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Abstract. For a pair (π, σ) of cuspidal automorphic representations of GLn and GLn−1, both of
non-vanishing cohomology with possibly non-trivial coefficients, we show algebraicity properties
of critical values of the associated Rankin-Selberg L-function twisted by finite order characters.
A certain non-vanishing assumption about an associated archimedean Rankin-Selberg pairing
on the cohomology is established for n = 3.

0 Introduction

In this article we intend to generalise and continue previous investigations of special values of L-
functions of Rankin-Selberg type attached to pairs of cuspidal automorphic representations of GLn

and GLn−1. These L-functions, introduced by Jacquet, Piatetski-Shapiro, and Shalika in [JPS4],
are entire functions in the complex variable s and satisfy a functional equation, when s goes to
1− s. Under the assumption, that the representations occur in cohomology, we show algebraicity
properties of special values similar to those predicted by Deligne for motivic L-functions (cf. [Del]).
For cohomology with constant coefficients this has been done earlier: for n = 2 by Mazur and
Swinnerton-Dyer in [MS], for n = 3 by one of the authors in [Schm1], and for arbitrary n by
Kazhdan, Mazur, and one of the authors in [KMS]. In this paper we generalise this approach to
cohomology with not necessarily constant coefficients. The case n = 2 had already been settled in
the context of modular forms by Manin (cf. [Man]).

To be more precise, let (π, σ) be a pair of cuspidal automorphic representations of GLn(A) resp.
GLn−1(A) over the adèle ring A of the field Q of rational numbers. We assume π to have non-
vanishing cohomology with coefficients in a finite-dimensional, rational representation Mµ of GLn

of highest weight µ, so that for the infinity component π∞ of π the representation π∞ ⊗Mµ has
non-trivial Lie algebra cohomology. We make the analogous assumption for σ with a suitable
representation Mν of GLn−1. To each weight there is attached an integer w = wt(µ) resp. w′ =
wt(ν) relating weights with their duals, and it turns out that the half integer κ = 1

2 (w + w′ + 1) is
critical for the Rankin-Selberg L-function L(π, σ; s) if and only if w and w′ have the same parity.

Like in [KMS] for a fixed pair (π, σ) we are interested in the package of critical values L(π⊗χ, σ;κ),
where chi runs through all finite Dirichlet characters. We want to show, that the function χ 7→
L(π ⊗ χ, σ;κ), after division by an appropriate period depending only on the sign of χ, takes
algebraic numbers as values. Furthermore we want to understand in general certain arithmetic
properties of these values, in particular how they behave p-adically, when χ varies over finite
Dirichlet characters of p-power conductor for a fixed prime number p. Once the algebraicity of
the special values is settled, the techniques developped in [Schm2] immediately supply associated
p-adic measures and p-adic L-functions interpolating p-adically those special values. So in this
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2 Cohomological Representations and Twisted Rankin-Selberg Convolutions

article we concentrate on the algebraicity properties for characters of p-power conductor,1 thus
remaining as close as possible to the situation in [KMS].

The proof of algebraicity properties of special values relies on the choice of a linear form λ on the
tensor product of the coefficient systems Mµ and Mν . We have to analyse a certain product

Λ(s) = Pλ,∞(s) · L(π ⊗ χ, σ; s)

with an entire function Pλ,∞(s) determined by λ and the zeta integrals on the Whittaker models
of π∞ and σ∞. Our first main result, Theorem A, expresses the special value Λ(κ) in terms
of algebraic numbers resulting from pairings of cohomology groups via λ. As in [KMS] we are
faced with the question, if Pλ,∞(κ) is zero. This is obviously vital for the desired conclusion to
algebraicity statements for special values of the L-function itself.

Our second main result, Theorem B, deals with this problem in the case n = 3. We show for
arbitrary coefficient systems Mµ and Mν that there is a linear form λ with appropriate rationality
properties, such that Pλ,∞(κ) does not vanish indeed. The idea of the proof is to carefully keep track
of the pairing of the cohomology of π∞⊗Mµ with the cohomology σ∞⊗Mν , whose image consists
of Pλ,∞(κ) · C and which is induced by the Rankin-Selberg pairing of the respective Whittaker
spaces of π∞ and σ∞. The important key result here is, that this pairing of the Whittaker spaces
remains non-trivial when restricted to minimal K-types as long as these K-types “fit together”.

1 Representations with non–vanishing cohomology

1.1. The coefficient systems. Let n ∈ N be a natural number. Throughout this paper we
write Zn for the centre of GLn and set Kn,∞ = SOn(R)Z+

n (R), where by Z+
n (R) we mean the set

of elements of Zn(R) with positive determinant. We will always use small letters to identify the
respective Lie algebras gln, sln, son, zn, kn,∞, etc. of GLn(R), SLn(R), SOn(R), Zn(R), Kn,∞,
etc.

As we will prove in Section 1.2 being cohomological is a local property at infinity:

Lemma 1.1. An irreducible cuspidal automorphic representation π occurs in cohomology in the
sense of [KMS] if and only if

H•(gln,Kn,∞;π∞) 6= 0.

We will use a more general notion (cf. [Har], p. 60ff). In order to do this we need to introduce
some new vocabulary. So let Bn = TnUn denote the group of upper triangular matrices in GLn.
Here, Tn resp. Un is the standard maximal torus in GLn resp. the unipotent radical of Bn. Let
X(Tn) be the set of algebraic characters ν : Tn → Gm of Tn. Then X+(Tn) denotes the set of
dominant weights in X(Tn). We identify Zn with X(Tn) by sending µ = (µi) to t 7→

∏
i t

µi

i . For a
weight µ ∈ X+(Tn) we denote by (%µ,Mµ) the irreducible algebraic representation of GLn(Q) of
highest weight µ. Note, that such a representation always exists, and is unique up to equivalence.
Since by [Clo], p. 122, the representation %µ : GLn(Q) → GL(Mµ) is defined over Q, we may
assume that Mµ is a Q-vector space. For any extension E/Q we set Mµ,E := Mµ ⊗ E.

Definition 1.2. Let Coh(GLn, µ) denote the set of all irreducible cuspidal automorphic represen-
tations π of GLn(A) satisfying

(1.1) H•(gln,Kn,∞;π∞ ⊗Mµ,C) 6= 0

for the relative Lie algebra cohomology, where π∞ is the infinity component of π.

1not a serious restriction



1 Representations with non–vanishing cohomology 3

Lemma 1.1 now says: Coh(GLn, 0) is the set of all representations that occur in cohomology in the
sense of [KMS]. In that case, µ = 0 is the dominant weight and %µ is the trivial representation.

Note, that not every dominant weight occurs as maximal weight in the coefficient system of a
cohomological representation. More precisely, by Section 3.1.1 of [Mah] we have µ ∈ X+

0 (Tn), the
set of all dominant weights in X(Tn) satisfying

(1.2) µ+ wGLn
µ = (wt(µ), . . . ,wt(µ))

for some wt(µ) ∈ Z, where wGLn is the longest element of the Weyl group WGLn = WGLn(Tn)
of GLn. If we denote by µ̌ ∈ X+(Tn) the dual weight of µ, i. e. the highest weight of the
contragredient representation (%̌µ, M̌µ), we have µ̌ = −wGLnµ. Hence (1.2) amounts to saying
that µ is self-contragredient up to twist.

1.2. A closer look at relative Lie algebra cohomology. For later use we are interested
in a submodule of H•(gln,Kn,∞;π∞⊗Mµ,C) that is one-dimensional as a C-vector space and easy
to describe. We know that for the lower cohomological bound

bn =
1
4
(n2 − n+ 2bn

2
c)

the cohomology space Hbn(gln,Kn,∞;π∞ ⊗Mµ,C) is one or two dimensional, so that we expect
to find a suitable submodule there. We provide a formula for those cohomology modules by the
following

Proposition 1.3. For π ∈ Coh(GLn, µ) we have

H•(gln,Kn,∞;π∞ ⊗Mµ,C) =

( •∧
(sln/son)∗ ⊗ π∞ ⊗Mµ,C

)SOn(R)

.

Proof. Since Kn,∞ is connected, by section I.5 of [BW]2 we may write

H•(gln,Kn,∞;π∞ ⊗Mµ,C) = H•(gln, kn,∞;π∞ ⊗Mµ,C).

Consider the complex

C•(gln, kn,∞;π∞ ⊗Mµ,C)
[BW], I.1.2

= Homkn,∞(
•∧

gln/kn,∞, π∞ ⊗Mµ,C).

By Theorem I.5.3 of [loc. cit.], and since π ∈ Coh(GLn, µ), the central character of π∞ equals the
one of %̌µ, implying that π∞ ⊗Mµ,C has trivial central character. Recall that π∞ and Mµ both
are irreducible representations of GLn(R). By the triviality of the central character of π∞ ⊗Mµ,C

the latter uniquely corresponds to the tensor product of the irreducible representations of SL±n (R)
given by restriction. We will identify the respective modules and denote them the same.

Because of kn,∞ = son ⊕ zn the vector spaces gln/kn,∞ and sln/son are the same, so that we have

C•(gln, kn,∞;π∞ ⊗Mµ,C) = Homson
(
•∧

sln/son, π∞ ⊗Mµ,C)

= C•(sln, son;π∞ ⊗Mµ,C),

whence
H•(gln,Kn,∞;π∞ ⊗Mµ,C) = H•(sln, son;π∞ ⊗Mµ,C).

2Note, that since the central action is by a scalar, the Kn,∞-invariant submodules of π∞ ⊗ Mµ,C are just the
same as the SOn-invariant ones. Therefore, we may apply the results of [BW] on Kn,∞, even if the latter is not

compact. In the results we cite, the maximality of the compact subgroup is never needed.
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Now, since SOn(R) is connected, all that is left to show is

(1.3) H•(sln, son;π∞ ⊗Mµ,C) = Homson(
•∧

sln/son, π∞ ⊗Mµ,C).

But this follows directly from Proposition II.3.1 of [BW], we just have to verify that we are allowed
to use it. In order to do that we choose SLn(R) as connected, reductive Lie group and SOn(R)
as its maximal compact subgroup. We have to guarantee that dπ∞(C) and d%µ,C(C) are scalar
operators, where C is the Casimir element of the envelopping algebra U(sln), and dπ∞ and d%µ,C are
the respective induced mappings on U(sln). By Schur’s Lemma (cf. [Kna2], Proposition 5.1), and
since C is in the centre of U(sln), it would suffice to show that π∞ and Mµ,C are irreducible SLn(R)-
modules. Obviously, this does not hold in general, but since all representations are irreducible as
SL±n (R)-modules, we may use

Lemma 1.4. Let % : SL±n (R) → GL(V ) be an irreducible SL±n (R)-module and d% the induced
mapping on U(sln). Then there is a scalar r such that d%(C) = r · id.

By applying the lemma on π∞ and on Mµ,C we may use Proposition II.3.1 of [BW] now. Since
π ∈ Coh(GLn, µ), we get dπ∞(C) = d%µ,C(C), and therefore (1.3). This concludes the proof of
Proposition 1.3. �

Proof of Lemma 1.4. If V is still irreducible as SLn(R)-module, there is nothing to show. So assume
that V decomposes into a direct sum of (irreducible) SLn(R)-modules (%1, V1) and (%2, V2). Note,
that since the index is 2 this is the only other case. If V1 and V2 are isomorphic, still there is nothing
to show. So assume that V1 and V2 are not isomorphic as SLn(R)-modules. Choose g ∈ SL±n (R)
and v1 ∈ V1 with gv1 6∈ V1. Then gV1 is not contained in V1. Since for h ∈ SLn(R) and v1 ∈ V1 we
have

(1.4) h(gv1) = (gg−1)h(gv1) = g(g−1hg)v1 ∈ gV1,

gV1 is a SLn(R)-module. Note, that SLn(R) is normal because of its index 2 in SL±n (R).

Since V1 6∼= V2, the only SLn(R)-submodules of V are 0, V1, V2, and V , so that gV1 is isomorphic
to V2. Then (1.4) tells us how the module structures of V1 and V2 are related: Clearly it is enough
to proof g−1Cg = C to get d%1(C) = d%2(C).

We may write C =
∑

iXiX
∗
i , where the Xi resp. the X∗

i form a basis of sln, dual to each other
via the Killing form κ of sln. It holds

κ(g−1Xig, g
−1X∗

j g) = κ(Xi, X
∗
j ) ∀g ∈ SL±n (R),

so that the basis formed by the g−1Xig and the one formed by the g−1X∗
i g are also dual to each

other. The lemma follows because of g−1Cg =
∑

i g
−1Xigg

−1X∗
i g and the independence of the

Casimir element of its basis. �

Now let π(On)
∞ denote the space of On(R)-finite vectors in the representation space of π∞. Note,

that since Mµ,C is of finite dimension, we have M (On)
µ,C = Mµ,C. Let further HOn(R) = H+ and H−

denote the respective (±1)-eigenspaces with respect to the On(R)/SOn(R)-action of any SOn(R)-
invariant module H, and write ωπ∞ for the central character of π∞. We get the following corollary,
which will be useful in Section 3.6.

Corollary 1.5. (a) For even n the space Hbn(gln,Kn,∞;π∞⊗Mµ,C)ε is one-dimensional for
both ε ∈ {+,−}.

(b) For odd n the space Hbn(gln,Kn,∞;π∞ ⊗ Mµ,C)ε is one-dimensional, if ε =
sgn(ωπ(−1)(−1)wt(µ)/2), and zero otherwise.

(c) Hbn(gln,Kn,∞;π∞ ⊗Mµ,C)± =
(

bn∧
(sln/son)∗ ⊗ π(On)

∞ ⊗Mµ,C

)SOn(R)

±
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Proof. By Proposition 1.3 and [BW], I.5 we have

Hbn(gln,Kn,∞;π∞ ⊗Mµ,C)On(R) =

(
bn∧

(sln/son)∗ ⊗ π(On)
∞ ⊗Mµ,C

)On(R)

.

Assertion (c) follows, since Hbn(gln,Kn,∞;π∞ ⊗Mµ,C) is the direct sum of its (±1)-eigenspaces.
Assertions (a) and (b) result from Equation (3.2) in [Mah]. �

Proof of Lemma 1.1 Let π = πf ⊗ π∞ be an irreducible cuspidal automorphic representation of
GLn(A). In the special case µ = 0 we find

H•(gln,Kn,∞;π∞)On(R) = H•(sln, son;π∞)On(R) [BW], I.5
= H•(sln,On;π(On)

∞ ).

The proof follows, since π occurs in cohomology in the sense of [KMS] exactly if the right hand
side does not vanish (cf. p. 122 in [loc. cit.]), and π lies in Coh(GLn, 0) exactly if the left hand
side does not vanish by Corollary 1.5. �

1.3. The Langlands parameter. We denote by L+
0 (GLn) the set of all pairs (w, l), where

w ∈ Z and l = (l1, . . . , ln) ∈ Zn is a finite sequence satisfying l1 > · · · > lbn/2c > 0, li + ln+1−i = 0
for all i ∈ {0, . . . , n}, and the purity condition

(1.5) w + l ≡

{
1 mod (2), if n is even,
0 mod (2), if n is odd,

where we identify w with (w, . . . ,w). We note, that for n odd this immediately implies w ≡ l ≡
0 mod (2) since l(n+1)/2 = 0. If we let ΦGLn

= Φ(GLn, Tn) denote the set of roots of Tn in GLn and
Φ+

GLn
the subset of positive roots determined by the choice of Bn, we see, that the sets L+

0 (GLn)
and X+

0 (Tn) are in bijection:

L+
0 (GLn) ←→ X+

0 (Tn)(1.6)

(w, l) 7→ µ =
w + l

2
− %n.

Here,

%n =
1
2

∑
α∈Φ+

GLn

α = (
n− 1

2
,
n− 3

2
, . . . ,−n− 1

2
) ∈ X(GLn)⊗Z Q

is the half-sum of positive roots of GLn relative to Tn. Explicitly, we have

µ =


(

w+l1−(n−1)
2 , w+l2−(n−3)

2 , . . . , w−l1+(n−1)
2

)
, if n is even,(

w+l1−(n−1)
2 , w+l2−(n−3)

2 , . . . , w
2 , . . . ,

w−l1+(n−1)
2

)
, if n is odd.

In the inverse direction the parameter associated with a dominant, integral weight µ reads (w, l),
where w = µ1 + µn is the weight of µ and l = 2(µ+ %n)− w.

To any (w, l) ∈ L+
0 (GLn) we attach an induced representation of Langlands type: we write Dl for

the discrete series representation of GL2(R) of lowest weight l + 1; we then set

J(w, l) :=

{
IndGLn(R)

Q(R) (| · |w/2
R ⊗Dl1 , . . . , | · |

w/2
R ⊗Dln/2), if n is even,

IndGLn(R)
Q(R) (| · |w/2

R ⊗Dl1 , . . . , | · |
w/2
R ⊗Dl(n−1)/2 , | · |

w/2
R ), if n is odd.

Here, Q ≤ GLn is the parabolic subgroup of type (2, . . . , 2) resp. (2, . . . , 2, 1).

Let (w, l) ∈ L+
0 (GLn) correspond to µ ∈ X+

0 (Tn) as in (1.6). By (3.6) of [Mah] any π ∈
Coh(GLn, µ) has infinity component

(1.7) π∞ ∼= sgnk ⊗J(−w, l), k ∈ Z/2Z.
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For later use (cf. Section 2) we remark that to each such representation π∞ there is a corresponding
representation πW

∞ of the Weil group WR of R via Langlands correspondence. WR is the non-split
extension of C× by Gal(C/R) ∼= Z/2Z given by

WR = C× ∪ jC×,

where j2 = −1 and jzj−1 = z̄ for all z ∈ C×. Thus any representation of WR is determined
by how elements of the form z = reiθ and j act. There are exactly three types of irreducible
representations, which are given explicitly in Chapter 3 of [Kna1]:

� The one-dimensional representations (+, t) with t ∈ C, which act via ϕ are given by

ϕ(z) = |z|t and ϕ(j) = +1.

� The one-dimensional representations (−, t) with t ∈ C, which act via ϕ are given by

ϕ(z) = |z|t and ϕ(j) = −1.

� The two-dimensional representations (l, t), where l ≥ 1 is an integer and t ∈ C. In those we
may always choose a basis {u, u′} such that we have

ϕ(reiθ)u = r2teilθu, ϕ(reiθ)u′ = r2te−ilθu′, ϕ(j)u = u′, ϕ(j)u′ = (−1)lu,

where (l, t) acts via ϕ.

Using this notation we have

πW
∞ =

{
(l1, −w

2 )⊕ (l2, −w
2 )⊕ · · · ⊕ (ln/2,

−w
2 ), if n is even,

(l1, −w
2 )⊕ (l2, −w

2 )⊕ · · · ⊕ (l(n−1)/2,
−w
2 )⊕ (sgnk, −w

2 ), if n is odd.

We will need to determine the tensor product of two such Weil group representations. So let

σ∞ ∼= sgnk′ ⊗J(−w′, l′), k′ ∈ Z/2Z

be a representation of GLm(R), notation being clear from the context. Analogously, we get

σW
∞ =

{
(l′1,

−w′

2 )⊕ (l′2,
−w′

2 )⊕ · · · ⊕ (l′m/2,
−w′

2 )⊕ (sgnk′ , −w′

2 ), if m is odd,
(l′1,

−w′

2 )⊕ (l′2,
−w′

2 )⊕ · · · ⊕ (l′(m−1)/2,
−w′

2 ), if m is even.

We want to calculate the tensor product of πW
∞ and σW

∞ . Therefore we have to calculate the various
tensor products of the building blocks. We distinguish three cases:

� Let σ, σ′ be in {+,−}, and let t, t′ be in C. Obviously, we get

(σ, t)⊗ (σ′, t′) =

{
(+, t+ t′), if σ = σ′,

(−, t+ t′), if σ 6= σ′.

� Let l ≥ 1 be an integer, σ ∈ {+,−} and t, t′ in C. Let further {u, u′} be the special basis from
the definition of (l, t) and v an arbitrary element of (±, t′). Then it is an easy calculation to
show, that

(l, t)⊗ (σ, t′) = (l, t+ t′),

where an associated special basis is given by {u⊗v, u′⊗v}, if σ = +, and by {u⊗v,−u′⊗v},
if σ = −.

� Let l, l′ ≥ 1 be integers, and let t, t′ be complex numbers. Let further be {u, u′} and {v, v′}
the respective special bases of (l, t) and (l′, t′). A quick calculation shows that u ⊗ v and
u′ ⊗ v′ span a two-dimensional representation of the type (l + l′, t+ t′). Analogously,

(l − l′, t+ t′) with special basis {(−1)l′u⊗ v′, u′ ⊗ v} is well-defined for l > l′,
(l′ − l, t+ t′) with special basis {(−1)lu′ ⊗ v, u⊗ v′} is well-defined for l < l′.
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In the case l = l′ the representation (l, t)⊗ (l′, t′) is not irreducible any more, but splits into

(+, t+ t′) spanned by (−1)lu⊗ v′ + u′ ⊗ v,
(−, t+ t′) spanned by (−1)l−1u⊗ v′ + u′ ⊗ v.

We may subsume the results of this case by

(l, t)⊗ (l′, t′) =

{
(l + l′, t+ t′)⊕ (|l − l′|, t+ t′), if l 6= l′,

(l + l′, t+ t′)⊕ (+, t+ t′)⊕ (−, t+ t′), if l = l′.

We will only be interested in the case m = n− 1. There we get

Proposition 1.6. The tensor product πW
∞ ⊗ σW

∞ takes the value

n
2⊕

i=1

(li,−
w + w′

2
)⊕

n
2⊕

i=1

n
2−1⊕
j=1

[
(li + l′j ,−

w + w′

2
)⊕ (|li − l′j |,−

w + w′

2
)
]
, if n is even,

n−1
2⊕

j=1

(l′j ,−
w + w′

2
)⊕

n−1
2⊕

i=1

n−1
2⊕

j=1

[
(li + l′j ,−

w + w′

2
)⊕ (|li − l′j |,−

w + w′

2
)
]
, if n is odd,

where by (0,−w+w′

2 ) we denote (+,−w+w′

2 )⊕ (−,−w+w′

2 ).3

1.4. Cohomology of locally symmetric spaces. Finally we need some notation for the
cohomology of the orbifolds

Sn(K) := GLn(Q)\GLn(A)/KKn,∞,

where K is a compact open subgroup of GLn(Af ). We set

S̃n := lim←−
K

Sn(K),

where K runs through all compact open subgroups of GLn(Af ). For any finite-dimensional repre-
sentation (%µ,Mµ) we define the locally constant sheaf Mµ = Mµ,K on Sn(K) by setting Mµ,K(U)
for any open U ⊆ Sn(K) to be the set of locally constant functions f : pr−1(U)→Mµ satisfying

∀γ ∈ GLn(Q), z ∈ pr−1(U) : f(γz) = %µ(γ)(f(z)),

where pr : GLn(A)/KKn,∞ → Sn(K) is the natural projection. Analogously, we get a locally
constant sheaf on S̃n, noted Mµ as well. Similarly, for any field extension E/Q we denote by
Mµ,E = Mµ,E,K the corresponding sheaf on Sn(K). Analogously to the rational case, Mµ,E

denotes as well the respective sheaf on S̃n.

We then define the cohomology groups with coefficients in Mµ,C,K (cf. [Clo], p. 121):

H•
? (S̃n,Mµ,C) := lim−→

K

H•
? (Sn(K),Mµ,C,K), ? ∈ { blank, c, cusp }.

These groups are modules under the canonical action of GLn(Af )×GLn(R)/GL+
n (R).

3Note, that since the integer l belonging to the representation (l, t) is at least 1, there is no conflict of notation.
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2 The Rankin-Selberg convolution

We will now introduce the Rankin-Selberg L-series, whose critical values we want to study in
Section 3. Starting from the Global Birch Lemma of [KMS] we will give a first description of those
values in terms of integrals over certain Whittaker functions.

We fix a non-trivial character τ =
⊕

` τ` : Q\A→ C×, such that for all finite places ` the conductor
of τ` equals Z`. We also denote by

τ(n) :=
n−1∏
i=1

τ(ni,i+1)

the induced (generic) character of Un(A). For any automorphic representation π = πf ⊗ π∞ we
write W (π, τ) for the Whittaker model of π with respect to τ . This Whittaker space can be
described as the restricted tensor product of the local Whittaker spaces defined as in [JPS2] resp.
[JPS1] in the infinite resp. finite case, that is

W (π, τ) = W (π∞, τ∞)⊗
⊗
`-∞

′W (π`, τ`).

Here, an element of W (π, τ) is a tensor in
⊗

` W (π`, τ`), where all but finitely many factors are
given by the respective new vector v0

` (cf. [JPS3]). This is possible, since π` is unramified for all
but finitely many primes `.

Now we fix a prime p, and two cuspidal automorphic representations π = πf⊗π∞ resp. σ = σf⊗σ∞
of GLn(A) resp. GLn−1(A) both unramified at p. Following [JPS1] we now introduce the local
Rankin-Selberg convolution for π and σ at some fixed prime number ` 6= p: For each pair of
Whittaker functions

(v`, w`) ∈ W (π`, τ`)×W (σ`, τ̄`)

the associated zeta integral

ψ`(v`, w`; s) :=
∫

Un−1(Q`)\GLn−1(Q`)

v`

(
g

1

)
· w`(g) · |det(g)|s− 1

2 dg

converges for Re(s) large enough. These zeta integrals span a fractional ideal L of the ring C[`s, `−s].
In that way the local L-function L(π`, σ`; s) is defined uniquely by fixing a polynomial P (X) ∈
C[X], such that P (0) = 1 and P (`−s)−1 generates L, and by setting

P (`−s)−1 =: L(π`, σ`; s).

Obviously, we have a linear map on the tensor product W (π`, τ`)⊗W (σ`, τ̄`) given by

Ψ` :

{
W (π`, τ`)⊗W (σ`, τ̄`)→ C(`s),
v` ⊗ w` 7→ Ψ`(v` ⊗ w`; s) := ψ`(v`, w`; s).

Moreover, if π` and σ` are both unramified, by §3.2 in [KMS] the zeta integral for the associated
new vectors v0

` and w0
` represents the L-function

L(π`, σ`; s) = Ψ`(v0
` ⊗ w0

` ; s).

From now on we will write in short t0` := v0
` ⊗ w0

` . Let S denote the set of primes `, where π` or
σ` is ramified. For any ` ∈ S there is a tensor t0` ∈ W (π`, τ`)⊗W (σ`, τ̄`) such that we have

L(π`, σ`; s) = Ψ`(t0` ; s).

Note, that for general n such a vector does not need to be pure. In the case n = 3 however, there
is always a choice of a pure t0` (cf. [Rie]).
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We will now consider pairs (v, w) of global Whittaker functions on GLn(A) and GLn−1(A) given
as products of local Whittaker functions v :=

∏
` v` and w :=

∏
` w`, where we choose v` = v0

` and
w` = w0

` for ` not contained in S ∪ {p}. For ` = p we let vp and wp vary among all Whittaker
functions which are right invariant under the respective Iwahori subgroup In or In−1. Here, In
consists of those matrices in GLn(Zp) which are upper triangular modulo p. For ` ∈ S we will
choose a tensor as described above.

For any choice of v∞ ∈ W0(π∞, τ∞) and w∞ ∈ W0(σ∞, τ̄∞), for arbitrary v`, w` for ` ∈ S, for
(v`, w`) = (v0

` , w
0
` ) for ` 6∈ S∪{p}, and for (vp, wp) like in the last paragraph we get global Whittaker

functions (v, w) with associated automorphic forms (φ, ϕ). Here, the 0 in the index means, that
we consider the space of On(R)-finite resp. On−1(R)-finite Whittaker functions (cf. [JPS2]). Like
above we set

W0(π, τ) = W0(π∞, τ∞)⊗
⊗
`-∞

′W (π`, τ`).

The product of all local zeta integrals then becomes a Rankin-Selberg convolution (cf. [JS])∏
`

ψ`(v`, w`; s) =
∫

GLn−1(Q)\GLn−1(A)

φ

(
g

1

)
· ϕ(g) · |det(g)|s− 1

2 dg

for Re(s)� 0, admitting an analytic continuation to an entire function in s (cf. [CP1], Prop. 6.1).
This function only depends on the pure tensor v⊗w and can be extended linearly to the algebraic
tensor product of Whittaker spaces W0(π, τ)⊗W0(σ, τ̄) by sending∏

`

v` ⊗
∏

`

w` 7→
∏

`

Ψ`(v` ⊗ w`; s).

In particular we find (up to the infinity factor) the global L-function

L(π, σ; s) :=
∏

`

L(π`, σ`; s)

in the image of this map. For each choice of the pair (v∞, w∞) there is an entire function P (s)
such that

P (s) · L(π∞, σ∞; s) = Ψ∞(v∞ ⊗ w∞; s),
and therefore

P (s) · L(π, σ; s) = Ψ∞(v∞ ⊗ w∞; s) ·
∏
`-∞

Ψ`(t0` ; s).

Recall from Section 1.3, that L(π∞, σ∞; s) is given by the Weil group representation.

Writing each t0` for ` ∈ S as a sum of pure tensors leads to a finite sum of (global) pure tensors in
W0(π, τ)⊗W0(σ, τ̄)

(2.1)
∑

j

vj ⊗ wj = (v∞ ⊗ w∞) ·
⊗
`-∞

t0` .

We fix this explicit decomposition and in what follows our formulas will depend on it. Separating
finite and infinite parts we will sometimes write vj = v∞ · vj,f and wj = w∞ ·wj,f . The associated
automorphic forms φj and ϕj yield the integral representation

P (s) · L(π, σ; s) =
∑

j

∫
φj

(
g

1

)
ϕj(g)|det(g)|s− 1

2 dg.

We will in particular consider modified (vj , wj)’s and (φj , ϕj)’s, where at ` = p the local compo-
nent (v0

p, w
0
p) is replaced by an arbitrary pair (vp, wp) of Whittaker functions invariant under the

respective Iwahori subgroup.
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We want to study the critical values of pairs (π, σ) of cohomological representations. Here, in
analogy of Deligne’s notion of critical values of motivic L-functions we say, that a half integer
s0 ∈ 1

2 + Z is critical for (π, σ) if neither L(πW
∞ ⊗ σW

∞ ; s) nor L((πW
∞ ⊗ σW

∞ )̌ ; 1 − s) has a pole in
s = s0. So let us study L(π∞, σ∞; s) = L(πW

∞ ⊗ σW
∞ ; s) with

π∞ ∼= sgnk ⊗J(−w, l), k ∈ Z/2Z,
σ∞ ∼= sgnk′ ⊗J(−w′, l′), k′ ∈ Z/2Z.

We can give concrete formulæ for L(πW
∞ ⊗ σW

∞ ; s) by (3.6) in [Kna1] and Proposition 1.6 by
n
2∏

i=1

[
2(2π)−(s− w+w′

2 +
li
2 ) · Γ

(
s− w+w′

2 + li
2

)]
·

n
2∏

i=1

n
2−1∏
j=1

l′
j
6=li

[
2(2π)−(s− w+w′

2 +
li+l′j

2 )

· Γ
(
s− w+w′

2 + li+l′j
2

)
· 2(2π)−(s− w+w′

2 +
|li−l′j |

2 ) · Γ
(
s− w+w′

2 + |li−l′j |
2

)]
·

n
2∏

i=1

n
2−1∏
j=1

l′
j
=li

[
2(2π)−(s− w+w′

2 +li)Γ
(
s− w+w′

2 + li

)
· π(s− w+w′

2 )/2 · Γ
(

s
2 −

w+w′

4

)
· π(s− w+w′

2 +1)/2 · Γ
(

s
2 −

w+w′

4 + 1
2

)]
,

if n is even, and
n−1

2∏
j=1

[
2(2π)−(s− w+w′

2 +
l′j
2 ) · Γ

(
s− w+w′

2 + l′j
2

)]
·

n−1
2∏

i=1

n−1
2∏

j=1
l′
j
6=li

[
2(2π)−(s− w+w′

2 +
li+l′j

2 )

· Γ
(
s− w+w′

2 + li+l′j
2

)
· 2(2π)−(s− w+w′

2 +
|li−l′j |

2 ) · Γ
(
s− w+w′

2 + |li−l′j |
2

)]
·

n−1
2∏

i=1

n−1
2∏

j=1
l′
j
=li

[
2(2π)−(s− w+w′

2 +li)Γ
(
s− w+w′

2 + li

)
· π(s− w+w′

2 )/2 · Γ
(

s
2 −

w+w′

4

)
· π(s− w+w′

2 +1)/2 · Γ
(

s
2 −

w+w′

4 + 1
2

)]
,

if n is odd. Now let s0 be in 1
2 + Z. We want to determine, if s0 is critical for (π, σ). Using (1.2)

we get: If for no pair (i, j) we have li = l′j , then neither L(πW
∞ ⊗ σW

∞ ; s) nor L((πW
∞ ⊗ σW

∞ )̌ ; 1− s)
has a pole at s = s0 exactly if the following inequalities in κ := 1

2 (w + w′ + 1) hold:

κ− 1+lm
2

κ− 1+l′m
2

}
< s0 <

{
κ+ 1+lm

2 if n is even,
κ+ 1+l′m

2 if n is odd,

κ−
1 + li + l′j

2
< s0 < κ+

1 + li + l′j
2

for all i, j,

κ−
1 + |li − l′j |

2
< s0 < κ+

1 + |li − l′j |
2

for all i, j fulfilling li 6= l′j .

If there is a pair (i, j) with li = l′j , then we get l′ ≡ l ≡ 0 mod (2), w + w′ ≡ 1 mod (2), and κ ∈ Z.
In this case neither L(πW

∞ ⊗ σW
∞ ; s) nor L((πW

∞ ⊗ σW
∞ )̌ ; 1 − s) has a pole at s = s0, if and only if

additionally to the inequalities above we have

s0 −
1
2
6≡ κ mod (2) or κ− 1

2
< s0 < κ+

1
2

and
s0 −

1
2
≡ κ mod (2) or κ− 3

2
< s0 < κ+

3
2
.

So if we have a pair (i, j) with li = l′j , there is no critical s0 with s0 − 1
2 ≡ κ mod (2). It follows

that only s0 = κ− 1
2 is critical for (π, σ) in this case. On the other hand, if there is no such pair
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(i, j), s0 is critical for (π, σ), exactly if

κ− 1 + cπ,σ

2
< s0 < κ+

1 + cπ,σ

2
,

where by cπ,σ we denote the minimum of all |li − l′j | 6= 0 and of lm resp. l′m if n is even resp. odd.
This set of critical elements is centered around κ. Since cπ,σ is at least 1, we get

Proposition 2.1.

κ is critical for (π, σ)⇐⇒ κ ∈ 1
2

+Z⇐⇒ w ≡ w′ mod (2).

This is why we will study L-values at κ in this paper. Note, that this is consistent with [KMS],
where we have w = w′ = 0 and thus κ = 1

2 .

We want to consider χ-twists of π for a finite idele class character χ =
∏

` χ` satisfying the
properties

(a) χ∞ = 1,
(b) χ, χ2, . . . , χn−1 have the same non-trivial conductor f = p-power.

The first assumption ensures that P (s) will not change when varying χ in π ⊗ χ; obviously, the
critical values do not change as well. The second assumption may possibly be omitted (cf. [Schm2],
[Utz]).

Let χ̃p denote the continuation of χp to Zp by χ̃p(px) = 0 for all x ∈ Zp, and let G(χp) denote
the Gauß sum of χp. Let further f be a non-trivial power of our fixed prime p and Cf the inverse
image of the idele class group

Q×\Q× ·

R>0 ×
∏

` 6=p,∞

Z×` × (1 + f2(n−1))Zp

 ⊂ Q×\A×

under the determinant map

det : GLn−1(Q)\GLn−1(A)→ Q×\A×.

With the same proof as for the corollary of the Global Birch Lemma in [KMS] we get

Lemma 2.2. For any choice of (v∞, w∞) and any (vp, wp) right-invariant under the respective
Iwahori subgroup the corresponding triples (P, φj , ϕj) for all j satisfy

vp(1) · wp(1) · P (κ) ·
n−1∏
i=1

G(χi
p)(1− p−1)
1− p−i

· L(π ⊗ χ, σ;κ)

=
p− 1
p

f2(n−1)
∑

u

n−1∏
i=1

χ̃p(ui
i)
∑

j

∫
Cf

φj(
(
g

1

)
ϕ−1uϕ)ϕj(g)|det(g)|κ− 1

2 dg,

where u = up (with u` = 1 for all ` 6= p) is taken from a representative system for Un(Zp) modulo
ϕUn(Zp)ϕ−1 with ϕ = diag(f−1, . . . , f−n), and the ui run over the off-diagonal entries of u.

3 The algebraicity of the special L-value

From now on, let π ∈ Coh(GLn, µ) and σ ∈ Coh(GLn−1, ν) be two cohomological representations,
where µ ∈ X+

0 (Tn) and ν ∈ X+
0 (Tn−1). We will show that L(π ⊗ χ, σ;κ) up to a constant

factor independent of χ is an algebraic number. The idea is to make use of the non-vanishing
of cohomology for π and σ. We thus will be able to construct a pairing on cohomology having
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certain integrals as values, that give a description of the L-values in question by Lemma 2.2. Since
both representations are already defined over the algebraic numbers, and since this pairing respects
algebraicity by construction, this will prove the assertion.

3.1. A map of differential forms. We will begin constructing a pairing on cohomology
using a natural pairing on differential forms. However, this cannot be done straight forward, since
belonging to π and σ we will get differentials on different symmetric spaces. So the first thing we
will have to do is to describe a method that translates one type of differentials into the other. In
this and the next two sections we will thus construct a chain map from the differential forms of
the first type into those of the second one generalising the construction in [KMS], 3.3.

By [JPS3], Théorème (5.1) for n ≥ 3 the global representations π and σ have finite parts πf and
σf with new vectors vf resp. wf right-invariant under some open compact subgroup K ⊆ GLn(Ẑ)
resp. K ′ ⊆ GLn−1(Ẑ), such that the respective image under the determinant map is the full unit
group Ẑ×, i. e.

det(K) = det(K ′) = Ẑ×.

We will assume n ≥ 3 from now on. Moreover, the canonical embedding

j : GLn−1 → GLn, g 7→
(
g

1

)
sendsK ′ intoK, since by Théorème (4.1) of [loc.cit.] wf is even right invariant under j(GLn−1(Ẑ)),
so we may choose K containing j(K ′). Note, that by [JPS1] we are free to choose all additive
characters τv needed in the definition of the respective Whittaker spaces W (π, τ) and W (σ, τ̄) to
have exponent 0, what allows us to use those results.

Separating finite and infinite parts of adelic elements we write g = (gf , g∞) for g ∈ GLn(A) =
GLn(Af )×GLn(R). We put

X 1
n := SLn(R)/SOn(R) = SL±n (R)/On(R),

Xn := GLn(R)/On(R) = GL+
n (R)/SOn(R) = R>0 ×X 1

n ,

Γ := {γ ∈ GL+
n (Q) | γf ∈ K} ⊆ SLn(Z).

Then by the surjectivity of the determinant map, by strong approximation, we have the bijections

(3.1) Γ\Xn
∼= GLn(Q)\GLn(A)/K ·On(R)

and

(3.2) Γ\X 1
n
∼= GLn(Q)\GLn(A)/K · SOn(R)Z+

n (R) 1.4= Sn(K).

The common dimension of Xn and Γ\Xn is dn := n2+n
2 . The same argument applies to GLn−1

with a discrete subgroup Γ′ ⊆ SLn−1(Z) attached to K ′. For any element h ∈ GLn(R) the
embedding j : GLn−1 → GLn induces an embedding of symmetric spaces

jh : Xn−1 →Xn, g ·On−1(R) 7→ h ·
(
g

1

)
·On(R).

We are in particular interested in those embeddings jh which define maps of arithmetic quotients.
For any h ∈ GLn(Q) let

Γ′h := {γ ∈ Γ′ | j(γ) ∈ h−1Γh}.
Then jh induces a proper mapping

j̄h : Γ′h\Xn−1 → Γ\Xn, Γ′hgOn−1(R) 7→ Γh
(
g

1

)
On(R).
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We want to compose the maps jh with the projections p2 into the second component of Xn =
R>0 ×X 1

n , induced by the map

p2 : GLn(R)→ SL±n (R), g 7→ g · |det(g)|−1/n.

Recall that the passage to quotients only effects the second component, i. e.

Γ\Xn = R>0 × Γ\X 1
n .

On arithmetic quotients we have the homotopy equivalence

p̄2 : Γ\Xn → Γ\X 1
n .

Of course the same arguments apply to n− 1 instead of n.

For each u ∈ Un(Q) the map

Ju := p̄2 ◦ j̄u :

{
Γ′u\Xn−1 → Γ\X 1

n

Γ′ugOn−1 7→ Γu
(
g

1

)
· |det(g)|−1/n On

is proper by [KMS], p. 102. We want to keep track of the effect of these maps Ju on certain
differential forms. We denote by lu left translation by u and we decompose the map

p2 ◦ ju : GLn−1(R)→ SL±n (R), g 7→ p2(u · j(g))

further into p2 ◦ ju = p2 ◦ lu ◦ j. Since det(u) = 1, the maps p2 and lu commute, hence we have

p2 ◦ ju = lu ◦ p2 ◦ j.

We observe that p2 ◦ j is an injective Lie group homomorphism and hence the induced map on
invariant 1-forms is surjective. Specifically, letting ∗ denote dual vector space, this induced mapping

δ(p2 ◦ j) : sl∗n → gl∗n−1

is given by the formula

(3.3) δ(p2 ◦ j)(ω)(X) := ω(d(p2 ◦ j)(X))

for X ∈ gln−1. Here d(p2 ◦ j) denotes the Lie algebra homomorphism gln−1 → sln induced by
p2 ◦ j. Since the pullback l∗u acts trivially on sl∗n we have

δ(p2 ◦ j) = δ(p2 ◦ ju) = (d(p2 ◦ ju))∗.

The map δ(p2 ◦ j) respects the Cartan decompositions

sln = son ⊕ ℘̃n and gln−1 = son−1 ⊕ ℘n−1 (= kn−1,∞ ⊕ ℘̃n−1) ,

where son denotes the set of skew symmetric n× n matrices and ℘n (resp. ℘̃n) stands for the set
of symmetric n× n matrices (resp. of trace equal to zero). In particular we have

δ(p2 ◦ j)(℘̃∗n) = ℘∗n−1.

We can now describe the map of differential forms

J∗u : Ω•(Γ\X 1
n ,Mµ,C)→ Ω•(Γ′u\Xn−1,Mµ,C)

in terms of the complex defining the Lie algebra cohomology. Note, that since Mµ,C can be viewed
as a GLn−1(R)-module via j, we can define a locally constant sheaf on S̃n−1 just like in Section
1.4. We identify this sheaf with the one defined on S̃n and denote it by Mµ,C also. Since Mµ,C can
be viewed as a finite dimensional complex linear representation of GLn(R) and therefore as one of
any discrete subgroup Γn of SL±n (R), we may use Corollary VII.2.7 and VII.2.4 (5) of [BW] to get

(3.4) Ω•(Γn\X 1
n ,Mµ,C) ∼=

( •∧
℘̃∗n ⊗ C∞(Γn\SL±n (R),Mµ,C)

)On(R)

.



14 Cohomological Representations and Twisted Rankin-Selberg Convolutions

Here, we view the sheaf Mµ,C over Sn(KΓn) as a sheaf over the arithmetic quotient Γn\X 1
n via

(3.2). Analogously we have

(3.5) Ω•(Γn−1\Xn−1,Mµ,C) ∼=

( •∧
℘∗n−1 ⊗ C∞(Γn−1\GLn−1(R),Mµ,C)

)On−1(R)

for an arbitrary discrete subgroup Γn−1 of GLn−1(R), if we write Mµ,C as well for the locally
constant sheaf of Mµ,C over

GLn−1(Q)\GLn−1(A)/KΓn−1 On−1(R)
(3.1)∼= Γn−1\Xn−1

that we get like in Section 1.4.

The dimension of ℘∗n−1 is dn−1 = n2−n
2 , and the one of ℘̃∗n is d̃n := dn − 1 = n2+n

2 − 1. We fix a
basis {ω1, . . . , ωd̃n

} of Maurer-Cartan forms in ℘̃∗n such that

ω′i := δ(p2 ◦ j)(ωi) for i = 1, . . . , dn−1

is a basis of ℘∗n−1 and ω′i = 0 for i > dn−1. Then the ω′i for 1 ≤ i ≤ dn−1 are Maurer-Cartan
forms as well. For any set I = {i1, . . . , ir} ⊆ {1, . . . , d̃n} of r different elements i1, . . . , ir we put
ωI := ωi1 ∧ . . . ∧ ωir resp. ω′I := ω′i1 ∧ . . . ∧ ω

′
ir

.

Lemma 3.1. Let r ∈ N. Given a differential form

η =
∑
|I|=r

ωIφI ∈ Ωr(Γ\X 1
n ,Mµ,C)

with φI ∈ C∞(Γ\SL±n (R),Mµ,C) we have

J∗u(η) =
∑
|I|=r

ω′I(φI ◦ p2 ◦ ju) ∈ Ωr(Γ′u\Xn−1,Mµ,C).

Since Ju is proper we also get a map on differential forms with compact support

J∗u : Ω•
c(Γ\X 1

n ,Mµ,C)→ Ω•
c(Γ

′
u\Xn−1,Mµ,C),

just by replacing C∞-functions by compactly supported C∞-functions in our description above.
We will later need a version of J∗u on differential forms with certain growth conditions (which we
get just the same).

3.2. Growth conditions. The next thing is to make precise those growth conditions. Let φ
be a function in C∞(SL±n (R),Mµ,C), and | · | : Mµ,C → R an arbitrary norm of Mµ,C as a C-vector
space. The function φ is of moderate growth or slowly increasing, if there is a constant C and a
positive integer m such that for all g ∈ SL±n (R) we have

|φ(g)| ≤ C · ||g||m,

where ||g|| := tr(tg ·g)1/2. The function φ is fast decreasing, if for each integer m there is a constant
C = Cm such that this inequality holds for all g. Those concepts are well-defined (i.e. independent
of the norm |·|) since all norms on Mµ,C are equivalent, Mµ,C being finite dimensional as a C-vector
space.

We will denote the compactly supported C∞-functions by C∞
c , the fast decreasing ones by C∞

fd ,
and the ones of moderate growth by C∞

mg. A differential form η =
∑

I ωIφI on Γ\X 1
n is of moderate

growth (resp. fast decreasing), if the φI have this property (cf. [Bor]). Following Borel we denote
by Ω•

mg(Γ\X 1
n ,Mµ,C) (resp. Ω•

fd(Γ\X 1
n ,Mµ,C)) the complex of forms η ∈ Ω•(Γ\X 1

n ,Mµ,C) which
together with their exterior de Rham differentials dη are of moderate growth (resp. fast decreasing).
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3.3. Integration along the fibre. In this section we want to find a map from the image of
J∗u to differentials on Γ′u\X 1

n−1 such that the composition of this map and J∗u is a chain map of the
de Rham complex. In order to do this we will integrate along the fibre: We consider the canonical
projection

π : Γ′u\Xn−1 = Γ′u\X 1
n−1 ×R>0 → Γ′u\X 1

n−1

onto the first component and consider the push-forward π∗ like in [BT], p. 37. We will show that
for n ≥ 3 the forms in

Ω•(Γ′u\Xn−1,Mµ,C) = Ω•(Γ′u\X 1
n−1 ×R>0,Mµ,C)

which are in the image J∗u(Ω•
fd(Γ\X 1

n ,Mµ,C)) can be integrated along the fibre, i. e.

Lemma 3.2. For n ≥ 3 the push-forward π∗ is a chain map lowering the degree of forms by one,
more precisely

π∗ : J∗u(Ω•
fd(Γ\X 1

n ,Mµ,C))→ Ω•−1
mg (Γ′u\X 1

n−1,Mµ,C).

Remark We need n ≥ 3 only for the identifications (3.1) and (3.2). The lemma is true for n = 2
as well, if we view Mµ,C as a sheaf over the respective arithmetic quotients.

Proof. Let η =
∑

|I|=• ωIφI be an arbitrary differential in Ω•
fd(Γ\X 1

n ,Mµ,C). Then we have
J∗u(η) =

∑
|I|=• ω

′
I · (φI ◦ p2 ◦ ju).

If n ≥ 2, then like in the proof of Lemma 3.4 of [KMS] for each N > 0 there is a constant C(N)

independent of g such that

(3.6)
∣∣∣∣φI

(
u

(
g

1

)
· |det(g)|− 1

n

)∣∣∣∣ ≤ C(N) ·min{|det(g)|−N , |det(g)|N}.

Let t denote the global parameter of the factor R>0 in Γ′u\Xn−1. Integration along the fiber means
that for each ω′I having the invariant differential dt

t =: ω′dn−1
as a wedge factor we must consider

the integrals
∞∫
0

φI

(
u

(
ht

1

)
t

1−n
n

)
dt

t
=: φ̌I,u(h)

for h ∈ SL±n−1(R). Those are absolutely convergent by (3.6). Moreover, the resulting functions
φ̌I,u are bounded, hence of moderate growth. For ωdn−1 6∈ I we set φ̌I,u ≡ 0. The same proof as
for compact supports shows that integration along the fibre is a chain map lowering the degree of
forms by 1, i. e.

π∗ : J∗u(Ω•
fd(Γ\X 1

n ,Mµ,C))→ Ω•−1
mg (Γ′u\X 1

n−1,Mµ,C).

If we write, in abuse of notation, ω′Ir{dn−1} for the exterior product of the fitting ω′i|X 1
n−1

, the
image of π∗ can be described by

π∗J
∗
u(η) =

∑
|I|=•

φ̌I,uω
′
Ir{dn−1}.

Note, that
d(π∗J∗u(η)) = π∗J

∗
u(dη)

has coefficient functions of moderate growth, since for η ∈ Ω•
fd the coefficient functions of dη are

by definition also fast decreasing. So the proof of the lemma is complete. �

It follows that we have constructed a composed chain map

(3.7) Ω•
fd(Γ\X 1

n ,Mµ,C)
J∗u→ im(J∗u) π∗→ Ω•−1

mg (Γ′u\X 1
n−1,Mµ,C).
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Now let Mµ,ν,C be the locally constant sheaf belonging to the tensor product Mµ,C ⊗Mν,C. We
want to construct a natural pairing

Bu : Ωbn

fd (Γ\X 1
n ,Mµ,C)× Ωbn−1

fd (Γ′u\X 1
n−1,Mν,C)→ Ωd̃n−1

fd (Γ′u\X 1
n−1,Mµ,ν,C).

Note, that bn + bn−1 − 1 = d̃n−1 = dim(X 1
n−1). By (3.7) it suffices to find a pairing

B̃u : Ωbn−1
mg (Γ′u\X 1

n−1,Mµ,C)× Ωbn−1
fd (Γ′u\X 1

n−1,Mν,C)→ Ωd̃n−1
fd (Γ′u\X 1

n−1,Mµ,ν,C)

and to set Bu(η, η′) := B̃u(π∗J∗u(η), η′).

3.4. A pairing on the differentials. We want to construct such a natural pairing B̃u

now. In order to do this we need to write down elements η̌ of Ωbn−1
mg (Γ′u\X 1

n−1,Mµ,C) and η′ of
Ωbn−1

fd (Γ′u\X 1
n−1,Mν,C) quite explicitly the way suggested by (3.4). In the proof of Lemma 3.2 we

saw that the ω′i with i running from 1 to dn−1 − 1 = d̃n−1 form a basis of ℘̃∗n−1. We let Ǐ and I ′

run through the subsets of {1, . . . , d̃n−1} like above Lemma 3.1, and let m resp. m′ run through a
basis of Mµ resp. Mν .

By (3.4) we may write η̌ =
∑

|Ǐ|=bn−1 ω
′
Ǐ
φ̌Ǐ with

φ̌Ǐ =
∑
m

(φ̌Ǐ,m ⊗m) ∈ C∞
mg(Γ

′
u\SL±n−1(R),C)⊗Mµ,C = C∞

mg(Γ
′
u\SL±n−1(R),Mµ,C)

and η′ =
∑

|I′|=bn−1
ω′I′ϕI′ with

ϕI′ =
∑
m′

(ϕI′,m′ ⊗m′) ∈ C∞
fd (Γ′u\SL±n−1(R),C)⊗Mν,C = C∞

fd (Γ′u\SL±n−1(R),Mν,C).

Now consider the mapping given by

B̃u(η̌, η′) :=
∑

(ω′
Ǐ
∧ ω′I′)

∑
m,m′

(
φ̌Ǐ,m · ϕI′,m′ ⊗ (m⊗m′)

)
,

where the first sum is over all pairs of subsets Ǐ and I ′ of {1, . . . , dn−1} fulfilling |Ǐ| = bn − 1 and
|I ′| = bn−1. It is well defined, since B̃u(η̌, η′) is invariant under On−1(R), i. e. for all g ∈ On−1(R)
we have

g.B̃u(η̌, η′) = B̃u(g.η̌, g.η′).

We use this formula for B̃u to describe Bu explicitly. So if we set η̌ := π∗J
∗
u(η) with η =

∑
I φIωI

like before, and if we write η̌ =
∑

|I|=bn−1 φ̌I,uω
′
Ir{dn−1} as in the proof of Lemma 3.2 with

φ̌I,u =
∑

m φ̌I,u,m ⊗m, we get

(3.8) Bu(η, η′) =
∑
|I|=bn

|I′|=bn−1

εI,I′

∑
m,m′

(
φ̌I,u,m · ϕI′,m′ ⊗ (m⊗m′)

)
ω′1 ∧ . . . ∧ ω′d̃n−1

,

where εI,I′ = ±1 if I ∪̇ I ′ = {1, . . . , dn−1} and εI,I′ = 0 otherwise, since for all h ∈ SL±n−1(R) we
have

φ̌I,u(h) =

∞∫
0

φI

(
u

(
ht

1

)
t

1−n
n

)
dt

t
=

∞∫
0

∑
m

φI,m

(
u

(
ht

1

)
t

1−n
n

)
⊗m dt

t

=
∑
m

∞∫
0

φI,m

(
u

(
ht

1

)
t

1−n
n

)
dt

t
⊗m =

∑
m

(
φ̌I,u,m(h)⊗m

)
.
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3.5. A cohomological pairing. By Theorem 5.2 of [Bor] the inclusion Ωc ↪→ Ωfd induces
isomorphisms in cohomology. In particular, each fast decreasing cohomology class can be repre-
sented by a form with compact support. This allows us to integrate over the forms in the image
of Bu. By §5 of [BT]4 we get an induced pairing

Bu : Hbn
c (Γ\X 1

n ,Mµ,C)×Hbn−1
c (Γ′\X 1

n−1,Mν,C)→Mµ,C ⊗Mν,C

on cohomology. It is given by

Bu([η], [η′]) :=
∫

Γ′u\X 1
n−1

Bu(η, p∗u(η′)),

where pu : Γ′u\X 1
n−1 → Γ′\X 1

n−1 is the natural projection. For simplicity we will write η′ for
p∗u(η′).

By the previous section we can describe the values of Bu explicitly. Indeed we have∫
Γ′u\X 1

n−1

Bu(η, η′)
(3.8)
=

∫
Γ′u\X 1

n−1

∑
I,I′

εI,I′

∑
m,m′

(
φ̌I,u,m · ϕI′,m′ ⊗ (m⊗m′)

)
ω′1 ∧ . . . ∧ ω′d̃n−1

=
∫

Γ′u\X 1
n−1

∑
I,I′

εI,I′

∑
m,m′

∞∫
0

φI,m

(
u

(
ht

1

)
t

1−n
n

)
dt

t
· ϕI′,m′(h)⊗ (m⊗m′)dh,

recognising that a left-invariant d̃n−1-form on X 1
n−1 uniquely corresponds to a left-invariant mea-

sure dh on X 1
n−1 = SLn−1 /SOn−1 induced from a Haar measure on SLn−1.

Because of the On−1(R)-invariance of our differentials we can integrate over Γ′u\SL±n−1(R) instead
of Γ′u\X 1

n−1 = Γ′u\SL±n−1(R)/On−1(R). The measure dh is the push forward of a Haar measure
dg of GLn−1(R) under the canonical projection. Let us extend the functions φI,m and ϕI′,m′ in
such a manner that they have actions of the respective centres via the central characters ωπ resp.
ωσ of our representations π resp. σ. Then we get∫
Γ′u\GLn−1(R)

∑
I,I′

εI,I′

∑
m,m′

φI,m(u
(
g

1

)
)·ϕI′,m′(g)·ωπ(|det(g)|− 1

n )·ωσ(|det(g)|−
1

n−1 )⊗(m⊗m′) dg.

We know that the central character of π∞ ⊗ %µ is trivial, so that we have

ωπ(|det(g)|− 1
n ) = ω%̌µ(|det(g)|− 1

n ) = (|det(g)|− 1
n )−(µ1+···+µn) = |det(g)| w2

and, analogously, ωσ(|det(g)|−
1

n−1 ) = |det(g)| w
′
2 . Recalling the definition of κ from Section 2 we

can write

Bu([η], [η′]) =
∫

Γ′u\GLn−1(R)

∑
I,I′

εI,I′

∑
m,m′

φI,m

(
u

(
g

1

))
· ϕI′,m′(g) · |det(g)|κ− 1

2 ⊗ (m⊗m′) dg.

3.6. The Whittaker model. Choose a generator η∞ of the one-dimensional C-vector space
Hbn(gln,Kn,∞;W0(π∞, τ∞)⊗Mµ,C)ε in Corollary 1.5. Using the previous bases of ℘̃∗n and Mµ we
can write

η∞ =
∑
|I|=bn

∑
m

v∞,I,mωI ⊗m

with Whittaker functions v∞,I,m ∈ W0(π∞, τ∞).

4Bott and Tu work in the real case and with trivial coefficents, but the proof is the same in our situation. Note,
that integration and tensoring with elements of Mµ,C ⊗Mν,C commutes.
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The Fourier transform F(π) : W (π, τ) ∼→ Vπ ⊂ L2
0(GLn(Q)\GLn(A)) induces a mapping F(π)coh

between the respective spaces of (gln,Kn,∞)-cohomology, which commutes with the action of
On(R)/SOn(R). Composing F(π)coh with the injection of W (πf , τf ) into Lie algebra cohomo-
logy given by

W (πf , τf ) ↪→ Hbn(gln,Kn,∞;W (π, τ)⊗Mµ,C)ε

vf 7→ vf · η∞
we get

F̃(π) = F(π)coh · η∞ :

W (πf , τf ) → Hbn(gln,Kn,∞;Vπ ⊗Mµ,C)ε,

vf 7→ η :=
∑

|I|=bn

∑
m
φI,mωI ⊗m,

where φI,m is the cusp form associated with vfv∞,I,m by F(π). Analogously, for a generator η′∞
of the one-dimensional C-vector space Hbn−1(gln−1,Kn−1,∞;W0(σ∞, τ̄∞)⊗Mν,C)ε′ we put

F̃(σ) = F(σ)coh · η′∞ :

W (σf , τ̄f ) → Hbn−1(gln−1,Kn−1,∞;Vσ ⊗Mν,C)ε′ ,

wf 7→ η′ :=
∑

|I′|=bn−1

∑
m′
ϕI′,m′ω′I′ ⊗m′,

where we use ω′I′ in the same sense as in the proof of Lemma 3.2. The rest of the notation should
be clear.

By (2.1) we may decompose an element of W0(πf , τf ) ⊗ W0(σf , τ̄f ) into a finite sum
∑

j vj ⊗ wj

with pure tensors vj and wj in the respective restricted tensor product of local Whittaker spaces.
Evaluating our pairing Bu at the corresponding ηj and η′j we get

Bu(ηj , η
′
j) =

∑
m,m′

∑
I,I′

εI,I′

∫
Γ′u\GLn−1(R)

φj,I,m(uj(g))ϕj,I′,m′(g)|det(g)|κ− 1
2 dg

⊗ (m⊗m′),

where the cusp forms φj,I,m (belonging to vj,fv∞,I,m) and ϕj,I′,m′ (belonging to wj,fw∞,I′,m′) are
restricted to the infinity component. Note, that we chose v∞,I,m and w∞,I′,m′ independent of j.

We are summing up terms like those on p. 123 of [KMS], and we can apply the same arguments. In
order to do this we need to introduce some notation: From now on we denote conjugation by ϕ :=
diag(f−1, . . . , f−n) by the superscript ϕ, so that if g = (gij) ∈ GLn, then gϕ = ϕgϕ−1 = (f j−igij).
We will interpret u ∈ Un(Q) as an element of Un(Qp) and not embed Un(Q) diagonally into Un(A).
From now on, we will only consider elements u ∈ Un(Q), that also lie in Un(Zp)ϕ−1 ⊂ Un(Qp).
For those we write

K ′
u := {k ∈ K ′ | uj(k)u−1 ∈ K}.

Like in [KMS] we get5

Bu(ηj , η
′
j) =

p−1
p f2(n−1)

vol(K ′
u)
·
∑

m,m′

∑
I,I′

εI,I′

∫
Cf

φj,I,m(j(g)u−1)ϕj,I′,m′(g)|det(g)|κ− 1
2 dg

⊗ (m⊗m′).

3.7. Main Theorem. We will be interested in Bu(ηj , η
′
j) from the last section as a function

of u. So if λ is an (at first) arbitrary linear form on Mµ,C ⊗Mν,C, we set

Bλ(u) := λ ◦
∑

j

(
Bu(ηj , η

′
j)
)
.

5Note, that in [KMS] the factor p−1
p

· f2(n−1) is actually missing in the cited formula on p. 123 and afterwards.
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Using Lemma 2.2 we can express the value at κ = 1
2 −

w+w′

2 of the Rankin-Selberg L-function in
terms of the function Bλ(u) for a suitable choice of ηj ’s and η′j ’s. In order to do this we define
PI,I′,m,m′(s) to be the entire function belonging to the pair (v∞,I,m, w∞,I′,m′) (cf. 3.2 in [loc. cit.])
such that we have

(3.9) Ψ(v∞,I,m ⊗ w∞,I′,m′ ; s) = PI,I′,m,m′(s) · L(π∞, σ∞; s),

and

(3.10) Pλ,∞(s) :=
∑
I,I′

εI,I′

∑
m,m′

λ(m⊗m′)PI,I′,m,m′(s).

This immediately leads to

Theorem A Let n ≥ 3. For all finite idele class character χ with trivial infinity part χ∞ = 1,
and with χ, χ2, . . . , χn−1 having the same non-trivial p-power conductor f we have the formula

vp(1)wp(1)Pλ,∞(κ)
n−1∏
i=1

G(χi
p)(1− p−1)
1− p−i

L(π ⊗ χ, σ;κ)

=
∑

u

n−1∏
i=1

χ̃p(ui
i) vol(K ′

uϕ−1 )Bλ((u−1)ϕ−1
),

where u = up (with u` = 1 for all ` 6= p) is taken from a representative system for Un(Zp) modulo
Un(Zp)ϕ with ϕ = diag(f−1, . . . , f−n), and the ui run over the off-diagonal entries of u.

Unfortunately, we do not know if Pλ,∞ is non-zero at s = κ in general. However, in Section 4 we
will show this in the case n = 3 for a suitable choice of λ.

3.8. Algebraicity. By [Sch], Satz 1.10, the cuspidal cohomology classes restrict to zero on
the border of the Borel-Serre compactification of Sn(K), so that we get an injection of cuspidal
cohomology into cohomology with compact support:

H•
cusp(S̃n,Mµ,C) ↪→ H•

c (S̃n,Mµ,C).

The latter is a module under Aut(C/Q)×GLn(Af )×GLn(R)/GL+
n (R), where the actions of the

factors commute and the (image of the) cuspidal cohomology even is defined over Q (cf. [Clo],
Théorème 3.19). So this suggests that we try to choose the cuspidal cohomology classes [η] and [η′]
in such a way that the values of Bλ and therefore the L-values at 1

2 are subject to good rationality
conditions.

Let Q(πf ) denote the field of rationality of πf in the notation of §3.1 in [Clo], that is the subfield
of C fixed by the automorphisms α ∈ Aut(C/Q) fulfilling απf

∼= πf . It is a field of definition by
Proposition 3.1 of [loc.cit.], and in our case in fact a number field by the Drinfel’d-Manin argument
(cf. Proposition 3.16 in [loc.cit.]). For the field of rationality Q(σf ) of σf the analogous statements
hold.

If we denote by F := Q(πf , σf ) the smallest number field that contains Q(πf ) and Q(σf ), the
global (finite) Whittaker spaces W (πf , τf ) and W (σf , τ̄f ) carry an F -structure, whose underlying
F -spaces we denote by WF (πf , τf ) resp. WF (σf , τ̄f ). Now since by Corollary 1.5 the cohomology
spaces

Hbn(gln,Kn,∞;W0(π∞, τ∞)⊗Mµ,C)ε

and
Hbn−1(gln−1,Kn−1,∞;W0(σ∞, τ̄∞)⊗Mν,C)ε′

are one-dimensional, an immediate consequence is
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Proposition 3.3. We can normalise the ∞-part η∞ by a non-trivial scalar factor such that for
any Whittaker function wf ∈ WF (πf , τf ) the cohomology class [η] attached to wf ·η∞ is F -rational,
i. e.

[η] ∈ Hbn
cusp(Γ\X 1

n ,Mµ,F ) ⊆ Hbn
c (Γ\X 1

n ,Mµ,Q̄).

An analogous normalisation of η′∞ yields

[η′] ∈ Hbn−1
cusp (Γ′\X 1

n−1,Mν,F ) ⊆ Hbn−1
c (Γ′\X 1

n−1,Mν,Q̄)

with the obvious notation.

The pairings Bu of cohomology spaces we considered in the sections before can be defined purely
topologically and moreover with coefficients in an arbitrary subring of C, in particular with coef-
ficients in F . Furthermore we may choose the linear form λ to be induced from a linear form on
the Q-vector space Mµ or, slightly more general, from a linear form on the F -vector space Mµ,F .
By the definition of Bλ we then have

Corollary 3.4. If the linear form λ is already defined over F , there is a choice of good local tensors
t0` of Whittaker functions for all ` 6= p such that for any ”Iwahori fixed“ pair

(vp, wp) ∈ WF (πp, τp)In ×WF (σp, τ̄p)In−1

the formula in Theorem 1 holds for the associated pairing Bλ with values Bλ(u) in the number
field F .

4 The non-vanishing of the period

The algebraicity results of the last section have the one big flaw, that we can not guarantee the
period Pλ,∞(κ) not to vanish. The second aim of this paper is to improve this situation. In this
section we will study the case n = 3 and will show, that we have Pλ,∞(κ) 6= 0 indeed (cf. Theorem
B) for a suitable choice of λ. The general assumptions from the last section still hold.

The idea of proof is to construct a pairing on( 2∧
℘̃∗3 ⊗W0(π∞, τ∞)⊗Mµ,C

)
×
(
℘̃∗2 ⊗W0(σ∞, τ̄∞)⊗Mν,C

)
,

whose image equals Pλ,∞(κ) · C if restricted to the one-dimensional cohomology modules

H2(gl3,K3,∞;π∞ ⊗Mµ,C)ε and H1(gl2,K2,∞;σ∞ ⊗Mν,C)ε′

for appropriate signs ε and ε′. This is done in Section 4.2. It remains to show, that the restricted
pairing is not trivial, thus has an image isomorphic to C. In order to do this, we split it up into a
pairing Bλ,∞ on the infinite Whittaker spaces times the coefficient modules and a pairing B∧ on
the exterior powers.

After proving some nice general properties of Bλ,∞ in Section 4.3 we show in Section 4.4 for
a particular λ (cf. Lemma 4.6), that Bλ,∞ is not trivial restricted to the cohomological types.
Finally, we show in Section 4.5, that B∧ ⊗ Bλ,∞ is not trivial restricted to cohomology, which
proves Theorem B.

4.1. Notation. In this section we want to get to know the modules we will be working with
for the rest of this paper. Because of the small dimensions, everything is quite explicit.
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so3-modules. We may write so3(C) := so3 ⊗ C = 〈H,E1, E−1〉C with

H =

 0 1 0
−1 0 0
0 0 0

 and E±1 =

 0 0 1
0 0 ±i
−1 ∓i 0

 ,

where we have [H,E±1] = ±iE±1 and [E1, E−1] = 2iH for the Lie brackets. The standard torus is
given by h3 = 〈H〉C. We define e1 to be the root given by e1(H) = 1.

Now, for k ∈ N0 let Dk denote the irreducible so3-module of highest weight ke1. Let
vk
−k, v

k
1−k, . . . , v

k
k be a so3-basis of Dk, where we put vk

i = 0 for all i ∈ Z r {−k, . . . , k}. We
may choose this basis such that for all i ∈ Z we have

� E1 . v
k
i = vk

i+1,

� E−1 . v
k
i = cki v

k
i−1 with cki =

{
−2
∑k

j=i j if − k ≤ i ≤ k,
0 else.

From now on, we denote W0(π∞, τ∞)⊗Mµ,C by V . By [Mah], Proposition 6.1.3, the SO3(R)-type
of V supporting cohomology in

∧2
℘̃3 is D3. It occurs with multiplicity 1. Moreover the minimal

SO3(R)-type of π∞ is Da for a = µ1 − µ3 + 3, and Da−3 is a maximal SO3(R)-type of Mµ as a
so3-module.

We will write vi := v3
i and ci := c3i . Furthermore, ℘̃3 is isomorphic to D2. Here we will write

Zi := v2
i and di := c2i . We normalise those basis vectors by putting

Z−2 =

 1 −i 0
−i −1 0
0 0 0

 , Z−1 = −2 ·

0 0 1
0 0 −i
1 −i 0

 , Z0 = −4 ·

1 0 0
0 1 0
0 0 −2

 ,

Z1 = 12 ·

0 0 1
0 0 i
1 i 0

 , Z2 = 24 ·

1 i 0
i −1 0
0 0 0

 .

so2-modules. Analogously we may write so2(C) = so2 ⊗ C = C ·H, if we identify

H =
(

0 1
−1 0

)
with

 0 1 0
−1 0 0
0 0 0

 .

By embedding ℘2 into ℘̃3 via

X 7→
(
X 0
0 0

)
− 1

3
tr(X) ·

1 0 0
0 1 0
0 0 1


we identify ℘2 with 〈Z−2, Z0, Z2〉C, and ℘̃2 with 〈Z−2, Z2〉C. Here, the standard torus h2 is all of
so2(C). The root that sends H to 1 will be denoted with e1 as well.

From now on, we denote W0(σ∞, τ̄∞) ⊗Mν,C by W . Like above, the SO2(R)-types supporting
cohomology in ℘̃2 are D ′

2 and D ′
−2, the irreducible representations of so2(C) with highest weight

2e1 resp. −2e1. Again, the so2-modules obtained by restriction are denoted the same. D ′
2 and

D ′
−2 both occur with multiplicity 1, so that we have WL′2

∼= L′2 and WL′−2
∼= L′−2. Moreover, if D ′

k

denotes the irreducible so2-module of weight ke1 for k ∈ Z, the minimal SO2(R)-types of σ∞ are
D ′

b and D ′
−b for b = ν1−ν2 +2, and Mν as a so2-module is the direct sum of D ′

2−b,D
′
4−b, . . . ,D

′
b−2.
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4.2. Pairings. For the moment let n ≥ 3 be arbitrary again. In order to show that the value
Pλ,∞(κ) in Theorem A does not vanish we study a pairing

B :
( bn∧

℘̃∗n ⊗W0(π, τ)⊗Mµ,C

)
×
(bn−1∧

℘̃∗n−1 ⊗W0(σ, τ̄)⊗Mν,C

)
→ C

very similar to the pairing Bλ of Section 3 that takes the whole left side

vp(1)wp(1)Pλ,∞ (κ)
n−1∏
i=1

G(χi
p)(1− p−1)
1− p−i

L(π ⊗ χ, σ;κ)

of the formula in the theorem as a value. We construct B as a tensor product of four pairings. In
this way we can split up B and study our non-vanishing problem in the factors. Those are:

The pairing on the coefficient systems. We already know the pairing

Bλ = λ :

{
Mµ,C ×Mν,C → C

(m,m′) 7→ λ(m⊗m′)

on the coefficient systems from Section 3.

The archimedean Rankin-Selberg pairing. We define a pairing

B∞ :

{
W0(π∞, τ∞)×W0(σ∞, τ̄∞) → C

(v∞, w∞) 7→ Pv∞,w∞(κ)

on the infinite parts of the Whittaker spaces. Here, it holds

Ψ(v∞, w∞; s) = Pv∞,w∞(s) · L(π∞, σ∞; s)

like in Section 2. We will call B∞, or in slight misuse of notation Bλ,∞ := Bλ ⊗ B∞ as well, the
archimedean Rankin-Selberg pairing.

The non-archimedean Rankin-Selberg pairing. On the finite parts of the Whittaker spaces
we let

Bf :

{
W0(πf , τf )×W0(σf , τ̄f ) → C,

(vf , wf ) 7→
∏

`-∞ ψ`(v`, w`;κ).

We will call Bf the non-archimedean Rankin-Selberg pairing.

The pairing on the exterior powers. A problem in defining a pairing with values in C on the
exterior powers of ℘̃n resp. ℘̃n−1 is to make the arguments compatible. However, this is a problem
we solved in Section 3: The differentials ωI with |I| = bn generate

∧bn ℘̃∗n, and the differentials
ω′I′ with |I ′| = bn−1 generate

∧bn−1 ℘̃∗n−1. Thus a pairing of the sought-after type is given by

B∧ :

{∧bn ℘̃∗n ×
∧bn−1 ℘̃∗n−1 → C,

(ωI , ω
′
I′) 7→ εI,I′ .

We may now define B by putting

B(w,w′) :=
∑
I,I′

∑
m,m′

Bλ(m,m′) ·B∞(vI,m,∞, wI′,m′,∞) ·Bf (vI,f , wI′,f ) ·B∧(ωI , ω
′
I′),

where we have w =
∑

|I|=bn

∑
m vI,mωI ⊗m and w′ =

∑
|I′|=bn−1

∑
m′ wI′,m′ω′I′ ⊗m′.

The next thing now is to determine the relation between B and Bλ. In order to do this we compare
the special L-values L(π ⊗ χ, σ;κ) with zeta-integrals like they occur as values of B. Let vj,I,m
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resp. wj,I′,m′ be the Whittaker functions belonging to the automorphic forms φj,I,m resp. ϕj,I′,m′

from the proof of Theorem A. From Section 2 we already know the “good tensors” t0` for (π`, σ`)
at an arbitrary prime ` 6= p fulfilling

t0` =
∑

j

vj,` ⊗ wj,`,

where j runs through a finite sum independently of `. Analogously, χ`(det) · t0` is a “good tensor”
for (π` ⊗ χ`, σ`). Like in the proof of the Global Birch Lemma (cf. [KMS]) it follows

L(π` ⊗ χ`, σ`; s) = Ψ(χ`(det) · t0` ; s) for ` 6= p,∞.

At the place p we have L(πp ⊗ χp, σp; s) = 1, since χp is ramified and πp and σp are unramified.
On the other hand, if we put

vj,p,χp(g) = χp(det(g))
∑

u

n−1∏
i=1

χ̃(ui
i)vj,p(guϕ−1

),

where the summation is taken over a representative system for Un(Zp) modulo Un(Zp)ϕ, by Propo-
sition 3.1 of [KMS] we get

ψ(vj,p,χp , wj,p; s) = vj,p(1)wj,p(1)
n−1∏
i=1

G(χi
p)(1− p−1)
1− p−i

.

Now that we know the respective values of the zeta integrals and the local Rankin-Selberg L-series
at all places we use this information to find Whittaker functions such that L(π⊗χ, σ;κ) occurs as
a factor in the associated value of B. If we set

vj,f,χ = vp,χp ·
∏

` 6=p,∞

χ`(det)vj,`

we may define

vj,χ =
∑
|I|=bn

∑
m

vj,f,χv∞,I,mωI ⊗m and wj =
∑

|I′|=bn−1

∑
m′

wj,fw∞,I′,m′ω′I′ ⊗m′.

Compare with η and η′ in Section 3.6. By Proposition 3.1 of [KMS] and (3.10) we get

B(vj,χ, wj) = Pλ,∞(κ) · vp(1)wp(1)
n−1∏
i=1

G(χi
p)(1− p−1)
1− p−i

·
∏

` 6=p,∞

ψ(χ`(det)vj,`, wj,`;κ).

All in all we have∑
j

B(vj,χ, wj) = vp(1)wp(1)Pλ,∞(κ)
n−1∏
i=1

G(χi
p)(1− p−1)
1− p−i

∏
` 6=p,∞

Ψ(χ`(det) · t0` ;κ)

= vp(1)wp(1)Pλ,∞(κ)
n−1∏
i=1

G(χi
p)(1− p−1)
1− p−i

· L(π ⊗ χ, σ;κ).

Like in the proof of the Global Birch Lemma we may express the values B(vj,χ, wj) as a sum of
u-shifts, where u runs through a representative system of Un(Zp) modulo Un(Zp)ϕ.

Remark Because of our choice of Whittaker functions the image of Bλ ⊗ B∞ ⊗ B∧ restricted to
the one-dimensional cohomology modules

Hbn(gln,Kn,∞;W0(π∞, τ∞)⊗Mµ,C)ε

and
Hbn−1(gln−1,Kn−1,∞;W0(σ∞, τ̄∞)⊗Mν,C)ε′
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from Section 3 is generated by Pλ,∞(κ).

To prove, that Pλ,∞(κ) does not vanish, it would suffice to show that the restriction of Bλ⊗B∞⊗B∧
to cohomology is not trivial. In the case n = 3 this will be done in the following sections for a
suitable choice of λ.

4.3. The archimedean Rankin-Selberg pairing. In this section we want to study the
archimedean Rankin-Selberg pairing we introduced in the last section.

Definition 4.1. A pairing B of (gln,On(R))-modules R and S is called weakly equivariant, if B
is (sln,On(R))-equivariant and for any X ∈ gln there is a scalar c(X) ∈ C such that we have

B(Xr, s) +B(r,Xs) = c(X) ·B(r, s) ∀r ∈ R, s ∈ S.

We show the following

Proposition 4.2. The archimedean Rankin-Selberg pairing B∞ fulfils the following properties:

(a) B∞ is weakly (gln−1,On−1(R))-equivariant,
(b) Bλ,∞(V,W ) 6≡ 0 for any λ 6= 0.

Proof. We first show that the zeta integral ψ(v∞, w∞;κ) is (sln−1,On−1(R))-equivariant as a
function on the Whittaker models. Therefor we have to show its On−1(R)-equivariance6, i. e.

ψ(π∞(h)v∞, σ∞(h)w∞;κ) = ψ(v∞, w∞;κ)

for all h ∈ On−1(R), and its sln−1-equivariance, i. e.

ψ(dπ∞(X)v∞, w∞;κ) + ψ(v∞, dσ∞(X)w∞;κ) = 0

for all X ∈ sln−1. Here, dπ∞ and dσ∞ are the infinitesimal representations belonging to the
GLn−1(R)-representations π∞ resp. σ∞, that is for all X ∈ sln−1 we have

dπ∞(X)(v∞) =
d

dt
(π∞(exp(tX))v∞) |t=0

and

dσ∞(X)(w∞) =
d

dt
(σ∞(exp(tX))w∞) |t=0.

We consider the Rankin-Selberg zeta integral

ψ(v∞, w∞; s) =
∫

Un−1(R)\GLn−1(R)

v∞

(
g

1

)
w∞(g)|det(g)|s− 1

2 dg

on W (π∞, τ∞)×W (σ∞, τ̄∞). The group GLn−1(R) acts on the tensor product of Whittaker spaces
via right translation, so that we have

ψ(π∞(h)v∞, σ∞(h)w∞; s) =
∫

Un−1(R)\GLn−1(R)

v∞

(
gh

1

)
w∞(gh)|det(g)|s− 1

2 dg

for every h ∈ GLn−1(R). Now we change the integration variable from g to gh−1. Because of the
transitivity of the action on the quotient Un−1(R)\GLn−1(R) we get

ψ(π∞(h)v∞, σ∞(h)w∞; s) = |det(h)| 12−s · ψ(v∞, w∞; s).

Evidently ψ(v∞, w∞; s) is SL±n−1(R)-invariant, so that the On−1(R)-invariance of ψ on the product
W0(π∞, τ∞)×W0(σ∞, τ̄∞) of the On−1(R)-finite Whittaker spaces follows.

6Like in Section 3, we view π∞ as a GLn−1(R)-module via j.
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For the whole action of GLn−1(R) we therefore have

(4.1) ψ(π∞(h)v∞, σ∞(h)w∞;κ) = |det(h)| 12−κ · ψ(v∞, w∞;κ) ∀h ∈ GLn−1(R).

We use this fact to prove the weak equivariance of ψ(v∞, w∞;κ). We have

ψ(dπ∞(X)v∞, w∞;κ) =
∫

d

dt
v∞

(
g · exp(tX)

1

)∣∣∣∣
t=0

w∞(g) |det(g)| 12−κdg

=
d

dt

∫
v∞

(
g · exp(tX)

1

)
w∞(g) |det(g)| 12−κdg

∣∣∣∣
t=0

(4.1)
=

d

dt

∫
v∞

(
g

1

)
w∞(g · exp(−tX)) |det(g · exp(−tX))| 12−κdg

∣∣∣∣
t=0

=
d

d(−t)

∫
v∞

(
g

1

)
w∞(g · exp(tX)) |det(g)| 12−κdg

∣∣∣∣
t=0

+
d

dt
|det(exp(−tX))| 12−κ

∣∣∣∣
t=0

·
∫
v∞

(
g

1

)
w∞(g) |det(g)| 12−κdg

= −ψ(v∞, dσ∞(X)w∞;κ)− (
1
2
− κ) tr(X) · ψ(v∞, w∞, κ),

where integration is always over Un−1(R)\GLn−1(R). All in all we find that ψ(v∞, w∞;κ) is
weakly (gln−1,On−1(R))-equivariant. Since we have

ψ(v∞, w∞;κ) = Pv∞,w∞(κ) · L(π∞, σ∞;κ),

and L(π∞, σ∞;κ) does not depend on the choice of our Whittaker functions, the same is true for
Pv∞,w∞(κ).

To show (b) we have to find elements of V and W for which Bλ,∞ does not vanish. Recall that we
fixed bases of Mµ,C and Mν,C in Section 3. Let m ∈ Mµ,C and m′ ∈ Mν,C be such basis vectors
fulfilling λ(m ⊗ m′) 6= 0. By Theorem 1.2 of [CP2] we are able to choose Whittaker functions
vm,∞ in W0(π∞, τ∞) and wm′,∞ in W0(σ∞, τ̄∞) such that Pvm,∞,wm′,∞(κ) does not vanish. Hence,
vm,∞⊗m and wm′,∞⊗m′ are suitable choices of elements of V and W such that Bλ,∞(V,W ) 6≡ 0,
which proves the proposition. �

4.4. Reduction to minimal K-types. We return to the case n = 3 now. Our aim in this
section is to show

Theorem 4.3. Let Da be the minimal SO3(R)-type of W0(π∞, τ∞) with 3 ≤ a, and let D ′
±b be

the minimal SO2(R)-types of W0(σ∞, τ̄∞) with 2 ≤ b. Assuming b < a the pairing Bλ,∞ remains
non-trivial for a suitable choice of the linear form λ when restricted to VD3 and WD′

±2
, i. e.

Bλ,∞(VD3 ,WD′
±2

) = C.

In a first step let
〈·, ·〉 : W0(π∞, τ∞)×W0(σ∞, τ̄∞)→ C

be an arbitrary non-trivial weakly (gl2,O2(R))-equivariant pairing of C-vector spaces. We want to
show the following

Theorem 4.4. The pairing 〈·, ·〉 is not trivial, if restricted to minimal K-types, that is

〈W0(π∞, τ∞)Da ,W0(σ∞, τ̄∞)D′
±b
〉 6≡ 0.
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Proof. Since W0(σ∞, τ̄∞) is irreducible as gl2-module, it is generated by a single element w±b of,
say, weight ±be1. Because of the weak equivariance of 〈·, ·〉 we get

〈W0(π∞, τ∞),W0(σ∞, τ̄∞)〉 = 〈W0(π∞, τ∞),W0(σ∞, τ̄∞)D′
±b
〉

= 〈W0(π∞, τ∞), w±b〉
But then we assumed 〈W0(π∞, τ∞),W0(σ∞, τ̄∞)〉 6= 0, so that the Theorem follows from Proposition
4.5 below, which we could prove the same for Db instead of D−b. �

Proposition 4.5. 〈W0(π∞, τ∞),W0(σ∞, τ̄∞)D′
−b
〉 = 〈W0(π∞, τ∞)Da ,W0(σ∞, τ̄∞)D′

−b
〉.

Proof. Let U(sl3) be the universal envelopping algebra of sl3, and let p : T(sl3) → U(sl3) be the
belonging projection, where T(sl3) is the tensor algebra. Since each element of T(sl3) can be found
as a representative of an element of p(

⊕∞
r=0

⊗r
℘̃3), it holds

(4.2) p(
∞⊕

r=0

r⊗
℘̃3) = U(sl3).

This can be shown by proving that the left side contains a basis of sl3. But then, ℘̃3 is obviously
contained, and we have

H =
1
48
i[Z−1, Z1], E1 =

1
48

[Z0, Z1], E−1 =
1
8
[Z−1, Z0].

From now on we write ℘̃r
3 for ⊗r℘̃3. A direct implication of (4.2) is W0(π∞, τ∞) =∑

r≥0 ℘̃
r
3 .W0(π∞, τ∞)Da , where the dot denotes the action of U(sl3) on W0(π∞, τ∞). Thus the

proof of Propostion 4.5 is reduced to showing that

∀r ∈ N0 : 〈℘̃r
3 .W0(π∞, τ∞)Da ,W0(σ∞, τ̄∞)D′

−b
〉 ⊆ 〈W0(π∞, τ∞)Da ,W0(σ∞, τ̄∞)D′

−b
〉.

We will do this by induction on r. The case r = 0 is trivial. The proof of the general step of the
induction needs r ≥ 3, so that we will show the cases r = 1 and r = 2 first.

Consider an arbitrary v ∈ W0(π∞, τ∞)Da . Since W0(π∞, τ∞)Da is the direct sum of its weight
spaces and because of the bilinearity of 〈·, ·〉 we may assume v to have a weight wt(v) without loss
of generality. But then we have

wt(v)〈v, w−b〉 = 〈H . v,w−b〉 = −〈v,H .w−b〉 = b〈v, w−b〉,
so that 〈v, w−b〉 = 0 if wt(v) 6= be1. So it suffices to study the be1 weight space of W0(π∞, τ∞)Da .

The case r = 1. Remember a ≥ 3. By the Clebsch-Gordan Formula for so3 we have

℘̃3 ⊗W0(π∞, τ∞)Da
∼= D2 ⊗Da

∼=
a+2⊕

i=a−2

Di.

Recall 2 ≤ b ≤ a. So the be1 weight space of ℘̃3 ⊗ W0(π∞, τ∞)Da is 3-dimensional for b = a,
4-dimensional for b = a− 1, and 5-dimensional in all other cases. A set of generators is given by

Z0 ⊗ va
b ,

Z2 ⊗ va
b−2,

Ea−b−j
−1 .

4∑
i=0

(−1)iZ2−i ⊗ va
a−2−j+i ∈ (℘̃3 ⊗W0(π∞, τ∞)Da)Da−j ,

where the allowed values in {0, 1, 2} of j depend on a − b. Da is the smallest SO3(R)-type in
W0(π∞, τ∞), whence

Ea−b−j
−1 .

4∑
i=0

(−1)iZ2−i . v
a
a−2−j+i = 0
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for j = 1, 2. For j = 0 the term lies in the be1 weight space of (℘̃3 ⊗W0(π∞, τ∞)Da)Da , the latter
being isomorphic to Da, since the smallest K-type always occurs with multiplicity one, i. e.

Ea−b
−1 .

4∑
i=0

(−1)iZ2−i . v
a
a−2+i ∈ C · va

b .

Summing up, this means

(4.3) (℘̃3 ⊗W0(π∞, τ∞)Da)be1 ⊆ 〈Z0 ⊗ va
b , Z2 ⊗ va

b−2〉C + C · va
b .

Since Z0 =
(−12 0
0 −12

)
lies in the centre of gl2, it follows that Z0 .W0(σ∞, τ̄∞)D′

−b
is a so2-

module. Because the action of Z0 does not change the weight, and because of the multiplicity
one of the smallest SO2(R)-type, we get Z0 .W0(σ∞, τ̄∞)D′

−b
⊆ W0(σ∞, τ̄∞)D′

−b
. Since for all

va =
∑a

i=−a αiv
a
i ∈ W0(π∞, τ∞)Da we have

〈Z0 . v
a, w−b〉 = 〈Z0 .

a∑
i=−a

αiv
a
i , w−b〉 =

a∑
i=−a
i6=b

αi〈Z0 . v
a
i , w−b〉+ αb〈Z0 . v

a
b , w−b〉,

by the weak equivariance of 〈·, ·〉 this means

(4.4) Z0 . v
a ∈ ker〈·, w−b〉+ C · va

b =: a.

By a similar argument we even get

(4.5) Z0 . a ⊆ a.

Furthermore, by the (sl2,O2(R))-equivariance of 〈·, ·〉, and since D ′
−b is a minimal SO2(R)-type of

W0(σ∞, τ̄∞), we get

(4.6) 〈Z2 . v
a, w−b〉 = −〈va, Z2 . w−b〉 = −〈va, 0〉 = 0.

for all va ∈ W0(π∞, τ∞). Together with (4.3) this proves the case r = 1.

The case r = 2. A set of generators of the be1 weight space of ℘̃2
3 .W0(π∞, τ∞)Da is given by

{ZiZj . v
a
k | −2 ≤ i, j ≤ 2, −a ≤ k ≤ a, i+ j + k = b}.

Like in the case r = 1 we will show that all those generators lie in a. By (4.5) and (4.6) and
by induction we already know this in the case i ∈ {0, 2}. Now, since [Zi, Zj ] lies in so3 for all
i, j ∈ {−2, . . . , 2}, since i+ j + k = b, and since va

k lies in W0(π∞, τ∞)Da , interchanging Zi and Zj

only produces a summand in C · va
b , so that it suffices to show

(4.7) {Z2
−2 . vb+4, Z−2Z−1 . vb+3, Z−2Z1 . vb+1, Z

2
−1 . vb+2, Z−1Z1 . vb, Z

2
1 . vb−2} ⊆ a.

Note, that for big values of b some of those terms vanish.

By the Lemma of Schur we have κ(X,Y ) = 6 · tr(XY ) for the Killing form κ on so3. From this we
can calculate the Casimir operator C3 ∈ U(sl3) explicitly. It holds

C3 = − 1
12

(
2i ·H +H2 + E1E−1 −

1
48
· Z2

0 −
1
24
· Z−2Z2 +

1
24
· Z−1Z1

)
.

Since W0(π∞) is irreducible as an sl3-module, C3 acts like a scalar. By the anteceding we get

(4.8) Z−1Z1 .W0(π∞)Da
⊆ a

and even

(4.9) Z−1Z1 = u1 + u2 with u1 . a ⊆ a and u2 ∈ U(so3).
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Like in the case r = 1 we want to make use of the fact that Da is the smallest SO3(R)-type of
W0(π∞), i. e. of (℘̃3 .W0(π∞)Da)Da−j = 0 for j ∈ {1, . . . , a}. For all those j we get

4∑
i=0

(−1)iZ2−i . v
a
a−2−j+i = 0,(4.10)

4∑
i=0

(−1)i(caa−2−j+iZ2−i . v
a
a−3−j+i + d2−iZ1−i . v

a
a−2−j+i) = 0.(4.11)

Here, (4.10) just says that the maximal vectors in the respective Da−j are zero, and (4.11) is (4.10)
multiplied by E−1.

Now consider the special case j = (a−b)+1 of (4.10). We multiply this equation by Z1 and ignore
summands containing Z0 (by (4.5)), Z2 (by (4.6)), or Z−1Z1 (by (4.8)) as lying in a. We find

Z2
1 . v

a
b−2 − Z−2Z1 . v

a
b+1 ∈ a.

If b = a, then we have Z−2Z1 . v
a
b+1 = 0 and thus Z2

1 . v
a
b−2 ∈ a. If b ≤ a − 1, we also multiply

(4.11) for j = a− b by Z1, and analogously find

(d2 − cab−1)Z
2
1 . v

a
b−2 − (d−1 − cab+2)Z−2Z1 . v

a
b+1 ∈ a.

But these terms are linearly independent in Z−2Z1 . v
a
b+1 and Z2

1 . v
a
b−2, because of

det
(

1 −1
d2 − cab−1 −d−1 + cab+2

)
= 6b ≥ 12 > 0,

so that for all pairs (a, b) we have

(4.12) {Z−2Z1 . v
a
b+1, Z

2
1 . v

a
b−2} ⊆ a.

If b > a− 2, we are done, since then all other terms in (4.7) are trivial. If b ≤ a− 2, we consider
(4.10) in the case of j = (a − b) − 1, this time multiplying the equation by Z−1. This yields to
Z2
−1 . v

a
b+2 ∈ a for b = a− 2. If b ≤ a− 3, we use (4.11) for j = (a− b)− 2 and compare like above.

Analogously, for all pairs (a, b) we get

(4.13) {Z2
−1 . v

a
b+2, Z−1Z−2 . v

a
b+3} ⊆ a.

If b > a− 4, we are done. For b ≤ a− 4 we multiply (4.10) for j = (a− b)− 2 by Z−2 and find

(4.14) Z2
−2 . v

a
b+4 ∈ a

for all pairs (a, b). (4.12), (4.13), and (4.14) together show the case r = 2.

The case r ≥ 3. We consider terms of the form Zi1 . . . Zir . v
a
k ∈ ℘̃r

3 .W0(π∞)Da with −2 ≤
i1, . . . , ir ≤ 2, −a ≤ k ≤ a, and i1 + · · · + ir + k = b. We want to show that all of those lie in a.
Like in the case r = 2 we may permute the Zi at will to answer this question, so by (4.5) and (4.6)
we only have to consider terms like

Zα
−2Z

β
−1Z

γ
1 . vk

with α + β + γ = r and −2α − β + α + k = b. Remember that this is a proof via induction over
r. By the induction hypothesis ℘̃r−2

3 .W0(π∞)Da lies in a, so that by (4.9) and induction it is even
enough to study those terms with β = 0 or γ = 0. We distinguish three cases:

At first let β = γ = 0. Then we only have to consider terms of the kind Zr
−2 . v

a
k with −2r+ k = b.

Because of r ≥ 3 it holds k = b+ 2r ≥ 8. On the other hand, multiplying (4.10) by Zr−1
−2 we find

−Zr−1
−2 Z1 . v

a
a−j−1 − Zr−1

−2 Z−1 . v
a
a−j+1 − Zr

−2 . v
a
a−j+2 ∈ a

for all j ∈ {1, . . . , a}. So if we assume the assertion for β 6= 0 and for γ 6= 0, we get Zr
−2 . v

a
k ∈ a

for all k ≥ 2, and we are done in this case.
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Now assume β 6= 0 and γ = 0. Set u = Zα̃
−2Z

β̃
−1 with α̃+ β̃ = r − 1 and β̃ 6= 0. We want to study

the terms uZir
. va

k with ir ∈ {−1,−2}. This is enough, since the factors in uZir commute modulo
a, and since β 6= 0. Obviously, we have k ≥ 2α̃+ β̃ + b− ir ≥ 5. From (4.10) and (4.11) we get

(4.15) −uZ1 . v
a
a−j−1 − uZ−1 . v

a
a−j+1 + uZ−2 . v

a
a−j+2 ∈ a

for all j ∈ {1, . . . , a}, and

(4.16) −(4 + caa−j)uZ1 . v
a
a−j−1 − (6 + caa−j+2)uZ−1 . v

a
a−j+1 + (4 + caa−j+3)uZ−2 . v

a
a−j+2 ∈ a

for all j ∈ {2, . . . , a + 1}. Note, that by (4.9) and the induction hypothesis the respective first
summands lie in a. So for j = 1 we directly get uZ−1 . v

a
a ∈ a. Since for the j ∈ {2, . . . , a} we have

det
(

1 −1
6 + caa−j+2 −4− caa−j+3

)
= (−2)(a− j + 1) 6= 0,

it follows
uZ−1 . v

a
k ∈ a for 1 ≤ k ≤ a and uZ−2 . v

a
k ∈ a for 2 ≤ k ≤ a,

which shows the assertion in this case by the anteceding.

The last case is β = 0 and γ 6= 0. Set u = Zα̃
−2Z

γ̃
1 with α̃+ γ̃ = r− 1 and γ̃ 6= 0. We want to study

the terms uZir
. va

k with ir ∈ {1,−2}. This is enough, since the factors in uZir commute modulo
a, and since γ 6= 0. Keeping in mind that the factor u is different in this case, we can use (4.15)
and (4.16) again, this time neglecting the respective second summands. Analogously this yields to

uZ1 . v
a
k ∈ a for − 1 ≤ k ≤ a− 3 and uZ−2 . v

a
k ∈ a for 2 ≤ k ≤ a.

Consider uZ1 . v
a
k for k ≥ a− 2. Because of b = −2α̃ + γ̃ + 1 + k ≥ a− 1 + γ̃ − 2α̃ and r ≥ 3 the

exponent α̃ has to be at least one. So modulo a we may write uZ1 . v
a
k ≡ Z

α̃−1
−2 Z γ̃+1

1 Z−2 . v
a
k , which

lies in a by the discussion above. We can apply the same trick for small values of k as well. Recall
γ̃ > 0. Thus uZ−2 . v

a
k for k ∈ {−1, 0, 1} lies in a, since we already know that Zα̃+1

−2 Z γ̃−1
1 Z1 . v

a
k

does. So up to now we have shown

(4.17) uZ1 . v
a
k ∈ a for k ≥ −1 and uZ−2 . v

a
k ∈ a for k ≥ −1.

We want to prove that the same is true for −a ≤ k < −1. We do this inductively: Let k0 ∈
{−1, . . . , 1− a}. Assuming the assertion for k ≥ k0 we want to show that it is also true for k0 − 1.
We multiply (4.10) for j = a+ k0 with uE−2k0

−1 and get

(4.18) u .

(
4∑

i=0

(−1)i
−2k0∑
s=0

(
−2k0

s

)( s∏
t1=1

d3−t1−i

−2k0−s∏
t2=1

cak0−1+i−t2

)
Z2−s−i . vk0−2+s+i

)
= 0.

Here the prefactor Pk0−1 of uZ1 . vk0−1 is

Pk0−1 = (−1)0
(
−2k0

1

)
d2

−2k0−1∏
t2=1

cak0−1−t2 + (−1)1
(
−2k0

0

)−2k0∏
t2=1

cak0−2−t2

= (8k0c
a
−k0−2 − cak0−1c

a
k0−2) ·

−2k0−1∏
t2=2

ca−k0−1−t2

= (−(cak0−2)
2 + (6k0 + 4)cak0−2 − 80k2

0) ·
−2k0−1∏

t2=2

ca−k0−1−t2 .

Pk0−1 cannot be zero. Note, that the product in the last line is unequal to zero by the choice of
k0, and the term in parentheses could only vanish, if cak0−2 = 3k0 + 2±

√
−71k2

0 + 12k0 + 4. But
this cannot happen, since for k0 ≤ −1 the discriminant −71k2

0 + 12k0 + 4 is negative.
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Now consider (4.18) modulo a. It reads

0 ≡
4∑

i=0

Pk0−(2−i)uZ2−i . v
a
k0−(2−i) ≡ Pk0−1uZ1 . vk0−1 mod a

with the respective prefactors Pk0−(2−i). Note, that we may ignore the summands for i = 2 and
i = 0 (by (4.5) and (4.6)), and for i = 3 (by (4.9), since γ̃ 6= 0, and by induction over r). Finally,
by induction over k0 we may ignore the summand for i = 4.

Altogether we showed uZ1 . vk0−1 ∈ a. Like in the paragraph before (4.17) it follows that
uZ−2 . v

a
k0−1 lies in a as well, which shows the step of our induction over k0 and thereby the

proposition. �

We now turn to the proof of Theorem 4.3. Since the minimal SO3(R)-type Da has multiplicity 1
in π∞, we find the D3-isotypical component VD3 of V in

W0(π∞, τ∞)Da ⊗ (Mµ)Da−3
∼= D3 ⊕D4 ⊕ · · · ⊕D2a−3

by the Clebsch-Gordon formula. By the same argument for σ∞ we find WD′
−2

in

W0(σ∞, τ̄∞)D′
−b
⊗ (Mν)D′

b−2
∼= D ′

−2

and WD′
2

in
W0(σ∞, τ̄∞)D′

b
⊗ (Mν)D′

2−b

∼= D ′
2.

We will now adjust our choice of the linear form λ : Mµ ⊗Mν → C to this situation.

Lemma 4.6. There is a non-trivial so2-invariant Q(i)-rational linear form λ such that

Bλ((Mµ)Dk
, (Mν)D′

l
) 6= 0

if and only if (k, l) ∈ {(a− 3, b− 2), (a− 3, 2− b)}.

Proof. Recall that a Q-rational finite-dimensional representation % of SLn(R) always induces
a Q-rational representation of the Lie algebra sln by restriction of the associated infinitesimal
representation d% to sln(Q). We may apply this to %µ and %ν for n = 3, 2 and furthermore restrict
to SOn(R). So in particular our H ∈ so2(Q) acts on Mµ,Q and Mν,Q. Once we want to pass to
weight spaces we are obviously forced to enlarge the field of scalars to include i =

√
−1. Since

we may choose iH,E1, E−1 ∈ so3(Q(i)) as a Chevalley basis, Mµ decomposes as a direct sum of
irreducible so3(C)-modules

Mµ
∼= Da−3 +

∑
k<a−3

m(k)Dk,

where in particular
Mµ,Q(i) ∩ (Mµ)Da−3 =: Da−3,Q(i)

is an irreducible so3(Q(i))-module spanning Da−3 over C. In a similar way Mν,Q(i) decomposes
into weight spaces

Mν,Q(i) = D ′
2−b,Q(i) ⊕ · · · ⊕D ′

b−2,Q(i),

which eventually allows us to define λ : Mµ,Q(i) ⊗Mν,Q(i) → Q(i) by setting

λ(mb−2 ⊗m′
2−b) = λ(m2−b ⊗m′

b−2) = 1

for respective generators of the weight spaces (Da−3,Q(i))±(b−2) and D ′
±(b−2),Q(i), and setting λ = 0

on the remaining part. �

Proof of Theorem 4.3. We now show that Bλ,∞(VD3 ,WD′
−2

) is non-zero for Bλ like in Lemma 4.6.
By Theorem 4.4 and by construction of λ the pairing Bλ,∞ is non-trivial, when restricted to(

W0(π∞, τ∞)Da ⊗ (Mµ)Da−3

)
×
(
W0(σ∞, τ̄∞)D′

−b
⊗ (Mν)D′

b−2

)
.
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In terms of the canonical bases va
−a, . . . , v

a
a of W0(π∞, τ∞)Da and m3−a, . . . ,ma−3 of (Mµ)Da−3 as

in Section 4.1 a highest weight vector of VD3 is given by

v3 :=
a∑

k=−a+6

(−1)kva
k ⊗m3−k.

Thus the 2e1 weight space in VD3 = 〈v−3, . . . , v3〉C is generated by

E−1 . v3 =
a∑

k=−a+6

(−1)k
(
cakv

a
k−1 ⊗m3−k + ca−3

3−kv
a
k ⊗m2−k

)
.

So with generators w−b of W0(σ∞, τ̄∞)D′
−b

and m′
b−2 of (Mν)D′

b−2
we get by the so2-equivariance

of B∞ and Bλ

Bλ,∞(E−1 . v3, w−b ⊗m′
b−2) = (−1)b(ca−3

3−b − c
a
b+1) ·B∞(va

b , w−b) ·Bλ(m2−b,m
′
b−2).

By Theorem 4.4 and the choice of λ as described in Lemma 4.6 it only remains to show that
cab+1 6= ca−3

3−b for 2 ≤ b ≤ a− 1, which is easily verified.

In the same manner we also get the non-vanishing of Bλ,∞(VD3 ,WD′
2
), so the proof of Theorem

4.3 is complete. �

4.5. Reduction to cohomology. We still want to show that for n = 3 the value Pλ,∞(κ) in
Theorem A does not vanish. Up to now we showed that Bλ,∞ does not vanish on the cohomological
K-types. Recalling the remark in Section 4.2 we want to prove, that B∧ ⊗ Bλ,∞ restricted to
cohomology is still nontrivial. Like in Section 3.6 we may write(

2∧
℘̃∗3 ⊗ VD3

)SO3(R)

ε

resp.
(
℘̃∗2 ⊗ (WD′

−2
⊕WD′

2
)
)SO2(R)

ε′

for the respective cohomology spaces. This suggests to do the proof in two steps. At first we show

Proposition 4.7. (B∧ ⊗B∞)
((∧2

℘̃∗3 ⊗ VD3

)so3

,
(
℘̃∗2 ⊗ (WD′

−2
⊕WD′

2
)
)so2

)
6≡ 0.

Proof. A basis of the so3-module
∧2

℘̃3 is given by

(4.19)

5Z1 ∧ Z2,
5Z0 ∧ Z2,
3Z−1 ∧ Z2 + 2Z0 ∧ Z1, Z0 ∧ Z1 − Z−1 ∧ Z2,
2Z−1 ∧ Z1 + Z−2 ∧ Z2, Z−1 ∧ Z1 − 2Z−2 ∧ Z2,
Z−1 ∧ Z0 + Z−2 ∧ Z1, 3Z−1 ∧ Z0 − 2Z−2 ∧ Z1,
Z−2 ∧ Z0,
Z−2 ∧ Z−1,

whence
∧2

℘̃3 is isomorphic to D1 ⊕ D3 as an so3-module. The same is true for its dual
∧2

℘̃∗3,
since ℘̃3

∼= D2 is self-contragredient as an so3-module. The cohomological SO3(R)-type D3 of V is
isomorphic to D3. So by the Clebsch-Gordon formula we get

2∧
℘̃∗3 ⊗ VD3

∼= (D1 ⊕D3)⊗D3

∼= (D2 ⊕D3 ⊕D4)⊕ (D0 ⊕D1 ⊕D2 ⊕D3 ⊕D4 ⊕D5 ⊕D6).

The so3-invariant vectors are just the D0-part by definition, so that it follows(
2∧
℘̃∗3 ⊗ VD3

)so3

=

(
2∧
℘̃∗3 ⊗ VD3

)
D0

∼= D0.
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If we choose canonical basis vectors v′−3, v
′
−2, v

′
−1, v

′
0, v

′
1, v

′
2, v

′
3 of (

∧2
℘̃∗3)D3

∼= D3 such that
the weight of each v′k is ke1, a generator of the D0-component of

∧2
℘̃∗3 ⊗ VD3 is given by∑3

k=−3(−1)k v′−k ⊗ vk.

Now consider the two cohomological SO2(R)-types WD′
−2
∼= D ′

−2 and WD′
2
∼= D ′

2. The so2-types
of ℘̃2 are 〈Z2〉C ∼= D ′

2 and 〈Z−2〉C ∼= D ′
−2, so that we have ℘̃2

∼= D ′
−2 ⊕ D ′

2. Since ℘̃2 is self-
contragredient with H.Z∗

−2 = 2iZ∗
−2 and H.Z∗

2 = −2iZ∗
2 , the same is true for ℘̃∗2. We get

℘̃∗2 ⊗WD′
−2
∼= (D ′

−2 ⊕D ′
2)⊗D ′

−2
∼= D ′

−4 ⊕D ′
0

and
℘̃∗2 ⊗WD′

2
∼= (D ′

−2 ⊕D ′
2)⊗D ′

2
∼= D ′

0 ⊕D ′
4,

so that in both cases it follows (
℘̃∗2 ⊗WD′

±2

)so2 ∼= D ′
0.

Now let w−2 and w2 denote basis vectors of WD′
−2

resp. WD′
2
, and choose a basis {w′−2, w

′
2} of

℘̃∗2 such that w′−2 has weight −2e1 and w′2 has weight 2e1. Then a basis of (℘̃∗2 ⊗WD′
−2

)so2 resp.
(℘̃∗2 ⊗WD′

2
)so2 is given by w′2 ⊗ w−2 resp. w′−2 ⊗ w2.

We still have to show that the restriction of B∧ ⊗ Bλ,∞ is not trivial. From Section 4.4 we know
that Bλ,∞(vk, w−2) vanishes for k 6= 2. But then by Theorem 4.4 we have 0 6≡ Bλ,∞(VD3 ,WD′

2
) =

Bλ,∞(VD3 , w−2), so that Bλ,∞(v2, w−2) 6= 0. Analogously, Bλ,∞(v−2, w2) 6= 0 and Bλ,∞(va, w2) =
0 for a 6= −2. We showed for all α, β, γ ∈ C

(4.20)
(B∧ ⊗Bλ,∞)(α ·

3∑
k=−3

(−1)k v′−k ⊗ vk, β · w′−2 ⊗ w2 + γ · w′2 ⊗ w−2)

= αγ ·B∧(v′−2, w
′
2)Bλ,∞(v2, w−2) + αβ ·B∧(v′2, w

′
−2)Bλ,∞(v−2, w2),

where the values of B∞ do not vanish. So we reduced the proof to showing

B∧(v′2, w
′
−2) 6= 0 and B∧(v′−2, w

′
2) 6= 0.

In order to do this we choose bases of
∧2

℘̃∗3 and ℘̃∗2 consisting of Maurer-Cartan forms like in
Section 3.1. We set

ω1 := Z∗
−2, ω2 := Z∗

2 , ω3 := Z∗
0 , ω4 := Z∗

−1, ω5 := Z∗
1 .

Recalling the embedding of ℘2 into ℘̃3 from Section 4.1 we also put

ω′1 := Z∗
−2, ω

′
2 := Z∗

2 , ω
′
3 := Z∗

0 ,

where we define Z∗
j by Z∗

j (Zi) = δij with i, j ∈ {−2, 0, 2} in analogy to the above. It follows

δ(p2 ◦ j)(ωi) =

{
ω′i if i = 1, 2, 3,
0 if i = 4, 5

just like in Section 3.1.

Via (4.19) we can express v′−2, v
′
2 in terms of those Maurer-Cartan forms, and get

v′−2 = 5 ω3 ∧ ω2 and v′2 = ω1 ∧ ω3.

Further we may set
w′−2 := ω′2 and w′2 := ω′1.

So, following the definition of εI,I′ in Section 3 and taking into account that ω′3 corresponds to the
differential d

dt there, we find that B∧(v′2, w
′
−2) and B∧(v′−2, w

′
2) do not vanish. �
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It remains to study the action of the groups of connected components of the respective or-
thogonal groups. The case of π0(O3) is already described by Corollary 1.5: Since ε =
sgn(ωπ(−1)(−1)wt(µ)/2) = + we get(

2∧
℘̃∗3 ⊗ VD3

)SO3(R)

+

=

(
2∧
℘̃∗3 ⊗ VD3

)so3

.

The case of π0(O2) is more interesting. If we set δ2 =
(
1 0
0 −1

)
we may write

O2(R) = 〈δ2〉n SO2(R) resp. O2(C) = 〈δ2〉n SO2(C).

δ2 acts on the weights τ of an arbitrary representation of so2 by

τ δ2(H) = τ(δ−1
2 Hδ2) = τ(

(
1 0
0 −1

)(
0 1
−1 0

)(
1 0
0 −1

)
) = τ(−H) = −τ(H).

Thus δ2 interchanges the two weights −2e1 and 2e1 both in ℘̃∗2 and W , whence it also interchanges
the two so2-modules in (℘̃∗2 ⊗ (WD′

−2
⊕ WD′

2
))so2 that are isomorphic to D ′

0. Without loss of
generality we may assume that the basis vectors w′2 ⊗ w−2 and w′−2 ⊗ w2 merge under the action
of δ2. Then we get (

℘̃∗2 ⊗ (WD′
−2
⊕WD′

2
)
)SO2(R)

+

∼= 〈w′2 ⊗ w−2 + w′−2 ⊗ w2〉C.

and (
℘̃∗2 ⊗ (WD′

−2
⊕WD′

2
)
)SO2(R)

−

∼= 〈w′2 ⊗ w−2 − w′−2 ⊗ w2〉C.

But since the (B∧ ⊗ Bλ,∞)-value in (4.20) can not be zero in the cases α = β = γ = 1 and
α = β = −γ = 1 simultaneously by the above-mentioned, it follows that there is a ε′ ∈ {+,−},
such that

(B∧ ⊗Bλ,∞)

(( 2∧
℘̃∗3 ⊗ VD3

)SO3(R)

+

,

(
℘̃∗2 ⊗ (WD′

−2
⊕WD′

2
)
)SO2(R)

ε′

)
6≡ 0.

Recalling the remark in Section 4.2 we find

Theorem B For n = 3 let π∞ have minimal K-type of highest weight a ≥ 3 and σ∞ minimal
K-types of weight ±b such that 2 ≤ b ≤ a − 1. Then there is a Q(i)-rational linear form λ such
that Pλ,∞(κ) does not vanish.
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