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Abstract. We study an example of a Teichmüller curve CS in the moduli
space M2 coming from an origami S. It is particular in that its points admit
V4 as a subgroup of the automorphism group. We give an explicit description
of its points in terms of a�ne plane curves, we show that CS is a nonsingular,
a�ne curve of genus 0 and we determine the number of cusps in the boundary
of M2.

Introduction
An origami is a compact surface X of genus g that arises from gluing �nitely many

Euclidean unit squares along their edges. If one uses only translations to identify
edges, one obtains in a natural way a translation surface. A�ne deformations of
the translation structure yield new translation structures on X, and in particular
a variation of the complex structure. One gets a geodesic disc in the Teichmüller
space of compact Riemann surfaces of genus g, which in the case of origamis always
projects to an algebraic curve, called an origami curve, in the moduli space Mg

of compact Riemann surfaces of genus g. This provides a means of studying the
geometry of the moduli space by looking at complex curves in it.

This paper is devoted to the study of a particular origami S of genus 2 and
its curve CS in the moduli space M2. A picture of S is drawn in Figure 1; edges
with the same letter are identi�ed and ¤, ¥, f and w are the four vertices of the
square-tiling.
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Figure 1. The origami S

Besides the hyperelliptic involution, S admits a translation τ of order 2, i. e. a
permutation of the squares that respects the gluings, namely (1 6)(2 4)(3 5). There-
fore, CS lies in the subvariety of M2, whose points admit a subgroup isomorphic to
the Klein four group V4 as automorphism group. This property will enable us to
give a concrete description of the points on CS in terms of a�ne plane curves.
Theorem 1. The origami curve CS of the origami S is equal to the projection of
the a�ne curve V ⊂ C2 to the moduli space M2, where V is given by

V : µ(λ + 1)− λ = 0, λ 6= 0,±1,− 1
2 ,−2.
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Explicitly, every point on CS is birational as a�ne plane curve to

y2 = (x2 − 1)(x2 − λ2)(x2 − (
λ

λ+1

)2)

for some λ ∈ C \ {0,±1,− 1
2 ,−2}. Moreover, the curve CS is an a�ne, regular

curve of genus 0 with 2 cusps.

The proof uses the fact that the points X ∈ M2 with Aut(X) ⊇ V4 can be
described by a�ne plane curves, whose equations depend on two complex param-
eters (λ, µ). The main observation is that certain points on the origami become
3-torsion points on an elliptic curve, namely on the quotient surface of S by 〈τ〉;
simultaneously, we know the coordinates of these points on the a�ne plane curve
(depending on λ and µ). From this we get a relation between λ and µ, which gives
the equation of the origami curve CS .

This is a fascinating interplay between objects that are de�ned by analytical
means (translation surfaces and geodesic discs in the Teichmüller space) and alge-
braic objects (algebraic curves in Mg), and it is a priori not at all obvious how one
can �nd links between these worlds. However, our origami S is by no means special
among the origamis in genus 2 that have a translation. In fact, our construction
generalizes to this class of origamis, which will be discussed in a future paper.

This paper grew out of the diploma thesis of one of the authors, André Kappes
[Kap07].

Structure of this paper. In the �rst section, we �x some notations and recall
brie�y how and why an origami de�nes a curve in the moduli space.

The second section is devoted to a description of the moduli space M2 in terms
of a�ne plane curves and to a discussion of loci with many automorphisms. We
follow a description of Geyer [Gey74]. This section is fundamental for the following
discussion of the origami curve CS and the proof of Theorem 1.

In the third section we discuss how the group of common automorphisms of
points on a Teichmüller curve can look like in genus 2.

The fourth section supplies a proof of Theorem 1.

Related work. The term origamis originated with [Loc05], but they have also
been investigated by other authors under the name square-tiled surfaces. They
belong to the more general class of �at surfaces, which have been studied exten-
sively during the last years in algebraic geometry, complex analysis and dynamical
systems. In this paper, we restrict to what one sometimes calls oriented origamis:
they give rise to translation surfaces.

Only for a few origami curves, the algebraic equations of their points are known.
Möller [Möl05] gives equations for two example origamis in genus 2. In [LS07],
we are given equations for all origamis of genus 2 that are tiled by 4 squares.
The authors also present di�erent families of hyperelliptic square-tiled surfaces
parametrized by the genus and exhibit their equations. The SL2(R)-orbits of square-
tiled surfaces in the stratum H(2) where classi�ed by [HL06] and [McM05]; to our
knowledge, this is still open for the stratum H(1, 1), to which the Teichmüller disk
of the origami S belongs.

In genus 3, there is a particularly interesting origami with many nice properties
[HS08]; its curve intersects in�nitely many other origami curves. These curves and
the corresponding origamis are investigated in [HS07].

In [Her06], we are given equations of an in�nte family of origamis (whose mem-
bers have arbitrarily high genus). They are called Heisenberg origamis and belong
to the class of characteristic origamis, i. e. their Veech group is the entire group
SL2(Z).
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Origamis are somewhat more accessible than general translation surfaces, for one
can compute their Veech groups explicitly [Sch04] and one knows that they always
de�ne an algebraic curve in the moduli space.

1. Translation surfaces, Teichmüller disks and origamis
In this section, we give a short review of the general theory of Teichmüller disks

and curves and origamis and origami curves in particular. References for this part
are e. g. [Vee89], [GJ00], [EG97], [McM03], [Sch05], [HS06] to list only some.

1.1. Notations. We �rst �x some notations. If X is a Riemann surface, we write
Aut(X) for the group of holomorphic automorphisms of X. If θ ∈ Aut(X), then
FP(θ) denotes the set of �xed points. In the following I always denotes the identity
matrix (of the appropriate dimension).

1.2. Translation surfaces. Let ω be a nonzero holomorphic di�erential on a com-
pact Riemann surface X. We can de�ne an atlas on X \Z(ω), where Z(ω) is the set
of zeros of ω, by using local primitives of ω as charts. We get a translation surface
(X, ω), i. e. the transition maps between two charts are locally translations of C.

A point P ∈ Z(ω) leads to a singularity of the translation structure: It is a
conical point with a cone angle of 2π(d+1), where d is the multiplicity of the zero.
By Riemann-Roch, ω has precisely 2g − 2 zeros counted with multiplicities. The
moduli space ΩMg of pairs (compact Riemann surface, holomorphic di�erential) is
strati�ed by the multiplicities. In particular, ΩM2 consists of two strata H(1, 1)
and H(2), which correspond to holomorphic di�erentials with two simple zeros,
resp. one double zero.

On X \ Z(ω), one can de�ne a �at Riemannian metric by pulling back the Eu-
clidean metric via the coordinate charts. Geodesics for that metric are straight
line segments; geodesics that connect two singularities are called saddle connec-
tions. The lattice of relative periods is the subgroup of R2 spanned by the vectors
corresponding to saddle connections.

We always identify C with R2 by sending {1, i} to the standard basis. Then
translations are biholomorphic, and we can also view the translation structure as a
complex structure on X \ Z(ω): We have a Riemann surface of �nite type and the
associated compact surface is again X.

1.3. A�ne di�eomorphisms. Given translation surfaces (X, ω), (Y, ν) as above,
we say that a di�eomorphism f : X → Y is a�ne (w. r. t. the respective translation
structures), if, in local coordinates, f is given by

z 7→ A · z + t

for some A ∈ GL2(R) and t ∈ R2. If f is a�ne, then its matrix part A is globally
the same. If f is orientation preserving, then A ∈ GL+

2 (R), and since X is of �nite
volume, we have A ∈ SL2(R). The a�ne orientation preserving di�eomorphisms
X → X form a group Aff+(X,ω).

We get a map D : Aff+(X, ω) → SL2(R) by assigning to f its matrix part A.
The image of D is called the Veech group of (X, ω), and is denoted it by Γ(X, ω). Its
kernel is the group of translations Trans(X, ω), i. e. maps that are automorphisms
for the translation structure. Finally, we call Aut(X, ω) = D−1({±I}) the group
of biholomorphic automorphisms of (X, ω).
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1.4. Teichmüller spaces and moduli spaces. Let X be a compact Riemann
surface of genus g. We denote by T (X) the Teichmüller space with base point X, i. e.
points in T (X) are isomorphism classes of marked Riemann surfaces (S, f), where
S is a Riemann surface and f : X → S is an orientation preserving di�eomorphism
(called a Teichmüller marking). As T (X) only depends on the topological type of
the chosen reference surface X, we also write T (X) = Tg. The (coarse) moduli
space of Riemann surfaces of genus g is denoted by Mg.

The mapping class group of X is the group of isotopy classes of orientation
preserving di�eomorphisms, and we denote it by Mod(X) = Mod(g). The mapping
class group acts on the Teichmüller space and the quotient of this action is the
corresponding moduli space. More precisely, if P = (S, f) ∈ T (X) and a is an
orientation preserving di�eomorphism of X then a · P = (S, f ◦ a−1).

1.5. Teichmüller disks. A translation surface (X, ω) de�nes a Teichmüller disk in
Tg = T (X) in the following way. Let A ∈ SL2(R) and let us denote by A ·(X, ω) the
translation surface obtained by postcomposing each chart with the R-linear map
z 7→ A · z. We consider the identity map on X as an a�ne orientation preserving
di�eomorphism fA : (X, ω) → A · (X, ω) w. r. t. to the translation structures. In
this way, A naturally de�nes a point PA = (A · (X, ω), fA) in T (X). Thus we get
a map

SL2(R) → T (X), A 7→ PA.

As the action of a matrix in SO2(R) stabilizes (X, ω), this map factors as

SO2(R)\SL2(R) = H j- T (X), SO2(R) ·A 7→ PA.

By an appropriate choice of the identi�cation of the upper half plane with the set
SO2(R)\SL2(R), the map j is a holomorphic embedding, which is an isometry for
the Poincaré metric on H and the Teichmüller metric on T (X). Its image is the
Teichmüller disk ∆(X,ω2) associated to (X,ω): It is a complex geodesic in T (X),
which corresponds to the base point X and the cotangent vector ω2 ∈ (TXT (X))∗.
Note that the cotangent space can be identi�ed with the space of holomorphic
quadratic di�erentials on X.

Given a Teichmüller embedding j : H → T (X) that arises from a translation
surface (X,ω), we consider the stabilizer Stab(j(H)) ⊂ Mod(X). By [EG97, Lemma
5.2, Theorem 1], this group is isomorphic to Aff+(X, ω). If PA ∈ j(H) and f ∈
Aff+(X, ω) with B = D(f), then f · PA = PAB−1 , thus f stabilizes j(H). Now
the action of Stab(j(H)) might not be e�ective on ∆(X, ω2), i. e. there might be a
nontrivial pointwise stabilizer Stab0(j(H)) ⊂ Stab(j(H)).
Proposition 1.1. We have Stab0(j(H)) ∼= Aut(X, ω) = D−1({±I}), and this is
the group of common automorphisms of the points in the Teichmüller disk ∆(X, ω2).
Proof. Note that θ ∈ Stab0(j(H)) can be considered as an element of Aut(X). It
follows from the de�nition of the action of Mod(g) that θ stabilizes each point in
∆(X, ω2), if and only if fA ◦ θ ◦ f−1

A is a biholomorphic automorphism of A · (X, ω)
for all A ∈ SL2(R). We describe fA◦θ◦f−1

A in local coordinates. Thus we can break
down the argument to the case that we are given a holomorphic map h : U → C
on a domain U ⊂ C, for which the map

(z 7→ A · z) ◦ h ◦ (z 7→ A−1 · z)

is holomorphic for all A ∈ SL2(R). Let z0 ∈ U and let B = B(z0) be the real
derivative of h at z0. By the Cauchy-Riemann di�erential equations, B ∈ R× ·
SO2(R). By our assumption, ABA−1 ∈ R× · SO2(R). If we plug in A = ( 1 1

0 1 ), we
�nd that B ∈ R× ·I, which implies h′(z0) ∈ R×. So h′(U) ⊂ R, which is not open in
C. Since h′ is holomorphic on U , this forces h′ to be constant. Therefore, θ is a�ne
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with derivative B ∈ R× · I ∩ {±I}, i. e. θ ∈ Aut(X,ω). On the other hand, every
element in Aff+(X,ω) with derivative ±I stabilizes each point in ∆(X, ω2). ¤

Now that we have de�ned Teichmüller disks (which are a priori analytical ob-
jects), let us study under which conditions they give rise to algebraic curves in
the moduli space. Let Γ̂(X, ω) = RΓ(X, ω)R−1 be the mirror Veech group (where
R =

(−1 0
0 1

)
). Then the map j is equivariant for the action of Γ̂(X,ω) on H (via

Möbius transformations) and Aff+(X, ω) on j(H). (Note that the two groups are
linked via Aff+(X, ω) → Γ̂(X,ω), f 7→ RD(f)R−1.) Therefore, we can pass on
both sides to the quotient. A Teichmüller curve is an algebraic curve in the moduli
space that is the image of a Teichmüller disk (under the natural projection). The
following criterion determines, when Teichmüller curves occur.
Proposition 1.2 (see [McM03, Corollary 3.3]). A Teichmüller disk ∆(X, ω2) pro-
jects to a Teichmüller curve C in the moduli space, if and only if the Veech group
Γ(X, ω) is a lattice in SL2(R), i. e. H/Γ(X,ω) is a Riemann surface of �nite type.
In this case, H/Γ̂(X, ω) is the normalization of C.
1.6. Origamis. An origami can be depicted as follows. Take a �nite number of
unit squares in the plane and glue the upper edge of a square to a lower edge of
a square and the left edge of a square to a right edge of a square. We require the
edges to be identi�ed by a translation, and the resulting surface to be connected.
This yields a tiling of our surface into squares, and we have a covering map to the
origami that consists of only one square, i.e. a torus. More precisely, we make the
following de�nition.
De�nition 1.3. Let E be a topological torus and P ∈ E. An origami is a (�nite)
covering O = (p : X → E), where X is a compact topological surface of genus
g ≥ 1, such that p is rami�ed at most over the point P .

Note that an origami is a topological or even combinatorial object; the topological
structure is given precisely by a monodromy representation π1(E) ∼= F2 → Sd,
where d is the degree of the covering p : X → E.

Let O = (p : X → E) be an origami. We choose a complex structure on E, i.e.
we take the torus EA, which is de�ned as follows. Let A ∈ SL2(R), and let ΛA be
the lattice in C spanned by the columns of A. Then EA = C/ΛA and P = 0 + ΛA.
We can pull the holomorphic di�erential ωA on EA (which is unique up to a scalar
in C) back to a holomorphic di�erential p∗ωA and end up with a translation surface
XA = (X, p∗ωA). Every point on the Teichmüller disk ∆(X, (p∗ωA)2) then arises
by running through all possible complex structures that can be put on E, i.e. by
running through all of SL2(R). In particular, we have B ·XA = XBA.

The Teichmüller disk ∆O = ∆(X, (p∗ωA)2) of an origami O = (p : X → E) only
depends on the combinatorial data of the covering p and not on the choice of the
base point XA. In particular, we can work with the base point XI , which is a cover
of the standard torus EI , whence XI is called square-tiled. Furthermore, the Veech
groups of points in the same Teichmüller disk are all conjugated in SL2(R). We
de�ne the Veech group of the origami O to be the group Γ(O) := Γ(X, p∗ωI).

An origami always de�nes a Teichmüller curve in the moduli space, for the fol-
lowing theorem implies that Γ(O) always is a lattice in SL2(R). The corresponding
Teichmüller curve to an origami O is called origami curve CO.
Proposition 1.4 (see [GJ00, Theorem 5.5]). A translation surface (X, ω) is square-
tiled, if and only if the groups SL2(Z) and Γ(X, ω) are commensurate.

Note that the Veech group of an origami need not be a subgroup of SL2(Z)
(see e. g. [Möl05] for an example). This is the case, if one uses too many squares
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in the tiling. (One could for instance construct a new origami out of a given
one by subdividing each square into 4 smaller squares.) One way to circumvent
this problem is to consider X∗ = X \ p−1(P ) instead of X, which forces every
a�ne di�eomorphism to descend to the torus EI , whence to have matrix part in
SL2(Z) = Γ(EI , ωI). Then the Veech group Γ(X∗, p∗ωI) = Γ(X, p∗ωI) ∩ SL2(Z)
has �nite index in Γ(X, p∗ωI) by Proposition 1.4.

A more convenient way is to consider primitive origamis: an origami is called
primitive, if the lattice of relative periods Λ(ωI) is Z2.
Remark 1.5 (see e. g. [HL06, Lemma 2.3]). If O is a primitive origami, then Γ(O) ⊂
SL2(Z).

Note that the origami S is primitive, since the vectors ( 1
0 ) and ( 0

1 ) are contained
in the lattice of relative periods.

2. Points in genus 2 with more automorphisms
Let M2 be the moduli space of compact Riemann surfaces of genus 2. As we

will see later in Section 4, every point X of our origami curve CS has a subgroup
G of Aut(X) that is isomorphic to V4, the Klein four group. G is generated by the
translation τ of S and the hyperelliptic involution σ.

In this section, we describe the points on the subvariety of M2 that admit V4

as a subgroup of their automorphism group. This can be found e. g. in [Gey74] or
[Igu60], where points of M2 are classi�ed according to their automorphism group.

2.1. Automorphism groups of points in M2. In general, a compact Riemann
surface Y of genus 2 carries a (unique) hyperelliptic involution σ ∈ Aut(Y ). Let
φ : Y → Y/〈σ〉 ∼= P1 denote a quotient map. Then φ is rami�ed precisely over a
six-point set B ⊂ P1, which is the image of the set FP(σ). Note that φ is unique up
to composition with an element of Aut(P1). Since σ is central, every automorphism
of Y descends to P1 and induces a permutation of B. Conversely, every θ ∈ Aut(P1)
that satis�es θ(B) = B can be lifted to Y . So instead of studying Aut(Y ), we can
look at Aut(Y ) = Aut(Y )/〈σ〉 ⊂ Aut(P1). Note that Aut(Y ) is isomorphic to a
subgroup of the symmetric group S(B) = S6; every θ ∈ Aut(Y ) has two �xed
points and every orbit that does not contain a �xed point has the same number of
elements.

In the following, let Cn denote the cyclic group of order n and let Dn denote
the dihedral group of order 2n. For an overall view of M2 we cite the following
proposition.
Proposition 2.1 (see [Gey74, Satz 3, Satz 4]). M2 is a 3-dimensional, rational,
normal, a�ne variety with one singular point P which corresponds to the unique
Y ∈ M2 with Aut(Y ) ∼= C5.

The points Y ∈ M2 with Aut(Y ) ⊇ C2 form a rational surface S ⊂ M2. For a
generic point Y ∈ S, one has Aut(Y ) ∼= C2. There are two rational curves U and
U ′ ⊂ S, where Aut(Y ) is bigger. For each point Y on U , we have Aut(Y ) ⊇ V4

and for each point Y ∈ U ′, we have Aut(Y ) ⊇ S3. In both cases, we have equality,
except for two points Q and Q′ where U and U ′ intersect. There, Aut(Q) ∼= S4 and
Aut(Q′) ∼= D6.

The surface S is not normal, and its singular locus is precisely the curve U .
2.2. Points in the surface S. We will develop a more precise description of S.
Given a point Y ∈ S, let Aut(Y ) have the subgroup {id, σ, τ, στ} ∼= V4, where σ is
the hyperelliptic involution on Y and τ is another involution. First, we show that
we can choose τ such that FP(τ) ∩ FP(σ) = ∅.
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Lemma 2.2. If FP(τ) ∩ FP(σ) 6= ∅, then there is an involution τ ′ ∈ Aut(Y ) such
that FP(τ ′) ∩ FP(σ) = ∅.
Proof. Since σ is central, the map τ descends to τ ∈ Aut(P1). Moreover, σ permutes
the �xed points of τ ; it follows from the Riemann-Hurwitz formula, that this is a
2-element set, so by our assumption, σ �xes FP(τ) pointwise. Thus, φ(FP(τ)) ⊂ B;
we postcompose φ : Y → P1 with a Möbius transformation that sends φ(FP(τ)) to
{0,∞} and a third element b ∈ B to 1. In this way, τ becomes the map z 7→ −z
and

B = {0,∞, 1,−1, α,−α}
for some α ∈ C \ {0,±1}. The set B is also invariant, if we apply z 7→ αz−1 (as
well as z 7→ −αz−1), which is an involution without �xed points in B, hence lifts
to an involution τ ′ ∈ Aut(Y ) as desired. ¤

Note that if τ and σ have no common �xed point, then FP(τ), FP(σ) and FP(στ)
are mutually disjoint. Proceeding as in the above proof, we can show the �rst part
of the following lemma.

We de�ne the parameter space P to be
P = (C \ {0,±1})2 \ (∆ ∪∆′),(2.1)

where ∆ ⊂ C2 denotes the diagonal and ∆′ = {(z,−z) | z ∈ C}.
Lemma 2.3. a) Let Y ∈ S and let τ ∈ Aut(Y ) be a �xed involution such that

FP(τ)∩FP(σ) = ∅. Then there exists a quotient map φ : Y → P1 for the action
of the hyperelliptic involution σ on Y , such that the automorphism τ ∈ Aut(Y )
descends to the map

τ : P1 → P1, z 7→ −z,

and such that the set of branch points of φ is of the form
B = {1,−1, λ,−λ, µ,−µ},

where (λ, µ) ∈ P .
b) If φ′ : Y → P1 is a map with the same properties as φ, then φ′ = δφ, where

δ : P1 → P1 is one of the maps in the set
{ id, (z 7→ λ−1z), (z 7→ µ−1z) }
∪ { τ , (z 7→ λ−1z) ◦ τ , (z 7→ µ−1z) ◦ τ }
∪ { (z 7→ z−1), (z 7→ λz−1), (z 7→ µz−1) }
∪ { (z 7→ z−1) ◦ τ , (z 7→ λz−1) ◦ τ , (z 7→ µz−1) ◦ τ }.

(2.2)

Proof. Only part b) needs to be justi�ed. By the general theory, there exists δ ∈
Aut(P1), such that φ′ = δφ. The map φ′ satis�es τφ′ = φ′τ . Thus we have
τδφ = δτφ, which leads to τ = δτδ−1, because φ is surjective. Then δ permutes the
�xed points of τ . So either δ(0) = ∞ and δ(∞) = 0, whereby δ = (z 7→ rz−1) for
r ∈ C×, or FP(δ) = {0,∞}, which implies δ = (z 7→ rz), r ∈ C×. Let B′ ⊂ P1 be
the set of branch points of φ′. Then δ(B) = B′. Since 1 ∈ B′, there exists b ∈ B,
such that δ(b) = 1. This determines the factor r, and δ is one of the maps in the
list. Conversely, every map in the list induces a covering map δφ of the desired
form. ¤

We use the fact that the categories of compact Riemann surfaces (with non-
constant holomorphic maps) and projective regular curves over C (with morphisms
between them) are equivalent. From Lemma 2.3 and the general form of hyper-
elliptic curves, we directly get the following proposition.
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Proposition 2.4. The compact Riemann surfaces in S ⊂ M2 correspond bijectively
to the isomorphism classes of a�ne plane curves Cλ,µ given by

v2 = (u2 − 1)(u2 − λ2)(u2 − µ2)

where (λ, µ) ∈ P (and P is as in Equation (2.1)). More precisely, for any such
surface Y , there is a choice of parameters (λ, µ) ∈ P , such that Y , considered as
a projective regular curve, is birational to Cλ,µ. Conversely, the associated com-
pact Riemann surface to Cλ,µ de�nes a point in S. The subgroup of Aut(Cλ,µ) in
question is

{id, (u, v) 7→ (u,−v), (u, v) 7→ (−u, v), (u, v) 7→ (−u,−v)},
where (u, v) 7→ (u,−v) is the hyperelliptic involution. The quotient map to P1 is
given by (u, v) 7→ u.
2.3. From the parameter space to the moduli space. We investigate the map
pr : P → M2 that sends (λ, µ) ∈ P to the isomorphism class of the curve Cλ,µ. We
come very close to M2 itself by using a group action on the parameter space P (see
[Gey74]).
Proposition 2.5. The group Γ generated by

a : (λ, µ) 7→ (λ−1, µ−1), b : (λ, µ) 7→ (µ, λ), c : (λ, µ) 7→ (λ−1, λ−1µ)

d : (λ, µ) 7→ (−λ, µ), e : (λ, µ) 7→ (−λ,−µ)
acts on the algebraic variety P as a group of automorphisms. The following holds:
a) Γ is isomorphic to the semidirect product V4 oϕ D6, where the dihedral group

D6
∼= 〈a, b, c〉 acts on the Klein four group V4

∼= 〈d, e〉 by conjugation.
b) The map pr : P → M2, (λ, µ) 7→ Cλ,µ induces a surjective, birational morphism

pr : P/Γ → S ⊂ M2.

c) If we restrict pr to pr−1((S \ U) ∪ {Q}), where U and Q are de�ned as in
Proposition 2.1, then pr is injective.

Proof. Part a). Note that each of these maps is a well-de�ned automorphism of
P . Clearly, d2 = e2 = id and de = ed, so 〈d, e〉 ∼= V4. Moreover, a2 = id, and one
easily shows that ab = ba, ac = ca. The elements b and bc generate a subgroup
isomorphic to S3. Surely, b2 = id, and an easy computation shows that bc has order
3 and that b(bc) = (bc)2b. Therefore,

〈a, b, c〉 ∼= (Z/2Z)× S3
∼= D6.

It remains to show that 〈d, e〉 is a normal subgroup of Γ. This can be veri�ed on
the generators:

ada = d, aea = e, bdb = de, beb = e, cdc = e, cec = d.

Thus, ϕ : 〈a, b, c〉 → Aut(〈d, e〉), g 7→ (h 7→ ghg−1) is a well-de�ned homomorphism
and Γ ∼= V4 oϕ D6.

Part b). By Proposition 2.4, the map pr : P → S is surjective. Next, we justify
that pr : P → M2 factors through P/Γ. So let (λ, µ) ∈ P and (λ′, µ′) = γ · (λ, µ)
for γ ∈ Γ. We have compact Riemann surfaces Y and Y ′ and degree 2-coverings
φ : Y → P 1, φ′ : Y ′ → P1, which are branched over

B = {1,−1, λ,−λ, µ,−µ} and B′ = {1,−1, λ′,−λ′, µ′,−µ′}
respectively. Now Y ∼= Y ′, if either we already have B = B′ or if there is δ from the
list in Lemma 2.3, such that B′ = δ(B). Indeed, the a�ne curve Cλ,µ together with
the covering (u, v) 7→ u is uniquely determined by the set of its branch points, and
this covering is unique up to composition with such a δ. Applying γ ∈ 〈b, d, e〉 to
(λ, µ) does not a�ect the correspondig set B, so there is nothing to show. Applying
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a to (λ, µ) corresponds to composing the covering φ : Y → P1 with δ = (z 7→ z−1),
so Cλ,µ

∼= Cλ−1,µ−1 . In the same way, c corresponds to δ = (z 7→ λ−1z). This
shows that we get a map pr : P/Γ → M2. The birationality of pr follows from Part
c), since S \ U is open in S.

Part c). Let (λ1, µ1), (λ2, µ2) ∈ P , and let Yi be the compact Riemann surface
associated to Cλi,µi , i = 1, 2. Let

Aut(Yi) ⊇ {id, σi, τi, σiτi} ∼= V4,

where σi is the hyperelliptic involution on Yi, and τi is another involution with
FP(σi)∩FP(τi) = ∅. Let φi : Yi → P1 be the associated covering map, coming from
the projection onto the �rst coordinate of Cλi,µi

. Then Bi = {1,−1, λi,−λi, µi,−µi}
is the set of branch points of φi.

Suppose that Y1, Y2 ∈ (S \U)∪{Q} and that we have an isomorphism h : Y1 →
Y2. We show that there is an isomorphism h′ : Y1 → Y2 such that the covering map
φ′ = φ2h

′ : Y1 → P1 satis�es the hypothesis of Lemma 2.3 b). Hence there exists a
δ in List 2.2 with δφ1 = φ2h

′. Thus, the branch points of φ1 are altered by δ from
List 2.2, and one easily shows that if δ(B1) = B2, then there is γ ∈ Γ such that
γ · (λ1, µ1) = (λ2, µ2).

To begin with, note that φ2h is also a quotient map for the hyperelliptic in-
volution σ1 on Y1: the map hσ1h

−1 is a holomorphic involution on Y2 with 6
�xed points, and it follows from the uniqueness of the hyperelliptic involution, that
hσ1h

−1 = σ2. Next, consider the map hτ1h
−1 ∈ Aut(Y2). It descends to some

involution τ̃ ∈ Aut(Y2). By Proposition 2.1, we know the automorphism groups
explicitly; in particular, Yi ∈ (S \U)∪{Q} implies that there is only one conjugacy
class of involutions in Aut(Yi). Therefore, the map τ̃ is conjugate to τ : z 7→ −z,
the image of τ2 in Aut(Y2). So there exists some β ∈ Aut(Y2), such that βτ̃β−1 = τ .
The map β has a lift k ∈ Aut(Y2), and we set h′ = kh. Then φ2h

′ is still a quotient
map for σ1, for which τ1 descends to τ , so Lemma 2.3 b) applies. ¤

It remains to study what happens if we restrict pr : P/Γ → M2 to the curve U ,
resp. to U \ {Q}. A careful inspection leads to the following results (again we cite
[Gey74]).
Proposition 2.6 (see [Gey74, Case 6]). For a point Y ∈ S, let c(Y ) be the number
of conjugacy classes of involutions in Aut(Y ). Then Y has precisely c(Y ) preimages
in P/Γ. In particular, the map pr : pr−1(U \ {Q}) → M2 is 2 to 1. The two
preimages of the point Q′ ∈ U are the Γ-orbits

Γ · (e2iπ/3, eiπ/3) and Γ · (−2 +
√

3,−2−
√

3).

Every point in P with nontrivial stabilizer in Γ is in the Γ-orbit of a point on
the curve F = {(λ, µ) ∈ P | λµ = 1}, and we have pr(F ) = U .
2.4. Automorphisms of the a�ne curve. Let Y ∈ S, and let Cλ,µ be birational
to Y . Again, we write φ : Y → P1 for the covering coming from (u, v) 7→ u and
{id, σ, τ, στ} for the automorphism group of a generic point Y ∈ S. We now take
a look at the automorphisms τ and στ . Inspecting the Riemann-Hurwitz formula,
we �nd that τ and στ both have two �xed points that form a 〈σ〉-orbit (since we
can assume that FP(τ) ∩ FP(στ) = ∅ by Lemma 2.2). The maps τ and στ induce
the automorphisms

(u, v) 7→ (−u, v) and (u, v) 7→ (−u,−v)

of Cλ,µ.
Remark 2.7. Without loss of generality, the automorphism τ (resp. στ) corresponds
to (u, v) 7→ (−u, v) (resp. (u, v) 7→ (−u,−v)) on Cλ,µ.
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Proof. If this is not the case, then FP(τ) = φ−1(∞) and FP(στ) = φ−1(0). Com-
posing the covering φ with z 7→ z−1 leads to exchanging the �xed points of τ . But
this in turn corresponds to replacing (λ, µ) with (λ−1, µ−1), which both lead to
isomorphic curves by Proposition 2.5. ¤

In the following, we assume that (λ, µ) be chosen such that τ is given by (u, v) 7→
(−u, v).

Corollary 2.8. The �xed points of τ correspond to the points (0, iλµ), (0,−iλµ) ∈
Cλ,µ and the set of �xed points of στ is φ−1(∞) = {∞1,∞2}.
Corollary 2.9. The quotient surface Y = Y/〈τ〉 is the elliptic curve

y2 = (x− 1)(x− λ2)(x− µ2)

with origin N = π(∞1) = π(∞2). The quotient map π : Y → Y is given by
(u, v) 7→ (x, y) = (u2, v) on Cλ,µ.

3. Automorphism groups of translation surfaces in genus 2
Recall from Section 1.2, that a compact Riemann surface X together with a non-

zero holomorphic 1-form ω on X de�nes a translation surface (X, ω). In this section,
we answer the question how the automorphism group Aut(X,ω) can possibly look
like, if X has genus 2.

Proposition 3.1. Let (X,ω) be a translation surface of genus 2. Then either
Aut(X, ω) = {id, σ} ∼= Z/2Z or Aut(X, ω) = {id, σ, τ, στ} ∼= V4,

where σ is the hyperelliptic involution on X and τ is a translation of order 2.
Moreover, if (X, ω) is in the stratum H(2), then only the �rst case is possible.

Proof. First note that the hyperelliptic involution σ is a biholomorphic map that
lives on the whole Teichmüller disk to (X,ω). So by Proposition 1.1, it is a�ne
with derivative −I. Indeed, σ cannot be a translation, for it has 6 �xed points, and
thus cannot act freely on the translation surface (X, ω). One has an exact sequence

1 - Trans(X, ω) - Aut(X,ω)
D- {±I} - 1,

thus it su�ces to determine Trans(X, ω) to prove the claim. To this end, we
distinguish two cases. First, let (X,ω) be in the stratum H(1, 1) and let τ be
a translation. Then τ is a fortiori a biholomorphic automorphism, thus it has
�nite order. Moreover, τ permutes the two zeros P , P ′ of ω. We look at the
quotient surface X/〈τ〉. Suppose that τ does not �x P and P ′. Then it has no
�xed point in X (since it is a translation on X \ {P, P ′}). By Riemann-Hurwitz,
g′ = g(X/〈τ〉) ≤ g(X) = 2 and

2g(X)− 2 = 2 = ord(τ)(2g′ − 2).

Each of the cases g′ ∈ {0, 1, 2} leads to a contradiction. So FP(τ) = {P, P ′}. Let γ
be a geodesic for the translation structure on X that starts from a singularity, say
P , in direction v. Since the cone angle around P is equal to 4π, there are precisely
two such geodesics γ1, γ2. A translation τ that �xes P permutes γ1 and γ2. By the
identity theorem, τ = id or τ2 = id, and this determines τ uniquely.

The case (X, ω) ∈ H(2) is treated in [HL06, Proposition 4.4]. ¤

4. The origami S

In this section, we study the origami S and its origami curve CS in the moduli
space. Step by step, we prove the assertions of Theorem 1.
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4.1. Automorphisms of S. We write S = (p : X → E) for the origami covering.
Let XI = (X, p∗ωI) be the square-tiled translation surface de�ned by S. We deter-
mine the group Aut(XI) of common automorphisms of points in the Teichmüller
disk ∆S = ∆(X, (p∗ωI)2)).

Observe that Figures 2 and 3 de�ne two a�ne di�eomorphisms of XI , which we
call σ and τ . We have D(σ) = −I and D(τ) = I, so in particular τ is a translation.
It also follows from the pictures that σ and τ are both of order 2. Their product
στ (which is the same as τσ) is depicted in Figure 4.

−→
σ

1 2 3

4 5 6

¥

¥

¥

¥

¥

e

u

e

1 3 2

5 4 6

¥

¥

¥

¥

¥

u

e

u

Figure 2. The hyperelliptic involution σ on the origami S

−→
τ

1 2 3

4 5 6

¥

¥

¥

¥

¥

e

u

e

6 4 5

2 3 1

¥

¥

¥

¥

¥

u

e

u

Figure 3. The translation τ on the origami S

−→
στ

1 2 3

4 5 6

¥

¥

¥

¥

¥

e

u

e

6 5 4

3 2 1

¥

¥

¥

¥

¥

e

u

e

Figure 4. The map στ on the origami S

Proposition 4.1. The group Aut(XI) is given by {id, σ, τ, στ} ∼= V4. The map σ
is the hyperelliptic involution and we have Trans(XI) = {id, τ}.
Proof. Clearly, Aut(XI) contains these elements; moreover, by Proposition 3.1,
Aut(XI) cannot be bigger, and τ is the non-trivial translation. Furthermore, ob-
serve that the map σ is an involution having the six �xed points as indicated in
Figure 5. So σ is the hyperelliptic involution (since the latter is unique). ¤

Note that the points ¤ and ¥ are singularities on the translation surface XI .
Consequently, XI is in the stratum H(1, 1). Next, we identify the �xed points of
the remaining automorphisms.

Remark 4.2. The �xed points of the translation τ are ¤ and ¥. The �xed points
of the map στ are f and w.
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×
×

×

×
×

×

Figure 5. Fixed points of σ

4.2. An equation for the points on CS. By Proposition 4.1 and Proposition 2.4,
we know that every surface on the Teichmüller disk associated to S corresponds to
a curve Cλ,µ for some (λ, µ) ∈ P . Our next task is to �nd an algebraic relation
between λ and µ that describes the points in M2 that lie on the origami curve CS .

The map τ : X → X is a deck transformation for S = (p : X → E). Let
π : X → X/〈τ〉 denote the quotient map. The map p factors as p ◦ π, where
S = (p : X/〈τ〉 → E) is an origami of genus one. A picture of S is drawn in
Figure 6. Gluings are made by identifying opposite sides and the numbers indicate
which squares of S are identi�ed by the action of τ . The points ♦ = π(¤), ¨ = π(¥)
are the images of the �xed points of τ and @ is the image of { f, w} under π.

3(5) 1(6) 2(4)

♦

♦

¨

¨

@

@

@

@

Figure 6. The origami S

Let (X, ω) be a point on the Teichmüller disk ∆S of the origami S. The di�eren-
tial ω = p∗ωA is the pullback of the di�erential ωA on the complex torus EA for some
A ∈ SL2(R). We write XA for the Riemann surface de�ned by (X, ω) = (X, p∗ωA).
Then XA = XA/〈τ〉 is an elliptic curve, where we choose the origin @.

It is clear from Figure 6 that we can identify (XA,@) with the elliptic curve
EAB , where B = ( 3 0

0 1 ) (we assume that EAB is equipped with the group structure
that descends from C). In this way, the points ♦ and ¨ correspond to the points
1 + ΛAB , respectively 2 + ΛAB .
Remark 4.3. The points ♦ and ¨ are 3-torsion points of the elliptic curve (XA,@)
and their sum equals @.

With these considerations in mind, we can prove the �rst part of Theorem 1.
Proposition 4.4. The origami curve CS of the origami S is equal to the projection
of the a�ne curve V ⊂ C2 to the moduli space M2, where

V : µ(λ + 1)− λ = 0, λ 6= 0,±1,− 1
2 ,−2.

Explicitly, every point on CS is birational as a�ne plane curve to
y2 = (x2 − 1)(x2 − λ2)(x2 − (

λ
λ+1

)2)

for some λ ∈ C \ {0,±1,− 1
2 ,−2}.

Proof. As seen above, every point on CS is represented by a translation surface
XA for some A ∈ SL2(R). By Proposition 4.1, we have CS ⊂ S, so it follows
from Proposition 2.4 that there is a covering map φ : XA → P1, rami�ed over
B = {1,−1, λ,−λ, µ,−µ} for some parameters (λ, µ) ∈ P such that XA is birational
to the a�ne plane curve Cλ,µ. By Remark 2.7, we can assume that (λ, µ) ∈ P are
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chosen such that τ ∈ Aut(XA) corresponds to the morphism (u, v) 7→ (−u, v) of
Cλ,µ. By Corollary 2.9, (XA, @) is isomorphic to

y2 = (x− 1)(x− λ2)(x− µ2)

with origin at in�nity, and Corollary 2.8 implies that
{P1 = (0, iλµ), P2 = (0,−iλµ)} = {♦, ¨},

since they are the images of the �xed points of τ . We use the addition formula for
points on an elliptic curve to derive a relation between λ and µ (see [Sil92, III.2.3]).
(XA, @) has the data

a1 = 0 a3 = 0

a2 = −1− λ2 − µ2 a4 = λ2 + µ2 + λ2µ2

a6 = −λ2µ2

By Remark 4.3, we have that
[3]P1 = [3]P2 = ∞,

and
[2]P1 = P2.

So we compute the double of P1 with respect to the group structure on (XA, @) and
compare it with P2. Let P1 = (x1, y1) = (0, iλµ) and P2 = (x2, y2) = (0,−iλµ).
Let

α =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
=

λ2 + µ2 + λ2µ2

2iλµ

and
β =

−x3
1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3
=
−2λ2µ2

2iλµ
= iλµ.

Then by [Sil92, III.2.3], the x-coordinate of [2]P1 is given by
x([2]PB) = α2 + a1α− a2 − x1 − x1

=
(

λ2 + µ2 + λ2µ2

2iλµ

)2

+ 1 + λ2 + µ2

=
λ4 + µ4 + λ4µ4 + 2λ2µ2 + 2λ4µ2 + 2λ2µ4

−4λ2µ2
+ 1 + λ2 + µ2

=
1

−4λ2µ2

(
λ4 + µ4 + λ4µ4 + 2λ2µ2 + 2λ4µ2 + 2λ2µ4 −

− 4λ2µ2 − 4λ4µ2 − 4λ2µ4
)

=
1

−4λ2µ2

(
λ4 + µ4 + λ4µ4 − 2λ2µ2 − 2λ4µ2 − 2λ2µ4

)

=
1

−4λ2µ2

(
(−λ2 − µ2 + λ2µ2)2 − 4λ2µ2

)

=
(−λ2 − µ2 + λ2µ2

2iλµ

)2

+ 1

Since x([2]P1) = x2 = 0, it follows that

0 =
(−λ2 − µ2 + λ2µ2

2iλµ

)2

+ 1,

and therefore
−λ2 − µ2 + λ2µ2

2iλµ
= ±i,
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or equivalently
−λ2 − µ2 + λ2µ2 = ∓2λµ.

We distinguish two cases:

Case 1: −λ2 − µ2 + λ2µ2 = −2λµ
Then one has

−λ2 − µ2 + 2λµ = −(λ− µ)2 = −λ2µ2,

hence
λ− µ± λµ = 0.

Case 2: −λ2 − µ2 + λ2µ2 = +2λµ
Then one has

−λ2 − µ2 − 2λµ = −(λ + µ)2 = −λ2µ2,

which implies
λ + µ± λµ = 0.

Since y([2]P1) evaluates to
y([2]P1) = −(α + a1)x([2]P1)− β − a3

= −β

= −iλµ = y2,

the equation [2]P1 = P2 is ful�lled, if (λ, µ) lies on one of the four a�ne curves
Vε1,ε2 : ε2µ(ε1λ + 1)− ε1λ = 0.(4.1)

with {ε1, ε2} ∈ {±1}2. One easily checks that P1 + P2 = ∞ in each of these
cases. It remains to explain, why these four cases reduce to a single one. Recall
from Proposition 2.5 that the group Γ acts on the parameter space P and that the
projection P → M2 factors through P/Γ. We show that the curves Vε1,ε2 are all in
the same Γ-orbit, whence they are mapped to one curve in M2:

d · Vε1,ε2 = V−ε1,ε2 , e · Vε1,ε2 = V−ε1,−ε2 , ed · Vε1,ε2 = Vε1,−ε2 .(4.2)
Let V := V1,1. We set

F : C \ {0,±1,− 1
2 ,−2} → P, λ 7→

(
λ,

λ

λ + 1

)
.

This yields a well-de�ned injective morphism with image V . Therefore, every Rie-
mann surface on the origami curve CS is birational to a curve Cλ,µ with (λ, µ) ∈ V .
Thus, CS ⊂ pr(V ), where pr : P → M2 is the projection from Proposition 2.5. Since
the maps F and pr are continuous for the Zariski-topology, since CS is closed in M2

and since C \ {0,±1,− 1
2 ,−2} is irreducible, we conclude that CS = pr(V ). ¤

4.3. Nonsingularity of CS. As the origami curve CS is the image of a complex
geodesic in the Teichmüller space, it can have at most transverse self-intersections
as singularities (see e.g. [Loc05, Proposition 2.10]). We show in the following
that such self-intersections cannot occur, since there is a nonsingular curve that is
mapped injectively onto CS .

Let V = V1,1 ⊂ P be the a�ne curve de�ned in Equation (4.1). Then pr(V ) = CS

by Proposition 4.4. Observe that the curve V is irreducible and regular. The
subgroup G := StabΓ(V ) acts on V , and the quotient V/G is again a nonsingular
curve. Thus, the nonsingularity of CS follows from the next proposition.
Proposition 4.5. The nonsingular curve V/StabΓ(V ) is mapped injectively onto
CS ⊂ M2.

Note that V (and consequently V/G) is a�ne of genus 0. Thus Proposition 4.5
implies the following corollary.
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Corollary 4.6. The Teichmüller curve CS is a regular, a�ne curve of genus 0.

To prove Proposition 4.5, we need to understand how Γ acts on the curve V .
This is essentially done in Lemma 4.7, which we are going to state now. First, have
a look at the Γ-orbit of the irreducible component V = V1,1. The action of the
subgroup 〈d, e〉 has already been described in (4.2). The points on b · Vε1,ε2 satisfy
the equation

ε2λ(ε1µ + 1)− ε1µ = 0,

which is equivalent to

−ε1µ(−ε2λ + 1)− (−ε2λ) = 0,

so b · Vε1,ε2 = V−ε2,−ε1 . For the element c ∈ Γ, we �nd that c · Vε1,ε2 is given by

ε2λ
−1µ(ε1λ

−1 + 1)− ε1λ
−1 = 0.

We multiply this equation by λ2 and get

ε1ε2µ(ε1λ + 1)− ε1λ = 0.

Thus,
c · Vε1,ε2 = Vε1,ε1ε2 .

Finally, applying a ∈ Γ to Vε1,ε2 yields

ε2µ
−1(ε1λ

−1 + 1)− ε1λ
−1 = 0.

By multiplying this equation with ε1λε2µ, we can rewrite it as

1 + ε1λ− ε2µ = 0.(4.3)

Let the curves Wε1,ε2 be de�ned by these equations, i. e. Wε1,ε2 = a · Vε1,ε2 . Since
a is a central element of Γ, the subgroup 〈b, c, d, e〉 of Γ acts on the W 's as it acts
on the V 's.

Lemma 4.7. a) The Γ-orbit of V = V1,1 consists of the set of 8 irreducible com-
ponents

M =
{
Vε1,ε2 | (ε1, ε2) ∈ {±1}2} ∪ {

Wε1,ε2 | (ε1, ε2) ∈ {±1}2} ,

and Γ acts on M as follows:

a · Vε1,ε2 = Wε1,ε2 b · Vε1,ε2 = V−ε2,−ε1 c · Vε1,ε2 = Vε1,ε1ε2

d · Vε1,ε2 = V−ε1,ε2 e · Vε1,ε2 = V−ε1,−ε2

a ·Wε1,ε2 = Vε1,ε2 b ·Wε1,ε2 = W−ε2,−ε1 c ·Wε1,ε2 = Wε1,ε1ε2

d ·Wε1,ε2 = W−ε1,ε2 e ·Wε1,ε2 = W−ε1,−ε2 .

b) The stabilizer of V in Γ is the subgroup

G = 〈c, dbd〉 ∼= S3,

and the G-orbit of a point (λ, µ) ∈ V is

(λ, µ), c · (λ, µ) = (λ−1, λ−1µ),

cdbd · (λ, µ) = (−µ−1, λµ−1), dbd · (λ, µ) = (−µ,−λ),

(cdbd)2 · (λ, µ) = (−λ−1µ,−λ−1), cdbdc · (λ, µ) = (−λµ−1, µ−1)

c) Vε1,ε2 ∩ Vε3,ε4 = ∅ for (ε1, ε2) 6= (ε3, ε4), and |Vε1,ε2 ∩ Wε3,ε4 | = 2 for any
(ε1, ε2), (ε3, ε4) ∈ {±1}2.
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d) The points on V with nontrivial stabilizer in Γ form two G-orbits:
{

q1 = (e2iπ/3, eiπ/3), q2 = (e−2iπ/3, e−iπ/3)
}

is a G-orbit with StabG(qi) = 〈cdbd〉 (i = 1, 2). The corresponding Γ-orbit has
8 elements and StabΓ(qi) = 〈ca, cdbd〉 ∼= S3. The G-orbit

G ·
(
−1+

√
5

2 , 3−√5
2

)
=

{
r1 =

(
−1+

√
5

2 , 3−√5
2

)
, r2 =

(
−1−√5

2 , 3+
√

5
2

)
,

r3 =
(

1+
√

5
2 , −1+

√
5

2

)
, r4 =

(
1−√5

2 , −1−√5
2

)

r5 =
(
−3+

√
5

2 , 1−√5
2

)
, r6 =

(
−3−√5

2 , 1+
√

5
2

)}

corresponds to a Γ-orbit with 24 elements and StabΓ(ri) ∼= Z/2Z (i = 1, . . . , 6).
Proof. a) and b). Note that the curves Vε1,ε2 and Wε1,ε2 are all irreducible and
distinct, so M is an 8-element set, and we have seen above that Γ acts transitively
on M . Since Γ has order 48, it follows that G has order 6. We have c · V1,1 = V1,1

and
dbd · V1,1 = db · V−1,1 = d · V−1,1 = V1,1,

so 〈c, dbd〉 ⊂ StabΓ(V ). Moreover, the map
cdbd : (λ, µ) 7→ (−µ−1, µ−1λ)

has order 3 and (cdbd)2c = c(cdbd). Altogether, this shows that
〈c, dbd〉 = StabΓ(V ) ∼= S3.

c) and d). If p is a point on V with nontrivial stabilizer in Γ, then there exists
γ ∈ Γ \ {id} with p = γp ∈ V ∩ γ · V . So either StabG(p) is nontrivial or p is in
V ∩ V ′ with V ′ ∈ M \ {V }. First we look for �xed points of elements of G. A
computation shows that only the elements of order 3 of G have �xed points, namely
q1 and q2 are both �xed by cdbd: if (λ, µ) = (−µ−1, λµ−1), then µ = λµ−1 = −µ−2,
so µ3 = −1, and (λ, µ) ∈ {q1, q2}.

Next, we determine the intersections between elements of M . Let (ε1, ε2),
(ε3, ε4) ∈ {±1}2. First, we show that Vε1,ε2 ∩ Vε3,ε4 = ∅, if (ε1, ε2) 6= (ε3, ε4).
Note that this also implies Wε1,ε2 ∩Wε3,ε4 = ∅. If (λ, µ) ∈ Vε1,ε2 ∩ Vε3,ε4 , then by
(4.1), we have

µ =
ε1ε2λ

ε1λ + 1
=

ε3ε4λ

ε3λ + 1
.

It follows that
(ε1ε2ε3 − ε1ε3ε4)λ + ε1ε2 − ε3ε4 = 0,

since λ 6= 0. If ε2 = ε4, then the coe�cient of λ is 0 and ε1ε2 = ε3ε4, thus ε1 = ε3,
which contradicts our assumption. Otherwise, ε4 = −ε2, and we have

2ε1ε2ε3λ = −ε1ε2 − ε2ε3.

So λ ∈ {0, 1,−1}, and thus (λ, µ) 6∈ P .
Next, let (λ, µ) ∈ Vε1,ε2 ∩Wε3,ε4 . Then we have µ = ε4 + ε3ε4λ by (4.3), and

together with Equation (4.1), this yields
0 = ε2(ε4 + ε3ε4λ)(ε1λ + 1)− ε1λ

= ε1ε2ε3ε4λ
2 + (ε1ε2ε4 + ε2ε3ε4 − ε1)λ + ε2ε4

This equation has the solutions

λ1,2 =
ε1 − ε1ε2ε4 − ε2ε3ε4

2ε1ε2ε3ε4
±

√
3− 2(ε1ε3 + ε2ε4 + ε1ε2ε3ε4)

2ε1ε2ε3ε4
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Now, we can determine the intersection of V1,1 with one of the other curves. One
has

V1,1 ∩W1,1 = V1,1 ∩ a · V1,1 =
{
q1 = (e2iπ/3, eiπ/3), q2 = (e−2iπ/3, e−iπ/3)

}

V1,1 ∩W−1,1 = V1,1 ∩ da · V1,1 =
{
r1 =

(
−1+

√
5

2 , 3−√5
2

)
, r2 =

(
−1−√5

2 , 3+
√

5
2

)}

V1,1 ∩W−1,−1 = V1,1 ∩ ea · V1,1 =
{
r3 =

(
1+
√

5
2 , −1+

√
5

2

)
, r4 =

(
1−√5

2 , −1−√5
2

)}

V1,1 ∩W1,−1 = V1,1 ∩ eda · V1,1 =
{
r5 =

(
−3+

√
5

2 , 1−√5
2

)
, r6 =

(
−3−√5

2 , 1+
√

5
2

)}
.

The maps a and c both exchange q1 and q2, so ca ∈ StabΓ(qi), i = 1, 2. Therefore,
StabΓ(qi) ⊃ 〈ca, cdbd〉. Since Γ · qi contains the 8-element set

G · q1 ∪ dG · q1 ∪ eG · q1 ∪ edG · q1,

StabΓ(qi) is a group of order at most 6. But then StabΓ(qi) = 〈ca, cdbd〉 and it is
again isomorphic to S3 (observe that (cdbd)2ca = ca(cdbd) and (ca)2 = (cdbd)3 =
id).

The set {r1, . . . , r6} is a G-orbit, for one has cdbd · r1 = r6 and (cdbd)2 · r1 = r4

and moreover dbd · r1 = r5, dbd · r6 = r2 and dbd · r4 = r3. Furthermore, the sets
G · r1, dG · r1, eG · r1, edG · r1

are all mutually disjoint 6-element sets, so there are at least 24 elements in Γ · r1.
Thus it su�ces to show that StabΓ(r1) 6= 1. But da ·r1 = r2 and G acts transitively
on {r1, . . . , r6}, so we �nd g ∈ G with g · r2 = r1 and gda �xes r1. ¤
Proof of Proposition 4.5. Note that the restriction of the canonical projection κ :
P → P/Γ, p 7→ Γ · p to V factors through V/G. Moreover, pr = pr ◦ κ (see
Proposition 2.5). We proceed in two steps.

First, we show that V/G → κ(V ) ⊂ P/Γ, G · x 7→ Γ · x is injective. Let x, y ∈ V
with Γ · x = Γ · y. Then x ∈ V ∩ γ · V for some γ ∈ Γ. The proof of Lemma 4.7
shows that x ∈ G · q1 or x ∈ G · r1 and the same holds for y. But Γ · q1 6= Γ · r1,
thus G · x = G · y.

Next, we consider the restriction of pr : P/Γ → M2 to κ(V ). By Proposition 2.6,
we know that pr|κ(V ) is injective outside {Γ·q1, Γ·r1}, since Γ·q1∪Γ·r1 are precisely
the points on V with nontrivial stabilizer in Γ. Again by Proposition 2.6, we also
know that pr(q1) = Q′ and pr(r1) 6= Q′, so altogether, pr|κ(V ) is injective. ¤
4.4. Veech group and cusps. In this section, we discuss the Veech group Γ(S)
of the origami curve CS , and use this description to determine its number of cusps,
i. e. points on the boundary of the moduli space. Recall that Proposition 1.2 states
that CS is birational to H/Γ̂(S). But since CS is regular, they are even isomorphic.

We will be working with H/Γ(S), which is anti-holomorphic to H/Γ̂(S). Recall
that Remark 1.5 implies that the group Γ(S) is a subgroup of �nite index of SL2(Z).
With the help of the algorithm in [Sch04], we can determine generators and coset
representatives for Γ(S). Let s =

(
0 −1
1 0

)
and t = ( 1 1

0 1 ) be the standard generators
of SL2(Z). Then Γ(S) is generated by

s2, tst−2, sts−1, t3, and t2st−1.

Coset representatives for SL2(Z)/Γ(S) are given by
I, s, t, and t2.

Let F denote the hyperbolic pseudo-triangle with vertices − 1
2 + i

√
3

2 , 1
2 + i

√
3

2 and
i∞, which is a fundamental domain for SL2(Z). Then a fundamental domain for
the action of Γ(S) on H is given by

FS = F ∪ t(F) ∪ s(F) ∪ t2(F).
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A picture of FS is given in Figure 7. Here, edges that are labeled with the same

I

T

T
2

S
a

b c

a

b c

1 1

2

1

3

4

Figure 7. A fundamental domain for Γ(S)

letter are identi�ed by the action of Γ(S). Moreover, FS is triangulated by 4
triangles with 6 edges and 4 vertices. Using Euler's formula we can thus reprove
that CS is of genus 0. Furthermore, H/Γ(S) has two cusps, namely the vertices 3
and 4. Therefore, CS also has at most two cusps, and we shall show that it has
precisely two.

Recall that Mg is compacti�ed by adding all stable Riemann surfaces of genus g.
These are obtained by contracting a system of simple closed paths to points. In the
case of origamis, it su�ces to contract the system of core curves of certain cylinder
decompositions of the surface in order to obtain all points on the boundary of the
origami curve; see e. g. [HS06] for more details.

The orbits of the two cusps of H/Γ(S) are represented by 0 and∞ ∈ FS . To see
whether they are distinct in M2, we travel along a path to the cusp and see what
happens to the Riemann surfaces that correspond to points on that path.

The horizontal, respectively vertical saddle connections induce a decomposition
of the origami into two cylinders (Ch

i )i=1,2, respectively three cylinders (Cv
j )j=1,2,3.

Let ch
i , respectively cv

j be the core curve of the cylinder Ch
i , respectively Cv

j .

...............................

...............................

¥

¥

¥

¥

¥

...

...

...

..

...

...

...

...

...

...

...

...

...

...

..

¥

¥

¥

¥

¥

Figure 8. Horizontal and vertical cylinder decomposition of S

Traveling along the path
(

et 0
0 e−t

)
· i ∈ FS (t ∈ [0,∞)) towards∞ corresponds to

pinching the core curves (ch
i ) of the horizontal cylinders. In the limit, we obtain a

stable curve Xh with one irreducible component of genus 0 and two nodes. Likewise,
traveling along the path

(
e−t 0
0 et

)
· i ∈ FS (t ∈ [0,∞)) towards 0 corresponds to

pinching the core curves (cv
j ) of the vertical cylinders. In the limit, we obtain a

stable curve Xv, which is di�erent from the �rst, since it consists of two irreducible
components of genus 0, which intersect in 3 nodes. The dual graphs to the stable
curves Xh and Xv are depicted in Figure 9.
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Figure 9. Dual graphs of the stable curves Xh and Xv

We sum up these observations in the following proposition.
Proposition 4.8. The closure of the origami curve CS in M2 is isomorphic to the
projective line. It intersects the boundary ∂M2 in two distinct points.
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