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Abstract

We introduce and discuss balancing invariant transports of stationary random mea-
sures on a Polish Abelian group. The first main result is an associated fundamental
invariance property of Palm measures, derived from a generalization of Neveu’s
exchange formula. The second main result is a simple sufficient and necessary cri-
terion for the existence of balancing invariant transports. We then introduce (in a
non-stationary setting) the concept of mass-stationarity with respect to a random
measure, formalizing the intuitive idea that the origin is a typical location in the
mass. The third main result of the paper is that a measure is a Palm measure if
and only if it is mass-stationary.

1 Introduction

We consider (jointly) stationary random measures on a Polish Abelian group G, for
instance G = Rd. A transport T is a Markovian kernel (depending on both ω in the
underlying sample space Ω and a location s ∈ G) that reshapes the mass of a random
measure ξ. The transport is invariant if the rule, moving the mass from one location s to
another location, is the same for all s. It is balancing if the resulting new shape is a given
random measure η and, in particular, it is measure-preserving if the new shape is the same
as the original one: η = ξ. Sometimes the transport T can be reduced to a transport-map
τ (depending on ω ∈ Ω) which maps each location s to a new location τ(s). In fact we
might think of a transport as the conditional distribution of a randomized transport-map.

The aim of the paper is to treat three interwoven aspects of invariant transports: basic
invariance properties of Palm measures are presented in Section 4, a general existence
result in Section 5, and an intrinsic characterization of Palm measures – mass-stationarity
– in Sections 6-8.
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Invariance properties (Section 4)
It is a fundamental and classical theorem that the Palm distribution of a stationary
point process on the line is invariant under shifts to the next point to the right. In fact
there is an essentially unique correspondence between such stationary point processes and
stationary sequences of interpoint distances, see Theorem 11.4 in [9] and the references
given there. In higher dimension the situation is more complicated. Mecke [14] found an
intrinsic characterization of Palm measures using an integral equation, see (2.7). Geman
and Horowitz [3] showed that a stationary random measure is distributionally invariant
under shifts from the neutral element 0 ∈ G to τ(0), if τ is an invariant transport-map
preserving Haar measure. Independently, Mecke [15] extended this result to general Palm
measures, see Remark 4.9. For point processes and using bijective point-shifts, this fact
was rediscovered in [19], see also [4] for a short proof. Holroyd and Peres [8] considered (in
case G = Rd) invariant transports T balancing Lebesgue measure and an ergodic point
process η of intensity 1. Theorem 16 in that paper shows that the stationary distribution is
then transformed into the Palm distribution of η, if the origin is shifted to a “randomized”
location with distribution T (0, ·). An analogous result holds for discrete groups.

Neveu’s [16] well-known exchange formula (see Remark 4.3) is an apparently quite
different property of Palm measures. Extending the concept of balancing transports
to balancing quasi-transports (the kernel T need not be Markovian), we will generalize
Neveu’s result in our Theorem 4.2. This is then actually the key for obtaining the general
invariance property of Theorem 4.1, containing all the invariance results mentioned above.
Another crucial idea for Theorem 4.1 is that any balancing invariant quasi-transport has
an inverse invariant transport.

Existence (Section 5)
Liggett [12] presented the following (surprising?) result. Consider a doubly-infinite se-
quence of i.i.d. coin tosses. Move the origin to a head as follows. If there is a head at the
origin, stay there. If there is a tail at the origin, move to the right counting heads and
tails until you have more heads than tails. Then you are at a head. Now remove that
head. Then the rest of the coin tosses are i.i.d. (so you have found an extra head!). This
procedure thus gives an explicit shift-coupling of an i.i.d. sequence ξ and its Palm version:
they are the same up to a shift of the origin. Note that if Liggett’s rule is applied to all
locations then it generates an invariant transport-map τ , transporting counting measure
on the integers to the Bernoulli (1/2) random measure with intensity 1. Liggett also
treated a general Bernoulli parameter p and the Poisson process on the line.

Triggered by Liggett’s paper the case where G = Rd (or G = Zd), ξ is Lebesgue
measure, and η is an ergodic point process of intensity 1 has received considerable attention
in recent years (see [6], [8], [11], [1]). Holroyd and Peres [8] presented the following
beautiful transport-map of Lebesgue measure to the Poisson process with intensity 1.
Partition space by associating to each point a region of space of exact size 1. For this
purpose place a small ball around each point of the Poisson process and expand the balls
simultaneously until they reach size 1. If a ball hits space that has already been allocated
to another point, let it continue to grow under the allocated region until it finds space that
has not yet been allocated. In this way Rd is partitioned into (not necessarily connected)
regions of size 1, each containing one point of the Poisson process. Now transport each
location to the point of its region. This reshapes Lebesgue measure into the Poisson
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process in an invariant way. In particular, if we shift the origin to the point of its region
we obtain a shift-coupling of the stationary Poisson process and its Palm version. In fact,
Holroyd and Peres treated the case when η is an ergodic stationary point process.

Actually, an abstract group-coupling result from [18] implies that shift-coupings exist
in the above cases. In Section 5 we shall apply that result to stationary random measures
with finite intensities to prove that there exists an invariant balancing transport if and
only if the two random measures have the same intensity conditional on the invariant
σ-field.

Mass-Stationarity (Sections 6-8)
Mass-stationarity of a random measure ξ means, informally, that the origin is a typical
location in the mass, just like stationarity means that the origin is a typical location in
space. Mass-stationarity is an extension of the concept of point-stationarity introduced
in Thorisson [19] in the case of simple point processes on Rd. The formal definition of
point-stationarity in that paper can be loosely phrased as follows: a simple point-process
ξ is point-stationary if its distribution is invariant under bijective point-shifts against any
independent stationary background (the shifts were allowed to depend not only on ξ but
also on any independent stationary random field obtained by extending the underlying
probability space). The main result of [19] was that point-stationarity is a characterizing
property of Palm versions of stationary point processes.

The question whether the independent stationary background could be removed from
the definition of point-stationarity inspired considerable research activity, see [7], [2], [21],
[11]. Finally, Heveling and Last ([4], [5]) showed that this can be done, that is, no external
randomization is needed.

In the point process case, bijective point-shifts generate measure-preserving transport-
maps. Thus it is natural to attempt to extend the above definition to random measures
by demanding that the distribution of ξ be invariant under shifts induced by invariant
measure-preserving transport-maps. It turns out, however, that here external random-
ization would be needed, see Example 8.1. One could add an independent stationary
background to the condition, but it is still an open problem whether it would then char-
acterize Palm versions of stationary random measures.

Instead of using the above condition as a definition, we use the following condition,
which in the point process case was proved in [19] to be equivalent to point-stationarity:
a random measure ξ is mass-stationary if its distribution is invariant under shifting the
origin by first placing a set at random around it and then relocating the origin to a uniform
position in the mass on the set. (Actually we have to include the random position of the
origin in the set.) This is equivalent to distributional invariance under a certain class of
quasi-transports, see Theorem 8.2. Section 8 concludes with four open problems.

2 Preliminaries on stationary random measures

We choose to work in the abstract setting of a flow acting on the underlying sample space
(see [3], [15], [16]), and with σ-finite measures rather than with probability measures, see
Remark 2.7.

We consider a topologial Abelian group G that is assumed to be a locally compact,
second countable Hausdorff space with Borel σ-field G. On G there exists an invariant
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measure λ, that is unique up to normalization. A measure µ on G is locally finite if it
is finite on compact sets. We denote by M the set of all locally finite measures on G,
and by M the cylindrical σ-field on M which is generated by the evaluation functionals
µ 7→ µ(B), B ∈ G. The support supp µ of a measure µ ∈ M is the smallest closed
set F ⊂ G such that µ(G \ F ) = 0. By N ⊂ M we denote the measurable set of all
(simple) counting measures on G, i.e. the set of all those µ ∈ M with discrete support
and µ{s} := µ({s}) ∈ {0, 1} for all s ∈ G. We can and will identify N with the class of
all locally finite subsets of G, where a set is called locally finite if its intersection with any
compact set is finite.

In this paper we mostly work on a σ-finite measure space (Ω,F , P) (but see also
Remark 2.7). However, we will consider several measures on (Ω,F). A random measure
on G is a measurable mapping ξ : Ω → M and a (simple) point process on G is measurable
mapping ξ : Ω → N. A random measure ξ can also be regarded as a kernel from Ω to
G. Accordingly we write ξ(ω, B) instead of ξ(ω)(B). If ξ is a random measure, then the
mapping (ω, s) 7→ 1{s ∈ supp ξ(ω)} is measurable.

We assume that (Ω,F) is equipped with a measurable flow θs : Ω → Ω, s ∈ G. This is
a family of measurable mappings such that (ω, s) 7→ θsω is measurable, θ0 is the identity
on Ω and

θs ◦ θt = θs+t, s, t ∈ G, (2.1)

where 0 denotes the neutral element in G and ◦ denotes composition. A random measure
ξ on G is called invariant (or flow-adapted) if

ξ(θsω, B − s) = ξ(ω, B), ω ∈ Ω, s ∈ G, B ∈ G. (2.2)

A measure P on (Ω,F) is called stationary if it is invariant under the flow, i.e.

P ◦ θs = P, s ∈ G,

where θs is interpreted as a mapping from F to F in the usual way:

θsA := {θsω : ω ∈ A}, A ∈ F , s ∈ G.

Because of the next examples we may think of θsω as of ω shifted by −s.

Example 2.1. Consider the measurable space (M,M) and define for µ ∈ M and s ∈ G
the measure θsµ by θsµ(B) := µ(B + s), B ∈ G. Then {θs : s ∈ G} is a measurable flow
and the identity ξ on M is an invariant random measure. A stationary probability measure
on (M,M) can be interpreted as the distribution of a stationary random measure.

Remark 2.2. Since a random measure ξ is a random element in M, we can rewrite the
invariance condition (2.2) as

ξ(θsω) = θsξ(ω), ω ∈ Ω, (2.3)

where we use θs, s ∈ G, to denote both the abstract flow and the specific flow defined in
Example 2.1. Therefore (2.2) is also referred to as flow-covariance. We follow here the
terminology of [10]. A similar remark applies to invariant transports, to be defined below.
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Example 2.3. Consider some measurable space (E, E) and the product space EG. The
shift operator θs : EG → EG is defined by θsw(t) := w(s+t), t ∈ G. Consider a path space
W ⊂ EG that is invariant under shifts and that is equipped with a σ-field W rendering
all mappings w 7→ w(s), s ∈ G, measurable. As in [20], assume that (s, w) 7→ θsw is
measurable with respect to G⊗W and W. We can then define Ω := M×W, F := M⊗W
and (abusing notation) θsω := (θsµ, θsw) for ω = (µ, w) ∈ M × W and s ∈ G. This is
a flow, and the projection ξ(ω) := µ defines an invariant random measure. A stationary
probability measure on (Ω,F) can be interpreted as the joint distribution of a random
measure and the E-valued stochastic process Y on G (defined by Y (µ, w) := w) which
are jointly stationary.

Example 2.4. Assume that (Ω,F) = (M × M,M⊗M) and (again abusing notation)
θsω = (θsµ, θsν) for ω = (µ, ν) ∈ M × M. Both projections define invariant random
measures. A stationary probability measure on (Ω,F) can be interpreted as the joint
distribution of two jointly stationary random measures.

Example 2.5. Assume that (Ω,F) = (G,G) and θsω := ω + s. Then the Haar measure
P := λ is stationary. If P′ is a probability measure on G, then ξ(ω, B) := P′(B + ω)
defines an invariant random measure.

Example 2.6. Let G = R and Ω be the space of all continuous functions w : R → Rd.
Take F as the σ-field rendering the projections measurable. Define θs by θsw(t) := w(t+s),
t ∈ R. Let P′ be the distribution of a standard Brownian motion, starting at 0 ∈ Rd.
Then P :=

∫

P′({w : x + w ∈ ·}) dx is a σ-finite stationary measure on (Ω,F). (Here
x + w, denotes the function t 7→ x + w(t).)

Let P be a stationary σ-finite measure on (Ω,F) and ξ an invariant random measure
on G. Then ξ is stationary in the usual sense, i.e. P(ξ ∈ ·) = P(θsξ ∈ ·) for all s ∈ G,
where we have used the notation of Example 2.1. Let B ∈ G be a set with positive and
finite Haar measure λ(B). The measure

Pξ(A) := λ(B)−1

∫∫

1{θsω ∈ A, s ∈ B} ξ(ω, ds) P(dω), A ∈ F , (2.4)

is called the Palm measure of ξ (with respect to P), see [14]. This measure is σ-finite. As
the definition (2.4) is independent of B, we have the refined Campbell theorem

∫∫

f(θsω, s) ξ(ω, ds) P(dω) =

∫∫

f(ω, s) ds Pξ(dω)

for all measurable f : Ω ×G → [0,∞), where ds refers to integration with respect to the
Haar measure λ. Using a standard convention in probability theory, we write this as

E

[
∫

f(θs, s) ξ(ds)

]

= EPξ

[
∫

f(θ0, s) ds

]

, (2.5)

where E and EPξ
denote integration with respect to P and Pξ, respectively. If the intensity

Pξ(Ω) of ξ is positive and finite, then the normalized Palm measure

P0
ξ := Pξ(Ω)−1Pξ
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is called Palm probability measure of ξ (w.r.t. P). Note that Pξ and P0
ξ are both defined on

the underlying space (Ω,F). The stationary measure P can be recovered from the Palm
measure Pξ using a measurable function h̃ : M×G → [0,∞) satisfying

∫

h̃(µ, s) µ(ds) = 1,
whenever µ ∈ M is not the null measure. For one example of such a function we refer to
[14]. We then have the inversion formula

EP[1{ξ(G) > 0}f ] = EPξ

[
∫

h̃(ξ ◦ θ−s, s)f(θ−s) ds

]

, (2.6)

for all measurable f : Ω → [0,∞), see Satz 2.4 in [14]. This is a direct consequence of the
refined Campbell theorem (2.5).

Let ξ be an invariant random measure and Q be a σ-finite measure on (Ω,F) satisfying
Q(ξ(G) = 0) = 0. Satz 2.5 in [14] says that Q is a Palm measure of ξ if and only if

EQ

[
∫

g(θs,−s) ξ(ds)

]

= EQ

[
∫

g(θ0, s) ξ(ds)

]

(2.7)

holds for any measurable g : Ω×G → [0,∞). Mecke has proved his result in the canonical
framework of Example 2.1. But his proof applies in our more general framework as well.
The necessity of (2.7) is a special case of Neveu’s exchange formula, see Remark 4.3. To
prove that (2.7) is also sufficient for Q to be a Palm measure one can use the function h̃
in (2.6) to define a σ-finite measure P by

P(A) := EQ

[
∫

h̃(ξ ◦ θ−s, s)1{θ−s ∈ A} ds

]

, A ∈ F .

It can be shown as in [14], that (2.7) implies stationarity of P and Q = Pξ.

Remark 2.7. We would like to mention two reasons (other than just generality), why we
are not assuming the stationary measure P to be a probability measure. First, some of
the fundamental results can be more easily stated this way. An example is the one-to-one
correspondence between P and the Palm measure Pξ (see [14]). Otherwise, extra technical
integrability assumptions are required (see e.g. Theorem 11.4 in [9]). A second reason
is that in some applications it is the Palm probability measure that has a probabilistic
interpretation (see e.g. [22]). The latter can be defined whenever the (stationary) intensity
is positive and finite, see Example 3.2 for a simple illustration of this fact.

3 Invariant transports and quasi-transports

A transport (on G) is a kernel T from Ω × G to G which is Markovian, i.e. which has
T (ω, s,G) = 1 for all (ω, s) ∈ Ω×G. We think of T (ω, s, ·) as redistributing a (potential)
unit mass at s within G. A transport T is called invariant if

T (θtω, s − t, B − t) = T (ω, s, B), s, t ∈ G, ω ∈ Ω, B ∈ G. (3.1)

This is equivalent to T (θtω, 0, B − t) = T (ω, t, B) for all t, ω, and B. Quite often we use
the short-hand notation T (s, ·) := T (θ0, s, ·).
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A quasi-transport on G is just a kernel T from Ω × G to G, where it is always
understood that T (ω, s, ·) is locally finite. Invariance of T is defined as above. If ξ
is an invariant random measure on G and η :=

∫

T (ω, s, ·) ξ(ω, ds) is locally finite for
each ω ∈ Ω, then η is again an invariant random measure. Our interpretation is, that T
transports ξ to η in an invariant way. If T̃ is kernel from Ω to G such that T̃ (ω, ·) is locally
finite for all ω ∈ Ω, then T (ω, s, B) := T̃ (θsω, B − s) defines an invariant quasi-transport
T on G.

Let ξ and η be two invariant random measures on G. A quasi-transport T on G is
called (ξ, η)-balancing if

∫

T (ω, s, ·) ξ(ω, ds) = η(ω, ·) (3.2)

holds for all ω ∈ Ω. In case ξ = η we also say that T is ξ-preserving. If Q is a measure on
(Ω,F) such that (3.2) holds for Q-a.e. ω ∈ Ω then we say that T is Q-a.e. (ξ, η)-balancing.

Example 3.1. A measurable mapping τ : Ω × G → G is called transport-map. Then
T (s, ·) := δτ(s) is a transport. This transport is invariant if and only if τ is invariant in
the sense that

τ(θtω, s − t) = τ(ω, s) − t, s, t ∈ G, ω ∈ Ω.

This is equivalent to τ(θtω, 0) = τ(ω, t) − t for all ω, t. Writing π := τ(0) := τ(θ0, 0), we
can express this as τ(s) = π ◦ θs + s. Any measurable mapping π : Ω → G can be used
to generate a transport-map this way. We interpret a transport-map as a rule that is
transporting, given ω ∈ Ω, an actual unit of mass close to s to a new location τ(ω, s). Let
ξ and η be two random measures on G. The transport T (s, ·) := δτ(s) is (ξ, η)-balancing
if and only if

∫

1{τ(s) ∈ ·} ξ(ds) = η. (3.3)

In case ξ = η we also say that τ is ξ-preserving.

Example 3.2. Consider the setting of Example 2.5. Letting P′ and ξ as in that example,
we obtain from an easy calculation that Pξ = P′.

Now let K be a Markovian kernel from G to G and define P′′ :=
∫

K(s, ·) P′(ds).
The probability measure

∫∫

1{(s, t) ∈ ·}K(s, dt) P′(ds) is a coupling of P′ and P′′. In
the Monge-Kantorovich mass transportation theory (see e.g. [17]) K is interpreted as
transporting the mass distribution P′ to P′′. Let η be the invariant random measure
η(ω, B) := P′′(B+ω), and define an invariant transport T by T (ω, s, B) := K(ω+s, B+ω).
Then

∫

T (ω, s, B)ξ(ω, ds) =

∫

K(s, B + ω)P′(ds) = P′′(B + ω) = η(ω, B),

i.e. T is (ξ, η)-balancing. Conversely, if P′ and P′′ are given, and T is a (ξ, η)-balancing
transport (with ξ and η defined as before), then T (0, s, B) is a Markovian kernel trans-
porting P′ to P′′.
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4 Invariance properties of Palm measures

In this section we fix a stationary σ-finite measure P on (Ω,F). We shall establish fun-
damental relationships between invariant balancing quasi-transports and Palm measures.
Special cases of our first theorem have been known for a long time, see the references
below. We were partly motivated by Theorem 16 in the recent paper [8], dealing with
(λ, η)-balancing transports in case G = Rd and η is an ergodic point process, see Example
4.12. (Note that [8] is using a different terminology.)

Theorem 4.1. Consider two invariant random measures ξ and η on G and an invariant
quasi-transport T . Then T is P-a.e. (ξ, η)-balancing iff

EPξ

[
∫

f(θt) T (0, dt)

]

= EPη
[f ] (4.4)

holds for all measurable f : Ω → [0,∞].

For simplicity we will refer to (4.4) in case ξ = η as invariance of Pξ under T . One
implication of Theorem 4.1 will be a consequence of the following result of considerable
independent interest.

Theorem 4.2. Consider two invariant random measures ξ and η on G and let T and T ∗

be invariant quasi-transports satisfying

∫∫

1{(s, t) ∈ ·}T (ω, s, dt) ξ(ω, ds) =

∫∫

1{(s, t) ∈ ·}T ∗(ω, t, ds) η(ω, dt) (4.5)

for P-a.e. ω ∈ Ω. Then we have for any measurable function h : Ω ×G → [0,∞) that

EPξ

[
∫

h(θt,−t) T (0, dt)

]

= EPη

[
∫

h(θ0, t) T ∗(0, dt)

]

. (4.6)

Proof. Let B ∈ G satisfy λ(B) = 1 and take a measurable h : Ω× Rd → [0,∞). From
the definition (2.4) of Pξ and (2.1) we obtain

EPξ

[
∫

h(θt,−t) T (θ0, 0, dt)

]

= EP

[
∫∫

1{s ∈ B}h(θs+t,−t) T (θs, 0, dt) ξ(ds)

]

= EP

[
∫∫

1{s ∈ B}h(θt,−t + s) T (θ0, s, dt) ξ(ds)

]

,

where we have used the invariance (3.1) to get the second equation. Now we can apply
assumption (4.5) to get

EPξ

[
∫

h(θt,−t) T (θ0, 0, dt)

]

= EP

[
∫∫

1{s ∈ B}h(θt, s − t) T ∗(θ0, t, ds) η(dt)

]

= EP

[
∫∫

1{t + s ∈ B}h(θt, s) T ∗(θt, 0, ds) η(dt)

]

,
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where we have again used (3.1), this time for the transport T ∗. By the refined Campbell
theorem (2.5),

EPξ

[
∫

h(θt,−t) T (θ0, 0, dt)

]

= EPη

[
∫∫

1{t + s ∈ B}h(θ0, s) T ∗(θ0, 0, ds) dt

]

= EPη

[
∫

h(θ0, s) T ∗(θ0, 0, ds)

]

,

where we have used Fubini’s theorem and λ(B) = 1 for the final equation.

Remark 4.3. One possible choice of T and T ∗ in (4.5) is T (s, ·) := η and T ∗(s, ·) := ξ.
Then (4.6) is Neveu’s exchange formula, cf. [16].

For some purposes the following version of Theorem 4.2 might be more convenient.

Corollary 4.4. Under the assumption of Theorem 4.2 we have

EPξ

[

g

∫

f(θt) T (0, dt)

]

= EPη

[

f

∫

g(θs) T ∗(0, ds)

]

(4.7)

for all measurable functions f, g : Ω → [0,∞).

Proof. Apply (4.6) with h(ω, s) := f(ω)g(θsω).

To apply Corollary 4.4 we need the following consequence of a result in [10].

Lemma 4.5. Under the hypothesis of Theorem 4.1 there is an invariant transport T ∗ on
G such that (4.5) holds for P-a.e. ω ∈ Ω.

Proof. Consider the following measure M on Ω × G × G:

M :=

∫∫∫

1{(ω, s, t) ∈ ·}T (ω, s, dt) ξ(ω, ds) P(dω).

Stationarity of P, (2.2), and (3.1) easily imply that

∫

1{(θrω, s − r, t − r) ∈ ·}M(d(ω, s, t)) = M, r ∈ G.

Moreover, as (3.2) is assumed to hold for P-a.e. ω we have

M ′ :=

∫

1{(ω, t) ∈ ·}M(d(ω, s, t)) =

∫∫

1{(ω, t) ∈ ·} η(ω, dt) P(dω). (4.8)

This is a σ-finite measure on Ω × G. We can now apply Theorem 3.5 in Kallenberg [10]
to obtain an invariant transport T ∗ satisfying

M =

∫∫

1{(ω, s, t) ∈ ·}T ∗(ω, t, ds) M ′(d(ω, t)).

(In fact the theorem yields an invariant kernel T ′, satisfying this equation. But in our
specific situation we have T ′(ω, t,G) = 1 for M ′-a.e. (ω, t), so that T ′ can be modified in
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an obvious way to yield the desired T ∗.) Recalling the definition of M and the second
equation in (4.8) we get that

∫∫∫

1{(ω, s, t) ∈ ·}T (ω, s, dt) ξ(ω, ds) P(dω)

=

∫∫∫

1{(ω, s, t) ∈ ·}T ∗(ω, t, ds) η(ω, dt) P(dω)

and hence the assertion of the lemma.

Proof of Theorem 4.1. If T is P-a.e. (ξ, η)-balancing, then (4.4) follows from Lemma
4.5, Theorem 4.2, and Corollary 4.4. Conversely, assume that (4.4) holds. Let f : Ω×G →
[0,∞) be measurable. Using the refined Campbell theorem for η and (4.4), we get

E

[
∫

f(θs, s) η(ds)

]

= EPξ

[
∫∫

f(θt, s) ds T (θ0, 0, dt)

]

= EPξ

[
∫∫

f(θt, s + t) T (θ0, 0, dt) ds

]

,

where we have used invariance of λ and Fubini’s theorem for the latter equation. By the
refined Campbell theorem for ξ and invariance of T we get that the last term equals

E

[
∫∫

f(θs+t, s + t) T (θs, 0, dt) ξ(ds)

]

= E

[
∫∫

f(θt, t) T (θ0, s, dt) ξ(ds)

]

.

Now we combine the latter equations and apply them with f(ω, s) := g(θ−sω, s), where
g : Ω × G → [0,∞) is measurable. This yields

E

[
∫

g(θ0, s) η(ds)

]

= E

[
∫∫

g(θ0, t) T (θ0, s, dt) ξ(ds)

]

.

Using this with g := 1A×B, for A ∈ F and B ∈ G gives

E[1Aη(B)] = E

[

1A

∫

T (θ0, s, B) ξ(ds)

]

and hence η(B) =
∫

T (θ0, s, B) ξ(ds) P-a.e. Since G is countably generated, this concludes
the proof of the theorem.

If T is a (ξ, η)-balancing invariant quasi-transport and T ∗ is an invariant transport sat-
isfying (4.5) for all ω ∈ Ω, then we call T ∗ an inverse transport of T . If T is P-a.e.
(ξ, η)-balancing and T ∗ is an invariant transport satisfying (4.5) for P-a.e. ω ∈ Ω, then
we call T ∗ a P-a.e. inverse transport of T . If T is a transport, then T ∗ is actually P-a.e.
(η, ξ)-balancing. For completeness we state the following consequence of Theorem 4.2 and
Lemma 4.5 explicitly.

Theorem 4.6. Consider invariant random measures ξ and η on G and let T be a P-
a.e. (ξ, η)-balancing invariant quasi-transport on G. Then there exists a P-a.e. inverse
transport T ∗ of T and (4.6) holds.
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Example 4.7. Let ξ be an invariant (simple) point process on G. A point-transport for
ξ is a transport τ : Ω × G → G such that τ(s) ∈ supp ξ whenever s ∈ supp ξ. Such a
point-transport is called bijective if s 7→ τ(s) is a bijection on supp ξ whenever ξ(G) > 0.
Clearly this is equivalent to the fact that τ is ξ-preserving, see [20] and [4] for more details.
Consider a bijective invariant point-transport τ for ξ. There is an inverse point-transport
τ ∗, i.e. a bijective point-transport satisfying τ(ω, τ ∗(ω, s)) = τ ∗(ω, τ(ω, s)) = s for all
(ω, s) ∈ Ω × G such that s ∈ supp ξ(ω). It can easily be checked that τ ∗ may be chosen
invariant (let τ ∗(s) := s for s /∈ supp ξ) and that the invariant transports

T (s, ·) := δτ(s), T ∗(s, ·) := δτ∗(s), s ∈ G,

satisfy (4.5) with η := ξ. Therefore we obtain from (4.7) that

EPξ
[gf(θτ )] = EPξ

[fg(θτ∗)], (4.9)

where the point-shift θτ : Ω → Ω is defined by

θτ (ω) := θτ(ω,0)(ω), ω ∈ Ω. (4.10)

Taking g ≡ 1 yields EPξ
[f(θτ )] = EPξ

[f ], i.e. the invariance of Pξ under the point-shift θτ .
This is Theorem 3.1 in [4] (cf. also Theorem 9.4.1 in [20]). In fact this result can also be
derived from a more general result in [15].

The results in the previous example can be generalized to invariant random measures
ξ using the transport-maps defined in Example 3.1. To do so, we consider an invariant
transport-map τ which is P-a.e. ξ-preserving. Let T ∗ be an inverse transport of T (s, ·) :=
δτ(s). Then (4.7) says that

EPξ
[gf(θτ )] = EPξ

[

f

∫

g(θs) T ∗(0, ds)

]

. (4.11)

In particular we obtain that Pξ(θτ ∈ ·) = Pξ, where the mass-shift θτ is again defined by
(4.10). For simplicity (and in accordance with the terminology introduced after Theorem
4.1) we will refer to this as invariance of Pξ under τ . Theorem 4.1 implies the following
proposition.

Proposition 4.8. Let ξ be an invariant random measure and τ be an invariant transport-
map. Then τ is P-a.e. ξ-preserving iff Pξ is invariant under τ .

Remark 4.9. One implication of Proposition 4.8 is (essentially) a consequence of Satz
4.3 in [15]. The special case ξ = λ was treated in [3].

Proposition 4.8 can also be formulated for two invariant random measures:

Proposition 4.10. Consider two invariant random measures ξ and η and let τ be an
invariant transport-map. Then τ is P-a.e. (ξ, η)-balancing iff

Pξ(θτ ∈ A) = Pη(A), A ∈ F . (4.12)

11



The invariant σ-field I ⊂ F is the class of all sets A ∈ F satisfying θsA = A for all
s ∈ G. Let ξ be an invariant random measure with finite intensity and define

ξ̂ := E[ξ(B)|I], (4.13)

where B ∈ G has λ(B) = 1 and the conditional expectation is defined as for probability
measures. (Stationarity implies that this definition is P-a.e. independent of the choice of
B.) If P is a probability measure and G = Rd, then ξ̂ is called sample intensity of ξ,
see [13] and [9]. Assuming that P(ξ̂ = 0) = 0, we define the modified Palm probability
measure P∗

ξ (see [13], [20], [11]) by

P∗

ξ(A) := EPξ
[ξ̂−11A], A ∈ F . (4.14)

By this definition and ξ̂ ◦ θs = ξ̂, s ∈ G, we have

P∗

ξ(A) = E

[

ξ̂−1

∫

1{θs ∈ A, s ∈ B} ξ(ds)

]

= Pξ′(A), A ∈ F , (4.15)

where the invariant random measure ξ′ is defined by ξ′ := ξ̂−1ξ if 0 < ξ̂ < ∞ and is the
null measure, otherwise. Using (4.15), we obtain the following version of Theorem 4.1.

Theorem 4.11. Consider two invariant random measures ξ and η with finite intensities
such that P(ξ̂ = 0) = P(η̂ = 0) = 0 and let T be an invariant quasi-transport. Define
ξ′ := ξ̂−1ξ and η′ := η̂−1η. Then T is P-a.e. (ξ′, η′)-balancing, iff

EP∗

ξ

[
∫

f(θt) T (0, dt)

]

= EP∗

η
[f ] (4.16)

holds for all measurable f : Ω → [0,∞].

Example 4.12. Let η be an invariant random measure with finite intensity and such that
P(η̂ = 0) = 0. Consider the invariant random measure ξ := η̂λ and let T be an invariant
quasi-transport. Then T is P-a.e. (ξ, η)-balancing iff T is P-a.e. (λ, η′)-balancing, where
η′ := η̂−1η. By Theorem 4.11 this is equivalent to

E

[
∫

1{θt ∈ A} T (0, dt)

]

= P∗

η(A), A ∈ F . (4.17)

In case G = Rd, η is a point process, T is Markovian, and P is an ergodic probability
measure, this boils down to Theorem 16 in [8].

Example 4.13. Consider Example 4.12 in case η is a point process and the transport is
generated by an invariant transport-map τ satisfying λ({s ∈ G : τ(s) /∈ supp η}) = 0.
Clearly, τ is P-a.e. (λ, η′)-balancing iff

λ({s ∈ G : τ(s) = t}) = η̂−1, t ∈ supp η, (4.18)

holds P-a.e. By Theorem 4.11 this is then equivalent to

P(θτ ∈ A) = P∗

η(A), A ∈ F . (4.19)
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The special case G = Rd is Theorem 9.1 in [11], a slight generalization of Theorem 13 in
[8]. It is quite remarkable that invariant transport-maps satisfying (4.18) do exist in case
G = Rd, see Theorem 1 in [8] (and Theorem 10.1 in [11] for the non-ergodic case). We
also refer to the discussions in the introduction and Remark 5.2. Theorem 20 in [8] shows
that the situation is different for discrete groups.

Remark 4.14. Relations (4.12) and (4.19) are examples of group-coupling, see [18], the
term ”group-coupling” is from [9]. Actually, the relation (4.4) can also be seen as group-
coupling by extending the underlying space (Ω,F , Pξ) to support a random element γ in
G such that the conditional distribution of γ given F is T . Then (4.4) can be rewritten
as (4.12) with θτ replaced by θγ . A similar remark applies to (4.17).

5 Balancing invariant transports always exist

Again we fix a stationary σ-finite measure P on (Ω,F). Our aim is to establish a necessary
and sufficient condition for the existence of balancing invariant transports.

Theorem 5.1. Let ξ and η be invariant random measures with positive and finite inten-
sities. Then there exists a P-a.e. (ξ, η)-balancing invariant transport if and only if

E[ξ(B)|I] = E[η(B)|I] P − a.e. (5.1)

for some B ∈ G satisfying 0 < λ(B) < ∞.

Proof. Let B ∈ G satisfy 0 < λ(B) < ∞. For any A ∈ I we have from (2.5) that

λ(B)Pξ(A) = E[1Aξ(B)], λ(B)Pη(A) = E[1Aη(B)]. (5.2)

If T is a P-a.e. (ξ, η)-balancing invariant transport, then Theorem 4.1 implies the equality
Pη(A) = Pξ(A) and thus E[1Aη(B)] = E[1Aξ(B)]. This entails (5.1)

Let us now assume that (5.1) holds for some B ∈ G satisfying 0 < λ(B) < ∞. Since
E[ξ(·)] and E[η(·)] are multiples of λ, ξ and η have the same intensities. We assume without
loss of generality that these intensities are equal to 1. From (5.2) and conditioning we
obtain that Pξ = Pη on I. The group-coupling result in Thorisson [18] (see also Theorem
10.28 in Kallenberg [9]) implies the existence of random elements δ and δ′ in Ω and ρ in
G, all defined on some probability space (Ω̃, F̃ , P̃), such that δ has distribution Pξ, δ′ has
distribution Pη, and δ′(ω̃) = θρ(ω̃)δ(ω̃) for P̃-a.e. ω̃ ∈ Ω̃. Let T̃ (ω, ·), ω ∈ Ω, be a regular

version of the conditional distribution P̃(ρ ∈ ·|δ = ω). Then we have for any A ∈ F that

Pη(A) = P̃(δ′ ∈ A) = P̃(θρδ ∈ A) = EP̃

[
∫

1{θsδ ∈ A} T̃ (δ, ds)

]

= EPξ

[
∫

1{θs ∈ A} T̃ (θ0, ds)

]

. (5.3)

Using T̃ as a generator, we now define an invariant transport T (ω, s, B) := T̃ (θsω, B−s).
Then (5.3) implies (4.4), and Theorem 4.1 yields that T is P-a.e. (ξ, η)-balancing.
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Remark 5.2. The above proof doesn’t provide a method for actually constructing bal-
ancing invariant transports. As mentioned in the introduction, explicit constructions of
invariant transport-maps, in case ξ = λ and η is an ergodic point process of intensity 1,
have been presented by Liggett [12] and Holroyd and Peres [8]. Note that (4.12) means
in this case that P(θτ ∈ ·) = Pη. The construction of balancing invariant transports or
transport-maps in other cases is an interesting topic for further research.

Remark 5.3. Let ξ and η be invariant random measures with finite intensities such that
P(ξ̂ = 0) = P(η̂ = 0) = 0. Then the invariant random measure ξ′ := ξ̂−1ξ and η′ := η̂−1η
satisfy (5.2), see also Theorem 4.11.

6 From stationarity to mass-stationarity

We consider a stationary σ-finite measure P on (Ω,F) together with an invariant random
measure ξ. We will discuss a nice invariance property of the Palm measure Pξ, that will
turn out to be sufficient for a σ-finite measure on (Ω,F) to be a Palm measure of ξ.

Let C ∈ G be relatively compact and define an invariant transport TC by

TC(t, B) := ξ(C + t)−1ξ(B ∩ (C + t)), t ∈ G, B ∈ G, (6.1)

if ξ(C + t) > 0, and by letting TC(t, ·) equal some fixed probability measure, otherwise.
In the former case TC(t, ·) is just governing a G-valued stochastic experiment that picks
a point uniformly in the mass of ξ in C + t. If λ(C) > 0 we also define the uniform
distribution λC on G by λC(B) := λ(B ∩ C)/λ(C). The interior of a set C ⊂ G is
denoted by int G.

Theorem 6.1. If C ∈ G is relatively compact with λ(C) > 0 and λ(C \ int C) = 0, then

EPξ

[
∫∫

1{(θs, s + r) ∈ A} TC(−r, ds) λC(dr)

]

= Pξ ⊗ λC(A), A ∈ F ⊗ G. (6.2)

Proof. Let C ∈ G be relatively compact with λ(C) > 0 and λ(C \ int C) = 0. Then
λ(int C) > 0 and we have for λ-a.e. r ∈ C that r ∈ int C. For r ∈ int C and t ∈ G we
have t ∈ int(C − r + t). If, in addition, t ∈ supp ξ, then

ξ(C + t − r) ≥ ξ(int(C − r + t)) > 0.

By definition (6.1) of T (and using the above fact) we have for all B, D ∈ G and
t ∈ supp ξ that

∫∫

1{s ∈ B, s − t + r ∈ D} TC(t − r, ds) λC(dr)

=

∫∫

1{s ∈ B, s − t + r ∈ D}1{s ∈ C + t − r}ξ(C + t − r)−1λC(dr) ξ(ds)

= λ(C)−1

∫∫

1{s ∈ B, r + s ∈ D}1{r + s ∈ C, r + t ∈ C}ξ(C − r)−1 dr ξ(ds),
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where the second equation comes from a change of variables. It follows that
∫∫∫

1{s ∈ B, s − t + r ∈ D} TC(t − r, ds) λC(dr) ξ(dt)

=λ(C)−1

∫∫

1{s ∈ B, r + s ∈ D, r + s ∈ C} dr ξ(ds)

=ξ(B)λC(D). (6.3)

Equation (6.3) implies that the invariant quasi-transport

TC,D(t, ·) :=

∫∫

1{s ∈ ·, s − t + r ∈ D} TC(t − r, ds) λC(dr) (6.4)

is (ξ, η)-balancing, where η := λC(D)ξ. (Invariance of TC,D is a quick consequence of the
same property of TC .) Since Pη = λC(D)Pξ we get from Theorem 4.1

EPξ

[
∫∫

1{θs ∈ A′, s + r ∈ D} TC(−r, ds) λC(dr)

]

= λC(D)Pξ(A
′), A′ ∈ F .

This is (6.2) for measurable product sets, implying (6.2) for general A ∈ F ⊗ G.

Let C be as in Theorem 6.1 and assume that 0 ∈ int C. Then ξ(C + t) > 0 for all
t ∈ supp ξ and one might think (at least at first glance) that Pξ is invariant under TC .
The following simple example (other examples can be based on the Poisson process) shows
that this is wrong. The reason is that TC is not P-a.e. ξ-preserving, see Theorem 4.1.

Example 6.2. Consider the group G = {0, 1, 2} with addition modulo 3. Let ξ0, ξ1, ξ2

be independent Bernoulli (1/2) random variables. The distribution P of the point process
ξ0δ0 + ξ1δ1 + ξ2δ2 is stationary. Let Q be the Palm probability measure P0

ξ, defined in
the setting of Example 2.1. Since λ is (a multiple of) the counting measure, we can
take B := {0} in (2.4) to see that ξ{1} and ξ{2} are independent Bernoulli (1/2) under
Q. (Of course we have Q(ξ{0} = 1) = 1.) Consider the set C := {0, 1} and the event
A := {ξ{1} = 1}, where we recall that ξ is the identity on Ω = M. Then we obtain from
a trivial calculation that

EQ

[
∫

1{θs ∈ A} TC(0, ds)

]

= EQ

[
∫

1{ξ{1 + s} = 1} TC(0, ds)

]

=
3

8
.

Since Q(A) = 1/2, Q is not invariant under TC .

Remark 6.3. Consider the measure space (Ω,F , Q), where Q := Pξ. Let C be as assumed
in (6.2). Extend the space (Ω,F , Q), so as to carry random elements U, V in G such that
θ0 and U are independent, U has distribution λC , and the conditional distribution of V
given (θ0, U) is uniform in the mass of ξ on C−U . (The mappings θs, s ∈ G, are extended,
so that they still take values in the original space Ω.) Then (6.2) can be written as

(θV , U + V )
d
= (θ0, U). (6.5)

In the case of simple point processes on Rd, this is (essentially) the property that was
proved in Thorisson ([20], Theorem 9.5.1) to be equivalent to point-stationarity.

We are going to call the property established in Theorem 6.1 mass-stationarity.
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7 From mass-stationarity back to stationarity

Let ξ be an invariant random measure on G. In contrast to the previous sections we do
not fix a stationary measure on (Ω,F). Instead we consider here a σ-finite measure Q on
(Ω,F) as a candidate for a Palm measure Pξ of ξ w.r.t. some stationary measure P on
(Ω,F). We will establish that the following condition is necessary and sufficient for the
existence of such a P. Recall the definitions of TC and λC preceding Theorem 6.1. The
boundary of a set C ⊂ G is denoted by ∂C.

Definition 7.1. The σ-finite measure Q on (Ω,F) is called mass-stationary for ξ if
Q(ξ(G) = 0) = 0 and

EQ

[
∫∫

1{(θs, s + r) ∈ A} TC(−r, ds) λC(dr)

]

= Q ⊗ λC(A), A ∈ F ⊗ G, (7.1)

holds for all relatively compact sets C ∈ G with λ(C) > 0 and λ(∂C) = 0.

Remark 7.2. Extending the measure space (Ω,F , Q) as in Remark 6.3, mass-stationarity
of Q is then equivalent to assuming (6.5) for all pairs (U, V ) considered there.

Theorem 7.3. Let Q be a σ-finite measure on (Ω,F) and ξ an invariant random measure
on G. Then there exists a σ-finite stationary measure P on (Ω,F) such that Q = Pξ iff
Q is mass-stationary for ξ.

Remark 7.4. The inversion formula (2.6) implies that the measure Q in Theorem 7.3
determines P.

Proof of Theorem 7.3. In view of Theorem 6.1 it remains to prove only one implication.
So we assume that Q is mass-stationary for ξ. For simplicity we can then also assume
that supp ξ 6= ∅ everywhere on Ω. We will show the Mecke equation (2.7).

Let C ∈ G be a relatively compact set with λ(C) > 0 and λ(∂C) = 0. Mass-
stationarity of Q implies for any measurable f : Ω → [0,∞) and any D ∈ G that

EQ

[
∫∫

f(θs)1{s + r ∈ D} TC(−r, ds) λC(dr)

]

= λC(D)EQ[f ].

By definition (6.1) of TC this means that

EQ

[
∫∫

f(θs)1{s + r ∈ D}1{s + r ∈ C, r ∈ C}ξ(C − r)−1 dr ξ(ds)

]

= λ(D ∩ C)EQ[f ],

where we recall the first paragraph of the proof of Theorem 6.1. A change of variables
and Fubini’s theorem give
∫

D

1{r ∈ C}EQ

[
∫

f(θs)1{r − s ∈ C}ξ(C − r + s)−1 ξ(ds)

]

dr = EQ[f ]

∫

D

1{r ∈ C} dr.

As D ∈ G is arbitrary, this shows that

EQ

[
∫

f(θs)1{r − s ∈ C}ξ(C − r + s)−1 ξ(ds)

]

= EQ[f ]
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holds for λ-a.e. r ∈ C. Applying this with f replaced by f(f̃ ◦ ξ), where f̃ : M → [0,∞)
is measurable, we obtain that

EQ

[
∫

f(θs)f̃(ξ ◦ θs)1{r − s ∈ C}ξ(C − r + s)−1 ξ(ds)

]

= EQ[f f̃(ξ)] (7.2)

for λ-a.e. r ∈ C. By separability of M (see e.g. Theorem A2.3 in [9]) and a monotone class
argument we can choose the corresponding null set C ′ ∈ G independently of f̃ . Applying
(7.2) with r ∈ C \ C ′ and f̃(µ) := µ(C − r), µ ∈ M, gives

EQ

[
∫

f(θs)1{r − s ∈ C} ξ(ds)

]

= EQ[fξ(C − r)] λ − a.e. r ∈ C. (7.3)

Let Bn ⊂ G, n ∈ N, be an increasing sequence of compact sets satisfying λ(∂Bn) = 0
and ∪nBn = G. (Such a sequence can be constructed with the help of a metric generating
the topology on G. For any s ∈ G there is a compact and non-empty ball centred at s
whose boundary has λ-measure 0. Let B∗

n, n ∈ N, be an increasing sequence of compact
sets with union G. Then B∗

n is contained in the union B̃n of finitely many of the above
balls. The sequence B̃1 ∪ . . . ∪ B̃n, n ∈ N, has the desired properties.) Fix n ∈ N and
assume temporarily that

EQ[fξ(Bn − Bn)] < ∞, (7.4)

where Bn − Bn := {r − r′ : r, r′ ∈ Bn}. Since (r, r′) 7→ r − r′ is continuous, Bn − Bn is
again compact. Then we have for all measurable C ′ ⊂ Bn and r ∈ Bn that

EQ[fξ(C ′ − r)] ≤ EQ[fξ(Bn − Bn)] < ∞.

Assume now that C ⊂ Bn is satisfying the assumptions made in (7.2) and let C0 := Bn\C.
Applying (7.3) to Bn yields

EQ

[
∫

f(θs)1{r − s ∈ C0} ξ(ds)

]

+ EQ

[
∫

f(θs)1{r − s ∈ C} ξ(ds)

]

=EQ[fξ(C0 − r)] + EQ[fξ(C − r)] (7.5)

for λ-a.e. r ∈ Bn. Since ∂C0 ⊂ ∂Bn ∪ ∂(G \ C) = ∂Bn ∪ ∂C, we have λ(∂C0) = 0.
Hence we can apply (7.3) to C0, to obtain that the respective first summands in (7.5)
coincide λ-a.e. r ∈ C0. Therefore the respective second summands coincide λ-a.e. r ∈ C0.
Combining this with (7.3), gives

EQ

[
∫

f(θs)1{r − s ∈ C} ξ(ds)

]

= EQ[fξ(C − r)] λ − a.e. r ∈ Bn. (7.6)

Integrating (7.6) over a measurable set D ⊂ Bn, using (on both sides) Fubini’s theorem
and a change of variables gives

EQ

[
∫∫

f(θs)1{r + s ∈ D, r ∈ C} ξ(ds) dr

]

= EQ

[

f

∫∫

1{r − s ∈ D, r ∈ C} ξ(ds) dr

]

.

17



As both sides are finite measures in C (the right-hand side is bounded by EQ[fξ(Bn−Bn)])
and the class G′ := {C ∈ G : C ⊂ Bn, λ(∂C) = 0} is stable under intersections and
generates G ∩ Bn, we obtain this equation even for all measurable C ⊂ Bn. (To check
that σ(G′) = G ∩ Bn, it is sufficient to show for any non-empty open U ⊂ G that there
is a non-empty open U ′ ⊂ U such that U ′ ∩ Bn ∈ G′. This can be achieved with an
open ball U ′ having λ(∂U ′) = 0.) Reversing the above steps, we obtain (7.6) for all
measurable C ⊂ Bn. Since G is countably generated, we can choose the corresponding
null-sets independently of C. This means that there is a measurable set B′

n ⊂ Bn such
that λ(Bn \ B′

n) = 0 and

EQ

[
∫

f(θs)1{r − s ∈ C} ξ(ds)

]

= EQ[fξ(C − r)], r ∈ B′

n, C ∈ G ∩ Bn. (7.7)

Still keeping n ∈ N fixed in (7.7), we now lift the assumption (7.4) on f : Ω → [0,∞).
If EQ[f ] < ∞, we can apply (7.7) with f replaced by f1{ξ(Bn − Bn) ≤ m} and then let
m → ∞. For general f we decompose Ω into measurable sets Dm ↑ Ω with Q(Dm) < ∞,
apply the previous result to 1Dm

min{f, k}, and let m, k → ∞. Then (7.7) still holds for
all r ∈ B′′

n ∈ G, where B′′

n ⊂ Bn such that λ(Bn \ B′′

n) = 0. For notational simplicity we
assume B′′

n = B′

n.
In the final step of the proof we would like to take the limit in (7.7) as n → ∞. First

we can assume without loss of generality that λ(B1) > 0. Let r0 ∈ B1 \ B∗, where B∗ is
the λ-null set ∪nBn \B′

n. Then r0 ∈ B′

n for all n ≥ 1. Take an arbitrary C̃ ∈ G. Applying
(7.7) to C := C̃ ∩ Bn and letting n → ∞, yields

EQ

[
∫

f(θs)1{−s ∈ C ′} ξ(ds)

]

= EQ

[
∫

f1{s ∈ C ′} ξ(ds)

]

, (7.8)

for C ′ = C̃ − r0 and hence for any C ′ ∈ G. The measure EQ[
∫

1{(θ0, s) ∈ ·} ξ(ds)] is finite
on measurable product sets of the form {µ ∈ D : µ(B) ≤ k} ×B, where Q(D) < ∞, B is
compact, and k ∈ N. Since Ω×G is the monotone union of countably many of such sets,
it is now straightforward to proceed from (7.8) to the full Mecke equation (2.7).

8 Discussion of mass-stationarity

We consider the setting of Section 7 and assume that Q(ξ(G) = 0) = 0. The first intrinsic
characterization of Palm measures was given by Mecke [14], see (2.7). Our present proof
of Theorem 7.3 is making essential use of his result. In case of simple point processes on
Rd, Thorisson [19] has found a more explicit characterization, using bijective point-maps
as discussed in Example 4.7. However, that paper had to use randomizations, allowing for
independent stationary background processes. Finally, Heveling and Last ([4], [5]) showed
that randomization is actually not needed. They showed, that Q is a Palm measure of ξ if
and only if Q is invariant under all σ(ξ)⊗G-measurable invariant bijective point-transports
τ for ξ, i.e.

Q(θτ ∈ A) = Q(A), A ∈ F , (8.1)

see (4.10). At this stage one might be tempted to guess that (8.1) is characterizing Palm
measures also for general ξ. The following example shows that in general, randomization
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is needed to define mass-stationarity. We will construct a probability measure Q and an
invariant random measure ξ satisfying (8.1) for all ξ-preserving invariant transport-maps
τ , see Example 3.1. Still Q will be no Palm measure of ξ. The construction applies to
any Abelian group as considered in this paper.

Example 8.1. We establish the setting of Example 2.4. Let Π denote the distribution of a
stationary Poisson process with intensity 1, considered as probability measure on (M,M).
It is well-known that the associated Palm probability measure (defined in the framework
of Example 2.1) is given by Π0 =

∫

1{µ+ δ0 ∈ ·}Π(dµ). Let Q := Π0 ⊗Π and c > 0 be an
irrational number. Define an invariant random measure ξ on G by ξ := ξ1 + cξ2, where
ξ1 and ξ2 are the projections of Ω onto the first and second component, respectively. Let
τ be a ξ-preserving transport, i.e.

∫

1{τ(s) = t} ξ1(ds) + c

∫

1{τ(s) = t} ξ2(ds) = ξ{t}, t ∈ G.

Since c is irrational, this can only hold if τ is ξ1-preserving. As it can be straightforwardly
checked that Q is the Palm measure of ξ1, Theorem 4.1 implies (8.1).

We now show that Q is not mass-stationary for ξ. Therefore and by Theorem 7.3
it cannot be a Palm measure of ξ. Consider a set C ∈ G as in Definition 7.1 and
place it at random around the origin. This random set will contain a ξ2-point with
positive probability; this point will in turn be chosen with positive probability as a new
origin. Thus if Q was mass-stationary for ξ, it should also have mass c at 0 with positive
probability. But this is not the case.

Instead of working with general invariant transports or quasi-transports, we define
mass-stationarity by (7.1). This property has the advantage of allowing for the direct
probabilistic interpretation (6.5), at least if Q is a probability measure. To see how it
is related to invariance under quasi-transports, we let C ∈ G be as in Definition 7.1 and
D ∈ G with λ(C ∩ D) > 0. Define the invariant quasi-transport T ′

C,D := λC(D)−1TC,D,
where TC,D is given by (6.3). As noted at (6.3), we have that T ′

C,D is ξ-preserving. (We
cannot claim that T ′

C,D(ω, s,G) = 1 for all (ω, s) ∈ Ω × G.) Mass-stationarity of Q is
equivalent to assuming invariance of Q under all these quasi-transports. Now, Theorem
7.1 and Theorem 4.1 yield the following result.

Theorem 8.2. The measure Q is mass-stationary for ξ iff it is invariant under ξ-
preserving invariant quasi-transports T such that T (·, ·,G) is bounded.

We finish this section with some open problems related to mass-stationarity. A kernel
T from Ω×G to G is called ξ-measurable if T (·, ·, B) is σ(ξ)⊗G-measurable for all B ∈ G.

Problem 8.3. Assume that Q is invariant under ξ-preserving and ξ-measurable invariant
transports. Is Q mass-stationary for ξ?

The condition in Problem 8.3 implies that of the following problem.

Problem 8.4. Assume that

EQ

[
∫∫

1{θs ∈ A} TC(−r, ds) λC(dr)

]

= Q(A), A ∈ F , (8.2)

holds for all C as in Definition 7.1. Is Q mass-stationary for ξ?
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The counterexample in Example 8.1 arises because mass-atoms of relatively prime size
cannot be mapped into each other in a measure-preserving way. But what about diffuse
random measures?

Problem 8.5. Assume that ξ is diffuse and that (8.1) holds for all ξ-preserving (and
σ(ξ) ⊗ G-measurable) transport-maps τ . Is Q mass-stationary for ξ?

If the answer to Problem 8.5 is negative, we might attempt to introduce a stationary
independent background:

Problem 8.6. Let θt, t ∈ G, and ξ be defined on (Ω,F , Q). Introduce a station-
ary independent background as follows: let θ′t, t ∈ G, be another flow defined on a
space (Ω′,F ′, Q′), where Q′ is stationary under the flow, and consider the joint flow on
(Ω,F , Q) ⊗ (Ω′,F ′, Q′) with ξ defined in the natural way on this extended space. As-
sume that ξ is diffuse and that Q ⊗ Q′ is invariant under invariant ξ-preserving (and
σ(ξ)⊗G-measurable) transport-maps for all such stationary independent backgrounds. Is
Q mass-stationary for ξ?

Remark 8.7. In Problem 8.6 we might only assume that Q – and not Q⊗Q′ – is invariant.
Remark 3.2 in Thorisson [19] claims that the answer to this question is positive in the
case of simple point processes on Rd. This claim is a mistake stemming from the author’s
forgetting that the argument in Section 4.4 in [19] relies on the joint invariance. Similarly,
Lemma 4.1 in [19] needs to be corrected by adding the background in (4.11). Same applies
to Remark 9.3.2 and Lemma 9.4.1 in [20].
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