n-tuple (F1, . . . , Fn) for which there is a x ∈ B satisfying the
condition is taken with the same deterministic weight. Here B ⊂ Rd is a “large” compact
set. Once F1, . . . , Fn are selected, x is distributed in

Z(F1, . . . , Fn) ∩ {y ∈ B : card(Φ!
F1,...,Fn

∩ S(F1, . . . , Fn, y,Φ
!
F1,...,Fn

)) = m}

according to j-dimensional Hausdorff measure, where Z(F1, . . . , Fn) is a j-dimensional
equivariant closed subset of Rd and j ≥ 0 and m ≥ 0 are given integers. More generally we
can allow here for weights that depend on (F1, . . . , Fn, x,Φ

!
F1,...,Fn

) in an invariant way. We
assume that the total measure of all samples (F1, . . . , Fn, x) is finite. For any t ∈ [0,∞] we
can then study the measure M(t) of all samples such that Λ(S(F1, . . . , Fn, x,Φ

!
F1,...,Fn

)) is
smaller than t. If M(∞) has even a finite mean, then the (random!) distribution function
M(t)/M(∞) converges almost surely, as B expands to Rd, to Γ(m+n−(d−j)/(d−k), γ),
i.e. a gamma distribution with shape parameter m+n−(d−j)/(d−k) and scale parameter
γ. The result can also be formulated in case n = 0. Then Z = Rd and j = d. We will also
show that quantities depending on (F1, . . . , Fn, x,Φ

!
F1,...,Fn

) in a translation- and scale-
invariant way are (asymptotically) independent of Λ(S).

If S does not depend on the last argument, the above results provide slight general-
izations of Miles’ complementary theorem in [5] (see also [9]) in case j = 0 and of the
results on subprocesses in [9] in case j = d. The case where S does not depend on the
first n arguments was essentially treated in [13]. In all other cases the result seems to be
new. Moreover, we are not aware of gamma distributions occuring in stationary Poisson
flat processes that are not explained by our theorem.

The structure of this paper is as follows. Section 2 contains some technical prerequisites
that are required for a sound mathematical treatment of our topic. Section 3 provides the
exact formulation of our results (Theorem 3.1 and Theorem 3.3) and their proofs. The
assumptions will be more general than described above. Instead of relying on ergodicity
arguments indicated above, we will use the more elegant (standard) approach via Palm
probabilities. In Section 4 we will discuss (and generalize) the classical special cases
mentioned above. In Section 5 we will present new specific examples in case k = 0, i.e.
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in case Φ is a stationary Poisson process. We will consider area-biased and area-unbiased
versions of the typical j-face of the Voronoi-tessellation based on Φ. The volume of the
fundamental region of this face has a conditional gamma distribution given the number
of Φ-points in this region. The area-unbiased version for j = d can be found in [7] and
[9], while the area-unbiased version for j = 1 can be found in [1]. The classical case j = 0
has been treated in [6]. All other cases are new. The appendix contains some material on
stopping sets that cannot be found elsewhere.

2 Preliminaries

2.1 Geometrical preliminaries

We work in Euclidean d-space Rd, d ≥ 1, equipped with the Euclidean norm | · | and the
Borel σ-field Bd. The closed ball with radius r ≥ 0 centred at x ∈ Rd is denoted by B(x, r)
while B0(x, r) denotes the corresponding open ball. The unit ball B(0, 1) centred at the
origin 0 ∈ Rd is denoted by Bd. We write Hk for the k-dimensional Hausdorff measure in
Rd and let κd := Hd(Bd).

The system of all closed subsets of Rd is denoted by F . For any K ⊂ Rd we write

FK := {F ∈ F : F ∩K 6= ∅}.

We make F a measurable space by introducing the smallest σ-field containing FK for
all compact K. This is actually the Borel σ-field associated with the topology of closed
convergence on F , see [10] for more details. If K ⊂ Rd is compact, then FK is compact
with respect to this topology. Conversely, any compact subset of F \ {∅} is contained
in FK for some compact K. Let k ∈ {0, . . . , d − 1}. A k-flat is a k-dimensional affine
subspace F of Rd. The space of all such flats is denoted by Ek. Any F ∈ Ek can be
uniquely written as F = L+x, where L is an element of the space Lk of all k-dimensional
linear subspaces of Rd and x is in the orthogonal complement L⊥ of L. Therefore Ek can
also be considered as a subset of Rd+d2 . The sets Ek ∪ {∅} and Lk are compact subsets
of F . Therefore Ek is a locally compact, second countable Hausdorff space. The space of
all closed subsets of Ek is denoted by F(Ek). Again this space can be equipped with the
topology of closed convergence. In particular, F(Ek) becomes a measurable space in its
own right.

2.2 Stationary Poisson processes of flats

We let Nk denote the space of all locally finite subsets of Ek. Any ϕ ∈ Nk is identified
with the counting measure A 7→ ϕ(A) := cardϕ∩A on Ek. The σ-field N k is the smallest
σ-field on Nk making the mappings ϕ 7→ ϕ(A) measurable for all Borel sets A ⊂ Ek. A
point process of k-flats is a point process on Ek, i.e. a measurable mapping Φ from some
abstract probability space (Ω,A,P) into Nk. It is called stationary if Φ + x has the same
distribution as Φ for all x ∈ Rd. Here ϕ+ x := {F + x : F ∈ ϕ} for ϕ ∈ Nk. Consider a
stationary point process of k-flats and assume that its intensity

γ :=
1

κd−k
E card{F ∈ Φ : F ∩ Bd 6= ∅} (2.1)
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is finite and positive. Then the intensity measure of Φ can be written as

EΦ(A) = γΛ(A) (2.2)

where

Λ(·) :=

∫

Lk

∫

F⊥

1{F + x ∈ ·}Hd−k(dx)Q(dF ) (2.3)

for some uniquely determined probability measure Q on Lk, see again [10]. In case k = 0
we may identify Ek with Rd, and Λ becomes Lebesgue measure. A Poisson process Φ on
Ek (see e.g. [3] for a definition of general Poisson processes) is stationary if and only if its
intensity measure is a multiple of (2.3) for some Q. Such stationary Poisson processes of
k-flats are the subject of this paper. If k = 0 then Φ is just a stationary Poisson process
on Rd.

For any closed set K ⊂ Rd we define

µΛ(K) := Λ({F ∈ Ek : F ∩K 6= ∅}). (2.4)

In case k = 0 this is just the volume of K. If Q is the uniform distribution and K has
some further properties, then this is an integral-geometric contents of K. If, for instance,
K is a compact and convex set, then µΛ(K) is proportional to the surface area of K in
case k = 1 and proportional to the mean breadth in case k = d − 1, see [11] and [10] for
more details. For general Q we may interpret (2.4) as a generalized integral-geometric
contents of K.

2.3 Stopping sets

Let A ⊂ Ek be measurable and let N k
A be the σ-field generated by the mapping ϕ 7→ ϕ∩A.

A stopping set (defined on Nk) is a mapping T : Nk → F(Ek) such that

{ϕ ∈ Nk : T (ϕ) ⊂ K} ∈ N k
K , K ∈ F(Ek). (2.5)

This is essentially the definition from [13]. Note however, that we are not restricting T
to be compact. Moreover, due to the special properties of the domain Nk we can derive
(in the appendix) some more specific properties of a stopping set. The stopping σ-field
associated with a stopping set T is defined by

N k
T := {A ∈ N k : A ∩ {T ⊂ K} ∈ N k

K for all K ∈ F(Ek)}. (2.6)

For the main purpose of this paper it would be sufficient to concentrate on a generic
type of a stopping set constructed as follows. For any closed set K ⊂ Rd we define a
measurable mapping π′

K : Nk → Nk by

π′
K(ϕ) := {F ∈ ϕ : F ∩K 6= ∅}. (2.7)

If T ′ : Nk → F is measurable, then ET ′ : Nk → F(Ek) defined by

ET ′(ϕ) := {F ∈ ϕ : F ∩ T ′(ϕ) 6= ∅} (2.8)

is also measurable. It turns out that ET ′ is a stopping set if and only if T ′ has the following
natural stopping set property.
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Proposition 2.1. Let T ′ : Nk → F be measurable. Then ET ′ is a stopping set iff

{T ′ ⊂ K} ∈ π′
K

−1
(N k), K ∈ F . (2.9)

In this case

N k
ET ′

= {A ∈ N k : A ∩ {T ′ ⊂ K} ∈ π′
K

−1
(N k) for all K ∈ F}. (2.10)

The proof of this result and further details on a more general concept of a stopping
set are given in the appendix. If k = 0 then ET ′ = T ′. In this case the literature has
numerous examples of stopping sets (see e.g. [13]). Here is a simple example that applies
for any k.

Example 2.2. Let i ∈ N and define a measurable mapping τi : Nk → [0,∞) by

τi(ϕ) := inf{r ≥ 0 : card{F ∈ ϕ : F ∩ rBd 6= ∅} ≥ i}.

It is easy to show that T ′(ϕ) := τi(ϕ)Bd (i.e. T ′(ϕ) := Rd in case τi(ϕ) = ∞) gives a
measurable mapping saisfying (2.9).

2.4 Stationary random measures and mark distributions

We work on the probability space (Nk,N k,P), where P is the distribution of a stationary
Poisson process of k-flats with intensity γ > 0. The identity on Nk is denoted by Φ.
A random measure M on Rd (see e.g. [3]) is a random variable taking its values in the
space M of all locally finite measures α on Rd equipped with the σ-field M generated by
the mappings α 7→ α(B), B ∈ Bd. We write M(ϕ,B) := M(ϕ)(B). Note that N0 is a
measurable subset of M. An element of N0 is also called simple counting measure on Rd.
A (simple) point process on Rd is a random measure M satisfying P(M(Φ) ∈ N0) = 1. A
random measure M on Rd is called stationary if

M(ϕ,B + x) = M(ϕ− x,B), ϕ ∈ Nk, x ∈ Rd, B ∈ Bd. (2.11)

If M is a stationary random measure then the distribution of M(· + x) is the same for
any x ∈ Rd.

Let (X,X ) be a measurable space and let MX denote the space of all measures α on
Rd ×X such that α(· ×X) is locally finite. The σ-field MX on MX is defined exactly as
above. A marked random measure M on Rd with mark space X is a MX-valued random
variable. It is called stationary if M(· × C) is stationary for all C ∈ X . If M is such a
stationary random measure, then EM(B×C) = Hd(B)V′(C) for some measure V′ on X.
In case the intensity λM := V′(X) = EM([0, 1]d × X) of M is positive and finite we may
normalize V′ to obtain the (Palm) mark distribution V of M . We then have the refined
Campbell theorem

E

∫

f(x, y)M(Φ, d(x, y)) = λM

∫∫

f(x, y)dxV(dy) (2.12)

for all measurable f : Rd × X → [0,∞), where dx means integration with respect to
Lebesgue measure Hd. It is common to call V the distribution of the typical mark of M .
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Let N be stationary random measure on Rd. Then

M(ϕ, ·) :=

∫

1{(x, ϕ− x) ∈ ·}N(ϕ, dx)

is a stationary marked random measure with mark space Nk. If the intensity λN :=
EN([0, 1]d) of N is positive and finite, then the mark distribution of this M is the Palm
probability measure P0

N of N . The refined Campbell theorem takes the form

E

∫

f(Φ − x, x)N(Φ, dx) = λN

∫∫

f(ϕ, x)dxP0
N(dϕ) (2.13)

for all measurable f : Nk × Rd → [0,∞). The measure P0
N is describing the statistical

behaviour of Φ as seen from a typical point of N .

3 Formulation and proof of the main result

For the remainder of the paper we let (Nk,N k,P) be the underlying probability space,
see Subsection 2.4.

We consider an integer n ≥ 0, and measurable mappings S : (Ek)n×Rd×Nk → F(Ek),
Z : (Ek)n → F , and R : (Ek)n × Rd × Nk → [0,∞) with the following properties. The
mapping S(F1, . . . , Fn, x, ·) is assumed to be a stopping set for all F1, . . . , Fn ∈ Nk and
x ∈ Rd. Accordingly we define N k

F1,...,Fn,x as the associated stopping σ-field. Furthermore
we assume for all F1, . . . , Fn ∈ Nk, x, y ∈ Rd, and ϕ ∈ Nk the equivariance property

S(F1 + y, . . . , Fn + y, x+ y, ϕ+ y) = S(F1, . . . , Fn, x, ϕ) + y. (3.1)

Here and later we use for A ⊂ Ek, y ∈ Rd and c > 0 the notation A+y := {F +y : F ∈ A}
and cA := {cF : F ∈ A}. If n = 0, Z is assumed to equal Rd. Otherwise Z is assumed to
satisfy the equivariance property

Z(F1 + y, . . . , Fn + y) = Z(F1, . . . , Fn) + y. (3.2)

Furthermore

B 7→ Hj(Z(F1, . . . , Fn) ∩ B), B ∈ Bd, (3.3)

is assumed to be a locally finite measure. This means that j = d in case n = 0. Note
that the assumption on (3.3) is no further restriction in case j = d. The mapping R has
to satisfy the invariance property

R(F1 + y, . . . , Fn + y, x+ y, ϕ+ y) = R(F1, . . . , Fn, x, ϕ), (3.4)

and R(F1, . . . , Fn, x, ·) is assumed to be N k
F1,...,Fn,x-measurable for all F1, . . . , Fn ∈ Ek and

x ∈ Rd. Let m ≥ 0 and define

Rm(F1, . . . , Fn, x, ϕ) := 1{ϕ(S(F1, . . . , Fn, x, ϕ)) = m}R(F1, . . . , Fn, x, ϕ) (3.5)

6



for F1, . . . , Fn ∈ Ek, x ∈ Rd, and ϕ ∈ Nk. We assume the scale-invariance

ERm(cF1, . . . , cFn, cx, cΦ)1{cx ∈ Z(cF1, . . . , cFn)} (3.6)

= ERm(F1, . . . , Fn, x,Φ)1{x ∈ Z(F1, . . . , Fn)}, F1, . . . , Fn ∈ Ek, x ∈ Rd, c > 0.

This holds if S and Z are equivariant under scaling and R is invariant under scaling.
Recalling (2.3), we now define for any ϕ ∈ Nk a measure M(ϕ, ·) on Rd × [0,∞] by

M(ϕ,B × C) :=

∫∫

1{x ∈ Z(F1, . . . , Fn) ∩ B}1{Λ(S(F1, . . . , Fn, x, ϕ
!
F1,...,Fn

)) ∈ C}

Rm(F1, . . . , Fn, x, ϕ
!
F1,...,Fn

)Hj(dx)ϕ(n)(d(F1, . . . , Fn)), (3.7)

where ϕ!
F1,...,Fn

:= ϕ \ {F1, . . . , Fn} and ϕ(n) is the measure on (Ek)n such that integration
with respect to this measure is just summation over all tuples (F1, . . . , Fn) ∈ ϕn with
pairwise different entries. In case n = 0 this has to be interpreted as

M(ϕ,B × C) :=

∫

B

1{Λ(S(x, ϕ)) ∈ C}Rm(x, ϕ)dx. (3.8)

We asume that M(ϕ, · × [0,∞]) is locally finite and prove below that M ≡ M(·, ·) is
then actually a marked random measure. The equivariance and invariance assumptions
(3.1), (3.2), (3.4) easily imply that M is stationary in the sense of Subsection 2.4.

Theorem 3.1. Assume that M defined by (3.7) has a positive and finite intensity. Then
the mark distribution of M is Γ(m+ n− (d− j)/(d− k), γ), where j = d in case n = 0.

Remark 3.2. Let S̃ : (Ek)n×Rd×Nk → F be measurable and define S := ES̃ as in (2.8).
Equivariance of S under translation is then equivalent to the corresponding equivariance
of S̃. A similar statement applies to equivariance (resp. invariance) of S under scaling.
The random measure M takes the form

M(ϕ,B × C) :=

∫∫

1{x ∈ Z(F1, . . . , Fn) ∩ B}1{µΛ(S̃(F1, . . . , Fn, x, ϕ
!
F1,...,Fn

)) ∈ C}

Rm(F1, . . . , Fn, x, ϕ
!
F1,...,Fn

)Hj(dx)ϕ(n)(d(F1, . . . , Fn)),

where the generalized integral-geometric contents µΛ is defined by (2.4). By Proposition
2.1 the stopping set property of S amounts to assuming that S̃(F1, . . . , Fn, x, ·) has the
property (2.9) for all F1, . . . , Fn ∈ Nk and x ∈ Rd.

To state a second result we consider a measurable mapping G on (Ek)n × Nk taking
values in some measurable space (X,X ). We assume that G is invariant under scaling.
For any ϕ ∈ Nk, B ∈ Bd and measurable C ⊂ [0,∞] ×X we define

MG(ϕ,B × C) (3.9)

:=

∫∫

1{(Λ(S(F1, . . . , Fn, x, ϕ
!
F1,...,Fn

)), G(F1 − x, . . . , Fn − x, ϕ!
F1,...,Fn

− x)) ∈ C}

1{x ∈ Z(F1, . . . , Fn) ∩ B}Rm(F1, . . . , Fn, x, ϕ
!
F1,...,Fn

)Hj(dx)ϕ(n)(d(F1, . . . , Fn)),
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with the obvious interpretation in case n = 0, cf. (3.8). Again we obtain a stationary
marked random measure MG, this time with mark space [0,∞] × X. Note the equality
M(B × C) = MG(B × (C × X)). The following result generalizes the independence
assertions of Theorem 3 and 4 in [9].

Theorem 3.3. Under the hypothesis of Theorem 3.1 the mark distribution of MG is a
product of a gamma distribution and a distribution on X.

In proving our results we extend and unify ideas from [9] and [13]. Moreover, we
will use some specific properties of stopping sets defined on Nk which are listed in the
appendix.

First we recall that the identity Φ on Nk is a Poisson process of k-flats with intensity
measure γΛ. For any ρ > 0 we let Pρ denote the distribution of a Poisson process of
k-flats with intensity measure ρΛ. The expectation w.r.t. Pρ is denoted by Eρ. We have
the useful scaling property

Pρ = P1(ρ
−1/(d−k)Φ ∈ ·). (3.10)

Indeed, by the well-known mapping theorem ρ−1/(d−k)Φ is a Poisson process under P1 and
an easy computation shows that its intensity measure is given by ρΛ. Note that P = Pγ.
The following result is an analogon of Theorem 1 in [9] and equation (9) in [13].

Proposition 3.4. Let T : Nk → F(Ek) be a stopping set and ρ > 0. Then we have for
all measurable g : Nk → [0,∞) that

Eρ1{Φ(T ) = m}g(Φ ∩ T ) =
ρm

γm
E

[

exp((γ − ρ)Λ(T ))1{Φ(T ) = m}g(Φ ∩ T )
]

.

Proof. Assume m ≥ 1 and let f : Nk×F(Ek) → [0,∞) be measurable. Using Lemma
6.4 along with an iterated version of Mecke’s Satz 3.1 in [4] we get

Ef(Φ ∩ T, T )1{Φ(T ) = m} =
γm

m!

∫

f({F1, . . . , Fm}, T ({F1, . . . , Fm})) (3.11)

exp(−γΛ(T ({F1, . . . , Fm})))1{F1, . . . , Fm ∈ T ({F1, . . . , Fm})}Λ
m(d(F1, . . . , Fm)).

In case m = 0 we have instead

Ef(Φ ∩ T, T )1{Φ(T ) = 0} = f(∅, T (∅)) exp(−γΛ(T (∅)). (3.12)

Applying (3.11) with ρ instead of γ yields

Eρ1{Φ(T ) = m}g(Φ ∩ T ) =
ρm

γm
γm

m!

∫

g({F1, . . . , Fm}) exp(−γΛ(T ({F1, . . . , Fm})))

1{Λ(T ({F1, . . . , Fm})) <∞} exp(−(ρ− γ)Λ(T ({F1, . . . , Fm})))

1{F1, . . . , Fm ∈ T ({F1, . . . , Fm})}Λ
m(d(F1, . . . , Fm)).

Another application of (3.11) gives

Eρ1{Φ(T ) = m}g(Φ ∩ T )

=
ρm

γm
E
[

1{Φ(T ) = m}g(Φ ∩ T )1{Λ(T ) <∞} exp(−(ρ− γ)Λ(T ))
]

.

8



As (3.11) does also apply that

P(Λ(T ) = ∞,Φ(T ) = m) = 0,

we obtain the assertion for m ≥ 1. In case m = 0 the assertion follows in the same way
from (3.12).

Proof of Theorem 3.1. We prove the theorem in case n ≥ 1. The proof in case n = 0 is
similar but simpler. First we have to show that M(·, B × C) is measurable for all Borel
sets B ⊂ Rd and C ⊂ [0,∞]. As the measurability of (F1, . . . , Fn, ϕ) 7→ ϕ!

F1,...,Fn
can

easily be established, it follows from Fubini’s theorem that Λ(S(F1, . . . , Fn, x, ϕ
!
F1,...,Fn

))
is a measurable function of (F1, . . . , Fn, x, ϕ). Consider the measurable function

R̃(F1, . . . , Fn, x, ϕ) := Rm(F1, . . . , Fn, x, ϕ
!
F1,...,Fn

)1{Λ(S(F1, . . . , Fn, x, ϕ
!
F1,...,Fn

)) ∈ C}.

Since the measure (3.3) is assumed to be locally finite, we can apply Corollary 2.1.4 in
[12] to obtain that

h(F1, . . . , Fn, ϕ) :=

∫

1{x ∈ Z(F1, . . . , Fn) ∩B}R̃(F1, . . . , Fn, x, ϕ)Hj(dx)

is measurable. Therefore

M(ϕ,B × C) =

∫

h(F1, . . . , Fn, ϕ)ϕ(n)(d(F1, . . . , Fn))

is a measurable function of ϕ.
Let V be the mark distribution of M . Take s < γ and define ρ := (γ − s)/γ and

Cρ := ρ−1/(d−k)[0, 1]d. Let

L(s) :=

∫

exp[st]V(dt)

be the Laplace-transform of V evaluated at s. From the definition (3.7) of M and the
refined Campbell theorem (2.12) we have that

λML(s) = ρd/(d−k)E

∫∫

exp[sΛ(S(F1, . . . , Fn, x,Φ
!
F1,...,Fn

))]Rm(F1, . . . , Fn, x,Φ
!
F1,...,Fn

)

1{x ∈ Z(F1, . . . , Fn) ∩ Cρ}H
j(dx)Φ(n)(d(F1, . . . , Fn)).

From the multivariate version of Mecke’s formula we obtain that

λML(s) = ρd/(d−k)γnE

∫∫

exp[sΛ(S(F1, . . . , Fn, x,Φ))]Rm(F1, . . . , Fn, x,Φ)

1{x ∈ Z(F1, . . . , Fn) ∩ Cρ}H
j(dx)Λn(d(F1, . . . , Fn)).

Since the measure (3.3) is σ-finite, we can apply Fubini’s theorem to obtain that

λML(s) = ρd/(d−k)γn
∫∫

E

[

exp[sΛ(S(F1, . . . , Fn, x,Φ))]Rm(F1, . . . , Fn, x,Φ)
]

1{x ∈ Z(F1, . . . , Fn) ∩ Cρ}H
j(dx)Λn(d(F1, . . . , Fn)). (3.13)
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We have assumed that S(F1, . . . , Fn, x, ·) is a stopping set for all F1, . . . , Fn ∈ Ek and
x ∈ Rd. Moreover, we have from Lemma 6.2 (i) that

R(F1, . . . , Fn, x,Φ) = R(F1, . . . , Fn, x,Φ ∩ S(F1, . . . , Fn, x,Φ))

since R(F1, . . . , Fn, x, ·) is assumed to be N k
F1,...,Fn,x-measurable. Taking into account the

definition (3.5) of Rm, we obtain from Proposition 3.4 and (3.13) that

λML(s) =ρd/(d−k)γn
γm

ρmγm

∫∫

Eργ

[

exp[(ργ − γ + s)Λ(S(F1, . . . , Fn, x,Φ))]

Rm(F1, . . . , Fn, x,Φ)
]

1{x ∈ Z(F1, . . . , Fn) ∩ Cρ}H
j(dx)Λn(d(F1, . . . , Fn)).

Since ργ = γ − s this simplifies to

λML(s) = ρd/(d−k)
γn

ρm

∫∫

Eργ [Rm(F1, . . . , Fn, x,Φ)]1{x ∈ Z(F1, . . . , Fn) ∩ Cρ}

Hj(dx)Λn(d(F1, . . . , Fn)).

The scaling property (3.10) implies that Pργ = P(ρ−1/(d−k)Φ ∈ ·). Using the scale invari-
ance (3.6), we arrive at

λML(s) =ρd/(d−k)
γn

ρm

∫∫

E[Rm(ρ1/(d−k)F1, . . . , ρ
1/(d−k)Fn, ρ

1/(d−k)x,Φ)]

1{ρ1/(d−k)x ∈ Z(ρ1/(d−k)F1, . . . , ρ
1/(d−k)Fn) ∩ [0, 1]d}Hj(dx)Λn(d(F1, . . . , Fn)).

Recalling the definition (2.3) of Λ, this means that

λML(s) =ρd/(d−k)
γn

ρm

∫∫∫

E[Rm(F1 + ρ1/(d−k)x1, . . . , Fn + ρ1/(d−k)xn, ρ
1/(d−k)x,Φ)]

1{ρ1/(d−k)x ∈ Z(F1 + ρ1/(d−k)x1, . . . , Fn + ρ1/(d−k)xn) ∩ [0, 1]d}

1{x1 ∈ F⊥
1 , . . . , xn ∈ F⊥

n }H
j(dx)(Hd−k)n(d(x1, . . . , xn))Q

n(d(F1, . . . , Fn)).

For any fixed linear subspaces F1, . . . , Fn the transformation

(y1, . . . , yn, y) := ρ1/(d−k)(x1, . . . , xn, x)

has the Jacobian ρ−(n(d−k)+j)/(d−k). Therefore

λML(s) =ρd/(d−k)γnρ−(m+n+j/(d−k))a,

where

a :=

∫∫

E[Rm(F1, . . . , Fn, y,Φ)]1{y ∈ Z(F1, . . . , Fn) ∩ [0, 1]d}Hj(dy)Λn(d(F1, . . . , Fn)).

Putting s = 0 yields ρ = 1 and therefore λM = γna. It follows that

L(s) = ρ−(m+n+j/(d−k))+d/(d−k) =

(

γ

γ − s

)m+n−(d−j)/(d−k)

, (3.14)
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which is the Laplace-transform of Γ(m+ n− (d− j)/(d− k), γ).

Proof of Theorem 3.3. Let W be the mark distribution of MG and let f : X → [0,∞)
be measurable. Replacing in the above proof Rm by the translation- and scale invariant
function Rm(F1, . . . , Fn, x, ϕ)f(G(F1 − x, . . . , Fn − x, ϕ− x)) we obtain exactly as before
that

λM

∫

exp[st]f(z)W(d(t, z)) = γnρ−(m+n−(d−j)/(d−k))af , (3.15)

where

af :=

∫∫

E[Rm(F1, . . . , Fn, y,Φ)f(G(F1 − y, . . . , Fn − y,Φ − y))]

1{y ∈ Z(F1, . . . , Fn) ∩ [0, 1]d}Hj(dy)Λn(d(F1, . . . , Fn)).

The choice s = 0 yields

λM

∫

f(z)W(d(t, z)) = γnaf .

Combining this with (3.15) and (3.14) gives

∫

exp[st]f(z)W(d(t, z)) =

∫

exp[st]W(d(t, z))

∫

f(z)W(d(t, z)).

This is sufficient for concluding the assertion.

Remark 3.5. Assume that S does not depend on the last argument and that k = 0.
Then the measurability assumptions on S can be weakened. Indeed, the above proof
shows that it is sufficient to assume that (x1, . . . , xn, x, y) 7→ 1{y ∈ S(x1, . . . , xn, x)} is
measurable. In particular, S(x1, . . . , xn, x) need not be closed.

In the remainder of this section we give an alternative, slightly more succinct, formula-
tion of the above theorems. To do so, we need to assume the existence of measurable map-
pings g1, . . . , gn : Nk → Rd such for all ϕ ∈ Nk and all pairwise different F1, . . . , Fn ∈ ϕ
we have

{g1(ϕ− x) + x, . . . , gn(ϕ− x) + x} = {F1, . . . , Fn} (3.16)

for Hj-a.e. x ∈ Z(F1, . . . , Fn) with Rm(F1, . . . , Fn, x, ϕ
!
F1,...,Fn

) > 0. This says that for all
“interesting” tuples (F1, . . . , Fn, x, ϕ) the flats F1, . . . , Fn are determined by ϕ and x in a
measurable and translation-equivariant way. Using these functions we define

S∗(ϕ) := S(g1(ϕ), . . . , gn(ϕ), 0, ϕ \ {g1(ϕ), . . . , gn(ϕ)}), ϕ ∈ Nk. (3.17)

We also consider a measurable scale-invariant mapping G on (Ek)n×Nk taking values in
some measurable space (X,X ). Let

G∗(ϕ) := G(g1(ϕ), . . . , gn(ϕ), ϕ \ {g1(ϕ), . . . , gn(ϕ)}), ϕ ∈ Nk.
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Finally we define a stationary random measure M ′ by M ′(ϕ,B) := M(ϕ,B × [0,∞]), i.e.

M ′(ϕ,B) :=

∫∫

1{x ∈ Z(F1, . . . , Fn) ∩ B}

Rm(F1, . . . , Fn, x, ϕ
!
F1,...,Fn

)Hj(dx)ϕ(n)(d(F1, . . . , Fn)). (3.18)

Theorem 3.6. Let the above assumptions and the assumptions of Theorem 3.1 be satis-
fied. Then Λ(S∗) and G∗ are independent under the Palm probability measure P0

M ′ and
Λ(S∗) has a Γ(m+ n− (d− j)/(d− k), γ)-distribution, where j = d in case n = 0.

Proof. From (3.16) we easily obtain that the random measure MG defined by (3.9)
can be written as

MG(ϕ,B × C) =

∫

1{x ∈ B}1{(Λ(S∗(ϕ− x)), G∗(ϕ− x)) ∈ C}M ′(ϕ, dx).

Hence the refined Campbell theorem (2.13) shows that P0
M ′((Λ(S∗(Φ)), G∗(Φ)) ∈ ·) is the

mark distribution of MG, and the assertions follow from Theorems 3.1 and 3.3.

Remark 3.7. The results of this paper can be generalized to independently marked Pois-
son processes of flats as follows. Let (X,X ) be a measurable space and let Nk

X
be the

space of all counting measures ψ on Ek × X such that ψ(· × X) is a locally finite simple
counting measure. The space Nk

X
can be equipped with a σ-field N k

X
as before. On Nk

X

we may then consider the distribution of a Poisson process on Ek × X with intensitiy
measure γΛ ⊗ L, where L is a distribution on X. A stopping set is now a measurable
mapping T : Nk

X
→ F(Ek) such that

{ψ ∈ Nk
X

: T (ψ) ⊂ K} ∈ N k
K , K ∈ F(Ek),

where N k
K := σ(πK) and πK(ψ) := {(F, z) ∈ ψ : F ∈ K}. The results in the appendix

apply in this setting, and the above theorems can be extended in the obvious way.

4 Some special cases

4.1 Miles’ complementary theorem

In this subsection we assume that S and R do not depend on the last argument and
that j = 0 and n ≥ 1. Under the assumptions of Theorem 3.1 (in particular (3.6))
the typical mark of the stationary marked random measure M defined by (3.7) has a
Γ(m + n − d/(d − k), γ)-distribution. This is a slight generalization of the so-called
complementary theorem derived in [5], see also [9]. In its original formulation S is given
as in Remark 3.2, R ≡ 1 and Z(F1, . . . , Fn) = {z(F1, . . . , Fn)} is a singleton. The centroid
z : (Ek)n → Rd is assumed measurable and equivariant with respect to translation and
scaling. Taking a measurable and scale-invariant mapping G on (Ek)n ×Nk, the random
marked measure (3.9) takes the form

MG(ϕ,B × ·) :=

∫

1{z(F1, . . . , Fn) ∈ B}1{(Λ(S ′(F1, . . . , Fn)), G
′(F1, . . . , Fn)) ∈ ·}

1{ϕ(S ′(F1, . . . , Fn)) = m}ϕ(n)(d(F1, . . . , Fn)),
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where S ′(F1, . . . , Fn) := S(F1, . . . , Fn, z(F1, . . . , Fn)) and

G′(F1, . . . , Fn) := G(F1 − z(F1, . . . , Fn), . . . , Fn − z(F1, . . . , Fn)).

The scale-invariance (3.6) holds if S (and hence also S ′) is equivariant under scaling. By
Theorem 3.3 the mark distribution of MG is a product measure.

The papers [5] and [9] present many examples where the complementary theorem
applies. Problems related to the integrability assumption λM <∞ are reported in [2].

4.2 Subprocesses

Again we will consider a case, where S and R do not depend on the last argument. Let
H ∈ N k and S ′ : Nk → F(Ek) be measurable. Then

M(ϕ,B × C) :=

∫∫

1{x ∈ B}1{Λ(S ′({F1 − x, . . . , Fn − x})) ∈ C}

1{{F1 − x, . . . , Fn − x} ∈ H} (4.1)

1{ϕ!
F1,...,Fn

(S ′({F1 − x, . . . , Fn − x}) + x) = m}dxϕ(n)(d(F1, . . . , Fn)),

is of the form (3.7). Indeed we can take S(F1, . . . , Fn, x) := S ′({F1 − x, . . . , Fn− x}) + x,
R(F1, . . . , Fn, x) := 1{{F1 − x, . . . , Fn − x} ∈ H}, and j = d. Using stationarity and
Fubini’s theorem we get

EM(Φ, B × C) = λm,nH
d(B)Vm,n(C)

where

λm,n := E

∫

1{{F1, . . . , Fn} ∈ H}1{Φ!
F1,...,Fn

(S ′({F1, . . . , Fn})) = m}Φ(n)(d(F1, . . . , Fn)),

and

Vm,n := λ−1
m,nE

∫

1{Λ(S ′({F1, . . . , Fn})) ∈ ·}1{{F1, . . . , Fn} ∈ H}

1{Φ!
F1,...,Fn

(S ′({F1, . . . , Fn})) = m}Φ(n)(d(F1, . . . , Fn)), (4.2)

where we assume that λm,n > 0. We are also assuming that S ′ and H are equivariant resp.
invariant under scaling. Then (3.6) holds and Theorem 3.1 implies Vm,n = Γ(m+ n, γ).

Under additional assumptions the previous result can be expressed in a different way.
So we assume that there is a point process Ψ : Nk → Nk which is a.s. uniquely determined
by the conditions Ψ ⊂ Φ, Ψ ∈ H , and (Φ \ Ψ)(S ′(Ψ)) = m. We may call Ψ a subprocess
of Φ. From (4.2) it is obvious that

Vm,n = P(Λ(S ′(Ψ)) ∈ ·|Ψ(Ek) = n), (4.3)

so that the conditional distribution of Λ(S ′(Ψ)) given Ψ(Ek) = n is Γ(m+ n, γ). We may
also consider the scaled point process

Ψ′ := (Λ(S ′(Ψ)))−1/(d−k)Ψ
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where a−1 := 0 if a = 0. Using the scaling properties of S ′, H , and Λ it is easy to see that
a.s. Ψ′ = G(Φ) for a scale-invariant measurable function G : Nk → Nk. Using this G,
we can define a stationary marked random measure MG by (3.9). The associated mark
distribution equals P((Λ(S ′(Ψ)),Ψ′) ∈ ·|Ψ(Ek) = n). Therefore we obtain from Theorem
3.3 that Λ(S ′(Ψ)) and Ψ′ are conditionally independent given Ψ(Ek) = n. In case m = 0
and the setting of Remark 3.2 these results are the content of Theorem 3 in [9].

4.3 The measure of stopping sets

In this subsection we consider the case n = 0, so that we can then work within the setting
of Theorem 3.6. The stationary random measure M ′ defined by (3.18) is then given by

M ′(ϕ,B) :=

∫

1{x ∈ B}1{ϕ(S ′(ϕ− x) + x) = m}R′(ϕ− x)dx,

where S ′(ϕ) := S(0, ϕ) and R′(ϕ) := R(0, ϕ). From stationarity we get for any A ∈ N k

that

E

∫

B

1{Φ − x ∈ A}M ′(Φ, dx) = Hd(B)E1{Φ ∈ A}1{Φ(S ′) = m}R′.

Assuming that
0 < λM ′ = E1{Φ(S ′) = m}R′ <∞

we derive that

Pm := (E1{Φ(S ′) = m}R′)−1E1{Φ ∈ A}1{Φ(S ′) = m}R′

is the Palm probability measure of M ′. The same arguments show that assumption (3.6)
takes the form

E1{cΦ(S ′(cΦ)) = m}R′(cΦ) = E1{Φ(S ′(Φ)) = m}R′(Φ), c > 0.

Under this assumption Theorem 3.3 implies that Λ(S ′) is Γ(m, γ)-distributed under Pm.
Moreover, any scale-invariant random variable G is Pm-independent of Λ(S ′). In case
R′ ≡ 1 this is a special case of Theorem 2 in [13]. However, Remark 3.2 sheds new light
on this result.

5 Fundamental regions in Voronoi-tessellation

5.1 Voronoi-tessellations

In this section we apply Theorem 3.6 in case k = 0 to the Voronoi-tessellation based
on the Poison process Φ. We start with a few basic definitions and refer the reader to
[8] and Section 6.2 in [10] for more details. Let ϕ ∈ N0. The Voronoi cell C(ϕ, x) of
x ∈ ϕ consists of all points y ∈ Rd satisfying |y − x| ≤ min{|y − z| : z ∈ ϕ}. Then
Sd(ϕ) := {C(ϕ, x) : x ∈ ϕ} is the Voronoi-tessellation based on ϕ. A cell is refered to as
a d-face. Let j ∈ {0, . . . , d − 1}. A j-face (of Sd(ϕ)) is a j-dimensional convex set which
is the intersection of (at least) d − j + 1 Voronoi cells C(ϕ, x1), . . . , C(ϕ, xd−j+1), where
x1, . . . , xd−j+1 are points of ϕ.
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Let j ∈ {0, . . . , d}, x1, . . . , xd−j+1 ∈ Rd and assume in case j < d that these points
are in general position, i.e. not contained in some affine space of dimension d− j − 1. For
such points we define

Zj(x1, . . . , xd−j+1) := {y ∈ Rd : |y − xj | = |y − x1|, j = 2, . . . , d− j + 1}.

If the closed set

Lj(x1, . . . , xd−j+1, ϕ) := {x ∈ Zj(x1, . . . , xd−j+1) : ϕ ∩B0(x, |x− x1|) = ∅}

has non-empty relative interior, then Lj(x1, . . . , xd−j+1, ϕ) is a j-face of the Voronoi-
tessellation based on ϕ ∪ {x1, . . . , xd−j+1}. If Lj(x1, . . . , xd−j+1, ϕ) is compact and non-
empty, we define

Sj(x1, . . . , xd−j+1, ϕ) :=
⋃

B(y, |y − x1|),

where the union is over all vertices y of Lj(x1, . . . , xd−j+1, ϕ), see Figure 5.1. Otherwise
we let Sj(x1, . . . , xd−j+1, ϕ) := Rd. If x1, . . . , xd−j+1 ∈ Rd are not in general position, we
set

Lj(x1, . . . , xd−j+1, ϕ) := Zj(x1, . . . , xd−j+1) := ∅, Sj(x1, . . . , xd−j+1, ϕ) := Rd.

It is quite standard to show that Zj , Lj, and Sj are measurable mappings. The
proof of the following geometrically obvious properties is also left to the reader. For any
x1, . . . , xd−j+1 ∈ Rd and ϕ, ψ ∈ N0 with ψ ⊂ Sj(x1, . . . , xd−j+1, ϕ)c we have

Lj(x1, . . . , xd−j+1, ϕ) = Lj(x1, . . . , xd−j+1, ϕ ∩ Sj(x1, . . . , xd−j+1, ϕ) ∪ ψ), (5.1)

Sj(x1, . . . , xd−j+1, ϕ) = Sj(x1, . . . , xd−j+1, ϕ ∩ Sj(x1, . . . , xd−j+1, ϕ) ∪ ψ), (5.2)

x ∈ Lj(x1, . . . , xd−j+1, ϕ) =⇒ B(x, |x− x1|) ⊂ Sj(x1, . . . , xd−j+1, ϕ). (5.3)

Because of (5.1) we may call Sj ≡ Sj(x1, . . . , xd−j+1, ϕ) the fundamental region of the face
Lj : changing the underlying configuration outside Sj has no influence on the shape of Lj.

Lemma 5.1. For any x1, . . . , xd−j+1 ∈ Rd the mapping Sj(x1, . . . , xd−j+1, ·) : N0 → F is
a stopping set and Lj(x1, . . . , xd−j+1, ·) : N0 → F is measurable w.r.t NSj(x1,...,xd−j+1,·).

Proof. The second assertion follows by (5.1) and Lemma 6.2 (i). To prove the first one,
we omit x1, . . . , xd−j+1 in the argument of Sj . Let ϕ, ψ ∈ N0 with ψ = ϕ ∩ Sj(ψ). Using
ψ ⊂ Sj(ψ) and ϕ = ψ ∪ (ϕ ∩ Sj(ψ)c) and (5.2), we obtain Sj(ψ) = Sj(ϕ). Equation (5.2)
implies Sj(ϕ) = Sj(ϕ ∩ Sj(ϕ)). By Proposition 6.3, Sj is a stopping set.

Lemma 5.2. For any x1, . . . , xd−j+1, x ∈ Rd the mapping

R(x1, . . . , xd−j+1, x, ·) : ϕ 7→ 1{ϕ(B0(x, |x− x1|)) = 0, x ∈ Zj(x1, . . . , xd−j+1)}

is measurable w.r.t. NSj(x1,...,xd−j+1,·).

Proof. We fix x, x1, . . . , xd−j+1 ∈ Rd and omit them in the argument of R, Sj and
Lj . Obviously R(ϕ) ≤ R(ϕ ∩ Sj(ϕ)). Assume R(ϕ ∩ Sj(ϕ)) = 1. Then we have by (5.1)
x ∈ Lj(ϕ ∩ Sj(ϕ)) = Lj(ϕ), and by (5.3)

∅ = ϕ ∩ Sj(ϕ) ∩ B0(x, |x− x1|) = ϕ ∩B0(x, |x− x1|).

Hence R(ϕ) = 1. This shows R(ϕ) = R(ϕ ∩ Sj(ϕ)) so that the assertion follows from
Lemma 6.2 (i).
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x1

x2

y1

y2

L1(x1, x2, ϕ)

Figure 5.1: In this picture we consider ϕ ∈ N0 with y1, y2 ∈ ϕ and possibly other points
outside the union of the two balls. The edge L1(x1, x2, ϕ) is the intersection of Voronoi
cells C(ϕ′, x1) and C(ϕ′, x2), where ϕ′ := ϕ ∪ {x1, x2}. The fundamental region of the
edge L1(x1, x2, ϕ) is given by the union of the two balls. The vertices of L1(x1, x2, ϕ) are
the intersection of C(ϕ, x1), C(ϕ, x2) and C(ϕ, y1) resp. C(ϕ, x1), C(ϕ, x2) and C(ϕ, y2).

5.2 The fundamental region of the area-biased typical j-face

With m ≥ 0 and j ≥ 0 fixed as in the previous sections we define stationary measures
Mj,m and Mj by

Mj,m(ϕ, ·) :=

∫∫

1{x ∈ Zj(x1, . . . , xd−j+1) ∩ ·}1{ϕ!
x1,...,xd−j+1

(B0(x, |x− x1|)) = 0}

1{ϕ!
x1,...,xd−j+1

(Sj(x1, . . . , xd−j+1, ϕ
!
x1,...,xd−j+1

)) = m}

Hj(dx)ϕ(d−j+1)(d(x1, . . . , xd−j+1))

and

Mj(ϕ, ·) :=

∫∫

1{x ∈ Zj(x1, . . . , xd−j+1) ∩ ·}1{ϕ!
x1,...,xd−j+1

(B0(x, |x− x1|)) = 0}

Hj(dx)ϕ(d−j+1)(d(x1, . . . , xd−j+1)).

For sufficiently irregular ϕ ∈ N0 the measure Mj,m(ϕ, ·) is the restriction of Hj onto
the union of all j-faces of Sd(ϕ) having exactly m (j − 1)-faces in their boundary.

Lemma 5.3. For any ϕ ∈ N0, the measure Mj(ϕ, ·) is locally finite.

Proof. Let ϕ ∈ N0. Note that for all x1, . . . , xd−j+1 ∈ Rd we have

Hj(Zj(x1, . . . , xd−j+1) ∩ B
d) ≤ κj ,
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where κj denotes the volume of the unit ball in Rj. Fix y ∈ ϕ and let x1, . . . , xd−j+1 ∈ ϕ
be in general position. If B0(x, |x − x1|) ∩ ϕ = ∅ for some x ∈ Bd ∩ Zj(x1, . . . , xd−j+1),
then

B0(x, |x− xi|) ∩ ϕ = ∅, i = 1, . . . , d− j + 1.

In particular we have y /∈ B0(x, |x− xi|) for i = 1, . . . , d− j + 1. Hence

|y| + 1 ≥ |y − x| ≥ |xi − x| ≥ |xi| − 1, i = 1, . . . , d− j + 1,

and we conclude |xi| ≤ |y| + 2 for i = 1, . . . , d− j + 1. We obtain

Mj(ϕ,B
d) ≤ κjϕ(B(0, |y|+ 2))d−j+1 <∞.

The assertion follows by Mj(ϕ,B + x) = Mj(ϕ− x,B) for x ∈ Rd and B ∈ Bd.

The stationary random measure Mj has positive and finite intensity λMj
, see e.g.

formula (1.2) in [1]. The intensity of Mj,m is positive iff one of the following cases hold:
j = 0 and m = 0, j = 1 and m = 2 or j ∈ {2, . . . , d} and m ≥ j + 1. In the following we
will only consider these cases.

Let ϕ ∈ N0 and x ∈ Rd. If 0 is in the relative interior of some j-face L of Sd(ϕ) and if
L is the intersection of exactly d − j + 1 Voronoi cells C(ϕ, x1), . . . , C(ϕ, xd−j+1), where
x1, . . . , xd−j+1 are lexicographically ordered points of ϕ, then we define Lj(ϕ) := L and

g1(ϕ) := x1, . . . , gd−j+1(ϕ) := xd−j+1.

Otherwise we set Lj(ϕ) := {0} and gi(ϕ) := 0, i = 1, . . . , d− j + 1. We define

S∗
j (ϕ) := Sj(g1(ϕ), . . . , gd−j+1(ϕ), ϕ \ {g1(ϕ), . . . , gd−j+1(ϕ)}).

Under P0
Mj

we can interpret Lj as the (area-biased) typical j-face of the Poisson
Voronoi-tessellation Sd(Φ). The refined Campbell theorem (2.13) easily implies that
λMj,m

= λMj
P0
Mj

(Φ(S∗
j ) = m+ d− j + 1) and

P0
Mj,m

= P0
Mj

(· |Φ(S∗
j ) = m+ d− j + 1). (5.4)

Using Lemmata 5.1 and 5.2, we may now apply Theorem 3.6 with n = d− j+1 to obtain
the following result.

Theorem 5.4. The distribution of the volume of S∗
j under P0

Mj,m
is Γ(d+m− j+ j/d, γ).

Remark 5.5. The probability measure P0
M0

describes Φ as seen from the typical vertex
L0 = {0}. Its fundamental region is the ball centred in 0 and having the d + 1 nearest
Φ-neighbours of 0 in its boundary. It is a classical fact (see [6]) that the volume of this
ball has a G(d, γ)-distribution (see also [1]).

Remark 5.6. In case j = d we have that Md is proportional to Lebesgue measure and
P0
Md

= P. Under P the face Ld is the (stationary) 0-cell, i.e. the cell containing the origin.
The volume of its fundamental region S∗

d is by Theorem 5.4 conditionally G(m + 1, γ)-
distributed, given that Ld has m ≥ d + 1 faces of dimension (d− 1). To our surprise we
were not able to find this result in the literature. (The case d = 1 is clearly well-known.)
The case 1 ≤ j ≤ d− 1 does also seem to be new.
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5.3 The fundamental region of the area-debiased typical j-face

For x1, . . . , xd−j+1 ∈ Rd in general position we denote by z(x1, . . . , xd−j+1) the center of
the uniquely determined (d − j)-dimensional ball having x1, . . . , xd−j+1 in its boundary.
If x1, . . . , xd−j+1 ∈ Rd are not in general position we set z(x1, . . . , xd−j+1) := ∞, where ∞
is some point outside Rd. We define a stationary measure Nj,m by

Nj,m(ϕ, ·) :=

∫

1{Lj(x1, . . . , xd−j+1, ϕ
!
x1,...,xd−j+1

) 6= ∅}1{z(x1, . . . , xd−j+1) ∈ ·} (5.5)

1{ϕ!
x1,...,xd−j+1

(Sj(x1, . . . , xd−j+1, ϕ
!
x1,...,xd−j+1

)) = m}ϕ(d−j+1)(d(x1, . . . , xd−j+1)),

if

Nj(ϕ, ·) :=

∫

1{Lj(x1, . . . , xd−j+1, ϕ
!
x1,...,xd−j+1

) 6= ∅}1{z(x1, . . . , xd−j+1) ∈ ·} (5.6)

ϕ(d−j+1)(d(x1, . . . , xd−j+1))

is a locally finite measure. Otherwise we let Nj,m(ϕ, ·) and Nj(ϕ, ·) be the zero-measure.
The right-hand side of (5.5) is in general neither simple (see Subsection 2.4) nor locally
finite. However, the right-hand side of (5.6) is for P-a.e. ϕ simple as well as locally finite,
and Nj has a positive and finite intensity, see e.g. Subsection 2.3 in [1]. The intensity of
Nj,m is positive iff that of Mj,m is positive, see the previous subsection.

If Nj(ϕ, ·) is simple and has the origin in its support, then there exist a uniquely
determined j-face Cj(ϕ) of Sd(ϕ) and lexicographically ordered points x1, . . . , xd−j+1 ∈ ϕ
with Cj(ϕ) = Lj(x1, . . . , xd−j+1, ϕ) and z(x1, . . . , xd−j+1) = 0. If, in addition, the points
x1, . . . , xd−j+1 ∈ ϕ are uniquely determined by Cj(ϕ), then we define

h1(ϕ) := x1, . . . , hd−j+1(ϕ) := xd−j+1.

Otherwise we set hi(ϕ) := 0, i = 1, . . . , d− j + 1. We define

T ∗
j (ϕ) := Sj(h1(ϕ), . . . , hd−j+1(ϕ), ϕ \ {h1(ϕ), . . . , hd−j+1(ϕ)}).

Under P0
Nj

we can call Cj the (area-debiased) typical j-face of the Poisson Voronoi-

tessellation Sd(Φ). As at (5.4) we have λNj,m
= λNj

P0
Nj

(Φ(T ∗
j ) = m+ d− j + 1) and

P0
Nj,m

= P0
Nj

(· |Φ(T ∗
j ) = m+ d− j + 1). (5.7)

Using Lemma 5.1, we may now apply Theorem 3.6 with n = d − j + 1 and j replaced
with 0 to obtain the following result.

Theorem 5.7. The distribution of the volume of T ∗
j under P0

Nj,m
is Γ(d+m− j, γ).

Remark 5.8. Under Pd the face Ld is the typical cell of Sd(Φ). The volume of its fund-
amental region T ∗

d is conditionally G(m, γ)-distributed, given that Ld has m ≥ d+1 faces
of dimension (d−1). This special case of Theorem 5.7 is well-known, see [7] and [9]. Note
the difference in the shape parameter when compared with the stationary 0-cell alluded
to in Remark 5.6. This phenomenon can be best explained in case d = 1. The classical
special case j = 0 has already been discussed in Remark 5.5. The probability measure
P0
N1

describes Φ as seen from the typical edge L1 of Sd(Φ). Using different methods, it has
been shown in [1] that the volume of the fundamental region of L1 (see Figure 5.1) has a
G(d+ 1, γ)-distribution. This is in accordance with Theorem 5.7. The remaining special
cases of Theorem 5.7 are all new.
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6 Appendix: Stopping sets

In this section we present some basic results on stopping sets in a general setting. Let
Y be a locally compact second countable Hausdorff space. The system of all closed
subsets of Y is denoted by F(Y). On F(Y) we consider the smallest σ-field containing
FK := {F ∈ F(Y) : F ∩K 6= ∅} for all compact K ⊂ Y.

Let (W,W) be a measurable space and πK , K ∈ F(Y), a family of measurable
mappings πK : W → W with

πK1
◦ πK2

= πK1
, K1 ⊂ K2, K1, K2 ∈ F(Y). (6.1)

Two examples of such mappings πK are given in (6.5) and (6.7). The σ-field generated by
πK is WK := π−1

K (W). By (6.1) we have WK1
⊂ WK2

for K1, K2 ∈ F(Y) with K1 ⊂ K2.
A stopping set (defined on W, w.r.t. to (WK)K∈F(Y)) is a mapping T : W → F(Y) such
that

{ϕ ∈ W : T (ϕ) ⊂ K} ∈ WK , K ∈ F(Y).

The stopping σ-field associated with a stopping set T is defined by

WT := {A ∈ W : A ∩ {T ⊂ K} ∈ WK for all K ∈ F(Y)}.

It is easy to check that a stopping set T is WT -measurable. Indeed, if U ⊂ Y is open
then

{T ∩ U = ∅} ∩ {T ⊂ K} = {T ⊂ K \ U} ∈ WK\U ⊂ WK .

Lemma 6.1. Let (X,X ) be a Borel space and f : W → X a measurable function. Then
f is WK-measurable iff f = f ◦ πK .

Proof. Let f be measurable w.r.t. WK . By Lemma 1.13 in [3] there exists some
measurable mapping h : W → X with f = h ◦ πK . Hence f ◦ πK = f by (6.1).

For a function T : W → F(Y) we define πT : W → W by

πT (ϕ) := πT (ϕ)(ϕ), ϕ ∈ W.

Lemma 6.2. Let T be a stopping set. Then the following assertions hold:

(i) WT = σ(πT ) if πT is measurable.

(ii) T (ϕ) = T (πT (ϕ)) for all ϕ ∈ W.

(iii) Let ϕ ∈ W and K ∈ F(Y). Then T (ϕ) ⊂ K iff T (πK(ϕ)) ⊂ K.

(iv) Let ϕ ∈ W, K ∈ F(Y) and assume T (ϕ) ⊂ K. Then T (ϕ) = T (πK(ϕ)).

Proof. To prove WT ⊂ σ(πT ), let A ∈ WT , K ∈ F(Y), ϕ ∈ W. By definition of WT

the function 1A1{T ⊂ K} is measurable w.r.t WK . Using Lemma 6.1 we get

1A(ϕ)1{T (ϕ) ⊂ K} = 1A(πK(ϕ))1{T (πK(ϕ)) ⊂ K}. (6.2)

Setting A = W yields the third assertion, i.e.

1{T (ϕ) ⊂ K} = 1{T (πK(ϕ)) ⊂ K}. (6.3)
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Set K := T (ϕ) and use (6.2), (6.3) to obtain 1A(ϕ) = 1A(πT (ϕ)), which in turn implies
A = π−1

T (A) ∈ π−1
T (W) = σ(πT ).

Recall that T is WT -measurable. Using (6.2) with A = T−1({T (ϕ)}) ∈ WT and (6.3),
we have in case of T (ϕ) ⊂ K

1 = 1{T (ϕ) = T (ϕ)} = 1{T (πK(ϕ)) = T (ϕ)}.

Hence the second and fourth assertion are also true.
Now we prove σ(πT ) ⊂ WT . Let A ∈ W, K ∈ F(Y), ϕ ∈ W and πT be measurable.

By (6.1), (6.3) and assertion (iv) we get

1{πT (ϕ) ∈ A}1{T (ϕ) ⊂ K} = 1{πT (πK(ϕ)) ∈ A}1{T (πK(ϕ)) ⊂ K},

which implies WK-measurability of {πT ∈ A} ∩ {T ⊂ K}. Hence {πT ∈ A} ∈ WT ,
finishing the proof of the first assertion.

Proposition 6.3. A measurable function T : W → F(Y) is a stopping set iff T (ϕ) =
T (πT (ϕ)) for all ϕ ∈ W and the following implication holds for all for all ϕ, ψ ∈ W:

ψ = πT (ψ)(ϕ) =⇒ T (ψ) = T (ϕ). (6.4)

Proof. Let T be a stopping set, ψ, ϕ ∈ W with ψ = πT (ψ)(ϕ) and set K := T (ψ).
Using Lemma 6.2 (iii), ψ = πK(ϕ) and T (πK(ϕ)) = T (ψ) ⊂ K, we obtain T (ϕ) ⊂ K.
Invoking Lemma 6.2 (iv), we see

T (ϕ) = T (πK(ϕ)) = T (ψ).

Note that T (ϕ) = T (πT (ϕ)) holds by Lemma 6.2 (ii).
Now assume T (ϕ) = T (πT (ϕ)) and (6.4) for all ϕ, ψ ∈ W. Let ϕ ∈ W, K ∈ F(Y)

with T (ϕ) ⊂ K and define ψ := πT (ϕ). We have T (ψ) = T (ϕ) ⊂ K, so that by (6.1)

ψ = πT (ψ)(ϕ) = πT (ψ)(πK(ϕ)).

If vice versa there exists ψ ∈ W with T (ψ) ⊂ K and ψ = πT (ψ)(πK(ϕ)), then ψ = πT (ψ)(ϕ)
by (6.1), and (6.4) yields T (ϕ) = T (ψ) ⊂ K. Hence

T (ϕ) ⊂ K ⇐⇒ there exists ψ ∈ W with T (ψ) ⊂ K and ψ = πT (ψ)(πK(ϕ)).

Therefore 1{T (ϕ) ⊂ K} = 1{T (πK(ϕ)) ⊂ K}. As {T ⊂ K} ∈ W we get in fact
{T ⊂ K} ∈ WK , so that T is a stopping set.

Proposition 6.3 is the right tool for proving Proposition 2.1.

Proof of Proposition 2.1. Let T ′ : Nk → F be measurable and assume that (2.9)
holds. Then T ′ is a stopping set w.r.t. (π′

K
−1(N k))K∈F , where π′

K is defined in (2.7), i.e.

π′
K(ϕ) = {F ∈ ϕ : F ∩K 6= ∅}, ϕ ∈ Nk, K ∈ F . (6.5)

Defining T := ET ′ we obtain from Proposition 6.3

T ′(ϕ) = T ′(π′
T ′(ϕ)) = T ′(ϕ ∩ T (ϕ)) (6.6)
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and the implication
ψ = ϕ ∩ T (ψ) =⇒ T ′(ϕ) = T ′(ψ)

for all ϕ, ψ ∈ Nk. Note that T ′(ϕ) = T ′(ψ) implies T (ϕ) = T (ψ) and (6.6) implies
T (ϕ) = T (ϕ ∩ T (ϕ)). By Proposition 6.3 T is a stopping set w.r.t. (π−1

K (N k))K∈F(Ek),
where πK is defined by

πK(ϕ) := ϕ ∩K, ϕ ∈ Nk, K ∈ F(Ek). (6.7)

Conversely, assume that T ′ : Nk → F is measurable and T := ET ′ is a stopping set
w.r.t. (π−1

K (N k))K∈F(Ek). If K ′ ∈ F then EK ′ := {F ∈ Ek : F ∩K ′ 6= ∅} is closed and we
have

{T ′ ⊂ K ′} = {ET ′ ⊂ EK ′} ∈ π−1
EK′

(N k) = (π′
K ′)−1(N k).

Therefore T ′ is a stopping set w.r.t. to (π′
K ′

−1(N k))K ′∈F .
From π′

T ′ = πT and Lemma 6.2 (i) we obtain

N k
T ′ = σ(π′

T ′) = σ(πT ) = N k
T ,

which proves (2.10).

The next result leads to an easy and transparent proof of Proposition 3.4.

Lemma 6.4. Set πK(ϕ) := ϕ ∩K, ϕ ∈ Nk, K ∈ F(Ek). Let ϕ ∈ Nk, T : Nk → F(Ek)
be a stopping set and f : Nk × F(Ek) → [0,∞) be a measurable function. Then

f(πT (ϕ),T (ϕ))1{ϕ(T (ϕ)) = m} =
1

m!

∫

f({F1, . . . , Fm}, T ({F1, . . . , Fm}))

1{F1, . . . , Fm ∈ T ({F1, . . . , Fm})}

1{ϕ!
F1,...,Fm

(T ({F1, . . . , Fm})) = 0}ϕ(m)(d(F1, . . . , Fm))

for m ≥ 1 and

f(πT (ϕ), T (ϕ))1{ϕ(T (ϕ)) = 0} = f(∅, T (∅))1{ϕ(T (∅)) = 0}.

Proof. We assume that m ≥ 1. In case m = 0 the proof is similar but simpler. For
any ϕ ∈ Nk we have

f(πT (ϕ), T (ϕ))1{ϕ(T (ϕ)) = m}

=
1

m!

∫

f({F1, . . . , Fm}, T (ϕ))1{{F1, . . . , Fm} = πT (ϕ)}ϕ(m)(d(F1, . . . , Fm)).

From Proposition 6.3 we obtain

{F1, . . . , Fm} = πT (ϕ) ⇐⇒ {F1, . . . , Fm} = πT ({F1,...,Fm})(ϕ),
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as well as T (ϕ) = T ({F1, . . . , Fm}), if the equations above are true. We conclude

f(πT (ϕ), T (ϕ))1{ϕ(T (ϕ)) = m}

=
1

m!

∫

f({F1, . . . , Fm}, T ({F1, . . . , Fm}))

1{{F1, . . . , Fm} = πT ({F1,...,Fm})(ϕ)}ϕ(m)(d(F1, . . . , Fm))

=
1

m!

∫

f({F1, . . . , Fm}, T ({F1, . . . , Fm}))1{F1, . . . , Fm ∈ T ({F1, . . . , Fm})}

1{ϕ!
F1,...,Fm

(T ({F1, . . . , Fm})) = 0}ϕ(m)(d(F1, . . . , Fm)).
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