Untersuchung des Kerntransports mittels nahfeldoptischer Fluoreszenz-Korrelationsspektroskopie

Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN

(Dr. rer. nat.)

der Fakultät für Chemie und Biowissenschaften der Universität Karlsruhe (TH)
vorgelegte

DISSErTATION

von

Dipl.-Biol. Michael Herrmann

aus Karlsruhe

Dekan: Prof. Dr. Stefan Bräse
Referentin: Prof. Dr. Doris Wedlich
Korreferent: PD. Dr. Andreas Naber
Tag der mündlichen Prüfung: 07.-11.07.2008
Die vorliegende Arbeit wurde am Institut für molekulare Entwicklungs- und Zellphysiologie (Zoologie II) und am Institut für Angewandte Physik der Universität Karlsruhe (TH) in der Zeit von Januar 2004 bis Mai 2008 durchgeführt.

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Michael Herrmann, Mai 2008
Inhaltsverzeichnis

1 Einleitung .. 1
 1.1 Der Zellkern wird über die Kernhülle im Zytoplasma verankert2
 1.2 Die Kernlamina stabilisiert die Kernhülle ..3
 1.3 Der Kernporenkomplex ist modular aufgebaut ...7
 1.4 Der Kernporenkomplex ist eine dynamische Struktur10
 1.5 Kerntransport ...12
 1.5.1 Steuerung des Kerntransports ..17
 1.5.2 Translokation von β-Catenin und der Lef/Tcf-Transkriptionsfaktoren19
 1.5.3 Modelle des Kernporenmechanismus ...22
 1.6 Methoden zur Untersuchung des Kerntransports ..25
 1.6.1 Ultrahochauflösende Fernfeldmikroskopie ...25
 1.6.2 Nahfeldoptische Mikroskopie ..28
 1.6.3 Optische Rasternahfeldmikroskopie ...29
 1.6.4 Fluoreszenz-Korrelationsspektroskopie ..33
2 Zielsetzung ...35
3 Material und Methoden ...36
 3.1 Material ..36
 3.1.1 Antikörper ...36
 3.1.2 Chemikalien und Verbrauchsmaterialien ...37
 3.1.3 Enzyme ...38
 3.1.4 Mikroorganismen und Zelllinien ...38
 3.1.5 Plasmide ...39
 3.1.6 Primer zur Klonierung rekombinanter DNA ..40
 3.1.7 Proteinreinigungssysteme ..41
 3.1.8 Reagenziensysteme ..41
 3.1.9 Geräte ...42
 3.2 Molekularbiologische Methoden ..43
 3.2.1 Puffer und Lösungen ..43
 3.2.2 Restriktionsanalyse von DNA ..44
 3.2.3 Analytische Flachbettgelelektrophorese ..44
 3.2.4 Präparative Flachbettgelelektrophorese ..45
 3.2.5 Amplifikation spezifischer DNA-Fragmente mittels PCR45
Inhaltsverzeichnis

3.2.6 Sequenzspezifische Mutagenese ... 46
3.2.7 Ligation von DNA-Fragmenten ... 46
3.2.8 Herstellung und Transformation chemokompetenter E. coli 46
3.2.9 Anlegen von Bakteriendauerkulturen .. 47
3.2.10 Isolierung bakterieller Plasmid-DNA im Klein- und Mittelmaßstab 47
3.2.11 Fällung und Reinigung von DNA ... 48
3.2.12 Konzentrationsbestimmung von DNA ... 48
3.3 Proteinbiochemische Methoden .. 49
3.3.1 Puffer und Lösungen .. 49
3.3.2 Elektrophoretische Auftrennung von Proteinen ... 51
3.3.3 Detektion aufgetrennter Proteine ... 52
3.3.4 Detektion immobilisierter Proteine (Immun-Blot) ... 53
3.3.5 Konzentrationsbestimmung von Proteinlösungen .. 54
3.3.6 Expression rekombinanter Proteine in E. coli .. 57
3.3.7 Herstellung des Rohextrakts zur Isolierung löslicher Proteine 58
3.3.8 Affinitätschromatographie ... 59
3.3.9 Enzymatische Spaltung von GST-Fusionskonstrukt en 61
3.3.10 Dialyse und Aufkonzentration der Proteinlösung 61
3.3.11 Ionenaustauschchromatographie ... 62
3.3.12 Gelpermeatonschromatographie ... 63
3.3.13 Kovalente Fluoreszenzmarkierung von Antikörpern und Proteinen 63
3.3.14 Extraktion des Zytosols aus Rattenleberzellen ... 66
3.4 Zellbiologische Methoden und nahfeldoptische Mikroskopie 67
3.4.1 Puffer und Lösungen .. 67
3.4.2 Kultivierung und Passagieren von murinen L-Zellen 68
3.4.3 Einfrieren und Auftauen von Zellen .. 68
3.4.4 Funktionsprüfung rekombinant exprimierter Proteine mittels Digitonin-
permeabolisierter L-Zellen und ganzer Oozytenkerne 69
3.4.5 Froschhaltung .. 70
3.4.6 Froschoperation zur Gewinnung der Oozyten ... 70
3.4.7 Kernmembranpräparation und Antikörperfärbung 71
3.4.8 Herstellung der Flüssigkeitskammer .. 73
3.4.9 Herstellung der Dreiecksapertursonden ... 75
3.4.10 Messungen am nahfeldoptischen Mikroskop ... 75
4 Ergebnisse .. 77
 4.1 Rekombinante Expression von XLef-1 und XTcf-1 ... 77
 4.1.1 Klonierung der Expressionskonstrukte und deren Induktion 77
 4.1.2 Optimierung der Induktion durch unterschiedliche E. coli Stämme 80
 4.1.3 Induktion von XLef-1 in Gegenwart von Importinen als mögliche Chaperone... 81
 4.1.4 Mutagenese putativer XLef-1-Bindungsstellen ... 83
 4.2 Präparation der Transportfaktoren für Kerntransportmessungen 85
 4.3 Funktionalitätstest der rekombinant exprimierten Proteine 92
 4.4 Präparation freistehender Kernmembranen aus Oozyten .. 97
 4.5 Validierung der Präparationsgüte .. 99
 4.6 Konfokale Fluoreszenz-Korrelationsspektroskopie .. 105
 4.7 Annäherung der Nahfeldsonde an die Kernmembran ... 109
 4.8 Nahfeldoptische Messungen an einer freistehenden Kernmembran 114
 4.9 Nahfeldoptische Fluoreszenzkorrelationsspektroskopie .. 124

5 Diskussion ... 129
 5.1 XLef-1 reprimiert die eigene Expression in E. coli .. 129
 5.2 Stabilität der freistehenden Kernmembran ... 130
 5.3 Nahfeldoptische Darstellung der freistehenden Kernmembran 133
 5.4 Untersuchung des Kerentransports mittels nahfeldoptischer FCS 136

6 Zusammenfassung ... 140

7 Literatur .. 141

8 Anhang ... 162
 8.1 Aminosäuresequenz der klonierten Expressionskonstrukte 162
 8.2 Weitere Informationen zu den exprimierten Konstrukten 163
 8.3 Filmaufnahmen der Dreiecksapertursonde und einer freistehenden Kernmembran .. 163
 8.4 Modell der begrenzten eindimensionalen Diffusion im optischen Nahfeld 165
 8.5 Literatur des Anhangs... 166
 8.6 Publikation in einer Fachzeitschrift ... 167
 8.7 Eigene Posterbeiträge zu wissenschaftlichen Tagungen .. 167
Abkürzungsverzeichnis

aa Aminoacids (Aminosäuren)
AKF Autokorrelationsfunktion
a.u. arbitrary units (arbiträre Einheiten)
APD Avalanche Photodiode (Lawinenfotodiode)
ARM Armadillo-Repeats (Armadillo-Wiederholungen)
CCD Charged Coupled Device (ladungsgekoppelter Bauelement)
EDTA Ethylendiaminotetraessigsäure
EGTA Ethylendioxy-bis-(ethylenitrilo)-tetraessigsäure
FCS Fluorescence correlation spectroscopy
GAP GTPase-aktivierendes Protein
GEF Guaninnucleotid Exchange Factor (Guaninnukleotid-Austauschfaktor)
GST Glutathion-S-Transferase
HEAT Huntingtin, Elongation Faktor 3, PR65/A-Untereinheit von Protein-Phosphatase A, TOR-Repeat
HEPES 4-(2-Hydroxyethyl)-1-piperazin-1-ethansulfonsäure
kDa kilo Dalton
NES Nuclear Export Sequence (Kernexportsequenz)
NLS Nuclear Localisation Sequence (Kernlokalisationssequenz)
NPC Nuclear Pore Complex (Kernporenkomplex)
Ntf-2 Nuclear transport factor-2
Ran Ras related nuclear protein
RanBP Ran binding protein
RCC1 Regulator of chromosome condensation 1
REM Rasterelektronenmikroskop
rpm revolutions per minute (Umdrehungen/min)
SDS Sodium Dodecylsulfate (Natriumdodecylsulfat)
SNOM Scanning Near-field Optical Microscope (Rasternahfeldoptisches Mikroskop)
TRIFM Total internal reflection fluorescence microscope (Totalreflektionsfluoreszenzmikroskop)
Tris 2-Amino-2-(hydroxymethyl)-1,3-propandiol
Tween20 Polyoxyethylensorbitan-Monolaurat
(v/v) volume per volume (Volumen-Volumen-Verhältnis)
(w/v) weight per volume (Gewichts-Volumen-Verhältnis)
1 Einleitung

Der Zellkern stellt eines der größten Kompartimente eukaryotischer Zellen dar. Sein Volumen füllt 8% des zytoplasmatischen Raums aus, wobei dieses Verhältnis während Wachstum und Differenzierung annähernd konstant bleibt (Jorgensen et al., 2007; Neumann & Nurse, 2007). Im Gegensatz dazu weisen die Nuklei der Tumorzellen charakteristische morphologische Aberrationen auf, die die Größe und die Gestalt ebenso wie die Organisation der Chromosomen betreffen und die auch heute noch ein elementarer Bestandteil der Tumordiagnostik darstellen (Zink et al., 2004).

Die Kernhülle separiert nicht nur die genetische Information vom zellulären Stoffwechsel, sondern ermöglicht durch die räumliche und zeitliche Trennung von Transkription und Translation die Prozessierung der Transskripte. Während Capping, Exon-Spleißen und Polyadenylierung ausschließlich intranukleär ablaufen, befinden sich insbesondere die an der RNA-Interferenz beteiligten RNA-editierenden Enzyme auch im Zytoplasma (Nishikura, 2006).

Der Austausch zwischen den beiden Kompartimenten wird durch symmetrische, supramolekulare Komplexe in der Kernmembran kontrolliert. Phylogenetische Sequenzanalysen von Nukleoporinen oder mit dem Kernporenkomplex assoziierten Proteine und die Rekonstruktion ihrer Ursequenzen zeigen eine auf der strukturellen Ebene evolutionär konservierte Kernpore, die sich auf Sequenzebene aus adaptiven und flexiblen Bestandteilen zusammensetzt, die teilweise prokaryotische Homologe besitzen (Denning & Rexach, 2007).

Während auf die Bedeutung der Kern-Zytoplasma-Relation bereits 1903 von Richard Hertwig hingewiesen wurde, zeigen neuere Untersuchungen, dass sich die Kernporendichte während Differenzierung, Wachstum und in Abhängigkeit von der metabolischen Aktivität der Zelle verändert. Der Nukleus einer Zelle in der G2-Phase besitzt annähernd doppelt so viele Kernporen wie in der G1-Phase mit 5 NPCs/µm² (Maeshima et al., 2006). In der Oogenesis von *Xenopus laevis* fällt die Dichte von anfangs 32 Kernporenkomplexen (NPCs)/µm² auf 23 NPCs/µm² in reifen Oozyten (Schlune et al., 2006). Und während der Herzdifferenzierung steigt die Kernporenzahl um 60% von 10 NPCs/µm² in embryonalen Stammzellen auf 16 NPCs/µm² in Kardiomyozyten (Perez-Terzic et al., 2007).
1 Einleitung

1.1 Der Zellkern wird über die Kernhülle im Zytoplasma verankert

In der rezenten eukaryotischen Zelle fungiert die Kernmembran nicht nur als Barriere zwischen den beiden Kompartimenten, sondern vereint die zytosplasmatische mit der nukleären Architektur und spielt eine Rolle in der Signaltransduktion und im Verlauf der Mitose (Stewart et al., 2007). Die spezifische Lokalisation des Kerns innerhalb der Zelle ist für einige embryonale und zelluläre Prozesse wie beispielsweise Befruchtung, Zellteilung, Zellmigration und die Entstehung der Zellpolarität bedeutsam (Starr, 2007).

Innerhalb des Zellkerns ist die Existenz einer strukturgebenden Matrix immer noch umstritten (Hancock, 2004). Trotz zahlreicher potentieller Matrixbildner im Nukleus wie neben Lamin A und B beispielsweise Aktin, Myosin und EAST (Enhanced Adult Sensory Threshold) (Lasky, 2000; Hancock, 2004; Zink et al., 2004; Pederson & Aebi, 2005), stehen elekt-

Ronenmikroskopische Darstellungen der Kernmatrix (Zhang et al., 1996; Nickerson, 2001; Kiseleva et al., 2004) im Verdacht, Präparationsartefakte abzubilden. Tatsächlich deuten neuere in vivo Studien eher auf eine dynamische, an der chromosomalen Organisation beteiligte Kernmatrix anstelle eines rigiden, den Nukleus stabilisierenden Gerüsts (Hancock, 2004; Tsutsui et al., 2005).

1.2 Die Kernlamina stabilisiert die Kernhülle

An der Innenseite der Kernhülle wird der aus zwei Lipiddoppelschichten und dem flüssigkeitsgefüllten perinukleären Zwischenraum bestehende Verbundmantel mit einem Proteinnetzwerk aus Laminen verstärkt (Abb. 2). Lamine sind Typ-5-Intermediärfilamente mit einer α-helikal, stabförmigen Domäne von etwa 45 nm Länge, die von je einer nicht-α-helikalen, Domäne an N- und C-Terminus flankiert wird (Herrmann et al., 2007). Die wesentlich längere C-terminale Region trägt die Kernlokalisationssequenz (NLS) und mittig eine Ig-ähnliche Domäne, die auf elektronenmikroskopischen Aufnahmen als knotenartige Verdickung zu sehen ist (Herrmann & Aebi, 2004). Die Grundbausteine der Kernlamina bilden in gleicher Orientierung homodimerisierte Lamine, die sich Kopf an Schwanz zu polaren Protofilamenten zusammenlagern, aus denen durch laterale Assoziation dicke Filamentbündel oder parakristalline Anordnungen entstehen.

Während in einzelligen Eukaryoten, Prokaryoten und Pflanzen bisher ebenso wenig Lamine entdeckt wurden, besitzen sowohl der Cnidarier Hydra vulgaris als auch der Nematode C. elegans nur ein B-Typ Lamin-Gen (Herrmann & Aebi, 2004; Melcer et al., 2007). In Drosophila sind zwei Lamin-Gene Dm0 und C bekannt, wobei nur ersteres essentiell ist (Goldman et al., 2002). Wirbeltiere besitzen mindestens drei Lamin-Gene LMNA, LMNB1 und LMB2, die bei Säugern für sieben alternativ gespleißte Isoformen kodieren, wobei allein aus LMNA die vier Isoformen A, AΔ10, C und C2 hervorgehen (Gruenbaum et al., 2003). Während B-
Typ Lamine in jeder Zelle sowohl im Embryo als auch im adulten Tier vorhanden sind, werden A-Typ Lamine gewöhnlich erst zu Beginn der Gastrulation gewebsspezifisch exprimiert.

schen Zellkern in einer nichtmembranständigen Form vorhanden sind (Gruenbaum et al., 2005). Zu Beginn der Mitose wird die Lamina durch Phosphorylierung abgebaut. Zusammen mit Importin α und β bilden die Lamine einen stabilen Komplex, der eine zytoplastmatische Polymerisation verhindert und nach Rekonstitution des Kerns durch RanGTP gelöst wird (Adam et al., 2008).

Das 10 kDa große, multifunktionale Protein Barrier to Autointegration Factor (BAF) verbindet als Heterodimer DNA-Stränge mit LEM-Domänen oder untereinander und ist auch in der Lage, Chromatin zu verdichten (Dorner et al., 2007). Darüber hinaus ist dephosphoryliertes BAF auch an der Lokalisation von Emerin beteiligt und verstärkt die Bindung zwischen Emerin und A-Typ-Laminen (Bengtsson & Wilson, 2006).

Die Lamina verleiht allerdings nicht nur dem Kern Form und Festigkeit, sondern ist auch an der Lokalisation der Kernporenkomplexe (NPC) beteiligt. Während bereits länger bekannt ist, dass die Kernporen aufgrund hydrophober Wechselwirkungen mit der Lamina verbunden sind (Scheer et al., 1976; Krohne et al., 2005), konnte anhand von Rekonstitutionsexperimenten mit *Xenopus laevis* Oozytenextrakten gezeigt werden, dass Lamin B3 durch Bindung innerhalb der C-terminalen Region von Nup153 dieses an naszierenden NPC rekruitiert (Smythe et al., 2000). Außer den Laminen ist auch das Transmembranprotein Sun1 an der
mehr oder weniger gleichförmigen Verteilung der Kernporen innerhalb der Kernhülle beteiligt (Liu et al., 2007a).

1.3 Der Kernporenkomplex ist modular aufgebaut

Der Kernporenkomplex (NPCs) erscheint aufgrund vergleichender Strukturanalysen evolutionär konserviert (Stoffler et al., 1999a; Lim et al., 2008). Generell besitzen die Kernporen eine achtfache Rotationssymmetrie orthogonal zur Kernmembran (Abb. 3). Mittels Rastertransmissionselektronenmikroskopie (STEM) wurden Durchmesser und Masse des Hefe-NPC (100 nm, 66 MDa) und des Kernporenkomplexes in *Xenopus laevis* Oozyten (120 nm, 125 MDa) bestimmt, wobei die in einem proteomischen Ansatz abgeschätzte Masse mit 44 MDa für den Hefe-NPC und 60 MDa für den Wirbeltier-NPC deutlich geringer ausfällt (Reichelt et al., 1990; Rout & Blobel, 1993; Cronshaw et al., 2002).

Zusätzlich zur Symmetrieachse besitzt der Kernporenkomplex in der Mitte eine parallel zur Kernmembran orientierte Symmetrieebene, die sich auf die zentralen Ringentitäten beschränkt. Der zentrale Ring verankert nicht nur den Kernporenkomplex in der Kernmembran, sondern bildet mit seinen acht Speichen das eigentliche Tor zwischen dem nukleo- und dem zytoplasmatischen Kompartiment (Akey & Radermacher, 1993). Neben dem zentralen Kanal existieren acht etwa 10 nm große, periphere Kanäle im Speichenringkomplex (Hinshaw et al., 1992), der seinerseits von zwei Ringen eingerahmt wird. Vom zytoplasmatischen Ring ragen acht filamentartige Fibrillen 50 nm weit ins Zytoplasma hinein, während die acht vom nukleoplasmatischen Ring ausgehenden Filamente sich zu einem distalen Ring vereinigen und eine reusenartige, 55-60 nm hohe Struktur bilden, die als Kernkorb bezeichnet wird (Abb. 4).

Auf der molekularen Ebene setzten sich sowohl der Wirbeltier-Kernporenkomplex als auch der Hefe-NPC aus nur rund 30 verschiedenen Proteinen zusammen (Abb. 4), die in 8, 16 oder 32 Kopien vorliegen (Cronshaw et al., 2002). Bemerkenswerterweise bestehen die Nukleoporine ihrerseits aus lediglich acht verschiedenen Faltungstypen und lassen sich unab-

![Abb. 3: Unterschiedliche mikroskopische Darstellungen zeigen die Rotationssymmetrie der Kernporen.](image)

hängig von der auf elektronenmikroskopischen Studien beruhenden Strukturbeschreibung in drei funktionale Gruppe einteilen, die als konzentrische Schichten sowohl den zentralen als auch den nukleo- und den zytoplasmatischen Ring bilden (Abb. 5). Während die Membran-

Aufgrund kristallographischer Studien schlug die Arbeitsgruppe von Günter Blobel kürzlich die Teilung der Gerüstschicht in eine Mantel- und eine Adaptorschicht vor. Nach ihrem Modell bilden acht Kopf-Schwanz-orientierte yNup84-Komplexe¹ einen Reifen der Mantelschicht. Im zentralen Ring sind vier antiparallele Reifen axial übereinandergelagert, wobei sowohl das einen siebenblättrigen β-Propeller bildende ySec13-yNup145C-Heterodimer als auch ySeh1-yNup85 durch Homodimerisation axial übereinander angeordnet sind. Dazwischen befindet sich jeweils eine Daube aus axial alternierendem yNup120 und yNup133-yNup88. Die aus yNic96-Komplexen bestehende Adaptorschicht stellt den nächsten konzentrischen Kreis dar und yNsp1-Komplexe bilden den inneren FG-Ring (Hsia et al., 2007).

Die Bedeutung des yNup84/Nup107-Komplexes zeigen Rekonstitutionsexperimente mit X. laevis Eiextrakten, in denen sich nach Depletion von Nup85 und Nup133 bzw. Nup107 durch entsprechende Antikörper Kernhüllen ohne Kernporen bildeten (Harel et al., 2003; Walther et al., 2003). In einem auf RNAi-basierenden Ansatz fehlten indes den Kernporen-

¹ Zur besseren Unterscheidung wird den Hefe-Nukleoporinen ein y vorangestellt, sofern sich der Abschnitt nicht explizit mit dem Hefe-NPC befasst.
komplexen in HeLa-Zellen nach Nup107-Depletion neben Nup133 sowohl die zytoplasmatischen Fibrillen als auch der Kernkorb und damit die peripheren Strukturen. Nup62 und die beiden Bestandteile des Nup107-Komplexes, Nup96 und Sec13, waren dagegen weiterhin in der Kernpore lokalisiert (Boehmer et al., 2003).

Zusammen mit den unstrukturierten FG-Wiederholungen stellen α-Solenoid und β-Propeller die drei häufigsten Domänen innerhalb der Nukleoporinen dar, wobei die letzteren beiden entweder einzeln oder gemeinsam in allen Proteinen der Gerüstschicht auftreten (Schwartz, 2005).

Kristallographische Untersuchungen der Coiled-Coil-Domänen des yNsp1/Nup62-Komplexes zeigen, dass sich diese α-helikale Region aufgrund hydrophober Wechselwirkungen zu einem stabilen, antiparallelen, haarnadelförmigen Dimer faltet (Melcak et al., 2007). Zwei Dimere lagern sich zu einem antiparallel orientierten Tetramer zusammen, wobei die elektrostatische Natur der Interaktion und die alternierende Anordnung der Interaktionspartner eine Verschiebung der Dimere um etwa 1.1 nm ermöglicht, so dass nach dem von den Autoren vorgeschlagenen Gleitmodell der Porendurchmesser um 3 nm vergrößert werden kann.

1.4 Der Kernporenkomplex ist eine dynamische Struktur

Von kleinen Proteinkomplexen über Ribonukleopartikel bis hin zur großen ribosomalen Untereinheit passieren unterschiedlich große Rezeptor-Kargo-Komplexe die Kernpore. In elektronenmikroskopischen Aufnahmen weist der zentrale Transportkanal der Kernpore in Xenopus laevis Oozyten einen Durchmesser von 50 nm und eine Länge von 90 nm auf, durch den mit Kernlokalisationssequenzen (NLS) beschichtete Goldnanopartikel bis zu einem Durchmesser von 39 nm transportiert werden (Panté & Kann, 2002; Stoffler et al., 2003).

Zusätzlich zu den gleitenden Coiled-Coil-Domänen tragen vor allem die FG-Wiederholungen selbst zur Dynamik innerhalb des Kernporencomplexes bei. Diese Regionen sind hochflexibel und weisen keinerlei geordnete Sekundärstruktur auf (Denning et al., 2003). Berechnungen zufolge können sich die nativ ungefalteten FG-Domänen im N-Terminus von Nup62 (~300 aa) bzw. im C-Terminus von Nup153 (~700 aa) und Nup214 (~800 aa) über etwa 90 nm, 210 nm und 240 nm erstrecken (Fahrenkrog et al., 2004). Mittels domänenspezifischer Antikörper konnte in elektronenmikroskopischen Aufnahmen gezeigt werden, dass der N-Terminus von Nup153 am nukleoplasmatischen Ring und die zentral gelegene Zinkfinger-Domäne am distalen Ring des Kernkorbs lokalisiert sind, während sich der flexible C-Terminus zwischen dem distalen und dem zytoplasmatischen Ring befindet (Fahrenkrog et al., 2002). Analog dazu ist der N-Terminus des zytoplasmatischen Nukleoporins Nup214 am
zytoplasmatischen Ring verankert und der C-Terminus bewegt sich durch den zentralen Kanal bis zum distalen Ring, wobei die räumliche Verteilung der flexiblen C-terminalen FG-Domänen mit der Transportaktivität der Kernpore korreliert (Paulillo et al., 2005).

Darüber hinaus modifizieren auch lösliche Agenzien wie beispielweise ATP, Kalzium, Ethanol oder Steroide reversibel die Gestalt des Kernporencomplexes. Während 1 mM ATP eine Art Kontraktion der Kernpore durch Höhenzunahme des zytoplasmatischen Rings (60-75%) und Verkleinerung des zentralen Kanals (20%) verursacht (Rakowska et al., 1998), weitet Kalzium (100 µM) reversibel den distalen Ring auf, so dass eine Öffnung von 20-30 nm mittels Rasterkraftmikroskopie dargestellt werden kann (Stoffler et al., 1999b). Die Beobachtung, dass perinukleäre Ca²⁺-Depletion die Permeabilität der Kernporen reduziert und zur vermehrten Pfropfenbildung („Plugs“) im zentralen Kanal führt (Perez-Terzic et al., 1996), konnte von Stoffler et al. (1999b) nicht bestätigt werden. In NRK-Zellen inhibiert die lumennale Ca²⁺-Depletion ebenso wie Kälte (0-4°C) reversibel sowohl die passive Diffusion als auch den signalvermittelten Transport, wobei möglicherweise die Cadherin-ähnlich gefaltete lumennale Domäne von gp210 als Ca²⁺-Sensor wirkt und die Konformation des Kernporenkomplexes verändert (Greber & Gerace, 1995).

Ethanol verursacht in klinisch relevanten Dosen (0.05-0.2%) nicht nur eine Clusterbildung und eine Versteifung der Kernporen, sondern reduziert auch die Permeabilität der Kernporen für Ionen und Makromoleküle und bewirkt dadurch ein Anschwellen des Zellkerns (Schafer et al., 2007). Diese Effekte lassen sich durch Transkriptionsblockade oder RNase-Behandlung unterbinden. Im Gegensatz dazu vergrößern Glucocorticoid-Analoga wie Dexamethason durch Aufweitung des zytoplasmatischen Rings und Verdopplung des Kanaldurchmessers die Permeabilität für Ionen und Makromoleküle (Shahin et al., 2005a; Shahin et al., 2005b; Kastrup et al., 2006). Die Inhibition der Translation mit Cycloheximid vergrößert den Poredurchmesser um etwa 6 nm ohne erkennbare Veränderung der passiven Diffusion oder des signalvermittelten Transports (Feldherr et al., 2001).

Nicht nur lösliche Rezeptor-Kargo-Komplexe, sondern auch membranständige Proteine passieren die Kernpore auf ihrem Weg vom ER zur inneren Kernmembran, in der sie, wie
beispielsweise Emerin, durch selektive Retention verbleiben (Burke & Ellenberg, 2002). Studien in Hefe an LEM2- und MAN-homologen Proteinen zeigten, dass diese beiden Proteine mit zwei Transmembrandomänen Kernlokalisationssequenzen (NLS) in den extralumenalen Domänen besitzen und den Kernporekomplex Importin α- und β-abhängig passieren (King et al., 2006). Dabei entscheidet die Größe der extralumenalen Domäne über die Transportart. Während Domänen kleiner als 25 kDa durch die Kernpore diffundieren, werden integrale Membranproteine mit einer zyto/nukleoplasmatischen Domäne zwischen 25 und 75 kDa Importin α- und β-abhängig importiert und bei Domänen größer 75 kDa entscheidet die räumliche Lokalisation der NLS über den Import (Lusk et al., 2007). Die Entdeckung eines trunkierten Importin α ohne Importin β-Bindungsstelle (Imp α16, 15 kDa), das bereits am ER an die frisch translatierte NLS von Proteinen der inneren Kernmembran bindet, weist auf einen speziellen Transportweg für integrale Membranproteine hin (Saksena et al., 2006).

Insgesamt ist die Kernpore ein modular aufgebauter, makromolekularer Komplex, dem aufgrund seiner Funktion als selektive Permeationsbarriere eine gewisse Flexibilität inne wohnt. Darüber hinaus reagiert der NPC auf intrazelluläre Signale mit Strukturänderungen und Clusterbildung, wobei deren Effekte auf den signalvermittelten Transport mangels geeigneter Untersuchungsmethoden bisher nur ansatzweise erforscht wurden. Ferner ist unklar, ob die untersuchten Effektoren ausschließlich auf die strukturgebenden Komponenten wirken oder auch die unstukturierten, flexiblen FG-Wiederholungen beeinflussen.

1.5 Kerntransport

Zytoplasma und Nukleus sind durch mehrere Transportwege miteinander verbunden, die sich in ihrer Präferenz für bestimmte Kargomoleküle ebenso wie in den für die Passage eingesetzten Carrier unterscheiden (Cook et al., 2007; Tran et al., 2007). Trotz dieser Diversität lässt sich jeder Transportzyklus mit vier einfachen Schritten beschreiben. Zunächst wird das Kargomolekül vom Transportrezeptor erkannt und gebunden, anschließend transloziert der ternäre Komplex durch die Kernpore und dissoziert am Zielort, wobei die Rückkehr des Transportreceptors an den Ausgangspunkt den Kreislauf beendet (Abb. 6).

Die größte Transportrezeptorklasse wird von den Karyopherinen gebildet, wobei die importierenden Rezeptoren als Importine und die exportierenden als Exportine bezeichnet werden (Stewart, 2007). Viele Proteine werden durch Importin β und seinen Adapter Importin α in den Nukleus geschleust und mittels CRM1 wieder exportiert. Während CRM1 auch am Export von snRNA und rRNA beteiligt ist, wird tRNA von Exportin-t und miRNA von Exportin-5 durch die Kernpore geleitet. Im Gegensatz dazu erfolgt der mRNA-Export durch das
Einleitung

TAP/NXF1-p15/NXT1-Heterodimer, das keine Verwandtschaft zu den Karyopherinen besitzt (Kohler & Hurt, 2007).

Der Nuclear transport factor-2 stellt eine eigene, dritte Transportrezeptorart dar. Ntf2 ist ein konserviertes, homodimerisierendes Protein, das die kleine GTPase Ran in der GDPgebundenen Form vom Zytoplasma in den Zellkern importiert (Görlich & Kutay, 1999). Dabei interagiert das 15 kDa große Ntf2 insbesondere mit der Switch-II-Region von RanGDP, die in der GTP-gebundenen Form eine andere Konformation einnimmt (Stewart et al., 1998; Vetter et al., 1999). Zusätzlich behindert die Switch-I-Region sterisch die Bindung zwischen Ntf2 und RanGTP.

Die geringe intrinsische GTPase-Aktivität des Ras-related nuclear Proteins (Ran) wird durch das RanGTPase aktivierende Protein-1 (RanGAP1) um den Faktor 10^5 angeregt. Ebenso erhöht der Guaninnukleotid-Austauschfaktor (GEF) Regulator of Chromatin Condensation 1 (RCC1) die Nukleotid-Dissoziationsrate von Ran um 10^5 (Klebe et al., 1995). Die antago-nistischen Ran-Regulatoren RCC1 und RanGAP1 werden durch die Kernhülle voneinander getrennt und erzeugen dadurch einen RanGTP-Gradienten. Im Nukleus ist die RanGTP-Konzentration aufgrund des chromatingebundenen RCC1 hoch. Im Gegensatz dazu beschleu-

nigt RanGAP1 die GTP-Hydrolyse im Zytoplasma, wobei RanGAP1 sowohl in freier Form als auch in einem Komplex mit RanBP1 und Nup358/RanBP2 vorliegt. Nup358/RanBP2 besitzt vier Ran-Bindungsstellen und verankert RanGAP1 und RanBP1 an den zytoplasmatischen Filamenten des Kernporenkomplexes. RanBP1 löst RanGTP aus dem Transportrezeptoren-RanGTP-Komplex und ermöglicht dadurch dessen Interaktion mit RanGAP1 (Bischoff et al., 2002).

Obwohl das RanGTPase-System eine essentielle Komponente des Kerntransports darstellt, ist die Nukleotid-Hydrolyse nicht die treibende Kraft des Kerntransports. Vielmehr definiert die asymmetrische RanGTP-Verteilung die Transportrichtung, wie in vitro Experimente mit einer RanGAP-insensitiven Ran-Mutante zeigen (Nachury & Weis, 1999). Nach Simulationen des Ran-Zyklus’ übersteigt die RanGTP-Konzentration im Nukleus die zytoplasmatische um das 500-1000fache (Smith et al., 2002; Görlich et al., 2003). Für die Aufrechterhaltung des RanGTP-Gradienten ist neben dem GTP-GDP-Verhältnis und der Ntf2-Konzentration die Durchlässigkeit der Kernpore für RanGTP entscheidend (Görlich et al., 2003).

Somit muss der Kernporenkomplex die freie Diffusion von Ran (24 kDa, $r_H \sim 2.2$ nm) wirkungsvoll einschränken, während weiterhin kleinere und größere Rezeptor-Kargo-Komplexe die selektive Barriere passieren. Permeationsstudien mit unterschiedlich großen Partikeln bestätigen, dass Ionen und kleine Moleküle wie GTP (0.5 kDa) ungehindert durch die Pore diffundieren. Ab einem hydrodynamischen Radius r_H von 1.5 nm (~12 kDa) wird die Diffusion eingeschränkt und kommt oberhalb eines Radius von ~3 nm (z.B. Ovalbumin, 43 kDa) unter physiologischen Bedingungen praktisch zum Erliegen (Paine et al., 1975; Görlich & Kutay, 1999). Der langsamen Diffusion von RanGTP ins Zytoplasma steht eine mindestens 30fach höhere, unidirektionale Ran-Translokationsrate gegenüber, so dass die partielle RanGTP-Undichtigkeit der Kernpore den steilen Gradienten in vivo nicht beeinträchtigt (Smith et al., 2002; Naim et al., 2007).

Im Gegensatz zum mitochondrialen oder peroxisomalen Transport werden Kernlokalisations- und Kernexportsequenzen (NLS und NES) nicht proteolytisch prozessiert, so dass Proteine zwischen Zytoplasma und Nukleus pendeln können. Die Exportsequenzen bestehen aus vier großen hydrophoben Aminosäuren wie L, I, V, F, M, die in regelmäßigen Abstand
nerhalb von 8-10 Aminosäuren angeordnet sind (Kutay & Güttinger, 2005). Die Bindungsaffinität zum Exportrezeptor CRM1 ist kontextabhängig und eher schwach, um die Dissoziation des Kargo-Exportrezeptor-RanGTP-Komplexes an den zytoplasmatischen Fibrillen zu erleichtern.

Die klassische Kernlokalisationssequenz (cNLS) wird von 5-8 basischen Aminosäuren gebildet, die sowohl zusammenhängend als auch in zwei, von 10-12 Aminosäuren getrennten Teilen vorkommen. Die cNLS des SV40 large T antigen (PKKKRKV) ist der Prototyp der einteiligen und die von Nucleoplasmin (KRPAATKKAGQAKKKK) der zweigeteilten cNLS (Kalderon et al., 1984; Dingwall & Laskey, 1991). Zusätzlich existieren zwei weitere NLS-Arten, die beim Import mRNA-bindender Proteine und reifer Ribonukleinpapartikel des Spleißosoms eine Rolle spielen. Die M9-NLS des mRNA-bindenden Proteins hnRNPA1 besteht aus 38 Aminosäuren mit einer positiven Nettoladung, die als linear ausgestrecktes Peptid an den C-terminalen Bogen von Transportin bindet (Lee et al., 2006). Snurportin1 erkennt als Importadapter im Zytoplasma die m3G-Kappe des gereiften Ribonukleinpapartikel UsnRNP und transloziert dieses gemeinsam mit Importin β in den Nukleus (Cook et al., 2007).

Die große Familie der Karyopherine besteht beim Menschen aus mindestens 20 Mitgliedern, von denen elf (Importin β, Transportin 1, Transportin SR, Imp4, Imp5, Imp7, Imp8, Imp9, Imp11 und Imp13) am Import und acht (CRM1, CAS, Exportin-t, Exp4, Exp5, Exp6, Exp7 und Imp13) am Export beteiligt sind (Ström & Weis, 2001; Weis, 2003). Im Hefegenom wurden 14 Karyopherine identifiziert (Quan et al., 2008). Während die Sequenzen der Karyopherine untereinander nur wenig Ähnlichkeit aufweisen und die Molekulargewichte zwischen 90 und 130 kDa variieren, besitzen alle Karyopherine einen sauren isoelektrischen Punkt.

Importin β zählt zu den am besten charakterisierten Importrezeptoren und transportiert gemeinsam mit den Mitgliedern der Importin α-Familie eine Vielzahl an Proteinen in den Nukleus. Importin β besteht aus 19 HEAT-Wiederholungen. In der achten HEAT-Domäne ersetzt eine Schleife mit einer negativen Nettoladung die scharfe Biegung zwischen den bei-
Einleitung

den antiparallelen α-Helices. Dadurch können die beiden C-förmigen HEAT-Wiederholungen 1-8 und 8-19 eine leicht S-förmige Gestalt im Raum einnehmen (Lee et al., 2005).

Der Importadapter Importin α besteht aus einer flexiblen, N-terminalen Importin β-Bindungsdomäne (IBB) und zehn ARM-Wiederholungen, wobei ARM 2-4 und 7-9 an der cNLS-Bindung beteiligt sind (Abb. 7). Die IBB-Domäne enthält eine cNLS-ähnliche, autoinhibitorische Sequenz (KRRNV), die entweder in cis mit der cNLS-Bindungstasche oder in trans mit Importin β interagiert (Kobe, 1999). Aufgrund der geringen Bindungsaffinität der autoinhibitorischen Sequenz zur cNLS-Bindungsstelle kann die cNLS des Kargomoleküls die IBB-Domäne verdrängen. Insoweit kann die Bildung des trimeren Komplexes im Zytoplasma sowohl durch eine Importin α-Kargo- als auch durch eine Importin α/β-Interaktion initiiert werden (Goldfarb et al., 2004).

Infolge der Bindung von Importin β an die IBB-Domäne faltet sich diese in eine α-Helix und Importin β nimmt eine kompakte, proteolytisch resistent Form ein (Cingolani et al., 2000). Importin β besitzt auf jedem C-förmigen Bogen zwei Bindungsstellen für FG-Wiederholungen, wobei das FxFG-Peptid zwischen den Helices benachbarter HEAT-Wiederholun-
Einleitung

en bindet (Bayliss et al., 2000; Bednenko et al., 2003). Durch dynamische Simulationen wurden sechs weitere FG-Bindungsstellen auf hydrophoben Bereichen der Importin β-Oberfläche entdeckt (Isgro & Schulten, 2005).

Im Nukleus leitet RanGTP gemeinsam mit den Karyopherin releasing Faktoren CAS und Nup50 die Dissoziation des trimeren Importkomplexes ein. Während RanGTP am N-terminalen Bogen von Importin β bindet, öffnet die Schalter-I-Region die kompakte Form durch Abspreizung des C-terminalen Bogens und entfernt über einen allostatischen Mechanismus die IBB-Domäne (Lee et al., 2005). Im einfachsten Fall verdrängt die IBB-Domäne anschließend die cNLS und ermöglicht dadurch die Bindung des Exportrezeptors CAS an Importin α. Alternativ beschleunigt das Ran-bindende Protein Nup50 beide Schritte dieses Prozesses, indem es einerseits durch Bindung des Importkomplexes diesen in die Nähe von RanGTP bringt und auf der anderen Seite nach Bindung von Importin α die cNLS des Kargos aktiv entfernt. Später verdrängt CAS Nup50 von Importin α und bildet gemeinsam mit RanGTP einen Exportkomplex (Matsuura & Stewart, 2005). Nach der Kernporenpassage dissoziert der CAS-Importin α-RanGTP-Komplex ebenso wie der Importin β-RanGTP-Komplex infolge der GTP-Hydrolyse im Zytoplasma und Importin α und β stehen einem neuen Importzyklus zur Verfügung.

1.5.1 Steuerung des Kerntransports

Der Austausch zwischen Nukleus und Zytoplasma kann auf drei verschiedenen Ebenen reguliert werden. Die erste und vielfältigste Steuerungsmöglichkeit stellt die Modifikationen der Kargobindung an die Transportmaschinerie dar. Zweitens wird die Aktivität der Transportmaschinerie dem Bedarf der Zelle angepasst und letztendlich kann der Kernporenkomplex selbst Ziel transportregulierender Maßnahmen sein (Kaffman & O'Shea, 1999; Poon & Jans, 2005; Terry et al., 2007).

Die Assemblierung des Transportkomplexes wird durch Komplexbildung, Phosphorylierung, oder Proteinidegradation des Kargos gesteuert. Als Beispiele für die Regulation auf der Kargoproteinebene werden im Folgenden kurz der heterodimere Transkriptionsfaktor NF-κB, das Zellzyklusprotein Cyclin B und der nukleäre Effektor der kanonischen Wnt-Signalkaskade β-Catenin beschrieben (Kaffman & O'Shea, 1999). Der an NF-κB gebundene Inhibitor IκB maskiert die NLS von NF-κB und besitzt eine eigene Exportsequenz, so dass dieser Komplex zytoplasmatisch lokalisiert ist. Verschiedene Stimuli wie beispielsweise TNF-α bewirken die Phosphorylierung und den anschließenden Abbau des Inhibitors IκB. Somit können Transportrezeptoren an die frei gewordenen NLS binden und NF-κB in den Nukleus importieren.
Im Gegensatz dazu pendelt Cyclin B zwischen den Kompartimenten. Durch Phosphorylierung wird die Affinität von Cyclin B zum Exportrezeptor reduziert, so dass es im Kern akkumuliert. Die Konzentration von freiem β-Catenin wird sowohl durch die Verankerung an Cadherinen als auch durch die zytoplasmatische Instabilität gering gehalten. Die Aktivierung der kanonischen Wnt-Signalkaskade stoppt die Degradation von β-Catenin und ermöglicht so dessen Import.

Die Aktivität der Transportmaschinerie wird sowohl auf genetischer als auch auf Protein-ebene an den Bedarf der Zelle angepasst. Die Transportrezeptoren werden dazu nicht nur während des Zellzyklus’ unterschiedlich exprimiert, sondern zeigen auch ein gewebs- und entwicklungsspezifisches Expressionsmuster (Yasuhara et al., 2004; Poon & Jans, 2005). Die Genexpression der meisten Karyopherine steigt während der Mausentwicklung bis zu ihrem Höhepunkt zwischen Gastrulation und Neurulation (E6.5-E9.5) an, ehe sie ab E105 wieder abfällt (Quan et al., 2008). Die Expression von Ran zeigt in der Embryonalentwicklung von *Xenopus laevis* einen ähnlichen Verlauf und ist nach der Neurulation im Auge, Ohr, cranialen und neuralen Gewebe besonders markant, wobei wie in der Maus möglicherweise noch weitere Ran-Gene exprimiert werden (Onuma et al., 2000). Auch Karyopherin-β3 und die fünf Mitglieder der Importin α-Familie zeigen im Fröschembryo eine gewebs- und entwicklungspezifische Expression (Wischnewski et al., 2000; Wischnewski et al., 2004). Beim Menschen variiert die Expression der sechs Importin α-Proteine zelltypspezifisch (Köhler et al., 2002). In Kardiomyozyten ist im Vergleich zu embryonalen Stammzellen die Expression der Transportrezeptoren mit Ausnahme von Importin β und Transportin 1 trotz höherer Kernporendichte stark reduziert (Perez-Terzic et al., 2007).

Die Transportrate einzelner Kargo-Moleküle wird generell durch die gewebs- und entwicklungsspezifische Expression von Transportfaktoren moduliert (Poon & Jans, 2005; Quan et al., 2008). Zusätzlich unterscheiden sich die Karyopherine in ihrer Substratspezifität. Während manche Kargoproteine wie Nucleoplasmin mit mehreren Importin α-Isoformen interagieren, bindet der siebenblättrige β-Propeller RCC1 auch aufgrund seiner Proteinstruktur spezifisch an Importin α3 (Friedrich et al., 2006). Dadurch wirkt sich die Regulation der Transportmaschinerie auch auf die Ebene der Kargobindung aus.

Darüber hinaus bereiten Wachstumsfaktoren durch intrazelluläre Signaltransduktion auch die Transportmaschinerie auf die eintretende Veränderung der Genexpression vor. Die Phosphorylierung von RanBP3 sowohl durch PI3/AKT als auch durch ERK/RSK erhöht die RanBP3-Affinität zu RanGTP (Yoon et al., 2008). RanBP3 besitzt eine Nup50 ähnliche Domänenstruktur und bindet CRM1, Ran und RCC1 in vitro (Englmeier et al., 2001; Lindsay et
Einleitung

al., 2002; Yoon et al., 2008). Da partiell RanBP3-defiziente Zellen eine erhöhte zytoplasmatische Ran-Konzentration aufweisen, könnte phosphoryliertes RanBP3 Ran in trimeren Komplexen sowohl RCC1 als auch CRM1 zugänglich machen und somit gleichzeitig den RanGTP-Gradienten stabilisieren und die Effizienz des CRM1-abhängigen Exports steigern.

Allerdings wird der NPC auch in der murinen Embryonalentwicklung durch gewebsspezifische Expression von Nup50 und gp210 in seinen Transporteigenschaften modifiziert. Ferner wird die Permeabilität des Kernporenkomplexes während der geschlossenen Mitose bei Saccharomyces cerevisiae oder der halboffenen bei Aspergillus nidulans durch Phosphorylierung bestimmter Nukleoporine modifiziert und die Aktivität der Transportrezeptoren inhibiert (Terry et al., 2007).

1.5.2 Translokation von β-Catenin und der Lef/Tcf-Transkriptionsfaktoren

Das Protoonkogen β-Catenin ist strukturell mit Importin α verwandt. Während Importin α aus einer N-terminalen IBB-Domäne und 10 ARM-Wiederholungen besteht, ist die Struktur von β-Catenin dreigeteilt (Abb. 8). 12 ARM-Wiederholungen werden von helikalen Domänen flankiert, die in unstrukturierten Regionen enden (Xing et al., 2008). Im Gegensatz zu Importin α besitzt β-Catenin keine NLS oder IBB-Domäne. Trotzdem passiert β-Catenin den Kernporenkomplex ohne Hilfe von Transportfaktoren (Huber et al., 1996; Fagotto et al., 1998). Auch Importin α gelangt in vitro Importin β-unabhängig in den Nukleus (Miyamoto et al., 2002).

Kompetitionsexperimente zeigen, dass Importin β im Gegensatz zu Importin α die Translokation von β-Catenin konzentrationsabhängig blockiert (Koike et al., 2004). Folglich nehmen Importin β und β-Catenin eine andere Route durch den Kernporenkomplex als Importin α. Diese Hypothese wird von in vitro Bindungsstudien gestützt. Während Importin β sowohl mit der an FG-Wiederholungen reichen zentralen Region von yNsp1 als auch mit dem nur sechs FG-Sequenzen enthaltenden C-Terminus interagiert (Percipalle et al., 1997; Cushman et al., 2006), bindet β-Catenin nur den C-Terminus (Fagotto et al., 1998). Ferner zeigt β-Catenin im Überlagerungsbild keine Interaktion mit den am Proteinimport beteiligten Nukleoporinen Nup62, Nup214 oder Nup358 (Suh & Gumbiner, 2003). Daher ist Importin β entweder in der
Auswahl seiner Interaktionspartner innerhalb des Kernporenkomplexes weniger selektiv oder die Überlappung mit denen von β-Catenin ist lediglich partiell.

Derzeit gibt es vier verschiedene Modelle für den β-Catenin-Export. Während nach dem ersten Modell β-Catenin transportrezeptorunabhängig zwischen den Kompartimenten pendelt (Koike et al., 2004), beruhen die weiteren Exportwege auf Interaktionen mit anderen Proteinen. Im zweiten Fall bindet der Exportrezeptor CRM1 direkt an eine der β-Catenin-NES und exportiert das Protoonkogen (Ki et al., 2006; Ki et al., 2008). Drittens befördern die CRM1-abhängig exportierten Pendelproteine APC, Axin oder GSK-3β β-Catenin Huckepack aus dem Kern (Henderson & Fagotto, 2002; Cong & Varmus, 2004; Meares & Jope, 2007). Und viertens transportiert der Exportfaktor RanBP3 β-Catenin CRM1-unabhängig ins Zytoplasma (Hendriksen et al., 2005). Indes ist unklar, welchen Anteil die einzelnen Exportmodelle am β-Catenin-Export haben und inwiefern posttranslationale Modifikationen von β-Catenin die
Transportwege beeinflussen. Zusammenfassend wird die Lokalisation des Protoonkogens β-Catenin ähnlich der Tumorsuppressorproteine APC, p53 oder Smad4 reguliert, die zwischen Nukleus und Zytoplasma pendeln und sich im Gleichgewichtsfall überwiegend in einem Kompartiment aufhalten, um dieses nach einem Stimulus rasch zu wechseln (Fabbro & Henderson, 2003). Dabei wird die Verteilung von β-Catenin durch Retention reguliert (Krieghoff et al., 2006).

Im Zellkern bindet β-Catenin an die Mitglieder der Lymphoid enhancer factor (Lef)/T-cell factor (Tcf)-Familie, die zur Superfamilie der High-Mobility-Group (HMG)-Box-Proteinen gehört (Barker et al., 2000). Die vier Mitglieder Lef-1, Tcf-1, Tcf-3 und Tcf-4 erkennen spezifisch 8-12 Basenpaare in der kleinen Furche der DNA-Doppelhelix (van Beest et al., 2000; Brantjes et al., 2002). Allerdings besitzen sie selbst keine intrinsische RNA-Polymerase-rekrutierende Aktivität, sondern benötigen β-Catenin als aktivierende Komponente für die Expression ihrer Zielgene. Umgekehrt enthält β-Catenin keine DNA-Bindungsstelle und ist für die Zielgenaktivierung auf die Lef/Tcf-Transkriptionsfaktoren angewiesen.

Die Lef/Tcf-Familienmitglieder besitzen eine NLS innerhalb ihrer HMG-Box. Obwohl sich die NLS von humanem Lef-1 (KKKKRKREK) und Tcf-1 (KKKRRSREK) nur in zwei Aminosäuren unterschieden, wird Lef-1 im Gegensatz zu Tcf-1 von Importin β zusammen mit Importin α1 oder α5 importiert (Prieve et al., 1998). Für Tcf-1 ist der Transportrezeptor noch unbekannt. Bemerkenswerterweise sind nicht nur XLef-1, XTcf-1, XTcf-3 und XTcf-4 in der Embryonalentwicklung von Xenopus laevis in distinkten Regionen des zukünftigen Gehirns exprimiert, sondern auch einige Transportrezeptoren weisen eine gewebsspezifische Expression auf (Wischnewski et al., 2000; Wischnewski et al., 2004; Arce et al., 2006; Hoppler & Kavanagh, 2007).

Des Weiteren zeigen Studien mit mutiertem Lef-1 ohne NLS, dass β-Catenin hinreichend für die Kernlokalisierung von Lef-1 ist (Asally & Yoneda, 2005). Insoweit existieren für die Lef/Tcf-Transkriptionsfaktoren grundsätzlich zwei unabhängige Importwege, wobei der potentielle Transportrezeptor β-Catenin im Gegensatz zu den Karyopherinen vermutlich nicht zwischen den verschiedenen Familienmitgliedern unterscheidet.
1.5.3 Modelle des Kernporenmechanismus

Die Wirkungsweise des Kernporenkomplexes ist aufgrund seiner nanoskopischen Dimensionen und seiner Vielschichtigkeit immer noch nicht vollständig aufgeklärt. In den letzten zwanzig Jahren wurden mehrere, insbesondere auf biochemischen und elektronenmikroskopischen Studien basierende Modelle postuliert (Abb. 9), die die Selektivität der Barriere für inerte Moleküle und Transportrezeptor-Kargo-Komplexe erklären sollen (Fried & Kutay, 2003; Lim et al., 2008).

Unumstritten ist die Rolle der FG-Wiederholungen als ein wesentliches Element des Porenmechanismus. In jedem Kernporenkomplex befinden sich bis zu 12 unterschiedliche Nuk-

leoporine mit FG-Wiederholungen (Rout et al., 2000). Damit ist die Transportroute mit mindestens 128 FG-Domänen oder ~3,500 einzelnen FG-Wiederholungen bestückt (Strawn et al., 2004). Erstaunlicherweise bleibt die Funktionalität der selektiven Barriere auch nach Depletion der Hälfte dieser FG-Nucleoporine noch bestehen. Dabei sind die asymmetrisch verteilten FG-Nucleoporine wie beispielsweise Nup153 und Nup214 oder das die zytoplastischen Filamente bildende Nucleoporin Nup358 für den Kerntransport entbehrlich (Strawn et al., 2004; Zeitler & Weis, 2004).

Das virtuelle Tormodell, das ursprünglich als Brownsches Affinitätsstormodell bezeichnet wurde, betrachtet die Kernpore als entropicke Barriere. Die Interaktion der Transportrezeptor-Kargo-Komplexe mit FG-Nucleoporinen erhöht deren Aufenthaltsdauer im Bereich des Kernporenkomplexes und dadurch auch deren Translokationswahrscheinlichkeit. Der Porendurchtritt erfolgt durch Brownsche Molekularbewegung. Inerte Moleküle dagegen werden zurückgestoßen. Wenn sie zufällig den Poreneingang finden, ist die Passage vom Moleküldurchmesser abhängig und oberhalb der Porenausschlussgröße nicht möglich (Rout et al., 2000; Rout et al., 2003; Alber et al., 2007).

Nach dem Affinitätsgradientenmodell bewegt sich der Transportrezeptor-Kargo-Komplex von einer FG-Domäne zur nächsten, wobei die Affinität stetig zunimmt. RanGTP oder RanGAP initiieren die Dissoziation von den terminalen FG-Domänen und beenden dadurch den Transportweg (Ben-Efraim & Gerace, 2001).

Im Modell der selektiven Phasen, das neuerdings als hydrophobes Gel-Modell bezeichnet wird, bilden die FG-Domänen aufgrund hydrophober Wechselwirkungen ein Gel. Dabei definieren sowohl die Maschenweite des Netzwerks als auch die hydrophobe Natur des Gels die Porenausschlussgröße für die freie Diffusion. Die Transportrezeptor-Kargo-Komplexe schmelzen aufgrund ihrer Interaktionen mit den FG-Domänen lokal das Gel auf und passieren derart die selektive Barriere (Ribbeck & Görlich, 2002). Die FG-Domänen von yNsp1 polymerisieren in vitro zu einem Hydrogel, das allerdings erst bei einer Konzentration von 2.2 mM fsFG-Domänen die Eigenschaft einer selektiven Barriere aufweist. Unterhalb dieser Konzentration sind nicht alle hydrophoben FG-Wiederholungen miteinander verbunden und
das Gel liegt in einer ungesättigten Konformation vor, die auch größeren Molekülen die Passage erlaubt (Frey et al., 2006; Frey & Görlich, 2007).

Die durch einen unphysiologischen pH-Wertsprung induzierte yNsp1-Polymerisation lässt sich allerdings im Niederaffinitätsbindungs assay nicht bestätigen. Dabei wurde die Wechselwirkung zwischen an Glutathion-Sepharose immobilisierten und fluoreszent markierten Hefe-Nukleoporinen analysiert, wobei nur GLFG-Domänen schwache kohäsive Bindungen eingingen, die FxFG-Domänen wie beispielsweise yNsp1 aber nicht (Patel et al., 2007). Infolgedessen schlugen die Autoren ein Doppeltor-Modell vor, das eine Synthese aus dem virtuellen Tormodell und dem selektiven Phasenmodell darstellt. Während die GLFG-Domänen des zentralen Rings ein hydrophobes Netzwerk bilden, agieren die peripheren FG-Nukleoporine sowohl attraktiv für Transportkomplexe als auch repulsiv auf inerte Moleküle.

Nach dem Modell des reversiblen nanomechanischen Kollapses stehen die FxFG-Domänen aufgrund der hohen Packungsdichte und ihrer Entropie von der Oberfläche ab. Während inerte Moleküle durch die Polymerbürste zurückgestoßen werden, verursacht die Bindung eines Transportrezeptor-Kargo-Komplexes lokal einen reversiblen Kollaps (Lim et al., 2006; Lim et al., 2007).
1.6 Methoden zur Untersuchung des Kerntransports

Die Fluoreszenzmikroskopie bietet sich aufgrund ihrer hohen zeitlichen Auflösung für die Untersuchung physiologischer Prozesse wie den Kerntransport an. Doch die Verwendung fokussierten Lichts unterliegt der Beugungsgrenze, nach der sich nur die Objekte von einander unterscheiden lassen, deren Hauptmaxima mindestens um $\Delta d = \lambda / (2n \sin \alpha)$ voneinander getrennt sind (Abbe, 1873; Lord Rayleigh, 1879; Lord Rayleigh, 1896). Da die Wellenlänge des Lichts λ auf 400-700 nm und der halbe Öffnungswinkel des Lichtkegels α auf <70° begrenzt sind, liegt die in der klassischen Lichtmikroskopie erreichbare laterale Auflösung oberhalb 200 nm.

1.6.1 Ultrahochauflösende Fernfeldmikroskopie

Zur Überwindung der Beugungsbegrenzung wurden sowohl weitfeld- als auch nahfeldoptische Verfahren mit unterschiedlichen physikalischen oder mathematischen Ansätzen entwickelt, die sich verschiedenartig auf die laterale oder axiale Auflösung auswirken (Abb. 10) (de Lange et al., 2001; Hell, 2007; Rice, 2007).

Dennoch wird bei diesen beiden fernfeldoptischen Verfahren die Beugungsgrenze von \(\Delta r \approx \frac{\lambda}{2n} > 200 \text{ nm} \) und \(\Delta z \approx \lambda > 450 \text{ nm} \) an sich lediglich verschoben, aber nicht wirklich überwunden (Hell, 2007). Durch den Einsatz stehender Wellenfelder indes lässt sich die axiale Auflösung im Vergleich zur Epifluoreszenzmikroskopie um das Drei- bis Siebenfache steigern (Hell, 2007). Dazu wird die Probe in dem stehenden Wellenfeld, das durch die Interferenz zweier aufeinander zulaufender kohärenter Laserstrahlen erzeugt wird, schrittweise entlang der Achse der beiden sich gegenüberliegenden Objektive bewegt. Diese Technik wird in der I5M-, SMI- und 4Pi-Mikroskopie eingesetzt.

Im 3D-Weitfeldfluoreszenzmikroskop I5M konnten fixierte Mikrotubuli mit unter 100 nm Auflösung dargestellt werden (Gustafsson et al., 1999). In der Gruppe von Prof. Dr. Dr. Cremer wurden mit einem ähnlichen, als Spatially Modulated Illumination (SMI) bezeichneten Verfahren, 40 nm große Nanopartikel axial exakt abgebildet (Failla et al., 2002), während die laterale Auflösung weiterhin beugungsbegrenzt blieb.

Die 4Pi-Mikroskopie verbindet die stehenden Wellenfelder mit der konfokalen Mikroskopie, so dass die Probe nicht nur axial in Ebenen unterteilt sondern auch jede Ebene selbst punktweise abgebildet wird (Abb. 11). Aufgrund konstruktiver Interferenzen entstehen ober- und unterhalb der Brennebene Seitenmaxima, die sich zunächst mittels Zwei-Photonenanregung reduzieren und schlussendlich mathematisch entfernen lassen (Hell, 2007). Die Kombination von kohärenter Anregung mit kohärenter Detektion ermöglicht axiale Auflösungen zwischen 80 und 150 nm (Gugel et al., 2004).

Die wichtigste Einschränkung der Fluoreszenzmikroskopie mit stehenden Wellen ist die

\[\frac{\lambda}{2n \sin \alpha} \]

Abb. 11: Prinzip der konfokalen, der 4Pi- und der STED-Mikroskopie. Das eingestrahlte Licht (blau) wird im konfokalen Mikroskop (a) durch die Linse beugungsbegrenzt fokussiert, wobei die in diesem Voxel angeregte Fluoreszenz (grün) detektiert wird. Durch die Kombination der Wellenfelder aus zwei gegenüberliegenden Objektiven (b) wird die \(\alpha \)-Auflösung bei der 4Pi-Mikroskopie deutlich verbessert. In der STED-Mikroskopie (c) dagegen wird der Anregungsstrahl (blau) durch einen Donut-förmigen STED-Strahl (orange) überlagert, welcher die vom Anregungsstrahl erzeugte Fluoreszenz abführt, so dass sich die effektiv detektierbare Fluoreszenz (grün) auf einen Durchmesser von beispielsweise 20 nm reduziert. Aus Hell (2007).
Probenstärke, die sich bei den Weitfeldansätzen in der Größenordnung der verwendeten Wellenlänge bewegt und bei der 4Pi-Mikroskopie nur etwa 200 nm betragen sollte (Rice, 2007). Des Weiteren sind diese Techniken aufgrund der aufwendigen Justage zeitraubend.

Nachteilig ist insbesondere die für konfokale Darstellungen typische lange Aufnahmedauer (Rice, 2007), welche sich analog der konfokalen Mikroskopie durch multiple Anregung und Detektion mittels CCD-Kamera deutlich reduziert lässt.

Die mathematischen ultrahochauflösenden Konzepte beruhen auf der Punktspreizfunktion (PSF) einzelner Fluorophore in beugungsbegrenzten Aufnahmen. Dabei wird die Lokalisation der Fluorophore anhand ihrer PSF mit extrem hoher Genauigkeit von beispielsweise 1.5 nm bestimmt (Rice, 2007). Derart wurden mit einem Weitfeldfluoreszenzmi kroskop in einer viskosen Lösung diffundierende GFP-Moleküle bzw. einzelne Rhodamin-Fluorophore in einer Lipiddoppelschicht mit 30 nm und membranständiges GFP-markiertes Pom121 mit 10 nm Genauigkeit lokalisiert (Schmidt et al., 1996; Kubitscheck et al., 2000; Kubitscheck et al., 2005).
Allerdings kann bei dieser Methode der feststehende Emissionsdipol des Fluorophors je nach seiner räumlichen Orientierung bezüglich der Polarität des eingestrahlten Laserlichts einen signifikanten Fehler von bis zu 10 nm in der Lokalisation bewirken (Rice, 2007).

1.6.2 Nahfeldoptische Mikroskopie

Die Nahfeldoptik betrachtet die nanometrischen Informationen in den nicht-propagierenden (evaneszenten) Anteilen des elektromagnetischen Feldes, die der klassischen Lichtmikroskopie nicht unmittelbar zugänglich sind. Allgemein besitzt ein an einem submikroskopischen Objekt gestreutes elektromagnetisches Feld sowohl propagierende als auch evaneszenten Anteile, wobei letztere mit einem unter \(\lambda/2 \) abnehmenden Objektdurchmesser an Bedeutung gewinnen (Vigoureux & Courjon, 1992). Propagierendes Licht der Wellenlänge \(\lambda \) ist durch die Ausbreitungsbeziehung \(c=\lambda*\nu \) streng an die Frequenz \(\nu \) gekoppelt, wohingegen der nicht-propagierende Charakter der evaneszenten Moden auf deren Unabhängigkeit von dieser Beziehung beruht (Naber, 2003). Die Amplitude der evaneszenten Wellen fällt vielmehr exponentiell mit dem Abstand \(\nu \) ab, so dass diese im Fernfeld (\(\nu \)) nicht mehr detektierbar sind, sofern sie nicht zuvor in propagierende Moden umgewandelt wurden (Vigoureux et al., 1992). Diese Wandlung kann beispielsweise durch Beugung der nicht-propagierenden Welle an einer nanoskalischen Apertur in einem lichtundurchlässigen Metallfilm oder einem submikroskopischen Partikel wie einem Fluorophor geschehen.

In der TIR (Total Internal Reflection)-Fluoreszenzmikroskopie wird durch Totalreflektion eines kohärenten Laserstrahls an der Grenzfläche zwischen einem hoch- und einem niedrigbrechenden Medium in letzterem ein evaneszentes Feld von 50 bis 150 nm Höhe erzeugt (Toomre & Manstein, 2001). Dadurch können plasmamembrannähe Prozesse in einer lebenden Zelle weitgehend streulichtfrei in Echtzeit beobachtet und in Kombination mit Fluoreszenz-Korrelation-Spektroskopie auch deren Dynamiken analysiert werden (Jaiswal & Simon, 2007). Dabei bleibt die axiale Detektion auf das evaneszente Feld beschränkt und die Auflösung lateral weiterhin beugungsbegrenzt.

Darüber hinaus ermöglicht der Einsatz einer U-förmigen Hyperlinse aus nanostrukturiertem Metamaterial die Umwandlung der evaneszenten Wellen von dem auf dem Boden des Linsenhalbrunds gelegenen submikroskopischen Objekt in eine propagierende Welle (Liu et
Einleitung

al., 2007c). Dabei vergrößert die plankonkave Gestalt der Superlinse das nanoskopische Objekt in eine mit einem optischen Lichtmikroskop darstellbare Dimension und erlaubt eine laterale Auflösung von 130 nm.

Die Superlinse dagegen verstärkt die evaneszenten Wellen durch Kopplung an die Oberflächenplasmenstrahlung. Sie besteht aus einer einlagigen Materialschicht mit einem negativen Brechungsindex und ermöglicht Auflösungen im Bereich von 70 nm (Smolyaninov et al., 2007). Ein alternatives Konzept beschreibt eine abgeflachte Fernfeldsuperlinse mit periodischen Furchen zur Umwandlung der stehenden Wellen durch einen stärkeren Plasmonresonanzeffekt und 50 nm Auflösung (Liu et al., 2007b).

In einer bemerkenswerten Kombination aus optischer Rasternahfeld- und Zwei-Photonen-Lasermikroskopie verwendeten Nakayama et al. (2007) einen gepulsten Infrarotlaser, der sowohl als optische Pinzette die etwa fünf Mikrometer langen Nanoröhren aus Kaliumniobat (KNbO₃) positionierte als auch via Frequenzverdopplung die unter 200 nm starken Nanoröhren als eine evaneszent Lichtquelle mit einer Wellenlänge von 532 nm erstrahlen ließ. Auch wenn die Autoren keine Auflösungsgrenze angeben, so scheint dieser Methode das Potential zur Überwindung der Beugungsgrenze inhärent zu sein.

Allerdings wurde dieses neue ultrahochauflösende Abbildungsverfahren ebenso wie die Hyper- und Superlinsen bisher nur an artifiziellen Strukturen getestet; die Erprobung an biologischen Proben steht noch aus.

1.6.3 Optische Rasternahfeldmikroskopie

Die physikalischen und mathematischen Grundlagen der optischen Rasternahfeldmikroskopie (SNOM) sowie der apparative Aufbau und dessen Veränderungen wurden in zahlreichen Arbeiten der Arbeitsgruppe von PD Dr. A. Naber detailliert beschrieben (Höppener, 2003; Naber, 2003; Johnas, 2004; Dießel, 2006; Pérez, 2008).

zunehmender Apertur-Objekt-Entfernung schon bereits nach einigen Nanometern verschlechert (Betzig et al., 1991; Betzig & Trautman, 1992; Betzig & Chichester, 1993).

In der optischen Rasternahfeldmikroskopie finden Sonden sowohl mit als auch ohne Apertur Anwendung (Abb. 12). Die aus einer Spitze oder einem Partikel bestehenden, aperturlosen Sonden wandeln entweder die evaneszenten Wellen des laserilluminierten, submikroskopischen Objekts in propagierende um oder wirken aufgrund unmittelbarer Bestrahlung selbst als nanoskopische Lichtquellen (Novotny & Stranick, 2006). Die Apertursonden wiederum bestehen häufig aus einer Glasfaser, deren Ende sich aufgrund eines Ätzprozesses oder thermischen Zugs verjüngt und die mit einer lichtundurchlässigen Metallschicht bedampft wurde. Da sowohl Konuswinkel als auch Aperturdurchmesser die Transmissionseigenschaf-

Abb. 13: Die Transmission wird mit abnehmendem Aperturdurchmesser geringer. (a) Die sich verjüngende, metallbeschichtete Glasfaser bewirkt die Aufspaltung der Moden, bis nur noch die Grundschwingung (HE\text{11}-Mode) propagiert. Unter einem Durchmesser von 160 nm erfährt selbst die Grundmode (λ=488 nm) eine exponentielle Dämpfung. (b) Dieser Effekt kann durch Vergrößerung des vollen Konuswinkels α kompensiert werden. Aus Hecht et al. (2000).
ten der Sonde beeinflussen (Abb. 13), werden meist Aperturen von 50-100 nm Durchmesser verwendet (Hecht et al., 2000). Die Intensität an der Apertur lässt sich nur begrenzt durch die Erhöhung der eingestrahlten Laserleistung steigern, da dadurch nicht nur die Apertursonde aufgeheizt, sondern auch oberhalb eines bestimmten Werts der Metallmantel über eine vom Konuswinkel abhängige Länge beschädigt wird (Dickenson et al., 2007). Der volle Konuswinkel thermisch gezogener Sonden ist mit typischerweise <20° kleiner als der chemisch geätzter oder mechanisch geschliffener Sonden (Höppener, 2003). Prinzipiell lassen sich Sonden mit bis zu 180° Öffnungswinkel herstellen, wodurch sich allerdings aufgrund des beträchtlichen Sondendurchmessers auf Aperturhöhe sowohl die optische als auch die topographische Auflösung verschlechtern würde.

Durch die Entwicklung dreiseitiger (TA) Apertursonden mit einem Gesamtöffnungswinkel von 90° konnte der Transmissionskoeffizient im Vergleich zu zirkulären Sonden ähnlicher Auflösung um drei Zehnerpotenzen gesteigert werden (Naber et al., 2002). Die Apertur dieser aus einem Deckglas hergestellten Sonden wird durch vorsichtiges Drücken auf eine glatte Oberfläche erzeugt (Abb. 14). In Einzelmolekülmessungen wurde mit solchen Sonden eine laterale Auflösung von 30 nm erzielt und die exakte Orientierung der fluoreszierenden Nanopartikel gemessen (Molenda et al., 2005). Die TA-Sonden werden ebenso wie die Fasersonden am Zinken einer als Kraftsensor dienenden piezoelektrischen Quarzstimmgabel befestigt und zu vertikalen Schwingungen unter 1 nm Amplitude angeregt (Tapping-Mode). Bei der

Annäherung an die Probenoberfläche verändern sich sowohl die Resonanzfrequenz als auch die Amplitude, wobei die an einem Zinken angebrachte Sonde nicht nur diesen Effekt auf die Resonanzfrequenz schmälert, sondern auch die Güte der Stimmgabel beeinträchtigt (Naber, 1999).

Die Schwierigkeit der Kraftabstands kontrolle in Flüssigkeit hat den Durchbruch der optischen Rasternahfeldmikroskopie verglichen mit der TIRFM in der biologischen Forschung behindert. Mittels Tapping-Mode-kontrollierter Fasersonden wurde die fluoreszent markierte Kernmembran von *Xenopus laevis* Oozyten mit 60 nm Auflösung abgebildet (Höppener et al., 2005). In einem anderen Ansatz, bei dem eine Tauchglocke die auf Scherkraftmikroskopie basierende Kraftabstands kontrolle vor der Flüssigkeit schützte, konnte die submikroskopische Organisation von Typ C-Lektinen auf unreifen dendritischen Zellen mit einer Auflösung von 90 nm dargestellt werden (Koopman et al., 2004). Mittels Bleichen einzelner Moleküle und der subtraktiven Überlagerung der Bilder serie einer mikroskopischen Gruppierung konnte kürzlich die Lokalisationsgenauigkeit einzelner Typ C-Lektine auf 6 nm gesteigert werden (de Bakker et al., 2007). Mit einem kommerziellen, ebenfalls die Scherkraftmikroskopie einsetzenden SNOM, wurde jüngst die Verteilung der mit halbleitenden Nanokristallen markierten, unstimulierten und stimulierten T-Zellrezeptoren mit 50 nm optischer Auflösung abgebildet (Chen et al., 2008).
Aufgrund des Nischendaseins der optischen Nahfeldmikroskopie in der biologischen Forschung und der damit verbundenen Reduktion auf ihr ultrahochauflösendes Potential ist die Vernetzung mit anderen Techniken zur Aufklärung dynamischer Prozesse oder von Protein-Protein-Interaktionen wie beispielsweise der Förster-Resonanzenenergie-Transfer (FRET) oder der Fluoreszenz-Korrelationsspektroskopie (FCS) sehr selten.

1.6.4 Fluoreszenz-Korrelationsspektroskopie

Intensitätsfluktuationen entstehen im einfachsten Fall durch fluoreszierende Moleküle, die frei in das Anregungsvolumen hinein- und herausdiffundieren. Um quantitative Aussagen aus dem stochastischen, mit einer hochsensitiven Photodiode gemessenen Intensitätssignal zu erhalten, wird die Autokorrelationsfunktion $G(\tau)$ des fluktierenden Signals $F(t)$ bestimmt. Für frei bewegliche Moleküle beschreibt die charakteristische Abklingzeit von $G(\tau)$ die mittlere Aufenthaltsdauer eines Moleküls im Detektionsvolumen, aus welcher sich der Diffusionskoeffizient berechnen lässt. Dieser ist nach der Stokes-Einstein-Beziehung proportional zur Temperatur und reziprok zur Viskosität der Lösung bzw. dem hydrodynamischen Teilchenradius (Schwille & Haustein, 2002).

Zusätzlich zum Diffusionskoeffizienten kann mittels FCS auch die Konzentration bestimmt werden. Im Gegensatz zur konfokalen Mikroskopie, bei der höhere Fluorophorkonzentrationen zu einem besseren Signal-Rausch-Verhältnis beitragen, sollten sich bei FCS-Experimenten im Mittel lediglich bis zu zehn Fluorophore im Detektionsvolumen befinden, da sich ansonsten die Intensitätsfluktuationen überlagern.

Befinden sich zwei unterschiedliche Molekülarten in der Lösung, so ist ihre Unterscheidbarkeit von der gezählten Photonenzahl, dem Größenunterschied und ihrer Konzentration abhängig. Bei einem starkem Fluoreszenzsignal und vergleichbarer Quantenausbeute können die beiden Spezies nur dann getrennt voneinander wahrgenommen werden, wenn sich ihre Diffusionszeiten mindestens um den Faktor 1.6 unterscheiden (Meseth et al., 1999).
Einleitung

Abb. 15: Mittels Fluoreszenz-Korrelationsspektroskopie kann sowohl die Diffusionszeit als auch die Konzentration ermittelt werden. Fluoreszierende Moleküle, die sich durch das optisch definierte Detektionsvolumen bewegen (a), erzeugen eine geringe Fluktuation im detektierten Signal F(t) (b). Durch Fluoreszenz-Korrelationsspektroskopie wird die Selbstähnlichkeit des Signals nach einer Zeitdifferenz \(\tau \) bestimmt. (c) Zur Veranschaulichung wurden Kopien der beobachteten Fluktuation F(t+\(\tau \)) relativ zum Originalsignal F(t) um die Zeitdifferenz \(\tau \) verschoben. Entsprechend der Autokorrelationsfunktion G(\(\tau \)) (d) werden F(t) und F(t+\(\tau \)) miteinander multipliziert. Die relativ überlappende Fläche ergibt den Autokorrelationswert für diese Zeitdifferenz \(\tau \) (e). Die Zeit, bei der die Amplitude auf die Hälfte des Ausgangswerts abgefallen ist, gibt die mittlere Aufenthaltsdauer des fluoreszierenden Moleküls im Detektionsvolumen an und daraus lässt sich die Diffusionszeit berechnen. Bei steigender Konzentration (f) sinkt die Amplitude G(0) proportional zur Teilchenzahl. Die Vergrößerung des Partikeldurchmessers (g) hingegen bewirkt durch eine längere Aufenthaltsdauer im Detektionsvolumen ein Anstieg der Diffusionszeit. Aus Haustein & Schwille (2004).

2 Zielsetzung

Obwohl die Struktur des Kernporenkomplexes innerhalb der letzten Jahre eingehend untersucht wurde und zahlreiche molekulare Details beschrieben sind, werden die dynamischen Prozesse, die dem Kerntransport zugrunde liegen, kontrovers diskutiert.

3 Material und Methoden

3.1 Material

3.1.1 Antikörper

Die folgende tabellarische Zusammenstellung enthält die im Rahmen dieser Arbeit für immunochemische Färbungen (IF) und Immun-Blot-Analysen (WB) eingesetzte Antikörper.

Tab. 1: Zusammenstellung der verwendeten primären und sekundären Antikörper

<table>
<thead>
<tr>
<th>Primäre Antikörper</th>
<th>Antigen</th>
<th>Spezies</th>
<th>Verdünnung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>αβ-Aktin</td>
<td>Klone AC-15 (DDDIAALVIDNGSK)</td>
<td>Maus (monoklonal)</td>
<td>1:2 000 IF</td>
<td>Sigma GmbH (Taufkirchen)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1:10 000 WB</td>
<td></td>
</tr>
<tr>
<td>αArp3</td>
<td>(CYEEIGPSIVRNPVFGVMS)</td>
<td>Kaninchen (polyklonal)</td>
<td>unverdünnt</td>
<td>Welch et al., 1997</td>
</tr>
<tr>
<td>αBSA</td>
<td>Rinderserumalbumin</td>
<td>Kaninchen (polyklonal)</td>
<td>1:100 IF</td>
<td>Biomol GmbH (Hamburg)</td>
</tr>
<tr>
<td>αHist5</td>
<td>fünf aufeinanderfolgende Histidine</td>
<td>Maus (monoklonal)</td>
<td>1:200 WB</td>
<td>Qiagen GmbH (Hilden)</td>
</tr>
<tr>
<td>αLamin</td>
<td>Klon X223 Xenopus Lamin LII / LIII</td>
<td>Maus (monoklonal)</td>
<td>unverdünnt 1:20 WB</td>
<td>Höger et al., 1990</td>
</tr>
<tr>
<td>αLef-1</td>
<td>Klon 5F12-111, Lef-1 (Domäne A und B)</td>
<td>Ratte (monoklonal)</td>
<td>1:10 WB</td>
<td>K. Mansperger (München)</td>
</tr>
<tr>
<td>mAb414</td>
<td>Zellkerne aus der Rattenleber</td>
<td>Maus (monoklonal)</td>
<td>1:1 000 IF</td>
<td>Covance (Berkeley, USA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1:5 000 WB</td>
<td></td>
</tr>
<tr>
<td>αNup153-C2</td>
<td>hNup153 (aa1375-1602) (C-Terminus)</td>
<td>Maus (monoklonal)</td>
<td>1:500 IF</td>
<td>Fahrenkrog et al., 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1:500 WB</td>
<td></td>
</tr>
<tr>
<td>αNup153-Z</td>
<td>hNup153 (aa655-926) (Zinkfinger-Domäne)</td>
<td>Kaninchen (polyklonal)</td>
<td>1:1 000 IF</td>
<td>Fahrenkrog et al., 2002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sekundäre Antikörper</th>
<th>Antigen</th>
<th>Spezies</th>
<th>Verdünnung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Kaninchen (GAR)</td>
<td>IgG (H+L)</td>
<td>Ziege</td>
<td>1:100</td>
<td>Invitrogen GmbH (Karlsruhe)</td>
</tr>
<tr>
<td>Alexa Fluor® 532 Konjugat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Kaninchen (GAR)</td>
<td>IgG (H+L)</td>
<td>Ziege</td>
<td>1:100</td>
<td>Invitrogen GmbH (Karlsruhe)</td>
</tr>
<tr>
<td>Alexa Fluor® 633 Konjugat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Kaninchen Meerrettich-peroxidase Konjugat</td>
<td>IgG + IgM (H+L)</td>
<td>Ziege</td>
<td>1:20 000</td>
<td>Dianova (Hamburg)</td>
</tr>
<tr>
<td>α-Maus (GAM)</td>
<td>IgG (H+L)</td>
<td>Ziege</td>
<td>1:100</td>
<td>Invitrogen GmbH (Karlsruhe)</td>
</tr>
<tr>
<td>Alexa Fluor® 532 Konjugat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Maus (GAM)</td>
<td>IgG (H+L)</td>
<td>Ziege</td>
<td>1:100</td>
<td>Invitrogen GmbH (Karlsruhe)</td>
</tr>
<tr>
<td>Alexa Fluor® 633 Konjugat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Maus Meerrettich-peroxidase Konjugat</td>
<td>IgG + IgM (H+L)</td>
<td>Ziege</td>
<td>1:20 000</td>
<td>Dianova (Hamburg)</td>
</tr>
</tbody>
</table>
Chemikalien und Verbrauchsmaterialien

Alle nicht explizit aufgeführten Reagenzien wurden über die folgenden Firmen bezogen:

AppliChem GmbH (Darmstadt), Fluka Chemie GmbH (Taufkirchen), Merck KGaA (Darmstadt), Carl Roth GmbH & Co (Karlsruhe) oder Sigma Aldrich Chemie GmbH (Taufkirchen).

Agarose für DNA Elektrophorese
Serva Electrophoresis GmbH (Heidelberg)

Alexa Fluor® 633 C5 maleimide
Invitrogen GmbH (Karlsruhe)

Ammoniumpersulfat
Bio-Rad Laboratories GmbH (München)

Complete EDTA-frei Protease Inhibitor Cocktail Tabletten
Roche Diagnostics GmbH (Mannheim)

Desoxyribonukleotide
Promega GmbH (Mannheim)

Dextran, Texas Red® (70 kDa)
Invitrogen GmbH (Karlsruhe)

DiI C18(3)
Invitrogen GmbH (Karlsruhe)

Dulbecco’s Modified Eagle’s Medium
Cambrex Bio Science (Verviers, Belgien)

Fötales Kälberserum (FKS)
Invitrogen GmbH (Karlsruhe)

Hellmanex® II
Hellma GmbH (Mülheim)

Kammerdeckglas, Lab-Tek®
Nunc GmbH & Co.KG (Wiesbaden)

Latex Microparticles (Polystyrol)
Serva Electrophoresis GmbH (Heidelberg)

Leibovitz’s L-15 Medium
Cambrex Bio Science (Verviers, Belgien)

2-log DNA Marker
New England Biolabs GmbH (Frankfurt/Main)

Magermilchpulver
Heirler Cenovis GmbH (Radolfzell)

NBT/BCIP
Roche Diagnostics GmbH (Mannheim)

Penicillin-Streptomycin
Cambrex Bio Science (Verviers, Belgien)

Phalloidin, Oregon Green® 488
Invitrogen GmbH (Karlsruhe)

Precision Plus Protein™ Standards
Bio-Rad Laboratories GmbH (München)

Protein Assay Farbstoff-Konzentrat
Bio-Rad Laboratories GmbH (München)

Natriumdodecylsulfat (SDS)
Serva Electrophoresis GmbH (Heidelberg)

SDS-PAGE Standard (broad range)
Bio-Rad Laboratories GmbH (München)

Su-8 5 Negativ-Fotolack
Micro Resist Technology GmbH, (Berlin)

Su-8 Entwickler
Micro Resist Technology GmbH, (Berlin)

Surgeryl USP 4/0 EP 1.5
Heiland Vet GmbH (Hamburg)

Sylgard® 184 Base Silicone Elastomer
Dow Corning Corp., (Michigan, USA)

Sylgard® 184 Curing Agent
Dow Corning Corp., (Michigan, USA)

TCEP
Merckbiosciences GmbH (Schwalbach)

Trypsin EDTA
Cambrex Bio Science (Verviers, Belgien)
3.1.3 Enzyme

- Creatin-Phosphokinase: Sigma Aldrich Chemie GmbH (Taufkirchen)
- GoTaq® DNA-Polymerase: Promega GmbH (Mannheim)
- Pfu turbo® DNA-Polymerase: Stratagene Europe (Amsterdam, NL)
- Restriktionsendonukleasen: Promega GmbH (Mannheim)
- Thrombin: Sigma Aldrich Chemie GmbH (Taufkirchen)

3.1.4 Mikroorganismen und Zelllinien

Zur Permeabilisierung wurden murine Fibroblastenzellen (L-929, DSMZ Braunschweig) und zur Klonierung bzw. für die Expression rekombinanter Proteine die folgenden E. coli Stämme verwendet.

Tab. 2: Übersicht der verwendeten Mikroorganismen

<table>
<thead>
<tr>
<th>Name</th>
<th>Genotyp</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli BL21 (DE3)</td>
<td>F(^{-}), ompT, hsdS(_{B}(r_B^-, m_B^-)), dcm, gal, (DE3)</td>
<td>Invitrogen GmbH (Karlsruhe)</td>
</tr>
<tr>
<td>E. coli BL21 (DE3) RIL</td>
<td>F(^{-}), ompT, hsdS(_{B}(r_B^-, m_B^-)), dcm(^{+}), Tet(^{-}), gal, (z)(DE3), endA, Hte, [argU ileYleuW Camr]</td>
<td>Stratagene (Amsterdam, NL)</td>
</tr>
<tr>
<td>E. coli BL21 (DE3) RIPL</td>
<td>F(^{-}), ompT, hsdS(_{B}(r_B^-, m_B^-)), dcm(^{+}), Tet(^{-}), gal, (z)(DE3), endA, Hte, [argU proLCamr] [argU ileY leuW Strep/Specr]</td>
<td>Stratagene (Amsterdam, NL)</td>
</tr>
<tr>
<td>E. coli JM109</td>
<td>endA(^{+}), recA(^{+}), gyrA(^{96}), thi, hsdR17 ((r_k^- m_k^+)), relA(^{1}), supE(^{44}), (\Delta)(lac-proAB), [F(^{-}) traD36 proAB lac(^{\Delta})Z (\Delta)M15]</td>
<td>Promega GmbH (Mannheim)</td>
</tr>
<tr>
<td>E. coli M15</td>
<td>Nal(^{R}), Str(^{R}), Rif(^{R}), Thi(^{-}), Lac(^{-}), Ara(^{-}), Gal(^{-}), Mtl(^{-}), F(^{-}), RecA(^{+}), Uvr(^{+}), Lon(^{+})</td>
<td>Qiagen GmbH (Hilden)</td>
</tr>
<tr>
<td>E. coli Origami™ B (DE3)</td>
<td>F(^{-}) ompT hsdS(_{B}(r_B^-, m_B^-)) gal dcm lacY1 ahpC (DE3) gor522:: Tn10 trxB (Kan(^{R}), Tet(^{R}))</td>
<td>Novagen® Merck KGaA (Darmstadt)</td>
</tr>
<tr>
<td>E. coli Rosetta™ (DE3)</td>
<td>F(^{-}) ompT hsdS(_{B}(r_B^-, m_B^-)) gal dcm (DE3) pRARE (Cam(^{R}))</td>
<td>Novagen® Merck KGaA (Darmstadt)</td>
</tr>
<tr>
<td>E. coli Rosetta™ gami™ (DE3)</td>
<td>(\Delta)(ara-leu)7697 (\Delta)lacX74 (\Delta)phoA PvuII phoR ara- DJ39 ahpC galE galK rpsL (DE3) F(^{+})[lac(^{+}) lac(^{R}) pro] gor522::Tn10 trxB pRARE (Cam(^{R}), Kan(^{R}), Str(^{R}), Tet(^{R}))</td>
<td>Novagen® Merck KGaA (Darmstadt)</td>
</tr>
<tr>
<td>E. coli Rosetta™ gami™ B (DE3)</td>
<td>F(^{-}) ompT hsdS(_{B}(r_B^-, m_B^-)) gal dcm lacY1 ahpC (DE3) gor522::Tn10 trxB pRARE (Cam(^{R}), Kan(^{R}), Tet(^{R}))</td>
<td>Novagen® Merck KGaA (Darmstadt)</td>
</tr>
<tr>
<td>E. coli SG13009</td>
<td>Nal(^{R}), Str(^{R}), Rif(^{R}), Thi(^{-}), Lac(^{-}), Ara(^{-}), Gal(^{-}), Mtl(^{-}), F(^{-}), RecA(^{+}), Uvr(^{+}), Lon(^{+})</td>
<td>Qiagen GmbH (Hilden)</td>
</tr>
<tr>
<td>E. coli Tg1</td>
<td>supE, thi, (\Delta)(lac-proAB) (\Delta)(mcrB-hsdSM)5(r_k^- m_k^-) [F(^{-}) traD36 proAB lac(^{\Delta})Z(\Delta)M15]</td>
<td>Stratagene (Amsterdam, NL)</td>
</tr>
</tbody>
</table>
3 Material und Methoden

3.1.5 Plasmide

In der vorliegenden Arbeit wurden die folgenden Plasmide zur Klonierung und zur Expression rekombinanter Proteine verwendet.

Tab. 3: Konstrukte zur Expression und Klonierung rekombinanter Fusionsproteine

<table>
<thead>
<tr>
<th>Name</th>
<th>Spezies</th>
<th>Vektor</th>
<th>Tag</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNG</td>
<td>SV-40</td>
<td>pGEX-5</td>
<td>GST</td>
<td>Marg et al., 2004</td>
</tr>
<tr>
<td>GST-β-Catenin</td>
<td>Murin</td>
<td>pGEX-4T1</td>
<td>GST</td>
<td>A. Menke (Ulm)</td>
</tr>
<tr>
<td>GST-Ntf-2</td>
<td>Human</td>
<td>pGEX-2T</td>
<td>GST</td>
<td>J-P. Siebrasse (Bonn)</td>
</tr>
<tr>
<td>GST-Ran</td>
<td>Human</td>
<td>pGEX-2T</td>
<td>GST</td>
<td>Plafker & Macara, 2000</td>
</tr>
<tr>
<td>Importin α2</td>
<td>Maus</td>
<td>pET-21a</td>
<td>6x His</td>
<td>Radtke et al., 2001</td>
</tr>
<tr>
<td>Importin α3</td>
<td>Human</td>
<td>pQE-60</td>
<td>6x His</td>
<td>Welch et al., 1999</td>
</tr>
<tr>
<td>Importin β1</td>
<td>Human</td>
<td>pQE-60</td>
<td>5x His</td>
<td>Kutay et al., 1997</td>
</tr>
<tr>
<td>pGEM®-T</td>
<td>-</td>
<td>pGEM®-T</td>
<td></td>
<td>Promega GmbH (Mannheim)</td>
</tr>
<tr>
<td>pQE-30</td>
<td>-</td>
<td>pQE-30</td>
<td>6x His</td>
<td>Qiagen GmbH (Hilden)</td>
</tr>
<tr>
<td>pRSET A</td>
<td>-</td>
<td>pRSET A</td>
<td>6x His</td>
<td>Invitrogen GmbH (Karlsruhe)</td>
</tr>
<tr>
<td>XLef-1</td>
<td>Xenopus</td>
<td>pCS2</td>
<td>-</td>
<td>D. Gradl (Karlsruhe)</td>
</tr>
<tr>
<td>XTcf-1</td>
<td>Xenopus</td>
<td>pCS2+FLAG</td>
<td>FLAG</td>
<td>K. Mansperger (München)</td>
</tr>
</tbody>
</table>

Die Expressionsvektoren pQE-30 und pRSET unterscheiden sich nicht nur in der Anzahl der Kopien pro Bakterienzellen, sondern auch in der Steuerung des Expressionssystems.

Der aus der pDS-Plasmidfamilie stammende Vektor pQE-30 basiert auf dem T5-Promotor-Transkription-Translationssystem. Das optimierte Promotor-Operator Element (T5 + lacO) besteht aus dem Phage-T5-Promotor, der von der *E. coli* RNA-Polymerase erkannt wird, und zwei lac-Operatorsequenzen, die durch die erhöhte Bindungswahrscheinlichkeit des lac-Repressors die effiziente Repression des starken T5-Promotors sicherstellen. Daran schließt sich eine synthetische ribosomale Bindungsstelle für eine hohe Translationsrate an. Eine aus sechs Histidinen bestehende Affinitätsmarkierung (6xHis-tag) befindet sich 5’ der zahlreichen Restriktionsschnittstellen für die Insertion eines DNA-Fragments. Die Transkription des klonierten Fusionskonstrukts wird durch zwei starke Terminatoren beendet. Zwischen den Terminatorsequenzen t0 des Phagen λ und T1 des rrnB-Operons von *E. coli* befindet sich ein Chloramphenicol-Acetyltransferase-Gen, das aufgrund des fehlenden eigenen Promotors normalerweise nicht exprimiert wird. Das Plasmid, das in wenigen Kopien pro Bakterienzellen vorliegt, enthält den Replikationsursprung CoIE1 und für die selektive Amplifikation ein Ampicillin-Resistenzgen (AmpR).

3.1.6 Primer zur Klonierung rekombinanter DNA

Die Oligonukleotide wurden von der Firma Biomers.net GmbH (Ulm) in Auftrags-synthese hergestellt.

Klonierung von Lef-1 in den Vektor pRSET A

fwd 5’-CCTCTCGAGA TGCCCTAGCT CTCTGGAGCA-3’
rev 5’-GATTGT ACTCGAGTGA TCAGCAGCTG CCTCTGATGT AGGCAGCTGT CATTCT-3’

Klonierung von Lef-1 in den Vektor pQE-30

fwd 5’-CGGGGTACCA TGCCCTAGCT CTCTGGAGCA-3’
rev 5’-AGAATGACAG CTGCCTACAT CAGAGGCAGC TGCTGAGTCG ACGTCG-3’

Mutagenese von Lef-1 in pQE-30 und pRSET

fwd 5’-GTCTCCACCC ATTCCGCGGA CAAGCAACAA GGTCCCAGTG GTGCAG-3’
rev 5’-CTGCACCACT GGGACCTTGT TGCTTGTCCG CGGAATGGGT GGAGAC-3’

Klonierung von XTcf-1 in den Vektor pQE-30

fwd 5’-CGGGGTACCA TGCCCCAAAT GAACAGCGCC-3’
rev 5’-GACTGGTGCG GCCCATGCAG AGCCAGCTGC TAAGTCGACG TCG-3’
3.1.7 Proteinreinigungssysteme

Benzamidine Sepharose™ 4 FF (high sub) | GE Healthcare Europe GmbH (München)
Spectra/Por® 1 Dialysemembrane | Spectrum Europe B.V. (DG Breda, NL)
Glutathione Sepharose™ 4 FF | GE Healthcare Europe GmbH (München)
GSTrap FF 1 ml | GE Healthcare Europe GmbH (München)
GSTrap HP 5 ml | GE Healthcare Europe GmbH (München)
HisTrap HP 1 ml | GE Healthcare Europe GmbH (München)
Mono Q 5/50 GL | GE Healthcare Europe GmbH (München)
NAP-5™ | GE Healthcare Europe GmbH (München)
Ni²⁺-NTA Agarose | Qiagen GmbH (Hilden)
Slide-A-Lyzer Dialyse-Kassetten | Pierce Science Deutschland GmbH (Bonn)
Superdex 75 10/300 GL | GE Healthcare Europe GmbH (München)
Superdex 200 10/300 GL | GE Healthcare Europe GmbH (München)
Vivaspin-Säulen | Sartorius AG (Göttingen)

3.1.8 Reagenziensysteme

Alexa Fluor® 532 Antibody Labeling Kit | Invitrogen GmbH (Karlsruhe)
Alexa Fluor® 633 Protein Labeling Kit | Invitrogen GmbH (Karlsruhe)
ECL Plus Western Blotting Detection System | GE Healthcare Europe GmbH (München)
HMW Gel Filtration Calibration Kit | GE Healthcare Europe GmbH (München)
LMW Gel Filtration Calibration Kit | GE Healthcare Europe GmbH (München)
Qdot® Antibody Conjugation Kit | Invitrogen GmbH (Karlsruhe)
Pure Yield™ Plasmid Midiprep System | Promega GmbH (Mannheim)
Wizard® Plus SV Minipreps | Promega GmbH (Mannheim)
 Wizard® SV Gel and PCR Clean-Up System | Promega GmbH (Mannheim)
3.1.9 Geräte

Dokumentation Agarosegel
Gel Max, Intas GmbH (Göttingen)

Dokumentation Western Blot
Diana II, Raytest GmbH (Straubenhardt)
mit Software
Aida Image Analyzer V3.40, Raytest GmbH (Straubenhardt)

Fast Protein Liquid Chromatography (FPLC)
BioLogic HR mit Fraktionssammler Modell 2118,
Bio-Rad Laboratories GmbH (München)

Flachbettgelelektrophorese
Hoefer™ HE 33, Amersham Biosciences (Freiburg)

Fluoreszenzmikroskop
DMIRE2, Leica Microsystems AG (Bensheim)
mit Digitalkamera
C4742-95-12 ERG, Hamamatsu GmbH (Herrsching)
und Software
Openlab 4.0.3, Openlab (Heidelberg)

Fokussierter Ionenstrahl
1540 EsB CrossBeam, Carl Zeiss SMT AG (Oberkochen)

Gewebehomogenisator
Ultra Turrax T8, IKL Labortechnik GmbH (Staufen)

Konfokales Laserscanning Mikroskop
LSM 510 Meta, Carl Zeiss MicroImaging GmbH (Göttingen)

Nahfeldoptischer Aufbau:

Inverses Mikroskop
Eclipse TE2000-U, Nikon GmbH (Düsseldorf)

Digitalkamera
Digital Sight DS-2MBW, Nikon GmbH (Düsseldorf)

XYZ-beweglicher Tisch
P-517.3CL, Physik Instruments GmbH (Karlsruhe)

CCD-Kamera
CCD Fingerkamera, Conrad Elektronik SE (Hirschau)

Avalanche Photodiode
SPCM-AQR-14, Lasercomponents GmbH (Olching)

Laser
633 nm Helium-Neon-Laser 31-2108-000, Coherent (Dieburg)
532 nm Millennia V S/N 1502, Spectra-Physics Laser Inc. (Cal, USA)

Computer mit Zählerkarte
FAST 7882 und 16Bit-Digital/Analog-Wandlerkarte
Acquetek PA-DA16ERMA, Electronic GmbH

Software
WSxM 4.0, Nanotec Electronica S.L. (Madrid, Spanien)

FCS
TimeHarp200 PC Karte, PicoQuant GmbH (Berlin)
mit Korrelations- und Analysesoftware von PD Dr. A. Naber

PCR-Cycler
iCycler, Bio-Rad Laboratories GmbH (München)

Rasterkraftmikroskop
Nano Wizard® II BioAFM, JPK Instruments AG (Berlin)
montiert auf AxioObserver A1, Carl Zeiss GmbH (Göttingen)

Rotationsbeschichter
WS-400A-6NPP/LITE, Laurell Inc. (North Wales, USA)

Schüttelinkubator
Orbital Shaker, Thermo Forma Inc. (Marietta, USA)

SDS-PAGE-Zubehör
Mini Protean II™, Bio-Rad Laboratories GmbH (München)

Stereomikroskop
Leica S6E mit L2, Leica Microsystems AG (Bensheim)
3 Material und Methoden

3.2 Molekularbiologische Methoden

3.2.1 Puffer und Lösungen

Alle Lösungen werden entweder autoklaviert oder aus sterilen Stammlösungen und Aqua bidest. angesetzt. Bei der Verwendung von nicht autoklavierbaren Chemikalien wie z.B. Methanol bzw. Glukose werden die Lösungen durch Sterilfiltration (Ø 0.2 µm) entkeimt.

- **Antibiotikum-Stammlösungen (1 000x)**
 - Ampicillin-Stammlösung: 50 mg Ampicillin pro ml a.bidest., bei –20°C lagern.
 - Kanamycin-Stammlösung: 30 mg Kanamycin pro ml a.bidest., bei –20°C lagern.
- **Hogness-Einfriermedium**
 - 132 mM KH₂PO₄, 362 mM K₂HPO₄, 13.6 mM (NH₄)₂SO₄, 4.2 mM Na-Zitrat, 4.77 M Glycerin, autoklavieren, 4 mM MgSO₄ zugeben.
- **6x Ladepuffer für DNA-Auftrennung**
 - 0.25% (w/v) Bromphenolblau, 0.25% (w/v) Xylenolcyan, 36% (v/v) Glycerin, 29.7 mM Tris pH 7.6, bei 4°C lagern.
- **LBₐₐ¢

- **Ultrazentrifugen**
 - Beckman Avanti J-30 I mit Festwinkelrotor JA 30.50Ti, Beckman Coulter GmbH (Krefeld)

UV-Lampe
- UVHAND 250, Dr. Hönle AG (Gräfelfing)

UV/VIS Spektralphotometer
- Ultrospec 2100pro, Amersham Biosciences (Freiburg) mit Ultra-Mikro-Küvette 105.200-QS, Hellma GmbH (Müllheim)

Zellaufschlussgeräte
- EmulsiFlex C3, Avestin Europe GmbH (Mannheim)
 - Sonoplus HD 2070 mit Stufenhorn SH 70G und Sonotrode MS72, Bandelin electronic GmbH (Berlin)
Material und Methoden

- **LB (Luria Bertani)-Medium**
 1% (w/v) Baktotrypton, 0.5% (w/v) Hefeextrakt, 1% (w/v) NaCl, pH 7.0.
- **LBamp/Kana-Medium**
 1 ml der gewünschten Antibiotikum-Stammlösung pro Liter LB-Medium.
- **SOC-Medium**
 2% (w/v) Baktotrypton, 0.5% (w/v) Hefeextrakt, 0.05% (w/v) NaCl, pH 7.0, autoklavieren, 10 mM MgCl₂, 10 mM MgSO₄ und 20 mM Glucose zugeben und sterilfiltrieren.
- **TAE-Puffer**
 40 mM Tris-Acetat pH 8.3, 1 mM EDTA.
- **TFB1**
 100 mM RbCl, 50 mM MnCl₂, 30 mM Kaliumacetat, 10 mM CaCl₂, 15% (v/v) Glycerin, pH 5.8 mit Essigsäure einstellen und sterilfiltrieren.
- **TFB2**
 100 mM MOPS, 10 mM RbCl, 75 mM CaCl₂, 15% (v/v) Glycerin, pH 6.8 mit KOH einstellen und sterilfiltrieren.

3.2.2 Restriktionsanalyse von DNA

Bakterielle Restriktionsendonukleasen erkennen spezifische, meist palindromische DNA-Sequenzen und durchtrennen den DNA-Doppelstrang entweder glatt oder mit überhängenden Enden.

Für die Restriktionsanalyse werden 3 U Restriktionsendonuklease pro µg DNA und ein Zehntel Volumen des entsprechenden 10fach konzentrierten Puffers über Nacht in einem Ansatzvolumen von 20 µl bei der optimalen Reaktionstemperatur inkubiert.

3.2.3 Analytische Flachbettgelelektrophorese

DNA-Fragmente wandern unter dem Einfluss eines elektrischen Feldes proportional ihrer Größe durch die Agarosematrix. Je kleiner ein Molekül ist, desto schneller kommt es voran.

Für ein Flachbettgel werden 1.5% (w/v) Agarose in TAE-Puffer durch Aufkochen gelöst und nach kurzer Abkühlung mit 0.01 µl Ethidiumbromid pro ml versetzt. Sobald die Suspension eine Temperatur von etwa 50°C erreicht hat, wird sie in die vorbereitete Form gegossen. Nach Aushärtung werden die mit Ladepuffer versetzten Proben in die Geltaschen gegeben und durch Anlegen einer Gleichspannung von 80 bis 120 V aufgetrennt, bis die Laufmittelfront die gewünschte Position erreicht hat. Ethidiumbromid interkaliert in die DNA und emittiert nach UV-Anregung, so dass das durch die Auftrennung entstandene Bandenmuster dokumentiert werden kann.

3.2.4 Präparative Flachbettgelelektrophorese

3.2.5 Amplifikation spezifischer DNA-Fragmente mittels PCR

Eine zwischen zwei flankierenden Primern liegende DNA-Sequenz kann mit Hilfe der Polymerase-Kettenreaktion (PCR) exponentiell amplifiziert werden. Dazu stehen verschiedene hitzestabile DNA-Polymerasen zur Verfügung. Die Taq-Polymerase arbeitet schnell, besitzt aber eine Fehlerrate von 1×10^{-5} Fehler pro Base (Herstellerangabe) und wird deshalb in der analytischen PCR eingesetzt. Die Pfu turbo® DNA-Polymerase arbeitet aufgrund ihrer $3'\rightarrow5'$-Exonuklease-Aktivität langsamer, aber mit einer dreizehnfach höheren Genauigkeit als die Taq-Polymerase (Herstellerangabe) und wurde in der vorliegenden Arbeit für Klonierungen verwendet.

Für 50 µl Ansatzvolumen werden 5 µl 10x PCR Puffer, 0.2 mM dNTPs, die beiden Primer je 0.25 µM, 50 ng DNA-Matrize und 2.5 U Pfu turbo® DNA-Polymerase auf Eis in ein 0.2 ml Reaktionsgefäß gegeben und mit einem spezifischen Programm amplifiziert. Zu Programmbeginn wird der Ansatz zwei Minuten lang bei 94°C inkubiert. In jedem Programmzyklus wird die DNA-Matrize zuerst für 30 Sekunden bei 94°C denaturiert, dann folgt eine halbe Minute bei 55°C für die Primerbindung und anschließend die Elongation bei 70°C, deren Dauer, beginnend bei einer Minute, in 40-Sekundenschritten auf sieben Minuten gesteigert

3.2.6 Sequenzspezifische Mutagenese

Alle Schritte werden nach dem Protokoll des QuikChange® Multi Site-Directed Mutagenesis Kit (Stratagene) durchgeführt. In einem Gesamtreaktionsvolumen von 25 µl werden 100 ng DNA-Matrize, je 100 ng der beiden Primer, 2.5 µl 10x Reaktionspuffer, 2.5 M dNTPs und 2.5 U *Pfu* DNA-Polymerase auf Eis gemischt. Der Ansatz wird zunächst eine Minute bei 94°C inkubiert.

Die PCR beinhaltet 20 Zyklen, bestehend aus einer Minute Denaturierung bei 94°C, einer Minute Primerbindung bei 55°C und zwölf Minuten Elongation bei 65°C. Anschließend wird der Reaktionsansatz auf 14°C abgekühlt und eine Stunde lang mit 10 U *Dpn I* bei 37°C verdaut.

3.2.7 Ligation von DNA-Fragmenten

Bei der enzymatischen Ligation von DNA-Fragmenten werden die Phosphatbrücken in der DNA enzymatisch geschlossen.

Für die Ligation werden in einem 10 µl Ansatz 7,5 ng Vektor, das einzufügende DNA-Fragment im dreifachen molaren Überschuss und 1 µl 10x T4 Ligationspuffer verwendet. Die Ligation wird durch Zugabe von 3 Einheiten T4 DNA-Ligase gestartet und erfolgt bei 14°C über Nacht.

3.2.8 Herstellung und Transformation chemokompetenter *E. coli*

Zur Herstellung chemokompetenter Bakterien wird eine Flüssigkultur von 10 ml LB-Medium mit einigen Zellen des gewünschten *E. coli*-Stamms mittels einer sterilen Pipettenspitze inokuliert. Aus dieser Übernachtkultur wird eine Primärkultur von 1 l auf 37°C vorgewärmtem LB-Medium angeimpft und bei 37°C so lange geschüttelt, bis sie eine optische Dichte bei 600 nm (OD$_{600}$) von 0.5–0.8 erreicht hat. Die Bakterienkultur wird fünf Minuten auf Eis gekühlt und dann fünf Minuten bei 4000 g kalt sedimentiert. Anschließend werden die Bakterien
Material und Methoden

3.2.9 Anlegen von Bakteriendauerkulturen

3.2.10 Isolierung bakterieller Plasmid-DNA im Klein- und Mittelmaßstab
Bei dieser Methode wird die Plasmid-DNA nach selektiver Fällung chromosomaler DNA an eine Affinitätsmatrix adsorbiert, wodurch DNA hohen Reinheitsgrades gewonnen wird.

3.2.11 Fällung und Reinigung von DNA

Alternativ zur Fällung mit Ethanol kann man auch Isopropanol verwenden. Dabei werden der Lösung 0.7 Volumen Isopropanol zugegeben. Das Präzipitat wird ebenfalls mit 70% (v/v) Ethanol gewaschen.

Bei der Reinigung durch Phenolextraktion werden die Nukleinsäuren in wässriger Lösung mit 0.5 Volumen Phenol pH 7.8 versetzt, ausgeschüttelt und zur Phasentrennung fünf Minuten bei 20 000 g zentrifugiert. Ein Großteil der Proteine wird dadurch gefällt und erscheint in der unteren, organischen Phase. Eine anschließende Extraktion mit 0.5 Volumen Chloroform/Isoamylalkohol (24:1) entzieht der wässrigen Lösung Phenolverbindungen.

3.2.12 Konzentrationsbestimmung von DNA

Die Konzentration von Nukleinsäuren kann geschätzt werden, indem man nach einer Flachbettgelelektrophorese die Intensität der Probenbanden mit der des DNA-Größenmarkers vergleicht.

3.3 Proteinbiochemische Methoden

3.3.1 Puffer und Lösungen
Alle Lösungen werden entweder autoklaviert oder aus sterilen Stammlösungen und Aqua bidest. angesetzt. Bei der Verwendung von nicht autoklavierbaren Chemikalien, wie z.B. Methanol bzw. Glukose, werden die Lösungen durch Sterilfiltration (Ø 0.2 µm) entkeimt. In der Chromatographie eingesetzte Puffer und Lösungen werden vor der Verwendung durch eine 15 Minuten lange Ultraschallbehandlung entgast.

- Coomassie-Entfärbungslösung
 45% (v/v) Methanol, 10% (v/v) Essigsäure.

- Coomassie-Färbungslösung
 10% (v/v) Methanol, 10% (v/v) Essigsäure, 0.4% (v/v) Coomassie Brilliant Blue R 250.

- Elektrophorese-Laufpuffer
 25 mM Tris, 192 mM Glycin, 0.1% (w/v) SDS.

- Gelfiltrationspuffer GPC1
 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 mM Dithiothreitol (DTT), 5% (v/v) Glycerin.

- Gelfiltrationspuffer GPC2
 50 mM Tris-HCl pH 7.5, 150 mM NaCl.

- GST-Aktivitätstestmix (2x)
 200 mM KH$_2$PO$_4$ pH 6.3, 2 mM Glutathion, 2 mM 1-Chlor-2,4-dinitrobenzol (CDNB).

- GST-Aufschlusspuffer
 50 mM Tris-HCl pH 7.5, 200 mM NaCl, 5 mM MgCl$_2$, 4 mM β-Mercaptoethanol.

- GST-Elutionspuffer
 50 mM Tris-HCl pH 8.0, 10 mM Glutathion.

- IEX-Startpuffer
 50 mM Tris-HCl pH 7.5.

- IEX-Elutionspuffer
 50 mM Tris-HCl pH 7.5, 500 mM NaCl.

- Importin α2-Aufschlusspuffer
 50 mM NaPO$_4$ pH 7.3, 500 mM NaCl, 20 mM Imidazol.

- Importin α2-Elutionspuffer
 50 mM NaPO$_4$ pH 7.3, 500 mM NaCl, 500 mM Imidazol.

- Importin β1-Aufschlusspuffer
 50 mM Tris-HCl pH 7.5, 200 mM NaCl, 5 mM MgCl$_2$, 4 mM β-Mercaptoethanol.
• Importin β1-Elutionspuffer
 50 mM Tris-HCl pH 7.5, 200 mM NaCl, 5 mM MgCl₂, 500 mM Imidazol.
• Importin β1-Übernachtkultur
 2 YTₘₐₚ₊Kₐₙₐ, 2% (w/v) Glucose.
• Importin β1-Hauptkultur 1
 2 YTₘₐₚ₊Kₐₙₐ, 0.2% (w/v) Glucose.
• Importin β1-Hauptkultur 2
 LBₘₐₚ₊Kₐₙₐ, 0.2% (w/v) Glucose, 4% (v/v) Ethanol, 1mM IPTG.
• PBS
 137 mM NaCl, 2.7 mM KCl, 6.5 mM Na₂HPO₄, 1.5 mM KH₂PO₄, pH 7.5.
• Ponceau-Färbungslösung
 0.5% (v/v) Ponceau S, 1% (v/v) Essigsäure.
• RLE-Aufschlusspuffer
 50 mM Heps, 165 mM KOH, 2 mM Magnesiumacetat, 1 mM DTT, pH 7.55.
• RLE-Dialysepuffer
 250 mM Heps, 500 mM KCl, 10 mM DTT, pH 7.2.
• 5x SDS-Ladepuffer
 156 mM Tris-HCl pH 6.8, 5% (w/v) SDS, 25% (v/v) Glycerin, 12,5% (v/v) β-Mercaptoethanol, 0.2% (w/v) Bromphenolblau.
• 5x SDS-Ladepuffer (nicht-reduzierend)
 156 mM Tris-HCl pH 6.8, 5% (w/v) SDS, 25% (v/v) Glycerin, 0.2% (w/v) Bromphenolblau.
• Silberfärbungslösung 1
 50% (v/v) Methanol, 12% (v/v) Eisessig.
• Silberfärbungslösung 2
 10% (v/v) Ethanol, 5% (v/v) Eisessig.
• Silberfärbungslösung 3
 236 µM Na₂B₄O₇, 4% (v/v) Glutaraldehyd.
• Silberfärbungslösung F
 SF-F1 (0.3 g AgNO₃ in 10 ml a.bidest.) tropfenweise zu SF-F2 (950 µl 1M NaOH und 750 µl Ammoniak (32%) in 20 ml a.bidest.) geben und auf 50 ml mit a.bidest. auffüllen. Trübung durch weitere Ammoniakzugabe lösen.
• Silberreduktionslösung
 10% (v/v) Ethanol, 0.25% (v/v) Formalin, 0.3 mM Zitronensäure.
Material und Methoden

- **TBS**
 50 mM Tris-HCl pH 7.5, 150 mM NaCl.

- **TBST**
 TBS, 0.1% (v/v) Tween 20.

- **Transferpuffer**
 25 mM Tris, 192 mM Glycin, 10% (v/v) Methanol.

- **2YT-Medium**
 1.6% (w/v) Baktotrypton, 1.0% (w/v) Hefeextrakt, 0.5% (w/v) NaCl, pH 7.2.

- **2YTAmp/Kana-Medium**
 1 ml der gewünschten Antibiotikum-Stammlösung pro Liter 2YT-Medium.

3.3.2 Elektrophoretische Auftrennung von Proteinen

Proteine besitzen aufgrund ihrer Mischung an geladenen Aminosäuren eine positive oder negative Nettoladung. In einem elektrischen Feld werden sie abhängig von ihrer Nettoladung, ihrer Größe und ihrer Gestalt aufgetrennt. Durch Zugabe des starken, negativ geladenen Detergenz SDS und einer reduzierenden Substanz wie β-Mercaptoethanol werden die Proteine zu gestreckten Polypeptidketten entfaltet. Die unpolaren Seitenketten des SDS maskieren die hydrophoben Seitenketten. SDS bindet Proteine in einem Massenverhältnis von 1.4:1, so dass das Protein eine negative Gesamtladung erhält, die der Größe proportional ist. Die Ladungsdichte ist bei kleinen und großen Polypeptidketten gleich; demzufolge werden sie in einem elektrischen Feld der Größe nach aufgetrennt.

Das für den gewünschten Trennbereich entsprechende Trenngel wird entsprechend Tab. 4 angesetzt und die Polymerisation durch Zugabe von TEMED und 10% (w/v) Ammoniumpersulfat gestartet. Dieser Ansatz wird bis auf 3/4 Höhe zwischen zwei in einer Gelapparatur eingespannte, acetongereinigte Glasplatten gegossen und mit abdest überschichtet. Nach der Polymerisation des Trenngels wird das Wasser entfernt und das 5%ige Sammelgel aus 500 µl
Material und Methoden

29.22% (w/v) Acrylamid, 0.78% (w/v) Bisacrylamid, 30 µl 10% (w/v) SDS, 380 µl 0.5 M Tris-HCl pH 6.8 und 2.1 ml a.bidest. angesetzt. Für die Polymerisation werden 30 µl TEMED und 3 µl 10% (w/v) Ammoniumpersulfat zugegeben und das noch flüssige Sammelgel bis zur oberen Glaskante der Gelapparatur eingefüllt, wobei zur Ausbildung der Ladetaschen ein Kamm an deren Oberkante eingesetzt wird. Nach Aushärtung wird der Kamm entfernt und die Ladetaschen gründlich mit Laufpuffer gespült. Das einsatzbereite Gel wird mit den Glasplatten in die Elektrophoresekammer eingespannt, welche man mit Elektrophorese-Laufpuffer flutet.

3.3.3 Detektion aufgetrennter Proteine

Coomassie-Brilliant-Blau (CCB) lagert sich als Triphenylmethan-Farbstoff an die basischen Seitenketten an. Die Nachweisgrenze einer Coomassiefärbung liegt bei 0.1 µg Protein pro Bande. Die Färbung des Proteinrückgrats mit Silberionen ist dagegen hundertfach sensitiver und eignet sich damit besonders zur Reinheitsbestimmung einer Proteinaufreinigung. Allerdings ist diese zeitaufwendige Prozedur schwer reproduzierbar und färbt auch Nukleinsäuren und Lipide an.

Das Trenngel wird 30-60 Minuten lang in Coomassie-Färbungslösung gefärbt. Danach wird es zweimal ca. 20 Minuten lang in der Coomassie-Entfärbungslösung gewaschen. Soll-
ten die Banden dann noch nicht deutlich sichtbar sein, kann der Vorgang verlängert bzw. wiederholt werden. Das Polyacrylamidgel wird zwischen zwei Cellophan-Papieren getrocknet und mittels eines Flachbettscanners digitalisiert.

3.3.4 Detektion immobilisierter Proteine (Immun-Blot)

Für den immunologischen Nachweis werden die im Polyacrylamidgel aufgetrennten Proteine quantitativ auf eine PVDF-Membran transferiert und detektiert.

Es werden sechs 3 MM Filterpapierstücke und die PVDF-Membran in der Größe des Trenngels zurechtgeschnitten. Die Filterpapiere werden zusammen mit den beiden Faserpolstern ungefähr fünf Minuten in Transferpuffer äquilibrated. Die PVDF-Membran wird zunächst durch 10 Sekunden langes Schwenken in Methanol aktiviert, danach für fünf Minuten in a.dest. gewaschen und anschließend doppelt so lange in Transferpuffer äquilibrated. Diese Bestandteile werden wie in der nachfolgenden Darstellung luftblasenfrei zu einem Sandwich übereinander gelegt und in die mit Eis gekühlte Blotapparatur eingesetzt:

<table>
<thead>
<tr>
<th>Anode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faserpolster</td>
</tr>
<tr>
<td>3 Filterpapiere</td>
</tr>
<tr>
<td>PVDF-Membran</td>
</tr>
<tr>
<td>Polyacrylamidtrenngel</td>
</tr>
<tr>
<td>3 Filterpapiere</td>
</tr>
<tr>
<td>Faserpolster</td>
</tr>
</tbody>
</table>

| Kathode |

Der Transfer erfolgt für eine Stunde bei einer Spannung von 111 V. Danach wird die PVDF-Membran für fünf Minuten in der Ponceau-Färbungslösung inkubiert und vorsichtig mit a.dest gewaschen, bis die Proteinbanden des Molekulargewichtsmarkers markiert werden
können. In der vorliegenden Arbeit wurden der Proteinstandard SDS-6H2 der Firma Sigma-Aldrich Chemie GmbH mit Banden bei 29, 45, 66, 97,4, 116 und 200 kDa und der Precision Plus Protein™ Standards der Firma Bio-Rad Laboratories GmbH mit Banden bei 10, 15, 20, 25, 37, 50, 75, 100, 150 und 250 kDa verwendet.

Die freien Proteinbindungsstellen der PVDF-Membran werden durch 30-minütige Inkubation mit 10% (w/v) Magermilchpulver in TBS blockiert. Anschließend wird die Membran dreimal zehn Minuten lang mit TBST gewaschen und mit dem entsprechend in TBS verdünnten primären Antikörper über Nacht bei 4°C inkubiert.

3.3.5 Konzentrationsbestimmung von Proteinlösungen

3 Material und Methoden
Material und Methoden

variiert, verwendet man idealerweise eine aus dem zu bestimmenden Protein bestehende Kalibrationslösung. Wenn das Zielprotein nicht zur Verfügung steht oder wenn die Konzentration von Proteingemischen bestimmt werden soll, werden Standardproteine wie Rinderserumalbumin (BSA) oder Immunglobulin G eingesetzt. Da das Testergebnis nicht nur von der Proteinmenge, sondern auch von der Zusammensetzung des Proteingemischs abhängt, ist diese Methode nur semi-quantitativ. Der Nachweisbereich im Mikrotest liegt bei 1-20 µg Protein/ml. Freie Aminosäuren, Peptide (z.B. Glutathion) oder Proteine unter 3 kDa sind nicht nachweisbar. Starke Laugen, Rezidivstoffe und Detergenzien stören die Farbreaktion.

Für die Messung werden 800 µl der zu bestimmenden Proteinlösung in einer geeigneten Verdünnung mit 200 µl fünffach konzentriertem Protein Assay Farbstoff-Konzentrat vermischt und nach 15 Minuten die Absorption bei 595 nm in einer Polystyroleinwegküvette gemessen. Um Farbstoffaggregate zu dispergieren, wird das Reaktionskonzentrat zuvor mehrmals sanft invertiert und der Reaktionsansatz vor der Messung kurz durchgewirbelt. Als Standard wird eine Konzentrationsreihe mit BSA (0, 1, 5, 10, 15, 20, 25 µg) parallel gemessen. Über diese nicht-lineare Eichkurve wird die Konzentration der untersuchten Probe errechnet. Für alle Werte wird eine Doppelbestimmung durchgeführt.

Die Konzentration reiner Proteinlösungen lässt sich bei bekanntem Extinktionskoeffizienten spektrophotometrisch einfach und genau bestimmen. Die Peptidbindungen absorbieren bei 205 nm. Die aromatischen Aminosäurereste weisen eine π-π*-Absorption bei 280 nm auf. Im Gegensatz zu Tyrosin (Y) und der seltenen Aminosäure Tryptophan (W) trägt Phenylalanin kaum zur Absorption im nahen UV-Bereich bei. Die Absorption eines Proteins bekannter Sequenz lässt sich mit der folgenden Formel berechnen (Gasteiger et al., 2005), sofern es keine anderen bei 280 nm absorbierenden Chromophore trägt:

\[\varepsilon_{\text{Protein}} = \#W \times \varepsilon_W + \#Y \times \varepsilon_Y \] \hspace{1cm} (1)

wobei \#W die Anzahl der Tryptophanreste, \#Y die Anzahl der Tyrosinreste und \(\varepsilon_W \) bzw. \(\varepsilon_Y \) die entsprechenden molaren Extinktionskoeffizienten darstellen (\(\varepsilon_W = 5500 \text{ M}^{-1}\text{cm}^{-1} \), \(\varepsilon_Y = 1490 \text{ M}^{-1}\text{cm}^{-1} \)). Das durch Oxidation zweier Cysteine entstehende Cystin (\(\varepsilon = 125 \text{ M}^{-1}\text{cm}^{-1} \)) ist aufgrund des reduktiven intrazellulären Milieus und entsprechenden Pufferzusätzen bei der Aufreinigung vernachlässigbar.

Nach photometrischer Doppelbestimmung der Extinktion E bei 280 nm in einer Quarzküvette wird die Konzentration der Proteinlösung c mit Hilfe des Lambert-Beer-Gesetzes bestimmt. d ist Schichtdicke in cm und \(\varepsilon_{\text{Protein}} \) der Extinktionskoeffizient in M\(^{-1}\)cm\(^{-1}\).

\[E = \varepsilon_{\text{Protein}} \times c_{\text{Protein}} \times d \] \hspace{1cm} (2)

Für die Bestimmung der Proteinkonzentration über die GST-Aktivität wird zunächst einmal die spezifische Aktivität des Fusionsproteins ermittelt. Zur Eichung wird das GST-Fusionsprotein aufgereinigt und anschließend die Proteinkonzentration der Lösung gemessen. 5-50 µl dieser Lösung werden mit abidest. auf 500 µl aufgefüllt und mit 500 µl GST-Aktivitätstestmix (2x) gemischt. Für den Blindwert wird abidest. statt der Proteinlösung verwendet. Anschließend wird die Reaktionskinetik durch minütliche spektrophotometrische Messungen bei 340 nm über einen Zeitraum von fünf Minuten bestimmt. Aus der Kinetik werden die Extinktionsänderungen für alle sechs Messpunkte nach Gleichung (3) und deren Mittelwert berechnet. Wenn die Standardabweichung weniger als 10% beträgt, werden die Extinktionsänderungen der Doppelbestimmung in die Gleichung zur Berechnung der mittleren GST-Aktivität eingesetzt (4); andernfalls werden die Messwerte verworfen.

\[
\Delta A_{340}(i) = \frac{A_{340}(t_i) - A_{340}(t_{i-1})}{(t_i - t_{i-1}) (ml_{probe})} \quad \text{in } \text{min}^{-1}\text{ml}^{-1} \quad (3)
\]

\[
\overline{A}_{GST} = \frac{1}{10} \left(\sum_{i=1}^{5} \Delta A_{340}(i) + \sum_{j=1}^{5} \Delta A_{340}(j) \right) \times \text{Verdünnungsfaktor} \quad \text{in } \text{µM} \text{ ml}^{-1} \quad (4)
\]

\(\varepsilon_{CDNB}\) ist der molare Extinktionskoeffizient von CDNB (\(\varepsilon_{CDNB} = 9.6 \text{ nM}^{-1}\text{cm}^{-1}\)) und d die Schichtdicke der Küvette. Die spezifische GST-Aktivität \(\overline{A}_{GST} / mg\) ergibt sich aus dem Quotienten der mittleren GST-Aktivität \(\overline{A}_{GST}\) des Eichansatzes und dessen Proteinconcentration.

Um die Masse der an der Glutathion-Sepharose™ gebundenen GST-Fusionsproteine zu bestimmen, wird die mittlere GST-Aktivität \(\overline{A}_{GST}\) des Durchflusses und die des Rohextraktes wie oben beschrieben mittels der Reaktionskinetiken ermittelt. Das Probenvolumen wird zwischen 5 und 50 µl so angepasst, dass eine fünfminütige Reaktionskinetik im linearen Be-
reich liegt. Die Differenz der GST-Aktivität des Rohextraktes zu der des Durchflusses wird durch die anfangs mittels des Eichansatzes bestimmte spezifische GST-Aktivität dividiert, wodurch man die Masse der gebundenen GST-Fusionsproteine GST-FP_geb erhält (5).

\[
m(GST - FP_geb) = \frac{\bar{A}_{GST}(Rohextrakt) - \bar{A}_{GST}(Durchfluss)}{\bar{A}_{GST}/mg} \quad \text{in mg} \quad (5)
\]

3.3.6 Expression rekombinanter Proteine in *E. coli*

Eine Flüssigkeitskultur aus 2YT-Medium wird mit frischen Bakterienzellen inokuliert und über Nacht bei 37°C und 225 rpm inkubiert. Eine vorgewärmte Hauptkultur wird im Verhältnis 10:1 mit der Übernachtkultur angeimpft und bis zur gewünschten optischen Dichte bei 600 nm (OD_600) bei 37°C und 225 rpm geschüttelt. Anschließend wird die Expression der Fusionsproteine durch Zugabe von Isopropyl-β-D-thiogalaktopyranosid (IPTG) induziert und die Temperatur abgesenkt, um das bakterielle Wachstum zu reduzieren.

Zur Kontrolle der Induktion werden vor der IPTG-Zugabe, sowie nach ein, zwei, drei und vier Stunden 600 µl entnommen. Die Proben werden 30 Sekunden lang bei 12 000 g abzentri- fugiert und nach der Resuspension in 60 µl SDS-Probenpuffer 30 Minuten lang bei 95°C de- naturiert. Je 10 µl werden in einem SDS-Polyacrylamidgel aufgetrennt und mit Coomassie angefärbert. Am Ende der Induktionszeit werden die Bakterienzellen 30 Minuten lang bei 4 500 g kalt abzentrifugiert und das Sediment bei -80°C eingefroren.

Die Fusionsproteine Importin α3 und Importin β1 werden entsprechend den Protokollen von Prof. Dr. M. Köhler und Prof. Dr. D. Görlich induziert. Die Importin β1-Übernachtkultur wird mit frischen Bakterienzellen inokuliert und über Nacht bei 37°C und 225 rpm inkubiert. Die Lösung enthält 2% (w/v) Glukose, die über die Inhibition der Adenylatzyklase die Induk-
tion des lac-Operons durch das Katabolitaktivatorprotein (CAP) verhindert. Zur Übernachtkultur wird das vierfache Volumen an vorgewärmte Importin β1-Hauptschicht 1 gegeben und eine Stunde bei 37°C und 225 rpm inkubiert. Wenn die optische Dichte OD_{600} größer eins ist, wird das Volumen durch Zugabe eiskalter Importin β1-Hauptschicht 2 verdoppelt und die Kultur bei 18°C drei Stunden lang induziert. Das in der induzierten Hauptschicht befindliche Ethanol aktiviert in einer Endkonzentration von 2% (v/v) bakterielle Chaperone und reduziert dadurch die Bildung von Einschlusskörperchen (Thomas & Baneyx, 1997).

3.3.7 Herstellung des Rohextrakts zur Isolierung löslicher Proteine

Im Rahmen dieser Arbeit wurden mit der Hochdruckhomogenisation und der Ultraschallbehandlung zwei mechanische Aufschlussverfahren verwendet, die effizient und kostengünstig einen hohen Aufschlussgrad liefern.

Der Hochdruckhomogenisator mit einem Totvolumen von 10 ml findet beim präparativen Zellaufschluss Verwendung. 10 g Bakteriensediment werden in 40 ml Proteaseninhibitoren enthaltenden Aufschlusspuffer resuspendiert. Die Suspension wird in 6 Zyklen bei 1 000 bar homogenisiert, wobei das Gerät von außen gekühlt und zuvor mit eiskaltem Aufschlusspuffer gespült wird. Das Zellhomogenat wird ebenfalls 30 Minuten lang bei 48 000 g kalt zentrifugiert und der proteininhaltige Überstand für die Aufreinigung abgetrennt.

Im analytischen Maßstab werden 1-2.5 g Bakteriensediment in 10 ml Aufschlusspuffer mit einem Proteaseninhibitorencocktail (complete, Roche) resuspendiert und bei 30% Leistung viermal 2.5 Minuten auf Eis mit je 2.5 Minuten Pause zwischen den Zyklen sonifiziert. Anschließend wird die Suspension kalt 30 Minuten lang in der Ultrazentrifuge bei 50 000 g geklärt und die Fusionsproteine im Überstand aufgereinigt.

3.3.8 Affinitätschromatographie

Bei Ni^{2+}-NTA Agarose werden die His-Fusionsproteine schrittweise durch eine ansteigende Imidazolreihe von 100 mM, 200 mM und 300 mM eluiert. Die an Glutathione Sepharose™ 4 FF gebundenen GST-Fusionsproteine werden durch 5, 10 bzw. 20 Minuten lange Inkubationen mit dem glutathionhaltigen Elutionspuffer abgelöst.

Zur präparativen Aufreinigung wird der bakterielle Proteinrohextrakt nach Passage eines 0.45 µm Filters mit einer Flussrate von 15 cm/h bei 4°C auf eine in Aufschlusspuffer äquilibrierte Ni^{2+}-Sepharose (HisTrap)-Säule oder Glutathion-Sepharose (GSTrap)-Säule an der Chromatographieanlage Biologic HR geladen. Der Säulendurchfluss wird in einer Messzelle spektrophotometrisch analysiert. Bei 280 nm absorbierende Volumen werden für die Analyse mittels SDS-PAGE durch den Fraktionssammler aufgefangen. Zur Entfernung unspezifisch gebundener Substanzen wird die Säule nach der Beladung mit Aufschlusspuffer gespült, bis die Absorption bei 280 nm im Durchfluss wieder den Ausgangswert erreicht hat.

Das Fusionsprotein His-Importin α2 wird mit einer Flussrate von 15 cm/h bei 4°C über einen kontinuierlichen Gradienten von 20 Säulenvolumen von der Ni^{2+}-Sepharose-Säule eluiert, in dem über ein Mischventil der Anteil des Elutionspuffers im Aufschluss-/Elutions-puffer-Gemisch gleichmäßig von 0% auf 100% gesteigert wird. His-Importin α2 löst sich bei 37% (v/v) Elutionspuffer von der Säule. Anschließend wird mit zehn Säulenvolumen Elutionspuffer gewaschen und die Säule in Aufschlusspuffer äquilibriert.

Für die Elution eines möglichst reinen His-Importin β1 wird ein Stufenprotokoll angewendet, da dieses Protein in der Ionenaustauschchromatographie seine Funktionalität verliert. Nach Beladung der Säule wird diese mit 10 Säulenvolumen 4% (v/v) Elutionspuffer in Aufschlusspuffer gewaschen und stärker gebundene Kontaminanten mit 4 Säulenvolumen 10% (v/v) Elutionspuffer entfernt. Anschließend wird die Säule wieder in fünf Säulenvolumen 4% (v/v) Elutionspuffer äquilibriert und das Fusionsprotein His-Importin β1 durch fünf Säulenvolumen 50% (v/v) Elutionspuffer in konzentrierter Form eluiert. Nach einer letzten Waschung mit fünf Säulenvolumen Elutionspuffer wird die Säule in Aufschlusspuffer äquilibriert.

Aus den zu analysierenden Fraktionen werden Proben mit SDS-Probenpuffer aufgekocht und auf einem SDS-Polyacrylamidgel aufgetrennt, welches anschließend angefärbt oder nach dem Proteintransfer auf eine Membran immunologisch analysiert wird. Die das Fusionsprotei-
in beinhalten den Fraktionen werden vereinigt und die Proteinkonzentration mit der Methode nach Bradford bestimmt.

3.3.9 Enzymatische Spaltung von GST-Fusionskonstrukten

Aufgrund der hochspezifischen Bindung zwischen Ligand und Analyt lassen sich die rekombinan ant exprimierten GST-Fusionskonstrukte sauber aufreinigen. Proteine können jedoch durch die Kopplung an die 26 kDa große Glutathion-S-Transferase in ihrer Funktion beeinträchtigt werden. Deshalb besitzen die Vektoren der pGEX-T-Familie C-terminal der GST-Domäne eine Thrombinschnittstelle. Dabei bietet es sich an, das an der Matrix gebundene Fusionskonstrukt abzuspalten und von GST getrennt zu eluieren. Die Serin-Proteasen wie Thrombin oder Faktor Xa lassen sich wiederum mittels Affinitätschromatographie entfernen.

Das Thrombin wird über die Bindung an Benzamidin-Sepharose™ entfernt. Dazu werden die das Zielprotein beinhal tenden Fraktionen vereinigt und auf 500 mM NaCl eingestellt, um die unspezifische Bindung des Zielproteins an die Affinitätsmatrix zu minimieren. Die Hälfte dieses Volumens an Benzamidin-Sepharose™-Suspension wird 5 Minuten bei 500 g sedimentiert und dreimal mit dem fünffachen Volumen PBS/0.5 M NaCl gewaschen. Anschließend werden die Matrixkugelchen mit der thrombinhaltigen Zielproteinlineitung für ein bis zwei Stunden bei 20 U/min und Raumtemperatur inkubiert. Danach wird die Suspension fünf Minuten lang bei 500 g sedimentiert und die Benzamidin-Sepharose™ zweimal mit dem einfachen Volumen PBS/0.5 M NaCl gewaschen. Die drei Überstände werden vereinigt und gegen den IEX-Startpuffer dialysiert.

Anschließend wird die auf der Säule verbliebene Glutathion-S-Transferase mit ebenfalls fünf Säulenvolumen GST-Elutionspuffer entfernt und die Säule in fünf Säulenvolumen Auf schlusspuffer equilibriert.

3.3.10 Dialyse und Aufkonzentration der Proteinlösung

Die Dialyse basiert auf der Diffusion niedermolekularer Substanzen durch eine semipermeable Membran, die das Dialysegut umschließt. In diesem konzentrationsgetriebenen Pro-
zess stellt sich ein Gleichgewicht zwischen dem Dialysat und der umgebenden Pufferlösung ein. Aufgrund des vielfach größeren Volumens und durch mehrmaligen Austausch der Lösung werden Ionen und Moleküle, die kleiner als die Ausschlussgröße der Membran sind, schonend aus dem Dialysegut entfernt.

Zunächst wird der Dialyseschläuch mit einer Ausschlussgröße von 6-8 kDa in der geeigneten Länge (1.7 cm/ml Dialysat) für 15 Minuten in a.bidest. gekocht und dreimal in a.bidest. gewaschen. Anschließend wird das Dialysat in den kalten Schlauch gegeben und bei 4°C unter langsamem Rühren dreimal eine Stunde gegen je 800 ml geeigneten Puffer dialysiert.

3.3.11 Ionenaustauschchromatographie

Die affinitätss chromatographisch gereinigten Fusionsproteine müssen abhängig von der ionischen Stärke des Elutionspuffers mittels Dialyse in den IEX-Startpuffer überführt werden. Zur Entfernung von Präzipitataten wird die Probe sterilfiltriert, bevor sie mit einer Flussrate von 1.5 cm/h auf den Ionenaustauscher geladen wird. Anschließend wird die Säule mit dem fünffachen Säulenvolumen Startpuffer gewaschen. Die Proteine werden über einen kontinuierli-
3 Material und Methoden

3.3.12 Gelpermeationschromatographie

Die zur Verfügung stehenden Gelfiltrationssäulen Superdex 75 und Superdex 200 weisen einen Trennbereich für globuläre Proteine von 3-70 kDa bzw. 10-600 kDa auf. Über diese Säulen werden zwischen 0.1 ml und 1 ml Probe bei 4° C und einer Flussrate von 0.15 cm/h aufgetrennt. Die Elution erfolgt isokratisch mit Puffer GPC1. Für die Gelfiltration von Ntf-2 wird auch der Puffer GPC2 verwendet.

Die bei 280 nm absorbierenden Fraktionen werden gesammelt und mittels SDS-Polyacrylamidgel analysiert. Die die Zielproteine beinhaltenden Fraktionen werden vereinigt und die Proteinkonzentration spektrophotometrisch bestimmt. Anschließend werden die Proteine mit 250 mM Saccharose versetzt, schockgefroren und bei -80°C gelagert.

3.3.13 Kovalente Fluoreszenzmarkierung von Antikörpern und Proteinen

Die Markierung von Proteinen mit Fluorophoren erfolgt vorwiegend über N-Hydroxysuccinimid (NHS)-Ester-Kopplung an primäre Amine. Dabei wird durch einen nukleophilen An-

Wenn wie im Fall der aus basischen Aminosäuren bestehenden Kernlokalisationssequenz (NLS) eine Kopplung an die primären Amine unerwünscht ist, kann die Konjugation auch über oxidierte Carbohydrate, Carboxyl- oder Sulfhydrylgruppen erfolgen. Maleimide bilden mit Thiolgruppen bei einem pH-Wert zwischen 6.5 und 7.5 über einen nukleophilen Angriff eine Thioetherbindung. Ähnlich den NHS-Estern werden die Maleimide bei einem alkalischen pH-Wert (> 8.0) abgebaut.

Die Gelfiltrationssäule wird während der Kopplungsreaktion aus den im Reagenssystem enthaltenen Komponenten hergestellt. Das aus porösen Polyacrylamid-Kügelchen bestehende BioGel P-30 (Bio-Rad GmbH) bildet die stationäre Phase der Säule und besitzt einen Trennbereich von 2.5-40 kDa. Die rund 144 kDa schweren IgG-Antikörper passieren die Gelfiltrationssäule im Ausschlussvolumen, wohingegen die ungebundenen Farbstoffmoleküle mit einer Größe von 0.7 kDa bei Alexa Fluor® 532 bzw. ~1.2 kDa bei Alexa Fluor® 633 die gesamte stationäre Phase durchqueren.

Für die Konjugation eines Antikörpers mit einem Quantenpunkt-Nanokristall muss dieser zunächst mit einem hetero-bifunktionalen Binder versehen werden. Die Polymerhülle der

Für die Konjugation der rekombinant exprimierten Proteine werden die Sulfhydrylgruppen zunächst reduziert. Im Gegensatz zu Dithiothreitol oder β-Mercaptoethanol beeinträchtigt das thiolfreie Reduktionsmittel Tris(2-Carboxyethyl)phosphin die folgende Kopplungsreaktion nicht.

Die Markierungseffizienz der Kopplungsreaktion wird spektrophotometrisch bestimmt. Dazu wird zunächst die Extinktion der Probe bei 280 nm A_{280} und beim Anregungsmaximum des Fluorophors $A_{\text{Ex max}}$ gemessen. Aus diesen Werten wird die Proteinkonzentration c_{Protein} der Lösung mit Hilfe der Gleichung (6) berechnet. Der Korrekturfaktor k_f berücksichtigt die Absorption des Fluorophors bei 280 nm und beträgt 0.09 für Alexa Fluor® 532 bzw. 0.55 für Alexa Fluor® 633.

$$c_{\text{Protein}} = \frac{(A_{280} - (A_{\text{Ex max}} \times k_f)) \times D_f}{\varepsilon_{\text{Protein}} \times d}$$ \hspace{1cm} (6)
3. Material und Methoden

D_{f} ist der Verdünnungsfaktor der gemessenen Probe und die Variable d steht für die Schichtdicke der Küvette. Die Extinktionskoeffizienten $\varepsilon_{\text{Protein}}$ der exprimierten Fusionskonstrukte sind in Tab. 5 aufgelistet ($\varepsilon_{\text{IgG}} = 203 000 \text{ M}^{-1}\text{cm}^{-1}$). Nach Berechnung der Proteinkonzentration lässt sich der Markierungsgrad in Anzahl der Fluorophore pro Anzahl der Moleküle bestimmen (7).

\[
\text{Markierungsgrad} = \frac{A_{\text{Ex max}} \times D_{f}}{\varepsilon_{\text{Protein}} \times d}
\]

(7)

Tab. 5: Anregungs- und Emissionsmaxima der konjugierten Alexa Fluor® Farbstoffe mit den entsprechenden Extinktionskoeffizienten. Für die Qdot® 655 sind die für die beiden verwendeten Laserlinien bekannten Extinktionskoeffizienten angegeben.

<table>
<thead>
<tr>
<th>Fluorophor</th>
<th>Anregungs-maximum</th>
<th>Emissions-maximum</th>
<th>Extinktions-koeffizient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa Fluor® 532</td>
<td>530 nm</td>
<td>554 nm</td>
<td>81 000 M^{-1}cm^{-1}</td>
</tr>
<tr>
<td>Alexa Fluor® 633</td>
<td>632 nm</td>
<td>647 nm</td>
<td>100 000 M^{-1}cm^{-1}</td>
</tr>
<tr>
<td>Alexa Fluor® 633 C5 maleimid</td>
<td>622 nm</td>
<td>640 nm</td>
<td>143 000 M^{-1}cm^{-1}</td>
</tr>
<tr>
<td>Qdot® 655</td>
<td>bei 532 nm</td>
<td>bei 638 nm</td>
<td>2 000 000 M^{-1}cm^{-1}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>800 000 M^{-1}cm^{-1}</td>
</tr>
</tbody>
</table>

3.3.14 Extraktion des Zytosols aus Rattenleberzellen

Die frisch entnommene Leber wird in RLE-Aufschlusspuffer gewaschen und gewogen. Anschließend wird sie mit einer Schere zerkleinert und in 10 ml Proteaseninhibitoren enthaltendem RLE-Aufschlusspuffer pro g Leber bei 4°C homogenisiert. Die Plasmamembranen, die Zellkerne und Gewebereste werden durch eine 10-minütige Zentrifugation bei 6 000 g und 4°C abgetrennt. Der Überstand wird zur Entfernung der Organellen eine Stunde lang bei 100 000 g kalt zentrifugiert. Die im Überstand noch vorhandenen Vesikel werden durch eine dritte Zentrifugation bei 180 000 g und 4°C entfernt. Die zytoplasmatischen Proteine im Überstand werden durch die langsame Zugabe von Ammoniumsulfat zu einer Endkonzentration von 60% (w/v) unter Rühren kalt präzipitiert und weitere 30 Minuten kalt gerührt. An-
schließend wird das Präzipitat 30 Minuten lang bei 7000 g kalt zentrifugiert. Das Sediment wird in 0.5 ml RLE-Dialysepuffer pro g Leber resuspendiert. Das Ammoniumsulfat wird mittels zweier Dialysechritte entfernt. Dazu wird das Dialysegut für drei Stunden und nochmals über Nacht gegen das fünfhundertfache Volumen RLE-Dialysepuffer bei 4°C dialysiert. Das Dialysat wird eine Stunde lang bei 100 000 g kalt zentrifugiert. Der Überstand wird aliquo-
tiert, in flüssigem Stickstoff schockgefroren und bei -80°C gelagert.

3.4 Zellbiologische Methoden und nahfeldoptische Mikroskopie

3.4.1 Puffer und Lösungen
Alle Lösungen werden entweder autoklaviert oder aus sterilen Stammlösungen und Aqua
bidest. angesetzt. Bei der Verwendung von nicht autoklavierbaren Chemikalien, wie z.B. Me-
thanol bzw. Glukose, werden die Lösungen durch Sterilfiltration (Ø 0.2 µm) entkeimt.

- Alzianblau Beschichtungslösung
 1% (w/v) Alzianblau, 1% (v/v) Essigsäure.
- DAPI-Kernfärbungslösung
 1 µg/ml DAPI in PBS.
- Digitonisierungslösung
 40 µg/ml Digitonin in Transportpuffer.
- DMEM-Komplettmedium (Dulbecco’s Modified Eagle’s Medium)
 DMEM, 10% (v/v) FCS, 100 U/ml Penicillin, 100 µg/ml Streptomycin, sterilfiltrieren.
- Einfrierlösung
 10% (v/v) DMSO in DMEM Komplettmedium, sterilfiltrieren.
- KP (Kernpuffer)
 10 mM NaCl, 90 mM KCl, 2 mM MgCl₂, 0.1 mM CaCl₂, 1 mM N-Hydroxyethylendiamin-
 otriessigsäure (HEDTA), 10 mM Heps, 100 U/ml Penicillin, 100 µg/ml Streptomycin, pH 7.3.
- KP-BSA
 1% (w/v) Rinderserumalbumin (BSA) in KP.
- KP-0.05% (v/v) Tween20
 0.05% (w/v) Tween20 in KP.
- MHL (Modifiziertes Heps-Leibovitz)-Medium
 15 mM Heps, 2 mM L-Glutamin, 5% (v/v) FKS, 60% (v/v) Leibovitz’s L-15, 100 U/ml
 Penicillin, 100 µg/ml Streptomycin.
• Mowiolgebrauchslösung
 3 g Mowiol 4-88 in 10 ml PBS bei Raumtemperatur über Nacht rühren. Anschließend
 5 ml Glycerin hinzugeben und weitere acht Stunden rühren. Den pH-Wert mit 1 N NaOH
 auf 8.0 einstellen und 15 µl Thiomersal als Konservierungsmittel zugeben. Die fertige
 Mowiolgebrauchslösung 15 Minuten bei 4000 rpm zentrifugieren, aliquotieren und bei
 −20°C lagern.
• PBS
 137 mM NaCl, 2.7 mM KCl, 6.5 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.5.
• PFA-Fixierlösung
 4% (v/v) Paraformaldehyd in PBS.
• PFA-Glutar-Fixierlösung
 4% (v/v) Formaldehyd und 0.1% (v/v) Glutaraldehyd in PBS.
• RIPA-Puffer
 50 mM Tris/HCl pH 7.5, 150 mM NaCl, 1% (w/v) Natriumdesoxycholate, 0.1% (w/v)
 SDS, 1% (v/v) Triton-X, 10 mM EDTA, 10 mM EGTA.
• Transportpuffer
 50 mM Heps, 110 mM Kaliumacetat, 5 mM Natriumacetat, 2 mM Magnesiumacetat,
 1 mM EGTA, 2 mM DTT, pH 7.3.
• Transportsubstratlösung
 1 µM Transportsubstrat (z.B. GNG oder Ntf-2-Alexa633), 0.5 µM Transportfaktoren
 (z.B. Importin α und Importin β) oder 50% (v/v) zytosolischer Rattenleberextrakt,
 1 µM Kontrollsubstrat (z.B. BSA-Alexa488, BSA-Cy5 oder Texas Red® Dextran),
 1 mM ATP, 1 mM GTP, 5 mM Phosphokreatin, 10 U/ml Creatin-Phosphokinase,
 complete Proteaseninhibitorencocktail in Transportpuffer oder KP-BSA.

3.4.2 Kultivierung und Passagieren von murinen L-Zellen
 Murine L-Zellen werden bei 37°C unter 7% (v/v) CO2-Begasung in DMEM-Komplett-
 medium kultiviert. Konfluente Zellen werden mit Trypsin/EDTA von der Kulturschale abge-
 löst. Nach einigen Minuten sind die Zellen vereinzelt und können in geeigneter Verdünnung
 in neue Gewebekulturflaschen ausgesät werden.

3.4.3 Einfrieren und Auftauen von Zellen
 Zum Einfrieren von Zellen werden trypsinierte Zellen einer konfluienten Gewebekultur-
 schale 3 Minuten lang bei 200 g und 22°C sedimentiert. 5x 10⁶ Zellen werden in 1 ml
 DMEM-Komplettmedium resuspendiert und zusammen mit 1 ml Einfrierlösung in ein Ein-
frierröhrchen überführt. Das schrittweise Einfrieren mit einer Rate von 1°C pro Minute bis zu einer Temperatur von -80°C erfolgt in einer mit Isopropanol gefüllten Kryo-Vorrichtung. Nach einer Lagerungszeit von sieben bis zehn Tagen bei -80°C werden die Zellen zur Langzeitlagerung in flüssigen Stickstoff überführt.

In flüssigem Stickstoff sind die Zellen mehrere Jahre lagerfähig, ohne an Vitalität einzubüßen. Sie können bei Bedarf jederzeit aufgetaut werden.

Zum Auftauen von Zellen wird der Inhalt eines Einfrierröhrchens rasch erwärmt und in eine frische 25 cm² Gewebekulturschale mit 5 ml vorgewärmtem Komplettmedium überführt. Sobald sich die Zellen auf dem Boden der Kulturschale abgesetzt haben, wird das Medium gewechselt, um das in der Einfrierlösung enthaltene DMSO zu entfernen.

3.4.4 Funktionsprüfung rekombinant exprimierter Proteine mittels Digitoninpermeabilisierter L-Zellen und ganzer Oozytenkerne

oder Laserscanningmikroskop werden die Zellen nach dreimaligem Waschen mit PBS tropfenweise mit der Mowiolgebrauchsflüssigkeit benetzt und luftblasenfrei eingebettet.

3.4.5 Froschhaltung

3.4.6 Froschoperation zur Gewinnung der Oozyten

Im Ovar eines adulten *Xenopus laevis*-Weibchens reifen nach der ersten meiotischen Teilung arretierte Oozyten heran. Progesteron induziert in den ausgewachsenen Stadium VI-Oozyten die zweite meiotische Teilung; der Zellkern wird aufgelöst und der Reifungsprozess abgeschlossen (Smith, 1989).

Das Froschweibchen wird für etwa 20 Minuten im Tauchbad in einer kalten 0.25% (w/v) Aminobenzolsäureesterlösung narkotisiert. Die Betäubung wird an der totalen Erschlaffung der Beinmuskulatur überprüft. Das Tier wird mit Leitungswasser abgespült und im gereinigten Operationsfeld auf ein feuchtes Stück Küchenrolle gebettet. Die von der Operation unberührten Körperteile werden ebenfalls mit einem feuchten Tuch bedeckt. Mit einem sterilen Skalpell wird die Bauchdecke durch einen 1 cm langen Schnitt, 2-3 cm parallel zur Medianlinie und 2-3 cm oberhalb der Leistenbeuge, geöffnet. Die darunter liegende Facia ventralis und die geschichtete Bauchmuskulatur werden mit einer Schere durchschnitten. Durch diese
Öffnung wird ein Teil der fingerförmigen Ovariallappen mit Hilfe einer abgewinkelten Pinzette ergriffen, mit einer Schere abgetrennt und sofort in eine Petrischale mit MHL-Medium überführt.

Die Operationswunde wird von Oozyten und Blut gereinigt und mit synthetischem, absorbierbarem Nahtmaterial (Surgicryl USP 4/0 EP 1.5) verschlossen. Dazu werden die Bauchmuskulatur und die Bauchdecke separat durch je zwei Stiche genäht und die Naht mit einem chirurgischen Knoten gesichert. Anschließend wird das Tier gründlich mit Leitungswasser abgespült, um Narkosemittelreste vollständig zu entfernen und zum Aufwachen in ein kleines, teilweise abgedecktes Becken gesetzt. Nach ein bis zwei Stunden wird das Froschweibchen für eine Nacht in ein 0.5% (w/v) Meersalz enthaltendes, epidermales Regenerationsbad überführt, bevor es in die Aquarienanlage zurückgesetzt wird.

Das operativ entfernte Ovarstück wird je nach Verwendung unterschiedlich aufbewahrt. Die Oozyten können für Antikörperfärbungen in MHL-Medium bei 4°C bis zu einer Woche gelagert werden. Für Transportmessungen werden am besten frisch entnommene Oozyten verwendet. Das restliche Ovarstück wird bei 24°C und 7% CO2-Begasung aufbewahrt, wobei das MHL-Medium täglich gewechselt wird.

3.4.7 Kernmembranpräparation und Antikörperfärbung

Im operativ entfernten Ovarlappen sind Oozyten aller Reifungsstadien vorhanden (Abb. 16). Unter dem Stereomikroskop werden die gewünschten Oozyten (Stadium VI) in Kernpuffer (KP) mittels feiner Pinzetten vereinzelt. Dabei werden nur solche Oozyten ausgewählt, die eine gleichmäßige Färbung innerhalb der animalen und vegetativen Hemisphäre aufweisen.

Für die Markierung der Kernmembran wird der Zellkern wahlweise mit dem lipophilen Farbstoff Dil C18(3) inkubiert. Dil ist ein Dialkylcarbocyanin, das sich in die Lipiddoppelschicht einlagert. Das Absorptionsmaximum liegt bei 549 nm und das Emissionsmaximum bei
Material und Methoden

565 nm. Der Zellkern wird 30 Minuten lang in KP-BSA mit 0.05% (w/v) DiI angefärbt und anschließend dreimal in KP-BSA gewaschen.

Bei Präparaten, die noch am selben Tag nahfeldoptisch untersucht werden, verwendet man, soweit vorhanden, mit Fluorophoren konjugierte primäre Antikörper.
Für rasterkraftmikroskopische Aufnahmen werden die Kernmembranen entweder mit a.dest. gespült und getrocknet oder nach der Antikörperfärbung fünfzehn Minuten lang mit Phalloidin (1:100) inkubiert, dreimal mit KMP gespült, fünfzehn Minuten lang in PFA-Glutar-Fixierlösung fixiert und je dreimal mit PBS und KMP gewaschen.

Für die immunologische Analyse werden die gereinigten Zellkerne durch Auf- und Abpipettieren in RIPA-Puffer homogenisiert und mit SDS-Probenpuffer denaturiert.

3.4.8 Herstellung der Flüssigkeitskammer

Auf dem mikrostrukturierten Deckglas wird ein 3 mm starker und 1 mm hoher Rand aus Polydimethylsiloxan (PDMS) aufgebracht (s. Abb. 17). Zunächst wird in Xylol gelöstes dimethylvinylisiertes Siloxan mit einem Zehntelvolumen Platin-Katalysator (Sylgard® 184) vermischt, eine Stunde ent gast und in eine Teflonform gegossen. In jede Ecke wird ein magnetischer Quader mit 2 mm Kantenlänge gelegt, damit die Flüssigkeitskammer rutschfest auf dem Probenteller verankert werden kann. Nach der einstündigen Polymerisation bei 70°C wird das PDMS-Elastomer vorsichtig der Teflonform entnommen, mit ein wenig flüssigem Siloxan- gemisch als Klebstoff auf dem mikrostrukturierten Deckglas aufgebracht und durch eine einstündige Inkubation bei 70°C fest verbunden. Die fertigen Flüssigkeitskammern können staubfrei mehrere Monate gelagert werden.
Vor der Kernpräparation wird die Oberfläche der Flüssigkeitskammern durch eine 30-
minütige Plasmaätzung hydrophilisiert und durch eine mindestens einstündige Inkubation bei
4°C mit Poly-L-Lysin (1 mg/ml) beschichtet.

3.4.9 Herstellung der Dreiecksapertursonden

Die Güte der nahfeldoptischen Sonde bestimmt maßgeblich die Qualität der Messung. Der
Öffnungswinkel beeinflusst die Lichtstärke der Sonde und der Aperturdurchmesser ihre opti-
sche Auflösung. Die Dichtigkeit des Metallfilms wirkt sich positiv auf das Signal-Rausch-
Verhältnis der Messung aus. Die Stärke der aufgedampften Metallschicht bestimmt die Fläche
des Sondenplateaus. Die Vergrößerung des Plateaus verringert die topographische Auflösung.

Detaillierte Angaben zum Herstellungsprozess und der Sondencharakterisierung findet
man in Dießel (2006). In der folgenden Beschreibung sind die Herstellungsschritte kurz dar-
gestellt.

Die Dreiecksapertursonde wird durch Brechen eines gereinigten Deckglases hergestellt.
Das Glas wird mit einem Diamantmesser parallel zu einer Kante eine Drittel Kantenlänge
weit eingeritzt und durch leichten Druck gebrochen. Genauso wird eine zweite Bruchkante
erzeugt, die orthogonal zur ersten verläuft, wobei im Schnittpunkt der beiden Bruchkanten
eine dritte, senkrecht durch das Glas verlaufende Kante entsteht. Diese Quaderspitze bildet
den Körper der zukünftigen Sonde, der zwecks Massenreduktion auf eine Kantenlänge von
unter einem Millimeter getrimmt wird. Anschließend wird gegenüber der Quaderspitze eine
Glasfaser im Winkel von 45° mit UV-härtendem Kleber befestigt, wodurch ein lichtdurchläs-
siges Prisma entsteht, das der Lasereinkoppelung dient. Die Sonde wird in einer Elektronen-
strahl-Verdampfungsanlage mit einer 130-150 nm starken Aluminiumschicht bedampft und
für die Abstandskontrolle auf einer piezoelektrischen Stimmgabel befestigt, die ihrerseits auf
einem Metallplättchen angebracht wird. Die Apertur wird entweder durch die Entfernung der
Spitze mit einem fokussierten Ionenstrahl oder durch kontrolliertes Drücken gegen eine harte
Oberfläche erzeugt, wobei der Aluminiumfilm an der Seite gedrängt und das Plateau verbreitet
wird. Anschließend wird die Glasfaser entfernt und die Sonde nach Einbau in den SNOM-
Kopf charakterisiert.

3.4.10 Messungen am nahfeldoptischen Mikroskop

Nahfeldoptische Messungen an biologischen Systemen sind insbesondere unter Flüssig-
keit sehr selten (Höppener et al., 2005) und speziell an freitragenden Strukturen nicht bekannt.
Ein wichtiges Erfolgskriterium für derartige Untersuchungen ist die Stabilität des Systems, da
während der Rasterung der Probe auftretende Drifte die Messung beeinflussen und das Mess-
ergebnis beeinträchtigen. Die erste Hürde stellt allerdings die Annäherung des Sondenplateaus auf wenige Nanometer an die Membran ohne Kraftabstandskontrolle dar.

4 Ergebnisse

4.1 Rekombinante Expression von XLeF-1 und XTcf-1

Für die Untersuchung des Kerntransports mittels nahfeldoptischer Mikroskopie wurden heterolog exprimierte Proteine eingesetzt. Dabei stellte die Induktion der HMG-Box-Transkriptionsfaktoren XLeF-1 und XTcf-1 im präparativen Maßstab eine besondere Herausforderung dar, da sie rekombinant sowohl in Bakterien als auch in eukaryotischen Zellen nur schwach exprimiert werden (Dr. A. Schambony und Prof. Dr. M. Waterman, persönliche Mitteilungen). Die niedrige Expressionsrate ist für elektrophoretische Mobilitätssprungsanalysen (EMSA) (Pukrop et al., 2001) oder Untersuchungen mittels Immun-Blot (PD Dr. D. Gradl, persönliche Mitteilung) hinreichend. In der nahfeldoptischen Fluoreszenzkorrelationsspektroskopie (noFCS) benötigt man dagegen aufgrund des kleinen, evaneszenten Detektionsvolumens fluoreszenz markierte Proteine im mikromolaren Maßstab.

4.1.1 Klonierung der Expressionskonstrukte und deren Induktion

In der vorliegenden Arbeit wurden XLeF-1 und XTcf-1 aus den zur Verfügung stehenden Konstrukten in geeignete Expressionsvektoren umkloniert. Der Vektor pQE-30 besitzt ein T5-Promotor-Transkriptions-Translationssystem, das durch zwei lac-Operatorsequenzen die basale Expression des Fusionsproteins effizient reprimiert. Im Expressionssystem des Vektors pRSET dagegen steuert der lac-Repressor die Expression der T7-RNA-Polymerase, die unter der Kontrolle des lacUV5-Promotors als Prophage (λDE3) in den Expressionsstamm integriert wurde. Die Expression des Fusionsproteins wiederum steht unter der Kontrolle des T7-Promotors.

Des Weiteren wurden XLeF-1 und XTcf-1 in pQE-30 kloniert, wobei XLeF-1 C-terminal um die Aminosäuren RGSC und XTcf-1 um ASC erweitert wurden. Dazu wurden beide cDNAs mittels PCR amplifiziert und durch geeignete Primer 5‘ der kodierenden Sequenzen eine KpnI- sowie 3‘ eine SalI-Schnittstelle so eingefügt, dass zwischen dem Leseraster der N-terminalen Polyhistidin-Markierung und dem der C-terminal zu insertierenden Fragmente keine Verschiebung auftrat. Nach dem KpnI-SalI-Restriktionsdoppelverdau wurden die DNA-
Fragmente gerichtet in pQE-30 kloniert. Die korrekte Insertion wurde für XLef-1 durch einen Verdau mit *EcoRI* überprüft. Das erwartete Bandenmuster (766 und 3822 bp) stimmte mit dem beobachteten überein (Abb. 18d). Die Klonierung von XTcf-1 in pQE-30 wurde durch eine Restriktionsanalyse mit *SacI* validiert, wobei abermals die erwarteten Banden (1054 und 3507 bp) auf dem Agarosegel zu sehen waren. Die Sequenzierung der beiden Konstrukte förderte für das XTcf-1 pQE-30-Konstrukt eine Punktmutation an Position 225 (Methionin zu Threo-

Abb. 18: Plasmidkarten und Restriktionsverdau der klonierten Expressionskonstrukte. Die XLef-1-DNA wurde C-terminal um die Peptidsequenz RGSC erweitert und über *XhoI* in den Vektor pRSET (a) bzw. über *KpnI* und *SalI* in den Vektor pQE-30 (b) insertiert. Die C-terminal um die Peptidsequenz ASC verlängerte XTcf-1-DNA wurde über *KpnI* und *SalI* in pQE-30 (c) ligiert. Alle Fusionsproteine tragen N-terminal eine 6xHis-Affinitätsmarkierung. (d) Der Restriktionsverdau des XLef-1 pRSET Konstrucks mit dem Enzym *XhoI* schneidet das insertierte Fragment (1.14 kb) aus dem Vektor (2.9 kb). Das Enzym *EcoRI* spaltet das XLef-1 pQE-30-Konstrukt in zwei Fragmente (766 bp und 3.8 kb). Das XTcf-1 pQE-30-Konstrukt wird durch das Restriktionsenzym *SacI* ebenfalls in zwei Fragmente geteilt (1054 bp und 3.5 kb). Als Größenstandard wurde der DNA-Molekulargewichts-marker 2-log auf dem 1.5%-igen Agarosegel aufgetragen.
Die Induktionen der XLef-1 und XTcf-1 pQE-30-Konstrukte im *E. coli*-Stamm M15 ließen sich ebenso wie die Induktion von XLef-1 pRSET in BL21 (DE3)-Zellen nicht auf einem Coomassie gefärbten Polyacrylamidgel visualisieren (Abb. 19). Für die XLef-1-Fusionskonstrukte wurden aufgrund der cDNA Molekulargewichte von 46.6 kDa (pRSET) und 44 kDa (pQE-30) berechnet (Tab. 14, Anhang 8.2). Immun-Blot-Analysen zeigen XLef-1 im Bereich von 55 kDa (Abb. 21b und PD Dr. D. Gradl, persönliche Mitteilung). Das XTcf-1-Fusionsprotein wird aufgrund seines berechneten Molekulargewichts von 43.4 kDa nach der elektrophoretischen Auftrennung in derselben Größe wie XLef-1 erwartet.

a) XLef-1 pRSET b) XLef-1 pQE-30 c) XTcf-1 pQE-30

Abb. 19: Die Induktion der klonierten Konstrukte zeigte keine nennenswerte Expression der Fusionsproteine. XLef-1 pRSET (a) wurde mit 1 mM IPTG vier Stunden lang bei 30°C in BL21 (DE3)-Zellen (OD₆₀₀ = 0.6) induziert. Die Induktion von XLef-1 pQE-30 (b) und XTcf-1 pQE-30 (c) erfolgte in M15-Zellen. Keines der Coomassie-gefärbten Polyacrylamidgele zeigte eine im Laufe der Induktion stärker werdende Bande in der erwarteten Größe (Pfeilspitze). Als Größenstandard wurde der Proteinstandard SDS-6H₂ (Sigma GmbH) aufgetragen.

Abb. 20: β-Catenin wird in BL21 (DE3)-Zellen stark exprimiert. Das GST-Fusionsprotein wurde mit 1 mM IPTG vier Stunden lang bei 30°C induziert. Bereits nach einer Stunde war die Expression von β-Catenin zu sehen (Sternchen). Die Proteinzunahme innerhalb der vierten Stunde war weniger stark als zuvor, so dass für die rekombinante Expression von β-Catenin eine Induktionsspanne von vier Stunden als hinreichend anzusehen ist. Als Größenstandard wurde SDS-6H₂ (Sigma GmbH) aufgetragen.
Der schlechten Induktion von XLef-1 und XTcf-1 können mehrere Ursachen zugrunde liegen. Möglicherweise interagiert die HMG-Box als positiv geladene DNA-Bindungsstelle mit genomischer DNA und reprimiert die Transkription bakterieller Gene oder sie bindet Polyanionen, wie beispielsweise tRNAs, und beeinträchtigt dadurch biochemische Prozesse innerhalb der Wirtszelle. Darüber hinaus kann die Translationsrate von XLef-1 und XTcf-1 durch die Existenz bestimmter Codons limitiert werden, die von in *E. coli* selten vorkommenden tRNAs erkannt werden. Auch der Mangel an geeigneten Chaperonen könnte durch Missfaltung zur Degradation des Zielproteins führen oder ionische Interaktionen durch fehlende Maskierung der HMG-Box fördern. Zudem besteht die Möglichkeit, dass die Bindung des Transkriptionsfaktors an Lef-1-Bindungselemente innerhalb der Gensequenz spezifisch die eigene Transkription reprimiert.

Die fundamentale Mutation der HMG-Box stellt dabei keine Lösung der Expressionsproblematik dar, weil dadurch die Besonderheit dieser Transkriptionsfaktoren zerstört würde und dies dem Einsatz eines trunkierten oder gar eines artifiziellen Proteins gleich käme.

4.1.2 Optimierung der Induktion durch unterschiedliche *E. coli* Stämme

Die Codonanalyse der XLef-1-Sequenz zeigte, dass sieben der achtmverständliche Arginine als agg codiert waren und damit von einer in *E. coli* seltenen tRNA erkannt wurden. Insbesondere die beiden direkt aufeinanderfolgenden Arginine in der HMG-Box stellten dadurch einen möglichen translationalen Engpass dar, der im Extremfall zum Kettenabbruch führen kann. Die Gensequenz von XTcf-1 beinhaltete das Codon agg viermal, wovon drei Arginine in der HMG-Box lagen (s. Anhang 8.1).

Der Bakterienstamm Rosetta™ besitzt tRNAs für eukaryotische, in *E. coli* seltene Codons.

Abb. 21: XLef-1 (pQE-30) wurde im *E. coli* Stamm Rosetta™ langsam und schwach exprimiert. XLef-1 wurde mit 1 mM IPTG bei 25°C in Rosetta™-Zellen induziert. Das mit Coomassie gefärbte Polyacrylamidgel (a) zeigte innerhalb von sechs Stunden keine Proteinbande in der erwarteten Größe (Sternchen). Die schwache Expression von XLef-1 wurde erst auf dem Immun-Blot (b) mit einem αHis-Antikörper sichtbar. Die schneller migrierenden Banden zeigten den Kettenabbruch während der Translation oder die Degradation des Zielproteins (Pfeilspitzen). Als Größenstandard wurde der Proteinstandard SDS-6H2 (Sigma GmbH) aufgetragen.

4.1.3 Induktion von XLef-1 in Gegenwart von Importinen als mögliche Chaperone

Die Mitglieder der Importin β-Superfamilie sind nicht nur essentielle Faktoren des Kerntransports, sondern binden im Zytoplasma basische Proteine wie beispielsweise Histone oder ribosomale Proteine und verhindern dadurch deren Präzipitation durch Polyanionen wie tRNAs (Jäkel et al., 2002). Nach Translokation durch die Kernpore werden die basischen Proteine an Chaperone des Zellkerns wie CAF-1 oder Nucleoplasmin im Falle der Histone (Philpott et al., 2000) übergeben oder möglicherweise von den Importinen bis an ihren Bestimmungsort eskortiert. Infolgedessen bieten sich Importine als eukaryotische Chaperone zur Maskierung der HMG-Box an.

Um einen potentiellen Effekt der Importine auf die Induktion von XLef-1 ausfindig zu machen, wurde XLef-1 zusammen mit denselbigen koexprimiert. Vor der Induktion eines einzelnen Klonierungseignisses wurde die Präsenz der transformierten Plasmide mittels PCR verifiziert.

Die gemeinsame Induktion von XLef-1 pRSET und Importin α2 in BL21 (DE3)-Zellen zeigte im Immun-Blot eine starke Expression von Importin α2 (Abb. 22b) und zwei schneller migrierende Banden im αLef-Immun-Blot (Abb. 22a), die möglicherweise Degradationsprodukte von XLef-1 darstellten. Die Expressionsbande der erwarteten Größe fehlte. Bei der Koexpression von XLef-1 pQE-30 und Importin β in M15-Zellen dagegen wurde nicht nur Importin β, sondern auch XLef-1 exprimiert (Abb. 22). Bei der Dreifachexpression von XLef-1 pQE-30, Importin α3 und β in M15-Zellen stellte sich der Effekt von Importin α3 auf die Expression von XLef-1 je nach eingesetztem Antikörper unterschiedlich dar. Im αLef-
Ergebnisse

Im Immun-Blot waren die detektierten Banden der Dreifachinduktion insgesamt schwächer als bei der Doppelinduktion (Abb. 22a). Demgegenüber zeigte der αHis-Immun-Blot im Laufe der Dreifachinduktion eine deutliche Zunahme der Induktionsbanden in der für XLef-1 erwarteten Größe und im Vergleich zur Doppelinduktion eine insgesamt stärkere Expression (Abb. 22b).

Infolge der qualitativen Verbesserung der XLef-1-Induktion durch die Koexpression der Importine wurden weitere Transformationsereignisse auf ihr Expressionspotential untersucht. Zusätzlich wurde die Präsenz der transformierten Plasmide in der Kultur am Induktionsende mittels PCR überprüft (Abb. 23). Dabei konnte in einer Kultur XLef-1 erstmals in Mengen

Abb. 22: Importin β stabilisiert als natürlicher Chaperon die Expression von XLef-1. Importin α2 (blaue Pfeilspitze) wurde bei der gemeinsamen Induktion mit XLef-1 prSET in BL21 (DE3)-Zellen stark exprimiert (b), wobei es keinen stabilisierenden Effekt auf XLef-1 ausübte (a). Importin β dagegen wirkt ohne und gemeinsam mit Importin α3 positiv auf die Expression von XLef-1 (Sternchen) in M15-Zellen (a). Die Proteinexpression wurde mit 1 mM IPTG induziert und erfolgte bei 30°C. Anschließend wurde die Expression der Poly-Histidin-Fusionsproteine XLef-1 (prSET und pQE-30) (rote Pfeilspitze), Importin β (grüne Pfeilspitze), Importin α2 und α3 (blaue Pfeilspitze) mittels αHis-Antikörper analysiert (b) und mit dem αLef-Immun-Blot verglichen. Die schneller migrierenden Banden (schwarze Pfeilspitzen) stellen möglicherweise Degradationsprodukte dar (a).

Abb. 23: Die Plasmide bleiben in der Gesamtkultur trotz identischer Resistenzgene erhalten. Einzelne Klonierungseignisse wurden induziert und mittels PCR zu Beginn (0h) und am Ende (4h) der Induktion auf die Präsenz der transformierten Plasmide hin analysiert. In den dargestellten Induktionsansätzen 12 (a) und 13 (b) konnten alle drei Plasmide nachgewiesen werden. Als Größenstandard wurde der DNA-Molekulargewichtsmarker 2-log aufgetragen.
induziert werden, die mit Coomassie darstellbar sind, allerdings ohne nachweisbare Expression von Importin α und β (Nr. 12, Abb. 24). In einer anderen Kultur dagegen wurden Importin α und β in nachweisbaren Mengen induziert, dafür kein XLef-1. Somit ist zweifelhaft, dass durch die gleichzeitige Expression von XLef-1, Importin α und β die Induktion wesentlich verbessert werden kann.

4.1.4 Mutagenese putativer XLef-1-Bindungsstellen

Die kodierende XLef-1-Sequenz wurde mit Hilfe der „Transcription Element Search Software“ (TESS) auf Homologien zur Konsensussequenz der HMG-Box Faktoren [a(a/t)caa (a/t)g (van Beest et al., 2000)] untersucht. Dabei konnte ein potenzielles Lef-1-Bindungselement zwischen der β-Catenin-Bindungsstelle und der HMG-Box identifiziert werden (Abb. 25). Dieses wurde ohne Änderung der Aminosäuresequenz (SNK) mutagenisiert (tcaaca nach agcaaca) und das Ergebnis durch Sequenzierung verifiziert.

Obwohl die Induktion von XLef-1 Mut pRSET in BL21 (DE3)-Zellen keine Verbesserung der Expression brachte, wurde das XLef-1 Mut pQE-30-Konstrukt im E. coli Stamm M15 bereits nach zwei Stunden deutlich exprimiert und war mit Coomassie darstellbar (Abb. 26a). Die immunologische Analyse dieser Induktion (Abb. 26b) zeigt im Vergleich zur Dreifachinduktion (Abb. 24b), dass durch Mutagenese des putativen Lef-1-Bindungselements die Stärke der drei schneller migrierenden Banden zu Gunsten des vollständigen Fusionsproteins reduziert werden konnte.
4 Ergebnisse

Somit verspricht die letzte der vier anfangs diskutierten Möglichkeiten zur Verbesserung der XLef-1-Expression am ehesten Erfolg, XLef-1 in einer für die chromatographische Aufreinigung hinreichenden Menge rekombinant zu exprimieren.

Abb. 25: Putative XLef-1-Bindungselemente in der XLef-1-Gensequenz. Die kodierende XLef-1-Sequenz wurde mit Hilfe der „Transcription Element Search Software“ (http://www.cbil.upenn.edu/cgi-bin/tess/tess) auf putative Transkriptionsfaktor-Bindungsstellen untersucht. Dabei wurde eine XLef-1-Bindungsstelle (rot) in der Sequenzmitte zwischen der β-Catenin-Bindungsstelle (hellblau) und der HMG-Box (orange) bzw. der Kernlokalisationssequenz (violett) entdeckt.

Somit verspricht die letzte der vier anfangs diskutierten Möglichkeiten zur Verbesserung der XLef-1-Expression am ehesten Erfolg, XLef-1 in einer für die chromatographische Aufreinigung hinreichenden Menge rekombinant zu exprimieren.

Abb. 26: Die Mutagenese eines Lef-1-Bindungselements im XLef-1 pQ E-30 Konstrukt ermöglicht dessen Expression. Nach der Inaktivierung des Lef-1-Bindungselements im XLef-1 pQ E-30-Expressionsvektor wurde die Expression von XLef-1 in M15 Zellen mit 1 mM IPTG bei 30°C induziert. Das mit Coomassie gefärbte Polyacrylamidgel (a) zeigte zwei Stunden nach Induktionsbeginn die Zunahme einer Bande (Sternchen), die im Immun-Blot (b) durch den αLef-1-Antikörper als rekombinant exprimiertes XLef-1 bestätigt wird. Darüber hinaus sind die Degradationsbanden (Pfeilspitzen) im Vergleich zu denen in Abb. 24 deutlich reduziert. Als Größenstandard wurde der Proteinstandard SDS-6H2 (Sigma GmbH) aufgetragen.
4.2 Präparation der Transportfaktoren für Kerntransportmessungen

Zur Etablierung einer neuen Methode wie der Nahfeldoptische Fluoreszenzkorrelationspektroskopie (noFCS) ist es sinnvoll, zunächst möglichst gut charakterisierte Komponenten einzusetzen, um die Erwartungswerte leichter definieren und die Messergebnisse besser überprüfen zu können. Dafür bieten sich Kerntransportfaktoren wie Ntf2, Importin α und β zusammen mit dem artifiziellen Kargo GST-NLS-GFP (GNG) und der kleinen GTPase Ran an, die seit über zehn Jahren Gegenstand intensiver Forschung sind. Nach dem Funktionalitätsbeweis kann man sowohl die Transportdynamik anderer Proteine wie beispielsweise β-Catenin oder Lef-1 als auch den Effekt bestimmter Reagenzien auf den Transportmechanismus analysieren.

Für die chromatographische Aufreinigung der rekombinant exprimierten Fusionsproteine wurden zunächst die Induktionsbedingungen von GNG, Ntf2, Ran und Importin α2 optimiert (Tab. 6). Ferner wurde die spezifische GST-Aktivität von GST-Ntf2 (2 µM/min/µg) und GST-Ran (2.25 µM/min/µg) bestimmt, um die zur Abtrennung der Affinitätsmarkierung eingesetzte Protease Thrombin besser dosieren zu können.

Zur präparativen Ntf2-Aufreinigung wurden 7.5 g Bakteriensediment mittels Hochdruckhomogenisation aufgeschlossen (Abb. 27), wobei der GST-Ntf2-Anteil an der Gesamtproteinnmasse des mittels Ultrazentrifugation geklärten Rohextrakts 2% (w/w) betrug (Tab. 7). Im ersten Durchfluss wurden von diesen 7.1 mg GST-Ntf2 25% (w/w) an der Glutathion-Sepharose immobilisiert. Die Beladung konnte durch einen weiteren Durchgang auf 34% (w/w) gesteigert werden, so dass letztendlich 2.4 mg oder etwa 60 nmol GST-Ntf2 (41 kDa) gebunden waren. Durch den anschließenden Thrombinverdau wurden die 15 kDa großen Ntf2-Proteine nahezu vollständig von der Matrix abgespalten und eluiert, wobei durch die Thrombin-Entfernung mittels Benzamidin-Sepharose 11% (w/w) des Zielproteins verloren gingen. Die Glutathion-Sepharose wiederum wurde durch Eluion des an der Matrix verblie-

Tab. 6: Experimentell ermittelte optimale Induktionsparameter der exprimierten Fusionskonstrukte. Die GST-Fusionsproteine wurden ebenso wie Importin α2 in BL21 (DE3) bei der angegebenen optischen Dichte OD_{600} mit 1 mM IPTG induziert. Die Induktionstemperatur und -dauer wurde ausgehend von den bekannten Werten optimiert.

<table>
<thead>
<tr>
<th>Name</th>
<th>Vektor</th>
<th>Tag</th>
<th>OD_{600}</th>
<th>IPTG</th>
<th>Temp.</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST-NLS-GFP</td>
<td>pGEX-5</td>
<td>GST</td>
<td>0.7</td>
<td>1 mM</td>
<td>30°C</td>
<td>4 h</td>
</tr>
<tr>
<td>GST-Ntf2</td>
<td>pGEX-2T</td>
<td>GST</td>
<td>0.6-0.8</td>
<td>1 mM</td>
<td>23°C</td>
<td>4 h</td>
</tr>
<tr>
<td>GST-Ran</td>
<td>pGEX-2T</td>
<td>GST</td>
<td>0.8</td>
<td>1 mM</td>
<td>25°C</td>
<td>3 h</td>
</tr>
<tr>
<td>Importin α2</td>
<td>pET-21a</td>
<td>6x His</td>
<td>0.6-0.8</td>
<td>1 mM</td>
<td>30°C</td>
<td>3 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Rohextrakt</th>
<th>Dfl. 2</th>
<th>ÜS TV</th>
<th>ÜS BS</th>
<th>GST-Elution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse (Protein)</td>
<td>350 mg</td>
<td></td>
<td>0.9 mg</td>
<td>0.8 mg</td>
<td>1.2 mg</td>
</tr>
<tr>
<td>Masse (GST-Ntf2)</td>
<td>7.1 mg</td>
<td>4.7 mg</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stoffmenge</td>
<td>173 nmol GST-Ntf2</td>
<td>114 nmol GST-Ntf2</td>
<td>~60 nmol Ntf2</td>
<td>~53 nmol Ntf2</td>
<td>~46 nmol GST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>~60 nmol Ntf2</td>
<td>~32 nmol Ntf2</td>
<td>~19 nmol GST</td>
</tr>
</tbody>
</table>

benen GST regeneriert.

Die nach der Thrombin-Entfernung geringe Ntf2-Konzentration wurde mittels Ionenaustauschchromatographie um den Faktor zehn gesteigert, wobei ebenfalls die Reinheit geringfügig verbessert werden konnte (Abb. 27). Der Kopplungsansatz wurde zur Entfernung der ungebundenen Fluorophore nach dem Reaktionsende einer Gelpermationschromatographie unterzogen und das Ergebnis unter UV-Anregung dokumentiert. Abschließend wurden sowohl die Proteinkonzentration (0.01 mg/ml; 0.5 µM) als auch die Kopplungsrate (0.5 Fluorophore pro Ntf2-Molekül) photometrisch bestimmt. Zusätzlich konnte durch Kalibration der Gelfiltrationssäule Superdex 75 mit Standardproteinen (Cabré et al., 1989) sowohl das Molekulargewicht $MW = 33.1 \pm 0.8$ kDa als auch der hydrodynamische Radius $r_{H} = 3.28 \pm 0.03$ nm von Ntf2 im Eluat ermittelt werden. Der Vergleich mit dem aus der cDNA berechneten Molekulargewicht von 15.0 kDa zeigt, dass das fluoreszenz markierte Ntf2 am Ende der chromatographischen Aufreinigung als Homodimer vorliegt.

Ferner wurden die Fusionsproteine His-Importin α2, His-Importin β und GST-Ran chromatographisch im mikromolaren Maßstab aufgereinigt, wobei die Affinitätsmarkierung von Ran analog zu GST-Ntf2 mittels Thrombinverdau und anschließender Benzamidin-Sepharose-Chromatographie entfernt wurde (Abb. 28). Zusätzlich zu Ntf2 wurde Importin α2 als ein weiterer Transportfaktor fluoreszenz markiert (Kopplungsrate: 1/3 Fluorophor pro Importin α2-Molekül).
Abb. 27: Beispielhafte Darstellung der Aufreinigungsschritte von fluoreszenz markiertem Ntf2. (a) Die induzierten Bakterien (7.5 mg Sediment; PI) wurden im Hochdruckhomogenisator lysiert. Der mittels Ultrazentrifugation geklärte Rohextrakt (RE) wurde sterilfiltriert und zweimal auf eine Glutathion-Sepharose-Säule geladen, wobei die GST-Ntf2-Bindung durch die Abnahme der entsprechenden Bande (GST-Ntf2 (41 kDa) Pfeilspitze) in den beiden Durchflüssen (Durchfl. 1 und 2) sichtbar wurde. Anschließend wurde Ntf2 mit 20 U Thrombin von der Matrix abgetrennt und eluiert (ÜS TV). Das Thrombin (37 kDa, 0.1-0.4 mg) wurde durch Bindung an Benzamidin-Sepharose (BS) aus dem Überstand (ÜS BS) entfernt. Die an der Matrix verbliebene GST wurde mit Glutathion eluiert (GST-Elution). Der Ntf2-haltige Überstand (ÜS BS) wurde mittels Ionenaustauschchromatographie (b) anormal von Kontaminanten (Sternchen) befreit und zehnfach konzentriert, bevor Ntf2 mit Alexa Fluor®-633 konjugiert wurde (c; Kopplung 0). Nach der Kopplungsreaktion (Kopplung 1) wurden sowohl ungebundene Fluorophore (grüne Ellipse; Alexa633) als auch langsamer migrierende Proteine durch Gelpermeationschromatographie (GPC) entfernt (c und d). In der Silberfärbung (c) wurden in den beiden vereinigten Fraktionen (rote Ellipse) zwei weitere, langsamer wandernde Banden sichtbar. Der Erfolg der Kopplungsreaktion und der Reinigung wurde unter UV-Anregung dokumentiert (d), wobei die ebenfalls konjugierten, langsamer wandernden Proteine im Gegensatz zum Alexa Fluor®-633-konjugierten Ntf2 (0.5 µM; Kopplungsseffizienz: 0.5) durch die GPC verschwand. Als Größenstandard wurde der Precision Plus Protein™ Standard (Bio-Rad GmbH) aufgetragen.
Für die Funktionalitätsprüfung der gereinigten Importine wurde ein artifizielles Kargomolekül, bei dem sich an die N-terminale GST-Domäne drei aufeinanderfolgende, starke SV40-Kernlokalisationssignale und ein GFP anschlossen (GST-NLS-GFP, kurz GNG) (Marg et al., 2004), rekombinant exprimiert und chromatographisch aufgereinigt.

Abb. 28: Chromatographische Aufreinigung der rekombinant exprimierten Fusionsproteine His-Importin α, β und GST-Ran. (a) Nach der Lyse der mit Importin α2 induzierten Bakterien (PI) wurde der Rohextrakt (RE) auf eine HisTrap-Säule geladen und das gebundene Importin α2 mit einem Imidazolgradienten eluiert. (b) Anschließend wurden die vereinigten Fraktionen (rote Ellipse in a; P in b) einer Ionenaustauschchromatographie unterzogen. (c) In der Silberfärbung waren die einzelnen Proteinbanden der mit Importin β induzierten Bakterienkultur (PI) nicht unterscheidbar. His-Importin β wurde aus dem Rohextrakt (RE) mittels Affinitätschromatographie extrahiert und die vereinigten Fraktionen (AP) durch Gelpermeationschromatographie umgepuffert, wobei sich die beiden analysierten Fraktionen (S1 und S2) in Gehalt und Reinheit kaum unterschieden. (d) GST-Ran wurde nach der Lyse (RE) in zwei seriellen Durchläufen (Durchfl. 1 und 2) an die Glutathion-Sepharose gebunden und mittels Thrombinverdau von der Matrix gelöst (US-TV 1 und 2). Nach jedem Durchlauf wurde die Matrix durch Entfernung der gebundenen GST regeneriert (GST-Elution). Die beiden Durchläufe (orangefarbene Ellipse) wurden vereinigt und zur Thrombin-Entfernung einer Affinitäts chromatographie mit Benzamidin-Sepharose unterzogen. Anschließend wurde der Überstand (ÜS BS) gegen Transportpuffer dialysiert (Dialyse). Als Größenstandard wurden der Proteinstandard SDS-6H2 (Sigma GmbH) (a-c) und der Precision Plus Protein™ Standard (Bio-Rad GmbH) (d) aufgetragen.
GNG besitzt aufgrund seiner Konstruktion aus zwei homodimerisierenden Domänen das Potential zur Polymerisation. Angesichts des Einflusses der Kargogröße auf die Translokationsdynamik wurde die Größe affinitätsreinigter GNG-Fusionsproteine mittels Gelpermeationschromatographie untersucht, wobei in drei parallelen Ansätzen unterschiedliche Verfahren für den bakteriellen Aufschluss unter salzreichen Bedingungen eingesetzt wurden.

Im enzymatischen Aufschluss mit Bugbuster® (Novagen, Merck KGaA) wurde die bakterielle Zellwand durch Abbau der N-Azetylmuramidin-Bindungen mittels rLysozyme™ aufgelöst. Der Verdau chromosomaler DNA durch die Nuklease Benzonase® reduzierte die Viskosität des Rohextrakts. Diese schonende Lysis lieferte ausgesprochen große GNG-Polymere, deren Größe sich außerhalb des optimalen Trennungsbereichs der eingesetzten Gelfiltrations säule bewegte (Abb. 29). Demnach lag GNG in einem über 600 kDa großen Komplex vor.

Abb. 29: Der enzymatische Zellaufschluss mit Bugbuster® (Novagen® Merck KGaA) setzt große multimere GNG-Polymere frei. Das Absorptionsmaximum im Chromatogramm (a) liegt außerhalb des optimalen Trennungsbereichs der Gelpermeatonsäule von 10-600 kDa. Die beiden vereinigten Fraktionen Nr. 2 und 3 enthalten Polymere mit acht und mehr Untereinheiten. Das SDS-Polyacrylamidgel (b) zeigt von der aufgetragenen Probe (P) zu den gesammelten Fraktionen ein weitgehend unverändertes Massenverhältnis zwischen dem 59 kDa großen GNG (Sternchen) und den schneller wandernden Banden, wobei die Proteinmasse pro Spur entsprechend dem Chromatogramm (a) stetig abnimmt. Die Gesamtproteinmasse in den Fraktionen Nr. 1 und 2 beträgt 1.3 mg und entspricht 77% der aufgetragenen Probenmasse (P).
Des Weiteren waren schneller wandernde Proteinbanden in dem Komplex vorhanden, die von bakteriellen Proteinen oder GNG-Degradationen herrühren können (Abb. 29). Die beiden proteinreichsten Fraktionen (Nr. 1 und 2) wurden vereinigt. Sie enthalten 77% (w/w) der eingesetzten Proteinmasse und GNG-Polymere, bestehend aus acht und mehr Untereinheiten (Abb. 29). Aus 1.2 g Bakteriensediment wurden so 1.3 mg aufgereinigtes GNG gewonnen.

![Diagramm](image)

Abb. 30: Die GNG-Polymere werden durch Ultraschall verkürzt. Die Bakteriensuspension wurde dreimal 30 Sekunden lang bei 75% Leistung auf Eis sonifiziert. Zwischen den Zyklen wurde eine Minute pausiert. Das Chromatogramm der Gelfiltration (a) weist mehrere Absorptionsmaxima auf, die unterschiedlich große GNG-Polymere anzeigten (b). Die beiden Fraktionen mit der höchsten Proteinconzentration wurden vereinigt. Sie überdeckten nominell einen Molekulargewichtsbereich von 118 bis 272 kDa. Das Absorptionsmaximum liegt bei 177 kDa und entspricht einem homotrimeren GNG-Komplex. Das Sternchen (b) markiert das monomere GNG (59 kDa). Die Gesamtproteinmasse in den Fraktionen Nr. 6 und 7 beträgt 0.4 mg und entspricht 35% der eingesetzten Probenmasse (P).
vereinigten Fraktionen (Nr. 6 und 7) enthalten 35% (w/w) der eingesetzten Proteinmasse (Abb. 30). Aus 1.1 g Bakteriensediment konnten somit 0.4 mg dimere bis pentamere GNG-Polymere aufgereinigt werden.

Viermal fünf Minuten lange Beschallung mit 20% Gesamtleistung dagegen erzeugte neben den über 600 kDa großen Komplexen eine gleichförmige Größenverteilung der GNG-Polymere (Abb. 31). Die vereinigten Fraktionen (Nr. 3-6) enthalten GNG-Aggregate größer 120 kDa. Mit einer gelpermeationschromatographischen Ausbeute von 78% (w/w) konnten aus 1.2 g Bakteriensediment 1.4 mg GNG gewonnen werden.

Die lange Ultraschallbehandlung erzielte im Vergleich zudem eine um den Faktor 1.75 größere Gesamtproteinausbeute nach der Ultrazentrifugation, während der schonende, enzymatische Aufschluss und die kurze, harte Beschallung mit 16 mg bakteriellen Proteinen pro Gramm Bakteriensediment gleichauf waren.

Abb. 31: Die Sonifizierungsenergie beeinflusst die Polymerlänge. Im dritten Ansatz wurde die Bakteriensuspension viermal fünf Minuten lang mit 20% Leistung und drei Minuten Pause zwischen den Zyklen sonifiziert. Das Chromatogramm (a) weist das charakteristische Maximum außerhalb des optimalen Trennungsbereichs auf, von dem die Absorptionslinie über zwei Sattelpunkte abfällt. Die numerische Größe der Polymere in den vereinigten Fraktionen Nr. 3 bis 6 ist größer als 127 kDa und die beiden Sattelpunkte entsprechen Polymeren, die aus etwa zehn bzw. vier Monomeren bestehen. (b) Die Fraktionen mit der höchsten Proteininkonzentration wurden vereinigt. Das Sternchen markiert das monomere GNG (59 kDa). Die Gesamtproteinmasse im Zusammenschluss beträgt 1.4 mg und entspricht 78% der eingesetzten Probenmasse (P).
4.3 Funktionalitätstest der rekombinant exprimierten Proteine

Für die Funktionalitätsprüfung der heterolog exprimierten Proteine (Abb. 32) wurden sowohl ganze Oozytenkerne als auch mittels Digitonin permeabilisierte L-Zellen auf ihre Tauglichkeit getestet, wobei sich die zweite Methode als die robustere und zuverlässigere erwies.

Vor Beginn der Funktionalitätstests wurde zunächst durch einen GST-Pulldown die Interaktion von GNG, Importin α2 und β in vitro bestätigt, wobei sich zeigte, dass erwartungsgemäß nur alle drei Proteine gemeinsam einen stabilen Komplex bilden (Abb. 33).

Anschließend wurde die Funktionalität der chromatographisch gereinigten Proteine an ganzen Oozytenkernen getestet. Das GNG-Fusionsprotein selbst ist zu groß, um mittels freier Diffusion alleine in den Zellkern zu gelangen (Abb. 34a). Wie die Akkumulation der Fluoreszenz im Oozytenkern zeigt, sind sowohl Importin α2 als auch Importin β funktional und hinreichend für den Import von GNG (Abb. 34b). Anstelle der rekombinant exprimierten Importine sind auch die im zytosolischen Extrakt vorhandenen Transportrezeptoren in der Lage, das artifizielle Kargo GNG zu importieren (Abb. 34c).
Bei dieser Funktionalitätsprüfung hatte sich die GNG-Konzentration als die kritische Größe herausgestellt. Eine geringe GNG-Konzentration verlangsamte den Import derart, dass die Akkumulation der Fluoreszenz im Kern nur schwach darstellbar war. Bei einer hohen GNG-Konzentration indes konnte aufgrund der Hintergrundfluoreszenz der Lösung die nukleäre GNG-Akkumulation nicht unmittelbar im Epifluoreszenzmikroskop beobachtet werden.

Abb. 33: GNG, Importin α2 und β bilden in vitro einen trimeren Komplex. Importin α2 oder Importin β binden alleine nicht an GNG. Erst alle drei Proteine zusammen bilden in einem äquimolaren Verhältnis einen stabilen Komplex, wobei die Importine nicht mit der Glutathion-Sepharose interagieren. Als Ladekontrolle wurden 8 µg GNG, 13 µg Importin α2 und 22 µg Importin β aufgetragen.

Bezi dieser Funktionalitätsprüfung hatte sich die GNG-Konzentration als die kritische Größe herausgestellt. Eine geringe GNG-Konzentration verlangsamer den Import derart, dass die Akkumulation der Fluoreszenz im Kern nur schwach darstellbar war. Bei einer hohen GNG-Konzentration indes konnte aufgrund der Hintergrundfluoreszenz der Lösung die nukleäre GNG-Akkumulation nicht unmittelbar im Epifluoreszenzmikroskop beobachtet werden.

Abb. 34: GNG wird in Gegenwart von Importinen in den Oozytenkern importiert. (a) Das GNG-Fusionsprotein diffundiert nicht frei in den Zellkern. Der GNG-Import wird sowohl durch rekombinantes Importin α2 und β (b) als auch durch die im zytosolischen Extrakt enthaltenen Importine (c) vermittelt. Die aus Stadium VI Oozyten explantierten Zellkerne wurden für die mikroskopische Darstellung vor Versuchsbeginn mit DiI gefärbt (untere Reihe) und für die Dokumentation in eine GNG-freie Lösung transferiert (obere Reihe).
Die Funktionalitätsprüfung der rekombinant exprimierten Fusionsproteine GNG, Importin α2 und β mittels Digitonin-permeabilisierter L-Zellen erhärte die mit den ganzen Oozytenkernen gewonnenen Ergebnisse. Das artifizielle Kargo GNG, das durch freie Diffusion nicht in den Kern gelangte, wurde durch die im zytosolischen Rattenleberextrakt (RLE, 40% (v/v)) ermöglicht den Kernimport der dimeren bis pentameren GNG-Komplexe (GNG2, 1 µM) ebenso wie Importin α2 und β (je 0.5 µM) (i-l). Als Permeabilisationskontrolle wurde mit Cy5 konjugiertes BSA eingesetzt. Die Zellkerne wurden mit DAPI im konfokalen Laserscanningmikroskop sichtbar gemacht.

Die Funktionalitätsprüfung der rekombinant exprimierten Fusionsproteine GNG, Importin α2 und β mittels Digitonin-permeabilisierter L-Zellen erhärte die mit den ganzen Oozytenkernen gewonnenen Ergebnisse. Das artifizielle Kargo GNG, das durch freie Diffusion nicht in den Kern gelangte, wurde durch die im zytosolischen Rattenleberextrakt enthaltenen Transportfaktoren effizient importiert (Abb. 35e-h). Ebenso wirksam transportierten die chromatographisch gereinigten Importine α2 und β das GNG-Fusionsprotein in den Zellkern (Abb. 35i-l). Auch in diesem Ansatz erwiesen sich die aufgereinigten Importine somit als funktional.

Die unterschiedlich großen GNG-Polymere wurden unterschiedlich schnell durch Importin α2 und β in Kerne der Digitonin-permeabilisierten L-Zellen importiert. Während die über 600 kDa großen GNG-Komplexe (GNG1) mehrheitlich im Zytoplasma lokalisiert und nur in geringer Konzentration im Zellkern zu finden waren (Abb. 36a-d), wurden die dimeren bis pentameren GNG-Aggregate (120-270 kDa, GNG2) effizient importiert und waren nur punktuell zytoplasmatisch sichtbar (Abb. 36e-h). Die Mischung aus GNG-Komplexen größer als
Ergebnisse

Somit standen neben dem artifiziellen Kargo GNG, Importin α2 und β auch die fluoreszenz markierten Transportfaktoren Importin α2 und Ntf2 als funktional intakte Proteine für Messungen zur Verfügung.
Abb. 37: Fluoreszent markiertes Importin α2 und Ntf2 translozieren in die Kerne Digitonin-permeabilisierter L-Zellen. (a-d) Während Alexa Fluor® 633-konjugiertes Importin α2 (0.5 µM) nach dem Import im Zellkern verbleibt und eine auffällige Konzentration in subnukleären Strukturen (Pfeilspitzen) zeigt, ist Alexa Fluor® 633-konjugiertes Ntf2 (0.5 µM) sowohl an der Kernmembran als auch in den Kernen der Digitonin-permeabilisierten L-Zellen lokalisiert. (e-h) Darüber hinaus findet man das Alexa Fluor® 647-markierte Ntf2 (1 µM) zusätzlich im Zytoplasma. In der Ausschnittsvergrößerung der überlagerten, konfokalen Aufnahme wird die Anfärbung der Kernhülle durch das fluoreszent markierte Ntf2 deutlich sichtbar. Alexa Fluor® 488-markiertes BSA diente als Permeabilisationskontrolle und die Zellkerne wurden mit DAPI dargestellt.
4.4 Präparation freistehender Kernmembranen aus Oozyten

Im Gegensatz dazu variierte die Substratadhäsion auf den strukturierten Lochtemplates innerhalb einer Charge und zwischen verschiedenen Chargen zum Teil erheblich. Deshalb wurden im Rahmen dieser Arbeit verschiedene Reinigungs- und Beschichtungsmethoden hinsichtlich ihrer Auswirkung auf die Adhäsion der Kernmembran sowohl an Deckgläsern als auch an den verschiedenen Lochtemplates getestet und miteinander verglichen.

Die ersten mikrostrukturierten Substrate wiesen bauartbedingt vergleichsweise kleine und flache Tröge mit einem Radius von 0.5 µm auf (Johnas, 2004). Da die Dreiecksapertursonde während der rasternahfeldoptischen Messung die Kernmembran einige zehn Nanometer in den Trog drückt, verbleibt nur ein relativ kleines Areal von 500 x 500 nm für die Analyse der Membran, da eine Kollision mit der Trogwand unweigerlich zur Beschädigung der Sonde

Unabhängig von der Reinigung mit Hellmanex II® oder Piranha-Lösung erwies sich die Beschichtung der Lochtemplate der ersten Generation mit PLL im Vergleich zu der mit Polyethylenimin (PEI) als geeigneter. Allerdings offenbarte das PLL eine begrenzte Haltbarkeit, die sich in einer Reduktion der Adhäsivität bemerkbar machte.

Auf der hydrophoben Oberfläche des mittels Photolithographie strukturierten Deckglases adhärierte die Kernmembran trotz vorheriger PLL-Behandlung nicht. Erst die Hydrophilisierung des Su-8-Lacks durch Plasmaätzung und die sich direkt anschließende Oberflächenbeschichtung mit PLL führten zu einer ausreichend starken Membranadhäsion und ermöglichten dadurch qualitativ hochwertige, reproduzierbare Kernmembranpräparationen (Abb. 40a und d).

Abb. 40: Die Kernmembran adhäriert unterschiedlich gut am Substrat. Eine gute Präparation (a und d) zeichnet sich durch eine große, ebene Membranfläche mit vielen potentiellen Messstellen (gestrichelte Kreise) aus. Die mehrlagigen Membranstapel (Pfeile) entstehen bei der manuellen Präparation durch herabsinkende, nicht adhärierte Membranränder und eignen sich nicht für nahfeldoptische Messungen. Mittels Überlagerung der Fluoreszenz- (a-c) und Auflichtaufnahmen können die Stellen identifiziert werden, an denen die warzenartigen Membranfaltungen (Pfeilspitzen) die Tröge der Flüssigkeitskammer verdecken, und kann somit die Güte einer Präparation eingeschätzt werden (d-f).
4.5 Validierung der Präparationsgüte

Der Laserstrahl, der zunächst auf den Lochrand scharf gestellt war, wird in der Lösung aufgrund des kleineren Brechungsindex früher fokussiert (Abb. 41a und b). Für eine scharfe Abbildung muss die Präparation um die Weglängendifferenz x abgesenkt werden (Abb. 41c). Diese Strecke kann wie folgt abgeschätzt werden: Unter der Annahme einer straff über den Trog gespannten Membran wird zur Vereinfachung ein Laserstrahl betrachtet, der die Membran unter einem kleinen Winkel α im Su-8 bzw. β in der Pufferlösung zur Senkrechten schneidet. Dabei ist die Strecke b für den Strahlengang durch den Su-8 gleich der für den Strahlengang durch die Pufferlösung nach Absenkung der Kammer um die Differenz x (Abb. 41). Daraus ergibt sich die folgende Beziehung:

\[
\left(h_{\text{Su-8}} + x\right) \tan \alpha = h_{\text{Su-8}} \cdot \tan \beta
\]

(8)

Gleichung (8) kann mittels der Prämisse der kleinen Winkel α und β, für die die Näherung \(\tan \alpha \approx \sin \alpha\) gilt, und dem Snelliusschen Brechungsgesetz \(n_{\text{Su-8}} \cdot \sin \alpha = n_P \cdot \sin \beta\) umformuliert werden:

\[
(\text{h}_{\text{Su-8}} + x) \sin \alpha = \text{h}_{\text{Su-8}} \cdot \sin \beta
\]

Abb. 41: Axiale Positionsanalyse der Kernmembran. Der auf den Trogrand fokussierte Laserstrahl (a) wird im Loch aufgrund der unterschiedlichen Brechungsindizes (Su-8 Lack \(n_{\text{Su-8}}=1.6\); Glas \(n_{\text{Glass}}=1.6\); Pufferlösung \(n_p=1.3\)) früher fokussiert (b), so dass für die scharfe Abbildung der über den Trog gespannten Membran in einem Laserscanningmikroskop die Flüssigkeitskammer um x µm abgesenkt werden muss (c). Der dunkle Bereich in der Lochmitte der mit mAb414 und GAM-Alexa 633 markierten Kernmembran liegt im Gegensatz zum Lochrand außerhalb des Fokus (d).
Mit $n_{Su-8} = 1.6$ als den Brechungsindizes von Glas und $Su-8$ bzw. $n_P = 1.3$ als der Brechzahl der Pufferlösung ergibt sich für die scharfe Abbildung eine axiale Weglängendifferenz von 0.5 µm zwischen der Kernmembran auf Trograndhöhe und der in der Lochmitte. Wenn sich Luft ($n_{Luft} = 1.0$) unter der Membran befindet, steigt die Differenz auf 1.3 µm an.

Die mit einem Laserscanningmikroskop experimentell ermittelten Werte lassen sich vor diesem Hintergrund einordnen (Tab. 8). Bei einem der dreizehn vermessenen Tröge war die Kernmembran auf den Boden gesunken, bei zwei weiteren war sie straff gespannt und bei anderen zwei Löchern schien sie nach oben gewölbt. Die acht durchhängenden Membranen lassen sich nochmals differenzieren, wobei die schwach durchhängenden bzw. leicht nach oben gewölbten Kernmembranen durchaus für nahfeldoptische Messungen geeignet sind. Bei einer stark durchhängenden Membran besteht das Risiko, dass diese unter dem Druck der Sonde nachgibt und die Sonde durch Aufsetzen auf dem Trogboden beschädigt wird. Eine stark nach oben gewölbte Kernmembran hingegen kann sich seitlich um die in die Wölbung hineindrückende Sonde legen und dadurch das Abrastern der Membran erheblich behindern.

Die Wölbung kann bei der Präparation durch eine lokale Deformation eines gering gequolle-

<table>
<thead>
<tr>
<th>gemessene Differenz</th>
<th>Interpretation</th>
<th>Eignung für nahfeldoptische Messungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2 200 nm</td>
<td>am Boden aufliegend</td>
<td>nein</td>
</tr>
<tr>
<td>+1 000 nm</td>
<td>stark durchhängend</td>
<td>nein</td>
</tr>
<tr>
<td>+950 nm</td>
<td>stark durchhängend</td>
<td>nein</td>
</tr>
<tr>
<td>+400 nm</td>
<td>mäßig durchhängend</td>
<td>nein</td>
</tr>
<tr>
<td>+335 nm</td>
<td>mäßig durchhängend</td>
<td>nein</td>
</tr>
<tr>
<td>+100 nm</td>
<td>schwach durchhängend</td>
<td>ja</td>
</tr>
<tr>
<td>+50 nm</td>
<td>schwach durchhängend</td>
<td>ja</td>
</tr>
<tr>
<td>0 nm</td>
<td>schwach durchhängend</td>
<td>ja</td>
</tr>
<tr>
<td>-100 nm</td>
<td>schwach durchhängend</td>
<td>ja</td>
</tr>
<tr>
<td>-300 nm</td>
<td>straff gespannt</td>
<td>ja</td>
</tr>
<tr>
<td>-500 nm</td>
<td>straff gespannt</td>
<td>ja</td>
</tr>
<tr>
<td>-1 100 nm</td>
<td>nach oben gewölbt o. Luft</td>
<td>nein</td>
</tr>
<tr>
<td>-1 500 nm</td>
<td>nach oben gewölbt o. Luft</td>
<td>nein</td>
</tr>
</tbody>
</table>
Ergebnisse

...n Kerns entstehen. Des Weiteren führt der Austausch der BSA-haltigen Pufferlösung nach der Membranpräparation gegen einen BSA-freien Puffer zu einem osmotischen Druck, der eine lokal stark adhärierte Membran dehnt. Unter der Prämisse, leicht vorgespannte Kernmembranen für die nahfeldoptischen Messungen zu verwenden, waren die Hälfte der in dieser Testreihe untersuchten membranüberspannten Tröge geeignet.

Durch weitere Fluoreszenzuntersuchungen der Präparate konnte ausgeschlossen werden, dass Chromatin oder Rinderserumalbumin-Ablagerungen auf der nukleoplasmatischen Seite der Kernmembran die Annäherung der Dreiecksapertursonde beeinträchtigen.
Auf der rasterkraftmikroskopischen Aufnahme einer getrockneten Kernmembran sind der zentrale Kanal und der ihn umgebende nukleoplasmatische Ring der Kernporen deutlich zu erkennen, da der durch die Trocknung des Präparats zerstörte Kernkorb die Pore nicht mehr verdeckt (Abb. 43). Auffällig sind feine Filamente mit einer Stärke von 13 bzw. 18 nm, die der Kernmembran aufliegen. Die rasterkraftmikroskopische Abbildung der freitragenden Kernmembran unter Flüssigkeit zeigt im Randbereich des Troges intakte Kernkörbe, die

Abb. 43: Rasterkraftmikroskopische Analyse der Kernpräparation auf einem Glassubstrat. Auf der nukleoplasmatischen Seite einer getrockneten Kernmembran werden die Kernporen (gestrichelter Kreis) von filamentartigen Strukturen mit 18 nm (Pfeil) bzw. 13 nm (Pfeilspitze) teilweise überlagert. [Aufnahmen in Kooperation mit S. Johnas und Dr. H. Gliemann]

Abb. 44: Rasterkraftmikroskopische Analyse der freitragenden Kernmembranpräparation. Die nukleoplasmatische Seite einer mit Phalloidin markierten, fixierten Kernmembran wurde über dem Randbereich eines Troges rasterkraftmikroskopisch unter Flüssigkeit vermessen. Das durch ein weißes Quadrat in der Fluoreszenzaufnahme markierte Loch (a) wurde mittels AFM partiell abgebildet (b) und ein Ausschnitt für die genaue Analyse gewählt (weißes Quadrat). Die intakten Kernkörbe sind im „tapping mode“ als helle Flecken (c) oder in der 3D-Projektion (d) als Hügel zu erkennen. Dazwischen verlaufen die Filamente der Kernlamina (grüne Pfeilspitzen). [Aufnahmen in Kooperation mit Dr. C. Franz]
durch Filamente verbunden sind (Abb. 44). Die Kernporendichte liegt aufgrund der präparationsbedingten leichten Schwellung des Zellkerns mit 18.3 ± 1.03 Poren pro μm^2 unter der Dichte der ungedehnten, getrockneten Kernmembran von 22.0 ± 4.30 NPCs/μm^2 (Abb. 43) und der in Schlune et al. (2006) publizierten Dichte von 23.4 ± 1.07 NPCs/μm^2 für Zellkerne der Stadium VI-Oozyten.

Der Vergleich rasterkraftmikroskopischer Aufnahmen unter Flüssigkeit von einer direkt nach der Präparation fixierten Kernmembran mit einer erst gelagerten und dann fixierten Kernhülle zeigt, dass die über dem Trog freistehende Membran in beiden Fällen leicht durchhängt (Abb. 45). Beim erst nach Übernachtlagerung fixierten Präparat ließ sich der freistehende Membranabschnitt im Gegensatz zum direkt fixierten Präparat hochaufgelöst abbilden.

Abb. 45: Rasterkraftmikroskopischer Vergleich einer tagesfrischen Kernmembranpräparation mit einer über Nacht gelagerten. Die freistehende Kernmembran hängt sowohl bei der frischen (a) als auch bei der gelagerten Präparation (b) leicht durch. Während sich bei der tagesfrischen Präparation nur die über dem Substrat befindliche nukleoplasmatische Seite der Kernmembran hochaufgelöst darstellen ließ (c), konnte nach der Übernacht Lagerung bei $4^\circ C$ die freistehende Kernhülle deutlich abgebildet werden (d). Unter der Annahme einer temperaturabhängigen Reduktion unterscheiden sich zwei willkürlich ausgewählte Kernkörper nicht wesentlich in ihrer Höhe. Die Proben wurden nach der Präparation (a und c) bzw. nach der Lagerung (b und d) für die rasterkraftmikroskopische Darstellung fixiert. [Aufnahmen in Kooperation mit Dr. C. Franz]
Um einen möglichen Effekt der Lagerung bei 4°C auf die Höhe der Kernkörbe zu untersuchen, wurde die Oberflächenrauheit ebener, nicht überlappende Areale unterteilt und mit der Analysessoftware Gwyddion 2.9 sowohl die mittlere Rauheit R_a als auch die quadratische Rauheit R_q dieser ebenen Bildausschnitte berechnet. R_a gibt den mittleren Abstand eines Punktes zur Mittellinie durch das Höhenprofil an und R_q wird aus dem Mittel der Abweichungsquadrate berechnet. Die Flächen der frischen Präparation F1-F6 und die der gelagerten G1-G6 weisen nahezu identische Werte bei beiden Berechnungsarten auf (R_a (F) = 20.4 ± 1.3 nm, R_a (G) = 19.9 ± 1.2 nm; R_q (F) = 25.9 ± 1.6 nm, R_q (G) = 25.8 ± 1.5 nm).

Tab. 9: Quantitative Analyse der Oberflächenrauheit. Dazu wurden die rasterkraftmikroskopischen Aufnahmen in kleinere, nicht überlappende Areale unterteilt und mit der Analysesoftware Gwyddion 2.9 sowohl die mittlere Rauheit R_a als auch die quadratische Rauheit R_q dieser ebenen Bildausschnitte berechnet. R_a gibt den mittleren Abstand eines Punktes zur Mittellinie durch das Höhenprofil an und R_q wird aus dem Mittel der Abweichungsquadrate berechnet. Die Flächen der frischen Präparation F1-F6 und die der gelagerten G1-G6 weisen nahezu identische Werte bei beiden Berechnungsarten auf (R_a (F) = 20.4 ± 1.3 nm, R_a (G) = 19.9 ± 1.2 nm; R_q (F) = 25.9 ± 1.6 nm, R_q (G) = 25.8 ± 1.5 nm).

<table>
<thead>
<tr>
<th>Nr.</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge x Breite [µm]</td>
<td>3.622</td>
<td>4.170</td>
<td>5.208</td>
<td>2.752</td>
<td>1.951</td>
<td>4.506</td>
</tr>
<tr>
<td>Fläche [µm²]</td>
<td>4.78</td>
<td>5.50</td>
<td>6.87</td>
<td>2.43</td>
<td>2.63</td>
<td>7.97</td>
</tr>
<tr>
<td>R_a (F) [nm]</td>
<td>21.3</td>
<td>21.6</td>
<td>18.6</td>
<td>19.1</td>
<td>19.7</td>
<td>22.0</td>
</tr>
<tr>
<td>R_q (F) [nm]</td>
<td>27.0</td>
<td>27.3</td>
<td>23.6</td>
<td>24.3</td>
<td>25.1</td>
<td>27.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge x Breite [µm]</td>
<td>4.158</td>
<td>3.006</td>
<td>1.990</td>
<td>2.179</td>
<td>2.271</td>
<td>4.670</td>
</tr>
<tr>
<td>Fläche [µm²]</td>
<td>6.16</td>
<td>4.83</td>
<td>7.21</td>
<td>3.75</td>
<td>4.58</td>
<td>2.40</td>
</tr>
<tr>
<td>R_a (G) [nm]</td>
<td>20.2</td>
<td>19.5</td>
<td>21.9</td>
<td>18.3</td>
<td>20.8</td>
<td>18.7</td>
</tr>
<tr>
<td>R_q (G) [nm]</td>
<td>26.2</td>
<td>25.6</td>
<td>28.0</td>
<td>25.0</td>
<td>26.9</td>
<td>23.2</td>
</tr>
</tbody>
</table>

Die mittlere Rauheit frischer Präparate von 20.4 ± 1.3 nm unterscheidet sich nicht wesentlich von der gelagerten Präparationen mit 19.9 ± 1.2 nm (Tab. 9). Zusammen mit der quadratischen Rauheit von 25.9 ± 1.6 nm für frische und 25.8 ± 1.5 nm für gelagerte Präparate kann ein lagerungsbedingtes Einsinken der Kernkörbe ausgeschlossen werden.
4.6 Konfokale Fluoreszenz-Korrelationsspektroskopie

Zur Etablierung der Fluoreszenz-Korrelationsspektroskopie wurden nicht nur Messungen mit der Nahfeldoptischen Sonde, sondern auch mit dem konfokalen Laserscanningmikroskop durchgeführt. Der Vorteil der auf konfokaler Mikroskopie basierenden FCS liegt in der Existenz theoretischer Autokorrelationsfunktionen für die Diffusion im zwei- und dreidimensionalen Raum. Nachteilig für die Untersuchung des Kerntransports ist das verhältnismäßig große, beugungsbegrenzte Detektionsvolumen.

Zur Vermeidung von Korrelationsfehlern, die durch Nachpulsen der Avalanche-Photodiode (APD) im einstelligen Mikrosekundenbereich entstehen, wurde die emittierte Fluoreszenz durch eine Y-Faser auf zwei APD aufgeteilt und die detektierten Photonen beider Photodioden kreuzkorreliert.

Mit diesem konfokalen FCS-Ansatz wurden der Taillenradius des fokussierten Laserstrahls, der Diffusionskoeffizient von fluoreszenz markiertem Nrf2 in der Pufferlösung ermittelt und die Nrf2-Bindung an der freistehenden Kenmembran nachgewiesen. Dazu wurde im ersten Schritt die Autokorrelationsfunktion von unkonjugiertem Alexa Fluor® 633 in freier Lösung experimentell bestimmt (Abb. 46) und dessen Aufenthaltstadium im Detektionsvolumen \(\tau_D \) mittels der Autokorrelationsfunktion für dreidimensionale Diffusion \(G_{3D}(\tau) \) nach Gleichung (10) errechnet (Tab. 10).

\[
G_{3D}(\tau) = \left(1 - TA + TA \cdot e^{\left(-\frac{\tau}{\tau_T}\right)}\right) \cdot \frac{1}{\langle N \rangle} \cdot \frac{1}{1 + \frac{\tau}{\tau_D}} \cdot \frac{1}{1 + \frac{\tau}{S^2 \cdot \tau_D}}
\]

(10)

Tab. 10: Fit-Ergebnisse dreier FCS-Messungen an ungekoppeltem Alexa Fluor® 633 in freier Lösung. Die Autokorrelationsfunktionen wurden mit 5 kW/cm² oder 10 kW/cm² Anregungsschicht intensität experimentell ermittelt und mittels der theoretischen Autokorrelationsfunktion für dreidimensionale Diffusion \(G_{3D}(\tau) \) angepasst (fixierter Parameter \(S = 7 \)). Während die mittlere Teilchenzahl \(\langle N \rangle \) im Lauf der Messung zunimmt, beträgt die Diffusionszeit \(\tau_D \) im Durchschnitt 90 ±4 µs. Der Triplettaanteil TA und die Triplettzeit \(\tau_T \) weisen Schwankungen auf. Die Fit-Abweichung liegt unter einem Prozent (Ausgangskonzentration 1 nM; Messzeiten: 605 s, 600 s bzw. 942 s).

<table>
<thead>
<tr>
<th>Anregungsschicht intensität I</th>
<th>10 kW/cm²</th>
<th>5 kW/cm²</th>
<th>5 kW/cm²</th>
<th>Ø</th>
</tr>
</thead>
<tbody>
<tr>
<td>mittlere Teilchenzahl (\langle N \rangle)</td>
<td>1.0</td>
<td>1.6</td>
<td>2.0</td>
<td>1.6</td>
</tr>
<tr>
<td>mittlere Diffusionszeit (\tau_D)</td>
<td>85.8 µs ±2.3 µs</td>
<td>96.1 µs ±5.4 µs</td>
<td>90.7 µs ±5.4 µs</td>
<td>90.1 µs ±4.2 µs</td>
</tr>
<tr>
<td>Triplettaanteil TA</td>
<td>13%</td>
<td>15%</td>
<td>7%</td>
<td>12%</td>
</tr>
<tr>
<td>Triplettzeit (\tau_T)</td>
<td>6.1 ±1.1 µs</td>
<td>2.8 ±1.5 µs</td>
<td>6.0 ±4.9 µs</td>
<td>5.0 ±1.5 µs</td>
</tr>
<tr>
<td>Fit-Abweichung</td>
<td>0.0093</td>
<td>0.0097</td>
<td>0.0095</td>
<td>–</td>
</tr>
</tbody>
</table>
Dabei steht TA für den Tripletanteil, \(\tau_T \) für die Tripletzeit und \(\langle N \rangle \) für die mittlere Teilchenzahl im Detektionsvolumen. Der Faktor S beschreibt das Verhältnis des axialen zum lateralen Strahlradius \(\omega_Z/\omega_{xy} \) und wurde für die konfokalen Messungen auf sieben festgesetzt.

Der Tailenradius \(\omega_{xy} \) des fokussierten Laserstrahls wurde mittels Gleichung (11) aus der mittleren Diffusionszeit \(\tau_D \) (Tab. 10) und der Diffusionskonstanten von Alexa Fluor® 633 (\(D \approx 341 \, \mu m^2/s; \) Dr. Geert van den Bogaart, persönliche Mitteilung) errechnet und beträgt \(\omega_{xy} = 351 \, nm \).

\[
D = \frac{\sigma_{xy}^2}{4 \cdot \tau_D}
\]

(11)

Ferner wurde das effektive Detektionsvolumen \(V_{eff} \) aus dem Durchschnitt der mittleren Teilchenzahl \(\langle \bar{N} \rangle = 1.6 \), der Avogadro-Konstanten \((6.022 \times 10^{23} \text{ Teilchen pro mol})\) und der Ausgangskonzentration \((1 \, nM)\) berechnet und beträgt \(2.66 \times 10^{-15} \, l \).

Im zweiten Schritt wurden die Diffusionszeiten von Alexa Fluor® 647-konjugiertem Ntf2 in freier Lösung gemessen (Tab. 10) und der Diffusionskoeffizient \(D = 126 \, \mu m^2/s \) aus der mittleren Aufenthaltsdauer im Detektionsvolumen \(\tau_D = 244 \pm 4 \, \mu s \) ermittelt. Bei bekanntem hydrodynamischen Radius des Moleküls \(r_H \) kann der Diffusionskoeffizient auch theoretisch

Abb. 46: Autokorrelationskurven von Alexa Fluor® 633 und fluoreszenz markiertem Ntf2 in freier Lösung und an einer Kernmembran. (a) Die experimentell bestimmten Autokorrelationsfunktionen (schwarze Punkte) von Alexa Fluor® 633 und von Alexa Fluor® 647-konjugiertem Ntf2 in freier Lösung wurden mittels der theoretischen AKF für 3D-Diffusion angefittet, wobei der Fit für Alexa 633 (rote Kurve) weniger Fit-Residuen aufweist als der Fit für Ntf2 (blaue Kurve) (Anregungsintensität \(I = 10 \, kW/cm^2 \), Fixierter Parameter \(S = 7 \)). (b) Eine in der Mitte des Detektionsvolumens positionierte Kernmembran beeinflusst die Aufenthaltsdauer und -wahrscheinlichkeit der Moleküle im Detektionsvolumen, so dass die experimentell bestimmte Autokorrelationsfunktion in Ermangelung einer theoretischen Autokorrelationskurve für diese Situation nicht angefittet werden kann.
über die Stokes-Einstein-Beziehung (12) berechnet werden.

\[D = \frac{k_B \cdot T}{6 \cdot \pi \cdot \eta \cdot r_H} \]

(12)

Dabei steht \(k_B \) für die Boltzmannkonstante (1.38065 x 10^{-23} J/K). Setzt man den mittels Gelpermeationschromatographie bestimmten hydrodynamischen Radius \(r_H = 3.28 \text{ nm} \) für das Ntf2-Dimer zusammen mit der Temperatur \(T = 274 \text{ K} \) und der Viskosität für Wasser bei 4°C \(\eta = 1 \text{ mPa/s} \) in Gleichung (12), so erhält man \(D = 62 \mu \text{m}^2/\text{s} \). Dieser Wert beträgt annähernd die Hälfte der experimentell bestimmten Diffusionskonstante und stimmt mit dem publizierten Wert (\(D = 59 \mu \text{m}^2/\text{s} \)) überein (Ribbeck & Görlich, 2001).

Zusätzlich wurden mit dem Laserscanningmikroskop FCS-Messungen an einer freistehenden Kernmembran durchgeführt. Dazu wurde die planar präparierte Kernmembran mittig im fokussierten Laserstrahl positioniert (Abb. 46). Infolge des Taillenradius \(\omega_{xy} = 351 \text{ nm} \) und der präparationsbedingten Kernporendichte von 18.3 NPC/µm² befanden sich durchschnittlich sieben Kernporen im Detektionsvolumen. Die sich zwischen den Kernporen befindende Kernmembran wirkt als Diffusionsbarriere und verändert die Wahrscheinlichkeitsdichtefunktion der Moleküle derart, dass die theoretische Autokorrelationsfunktion (AKF) für dreidi-

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>1 nM</th>
<th>1 nM</th>
<th>1 nM</th>
<th>10 nM</th>
<th>10 nM</th>
<th>10 nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anregungsintensität I</td>
<td>10 kW/cm²</td>
<td>20 kW/cm²</td>
<td>40 kW/cm²</td>
<td>10 kW/cm²</td>
<td>20 kW/cm²</td>
<td>40 kW/cm²</td>
</tr>
<tr>
<td>Teilchenzahl (\langle N \rangle)</td>
<td>0.80</td>
<td>0.88</td>
<td>0.98</td>
<td>9.18</td>
<td>8.46</td>
<td>8.34</td>
</tr>
<tr>
<td>Diffusionszeit (\tau_D)</td>
<td>239 µs ±7 µs</td>
<td>247 µs ±4 µs</td>
<td>244 µs ±3 µs</td>
<td>253 µs ±9 µs</td>
<td>247 µs ±4 µs</td>
<td>249 µs ±2 µs</td>
</tr>
<tr>
<td>Tripplettanteil TA</td>
<td>30%</td>
<td>31%</td>
<td>32%</td>
<td>31%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Tripplettzeit (\tau_T)</td>
<td>10.6 µs ±0.7 µs</td>
<td>7.6 µs ±0.3 µs</td>
<td>4.8 µs ±0.1 µs</td>
<td>12.4 µs ±0.9 µs</td>
<td>7.8 µs ±0.3 µs</td>
<td>5.3 µs ±0.1 µs</td>
</tr>
<tr>
<td>Fit-Abweichung</td>
<td>0.0221</td>
<td>0.0117</td>
<td>0.0084</td>
<td>0.0022</td>
<td>0.0014</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

Tab. 11: Fit-Ergebnisse der FCS-Messungen an Alexa Fluor® 647-konjugiertem Ntf2 in freier Lösung. Die Diffusionszeit \(\tau_D \) von Ntf2-A647 wurde in freier Lösung bei unterschiedlichen Fluorophorkonzentrationen und Anregungsin tensitäten bestimmt und beträgt über alle Messungen gemittelt 244 µs. Bei einer Konzentration von 1 nM befindet sich durchschnittlich ein Fluor phosph im Detektionsvolumen und bei 10 nM steigt die mittlere Teilchenzahl \(\langle N \rangle \) proportional an. Während der Tripplettanteil TA konstant bleibt, sinkt die Tripplettzeit \(\tau_T \) bei steigender Anregungsin tensität I. Die Fit-Abweichung liegt unter 2.5% (fixierter Fitparameter S = 7).
mensionale Diffusion \(G_{3D}(\tau) \) ihre Gültigkeit verliert und zum Anfitten der an der Kernmembran experimentell bestimmten AKF erst eine neue AKF für diesen speziellen Fall hergeleitet werden muss (Gennerich & Schild, 2000).

Infolge dieser Komplikation wurden die an der Kernmembran ermittelten Autokorrelationen nicht angefittet, was aber auch nicht notwendig war. Ziel der auf konfokaler Mikroskopie basierenden FCS-Messungen war die Etablierung der Methode und insbesondere der Bindungsnachweis von fluoreszenz markiertem Ntf2 an der freistehenden Kernmembran. Im Vergleich zur AKF der freien Lösung zeigt die in Gegenwart einer Kernmembran bestimmte AKF eine deutlich erhöhte Verweildauer von Ntf2 im Detektionsvolumen (Abb. 46). Daraus kann auf eine starke Wechselwirkung der Ntf2-Moleküle mit den Kernporen im beugungsbeschränkten Laserstrahl geschlossen werden.
4.7 Annäherung der Nahfeldsonde an die Kernmembran

Die im Folgenden dargestellten nahfeldoptischen Messungen wurden gemeinsam mit der Arbeitsgruppe von PD Dr. Andreas Naber am Institut für Angewandte Physik durchgeführt, wobei insbesondere Nicole Neuberth den apparativen Aufbau realisierte. SNOM-Messungen an biologischen Systemen in Flüssigkeit sind generell selten (Höppener et al., 2005; Chen et al., 2006; de Bakker et al., 2007) und konnten an freitragenden Kernmembranen erstmalig im Rahmen dieser engen Kooperation erfolgreich realisiert werden.

Die wegen ihrer Lichtstärke eingesetzte Dreiecksapertursonde wurde aufgrund ihrer geringen Höhe im Vergleich zur Fasersonde komplett mit Prisma und Stimmgabel in die Pufferslösung eingetaucht (Abb. 47 und Abb. 48). Dadurch konnte die Kraftdetektion weder zur Annäherung noch zur Abstandskontrolle eingesetzt und die Topographie ebenso wenig aufgezeichnet werden.

Die manuelle Annäherung der Dreiecksapertursonde wurde visuell mit Hilfe der Digitalkamera durchgeführt und das Verhalten der fluoreszent markierten Kernmembran aufgenommen (s. Anhang 8.3). Aufgrund der Dehnbarkeit des Präparats konnte die Sonde einige Hundert Nanometer in die Präparationsbedingt vorgespannte Kernmembran hineingedrückt werden, ohne dabei die freitragende Membran sichtbar zu beschädigen. Beim Zurückziehen der

Abb. 47: Schematische Darstellung des SNOM-Aufbaus (b) und zweier Sondentypen (a+c). Bei der Dreiecksapertursonde (a) wird der freie Laserstrahl in ein Prisma eingekoppelt, das an der Sonde befestigt ist. Bei Messungen unter Flüssigkeit wird der gesamte Komplex aus Dreiecksapertursonde, Prisma und Stimmgabel untergetaucht. Die Fasersonde (c) dagegen wird nur mit der ausgezogenen Spitze eingetaucht. Dadurch kann die Stimmgabel auch bei Messungen in Flüssigkeiten für die Kraftabstandskontrolle eingesetzt werden. Bei den im Rahmen dieser Arbeit durchgeführten nahfeldoptischen Messungen wurde die Kraftabstandskontrolle nur zur Sondencharakterisierung im Trockenen eingesetzt (b). [verändert nach Naber (2003)]
Ergebnisse

Während der Messung verursachten die auf die Nahfeldsonde wirkenden Kapillarkräfte und die sich aufgrund der Verdunstung ändernde Oberflächenspannung axiale und laterale Driften. Um die Stabilität des Systems insbesondere axial zu erhöhen, wurde zunächst die Stimmgabel der ersten Generation nach der Sondencharakterisierung mit Klebstoff überzogen (Abb. 48). Durch die Herstellung reproduzierbarer Aperturen mit dem fokussierten Ionenstrahl (FIB) konnte auf die Charakterisierung verzichtet werden, so dass bei den Sonden der zweiten Generation für driftarme Messungen die Stimmgabel durch eine Metallplatte ersetzt wurde.

Die Stabilität wurde bei den Dreiecksapertursonden der dritten Generation aufgrund einer komplett neuen Konstruktion deutlich verbessert, wobei der Verzicht auf die Stimmgabel und die Befestigung der Sonde auf einem größeren, mit einem Deckglas von 10 x 10 mm verbundenen Prisma die Kraftdetektion generell ausschloss (Pérez, 2008). Mit einer Gesamthöhe von 2 mm tauchte dabei nur ein Teil des Prismas in die Pufferlösung ein. Die komplette Anordnung wurde mit einem 130 nm starken Goldfilm beschichtet, so dass bei diesen Sonden das Laserlicht direkt in das Prisma eingekoppelt werden konnte. Dadurch wurde das Streulicht, das insbesondere bei der Einkopplung in ein in Flüssigkeit befindliches Prisma entsteht, vollständig unterdrückt.

Der große Zellkern der *Xenopus* Oozyte wird intranukleär durch ein Netzwerk aus Aktinfilamenten (F-Aktin) stabilisiert (Bohnsack et al., 2006), welches durch das Anschwellen des

Ergebnisse

Kerns im hypoosmolaren Präparationsmedium unkontrolliert reißt. In einiger Entfernung der immunfluoreszent markierten Aktinfilamente wurden nur diejenigen Fluorophore angeregt, die in das Nahfeld der Dreiecksapertursonde hineinragten (Abb. 49). Durch die weitere Annäherung um weitere 200 nm (c) komprimierte das Sondenplateau das Aktinfilamentgefl echt, so dass mehr Fluorophore im Nahfeld angeregt wurden und die Anregungsintensität für die Aufnahme abgeschwächt werden musste. Die Halbwertsbreite der abgebildeten Flecken (rote Pfeile) beträgt 65-100 nm. In der Schemazeichnung (d) sind die Aktinfilamente rot und die Kernlamina blau dargestellt.

Abb. 49: Annäherung an die nukleoplasmatische Seite einer mit αβ-Aktin markierten Kernmembran. In einer größeren Entfernung (a) sind wenige, unscharfe Flecken zu sehen, die 400 nm näher schärfer werden (b). Im Nahfeld der Goldsonde mit einer 80 nm großen Apertur zeichnen die angeregten Fluorophore punktuell die Filamente nach. Durch die Annäherung um weitere 200 nm (c) komprimierte das Sondenplateau das Aktinfilamentgefl echt, so dass mehr Fluorophore im Nahfeld angeregt wurden und die Anregungsintensität für die Aufnahme abgeschwächt werden musste. Die Halbwertsbreite der abgebildeten Flecken (rote Pfeile) beträgt 65-100 nm. In der Schemazeichnung (d) sind die Aktinfilamente rot und die Kernlamina blau dargestellt.

Der eingesetzte nahfeldoptische Aufbau ist für die genauere Untersuchung der Aktinfilamente wenig geeignet. Da diese aber die Annäherung der Sonde an den Kernporenkomplex behindern, wurde das F-Aktin für die weiteren Messungen durch Kältebehandlung (Pokorna et al., 2004) und anschließender Spülung mit 0.05% (v/v) Tween20 weitgehend entfernt.

Bei der nahfeldoptischen Messung rastert die Sonde die Probe sowohl von links nach rechts als auch in der umgekehrten Richtung. Da sich das Sondenplateau in unmittelbarer Nähe der Probenoberfläche bewegt, gibt der Vergleich der beiden Aufnahmen Aufschluss über die thermische Drift der Sonde und bei bekannten Sondeneigenschaften auch über die ausgeübten lateralen Kräfte. Bei der Korrelation der beiden Bilder wird die Matrix des ersten Bildes \(f(x,y) \) mit der des zweiten Bildes \(g(x,y) \) multipliziert und über alle \(x,y \) summiert. Ausgehend von der Bildmitte wird dieser Vorgang nach der Verschiebung um \(k \) und \(l \) in der X- und Y-Achse wiederholt und das Ergebnis bildlich mit dem höchsten Wert in Weiß und dem niedrigsten in Schwarz dargestellt:
\[G(k_1, k_2) = \sum_{x,y} f(x_i, y_j) g(x_i + k, y_j + l) \]

(13)

Je ähnlicher zwei Bilder sind, desto größer ist der Wert der Kreuzkorrelation. Bei der Autokorrelation gilt \(f(x,y) = g(x,y) \) und der höchste Wert liegt mit \(k \) und \(l \) gleich Null in der Bildmitte.

Die vor- und rückwärts gerichteten Aufnahmen der mit \(\alpha\beta \)-Aktin gefärbten Kernmembran zeigen in der Überlagerung eine deutliche Abweichung (Abb. 50). Die Korrelation des rechts

![Image of diagrams and graphs]

Abb. 50: Vergleich der beiden Rasterungsrichtungen zweier unterschiedlicher Messungen. Die nukleoplasmatische Seite der Kernmembran wurde sowohl von links nach rechts als auch in umgekehrter Richtung gerastert. Die Überlagerung der beiden Aufnahmen zeigt den Versatz und damit die Festigkeit der Probe. Die frisch préparierte, mit \(\alpha\beta \)-Aktin gefärbte Kernmembran (a) und (b) zeigt in der Überlagerung einen deutlichen Versatz (Bild e), wobei a) in grün und b) in rot dargestellt wurden. Mit Hilfe der horizontalen Profilinie (i) durch die Kreuzkorrelation (f) kann die Verschiebung auf 280 nm quantifiziert werden, wohingegen das vertikale Profil keine Abweichung aufweist (j). Die Markierung des distalen Rings mit \(\alpha \text{Nup}153\)-Z (c und d) zeigt in der Überlagerung (g) nur eine kleine Differenz. Das über Nacht bei 4°C gelagerte und mit 0.05% (v/v) Tween20 gespülte Präparat weist in der Kreuzkorrelation (h) einen etwa 99 nm großen horizontalen Versatz auf (k).

Die Stabilität des Systems wird durch die in vertikaler Richtung versatzlose Kreuzkorrelation deutlich. Bei der Betrachtung der horizontalen Differenz wurde die geringe systemimmanente Abweichung durch die verzögerte Messung des Fluoreszenzsignals im Vergleich zur angegebenen Position vernachlässigt.

Der Antikörper αNup153-Z bindet an die Zinkfinger-Domäne von Nup153, die am distalen Ring des Kernkorbs lokalisiert ist (Fahrenkrog et al., 2002). Die acht Filamente, die den distalen Ring am nukleoplasmatischen Ring verankern, erlauben dieser terminalen Struktur nur eine eingeschränkte Flexibilität.

Die Differenz zwischen den beiden Aufnahmen der mit αNup153-Z markierten Kernmembran von 100 nm setzt sich aus der eingeschränkten Beweglichkeit des distalen Rings und der Sondengeschwindigkeit zusammen. Ein sich schneller bewegendes Sondenplateau verursacht eine größere laterale Scherung des distalen Rings. Darüber hinaus bewirkt die Verdopplung der Pixelgröße eine Driftvergrößerung um 30% (Tab. 12).

Die Aktinfilamente auf der nukleoplasmatischen Seite einer frisch präparierten Kernmembran wurden durch das darüber gleitende Sondenplateau um 60 nm weiter verschoben als der distale Ring unter vergleichbaren Bedingungen (Tab. 12).

<table>
<thead>
<tr>
<th>Präparation</th>
<th>αNup153</th>
<th>αNup153</th>
<th>mAb414</th>
<th>mAb414</th>
<th>αNup153</th>
<th>αNup153</th>
<th>αβ-Aktin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschwindigkeit</td>
<td>2 µm/s</td>
<td>4 µm/s</td>
<td>4 µm/s</td>
<td>4 µm/s</td>
<td>8 µm/s</td>
<td>8 µm/s</td>
<td></td>
</tr>
<tr>
<td>Horizontale Drift</td>
<td>65 nm</td>
<td>99 nm</td>
<td>99 nm</td>
<td>123 nm</td>
<td>149 nm</td>
<td>187 nm</td>
<td>265 nm</td>
</tr>
<tr>
<td>74 nm</td>
<td>121 nm</td>
<td>158 nm</td>
<td>196 nm</td>
<td>195 nm</td>
<td>236 nm</td>
<td>288 nm</td>
<td></td>
</tr>
<tr>
<td>76 nm</td>
<td>122 nm</td>
<td>155 nm</td>
<td>209 nm</td>
<td>236 nm</td>
<td>222 nm</td>
<td>260 nm</td>
<td></td>
</tr>
<tr>
<td>Drift Ø</td>
<td>72 nm</td>
<td>100 nm</td>
<td>120 nm</td>
<td>156 nm</td>
<td>197 nm</td>
<td>259 nm</td>
<td></td>
</tr>
</tbody>
</table>
4.8 Nahfeldoptische Messungen an einer freistehenden Kernmembran

αNup153-Z ist gegen die am distalen Ring lokalisierte Zinkfinger-Domäne und αNup153-C2 gegen den flexiblen, an FXFG-Wiederholungen reichen C-Terminus des *Xenopus* Nup153 gerichtet (Fahrenkrog et al., 2002). Im Immun-Blot detektierten die beiden domänenspezifischen Antikörper nicht nur Nup153, sondern noch ein ca. 50 kDa großes Protein (Abb. 51). Der mittels Affinitätschromatographie gereinigte Antikörper αNup153-Z kreuzreagiert in höherer Konzentration mit Nup358/RanBP2 und der mittels Protein G gereinigte Antikörper αNup153-C2 zeigt in der Immunpräzipitation Kreuzreaktivität mit einigen FG-reichen Nukleoporinen (persönliche Mitteilung Prof. Dr. K. Ullman).

Rasterkraftmikroskopische Aufnahmen eines IgG-Antikörpers zeigen ein Y mit 6.0-6.5 nm Schenkellänge (San Paulo & Garcia, 2000). Ein mit monoklonalen primären und fluoresc-

Tab. 13: Kopplungsrate der direkt konjugierten Proteine. Angegeben ist die spektrophotometrisch bestimmte und nach Gleichung (7) berechnete Anzahl der Fluorophore pro Protein. Die Werte für die Quantenpunkte Qdot® 655 entsprechen der im Handbuch angegebenen durchschnittlichen Kopplungsrate.

<table>
<thead>
<tr>
<th>Proteine</th>
<th>Alexa Fluor® 532 (Fluorophore/Protein)</th>
<th>Alexa Fluor® 633 (Fluorophore/Protein)</th>
<th>Qdot® 655 (Qdots/Protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mAb414</td>
<td>4/3</td>
<td>3</td>
<td>1/4</td>
</tr>
<tr>
<td>αNup153-C2</td>
<td>-</td>
<td>2/3</td>
<td>1/4</td>
</tr>
<tr>
<td>αNup153-Z</td>
<td>-</td>
<td>1/3</td>
<td>1/4</td>
</tr>
<tr>
<td>Importin α2</td>
<td>-</td>
<td>1/3</td>
<td>-</td>
</tr>
<tr>
<td>Ntf-2</td>
<td>-</td>
<td>1/2</td>
<td>-</td>
</tr>
</tbody>
</table>
Abb. 52: Die eingesetzten sekundären Antikörper zeigen nur geringe unspezifische Bindungsaf-
finitäten. Zur Prüfung der vier für die nahfeldoptischen Messungen eingesetzten sekundären Antikör-
per auf unspezifische Bindung wurden in vier Ansätzen die Kernmembranen mit den primären Anti-
körpern α–Nup153-Z (a–f) oder mAb414 (g–l) markiert und mit einem passenden sekundären Antikör-
per sichtbar gemacht (linke Spalte). Zusätzlich wurde der gegen die andere Spezies gerichtete und mit
dem anderen Fluorophor konjugierte sekundäre Antikörper hinzugegeben. Die über Nacht bei 4°C
gelagerten und mit 0.05% (v/v) Tween20 gespülten Präparate wurden in der abgebildeten Reihenfolge
(a–l) mit derselben Nahfeldsonde (Apertur: 80 nm) analysiert, wobei zunächst die nukleoplasmatische
Seite der Kernmembran abgebildet wurde (linke Spalte). Anschließend wurde mit der zweiten Laserli-
nie in ähnlicher Intensität angeregt (mittlere Spalte) und zuletzt die Membran wieder mit der ursprüng-
lichen Wellenlänge aufgenommen (rechte Spalte). Die Abbildungen in einer Reihe wurden auf die
größte Intensität der drei Aufnahmen normiert. Die letzte Reihe zeigt deutlich die Beanspruchung der
Dreieckspertursonde der zweiten Generation durch den mehrmaligen Probenwechsel. Die sekundären
Antikörper Ziege-anti-Maus und Ziege-anti-Kaninchen wurden mit GAM bzw. GAR abgekürzt und
Tatsächlich zeigt die Positivkontrolle in jedem Fall eine hochaufgelöste Kernporenfärbung, während die Negativkontrolle keinerlei Färbung aufweist (Abb. 52). Einzig in der zuletzt vermessenen Probe sind unspezifische Bindungen des sekundären Antikörpers GAR-Alexa Fluor® 633 sichtbar, die nicht mit den beiden Positivkontrollen dieser Probe korrelieren. Diese zeigen eine deutliche Reduktion der Abbildungsqualität, die auf die lange Beanspruchung der mit Aluminium beschichteten Dreiecksapertursonde und den häufigen Probenwechsel zurückgeführt werden kann. Somit ist klar, dass weder Fluorophore noch sekundäre Antikörper unspezifisch die Kernporen markieren und dass somit die hochaufgelösten Abbil-

dungen tatsächlich Kernporen zeigen.

Kolokalisationsstudien an zweifach markierten Kernmembranen zeigen nur wenige Kernporen, bei denen sowohl αNup153-Z und als auch mAb414 hochaufgelöst dargestellt werden konnten (Abb. 54). Wider Erwarten konnte der fluoreszierende Primärantikörper mAb414-A532 im Gegensatz zu dem mit Sekundärantikörpern markiertem mAb414 nicht hochaufgelöst dargestellt werden (Abb. 54 b) und f). Das schlechte S/N-Verhältnis weist darüber hinaus auf einen hohen Fernfeldanteil bei der Anregung hin. Somit befinden sich die Fluorophore nur noch bedingt im optischen Nahfeld der Dreiecksapertursonde. Durch die Bindung fluoreszierender Sekundärantikörper vergrößert sich der Radius, in dem die Fluorophore um das Epitop herum lokalisiert sein können, um ca. 10 nm. Somit könnte die Reduktion der Lokalisationsgenauigkeit des Epitops im Falle von mAb414 einige Fluorophore aus dem Grenzbereich ins optische Nahfeld zurück bringen und die hochaufgelöste Darstellung selbiger ermöglichen.

Die Überlagerung der korrelierten nahfeldoptischen Immunfluoreszenzaufnahmen zeigt nicht nur kolokalisierte αNup153-Z- und mAb414-Antikörper sondern auch unmittelbar benachbarte, nicht überlappende Fluoreszenzen (Abb. 54 k), die entweder von variierenden lateralen Driften oder von unbewegten, nebeneinander liegenden Epitopen herrühren. Letzteres ist in Einklang mit der Hypothese, dass die Zinkfingerdomäne von Nup153 nicht nur an den distalen Ring, sondern auch an den nukleären Ring bindet und die FG-reiche Domäne möglicherweise mit der Kernlamina interagiert (Ball & Ullman, 2005).
Darüber hinaus zeigt die in Abb. 54 i) und j) dargestellte Doppelfärbung neben einer geringen Fluktuation eine nahezu identische Auflösung der αNup153-Z- und mAb414-Antikörper.

Weitere Auswertungen bestätigen, dass sich die Auflösungen mAb414-oder Nup153-Z-

Abb. 54: Die Antikörper αNup153-Z und mAb414 sind an manchen Kernporen kolokalisiert. (a) Die Alexa Fluor® 633-konjugierten αNup153-Z-Antikörper konnten bei der nahfeldoptischen Vermessung der nukleoplasmatischen Seite einer zweifach markierten Kernmembran hochaufgelöst dargestellt werden. (b) Im Gegensatz dazu war die Auflösung der mit Alexa Fluor® 532 gekoppelten mAb414-Antikörper deutlich reduziert. (c) Aufgrund des schlechten S/N-Verhältnisses sind auf der Überlagerung keine Kolokalisationen zu erkennen, obwohl die beiden Fluoreszenzaufnahmen korreliert sind (d). Bei der Verwendung sekundärer Antikörper wurden sowohl die αNup153-Z (e und i) als auch mAb414-Antikörper (f und j) hochaufgelöst dargestellt. Die Überlagerungen der korrelierten nahfeldoptischen Abbildungen (g und h) zeigen wenige Kolokalisationen (Pfeile). Für die Überlagerung von e) und f) wurden die Aufnahmen entsprechend der Kreuzkorrelation (h) gegeneinander verschoben. Für die Überlagerung c) und k) wurde die Deckkraft der Alexa Fluor® 532-Abbildungen reduziert. Die nahfeldoptischen Immunfluoreszenzaufnahmen allerdings wurden nicht verändert, um beispielsweise den Verlust der Einkopplung in e) und f) zu kompensieren. Die minimale Halbwertsbreite der Fluoreszenzpunkte auf den mit αNup153-Z markierten Membranen liegt bei 100 nm (a) bzw. 70 nm (e und i). Letzterer Wert unterscheidet sich nicht vom minimalen Durchmesser der mit mAb414 und GAM-A633 markierten Kernmembran (j). Die Präparate wurden zur F-Aktin-Entfernung über Nacht bei 4°C inkubiert, wobei die Präparation der Aufnahmen i) und j) eine weitere Nacht bei 4°C gelagert worden war. Für die Vermessung wurden 60 nm (a und b) bzw. 65 nm große Dreiecksapertursonden verwendet.
Ergebnisse

markierter Strukturen nicht wesentlich unterscheiden (Abb. 55 und Abb. 56). Ferner ist die Auflösung nicht durch das Auflösungsvermögen der Sonde begrenzt, das sich bei diesem Aufbau zwischen 30 und 40 nm bewegt (Molenda et al., 2005).

Wider Erwarten wiesen die mit primären und sekundären Antikörpern gefärbten Kernmembranpräparationen durchgehend eine bessere Auflösung auf als die mit fluoreszierenden Primäranitikörpern markierten Strukturen (Abb. 55 und Abb. 56). Während bei mAb414-A633 Halbwertsbreiten (FWHM) von 105-175 nm gemessen wurden, betrugen sie bei αNup153-Z-A633 105-142 nm. Die mit mAb414 und GAM-A633 markierten Fluoreszenzpunkte indes wiesen Halbwertsbreiten von 87-113 nm auf. Im Gegensatz dazu zeigten die mit Nanokristal-

Abb. 55: Der pan-NPC-Marker mAb414 kann hochaufgelöst dargestellt werden. (a) Die nukleoplasmatische Seite einer mit mAb414 und GAM-A633 markierten Kernmembran zeigt Gruppen von schachbrettartig angeordneten Kernporen. Die Dichte beträgt 14,2 ±1,56 Kernporen pro μm². (b) Die Halbwertsbreite (FWHM) ausgewählter Fluoreszenzpunkte ist deutlich größer als die Sondenapertur von 50 nm. (b und c) Durch die Verwendung Fluorophor-gekoppelter Primäranitikörper konnte die Auflösung wider Erwarten nicht verbessert werden (Apertur: 65 nm). Allerdings ist bei diesem Präparat die Kernporendichte mit 6,6 ±2,24 NPCs/μm² deutlich reduziert. Die mit Nanokristallen konjugierten Antikörper mAb414-Q655 (e) zeigen im Linienprofil (f) ihre Helligkeit in Form des einmaligen S/N-Verhältnisses. Die Halbwertsbreite der Fluoreszenzpunkte geht bis auf den Aperturdurchmesser von 60 nm herunter. In der Falschfarbendarstellung der Fluoreszenzaufnahme wird das Blinken der halbleitenden Kristalle durch dunkle Streifen sichtbar (Pfeilspitzen in e). Alle Präparate wurden zur F-Aktinentfernung über Nacht bei 4°C inkubiert und mit 0.05% (v/v) Tween20 gespült.
len konjugierten Primärantikörper ein brillantes S/N-Verhältnis. Die Auflösung von 65-104 nm lässt sich infolge der geringen Konzentration leicht bestimmen und liegt im Bereich der publizierten Auflösung für mAb414 von ~60 nm (Höppener et al., 2005). Jedoch eignen sich die Quantenpunkte aufgrund ihres charakteristischen Blinkens, das auf der rasternahfeldoptischen Aufnahme durch dunkle Streifen sichtbar wird, nicht für FCS-Messungen (Abb. 55 e) und f).

Abb. 56: Die domänenspezifischen Antikörper αNup153-C2 und αNup153-Z werden ebenfalls hochaufgelöst dargestellt. Die Linienprofile ausgewählter Fluoreszenzpunkte von αNup153-C2- (a) und αNup153-Z- (b) markierten Kernmembranen zeigen eine ähnliche Verteilung der Halbwerksbreiten (b und d), wobei die Kernporendichte des mit αNup153-C2 gefärbten Präparats (10.3 ±1.31 NPCs/µm²) geringer ist als die der mit αNup153-Z behandelten Kernhülle (15.6 ±2.57 NPCs/µm²). Die optische Auflösung konnte durch den Einsatz mit Fluorophoren gekoppelter primärer Antikörper (e) nicht verbessert werden (f), wobei sich die Auflösung bei der Vermessung der nukleoplasmatischen Seite einer frisch präparierten Kernmembran (g) nochmals verschlechterte (h).
Die Markierung des flexiblen C-Terminus von Nup153 mit \(\alpha \text{Nup153-C2} \) und GAM-A633 erzielte mit 49-113 nm eine bessere Auflösung als die Markierung des distalen Rings mit \(\alpha \text{Nup153-Z} \) und GAR-A633, bei der Halbwertsbreiten von 71-107 nm gemessen wurden (Abb. 56).

Darüber hinaus verursachte die Verwendung frischer Kernmembranpräparationen einen zusätzlichen Auflösungsverlust. Während über Nacht gelagerte, mit \(\alpha \text{Nup153-Z-A633} \) markierte Strukturen Halbwertsbreiten von 105-142 nm aufwiesen, wurden bei einem frischen Präparat 120-202 nm gemessen (Abb. 56).

Im Gegensatz dazu konnte die markierte Kernlamina dargestellt werden (Abb. 57 j). Dabei wiesen die mit einem \(\alpha \text{Lamin-Antikörper} \) markierten Strukturen Halbwertsbreiten von 70 nm auf. Bemerkenswerterweise waren auf der Überlagerung der nahfeldoptischen Fluoreszenzaufnahmen einige Fluoreszenzpunkte benachbart und konnten durch horizontale Verschiebung um 60 nm zur Deckung gebracht werden, wobei die Kreuzkorrelation neben dem zentralen Maximum und auch sehr viele weitere, kleinere Maxima aufwies, die auf eine periodische Anordnung der Fluoreszenzpunkte hindeuten (Abb. 57 l), o) und p).
Abb. 57: Die nahfeldoptische Darstellung der Kernmembran ist axial begrenzt. (a und b) Die äußere mit Dil markierte Kernmembran (grün) ist bei der Vermessung der nukleoplasmatischen Seite eines frischen Präparats für eine hochaufgelöste Darstellung einzelner Moleküle zu weit entfernt. Durch die inverse Präparation (c) gelangt die äußere Kernmembran näher an die Sonde und einzelne Fluorophore werden sichtbar (f). Die Aufnahmen der doppelt markierten Kernmembranen zeigen den fluoreszenz markierten Antikörper mAb414-A633 sowohl bei der Vermessung der nukleoplasmatischen (c) als auch bei der zytoplasmatischen Seite (g) hochaufgelöst. Die zusammengehörenden Aufnahmen weisen für keinen der beiden Ansätze eine Kolokalisation (d und h) oder eine Korrelation auf (m und n). Im Gegensatz dazu wird der αLamin-Antikörper bei der Vermessung der nukleoplasmatischen Seite einer Kernmembran mit einer 65 nm großen Dreieckspertursonde nach der F-Aktin-Entfernung hochaufgelöst dargestellt (j). Die minimale Halbwertsbreite der Fluoreszenzpunkte liegt bei 70 nm. In der Überlagerung mit dem pan-NPC-Marker mAb414 liegen auffallend viele Fluoreszenzpunkte benachbart (l), von denen einige (gestrichelte weiße Kreise) durch die horizontale Verschiebung einer der beiden Aufnahmen um 60 nm zur Deckung gebracht werden können (p). Die Kreuzkorrelation der beiden Fluoreszenzaufnahmen weist allerdings neben dem zentralen Maximum sehr viele weitere kleinere Maxima auf, die auf eine periodische Anordnung der Fluoreszenzpunkte hinweisen (o). Für die Vermessung der Dil-markierten Präparate wurden 80 nm (b und c) bzw. 45 nm große Dreieckspertursonden (f und g) verwendet. Die potentiellen Lokalisationen des mAb414 in der Kernpore sind in den Schemata durch rote Punkte markiert.
4.9 Nahfeldoptische Fluoreszenzkorrelationsspektroskopie

Die Kombination von SNOM und FCS ermöglicht die Analyse dynamischer Prozesse in einem um zwei bis drei Zehnerpotenzen kleineren Anregungsvolumen als bei auf konfokaler Mikroskopie basierender FCS. Nahfeldoptische Messungen an immobilisierten fluoreszierenden Nanopartikeln zeigten, dass die Eindringtiefe des evaneszenten Feldes bei dem im Rahmen dieser Arbeit zur Verfügung stehenden SNOM-Aufbau 24 nm beträgt (Pérez, 2008). Dabei wurde die Intensität I der angeregten Fluoreszenz in unterschiedlichen Entfernungen gemessen und gegen den Abstand d aufgetragen (Abb. 58). Die Eindringtiefe d ist definiert als der Punkt, an dem die Intensität auf 1/e der ursprünglichen Intensität I₀ abgesunken ist.

Abb. 58: Nahfeldoptische SNOM-Messungen bestätigen den exponentiellen Abfall des evaneszenten Feldes. (a) Eine TA-Sonde mit einer Apertur von 80 nm wurde über einem fluoreszierenden Polystyrolkugelchen platziert und die Fluoreszenzintensität in unterschiedlichen Abständen gemessen. (b) Dabei nimmt die Intensität mit steigendem Abstand z doppelt exponentiell ab und erreicht nach \(z = 24 \text{ nm} \) 1/e der Ausgangsintensität I₀. Dieser Wert bezeichnet die Eindringtiefe des evaneszenten Feldes. [Messung von J. Pérez]

Die Eindringtiefe bestimmt gemeinsam mit dem Aperturdurchmesser das Anregungsvolumen der nahfeldoptischen Sonde. Durch dessen geringe Dimension sind frei diffundierende Fluorophore nur kurze Zeit im evaneszenten Feld detektierbar, wie die hohe Fluktuation im Intensitätssignal einer nahfeldoptischen Fluoreszenzmessung bestätigt (Abb. 59). Die experimentell bestimmte Autokorrelationsfunktion (AKF) sinkt bereits nach \(\sim 10 \mu s \) auf die Hälfte ihrer Ausgangsamplitude ab. Aufgrund der komplexen Feldverteilung einer Dreiecksapertursonde (Molenda et al., 2005) fehlt bisher ein einfaches analytisches Modell, das zur Herleitung der theoretischen Autokorrelationsfunktion für das optische Nahfeld einer TA-Sonde herangezogen werden könnte.

Im Gegensatz zur freien Lösung zeigte das Intensitätssignal nahfeldoptischer Fluoreszenzmessungen an einer Kernmembran immer wieder Ereignisse, bei denen überdurchschnittlich viele Photonen in einem Zeitraum von einigen Millisekunden detektiert wurden (Abb.
4 Ergebnisse

Bei einer höheren zeitlichen Auflösung werden wesentlich kürzere Fluktuationen sichtbar, die die Bewegungen einzelner Fluorophore im evaneszenten Feld darstellen.

Infolge der Messanordnung wird die Diffusion der Moleküle sowohl durch das Sondenplateau als auch durch die Kernmembran begrenzt. Befindet sich die Sonde oberhalb einer Kernpore, kann das fluoreszent markierte Ntf2 zusätzlich zur lateralen Diffusion auch an den Kernporenkomplex binden und translozieren (Abb. 60).

Dabei unterscheiden sich die oberhalb und neben einer Kernpore gemessenen Intensitätsignale zunächst kaum. Beide zeichnen sich durch Ereignisse mit höherer Intensität aus, die insbesondere im zeitlichen Umfang und in der Abfolge der Einzelmolekülfluktuationen diffe-

Abb. 59: Nahfeldoptische Fluoreszenzmessungen in freier Lösung zeigen hohe Fluktuationen von ungekoppeltem Alexa Fluor® 633. (a) Die Fluorophore diffundieren ungehindert durch das Nahfeld der TA-Sonde (Apertur 35 nm), wobei sie in Abhängigkeit von ihrer Entfernung zur Apertur unterschiedlich stark angeregt werden. (b) Der zwei Sekunden lange Ausschnitt des Intensitätssignals einer 1 µM Alexa Fluor® 633-Lösung weist hohe Fluktuationen auf (Gesamtmesszeit: 600 s). (c) Die normierte Autokorrelationsfunktion G(τ) bestätigt die kurze Diffusionszeit. Bereits nach ~10 µs ist G(τ) auf die Hälfte des ursprünglichen Wertes G₀ gesunken. [Messung in Kooperation mit J. Pérez]

rieren. Dieser Unterschied wird erst in der Autokorrelation wirklich deutlich sichtbar.

Im Gegensatz zur Diffusion im Sonden-Membran-Zwischenraum lässt sich die Bewegung innerhalb des Transportkanals relativ einfach modellieren. Der geringe Kanaldurchmesser von etwa 50 nm erlaubt die Annahme, dass die Feldverteilung orthogonal zur Kanalachse homogen sei. Somit verursachen laterale Bewegungen des Moleküls weder eine Intensitätsänderung noch beeinflussen sie die AKF, so dass der Fall einer begrenzten eindimensionalen Diffusion eintritt (Abb. 61).

Dabei bewegt sich ein fluoreszierendes Molekül zufällig innerhalb eines schmalen Kanals der Länge L, der von einem evaneszenten Feld mit der Eindringtiefe d beleuchtet wird. Für L = d diffundiert das Molekül in einem flachen Intensitätsgradienten, so dass die Autokorrelationsfunktion von der Dissoziation des Moleküls am Ende des Kanals bestimmt wird. Der Intensitätsgradient wird durch Verlängerung des Kanals steiler. Folglich nimmt die Zeitspanne zu, in der sich das Molekül zwar im Kanal, aber nicht in der Eindringtiefe des evaneszenten Feldes bewegt. Ein sehr langer Kanal (L/d → ∞) entspricht der Anordnung bei der Totalreflektion, wofür schon seit langem theoretische Autokorrelationsfunktionen bekannt sind (Thompson et al., 1981; Ries et al., 2008).

Für den allgemeineren Fall einer begrenzten Diffusion (beliebiger L/d) sind wir im Rahmen unserer Kooperation zu einer analytischen Lösung der Autokorrelationsfunktion gelangt (Herleitung s. Anhang 8.4):

Abb. 61: Modell der begrenzten eindimensionalen Diffusion. (a) Ein fluoreszierendes Partikel bewegt sich zufällig innerhalb eines schmalen Kanals der Länge L, der von einem evaneszenten Feld mit einer Eindringtiefe d beleuchtet wird. Dabei ist die Feldverteilung orthogonal zur Kanalachse homogen, so dass sich die Intensität bei einer Bewegung senkrecht zur Anregungsrichtung nicht ändert. Das Molekül kann den Kanal am Ende verlassen oder umkehren. (b) Für L = d bewegt sich das Molekül in einem flachen Intensitätsgradienten und die Autokorrelationsfunktion wird von der Dissoziation des Moleküls bestimmt. Der Intensitätsgradient wird durch Verlängerung des Kanals steiler und dadurch verlängert sich auch die Zeitspanne, in der sich das Molekül zwar im Kanal, aber nicht in der Eindringtiefe des evaneszenten Feldes bewegt. L = ∞ entspricht der TIRFM-Anordnung.
mit der Zeitdifferenz \(\tau \) und der mittleren, im Kanal gebundenen Teilchenzahl \(\langle N \rangle \).

Bemerkenswerterweise werden durch die in Gleichung (14) dargestellte theoretische AKF die numerischen Werte der Kanallänge \(L \) und der mittleren Verweildauer \(\tau_D \) bestimmt, obwohl bei der nahfeldoptischen Fluoreszenzmessung nur ein Teil des Volumens beleuchtet wurde.

Allerdings enthält die experimentell über einer Kernpore ermittelte AKF nicht nur die Intensitätsfluktuation innerhalb des Transportkanals, sondern auch die aus dem Spalt zwischen der Kernmembran und dem Sondenplateau stammende Fluktuation, für die keine theoretische AKF existiert (Abb. 62). Um diese Komponenten zu berücksichtigen, kann man in einem heuristischen Ansatz die Fluktuationen im Spalt als Hintergrund betrachten und deren AKF durch Fluoreszenzmessungen neben einer Kernpore experimentell bestimmen. Diese als \(\text{BG}(\tau) \) bezeichnete AKF wird anschließend als eine Art Hintergrund-Korrelationsfunktion mit einem unbekannten Gewichtungsfaktor in den Fit eingefügt. Über die Funktion

\[
\begin{align*}
 f(\tau) &= A \cdot G_{LD}(\tau) + B \cdot \text{BG}(\tau)
\end{align*}
\]

kann so die Fluktuation innerhalb des Transportkanals anhand des Modells der begrenzten
eindimensionalen Diffusion analysiert werden. Bei einer gegebenen Eindringtiefe des evanesczenten Feldes von \(d = 25 \) nm wurde mittels der Funktion (15) die mittlere Verweildauer und der Diffusionskoeffizient von Alexa Fluor® 633-markiertem Ntf2 innerhalb des Transportkanals angetitet, wobei für den Diffusionskoeffizienten 20 ±1 \(\mu \text{m}^2/\text{s} \) und die mittlere Verweildauer 3.6 ±0.1 ms errechnet wurden.

Während die von Kubitscheck et al. (2005) gemessene Ntf2-Transportzeit von 5.8 ±0.2 ms die mittlere Verweildauer am Kernporenkomplex insgesamt umfasst, bezieht sich die Nahfeldoptisch gemessene mittlere Aufenthaltsdauer nur auf den Transportkanal. Auch die ebenfalls angefittete Kanallänge von 82 ±1 nm ist in guter Übereinstimmung mit den Ergebnissen elektronenmikroskopischer Arbeiten (Akey & Radermacher, 1993; Stoffler et al., 2003).
5 Diskussion

5.1 XLef-1 reprimiert die eigene Expression in E. coli

In der vorliegenden Arbeit wurde die rekombinante Expression von XLef-1 wesentlich verbessert und konnte in einem mittels Coomassiefärbung darstellbaren Maßstab gezeigt werden.

Da sich die geringe Expressionsrate von XLef-1 in E. coli weder mit den üblichen Optimierungsschritten noch durch den Einsatz speziell für die Expression eukaryotischer Proteine geschaffener Bakterienstämmen deutlich verbessern ließ, stellte sich die Frage, ob nicht auch ein anderer Effekt für die schwache Induktion verantwortlich sein könnte.

Als Lösungsansätze wurden sowohl die kodierende XLef-1-Sequenz auf Lef-1-Bindungselemente untersucht als auch das Potenzial der Chaperone zur Maskierung der basischen HMG-Box analysiert. Dabei wurde die posttranslationale Stabilisierung des rekombinant exprimierten XLef-1 durch die gemeinsame Expression mit bakteriellen Chaperonen aufgrund der niedrigen Expressionsrate von XLef-1 verworfen, da sich der Einsatz bakterieller Chaperone hauptsächlich bei falsch gefalteten, in Einschlusskörperchen akkumulierten Zielproteinen bewährt hat (Dr. Wayne A. Fenton, persönliche Mitteilung). Statt dessen wurden mit Importin α und β zwei eukaryotische Transportrezeptoren gewählt, die auch in vivo als Chaperone für Proteine mit einer positiven Nettoladung fungieren (Jäkel et al., 2002).

Indes verbesserten bei der bakteriellen Koinduktion weder Importin β noch die Importine α2 und α3 die Expression von XLef-1. Hierdurch ist allerdings dieser Lösungsansatz nicht widerlegt, da für diese Importine eine Interaktion mit XLef-1 bisher noch nicht gezeigt wurde. Ferner besitzen alle Expressionsplasmide identische Selektionsmarker und teilweise auch den gleichen Replikationsursprung, so dass die Amplifikation und Verteilung der Plasmide während der Zellteilung nicht kontrolliert werden kann. Um diese Problematik zukünftig zu umgehen, wäre die Konstruktion eines tricistronischen Expressionsvektors optimal, in dem die kodierenden Sequenzen von XLef-1, Importin α1 und Importin β, durch ribosomale Bindungsstellen getrennt, 3’ des Promoters angeordnet sind.
Nachdem die HMG-Box durch Koexpression mit Importin α und β nicht zweifelsfrei als Expressionshemmnis identifiziert werden konnte, wurde die kodierende Sequenz auf Homologien zur Konsensussequenz der HMG-Box-Faktoren untersucht und ein potentielles Lef-1-Bindungselement zwischen der β-Catenin-Bindungsstelle und der HMG-Box entdeckt. Dieses wurde in beiden XLeF-1-Expressionsvektoren ohne Änderung der Aminosäuresequenz mutagenisiert. Während die Induktion von XLeF-1 Mut pRSET in BL21 (DE3)-Zellen keine Verbesserung der Expression brachte, wurde das XLeF-1 Mut pQE-30-Konstrukt im *E. coli* Stamm M15 bereits nach zwei Stunden in einer mit Coomassie darstellbaren Intensität exprimiert. Die immunologische Analyse dieser Induktion ergab zudem, dass durch Mutagenese des putativen Lef-1-Bindungselements die Stärke der schneller migrierenden Banden zu Gunsten des vollständigen Fusionsproteins reduziert werden konnte.

Diese Ergebnisse zeigen, dass die heterologe Expression von XLeF-1 durch eine negative Autoregulation reprimiert wird. Ferner kann der Einsatz von Transportrezeptoren als Chaperone die rekombinante Expressionsrate steigern. Somit wurde erstmalig ein Weg beschrieben, der die Expression von Lef/Tcf-Transkriptionsfaktoren im mikromolaren Maßstab ermöglicht. Folglich stehen prinzipiell neben β-Catenin auch Lef/Tcf-Transkriptionsfaktoren für Transportmessungen zur Verfügung.

5.2 Stabilität der freistehenden Kernmembran

Die Grundlage für die Untersuchung des Kerntransports mittels nahfeldoptischer Fluoreszenz-Korrelationsspektroskopie ist die planare Präparation der Kernmembran auf einem lorchigen Substrat. Vor der Messung wird die Dreiecksapertursonde unter Flüssigkeit der freitragenden Membran bis auf einige Nanometer ohne Kraftabstandskontrolle angenähert. Zu Beginn der vorliegenden Arbeit war nicht bekannt, ob die so präparierte Kernmembran den bei der Annäherung und Fluoreszenzmessung auftretenden Kräften Stand halten oder dabei irreversibel geschädigt werden würde.

Deshalb wurde die Stabilität der Kernmembran sowohl durch die Abschätzung der auf die freitragende Membran wirkenden Kraft als auch durch fluoreszenzmikroskopische Analysen validiert. Zusätzlich wurde im Rahmen dieser Arbeit erstmalig eine freistehende Kernmembran rasterkraftmikroskopisch unter Flüssigkeit charakterisiert.

Durch die Annäherung der TA-Sonde gerät die Kernmembran unter Zugspannung und nimmt vermutlich eine konische Form an. Dabei reduziert sich aufgrund der elastischen Rückstellkraft der Kernmembran ihr Abstand zum Sondenplateau. Die Annäherung wird beendet, sobald sich die Intensität der Fluoreszenz oder die Auflösung nicht mehr verbessern. Bei einer
hochauflösenden Darstellung beträgt der Abstand zwischen der Kernmembran und dem Sondenplateau dann vermutlich weniger als 20 nm. Normalerweise befindet sich die Sondenspitze dann ~0.3 µm unterhalb des Trogrades.

Bemerkenswerterweise bindet die Kernmembran dabei nicht irreversibel an die Sonde und selbst Rasterungsgeschwindigkeiten von mehr als 4 µm/s verursachen keine im optischen Mikroskop sichtbaren Zerstörungen. Es scheint, als ob das flache Sondenplateau wie ein Schlittschuh auf einem dünnen Wasserfilm über die Kernmembran gleitet und dadurch nur geringe Scherkräfte auftreten.

Die Abschätzung der auf die Kernmembran wirkenden Kraft liefert einen vergleichsweise geringen Wert. Durch Absenken der TA-Sonde werden zunächst Auffaltungen aus der Membran entfernt. Drückt man die Sonde darüber hinaus noch tiefer in die Kernmembran, so wirken der weiteren Flächenzunahme intermolekulare Kräfte in der Kernlamina ebenso wie in den beiden Lipiddoppelschichten entgegen. Die Energiedichte pro Fläche ist dabei gegeben durch

\[
g_{ext} = \frac{1}{2} K_A \left(\frac{\partial A}{A} \right)^2
\]

mit dem Flächenkompressionsmodul \(K_A \) und der Fläche \(A \) (Sackmann, 1995). Unter der Annahme, dass die Membran mit dem Radius \(R \) im Ausgangszustand eben sei und unter dem Druck der Sonde einen Konus der Höhe \(z \) bildet, kann man bei Vernachlässigung der Biegekräfte an der Sondenspitze die Rückstellkraft \(F_P \) zwischen der Membran und der Sonde durch

\[
F_P = -\frac{\partial W}{\partial z} = -\frac{\pi}{2} K_A \frac{z^3}{R^2} \quad (z << R)
\]

berechnen, wobei \(W = g_{ext} \cdot A \) die Spannungsenergie darstellt. Für eine freistehende Kernmembran mit dem Radius \(R = 10 \mu m \), einer Konushöhe von \(z = 0.3 \mu m \) und \(K_A = 1 \text{ N/m} \) beträgt die Abstoßungskraft \(F_P \sim 0.4 \text{ nN} \). Unterhalb des Sondenplateaus mit einer Kantenlänge von ~0.7 µm befinden sich bei einer mittleren Kernporendichte von 18 NPCs/µm² etwa vier
Kernporen, so dass bei der Abbildung der nukleoplasmatischen Seite auf jedem Kernkorb ein Druck von etwa 0.1 nN lastet. Im Vergleich dazu hielt der 70 nm hohe Kernkorb bei rasterkraftmikroskopischen Aufnahmen schon zehnfach größeren Kräften von ~1 nN Stand (Stoffler et al., 1999b).

Neben der theoretischen Abschätzung der auf die freistehende Kernmembran wirkenden Kraft ist die optische Beurteilung der Güte potentieller Messstellen von besonderer praktischer Bedeutung für die anschließende nahfeldoptische Messung. Dabei wurden straff gespannte Membranstücke bevorzugt und stark durchhängende bzw. am Trogboden aufliegende Membranen wegen offensichtlicher Beschädigung ausgeschlossen.

Indes sind die nach oben gewölbten Membranstücke ein Zeichen zu geringer Dehnung. Infolge der Präparation des Zellkerns in einer BSA-haltigen Pufferlösung wird das Rinderserumalbumin, das nur sehr langsam durch die Kernpore diffundiert, im Trog eingeschlossen. Der anschließende Austausch der BSA-haltigen gegen eine BSA-freie Pufferlösung bewirkt einen osmotischen Gradienten, durch den die nicht ausreichend vorgespannte Membran nach oben gewölbt wird.

Die Dehnung der vermessenen Kernmembran wurde auch durch Analysen der Kernporendichte bestätigt. Während kraftmikroskopische Untersuchungen der freitragenden Kernmembran eine Reduktion der Kernporendichte um 20% gegenüber der von Schlune et al. (2006) gemessenen zeigten, lag die nahfeldoptisch bestimmte Porendichte 33% bzw. 39% unterhalb des publizierten Wertes für ungeschwollene Zellkerne aus Xenopus laevis Oozyten dieses Entwicklungsstadiums (Schlune et al., 2006). In somatischen Zellen kann durch Anschwellen die Oberfläche des Zellkerns um mindestens 70% reversibel vergrößert werden, wodurch die Kernporendichte um 40% abnimmt (Dahl et al., 2005).

Lamine besitzen im Gegensatz zu Aktinfilamenten und Mikrotubuli eine ungewöhnliche Dehnbarkeit. Kraftmikroskopische Studien zeigen, dass ein anderes, aus Desmin bestehendes
Intermediärfilament 1-2 nN standhält, bevor es, 3.5fach gestreckt, bei einer Zugspannung von 250% bricht (Herrmann et al., 2007). Bei der Kernlamina entscheidet auch die Zusammensetzung über ihre Dehnbarkeit. Der nur Lamin B enthaltende Stammzellkern ist doppelt so dehnbar wie der Nukleus einer Fibroblastenzelle, die auch A- und C-Typ-Lamine exprimiert (Pajerowski et al., 2007). Die Dehnbarkeit der in unseren Experimenten eingesetzten Kernmembranen aus *Xenopus laevis* Oozyten liegt dazwischen.

Im optischen Mikroskop wird die Golfball-ähnliche Struktur des ungeschwollenen Oozyten-Zellkerns sichtbar. Durch Anschwellen des Korns in der leicht hypoosmotischen BSA-haltigen Pufferlösung entfaltet sich die Lamina aus ihrem komprimierten Zustand und geht in ein flaches, orthogonales Netzwerk über, wie es bereits auf elektronenmikroskopischen Darstellungen sichtbar gemacht wurde (Aebi et al., 1986; Dahl et al., 2004).

Dieser Prozess stellt die kritische Größe bei der Membranpräparation dar. Während eine weitgehend unentfaltete Lamina durch tiefes Eindrücken der nahfeldoptischen Sonde in die Kernmembran nachgespannt werden muss, kann ein zu starkes Anschwellen Risse verursachen und die Kernmembran irreversibel schädigen.

Mit der optischen Validierung der Güte potentieller Messstellen wurde in dieser Arbeit ein Werkzeug geschaffen, das eine effiziente Charakterisierung der Kernmembranpräparation ermöglicht und die Auswahl der zu vermessenden freitragenden Membranstücke beschleunigt.

5.3 Nahfeldoptische Darstellung der freistehenden Kernmembran

Die ersten Messungen an der nukleoplasmatischen Seite der Kernmembran zeigten, dass der Kernporenkomplex und insbesondere der Kernkorb nicht hochaufgelöst dargestellt werden konnte. Deshalb lag die Vermutung nahe, dass die Annäherung der TA-Sonde an den Kernkorb durch Reste der Kernmatrix behindert wurde.
Auf elektronenmikroskopischen Aufnahmen der inneren Kernmembran von *Xenopus laevis* Oozyten sind vom Kernkorb ins Kerninnere projizierende Filamente zu sehen (Ris & Malecki, 1993; Ris, 1997). Von jedem distalen Ring gehen acht solcher 6 nm starken Filamente aus, die ein hohles, zylindrisches Kabel bilden und sich etwas tiefer im Kern zu einem verzweigten System vereinigen. Immunfluoreszenzaufnahmen und biochemische Untersuchungen bestätigen die Existenz eines stabilisierenden Aktin-Netzwerks im Nukleus der *Xenopus laevis* Oozyten (Bohnsack et al., 2006). In diesen Zellen ist die Aktin-Konzentration im Kern dreimal größer als die zytoplasmatische, wobei sich der Anteil diffusiver Aktin-Moleküle in den beiden Kompartimenten nicht wesentlich unterscheidet (Paine, 1984). Insoweit verwundert es nicht, dass auch Aktin-bindende Proteine wie beispielsweise das Protein 4.1 im Nukleus entdeckt wurden (Gruenbaum et al., 2005). Ferner bindet Emerin *in vitro* das (-)-Ende von F-Aktin und stabilisiert so möglicherweise das intranukleäre Aktin-Netzwerk (Holaska et al., 2004).

Da bei nahfeldoptischen Messungen die Sonde die Probe sowohl von links nach rechts als auch in umgekehrter Richtung rastert, kann durch den Vergleich beider Aufnahmen bei bekannten Sondeneigenschaften und thermischer Drift die Beweglichkeit analysiert werden. Diese Untersuchung erhärtete zusätzlich die Vorstellung eines auf der nukleoplasmatischen Seite der Kernmembran aufliegenden Aktin-Netzwerks. Das komprimierte Aktingeflecht wies trotz einer hohen Rasterungsgeschwindigkeit eine um 50% höhere Beweglichkeit als der distale Ring des Kernkorbs auf.

Dadurch entstand die Vorstellung, dass infolge des präparationsbedingten Anschwellens des riesigen Oozytenkerns das Aktin-Netzwerk in der Kernperipherie unkontrolliert abreißt, wobei die Höhe des an der nukleoplasmatischen Seite verbleibenden Aktin-Netzwerks nicht regulierbar ist. Deshalb wurde versucht, die Aktinfilamente für hochauflösende Darstellungen durch temperaturbedingte Depolymerisation (Pokorna et al., 2004) weitgehend zu entfernen. Zusätzlich wurde das Präparat vor der nahfeldoptischen Messung mit einer 0.05% (v/v)
Tween20 enthaltenden Pufferlösung gespült. Diese Tween20 Konzentration liegt weit unter dem für den Kernkorb kritischen Wert von 1.3% (v/v) (Prof. Dr. Volker Cordes, persönliche Mitteilung). Tatsächlich konnten dadurch die Kernporenkomplexe hochaufgelöst dargestellt werden.

Durch die im Rahmen dieser Arbeit durchgeführte kraftmikroskopische Analyse konnte ausgeschlossen werden, dass diese Behandlung die Höhe des Kernkorbs verändert. Die über dem Substrat ermittelte Höhe ist ebenso wie die im freitragenden Membranabschnitt gemessene in guter Übereinstimmung mit dem an nicht-freitragenden Membranen gemessenen Wert von 70 nm (Stoffler et al., 1999b).

Das 267 kDa große Tpr-Molekül stellt die formgebende Komponente des Kernkorbs dar. Die Filamente des Kernkorbs bestehen aus Coiled-Coil-Tpr-Homodimeren oder -Oligomeren, die am nukleoplasmatischen Ring eine Kehre machen und durch Interaktion mit dem N-Terminus von Nup153 dort verankert werden (Fahrenkrog et al., 2002; Krull et al., 2004). Der hydrophile C-Terminus von Tpr liegt dem distalen Ring auf und bildet eine Art 20 nm hohe Kuppel, die zusammen mit den 50 nm langen nukleoplasmatischen Filamenten die insgesamt 70 nm große Struktur ergeben (Prof. Dr. Volker Cordes, persönliche Mitteilung). Während die Filamente aufgrund ihrer reusenartigen Anordnung eine begrenzte Flexibilität besitzen und durch eine Kältebehandlung in ihrer Stabilität nicht beeinträchtigt werden, kann der hydrophile C-Terminus durchaus zur Seite geschoben werden und beispielsweise in das Lumen des Kernkorbs fallen. Ob allerdings dieser Teil vom Tpr-Molekül zu den anfänglichen Schwierigkeiten bei der Annäherung beitrug, konnte aufgrund fehlender peptidspezifischer Antikörper nicht geklärt werden.

Um die Leistungsfähigkeit des nahfeldoptischen Mikroskops zu zeigen, wurden mit dem pan-NPC-Marker mAb414 gefärbte Kernmembranen freistehend abgebildet. Die nahfeldoptischen Darstellungen der nukleoplasmatischen Seite wiesen Kernporedichten leicht geschwollener Kerne auf.

Die Halbwertsbreite der mAb414-markierten Strukturen von 65-110 nm stimmte mit der rasterkraftmikroskopisch gemessenen lateralen Ausdehnung des Kernkorbs überein (Stoffler et al., 1999b). Da das Auflösungsvermögen der eingesetzten TA-Sonden bereits früher auf 30-40 nm bestimmt wurde (Molenda et al., 2005), spiegelten die Fluoreszenzpunkte die laterale Ausdehnung des Kernkorbs wider und waren nicht auflösungsbegrenzt. Bedenkt man, dass die mAb414-Antikörper gegen die Nup62-Komplexe gerichtet sind und dass diese sich in der FG-Schicht des zentralen Rings befinden, so würde man aufgrund des Abstands von über 100 nm zur Sondenapertur eine deutlich niedrigere Auflösung und ein schlechteres Signal-
Diskussion

Rausch-Verhältnis erwarten. Da der mAb414 jedoch auch mit anderen FG-Nukleoporinen kreuzreagiert (Walther et al., 2001) und die FG-Nukleoporine Nup153 und Nup98 am Kernkorb lokalisiert sind (Frosst et al., 2002), lag die Vermutung nahe, dass nur die am Kernkorb gebundenen Antikörper dargestellt wurden. In diesem Fall sollte die Darstellung einer mit mAb414 und αNup153-Z zweifach markierten Kernmembran eine nahezu identische Auflösung für beide Antikörper aufweisen. In der Tat besaßen beiden Abbildungen eine ähnliche Auflösung und ein ähnliches Signal-Rausch-Verhältnis, auch wenn sich lokal die Fluoreszenzintensität einiger Kernporen unterschied.

Auch die Halbwertsbreite der Strukturen, die mit dem gegen den flexiblen C-Terminus von Nup153 gerichteten Antikörper αNup153-C2 markiert wurden, stimmte mit der von mAb414- oder αNup153-Z-markierten Epitopen überein.

Infolge dieser Messergebnisse wurde in enger Kooperation mit der Arbeitsgruppe von PD Dr. Andreas Naber die Kernmembranpräparation ebenso wie das bestehende nahfeldoptische Mikroskop weiterentwickelt und ein stabiles System geschaffen, das hochauflösende Darstellungen der Kernmembran in Flüssigkeit ebenso wie positionsgenau Fluoressenzmessungen an Kernporenkomplexen mit einer minimalen Drift gestattet.

5.4 Untersuchung des Kerntransports mittels nahfeldoptischer FCS

Fluoreszenz-Korrelationsspektroskopie (FCS) basiert auf der Analyse von Intensitätsfluktuationen fluoreszierender Moleküle, die das Detektionsvolumen betreten und es wieder verlassen. Aus diesen Intensitätsänderungen wird die experimentelle Autokorrelationsfunktion (AKF) berechnet, die mit einer auf einem theoretischen Modell beruhenden AKF angefittet wird. Dabei entscheidet letztendlich die Qualität des Modells über die Aussagekraft der Fitparameter.

Die hohe Kernporendichte der *Xenopus laevis* Oozyten führt dazu, dass sich im fokussierten Laserstrahl sieben NPCs befinden, wodurch die Auswertung der experimentell bestimmten Autokorrelationsfunktion wesentlich komplizierter wird. Deshalb wurde die auf konfokaler Mikroskopie basierende FCS lediglich zur Einstellung der Ntf2-Konzentration auf im Mittel ein Molekül pro Kernpore eingesetzt.

Für die quantitative Auswertung dieser Messdaten wurde eine theoretische Autokorrelationsfunktion gesucht. Während für das bei der Totalreflektion entstehende optische Nahfeld schon seit langem theoretische AKF bekannt sind (Thompson et al., 1981; Ries et al., 2008), existiert aufgrund der komplexen Feldverteilung einer Dreiecksapertursonde (Molenda et al., 2005) kein einfaches analytisches Modell, das zur Herleitung der theoretischen AKF einer TA-Sonde herangezogen werden könnte.

Im Gegensatz dazu ließ sich die Bewegung innerhalb des zentralen Kanals der Kernpore relativ einfach modellieren und eine theoretische AKF für die begrenzte eindimensionale Bewegung im optischen Nahfeld herleiten. Indes setzte sich die experimentell oberhalb eines NPC bestimmte AKF aus zwei miteinander verbundenen Komponenten zusammen. Das fluoreszierende Molekül bindet mit einer gewissen Wahrscheinlichkeit am Transportkanal und verschwindet darin oder es diffundiert alternativ im Raum zwischen der Kernmembran und dem Sondenplateau, wobei sich diese Bewegung auch wieder in eine laterale und eine axiale Komponente aufspalten lässt.

Um diese multiplikativ verbundenen Komponenten formal korrekt voneinander zu tren nen, müsste man zunächst die axiale und die laterale Fluktuation im Zwischenraum auflösen und anschließend mit Hilfe der Daten der lateralen Zwischenraum-Diffusion die oberhalb der Kernpore ermittelte AKF anfitten.

Trotz der Vereinfachung überzeugt das Fit-Resultat in zweierlei Hinsicht. Erstens liegt die so ermittelte Kanallänge mit 82 nm zwischen den elektronenmikroskopisch bestimmten Werten für den zentralen Transportkanal von 62 nm (Akey & Radermacher, 1993) und 90 nm (Stoffler et al., 2003). Und zweitens ist die mittlere Aufenthaltsdauer im Transportkanal mit 3.6 ms kleiner als die von Kubitscheck et al. (2005) videomikroskopisch gemessene Gesamtverweildauer von Ntf2 am NPC (5.8 ms).

Dabei hat der videomikroskopische Ansatz, bei dem die Lokalisation einzelner fluoreszenter markierter Proteine durch in schneller Folge aufgenommene Bilder bestimmt wird, zwei Nachteile im Vergleich zum SNOM-FCS-Ansatz. Erstens beschränkt die Geschwindigkeit der Digitalkamera die zeitliche Auflösung auf wenige Millisekunden und zweitens beeinträchtigen die Drift oder Membranflickern die Lokalisationsgenauigkeit. Im Gegensatz dazu reicht die zeitliche Auflösung des im Rahmen dieser Arbeit eingesetzten nahfeldoptischen FCS-Aufbaus bis in den Mikrosekundenbereich hinunter und der Abstand zwischen Kernmembran und TA-Sonde stellt sich infolge der Membranspannung und der Sondenposition automatisch ein.

Die Konzentration der Fluorophore wird bei Einzelmolekülmessungen so gewählt, dass sich im Mittel nur ein fluoreszierendes Molekül im Detektionsvolumen aufhält. Aufgrund des Größenunterschieds zwischen dem nahfeldoptischen und dem konfokalen Anregungsvolumen lag die Konzentration der fluoreszent markierten Proteine in unserem Ansatz mit 10 nM um zwei Größenordnungen höher als bei den mittels Digitonin permeabilisierten HeLa-Zellen (Yang et al., 2004; Kubitscheck et al., 2005) oder nach Mikroinjektion (Yang & Musser, 2006) durchgeführten Kerntransportmessungen.

Die Ntf2-Konzentration innerhalb der Zelle ist indes deutlich höher und beträgt in HeLa-Zellen ebenso wie im Rattenleberzellhomogenat im Mittel 2 µM. Infolge der inhomogenen Verteilung und der bevorzugten Lokalisation an der Kernhülle steigt die Ntf2-Konzentration an der Kernmembran auf etwa 20 µM an (Chaillan-Huntington et al., 2000).

Die bei höheren Konzentrationen bestimmte Ntf2-Transportkinetik stimmt weitgehend mit den Resultaten der Einzelmolekülmessungen überein. So wurden bei einem Konzentrationsgradienten von 0 µM nukleoplasmatischem und 100 µM zytoplasmatischem Ntf2 in permeabilisierten Zellen Transportraten von 2 500 Translokationen pro NPC und Sekunde gemessen (Ribbeck & Görlich, 2001). Bei einer Konzentrationsdifferenz von 0 µM im Nukleus und 15 µM im Zytoplasma waren es an Kernmembranen aus *Xenopus laevis* Oozyten etwa 1 500 Translokationen pro NPC und Sekunde (Siebrasse & Peters, 2002). Auf einen Konzentrations-
gradienten von 1 µM bezogen, entsprächen diese Ergebnisse 250 bzw. 100 Ntf2-Molekülen pro NPC und Sekunde.

Die Anordnung der Bindungsstellen in einem regelmäßigen Abstand von 1-1.5 nm ist mit den wesentlichen Transportmodellen, dem Modell des virtuellen Tores, dem Affinitätsgradienten-Modell, dem Modell der öligen Spaghetti, dem Modell des hydrophoben Gels und dem Modell des reversiblen nanomechanischen Kollapses, vereinbar. Auch die nahfeldoptisch bestimmte Translokationszeit von Ntf2 ist in Einklang mit diesen Modellen. Der ebenfalls ermittelte Diffusionskoeffizient $D = 20 \mu m^2/s$ hingegen unterscheidet sich deutlich von dem im synthetischen Hydrogel bestimmten Ntf2-Diffusionskoeffizienten $D \approx 0.1-0.5 \mu m^2/s$ (Frey & Görlich, 2007). Dieses hydrophobe Gel wurde aus den FG-Domänen von yNsp1 hergestellt und spiegelt dadurch nicht die reale Situation innerhalb der Kernpore wider.

Am Beispiel des Transportrezeptors Ntf2 wurde die Funktionalität unseres nahfeldoptischen FCS-Aufbaus validiert, der nun für weitere Translokationsstudien zur Verfügung steht.

Mit diesem Werkzeug könnte die Translokationsdynamik unterschiedlicher Transportrezeptoren und Transportrezeptor-Kargo-Komplexe untersucht und dabei die Arbeitshypothese einer Bahnung des Transportweges infolge erhöhter Konzentration der Annahme einer Sättigung der Bindungsstellen innerhalb des Kernporenkomplexes gegenübergestellt werden.

Darüber hinaus besteht nun die Möglichkeit, die Methode nach der Weiterentwicklung zur Zwei-Kanal-Kreuzkorrelationsspektroskopie auch zur Untersuchung der verschiedenen Transportwege innerhalb der Kernpore einzusetzen und beispielweise die Translokation von unterschiedlich fluoreszent markiertem Importin β und β-Catenin parallel zu analysieren.
6 Zusammenfassung

Durch die erstmalige Kombination von nahfeldoptischer Fluoreszenzmikroskopie und Fluoreszenz-Korrelationsspektroskopie wurde im Rahmen der vorliegenden Arbeit ein leistungsstarkes Werkzeug zur Untersuchung von hochaufgelösten Einzelmolekülbewegungen geschaffen.

Zur Analyse der Translokation wurden rekombinant exprimierte Proteine chromatographisch gereinigt und in vitro auf ihre Funktionalität getestet. Ferner wurde eigenständig eine neue Strategie für die Expression der Lef/Tcf-Transkriptionsfaktoren im mikromolaren Maßstab entwickelt, die es ermöglicht, die Bindung dieser Proteine an Transportrezeptoren und deren Translokation zu untersuchen.

Die Kernmembran aus *Xenopus laevis* Oozyten wurde freitragend präpariert und erstmalig sowohl kraftmikroskopisch als auch nahfeldoptisch in Flüssigkeit charakterisiert. Dazu wurde in enger Kooperation mit der Arbeitsgruppe von PD Dr. Andreas Naber das bestehende rasternahfeldoptische Mikroskop zu einem stabilen System für positionsgenau Floureszenzmessungen unter Flüssigkeit weiterentwickelt. Die begrenzte Eindringtiefe des evaneszenten Fel des erforderte die Herleitung einer theoretischen Autokorrelationsfunktion für die begrenzte eindimensionale Diffusion. Dadurch konnte nicht nur der Diffusionskoeffizient von Ntf2 (D = 20 µm²/s) im Transportkanal, sondern auch die Translokationszeit von Ntf2 auf 3.6 ±0.1 ms bestimmt werden.

Insgesamt kann festgehalten werden, dass im Rahmen dieser Arbeit erstmalig eine sowohl zeitlich als auch räumlich hochauflösende Methode zur Analyse der Translokation durch den Transportkanal des Kernporenkomplexes entwickelt wurde, die ein Fundament für die weitergehende Erforschung von Diffusionsprozessen auf nanoskalischer Ebene darstellt.
7 Literatur

8 Anhang

8.1 Aminosäuresequenz der klonierten Expressionskonstrukte

XLef-1 in pRSET 415aa

1 MRGSHHHHHH GMASMTGGQQ MQGRDLYDDDD KDRWGSELEM PQLSGARGGN GGGDPELCA
61 TDEMPFKD GeDPOQKEKIYA EISNPEEEDG LADIKSSLVN ETEIIPSSNS HEISQRRLDS
121 YHEKSRERPE DAGKHPDGGG YSKGQPSYTYG PSYIMMPNMM NEPYMSNGSL SPPIPRTSNK
181 VPVQPSPHAV HPLTPTLITYS DEHFAPGVHP SHIPSDINTK QGMHRHPQAP DLPTYPMPSP
241 GSVGQMTPLPL GWYFHHMSVG FPGPHATGIP HPAIVNFPQVK QEHSNHDML HMKPHHEQR
301 KEQEPKRPHI KKLPLNAFMLY MKEVRANVVA ECTLKESAAA QNILGRWHAL LSREDQAKYY
361 ELARKERQQLH MQLYPGWSAR DNYGKKKRRK REKLOESTSG AGPFRMTAAY IRGSC

XLef-1 in pQE-30 394aa

1 MRGSHHHHHH GMSCELGTMP QLSGAGGGNG GGGDPELCAT DEMIPFKDEG DPQKEKIYAE
61 ISNPEEEGDL ADIKSSLVN ETEIIPSSHDS ESISRRLDSY HEKSRERPED AGKHPDGGGLY
121 SKGQPSYTYGP SYIMMPNNMN EPYMSNGSLSP PPIPRTSNKV FVQPSPHAVH HLTPLTLYSD
181 EHFAPGVHPS HIPSINTKQ GMHHRPQAPQ DLTPYPMPSP VGQMTPLPLGW YPHHHVMSVG
241 PFPHATGIHIP PAIVNFPQVKQ EHSNHDGDLM HMKPHHEQRR KEQEPKRPHIK KPLNAFMLY
301 KEVRANVVA ECTLKESAAA QILGRWHAL SREDQAKYYE LARKEQQLHM QLYGWSARD
361 NYGKKKRRKR EKLOESTSGA GPPFRMTAAYI IRGSC

XTcf-1 in pQE-30 385aa

1 MRGSHHHHHH GACELGTMP QMNSAGGDDDL GASDEMISFK DEGDQEEKIR ENGFTERDIA
61 DLKSSLVNES EVASHPRVPE THPFAEIRRAQ DQVLVQYDQYK SAHMEDGQIKQ DEQEMYKKGSG
121 YPGYFULMSL DPYLSNGSVS ALSNKVFQPVQ PSHGVHPLIP YNSLFSFSHS HSPHLVDLNN
181 QKQGVHRPSQ TDPSFTYPPL SSQGVQQQIP SMGWFPHPLM LSPSTTHTGPP FPAIIHPHSQ
241 NKDMDIYERN MKQHSEPKRE KEPKKPAIKK PKLNAFMLYMK EMRANVIAEC TLKESAAINQ
301 ILIGRWHALS REEQSKYEL ARKEQQLHMQ LYPGWSARDN YGREKRRTRED KHQDSSDPG
361 SPKCRARFG LQQDTWCGP CRASC
8.2 Weitere Informationen zu den exprimierten Konstrukten

Die folgende tabellarische Zusammenstellung enthält wissenswerte Angaben für die Expression und Aufreinigung der Fusionsproteine.

<table>
<thead>
<tr>
<th>Name</th>
<th># aa</th>
<th>Molekulargewicht [Da]</th>
<th>pI</th>
<th>Ext.koeffizient [M⁻¹cm⁻¹]</th>
<th># C</th>
<th># W</th>
<th># Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNG</td>
<td>514</td>
<td>58 686</td>
<td>6.46</td>
<td>64 750</td>
<td>6</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>GST-β-Catenin</td>
<td>1015</td>
<td>112 687</td>
<td>5.60</td>
<td>106 690</td>
<td>15</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>β-Catenin</td>
<td>791</td>
<td>86 539</td>
<td>5.48</td>
<td>63 830</td>
<td>11</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>GST-Ntf-2</td>
<td>357</td>
<td>41 135</td>
<td>5.68</td>
<td>63 830</td>
<td>7</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>Ntf-2</td>
<td>133</td>
<td>14 987</td>
<td>5.10</td>
<td>20 970</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>GST-Ran</td>
<td>441</td>
<td>50 584</td>
<td>6.48</td>
<td>71 280</td>
<td>7</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>Ran</td>
<td>217</td>
<td>24 436</td>
<td>7.17</td>
<td>28 420</td>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Importin α2</td>
<td>537</td>
<td>58 933</td>
<td>5.75</td>
<td>47 440</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Importin α3</td>
<td>531</td>
<td>59 097</td>
<td>5.05</td>
<td>41 940</td>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Importin β1</td>
<td>886</td>
<td>98 358</td>
<td>4.78</td>
<td>78 270</td>
<td>23</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>XLef-1Cys pQE-30</td>
<td>394</td>
<td>43 976</td>
<td>7.21</td>
<td>40 340</td>
<td>4</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>XLef-1Cys pRSET</td>
<td>415</td>
<td>46 603</td>
<td>6.77</td>
<td>47 330</td>
<td>3</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>XTcf-1Cys pQE-30</td>
<td>385</td>
<td>43 407</td>
<td>7.76</td>
<td>41 370</td>
<td>6</td>
<td>4</td>
<td>13</td>
</tr>
</tbody>
</table>

8.3 Filmaufnahmen der Dreiecksapertursonde und einer freistehenden Kernmembran

Die drei Filme auf der beiliegenden CD zeigen die nukleoplasmatische Seite einer freistehenden, mit dem lipophilen Fluoreszenzfärberstoff DiI markierten Kernmembran in der Fokusebene, die während der Aufnahmen nicht verändert wurde. Für die Analyse der Membran-Sonden-Interaktionen wurde sowohl die Dreiecksapertursonde in axialer Richtung als auch das Präparat lateral bewegt.
1-Sondenbewegung_axial.avi Die Dreiecksapertursonde nähert sich der im Fokus befindlichen freistehenden Kernmembran an. Die Apertur wird in der Bildmitte als weißes Dreieck sichtbar und die Sonde drückt noch einige Hundert Nanometer in die Membran hinein. Anschließend wird die Sonde zurückgezogen und nimmt die Membran mit. Nach Ablösung von der Sonde kehrt die Kernmembran unversehrt wieder in die Fokusebene zurück. [in Kooperation mit PD Dr. A. Naber und N. Neuberth]

2-Sondenbewegung_lateral.avi Die freistehende Kernmembran wird nach Annäherung der Dreiecksapertursonde lateral bewegt. Die Membran zeigt dabei keine Stauchungen oder Rupturen. Hellere Punkte auf der Kernmembran zeigen sowohl bei moderater als auch größerer Geschwindigkeit, dass die freistehende Kernmembran bei lateraler Bewegung nicht an der Sonde haftet. [in Kooperation mit PD Dr. A. Naber und N. Neuberth]

3-Sondenbewegung_lateral-axial.avi Die angenäherte Dreiecksapertursonde gleitet über die freistehende Kernmembran, die zunächst lateral bewegt wird. Durch eine axial wirkende Kraft nimmt die zurückziehende Sonde die weiterhin lateral bewegte Membran mit. [in Kooperation mit PD Dr. A. Naber und N. Neuberth]

8.4 Modell der begrenzten eindimensionalen Diffusion im optischen Nahfeld

Das Modell der begrenzten eindimensionalen Diffusion beschreibt die theoretische Autokorrelationsfunktion eines unendlich lange diffundierenden Partikels im optischen Nahfeld. Die Herleitung erfolgt analog zu Gennerich & Schild (2000), die ein Modell für die axial begrenzte Diffusion bei einer Gauß’schen Intensitätsverteilung entwickelt haben.

Die Diffusion ist in x-Richtung durch die eindimensionale Wahrscheinlichkeitsdichtefunktion

\[\rho(x, x', \tau) = \frac{1}{d} \cdot \sum_{m=-\infty}^{+\infty} e^{-Dr(m\pi/d)^2} \cdot \cos \left(\frac{m\pi x}{d} \right) \cdot \cos \left(\frac{m\pi x'}{d} \right) \]

charakterisiert (Elson & Magde, 1974). Die Autokorrelationsfunktion \(G(\tau) \) des Fluoreszenzsignals \(i(t) \),

\[i(t) = \int_{0}^{d} dx \cdot I(x) \cdot \bar{C}(x, t) \cdot Q \]

mit der Anregungsintensität \(I(x) = I_0 \cdot e^{-x/l} \), der Konzentrationsfluktuation \(\bar{C}(x, t) = \langle c \rangle \) und der angenommenen Quantenausbeute \(Q = 1 \), ist definiert durch

\[G(\tau) = \frac{1}{\langle i \rangle^2} \cdot \int_{0}^{d} dx \cdot \int_{0}^{d} dx' \cdot I(x) \cdot I(x') \cdot \phi(x, x', \tau) \]

mit der Konzentrationskorrelationsfunktion \(\phi(x, x', \tau) = \langle c \rangle \cdot \rho(x, x', \tau) \).

Um die Autokorrelationsfunktion \(G(\tau) \) zu erhalten, wird zunächst das durchschnittliche Fluoreszenzsignal \(\langle i \rangle \) mittels der exponentiellen Intensitätsverteilung \(I(x) \),

\[I(x) = I_0 \cdot e^{-x/l} \]

berechnet:

\[\langle i \rangle = I_0 \cdot \langle c \rangle \cdot \int_{0}^{d} dx \cdot e^{-x/l} = I_0 \cdot \langle c \rangle \cdot I \cdot \left(1 - e^{-d/l} \right) = I_0 \cdot N_{exc} \cdot \left(1 - e^{-d/l} \right), \]

wobei \(N_{exc} \) für die Zahl der Partikel im Anregungsvolumen steht, und anschließend in Gleichung (20) eingesetzt:

\[G(\tau) = \frac{\frac{I_0^2 \cdot N}{I_0^2 \cdot N^2 \cdot \left(1 - e^{-d/l} \right)}}{\int_{0}^{d} dx \cdot e^{-x/l} \cdot e^{-x'/l} \cdot \rho(x, x', \tau)} \]

\[= \frac{1}{N} \cdot \frac{1}{l \cdot d} \cdot \left(1 - e^{-d/l} \right)^{-2} \cdot \sum_{m=-\infty}^{+\infty} e^{-Dr(m\pi/d)^2} \cdot \left[\int_{0}^{d} dx \cdot e^{-x/l} \cdot \cos \left(\frac{m\pi x}{d} \right) \right]^2. \]

(23)
Das Integral in Gleichung (23) lässt sich wie folgt lösen:

\[F(x) = \int e^{-ax} \cdot \cos(bx) \, dx = e^{-ax} \cdot \frac{b \cdot \sin(bx) - a \cdot \cos(bx)}{a^2 + b^2} \]

mit \(a = \frac{1}{l} \) und \(b = m\pi/d \)

\[F(x) = \frac{d}{l} \frac{l}{1 + (m\pi l/d)^2} \left(\left(1 - (-1)^m \right) e^{-d/l} \right) \] \hspace{1cm} (25)

Setzt man Gleichung (25) in Gleichung (23) ein, so erhält man die Autokorrelationsfunktion für die eindimensionale Diffusion im optischen Nahfeld:

\[G(\tau) = \frac{1}{N_{exc}} \cdot \frac{1}{l \cdot d} \left(1 - e^{-d/l} \right)^2 \cdot l^2 \cdot \left(\sum_{m=1}^{\infty} \frac{e^{-D\tau(m\pi/d)^2}}{(1 + (m\pi l/d)^2)^2} \cdot \left(1 - (-1)^m e^{-d/l} \right)^2 \right) \] \hspace{1cm} (26)

oder mit \(N_{abs} = \langle c \rangle \cdot d \) :

\[G(\tau) = \frac{1}{N_{abs}} \left(1 + 2 \sum_{m=1}^{\infty} \frac{e^{-D\tau(m\pi/d)^2}}{(1 + (m\pi l/d)^2)^2} \cdot \frac{1 - (-1)^m e^{-d/l}}{1 - e^{-d/l}} \right)^2 \] \hspace{1cm} (27)

8.5 Literatur des Anhangs

8.6 Publikation in einer Fachzeitschrift

High resolution imaging and dynamic processes on freestanding nuclear membranes by near-field optical microscopy.
Nature, wird eingereicht

8.7 Eigene Posterbeiträge zu wissenschaftlichen Tagungen

M. Herrmann, N. Rau, C. Höppener, S. K. J. Johnas, D. Gradl und A. Naber
Observing individual nuclear import events on an unsupported nuclear envelope by near-field optical microscopy.

N. Rau, M. Herrmann, C. Höppener, D. Gradl und A. Naber
Observing individual transport events through single pores on an unsupported nuclear membrane by near-field optical microscopy.
Summer School „Nano-Biology“ des DFG-Center for Functional Nanostructures, Bad Herrenalb, 5.-8. September 2005

N. Rau, M. Herrmann, C. Höppener, D. Gradl und A. Naber
Observing individual transport events through single pores on an unsupported nuclear membrane by near-field optical microscopy.

M. Herrmann, J. Wissler, N. Neuberth, D. Gradl und A. Naber
Investigation of nuclear transport by near-field optical microscopy and fluorescence correlation spectroscopy.
Eine Doktorarbeit ist wie ein langer und oftmals steiniger Weg, auf dem es wichtig ist, Freunde und hilfreiche Gefährten zu haben.

Deshalb sage ich Danke:

meiner Doktormutter Prof. Dr. Doris Wedlich für die Betreuung, die Einführung in die Kunst der Kernpräparation und ihre kritischen Bemerkungen zu meiner Arbeit,

PD Dr. Andreas Naber für die Übernahme des Korreferats und die vielen Diskussionen in den gemeinsamen Sitzungen ebenso wie im SNOM-Labor,

meinem Betreuer Dr. Dietmar Gradl für sein Vertrauen, die Überlassung des Themas und die lange Leine; stets für mich da und begeistert dabei („Habt ihr was am SNOM gesehen?“),

PD Dr. Birthe Fahrenkrog, Prof. Dr. Uli Kubitscheck, PD Dr. Harald Hermann-Lerdon,

Prof. Dr. Reimer Stick und Prof. Dr. Kathy Ullman für ihr Interesse und die zur Verfügung gestellten Antikörper,

den Ex-Münsteranern Antje Grünwald, Dr. David Grünwald und Dr. Jan-Peter Siebrasse für ihre Unterstützung in Fragen der Transportfaktorenaufreinigung,

Dr. Wayne A. Fenton und Prof. Dr. Art Horwich für die Hilfe bei der Suche nach bakteriellen Chaperonen,

den Ehemaligen & Aktiven der AG Naber, Daniela Dießel, Dr. Christiane Höppener,

Dr. Simone Johnas, Nicole Neuberth, José Pérez und Jörg Wissler, für die Einführung in die optische Nahfeldmikroskopie und die gemeinsame Messzeit („Sind wir schon dran?“),

meinen Kollegen im Heimatinstitut, die sich immer freuten, mich wiederzusehen, wenn ich von einem der vielen Ausflüge in die Physik zurückkam; dabei gilt mein besonderer Dank Monika Diecker für die Pflege der operierten Frösche und die zuverlässige Versorgung mit sauberen Glaswaren,

Dr. Daniela Kobbe aus dem botanischen Institut für diverse Bakterienstämmme und Sandra Baumann aus der technischen Biologie für die Einführung in die Hochdruckhomogenisation und die Gespräche beim Kaffee,

Dr. Harald Bothe und Dr. Stefan Thiele stellvertretend für alle Hilfreichen Geister in den Heiß en Linien,

der DFG und insbesondere dem CFN für die Forschungsfinanzierung,

meiner Familie für die materielle und ideelle Unterstützung,

meinen Freunden („Wann gibst du ab?“),

und vor allem meiner Ehefrau Barbara und meiner Tochter Hannah, ersterer für Gespräche und Korrekturen, beiden für ihre Geduld und Liebe.