
LOCAL WELLPOSEDNESS AND INSTABILITY OF
TRAVELLING WAVES IN A CHEMOTAXIS MODEL

MARTIN MEYRIES

Abstract. We consider the Keller-Segel model for chemotaxis with a non-

linear diffusion coefficent and a singular sensitivity function. We show the

existence of travelling waves for wave speeds above a critical value, and

establish local wellposedness in exponentially weighted spaces in a neigh-

bourhood of a wave. A part of the essential spectrum of the linearization,

which has unbounded coefficients on one half-axis, is determined. Gener-

alizing the principle of linearized instability without spectral gap to fully

nonlinear parabolic problems, we obtain nonlinear instability of the waves

in certain cases.

1. Introduction

Chemotaxis denotes the directed movement of a cell species towards the gra-
dient of a chemical. It is an important mechanism in biology and was discovered,
for instance, in the context of stem cells and neurons. For the biological back-
ground on chemotaxis we refer to [3]. Chemotactic behaviour can be modelled
by the (simplified) Keller-Segel model

ut = (k(u)ux)x − (uφ(v)vx)x
vt = βvxx + b(u, v),

(1.1)

where x ∈ R. This system was first analyzed in [11]. The scalar functions u and
v denote the densities of the cell species and the chemical, respectively. The
second summand of the first equation describes the chemotactic movement of
the species towards the gradient of the chemical which is determined by the
sensitivity function φ depending on v. In addition it is assumed that the species
and the chemical diffuse nondegenerately, the species possibly nonlinearly, and
that the chemical is produced or removed, as described by a cinetic term b(u, v).
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In mathematics, quasilinear, strongly coupled evolution equations of chemo-
taxis type (1.1) have attracted a lot of attention over the last decades, as pattern
formation and blow-up phenomena were discovered in such systems. We refer
to the surveys [7, 8] and the references therein for an overview.

In this paper we investigate the existence and qualitative properties of trav-
elling waves in (1.1). We are concerned with a quite general nonlinear diffusion
coefficent k and a singular sensitivity function φ(v) = χ 1

v . Assuming k to be
bounded on bounded intervals, a singular sensitivity is necessary for the exis-
tence of travelling waves in (1.1), see [11, 23]. For linear diffusion, criteria for
existence and nonexistence of travelling waves for such φ are given in [16, 23].
Explicit travelling wave solutions are derived in [9]. We are not aware of a treat-
ment of the case of nonlinear diffusion in (1.1) in a travelling wave context.

In [16], the waves are shown to be linearly unstable. Further, for a nonsingular
sensitivity function φ and an additional growth term in the first equation of
(1.1), existence and linear (in)stability of travelling waves is proved in [5]. To
our knowledge, there are no wellposedness and nonlinear (in)stability results in
the literature for a singular sensitivity function.

Choosing a cinetic term b similiar as [23], we consider the system

ut = (k(u)ux)x − χ
(
uvxv

)
x

vt = vxx + γv − luv. (1.2)

It is no restriction to set here β = 1, since one can always rescale x → x
√
β

in space for β > 0. Note that because of this, in relations for other coefficients
absolute values will occur in the following.

Throughout the paper, we make the following hypothesis on the coefficients.

(H) In system (1.2) we have k(u) = α+ d(u), where α > 0 is a constant and

d ∈ C3(R) is a nonnegative function. We further assume that D(·) =∫ ·
0
d(τ)
τ dτ is bounded at zero. The coefficients χ, γ and l are strictly

positive constants.

Note that our condition on d implies d(0) = 0.
Searching for travelling waves, we work in a moving coordinate system ξ =

x − ct ∈ R with constant speed c > 0. Then with ′ = d/ dξ, the system (1.2)
transforms into

ut = (k(u)u′)′ + cu′ − χ
(
uv
′

v

)′
vt = v′′ + cv′ + γv − luv.

(1.3)

A travelling wave is a zero of the right-hand side of (1.3) living in the space
C2(R)2 of functions converging at ±∞, see below for notation. For wave speeds
c > 2

√
γ we show the existence of a front-pulse wave (u∗, v∗), i.e. u∗(−∞) > 0,

u∗(+∞) = v∗(±∞) = 0 and u∗, v∗ > 0, by reducing the system to a single sec-
ond order equation with a so-called KPP nonlinearity. Here we proceed similiar
to [16, 23].

For a nonlinear stability analysis, several severe problems arise due to the
singular sensitivity function.
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Local wellposedness of (1.3) near a wave is not trivial at all, since the v-
component of a wave converges exponentially fast to zero for ξ → ±∞ and thus
the last term of the first equation becomes singular. We can only allow pertur-
bations of the wave in exponentially weighted spaces, depending on the asymp-
totics of a front-pulse solution. Using [13, Chapter 8], for local wellposedness we
show that the right-hand side of (1.3), considered as a map of perturbations of
(u∗, v∗), is C1 with locally Lipschitz continuous derivative in an exponentially
weighted space of continuous functions. We further show sectoriality of the lin-
earization in each perturbation. For this, if χ is small compared to α we have
to make an additional restriction on the lower bound of the wave speed c, but
still obtain local wellposedness for wave speeds above a critical value. See (R1)
below for details.

The linearization of (1.3) is a coupled 2× 2-system of second order ordinary
differential operators whose coefficients are unbounded on the left half-axis. We
determine a part of the essential spectrum of the linearization in a travelling
wave by relating its Fredholm properties to the hyperbolicity of a correspond-
ing first order constant coefficient matrix. The standard literature (e.g. [21])
assumes the coefficents to be bounded (in [16], the coefficients are bounded, in
spite a pulse solution). Roughly speaking, we get rid of the unbounded coef-
ficients by restricting the perturbations on the right half-axis. In the natural
case that the minimal diffusion coefficient of the species α is less or equal 1,
the diffusion coefficient of the chemical, we can choose the exponential weight
on the right half-axis such that spectral values with positive real part occur.
Otherwise we obtain such spectral values under certain restrictions on χ and c,
see (R2) below.

By the above choice of the exponential weight, the wave and its translates will
not be contained in the space of perturbations. Therefore our notion of nonlinear
instability of a wave is instability of a single equilibrium in the sense of Lyapunov
(see Remark 2.5 for a detailed discussion). We show nonlinear instability of a
wave in this sense by generalizing the principle of linearized instability without
spectral gap on fully nonlinear evolution equations. For this purpose we show the
applicability of [6, Theorem 5.1.5] on abstract fully nonlinear equations, using
optimal regularity results in weighted Hölder spaces from [13]. In a somewhat
simpler context this can be found in [14, Section 4.2].

Notation. Throughout the paper we denote generic positive constants by
C. ‖ · ‖ always denotes the sup-norm. We set R+ = [0,+∞), R− = (−∞, 0]. If
for a function f : R → RN the limits limξ→±∞ f(ξ) exist, we write f(±∞) for
them. For functions f, g : R → R we write f ∼ g as ξ → ±∞ if f(ξ)/g(ξ) → 1
as ξ → ±∞. If a function f is k-times continuously differentiable, we often
write simply f ∈ Ck. For I = R, resp. R+, we denote by Ck(I) the set of
functions f ∈ Ck(I), where f (j) has finite limits at ±∞ and +∞ for any integer
0 ≤ j ≤ k, respectively. Equipping Ck(I) with the norm ‖f‖Ck =

∑k
j=0 ‖f (k)‖,

it becomes a Banach space. If X and Y are Banach spaces, B(X) and B(X,Y )
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denote the Banach spaces of bounded linear operators on X and from X to Y .
For r > 0 and x0 ∈ X, BX

r (x0) denotes the open ball of radius r in X with
center x0.

2. Framework and Results

For wave speeds above a critical value we obtain the existence of travelling
waves in system (1.2).

Theorem 2.1. Assume (H). Then for each wave speed c > 2
√
γ there exists

a travelling wave solution (u∗, v∗) of (1.2). Its components u∗, v∗ are strictly

positive, u∗ is shaped as a front, and v∗ is shaped as a pulse. More precisely, u∗
is strictly decaying, and

u∗(−∞) = u−∗ = l−1(c2/χ2 + c2/χ+ γ) > 0, u∗(+∞) = v∗(±∞) = 0.

This theorem is proved in Section 3, following the lines of [23]. Note that
due to the scaling invariance of v in (1.2) and the translation invariance of the
problem, for every wave speed c > 2

√
γ Theorem 2.1 gives a two parameter

family of travelling wave solutions with positive components:

{(u∗, λv∗)(·+ ξ0) | λ > 0, ξ0 ∈ R}. (2.1)

Fixing c > 2
√
γ and a travelling wave (u∗, v∗) as a zero of the right-hand side

of (1.3), we make the following restriction on the wave speed.
(R1) In the case χ ≤ α− 2 it holds that

c2 > γ
(χ− α)2

α− χ+ 1
. (2.2)

There is no restriction on c if χ > α− 2.
Assuming (R1),

J =
[
c

2
− 1

2

√
c2 − 4γ,

c

α
+
cχ

2α
− χ

2α

√
c2 − 4γ

]
is an interval, containing more than one point. Now set

w− = − c
χ
, and take some w+ ∈ J,

then w− < 0 and w+ > 0. Note that for simplicity we will abbreviate a = c/χ

in Section 3, hence w− = −a. Choose smooth functions η−, η+ ≥ 1 with the
properties

η−(ξ) =
{
ew−ξ, ξ < −1,
1, ξ ≥ 0,

η+(ξ) =
{

1, ξ < 0,
ew+ξ, ξ ≥ 1,

and set η = η− · η+. Lemma 3.5 below shows that η− grows on R− as 1/v∗, and
η+ grows on R+ at least as 1/v∗ and at most as 1/u∗. Define

X1 = {x ∈ C(R) | η+x ∈ C(R)}, X2 = {y ∈ C(R) | ηy ∈ C(R)},

which are Banach spaces equipped with weighted norms ‖ · ‖X1 = ‖η+ · ‖ and
‖ · ‖X2 = ‖η · ‖, respectively, where ‖ · ‖ denotes, as always, the sup-norm. The
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space X1 is not weighted on R−, corresponding to the fact that u∗ does not
vanish for ξ → −∞. We further define

D1 = {x ∈ C2(R) | x, x′, x′′ ∈ X1}, D2 = {y ∈ C2(R) | y, y′, y′′ ∈ X2}.

These are Banach spaces equipped with the weighted C2-norms ‖ · ‖D1 and
‖ · ‖D2 , respectively, where ‖x‖D1 = ‖x‖X1 + ‖x′‖X1 + ‖x′′‖X1 , and analogously
for ‖ · ‖D2 . Finally, we set

X = X1 ×X2, D = D1 ×D2,

equipped with the norms ‖ · ‖X = ‖ · ‖X1 + ‖ · ‖X2 and ‖ · ‖D = ‖ · ‖D1 +
‖ · ‖D2 , respectively. We consider the right-hand side of (1.3) as a map F of
perturbations (x, y) of a travelling wave (u∗, v∗). Being precise, we have

F

(
x

y

)
=

(
(k(u∗ + x)(u∗ + x)′)′ + c(u∗ + x)′ − χ

(
(u∗ + x) (v∗+y)′

v∗+y

)′
(v∗ + y)′′ + c(v∗ + y)′ + γ(v∗ + y)− l(u∗ + x)(v∗ + y)

)
.

(2.3)
Now (u∗, v∗) corresponds to the zero (0, 0) of F . Proposition 4.3 shows that
there is an open neighbourhood O ⊂ D of (0, 0) such that F : O → X is
defined for any rate w+ ∈ J .

For an interval [a, b], a Banach space E and α ∈ (0, 1), we consider the
Hölder space Cα([a, b];E) equipped with the norm ‖ · ‖Cα = ‖ · ‖+ [·]Cα , where
‖f‖ = supt∈[a,b] ‖f(t)‖E and

[f ]Cα([a,b];E) = sup
t,s∈[a,b],t>s

‖f(t)− f(s)‖E
(t− s)α

.

For α ∈ (0, 1) we further introduce the weighted Hölder space

Cαα (]a, b];E) = {f :]a, b]→ E bounded |f ∈ Cα([a+ ε, b];E) ∀ ε ∈ (0, b− a),
supε∈(0,b−a) ε

α[f ]Cα([a+ε,b];E) < +∞},
(2.4)

equipped with the norm

‖f‖Cαα (]a,b];E) = ‖f‖+ sup
0<ε<b−a

εα[f ]Cα([a+ε,b];E),

cf. [13, Chapter 4].
Combining [13, Theorem 8.1.1 and Proposition 8.2.3], we obtain the following

abstract local wellposedness result.

Theorem 2.2. Assume that X and D are Banach spaces such that D is con-

tinuously and densely embedded in X, that O is an open neighbourhood of

u = 0 in D and that F : O → X is a map with F (0) = 0, having the following

properties:

(P1) F ∈ C1(O, X),
(P2) F ′ : O → B(D,X) is locally Lipschitz continuous,
(P3) F ′(u), considered as an operator on X with domain D, is sectorial for

any u ∈ O, and its graph norm is equivalent to the norm in D.
5



Then the evolution equation ut = F (u) is locally wellposed in O. More precisely,

for fixed α ∈ (0, 1) we have:

(LW1) For each u0 ∈ O there is an existence time τ(u0) > 0 and a solution

u(·, u0) ∈ C1([0, τ(u0)];X) ∩ C([0, τ(u0)];D) ∩ Cαα (]0, τ(u0)];D)

of ut(t) = F (u(t)) for t ∈ [0, τ(u0)] such that u(0) = u0. The solution

u(·, u0) is unique in the set

u(·, u0) ∈
⋃

0<β<1

Cββ (]0, τ(u0)];D) ∩ C([0, τ(u0)];D).

(LW2) For each given T > 0 there is ε > 0, such that if u0 ∈ BD
ε (0) ∩ O then

τ(u0) ≥ T , and the solution map

BD
ε (0) ∩ O → Cαα (]0, T ];D), u0 7→ u(·, u0),

is locally Lipschitz continuous.

By a sectorial operator we mean the generator of an analytic semigroup, see
[13, Chapter 2].

In Section 4 we verify (P1)-(P3) for F : O → X defined in (2.3) to obtain
the following result.

Theorem 2.3. Assuming (H) and (R1), the evolution equation(
xt
yt

)
= F

(
x

y

)
(2.5)

is locally wellposed for (x, y) ∈ O in the sense (LW1), (LW2).

This shows that F generates a dynamical system in D in an open set of
perturbations of a wave. Once this is established, we perform a stability analysis,
considering the wave (u∗, v∗) as the equilibrium (0, 0) of (2.5).

The linearization at the equilibrium, F ′(0, 0), is a nondegenerate second or-
der ordinary differental operator with continuous matrix coefficients, which are
unbounded at −∞ and converge at +∞. In Section 5 we show that if F ′(0, 0)
is Fredholm considered as an operator on functions on the real line then it is
Fredholm considered on functions on the right half-line. Now it is a standard
result that the Fredholm properties of F ′(0, 0) on R+ are closely related to
the hyperbolicity of its corresponding first order constant coefficient operator.
Thus we are able to calculate a part of the essential spectrum of F ′(0, 0). Since
we cannot determine the complete spectrum, we only make statements on the
instability of the wave (see also Remark 5.4).

To obtain positive real parts in the spectrum of the linearization, we have to
make the following assumptions.

(R2) It holds that χ > α− 2. Further, if α > 1 then there is the upper bound

c2 < γ
(α+ χ)2

(χ+ 1)(α− 1)
(2.6)
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on the wave speed c. In addition, the rate of the exponential weight on

R+ is taken from Ju, where Ju ⊂ J is the subinterval

Ju =
(
c

2
+

1
2

√
c2 − 4γ,

c

α
+
cχ

2α
− χ

2α

√
c2 − 4γ

]
. (2.7)

One checks that the fraction in (2.6) is always greater than 4 for χ > α − 2.
In Theorem 2.1, the condition on the wave speed for the existence of travelling
waves is c2 > 4γ. Thus for χ > α − 2 there are always wave speeds such that
(2.6) holds.

In applications, however, the species is expected to diffuse slower than the
chemical, i.e. one expects α− 2 < 0 and α ≤ 1, since β was scaled to 1. In this
case (R2) holds due to our basic assumption χ > 0.

In Section 5 we prove the following result for the spectrum.

Theorem 2.4. Assuming (H) and (R2), it holds that

σ(F ′(0, 0)) ∩ {Reλ > 0} 6= ∅.

More precisely, the curve{
λ ∈ C |Reλ = −h2 + w2

+ − w+c+ γ, Imλ = (2w+ − c)h, h ∈ R
}
,

which intersects the imaginary axis, is contained in σ(F ′(0, 0)).

Remark 2.5. Due to Lemma 3.5 below, for the second component of the wave
we have v∗(ξ) ∼ C e−(min J)ξ as ξ → +∞, i.e. its exponential rate equals the
lower bound for w+ in J . Thus by assuming w+ ∈ Ju in (R2), the wave and
its translates are not contained in D, and the only (known) zero of F in O is
(0, 0).

The most natural notion for nonlinear instability of a wave is orbital instabil-
ity, i.e. the whole family (2.1) is unstable under perturbations. But this makes
no sense in our setting when assuming that w+ ∈ Ju, since we cannot measure
the distance of a perturbed wave to the translated waves in the η+-weighted
norm. Being precise, let v∗∗(·) = v∗(·+ ξ0) with ξ0 ∈ R be a translation of the
second component of a wave and y ∈ D2 be an arbitrary perturbation. Then,
since y decays faster as v∗ as ξ → +∞ by assumption, v∗ + y ∼ C e−(min J)ξ as
ξ → +∞. Therefore

η+(ξ) (v∗∗(ξ)− v∗(ξ)− y(ξ)) ∼ e(w+−(min J))ξ
(
Ceaξ0 − C

)
does not converge for ξ → +∞ for ξ0 6= 0 if w+ > min J .

In this situation we define a wave to be nonlinearly unstable if it is nonlinearly

unstable as a single equilibrium in O in the sense of Lyapunov, see Theorem

6.1 below or [20, Section 2.2.9] for a definition.

In Section 6 we prove the principle of linearized instability without spectral
gap for fully nonlinear parabolic problems.
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Theorem 2.6. In the setting of Theorem 2.2, suppose F is in addition p-

linearizable in u = 0 for some p > 1, and σ(F ′(0)) ∩ {Reλ > 0} 6= ∅.
Then the steady state u = 0 of the locally wellposed evolution equation

ut = F (u) is nonlinearly unstable in the sense of Lyapunov.

See (4.5) for the definition of p-linearizability. For instance, this condition is
fulfilled if F ∈ C2.

In Proposition 4.9 we show that the right-hand side F (see (2.3)) is 2-
linearizable. Thus we immediately obtain our final result.

Theorem 2.7. Assuming (H) and (R2), each travelling wave solution (u∗, v∗)
from Theorem 2.1 is nonlinearly unstable in the sense of Lyapunov in the ex-

ponential weighted space D with respect to perturbations (x, y) ∈ O.

3. Proof of Theorem 2.1: Existence of Travelling Waves

Denoting the wave speed by c > 0, we are searching for nonnegative solutions
which are constant in the moving frame ξ = x−ct ∈ R, i.e. nonnegative functions
u∗, v∗ ∈ C2(R) such that u(x, t) = u∗(x− ct) and v(x, t) = v∗(x− ct) solve (1.2)
for x ∈ R and t ∈ R.

Our strategy follows [16, 23]. Plugging the travelling wave ansatz into (1.2)
and writing ′ = d/ dξ, we obtain the following system of ordinary differential
equations:

−cu′ =
(

(α+ d(u))u′ − χuv
′

v

)′
(3.1)

−cv′ = v′′ + γv − luv (3.2)

First we manipulate this system rather informal, collecting information needed
for a rigorous existence proof.

Supposing v > 0, integrating (3.1) and neglecting constants of integration
yields

u′ =
u

α+ d(u)
(χ(log v)′ − c).

Setting D(·) =
∫ ·
0
d(τ)
τ dτ and supposing u > 0, we obtain

α log u(ξ) +D(u(ξ)) = χ log v(ξ)− cξ. (3.3)

Lemma 3.1. The map G : (0,+∞) → R, G(u) = α log u + D(u), is bijective,

strictly increasing, and C2. Its inverse G−1 is C2, satisfies

G−1(y) ∼ ey/α as y → −∞ (3.4)

and, for y ∈ R,

(G−1)′(y) =
G−1(y)

α+ d(G−1(y))
. (3.5)
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Proof. We calculate G′(u) = (α+d(u))/u and see that G ∈ C2. From α+d(·) >
0 it follows that G′ > 0, therefore G is injective. From D(0) = 0 and D ≥ 0
we conclude that G(u) → −∞ for u → 0 and G(u) → +∞ for u → +∞. This
shows the invertibility of G, so its inverse G−1 exists. For any ε > 0 there is a
C > 0, such that ey/α−ε ≤ G−1(y) ≤ ey/α for y < −C, so (3.4) follows. Since
G′ never vanishes, the inverse is C2, with the stated formula for (G−1)′. �

Now we can solve in (3.3) for u in terms of v and ξ, obtaining u(ξ) =
G−1(χ log v(ξ)− cξ). Plugging this into (3.2) yields

v′′ + cv′ + v(γ − lG−1(χ log v − cξ)) = 0. (3.6)

We abbreviate

a = c/χ, µ = 2a+ c ν = a2 + ac+ γ. (3.7)

Then by setting v(ξ) = eaξp(ξ) with an unknown positive scalar function p,
equation (3.6) is transformed to

p′′ + µp′ + f(p) = 0, (3.8)

where f : R→ R is defined by

f(p) =
{
p(ν − lG−1(χ log |p|)), p 6= 0,
0, p = 0.

(3.9)

The next lemma states that f is a so-called KPP nonlinearity (cf. [12]).

Lemma 3.2. The function f is C1 on R and has the properties

f(0) = f(p0) = 0, f(p) > 0 for p ∈ (0, p0), f ′(0) = ν > 0, f ′(p0) < 0,

where p0 = exp
(
G(ν/l)
χ

)
> 0.

Proof. Clearly f vanishes at the points 0 and p0. Since G−1(−∞) = 0 and G−1

grows strictly, f is positive on the interval (0, p0). We have f ∈ C1 for p 6= 0
with derivative

f ′(p) = ν − lG−1(χ log |p|))− χl(G−1)′(χ log |p|).

From (3.5) we deduce that f ′(p) → ν > 0 for p → 0. Further f ′(0) = ν, so
f ∈ C1. Plugging p0 into f ′ yields f ′(p0) < 0. �

We rewrite (3.8) as the first order system(
p′

q′

)
=
(

q

−f(p)− µq

)
. (3.10)

The system possesses the steady states (p0, 0) and (0, 0). For certain values of
µ, the following classical result states the existence of a heteroclinic orbit of
(3.10) connecting the two steady states.
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Theorem 3.3 ([2, IV.2.3]). There exists a µ0 > 0 with

2
√
f ′(0) ≤ µ0 ≤ 2

√
sup

0<p<p0

f(p)
p
, (3.11)

such that (3.10) possesses a heteroclinic orbit (p∗, q∗) with (p∗, q∗)(−∞) =
(p0, 0), (p∗, q∗)(+∞) = (0, 0), p∗ > 0 and q∗ < 0, provided that µ > µ0.

The special form of f and (3.11) imply that µ0 = 2
√
ν. In what follows, let p∗

and q∗ given by Theorem 3.3, where we assume that µ > µ0. This last condition
is equivalent to c > 2

√
γ. The linearization H of the right-hand side of (3.10)

in (0, 0),

H =
(

0 1
−ν −µ

)
,

is hyperbolic with differing real eigenvalues

κ± =
−µ±

√
µ2 − 4ν

2
= −a− c

2
± 1

2

√
c2 − 4γ < 0. (3.12)

We investigate the asymptotic behaviour of the first component of the hetero-
clinic orbit for ξ → +∞ in detail. This is not really needed in the existence
proof, but is crucial in the next sections. We rewrite (3.10) as(

p′

q′

)
= H

(
p

q

)
+
(

0
g(p)

)
, (3.13)

where the function g : R→ R defined by

g(p) =
{
lpG−1(χ log |p|), p 6= 0,
0, p = 0.

Then g is C1 and has the properties g(R+) ⊂ R+, g(0) = 0, g(p0) = p0ν > 0,
g′(0) = 0, as one verifies as in the proof of Lemma 3.2.

Lemma 3.4. There is a constant S1 > 0, such that e−κ+ξp∗(ξ) → S1 as ξ →
+∞. Further, e−κ+ξq∗(ξ) converges for ξ → +∞, and (q∗/p∗)(+∞) = κ+.

Proof. For simplicity we neglect the stars for the heteroclinic orbit and write
(p, q). Using (3.13), the orbit can implicitly be represented by the variation of
constants formula ([20, Section 1.10]). The eigenvectors of H corresponding to
its eigenvalues κ± are (1, κ±). We diagonalize H by H = TDT−1, where

T =
(

1 1
κ+ κ−

)
, T−1 =

1
κ− − κ+

(
κ− −1
−κ+ 1

)
, D =

(
κ+ 0
0 κ−

)
,

and obtain

eHξ = TeDξT−1 =
1

κ− − κ+

(
κ−e

κ+ξ − κ+e
κ−ξ −eκ+ξ + eκ−ξ

κ+κ−e
κ+ξ − κ+κ−e

κ−ξ −κ+e
κ+ξ + κ−e

κ−ξ

)
.
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Choosing an arbitrary point (p(0), q(0)) on the heteroclinic orbit (p, q), the
variation of constants formula yields(

p(ξ)
q(ξ)

)
=

1
κ− − κ+

(
κ−e

κ+ξ − κ+e
κ−ξ −eκ+ξ + eκ−ξ

κ+κ−e
κ+ξ − κ+κ−e

κ−ξ −κ+e
κ+ξ + κ−e

κ−ξ

)
·

(
p(0) +

∫ ξ
0

1
κ−−κ+

(−e−κ+s + e−κ−s) g(p(s)) ds

q(0) +
∫ ξ
0

1
κ−−κ+

(−κ+e
−κ+s + κ−e

−κ−s) g(p(s)) ds

)
.

After a careful calculation we obtain

(κ− − κ+)p(ξ) =
(
κ−e

κ+ξ − κ+e
κ−ξ
)
p(0) +

(
−eκ+ξ + eκ−ξ

)
q(0)

−
∫ ξ

0
eκ+(ξ−s)g(p(s)) ds +

∫ ξ

0
eκ−(ξ−s)g(p(s)) ds,

(κ− − κ+)q(ξ) = κ+κ−

(
eκ+ξ − eκ−ξ

)
p(0) +

(
−κ+e

κ+ξ + κ−e
κ−ξ
)
q(0)

− κ+

∫ ξ

0
eκ+(ξ−s)g(p(s)) ds + κ−

∫ ξ

0
eκ−(ξ−s)g(p(s)) ds

for the components. Since (p, q) is an orbit on the stable manifold of the hy-
perbolic steady state (0, 0), its components approach (0, 0) with an exponential
rate larger, but arbitrarily close to κ+ < 0 as ξ → +∞ ([20, Section 2.7]). Us-
ing (3.4) and the formula for g, this implies that g(p(s)) ≤ C e(1+χ

α
)(κ++ε)s for

arbitrary small ε > 0 if s is chosen large enough. Using χ
α > 0 and multiplying

the formulas for p and q by e−κ+ξ, we obtain the convergence of e−κ+ξp(ξ) and
e−κ+ξq(ξ) to nonnegative values as ξ → +∞, respectively. We now show that
e−κ+ξp(ξ) is strictly growing, thus obtaining a limit S1 > 0 as ξ → +∞. Since(
e−κ+ξp(ξ)

)′ = e−κ+ξ(−κ+p(ξ) + q(ξ)), we have to show that q > κ+p. Using
the implicit representations of p and q, we find after a careful calculation that
this inequality is equivalent to

κ+p(0)− q(0) <
∫ ξ

0
e−κ−sg(p(s)) ds. (3.14)

Since κ+ < 0, q(−∞) = 0 and p(−∞) = p0 > 0, the left-hand side of (3.14)
will be strictly negative if we choose (p(0), q(0)) sufficiently close to the steady
state (p0, 0). The right-hand side is strictly positive for ξ > 0. Hence q > κ+p,
and the first assertion is proved. For the last assertion, we use the product rule
to obtain

q(ξ)
p(ξ)

= κ+ +

(
e−κ+ξp(ξ)

)′
e−κ+ξp(ξ)

.

The denominator on the right-hand side converges to S1 > 0 as ξ → +∞. Using
(3.9) and (3.10), we see that(

e−κ+ξp(ξ)
)′′

= e−κ+ξ
(
κ2

+p(ξ)− f(p)− (µ+ 2κ+)q(ξ)
)

is bounded on R+, hence
(
e−κ+ξp(ξ)

)′ is uniformly continuous on R+, and
therefore

(
e−κ+ξp(ξ)

)′ → 0 as ξ → +∞. �
11



We are now ready to prove the existence result.

Proof of Theorem 2.1. System (3.10) possesses a heteroclinic orbit (p∗, q∗)
as stated in Theorem 3.3 if and only if µ > 2

√
ν, which reads c > 2

√
γ. We

claim that
u∗(ξ) = G−1(χ log p∗(ξ)), v∗(ξ) = eaξp∗(ξ) (3.15)

are the components of a travelling wave solution as stated in Theorem 2.1. Using
(3.5), (3.7) and (3.8) one easiliy verifies that (u∗(ξ), v∗(ξ)) solves (3.1), (3.2).
Since G−1 and p∗ are strictly positive, both components are strictly positive.
We have

u′∗ =
G−1(χ log p∗)

α+ d(G−1(χ log p∗))
· χq∗
p∗

, (3.16)

and since G−1 > 0, q∗ < 0 and p∗ > 0, we conclude that u∗ decays strictly. It
remains to check the asymptotic properties of the components. Since p∗(−∞) =
p0, we conlcude that v∗(−∞) = 0 and that u∗(−∞) is as stated in the theorem.
Lemma 3.4 shows that p∗(ξ) ∼ S1e

κ+ξ for ξ → ∞. Since κ+ < −a, see (3.12),
we conclude that v∗(+∞) = 0. Finally, u∗(+∞) = 0 follows from G−1(−∞) =
0. �

For later purposes, we investigate the asymptotic behaviour of u∗, v∗ and
their derivatives in more detail.

Lemma 3.5. There are constants S2, S3 > 0 such that the following holds.

As ξ → −∞:

u∗(−∞) > 0, u′∗(−∞) = 0, u′′∗(−∞) = 0;

as ξ → +∞:

u∗(ξ) ∼ S2e
(χακ+)ξ, u′∗(ξ) ∼ S3e

(χακ+)ξ, e−(χακ+)ξu′′∗(ξ) converges;

as ξ → −∞:

v∗(ξ) ∼ p0e
aξ, e−aξv′∗(ξ) converges, e−aξv′′∗(ξ) converges;

as ξ → +∞:

v∗(ξ) ∼ S1e
(κ++a)ξ, e−(κ++a)ξv′∗(ξ) converges, e−(κ++a)ξv′′∗(ξ) converges.

Note that a and κ+ are defined in (3.7) and (3.12).

Proof. Recall (3.15). Setting y = χ log(p∗(ξ)) in (3.4) and using Lemma 3.4,
we obtain the asymptotics for u∗ as ξ → +∞. The derivative u′∗ was calculated
in (3.16). We see that u′∗(−∞) = 0. Using (q∗/p∗)(+∞) = κ+, we obtain the
asserted asymptotics for u′∗ as ξ → +∞. Differentiating (3.16) once more, we
obtain

u′′∗ =
χq∗
p∗

(
u′∗

α+ d(u∗)
− u∗u

′
∗d
′(u∗)

(α+ d(u∗))2

)
+

χu∗
α+ d(u∗)

(
q′∗
p∗
−
(
q∗

p∗

)2
)
.
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Using that q′∗ = −f(p∗) − µq∗ and the Lemmas 3.2 and 3.4, we can verify the
assertions for u′′∗. The claims for v∗, v′∗ and v′′∗ easily follow from (3.9), (3.15)
and Lemma 3.4. �

4. Proof of Theorem 2.3: Local Wellposedness

In this section we are forced to assume −χ
ακ+ +(a+κ+) > 0, see the proof of

Lemma 4.4 below. Performing elementary manipulations using (3.7) and (3.12),
we see that this always holds if χ ≥ α − 2, and otherwise we have to assume
(R1), formulated in Section 2. Using the abbrevations introduced in the last
section, we obtain for the range of the exponential rate w+ on R+

J =
[
−(a+ κ+),−χ

α
κ+

]
. (4.1)

Assuming (R1), J really is an interval, containing more than one point.
We collect some properties of the weighted space D. Note that, as for any ex-

ponential weight, x ∈ D1 is equivalent to η+x ∈ C2(R). The analogous property
holds for y ∈ D2. It is easy to see that D is continuously and densely embedded
in X.

Lemma 4.1. The set {y ∈ D2 | v∗ + y > 0} contains an open neighbourhood

U2 of y = 0. For each y ∈ U2 we have ‖y‖D2 < min{p0/2, S1/2}. Further, there

is an ε > 0 such that η(v∗ + y) ≥ ε for each y ∈ U2.

Proof. Due to Lemma 3.5, for any choice of w+ there is a number ξ0 > 0 such
that ηv∗ > m1 = min{p0/2, S1/2} for |ξ| > ξ0. Set m2 = inf [−ξ0,ξ0] v∗ > 0 and
ε = 1

2 min{m1,m2}. Hence, ηv∗ + ηy > ηv∗ − ε ≥ ε on R for each y ∈ U2 :=
BD2
ε (0). �

Lemma 4.2. For any y ∈ U2 ⊂ D2 it holds that

v′∗ + y′

v∗ + y
,

v′′∗ + y′′

v∗ + y
∈ C(R).

Proof. The first fraction is equal to

eaξ(ap∗(ξ) + q∗(ξ)) + y′(ξ)
eaξp∗(ξ) + y(ξ)

.

Expanded by η−(ξ) = e−aξ, all occuring terms converge as ξ → −∞. Since
p∗(−∞) = p0 and ‖η−y‖ ≤ ‖y‖D2 < p0/2, the denominator does not converge
to zero. For ξ → +∞ expand by e−(a+κ+)ξ, then all occuring terms converge by
Lemma 3.4. The denominator does not converge to zero, since e−κ+ξp∗(ξ)→ S1

and |e−(a+κ+)ξy(ξ)| ≤ |η+(ξ)y(ξ)| ≤ S1/2 for ξ → +∞. The second fraction is
equal to

eaξ(a2p∗(ξ) + (2a− µ)q∗(ξ)− f(p∗(ξ))) + y′′(ξ)
eaξp∗(ξ) + y(ξ)

.

Recall that f(p) = p(ν − lG−1(χ log p)) for p > 0. As before, expand by η− to
deduce the convergence as ξ → −∞. Expand by e−(a+κ+)ξ and use Lemma 3.4
for the convergence as ξ → +∞. �
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With the help of Lemma 4.1 we define the open neighbourhood

O = D1 × U2

of (0, 0) in D.

Proposition 4.3. The map F : O → X, where

F

(
x

y

)
=

(
(k(u∗ + x)(u∗ + x)′)′ + c(u∗ + x)′ − χ

(
(u∗ + x) (v∗+y)′

v∗+y

)′
(v∗ + y)′′ + c(v∗ + y)′ + γ(v∗ + y)− l(u∗ + x)(v∗ + y)

)
as in (2.3), is defined.

Proof. Recall Lemma 3.5. Let (x, y) ∈ O. In the first component of F (x, y),
the first two summands are in X1 since k(0) = α and the exponential rate of
u∗ and its derivatives at +∞ is larger or equal to w+ for any choice of w+ ∈ J ,
see (4.1). The third summand is equal to

−χ(u′∗ + x′)
v′∗ + y′

v + y
− χ(u∗ + x)

v′′∗ + y′′

v + y
+ χ(u∗ + x)

(
v′∗ + y′

v + y

)2

.

Due to Lemma 4.2, the fractions have limits at ±∞. The other factors are in X1

as explained before. Using that v∗ satisfies the travelling wave equation (3.2),
the second component of F (x, y) is equal to

y′′ + cy′ − lv∗x+ y(γ − l(u∗ + x)).

The third summand is inX2 since η−v∗ converges as ξ → −∞ and η+x converges
as ξ → +∞. The other summands belong to X2 since y ∈ D2 and (u∗ + x) ∈
C(R). �

To show local wellposedness of (x, y)t = F (x, y) in the sense (LW1)-(LW2) in
O for (x, y) ∈ O, we verify the assumptions on X, D and O and the properties
(P1)-(P3) for F from Theorem 2.2.

It is clear that D ⊂ X is densely embedded, O ⊂ D is open, (0, 0) ∈ O and
F (0, 0) = (0, 0). Formally linearizing F at (x, y) ∈ O, we obtain the operator

L(x,y) =
(
L1 L2

L3 L4

)
, (4.2)

where

L1 = a1∂ξξ + a2∂ξ + a3, L2 = a4∂ξξ + a5∂ξ + a6,

L3 = a7, L4 = ∂ξξ + c∂ξ + a8,

with the coefficents (we write (u, v) = (u∗, v∗) + (x, y))

a1 = α+ d(u), a2 = c+ 2u′d′(u)− χv
′

v
,

a3 = d′(u)u′′ + d′′(u)(u′)2 − χv
′′

v
− χv′

(
1
v

)′
, a4 = −χu

v
, (4.3)

a5 = −χ
(
u′

v
+ 2u

(
1
v

)′)
, a6 = −χ

(
u′
(

1
v

)′
+ u

(
1
v

)′′)
,
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a7 = −lv, a8 = γ − lu.

We investigate the asymptotic properties of these coefficents and write a±i =
ai(±∞).

Lemma 4.4. Assume (R1), i.e. χ
ακ+ − (a + κ+) < 0. Then for any w+ ∈ J

and arbitrary (x, y) ∈ O the limits a±1 , a
±
2 , a

±
3 , a

±
7 , a±8 exist in R, where a7(ξ) ∼

−lp0e
aξ for ξ → −∞. Further, a+

4 , a+
5 , a+

6 exist but a4, a5, a6 are unbounded

on R− and

eaξai(ξ) converges as ξ → −∞, i = 4, 5, 6.

In the case (x, y) = (0, 0) we obtain

a+
1 = α, a+

2 = c+
χ

2

(
c−

√
c2 − 4γ

)
, a+

3 = ... = a+
7 = 0, a+

8 = γ. (4.4)

Proof. The assertions for a1, a2, a3, a7 and a8 follow from Lemma 3.5 and
Lemma 4.2. The term

eaξ
u(ξ)
v(ξ)

=
u∗(ξ) + x(ξ)

p∗(ξ) + e−aξy(ξ)

converges for ξ → −∞, since the denominator converges to a nonzero number
due to the choice of y ∈ U2. Since u′∗ is given by (3.16), we conclude the
convergence of eaξu′(ξ)/v(ξ) for ξ → −∞ in an analogous way. Calculating
(1/v)′ and (1/v)′′ we see that all assertions for ξ → −∞ follow, since a4, a5

and a6 consist of sums and products of u/v, u′/v and fractions considered in
Lemma 4.2. Next consider

u(ξ)
v(ξ)

=
e−(a+κ+)ξu∗(ξ) + e−(a+κ+)ξx(ξ)
e−(a+κ+)ξv∗(ξ) + e−(a+κ+)ξy(ξ)

.

For ξ → +∞, the nominator converges due to u∗(ξ) ∼ S2e
(χακ+)ξ, (R1) and

w+ ≥ −(a + κ+). Again the denominator converges to a nonzero number by
y ∈ U2. Using (3.16), the term u′/v is treated in an analogous way with help of
Lemmas 3.4 and 3.5. As above, now the convergence of a4, a5, a6 as ξ → +∞
is a consequence of Lemma 4.2.

Now we determine the explicit values of a+
i for (x, y) = (0, 0). Due to (3.15)

and Lemma 3.4 we obtain v′∗/v∗ → a+ κ+ and v′∗(1/v∗)
′ → −(a+ κ+)2. Using

(3.10) we further obtain that

v′′∗
v∗

=
−f(p∗) + (2a− µ)q∗ + a2p∗

p∗
→ a2 + (2a− µ)κ+ − ν = (a+ κ+)2

as ξ → +∞. With the help of Lemma 3.5 and (R1) we deduce that u∗(ξ)/v∗(ξ) ∼
C e(−(a+κ+)+χ

α
κ+)ξ → 0 as ξ → +∞. In the same way we obtain u′∗/v∗ → 0 as

ξ → +∞, using (3.4), (3.16) and Lemma 3.5. Employing (3.12) and Lemma 3.5,
the values for a+

i follow as stated. �

Proposition 4.5. The operator L(x,y) : D → X is bounded for any (x, y) ∈ O.
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Proof. The operators L1 : D1 → X1 and L4 : D2 → X2 are well-defined
and bounded, since their continuous coefficients have limits at ±∞. The map
L2 : D2 → X1 is well-defined, since e.g. η+a4h

′′ = (a4/η−)ηh′′ has limits at
±∞, due to Lemma 4.4. For h ∈ D2 we have

‖L2h‖X1 ≤ ‖a4/η−‖‖ηh′′‖+ ‖a5/η−‖‖ηh′‖+ ‖a6/η−‖‖ηh‖ ≤ C‖h‖D2 ,

and therefore L2 is bounded. The map L3 : X1 → X2 is well-defined (see
the exponential rate of a7 at −∞ in Lemma 4.4), and for g ∈ X1 we have
‖L3g‖X2 ≤ ‖η−a7‖‖η+g‖ ≤ C‖g‖X1 , hence L3 is bounded. �

We now show that F is Fréchet differentiable. For later purposes in Section
6, we show that the local approxmation by its linearization is better than one
actually needs for differentiability.

Let E1, E2 be two Banach spaces, U ⊂ E1 be open and f : U → E2. The map
f is called p-linearizable in x0 ∈ E1 for some p > 1, if there exists a bounded
linear map A : E1 → E2 such that

‖f(x0 + h)− f(x0)−Ah‖E2 = O(‖h‖pE1
) as h→ 0. (4.5)

Note that in this case f is differentiable in x0. If f is p-linearizable in x0 for
p > 1, then it is q-linearizable for any q ∈ (1, p]. We call f p-linearizable, if
it is p-linearizable in each x0 ∈ U . Taylor’s formula implies that C2 maps are
p-linearizable for p ∈ (1, 2].

Compositions of p-linearizable maps are again p-linearizable, which is proved
similar to the chain rule. Thus we investigate the constituents of the first com-
ponent of F . We will often use that for f, g ∈ C1(R) we have

‖fg‖ ≤ ‖f‖‖g‖, ‖fg‖C1 ≤ ‖f‖C1‖g‖C1 .

Define the weighted spaces

Cη+(R) = {x ∈ C(R) | η+x ∈ C(R)}, ‖x‖η+ = ‖η+x‖, (4.6)

and

C1
η+(R) = {x ∈ C1(R) | η+x, η+x

′ ∈ C(R)}, ‖x‖C1
η+

= ‖η+x‖+‖η+x
′‖. (4.7)

The derivative ∂ξ : C1
η+(R) → Cη+(R) is bounded and linear, and therefore

p-linearizable for every p > 1. The first summand in the first component of
F (x, y) equals

d′(u∗ + x)(u′∗ + x′)2 + (α+ d(u∗ + x))(u′′∗ + x′′). (4.8)

Lemma 4.6. For any function f ∈ C2(R), the corresponding substitution op-

erator x 7→ f ◦ x, X1 → C(R), is 2-linearizable with derivative g 7→ f ′(x0) · g at

x0 ∈ X1.

Proof. Note that the substitution operator is well-defined and that the map
g 7→ f ′(x0) · g is bounded from X1 to C(R). Let x0 ∈ X1. Applying Taylor’s
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formula pointwise, for any ξ ∈ R there is a τ = τ(ξ) ∈ (0, 1) such that∣∣[f(x0 + g)− f(x0)− f ′(x0) · g
]

(ξ)
∣∣ =

∣∣∣∣[1
2
f ′′(x0 + τg)g2

]
(ξ)
∣∣∣∣ .

Taking the sup-norm, expanding the right-hand side by η+ and using the local
boundedness of f ′′ gives the 2-linearizability. �

Note that to apply Lemma 4.6 to (4.8) we have to assume that d ∈ C3.

Lemma 4.7. The multiplication, considered as a map

C(R)×X1 → X1 or X1 ×X1 → X1 or X1 ×X2 → X2,

is 2-linearizable. In each case, the Fréchet derivative at (x, y) is the map (g, h) 7→
xh+ yg, where (x, y) and (g, h) belong to the product spaces above.

Proof. In each case, the multiplication is well-defined, and the stated lineariza-
tion is bounded and linear. Take, for instance, (x, y), (g, h) ∈ X1 ×X2. Then

‖(x+ g)(y + h)− xh− yg‖X2 = ‖hg‖X2 ≤ ‖g‖X1‖h‖X2 .

The other cases are treated analogously. �

We now treat the most difficult term of the first component of F .

Lemma 4.8. The map

Q : O → C1
η+(R), Q(x, y) =

(u∗ + x)(v∗ + y)′

v∗ + y

is 2-linearizable with Fréchet derivative at (x, y) ∈ O as stated in (4.9) below.

Proof. We write (u, v) = (u∗ + x, v∗ + y). The operator Q maps to C1
η+(R),

due to the Lemmas 3.5 and 4.2. The linearization of Q in (x, y) ∈ O is the map

(g, h) 7→ u

v
h′ +

v′

v
g − uv′

v2
h. (4.9)

This is a bounded operator D → C1
η+(R), see Lemma 4.2 and the proof of

Lemma 4.4 for the fact that u/(ηv), u′/(ηv) ∈ C(R). Let ‖h‖D2 be small enough
such that y + h ∈ U2. Then Lemmas 4.1 and 4.2 apply to v + h. We calculate∥∥∥∥(u+ g)

v′ + h′

v + h
− uv

′

v
− u

v
h′ − v′

v
g +

uv′

v2
h

∥∥∥∥
C1
η+

=
∥∥∥∥ 1
v2(v + h)

(
gh′v2 − uh′vh− gv′vh+ uv′h2

)∥∥∥∥
C1
η+

≤
∥∥∥∥ gh′

v + h

∥∥∥∥
C1
η+

+
∥∥∥∥ uv′h2

v2(v + h)

∥∥∥∥
C1
η+

+
∥∥∥∥ uh′h

v(v + h)

∥∥∥∥
C1
η+

+
∥∥∥∥ gv′h

v(v + h)

∥∥∥∥
C1
η+

.

The first summand is estimated by∥∥∥∥ gh′

v + h

∥∥∥∥
C1
η+

≤ ‖g‖C1
η+

∥∥∥∥ h′

v + h

∥∥∥∥
C1

≤ C‖g‖D1‖h‖D2
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since∥∥∥∥ h′

v + h

∥∥∥∥ ≤ C‖h‖D2 ,

∥∥∥∥( h′

v + h

)′∥∥∥∥ =
∥∥∥∥ h′′

v + h
− h′(v′ + h′)

(v + h)2

∥∥∥∥ ≤ C‖h‖D2 ,

using Lemma 4.2 and that, due to Lemma 4.1, the function η(v+h) is uniformly
bounded away from zero. The second term is estimated by∥∥∥∥ uv′h2

v2(v + h)

∥∥∥∥
C1
η+

≤ ‖η+u‖C1
η+

∥∥∥∥v′v
∥∥∥∥
C1

∥∥∥∥hv
∥∥∥∥
C1

∥∥∥∥ h

v + h

∥∥∥∥
C1

≤ C‖h‖2D2
,

again due to Lemmas 4.1 and 4.2. The third and forth summand are treated in
a similiar fashion. We obtain that each summand is O(‖(g, h)‖2D). �

The map F is composed of the derivative and maps treated in Lemmas 4.6-
4.8. Carefully composing the derivatives stated in these lemmas, we obtain the
following result.

Proposition 4.9. The map F : O → X is 2-linearizable with Fréchet derivative

F ′(x, y) = L(x,y) for (x, y) ∈ O.

By this proposition and the next one, F fulfills (P1) and (P2).

Proposition 4.10. The map F ′ : O → B(D,X) is locally Lipschitz continuous.

Proof. We have to show that

sup
‖(g,h)‖D=1

‖(F ′(x1, y1)− F ′(x2, y2))(g, h)‖X ≤ C ‖(x1 − x2, y1 − y2)‖D

locally holds in O. Recall that F ′(x, y) = L(x,y) in (4.2). Expanding the coeffi-
cients of L2 and L3 by η−, we obtain for (x, y) ∈ O and ‖(g, h)‖D = 1

‖L(x,y)(g, h)‖X
≤max{ sup-norm of: c, a1, a2, a3, a8, a4/η−, a5/η−, a6/η−, a7/η−}. (4.10)

See (4.3) for a1, ..., a8. We assert that the coefficients in (4.10), considered as
maps O → C(R), depend locally Lipschitzian on (x, y) ∈ O. All non-fraction
terms depend locally Lipschitzian on (x, y), using that the substitution opera-
tors and the multiplications are locally Lipschitzian. For the fractions we write
(u1, v1) = (u∗+x1, v∗+y1), (u2, v2) = (u∗+x2, v∗+y2). Note that, for instance,
u1 − u2 = x1 − x2. For v′/v we estimate∥∥∥∥v′1v1 − v′2

v2

∥∥∥∥ =
∥∥∥∥η(v2(v′1 − v′2) + v′2(v2 − v1))

ηv1v2

∥∥∥∥
≤ 1

min |ηv1|
∥∥η(y′1 − y′2)

∥∥+
1

min |ηv1|
·
∥∥∥∥v′2v2

∥∥∥∥ · ‖η(y2 − y1)‖ ≤ C‖y1 − y2‖D2 ,

using Lemmas 4.1 and 4.2. Therefore also v′(1/v′)′ = −(v′/v)2 is done. In a
similiar way one treats v′′/v. So the assertion holds for a2 and a3. For u/(η−v)
we estimate∥∥∥∥ u1

η−v1
− u2

η−v2

∥∥∥∥ =
∥∥∥∥η+η(v2(u1 − u2) + u2(v2 − v1))

η−η+ηv1v2

∥∥∥∥
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≤ 1
min |ηv1|

‖η+(x1 − x2)‖+
‖η+u2‖

min |ηv1 · ηv2|
‖η(y2 − y1)‖

≤ C (‖x1 − x2‖D1 + ‖y1 − y2‖D2) ,

using Lemma 4.1. Similiarly one treats u′/(η−v). The assertion concerning
a4/η−, a5/η− and a6/η− follows. �

To show sectoriality of L(x,y) for (x, y) ∈ O, we use the special structure of
this operator, cf. (4.2). We exploit the fact that its unbounded coefficients only
occur in coupled terms of the first equation. Its main diagonal entries, L1 and
L4, are sectorial by a standard result.

Proposition 4.11. For every (x, y) ∈ O the operators L1 = a1∂ξξ + a2∂ξ + a3

and L4 = ∂ξξ + c∂ξ +a8 on X1 resp. X2 with domains D1 resp. D2 are sectorial.

Proof. We first consider L4. The maps y 7→ ηy, X2 → C(R), and z 7→ η−1z,
C2(R) → D2, are continuous isomorphisms. Thus L4 is sectorial on D2 if and
only if L̃4 := ηL4η

−1 is sectorial on C(R) with domain C2(R), since the spec-
trum and resolvent estimates remain invariant under this similiarity transfor-
mation. For h ∈ C2(R) one calculates

L̃4h = h′′ + (2η(η−1)′ + c)h′ + (a8 + cη(η−1)′ + η(η−1)′′)h.

Since η is an exponential weight, the coefficents of L̃4 are continuous and have
limits at ±∞. Now [4, Theorem VI.4.3] shows that L̃4 is sectorial. Noting that
a1 ∈ C1(R), a1 ≥ α > 0, and a2, a3 ∈ C(R) for any (x, y) ∈ O due to Lemma
4.4, one treats L1 in a similiar fashion. �

The next lemma shows that the ∂ξξ-bound of ∂ξ in the weighted space X2 is
zero.

Lemma 4.12. For every ε > 0 there is Cε > 0, such that for any h ∈ D2 it

holds that

‖h′‖X2 ≤ ε‖h′′‖X2 + Cε‖h‖X2 .

Proof. Using that η is an exponential weight, we obtain for arbitrary δ > 0

‖(ηh)′‖ ≤ δ‖(ηh)′′‖+ Cδ‖h‖X2 ≤ δ‖h′′‖X2 + δC0‖h′‖X2 + Cδ‖h‖X2 ,

where we used (the proof of) [4, Example III.2.2] for the first inequality. The
constant Cδ > 0 depends on δ, but C0 > 0 does not. Plugging this into ‖h′‖X2 ≤
‖(ηh)′‖+ C‖h‖X2 and choosing δ small enough gives the result. �

Lemma 4.13. The operator L2 = a4∂ξξ + a5∂ξ + a6 : D2 → X1 is L4-bounded.

Proof. As shown in the proof of Proposition 4.5, L2 is defined as stated. Using
Lemma 4.12, we calculate for h ∈ D2

‖L2h‖X1 ≤ ‖a4/η−‖‖h′′‖X2 + ‖a5/η−‖‖h′‖X2 + ‖a6/η−‖‖h‖X2

≤ C‖L4h‖X2 + (C‖c/η‖+ ‖a5/η−‖)‖h′‖X2 + (C‖a8/η‖+ ‖a6/η−‖)‖h‖X2

≤ C (‖L4h‖X2 + ‖h‖X2) + C‖h′′‖X2 . (4.11)
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Using Lemma 4.12 again, we estimate ‖h′′‖X2 ≤ ‖L4h‖X2 +C‖h‖X2 + 1
2‖h

′′‖X2 .

Subtracting 1
2‖h

′′‖X2 and plugging the result into (4.11) finishes the proof. �

Proposition 4.14. For each (x, y) ∈ O, the operator L(x,y) is sectorial on X

with domain D.

Proof. Using that L1, L4 are sectorial, the L4-boundedness of L2, and that
L3 is a bounded operator, the result immediately follows from [17, Corollary
3.3] and the bounded perturbation theorem for sectorial operators ([4, Theorem
III.2.10]). �

The sectoriality of L(x,y) for each (x, y) ∈ O implies its closedness. Therefore
its domain D, equipped with the graph norm ‖ · ‖L(x,y)

of L(x,y), is a Banach
space. Estimating as in the proof of Proposition 4.5, one verifies that the identity
map (D, ‖ · ‖D) → (D, ‖ · ‖L(x,y)

) is bounded, and the open mapping theorem
shows that the inverse identity map is also bounded. Thus ‖ · ‖L(x,y)

and ‖ · ‖D
are equivalent norms on D for each (x, y) ∈ O.

This finally shows that F enjoys the properties (P1)-(P3) from Theorem 2.2,
and Theorem 2.3 is proved.

5. Proof of Theorem 2.4: A Part of the Spectrum of F ′(0, 0)

In this section we show that under certain restrictions on the coefficients of
the model, the wave speed and the weight on the right half-line (see (R2) in
Section 2), the operator A = F ′(0, 0) = L(0,0) has spectral values with positive
real part. Recall that A = M1∂ξξ +M2∂ξ +M3, where

M1 =
(
a1 a4

0 1

)
, M2 =

(
a2 a5

0 c

)
, M3 =

(
a3 a6

a7 a8

)
,

is considered as an operator on X with domain D. See (4.3) with (u, v) replaced
by (u∗, v∗) for the coefficents ai, and (4.4) for their limits at +∞.

Being aware of the different notions for “essential spectrum” in the literature
(cf. [10, Section IV.5.6]), we define

σess(A) = {λ ∈ C | Aλ = A− λ is not a Fredholm operator}.

The essential fact for σess is that for closed operators it remains invariant under
relatively compact perturbations ([10, Theorem IV.5.26]). In Section 3 of the
survey [21], a machinery for calculating σess for second order ordinary differ-
ential operators with coefficents in C(R) is described. Since the coefficients of
A are not bounded on R−, see Lemma 4.4, we will remove R− and apply this
machinery for coefficents in C(R+), where this space and C2

η+(R+) are defined
analogously to (4.6) and (4.7).

Proposition 5.1. Suppose Aλ = M1∂ξξ + M2∂ξ + (M3 − λ) is a Fredholm

operator on X with domain D. Then Bλ, defined as Aλ but on X+ = Cη+(R+)2

with domain D+ = C2
η+(R+)2, is a Fredholm operator as well.
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Proof. We show that dim(kerBλ) < +∞ and codim(imBλ) < +∞. The map
f 7→M−1

1 f , X+ → X+, is a continuous isomorphism. Now M−1
1 Bλ is a second

order ordinary differential operator on R+, thus its kernel is finite dimensional.
We conclude that kerBλ is finite dimensional. Since Aλ is supposed to be Fred-
holm, we have X = (imAλ)⊕ V with dimV < +∞. Let f ∈ X+. Extend f to
a function f̃ ∈ X, then f̃ = Aλũ + ṽ for some ũ ∈ D and ṽ ∈ V . Restricting
ũ and ṽ on R+ to functions u ∈ D+ and v ∈ V |R+ , we obtain f = Bλu + v

on R+, and therefore X+ = (imBλ) + V |R+ . Since V |R+ is finite dimensional,
we obtain X+ = (imBλ)⊕W , where W is a complement of (imBλ ∩ V |R+) in
V |R+ . Thus imBλ has a finite dimensional co-image. �

Now consider the continuous isomorphisms

f 7→ η+f, X+ → C(R+); g 7→ η−1
+ g, C2(R+)→ D+.

The operator Bλ is Fredholm if and only if B̃λ = η+Bλη
−1
+ : C2(R+)2 → C(R+)2

is Fredholm. We calculate B̃λ = M̃1∂ξξ + M̃2∂ξ + M̃3 with the coefficients

M̃1 = M1 =
(
a1 a4

0 1

)
, M̃2 =

(
−2w+a1 + a2 −2w+a4 + a5

0 −2w+ + c

)
,

M̃3 =
(
w2

+a1 − w+a2 + a3 − λ w2
+a4 − w+a5 + a6

a7 w2
+ − w+c+ a8 − λ

)
. (5.1)

The multiplication by M1 is an isomorphism as a map C(R+)2 → C(R+)2

(note that a1 ≥ α > 0 and that all coefficents are bounded on R+), hence also
M−1

1 B̃λ : C2(R+)2 → C(R+)2 is a Fredholm operator. Set C0(R+) = {f ∈
C(R+) | f(+∞) = 0} and C2

0 (R+) = {f ∈ C2(R+) | f, f ′, f ′′ ∈ C0(R+)}. Then

C(R+) = C0(R+)⊕ R, C2(R+) = C2
0 (R+)⊕ R,

since f = (f − f(+∞)) + f(+∞) and necessarily f ′(+∞) = f ′′(+∞) = 0 for
f ∈ C2(R+). The operator M−1

1 B̃λ maps elements of C2
0 (R+)2 into C0(R+)2.

Thus we can define

Dλ = ∂ξξ +M−1
1 M̃2∂ξ +M−1

1 M̃3 : C2
0 (R+)2 → C0(R+)2,

and Dλ is Fredholm if and only if M−1B̃λ is Fredholm. The corresponding first
order operator of Dλ is Eλ = ∂ξ + Tλ : C1

0 (R+)→ C0(R+), where

Tλ =
(

0 −id
M−1

1 M̃3 M−1
1 M̃2

)
. (5.2)

Setting T+
λ = Tλ(+∞), it is a well-known fact that Dλ is a Fredholm operator

if and only if T+
λ is a hyperbolic matrix (see [21, Chapter 3] for the L2 and Cb

case, and [6, Appendix to Chapter 5]).
For completeness, we sketch the proof for the C0(R+) case, following [21].

The Fredholm properties of Dλ are the same as the Fredholm properties of
Eλ ([22, Appendix A]; the proof there is easily adopted to the C0(R+) case).
Replacing Tλ by T+

λ , we receive the constant coefficient operator E+
λ = ∂ξ+T+

λ ,
which differs from Eλ by a relatively compact perturbation ([6, Appendix to
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Chapter 5]). Therefore Eλ and E+
λ have the same Fredholm properties ([10,

Theorem IV.5.26]). It follows from the proof of [19, Theorem 1], that if E+
λ is a

Fredholm operator, then the corresponding homogenous equation u′+T+
λ u = 0

possesses an exponential dichotomy (for a definition and properties see [1];
the converse of this statement is also true, see the proof of [18, Lemma 4.2]).
Being precise, [19, Lemma 1] shows that E+

λ always has dense image. Thus
if E+

λ is supposed to be Fredholm, it must be surjective. As indicated in [19],
now it follows from [15, Theorem 64B] that the corresponding homogenous
equation possesses an exponential dichotomy. From [1, Chapter 6] it follows
that u′ + T+

λ u = 0 possesses an exponential dichotomy if and only if T+
λ is a

hyperbolic matrix.

Remark 5.2. We emphasize that this also shows that the operator Bλ is sur-
jective if and only if T+

λ is hyperbolic.

Summarizing, if T+
λ possesses a purely imaginary eigenvalue then Aλ is not

a Fredholm operator, and therefore λ ∈ σess(A). Thus for λ ∈ C we are look-
ing for solutions h ∈ R of the so-called dispersion relation det(T+

λ − ih) = 0.
Substituting the limits (4.4) into (5.1) we obtain from (5.2)

T+
λ =


0 0 −1 0
0 0 0 −1

w2
+ −

w+a
+
2 +λ
α 0 −2w+ + a+

2
α 0

0 w2
+ − w+c+ γ − λ 0 −2w+ + c

 ,

where a+
2 = c+ χ

2

(
c−

√
c2 − 4γ

)
. We calculate

det(T+
λ − ih) = (−h2 + i(2w+ − a+

2 /α)h+ w2
+ − w+a

+
2 /α− λ/α)

· (−h2 + i(2w+ − c)h+ w2
+ − w+c+ γ − λ),

and obtain the following result.

Proposition 5.3. The sets

S1 =
{
λ ∈ C |Reλ = α(−h2 + w2

+ − w+a
+
2 /α), Imλ = (2αw+ − a+

2 )h, h ∈ R
}
,

S2 =
{
λ ∈ C |Reλ = −h2 + w2

+ − w+c+ γ, Imλ = (2w+ − c)h, h ∈ R
}
,

are contained in σ(A).

The sets S1, S2 are shaped as parabolas, open to the left. We are interested
in spectral values with positive real parts. For the weight we allowed values
w+ ∈ [−(a + κ+),−χ

ακ+]. One easily checks that w2
+ − w+a

+
2 /α ≤ 0 for every

choice of w+, so in S1 numbers with positive real part do not occur.
For S2, consider the polynomial t2 − ct + γ. Its roots are t± = c/2 ±√
c2 − 4γ/2 > 0, i.e. for t < t− and t > t+ the polynomial has positive values.

We have −(a+ κ+) = t− (see (3.12)). If the inequality −χ
ακ+ > t+ holds, then

we can always choose an exponential rate w+ ∈
(
t+,−χ

ακ+

]
on R+, such that

spectral values with positive real part occur. The last inequality is equivalent
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to c(χ − α + 2) > (α + χ)
√
c2 − 4γ. This can never hold if χ ≤ α − 2. In the

case χ > α− 2, we can rewrite it to c2(χ+ 1)(α− 1) < γ(χ+α)2, which always
holds for α ≤ 1. For α > 1 this yields the upper bound (2.6) on the wave speed.

These restrictions are summarized in (R2) in Section 2, and thus Theorem
2.4 is proved.

Remark 5.4. The proof of Proposition 5.1 shows that by truncating R to a
half-line, the Fredholm index of Aλ will increase in general. This is the reason
why we did not choose the essential spectrum to be the (larger) set of λ ∈ C,
for which Aλ is not a Fredholm operator of index zero, as it is done in [21].

Further, the converse of this proposition is wrong. Assume the converse was
true. Choose matrices T−, T+ of type (5.2), where T+ is hyperbolic but T− is not,
and a matrix-valued function T ∈ C(R) with T (±∞) = T±. Now consider the
second order operator S which corresponds to ∂ξ +T as S : C2

0 (R+)→ C0(R+).
By assumption, S, considered on R, is Fredholm. But applying Proposition 5.1
and the machinery described above on R− gives a contradiction.

This means that by truncating R− in Proposition 5.1, we are in general only
able to find a part of the essential spectrum of the original operator. Therefore,
determining stability of a (family of) steady state(s) is in general not possible
when using Proposition 5.1.

Since the travelling wave problem is invariant under translations, we obtain a
trivial zero eigenvalue of F ′(0, 0) if (u∗, v∗) ∈ O, i.e. if the wave itself is contained
in the space of perturbations (see Remark 2.5 and Lemma 3.5). However, this
fact is of no interest to us in the present situation.

6. Proof of Theorem 2.6: Instability Without Spectral Gap

In an abstract setting, we show the principle of linearized instability for fully
nonlinear parabolic problems, without assuming the existence of a spectral gap
of the linearization in a steady state. This is the case for a travelling wave from
Theorem 2.1, see Theorem 2.4.

Suppose X,D,O and F : O → X are as in Theorem 2.2, such that F enjoys
properties (P1)-(P3). Then the evolution equation ut = F (u) is locally wellposed
in the sense (LW1), (LW2). Suppose further that F is p-linearizable in u0 = 0 for
some p > 1 (see (4.5)), which will be fixed from now on, and that the sectorial
operator

A = F ′(0)

has a spectral value with positive real part. To prove nonlinear instability of
u0 = 0, we use the following result.

Theorem 6.1 ([6, Theorem 5.1.5]). Suppose D is a real Banach space and

U ⊂ D is an open neighbourhood of the origin. The map T : U → D is

supposed to be continuous with T (0) = 0, and to be q-linearizable in zero for

some q > 1 by M ∈ B(D) with spectral radius greater than one.
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Then u = 0 is unstable in the sense of Lyapunov, i.e. there is ε0 > 0 and in

any neighbourhood of the origin in U there is a u0, such that for some N ∈ N≥1,

the sequence (un)n=0,...,N , given by un = T (un−1), is defined and ‖uN‖D ≥ ε0.

Choose an arbitrary α ∈ (0, 1). Thanks to (LW2) there is an open set U ⊂ O
containing zero, such that τ(u0) ≥ 1 for any u0 ∈ U , i.e. the solution map
u(·, u0) is defined for t ∈ [0, 1]. It is further locally Lipschitz continuous as a
map from U into Cαα (]0, 1], D). Now the time-one map

T = u(1, ·) : U → D

is defined. To prove Theorem 2.6 we show that T satisfies the assumptions of
Theorem 6.1, with Fréchet derivative eA : D → D.

Since F (0) = 0, we have T (0) = 0. Further, T is locally Lipschitz continuous.
Using the graph norm of A on D and [13, Proposition 2.1.1], one checks that eA :
D → D is continuous. Since the spectral mapping theorem σ(eA)\{0} = eσ(A)

holds for a sectorial operator A ([13, Corollary 2.3.7]), eA has spectral radius
greater than one, considered as a continuous operator on X. Since A and eA

commute on D ([13, Proposition 2.1.1]), we have eAu0 = (λ − A)−1eA(λ −
A)u0 for each u0 ∈ D and arbitrary λ in the resolvent set of A. Thus also eA,
considered as an element of B(D), has spectral radius greater than one.

It remains to show the q-linearizability of T in zero for some q > 1.

Proposition 6.2. Suppose F is p-linearizable in u0 = 0 for some p > 1. Then

the time-one map T : U → D is q-linearizable in u0 = 0 for any q ∈ (1, p) with

Fréchet derivative eA ∈ B(D).

Proof. Set G = F − A, then G : O → X is continuous. For any u0 ∈ U

the corresponding solution u(·, u0) fulfills ut = Au + G(u) for t ∈ [0, 1]. Since
G(u(·, u0)) ∈ C([0, 1];X), the time-one map can be represented by the variation
of constants formula ([13, Proposition 4.1.2]):

T (u0) = eAu0 +
∫ 1

0
e(1−s)AG(u(s, u0)) ds

Consider the integral term as a map R(u0) for u0 ∈ U . Fix q ∈ (1, p). We have to
show that there is a δ > 0 such that ‖R(u0)‖D ≤ C ‖u0‖qD for each ‖u0‖D ≤ δ.

The family
(
e(1−s)A

)
s∈[0,1]

⊂ B(X) is uniformly bounded ([13, Proposition
2.1.1]). The local Lipschitz continuity of the solution map in u0 = 0 and F (0) =
0 imply that there is δ > 0 such that

‖u(·, u0)‖Cαα (]0,1];D) ≤ C ‖u0‖D (6.1)

if ‖u0‖D ≤ δ. This yields in particular sups∈[0,1] ‖u(s, u0)‖D ≤ Cδ. Choosing δ
small enough, the p-linearizability of F in zero and (6.1) yield for any s ∈ [0, 1]

‖G(u(s, u0))‖X ≤ C ‖u(s, u0)‖pD ≤ C ‖u0‖pD, (6.2)

and therefore

‖R(u0)‖X ≤ C sup
s∈[0,1]

‖G(u(s, u0))‖X ≤ C ‖u0‖qD,
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provided ‖u0‖D ≤ δ.
By making δ once more smaller if necessary, due to Lemma 6.3 we have

G(u(·, u0)) ∈ Cββ (]0, 1];X) and estimate (6.3) for some β ∈ (0, 1) with β < α.
[13, Theorem 4.3.5] gives R(u0) ∈ D and

‖AR(u0)‖X ≤ C ‖G(u(·, u0))‖
Cββ (]0,1];X)

,

therefore (6.3) finishes the proof. �

Lemma 6.3. In the setting of the proof above, there are δ > 0 and β ∈ (0, 1)
with β < α such that for ‖u0‖D ≤ δ we have G(u(·, u0)) ∈ Cββ (]0, 1];X) and the

estimate

‖G(u(·, u0))‖
Cββ (]0,1];X)

≤ C ‖u0‖qD. (6.3)

Proof. Fix u0 ∈ U with ‖u0‖D ≤ δ, where δ will be chosen small enough in
the sequel. For simplicity we write u(·) = u(·, u0). Take β ∈ (0, 1) smaller than
α such that

p

(
1− β

α

)
+
β

α
> q. (6.4)

We have to show that

sup
t∈[0,1]

‖G(u(t))‖X + sup
ε∈(0,1)

εβ[G(u(·))]Cβ([ε,1];X) ≤ C ‖u0‖qD.

For the first summand see (6.2). In (P2), the derivative F ′ is assumed to be
locally bounded, thus F : O → X is locally Lipschitz continuous near zero.
Therefore G = F − A : O → X is Lipschitz continuous on a ball Bδ0(0) for
some δ0 > 0.

If ‖u0‖D ≤ δ with δ small enough then supt∈[0,1] ‖u(·)‖D ≤ δ0, thanks to (6.1).
In this case we can estimate

[G(u(·))]Cα([ε,1];X) = sup
t,s∈[ε,1],t>s

‖G(u(t))−G(u(s))‖X
(t− s)α

≤ C sup
t,s∈[ε,1],t>s

‖u(t)− u(s)‖D
(t− s)α

= C [u(·)]Cα([ε,1];D)

for any ε ∈ (0, 1), where the constant C is independent of ε. Hence, using (6.1)
again,

sup
ε∈(0,1)

εα[G(u(·))]Cα([ε,1];X) ≤ C ‖u(·)‖Cαα (]0,1];D) ≤ C ‖u0‖D. (6.5)

Now we claim that for 0 < β < α < 1 there is a constant K > 0, such that for
any closed interval I ⊂ R it holds that

‖f‖Cβ(I,X) ≤ K ‖f‖
1− β

α∞ ‖f‖
β
α

Cα(I,X) for any f ∈ Cα(I,X). (6.6)

In [13, Proposition 1.1.3] the case I = R is treated. The general case follows
from the fact that the Hölder norm of a function f : I → R is not changed if
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f is constantly continued from I to R. Using (6.6), (6.2) and (6.5), we perform
the following estimates:

sup
ε∈(0,1)

εβ[G(u(·))]Cβ([ε,1];X) ≤ sup
ε∈(0,1)

εβ‖G(u(·))‖Cβ([ε,1];X)

≤ K ‖G(u(·))‖1−
β
α∞ sup
ε∈(0,1)

εβ‖G(u(·))‖
β
α

Cα([ε,1];X)

≤ K ‖G(u(·))‖1−
β
α∞

(
‖G(u(·))‖∞ + sup

ε∈(0,1)
εα[G(u(·))]Cα([ε,1];X)

) β
α

≤ C ‖u0‖
p(1− βα)
D

(
C‖u0‖pD + C‖u0‖D

) β
α ≤ C ‖u0‖

p(1− βα)+ β
α

D

Our choice of the exponent in (6.4) gives the result for q ∈ (1, p). �

Thanks to Proposition 6.2, the time-one map T generated by F fulfills the
assumptions of Theorem 6.1, and this proves Theorem 2.6.
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