CHARACTERIZATION OF BALLS BY RIESZ-POTENTIALS
WOLFGANG REICHEL

ABSTRACT. For a bounded convex domain G C RY and 2 < a # N consider the unit-
density Riesz-potential u(z) = [, |z — y|*~N dy. We show in this paper that u = const.
on OG if and only if G is a ball. This result corresponds to a theorem of L.E. Fraenkel,
where the ball is characterized by the Newtonian-potential (o = 2) of unit density being
constant on G. In the case @ = N the kernel |z —y|*~ is replaced by — log |z —y| and
a similar characterization of balls is given. The proof relies on a recent variant of the
moving plane method which is suitable for Green-function representations of solutions
of (pseudo-)differential equations of higher-order.

1. INTRODUCTION

In Newton’s theory of gravitation the potential of a ball Br(0) C R? of constant mass
density p > 0 is given by

uo) =g [ Loay={ O
4T JBg(o) 1T = Yl Pl lz| > R.

Outside the ball the gravitational potential coincides with that of a single point centered
at the origin whose mass equals the mass of the entire ball. This observation (and its
generalization to radially symmetric mass densities) allows to reduce celestial mechan-
ics of stars and planets to the interaction of point masses. Similar properties hold for
the Newtonian potential of an N-dimensional ball N > 4 and for the two-dimensional
logarithmic potential of a disk in R?. Note that the gravitational potential of a ball
of constant mass density is constant on the surface of the ball. This property in fact
uniquely characterizes the balls, as it was shown by Fraenkel [7] through the following
theorem.

Theorem 1 (Fraenkel, 2000). Let G C RY be a bounded open set and let wy be the
surface measure of the unit-sphere in RY. Consider

1 1
—/ log dy, N =2,
21 Jq |z =y

N > 3.

u(r) =

1 / 1 p
(N =2 Jo e =y
If u is constant on OG then G is a ball.

One of the striking aspects of Fraenkel’s theorem is that no regularity of G is assumed
a-priori. The goal of this paper is to prove for Riesz-potentials the following analogue of
the above result. Unlike in Theorem 1 we need to a-priori restrict the class of open sets.
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Theorem 2. Let G C RY be a bounded conver domain. For a > 2 consider

0 u(w) = |

If u is constant on OG then G is a ball.

It is easy to see that the converse of both Theorem 1 and Theorem 2 hold. Suppose
G = Bg(0) is a ball centered at the origin. Then wu is radially symmetric and hence u is
constant on 0G.

Let us give some heuristic arguments for Fraenkel’s theorem. The Newtonian potential
in Theorem 1 satisfies

—Au=11in G, ~Au=0inRY\ G

and by assumption v = ( on 0G. If one considers the two boundary value problems (here
we assume N > 3)

—Au; =11in G, ~Au, =0in RN\ G,
(%) B (%) B
u; = 3 on 0G U, = [ on 0G,u, — 0 at oo

then there exist unique solutions wu;, u., and they must coincide with u. The fact that u
is a C'(RY) function means that next to the boundary values u; = u, = 3 on 9G also
the normal derivatives of u;, u. have to coincide on dG. For an arbitrary domain G this
would not be the case. Thus, (x), (*x) together with matched normal derivatives is an
overdetermined problem, which explains why the shape of G cannot be arbitrary. Infact,
the only way to resolve (x), (%) and simultaneously match the normal derivatives is by
(G being a ball. Note that in Fraenkel’s theorem no regularity of 0G is assumed, so that
in general normal derivatives of u;, u, cannot be understood in the classical sense.

Let us discuss similarly the Riesz-potentials of Theorem 2. First we recall fundamental
solutions G(z,y) of the pseudo-differential operators (—A)*/2 in RY, o > 0. In case
(= N) € Ny (ie., either 0 < o < N or @ > N but a — N is not an even natural
number) then

()
G ’ _ 2 _ ., |Ja—N
whereas if « — N = 2k, k € Ny then
(~1)* vy 1
Glz,y) = ————~— |2 — y|* N log —.
(x y) 20‘_17TN/2F(%) ’x y’ Og ’x o y’

It follows that for (o — N)/2 & Ny the potential u of Theorem 2 satisfies in the distribu-
tional sense (x¢ is the characteristic function of the set G)

(—A)*?y = const. yg in RY

together with u = 3 on G, u € C(RY) for 1 < I < a. Note that for « = 2m the
potential u satisfies a polyharmonic equation in RY. For general a > 2 there is no
analogue of the two boundary value problems (%), (*x) as in the second-order case. It
is therefore remarkable that the mere information of G being a level set of u completely
determines u and GG. Even in the case & = 2m the boundary value problems analogous to

(%), (xx) are underdetermined individually since only one boundary datum is prescribed.
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But if they are viewed as a system coupled by the fact that v € C?*™~1(R") coincides
with u; in G and wu, outside G then they become overdetermined.

We finish this discussion with the following two open problems:

(i) Is Theorem 2 true if the assumption of convexity of G is dropped?
(ii) Is there an analogous result as in Theorem 2 for potentials

1
uw) = [ o=yl log
G |z —y|
The most interesting case would be the case where o — N = 2k with k € Ny since
then the kernel function is (up to a normalization constant) the fundamental
solution of (—A)*/2,

The main reason why both questions remain open is the fact that the validity of Lemma 4
is not clear under these assumptions, cf. the remark following Lemma 4.

dy?

A number of potential-theoretic characterizations of balls are known in the literature.
If instead of a volume potential one considers a single-layer potential u concentrated on
0G with constant density, then G is a ball if and only if u is constant on 0G. This
conjecture of P. Gruber (cf. Heil, Martini [10]) has been verified for different smoothness
classes of domains. The two-dimensional case was considered by Martensen [13], Gar-
diner [8] and Ebenfelt et. al. [6] and the higher-dimensional case by Reichel [17], Mendez
and Reichel [14] and Sirakov [19]. We mention that in [14] only convexity of the un-
derlying domain was assumed. Similar characterizations of annuli were given by Payne,
Philippin [15] and Philippin [16] and different single-layer characterizations of balls were
achieved by Shahgholian [20] and Mikyoung Lim [12].

Our approach is based on a new variant of the moving plane method. The classical mov-
ing plane method is based on the pointwise maximum principle for second order elliptic
equations. It was developed by Alexandrov [1], Serrin [18] and Gidas, Ni, Nirenberg [9].
Very recently some important improvements of the moving plane method were achieved
by Chang, Yang [4], Berchio, Gazzola, Weth [2], Li [11], Chen, Li, Ou [5] and Birkner,
Lépez-Mimbela, Wakolbinger [3]. These new variants of the moving plane method are
applied to the integral equation resulting from the Green-function representation, cf.
Lemma 10 below. In this way symmetry results for higher-order elliptic problems as well
as pseudo-differential equations can be achieved although pointwise maximum principles
are not available.

The paper is organized as follows. In Section 2 we provide some basic estimates for
the far-field of the potential. In Section 3 the moving-plane procedure is carried out.

2. ESTIMATES FOR THE RIESZ-POTENTIALS

Throughout the paper let o > 2 and let u denote the function defined in (1).

Lemma 3. Let | € N with 1 <1 < a. Then u € C'(RY) and differentiation of order
can be taken under the integral.

Proof. The result is standard. We give a proof for the reader’s convenience. We consider

the case a # N; the proof for a = N is just a slight variant. Let n : [0,00) — [0, 1]

be a C*°-function with n = 0 on [0,1] and n = 1 on [2,00). Let g = (p1,...,un) be a

multi-index of order |u| = [ and let ¢;(1), ca(l), ... denote constants which only depend
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on [. For e > 0 let n.(t) := n(t/e) and define

ue(z) == Mdy, vy(x) = / D“; dy.

o |z —ylN-e o —y|N-

Note that |D¥|z — y|*=V| < const. |z — y|*~V~! with o — N — [ > —N. Therefore v,(z)
exists for all z € RY. Furthermore

() — va(a)] < /G D (1= il — ) e — ") dy

<al) Yo [ Dr(—ndle =)D le =y dy

|+ =t

<o) Y /6_”'|$—y|“‘N‘”"dy
G

Wl =1

< c3()e*™ = 0as e — 0.

Thus D*u, converges uniformly on R to v, for all multi-indices p with |u| < «. This
establishes the proof. m

In the following we assume that G is convex and that u = const. = § on 0G.

Lemma 4. IfNZathenzi:c)<ﬁforx€RN\@ and u(x) > B forx € G. If N < «
then u(x) > 3 for v € RN\ G and u(x) < 8 forx € G.

Remark. In the computations below we use that the kernel function |z — y|*™" has
monotonicity and sub-/superharmonicity properties. In general this is not the case for
kernels of the form |z — y|* " log1/|z — y|. Moreover, it is an open problem how to
overcome the convexity assumption of GG in the proof below.

Proof. Lemma 3 shows that u is a C?*(RY)-function since a > 2. Note that A|z|*™V =
(@ — N)(a — 2)|z|* V=2 and Alog‘%l = (2 — N)|z|72. Let us first consider the case
N > « > 2. In this case u is superharmonic and hence inside G the function u is larger
than the value 8 of u on 0G. In the case 2 < N < « the function u is subharmonic and
hence inside GG the function w is smaller than its value $ on the boundary. It remains
to consider u outside G. We show that the convexity of G implies that v has no local
extremum outside G. Since either u(zx) — 0,00 or —o0 as || — oo this implies that u
is smaller (larger) than 3 outside G. So let z € RY \ G. By the convexity of G we can
separate = from G through a hyperplane, i.e., there exists a unit vector e € RY and a
point zy € RY \ G such that

(y—20)-e<0<(x—2z)-eforalyedG.
In particular (z —y)-e > 0 for all y € G. Since
Vu(z) - e = Ca,N/ Mdy
c

|z — y|N-otl
and the integrand is strictly positive we see that u has no local extremum outside G. m

By Lemma 4 we see that G is a sub- or super-level set of u. This observation led
Fraenkel [7] to rewrite u as the Newtonian potential of the nonlinear density function
fu(u(z) — B) over all of RN, where fy is the Heaviside-function. Hence u fulfilled a
nonlinear integral equation in RY with no explicit appearance of the set G. The same is

clearly true in the context of Riesz-potentials as expressed by the following corollary.
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Corollary 5. Let fy(t) = 1 fort > 0 and fy(t) = 0 for t < 0 be the Heaviside-
function and x¢ be the characteristic function of G. Then xg = fu(u—p0) if N > « and
Xe = fu(B—u) if N < «a. Hence

( 1
/]RN log HfH(U(y) —B)dy, N =a,
U(x) h RN W dy’ N > Q,
Md«y N <«
\ Jry |z —y|Ne ’ :

Lemma 6. Let ¢ = ﬁ Joydy be the barycentre of G and let v(x) = u(x + q). Then

VolGlogi +h(x) if N =q,
v(x) = ||

vol Glz|*™N + h(z) if N #«
and there exists a constant C > 0 such that |h(x)| < Clz|*N=2 |Vh(z)| < C|z|* N3,

Proof. Let N # «. A direct application of Taylor’s theorem to the function ¢(t) :=
|z — tn|* N yields

(2) o —n* ™ = [2|*™N = (a = N)|2[*"" P2 + k(2 n)

where there exists a constant C' > 0 and a radius Ry > 0 such that

(3)  |k(z,m)| < Clx|* N2 |Vek(z,n)| < Clz|* N3 forall |z| > Ry,n € G —q.
Here Ry > 0 is chosen such that G — ¢ C Bg,(0). Note that

1 1
v(x) = dy:/ ———dn
@) /G!:Hq—y\Na G—g [ — |V

so that the claim of the lemma follows from (2), (3) and the fact that the barycentre of
G — q is zero. The proof for N = « is similar. m

3. PROOF OF THEOREM 2 BY THE METHOD OF MOVING PLANES

For a point € RY let 2 = (2\ — z1,2’) be the reflection of z at the hyperplane
Ty = {x € RY : 2y = A\}. Hence |2*]? — |2]* = 4\(A — z1). Also define the half-
space Hy := {z € RY : 2; < A} and note that 0H, = T\. On H, define the function
wy(z) := v(z) — v(2}). We will show that for « < N(a > N) the function w) satisfies

%(@ _ 25—;(@ < 0(>0) on T

for all A > 0. By continuity this implies for « < N that v(z1,2") > v(—x1,2") for
all z € RY, z; > 0 while for « > N the reverse inequality holds. In both cases the
corresponding reverse inequalities also hold by repeating the moving plane argument
with the —z;-direction. Hence v(—x1,2') = v(zy,2’) for all z € RY and moreover v
is strictly monotone in the positive x;-direction. Repeating the moving-plane argument
with an arbitrary unit-direction instead of the x;-direction one obtains that the function v
is radially symmetric with respect to the origin and moreover radially strictly monotone.
Together with the fact that 9(G — ¢) is a level-surface of the function v this implies that
G — g must be a ball centered at the origin. Thus, Theorem 2 is proved if we show (4)
for all values of A > 0. This will be done next. Theorem 2 follows from the preceeding

explanation and Lemma 10 and Lemma 12.
5
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Lemma 7. For every A\ > 0 there exists a value R(\) > 0 such that for all x € Hy with
|z| > R(\) we have

<0 ifa>N.

The function R(X) and a value Ao > 0 can be chosen such that R(\) is non-increasing in
A and constant for X > A\g > 0.

>0 if2<a<NA,
wy ()

Proof. According to the value of @ we divide the proof into several cases. If h is the

function of Lemma 6 then
A vol G(Jz|*™N — [a* ) + h(z) — h(z?), a# N,
v(z) —v(z?) = A A
vol G(—log |z| + log |z?|) + h(z) — h(z?), « = N.
Case 1 2 < a < N. Assume first that |2*|*> < 2|z|?>. By convexity of the function

s+ 57 for s > 0 we have

N —
‘Oc—N o |$)\|a_N > Ta’xA|a—N—24)\()\ . xl) 2 Cl|l,’a—N—2)\()\ o 1'1)

where €} := (N — )2°%" . By Lemma 6 |h(z) — h(z*)] < 2C|z|*¥=3(\ — 21). Hence
v(z) —v(a?) > |z]* VPN = z1) (vol GCy|z|A — 2C) > 0

Next assume that |22 > 2|x|2. Then

) = Ol

where Cy > 0. Again by Lemma 6 |h(x) — h(2})| < 2C|z|* N2, Thus

2C

|z

|z

provided |IL'| > m

|$|a7N )\‘afN Z ‘x’afN(

—|.Z'

v(z) —v(a?) > |z]* Y (vol GCy — =) > 0

2C
volGCy *

Hence the statement of the lemma follows if we set

20 20
R(A) = max {vol aon \ volGay } '

Case 2: o« = N. The structure of proof is the same as in Case 1. Assume first that
|z*|? < 2|x]%. The convexity of the function s — —log s for s > 0 implies

provided |z| >

1
—log |z| + log [#*| > |2* 220\ — 1) > —]m\’Q)\()\ —x1).

With the estimate for h as above we find v(z) —v(z*) > 0 provided |z| > Likewise,

if [#*? > 2|z|? then

vol G)\

1
—log |z| + log || > §1og2

and with the estimate for h as above we find v(x) — v(z*) > 0 provided |z| > ,/ #C;Og?.
Hence we may set

4C 4C
() i= max {VOl GM\' '\ volGlog 2 }

Case 3: N < a< N + 2. Again we assume first that |2|> < 2|z|?. The concavity of the
function s — s°7 for s > 0 implies

N — «
|a7N o ‘xA’afN < —|x/\|a7N724)\(>\ o xl) S _Cl‘x|a7N72)\<)\ o ZC1>

|z 5
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with C; := (o — N)2°%". Using the estimate for h as in Case 1 we find
v(z) —v(x?) < |z[* NP = z1) (= vol GCy[z|A + 2C) <0

provided |z| > VOIQG%l/\. For |22 > > 2|z|* we get

2|V — 2N < |t N(1 = 2°7) = — Gyl

where Cy > 0. Together with the estimate |h(x) — h(z?)| < 2C|2]* V=2 we obtain

v(z) —v(z?) < |z]* V(= vol GCy + %) <0

provided |z| >/ VOIQgCQ' Therefore it suffices to set

20 20
R() = max {vol Gon \ vol GGy } '

Case 4: a > N + 2. For |2*|2 < 2|z|? the convexity of s — 5“7 for s > 0 implies

N —«
2™ = [N < Sl TN AN = 21) =2 ~Cilal TN AN — 2)

where C} = 2(a — N) > 0. For h we obtain this time a different estimate:
202 N3N —2y) ifa—N-32>0,
2C)z|* N3 (N —2;) ifa—N-3<0
< D[V =),

[h(x) — h(z)|

a—N-1

where either D =22~ C or D = 2C. Thus
v(z) —v(a?) < |z]* V(N = 21) (= vol GCi|z|A + D) < 0

provided |z| > Finally, if |2*|? > 2|z|? then

D
vol GC1 A~

|x|a—N . |x>\|a—N < |x)\|a—N(2N2_“ —1) = _O2|I>\|a—N

where Cy > 0. Together with the estimate |h(x) — h(z?)| < 2C|2**~ V=2 we conclude

2
v(z) —v(a?) < [2M* V(= vol GCy + ﬁ) <0

2C
vol GC2

(recall that |2*| > |z| in Hy). Therefore let us set in this case

D 20
R(A) = max {vol Gon \ vol GGy } '

Lemma 8. There exists \* > 0 such that for all A > \* we have

{70 ¥z<ash,
U <0 ifas N

provided |z| >

m H)\.



Proof. The proof is again divided according to the value of a. Let R(A) be the function
defined in Lemma 7.

Case 1: 2 < o < N. Let ¢; := minj,<p)v(x). Hence ¢; > 0, and since v(x) decays to 0
as |z| — oo there exists a value \* > 1 such that |z| > \* implies v(z) < ¢1/2. Let now
A > X Consider x € H, with |z| > R(1). For such x we have |x| > R(\) and hence
v(z) > v(z*) by Lemma 7. Now consider x € H, with |z| < R(1). Since |2} > X\ > \*
we find v(z) > ¢; > v(x?), and the claim is proved.

Case 2: a« = N. The proof is as above, but now ¢; is not necessarily positive. But now
v(x) decays to —oo as |x| — oo so that we can choose the value A* > 1 such that |z| > \*
implies v(x) < ¢; — 1. The rest of the proof is the same.

Case 8: a > N. Choose ¢; := max|z|<ra) v(x) so that ¢; > 0. This time v(z) tends to oo
as |x| — oo so that we can choose A* > 1 such that |z| > A* implies v(x) > 2¢;. Similar
consideration as before imply the claim. m
Lemma 9. Let A > 0.

(a) For all z,y € Hy:

1 1
2<a<N: > ,
o=yl =y
a=N: log > log — )
|z =yl 2% =y
1 1
a>N: <

(b) For allx € T\,y € Hy:

1 1 1
2<a<N: 0 <0, 0 < + )—0,

Oxy |z — y|N=2 Ory \ |z —y[N- |z — gy N
) 1 ) 1 1
a=N: lo <0, lo +lo —):O,
dry Pl —y| fm( Ble—y] T Bl — ¢
) 1 ) 1 1
> N : >0 = 0.
¢ Oxy |z —y[N-> " 7 0w1<kv—wANa_+!w——yMN“)

Proof. The proof of (a) follows from
o —yl? =4 (A = 21) A = y1) +Ho =yl
—— ——

>0 >0
The proof of the first part of (b) follows from
0 — A—

—x—ylle B y1>0

Oy [z =yl fo—yl
and the chain rule. For the second part of (b) note that if + € T\ and y € H) then
|z —y| = |#* — y*| = |z — y*|. Hence for every C'-function g we have that

0 J(Jlr—y
o2 (olk — ) + glk ~ D) = LI (g — 1) 1 (20— 1)) =0

0&71

sincex € T). m

Lemma 10. Let A > 0.
(a) Suppose 2 < a < N. Ifwy >0 in Hy then wy > 0 in Hy and ‘Z—;‘c’f(x) <0 on Ty.

(b) Suppose a > N. If wy <0 in Hy then wy <0 in Hy and aa%(x) >0 on T).
8
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Proof. We give the proof in the case 2 < a < N; the proof in the case @« > N is very
similar. Note first that by Corollary 5 we have

_ [ Jul)=B) ,
v(x) = v royPe dy—/HA...dy—i—/RN\HA...dy

fawy) —0) | frv(y) - B)

Rl P P e Py

Therefore

o(x) —v(z) = fH(v(y)—ﬁ)( L1 )dy
" T gV g

5) b 100 = 0) (s — s )
O TP e ) W

-/ A(fH(v(y)—ﬁ)—fﬂ(v(?f)—ﬂ))( L )dy.

[z —y[V |zt =y )

>0 by Lemma 9(a)

Moreover, fu(v(y) — 8) — fu(v(y®) — ﬁ)) > 0 since [y is non-decreasing and wy > 0 by
assumption. If we assume for contradiction that fy(v(y) —3) = fu(v(y*) — 3) for almost
all y € H, then we would find v(x) — v(2*) = 0 in H,, which contradicts Lemma 7 and
the assumption A > 0. Therefore there exists a subset M, C H) of positive measure such
that fr(v(y) —B3) > fu(v(y*) —B) for all y € M. As a consequence we see from (5) that
wy(z) > 0 for all x € H,.

To see the second part of the claim, note that for 2 € Ty we have 2 (z) = 2.2% () so

ox1 0z

that
1 811])\
2 81‘1

()

- [ gt =515, (|x_;|N_a)1+fH(v(yA)—ﬁ)ail (=)

0x1
A

<0 by Lemma 9(b)
Moreover, we have seen that fz(v(y) — 8) > fu(v(y*) — 3) on a subset M, C H) of

positive measure. Therefore, for all z € Ty we find

18f““<9c><Hwa(y*)—ma( L, 1 )dyzo

2 Oz Ory \Jx —y|N—o |z —y?|N-@

due to Lemma 9(b). This establishes the claim. m

For the final part of this section let us define the set
7 {A>0:wy>0in Hy} if2<a<N,
Tl {A>0:wy<0in Hy} ifa> N.

Lemma 11. The set J C (0,00) is open.

Proof. We give the proof only in the case 2 < a < N. Assume that J is not open. Then
for some A € J there exists a sequence A, — A as n — oo and z,, € H), such that
wy, (z,) < 0. Let R(A) be the function from Lemma 7. Clearly |z,| < R(A/2), because
|z,| > R(A\/2) would imply |z,| > R()\,) for large n and hence wy,, (z,) > 0 for large n,

which cannot hold. Hence, by extracting a subsequence if necessary, we may assume that
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Tp, — To € Br2)(0), vo € H(A). Since wy > 0 in H) we must have xo € T. Thus, by
Lemma 10(a) we find 68—;1(950) < 0, which contradicts v(x,) < v(z)") for large n. m

The proof of Theorem 2 will be completed through the following, final lemma.
Lemma 12. The set J = (0, 00).

Proof. Again let us stay with the case 2 < ae < N. Let (i, 00) be the largest open interval
contained in J. By Lemma 8, p is a finite value in [0, 00). Assume for contradiction that
g > 0. Then w, > 0 in H, and by Lemma 10(a) we see that w, > 0 in H, so that p € J.
A contradiction is reached since by Lemma 11 we know that J is open. m
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