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This paper aims at developing the theory of Palm measures of stationary random
measures on locally compact second countable groups. The focus will be on recent de-
velopments concerning invariant transport-kernels and related invariance properties of
Palm measures, shift-coupling, and mass-stationarity. Stationary partitions and (invari-
ant) matchings will serve as extensive examples. Many recent results will be extended
from the Abelian (or Rd) case to general locally compact groups.

1 Motivation

Palm probabilities are a very important concept in theory and application of point pro-
cesses and random measures, see e.g. Matthes, Kerstan and Mecke [22], Kallenberg [15],
Stoyan, Kendall and Mecke [30], Daley and Vere-Jones [5], Thorisson [32], and Kallenberg
[16]. The Palm distribution of a stationary random measure M on an locally compact
group G is describing the statistical behaviour of M as seen from a typical point in the
mass of M . Actually it is mathematically more fruitful to consider a general stationary
probability measure on an abstract sample space equipped with a flow. This measure is
then itself a Palm probability measure, obtained when M is given as the Haar measure on
G. This general approach is also supported by many applications that require to consider
a random measure together with other (jointly stationary) random measures and fields.
In stochastic geometry, for instance, already the basic notions (e.g. typical cell, typical
face, rose of directions) require the use of Palm probability measure in such a setting.
And the refined Campbell theorem is a simple, yet powerful tool for handling them.

In his seminal paper [23] Mecke has introduced and studied Palm measures of station-
ary random measures on Abelian groups. Although Palm distributions were defined in
Tortrat [34] in case of a group and in Rother and Zähle [28] in case of a homogeneous
space, these more general cases have found little attention in the literature. A very gen-
eral approach to invariance properties of Palm measures as well as historical comments
and further references can be found in Kallenberg [17].

Recent years have seen some remarkable progress in understanding invariance prop-
erties of Palm probability measures and associated transport and coupling questions.
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Liggett [21] found a way to remove a head from i.i.d. sequence of coin tosses so that the
rest of the the coin tosses are again i.i.d.! This is an explicit shift-coupling of an i.i.d.
sequence and its Palm version: they are the same up to a shift of the origin. Holroyd and
Peres [13] and Hoffman, Holroyd and Peres [11] have used a stable marriage algorithm
for transporting a given fraction of Lebesgue measure on Rd to an ergodic point process.
Again this yields an explicit shift-coupling of a point process with its Palm version. In
dimension d ≥ 3, Chatterjee, Peled, Peres and Romik [3] found an (invariant) gravita-
tional allocation rule transporting Lebesgue measure to a homogeneous Poisson process
exhibiting surprisingly nice moment properties. Motivated by [13] and [11], Last [18] has
studied general stationary partitions of Rd. Last and Thorisson [20] have developed a
general theory for invariant (weighted) transport-kernels on Abelian groups.

Another related line of research can be traced back to Mecke’s [23] intrinsic character-
ization of Palm measures via an integral equation. Thorisson [32] called a simple point
processes on Rd point-stationary if its distribution is invariant under bijective point-shifts
against any independent stationary background. He proved that point-stationarity is a
characterizing property of Palm versions of stationary point processes. Heveling and Last
[9], [10] showed that the independent stationary background could be removed from the
definition of point-stationarity. Bijective point shifts are closely related to invariant graphs
and trees on point processes, see Holroyd and Peres [12], Ferrari, Landim and Thorisson
[6] and Timar [33]. The extension of point-stationarity to general random measures is
not straightforward. Last and Thorisson [20] call a random measure on an Abelian group
mass-stationary if, informally speaking, the neutral element is a typical location in the
mass. They could prove that mass-stationarity is indeed a characterizing property of
Palm measures.

In this paper we will develop Palm theory for stationary random measures on locally
compact second countable groups. In doing so we will extend many recent results from
the Abelian (or Rd) case to general groups. After having introduced stationary random
measures and their Palm measures we will focus on invariant weighted transport-kernels
balancing stationary random measures, invariance and transport properties of Palm mea-
sures and mass-stationarity. In the final two sections we will apply parts of the theory to
stationary partitions and (invariant) matchings of point processes.

2 Stationary random measures

We consider a topologial (multiplicative) group G that is assumed to be a locally compact,
second countable Hausdorff space with unit element e and Borel σ-field G. A classical
source on such groups is [25], see also chapter 2 of [16]. A measure η on G is locally finite
if it is finite on compact sets. There exists a left-invariant Haar measure on G , i.e. a
locally finite measure satisfying

∫

f(hg)λ(dg) =

∫

f(g)λ(dg), h ∈ G, (2.1)

for all measurable f : G → R+, where R+ := [0,∞). This measure is unique up to
normalization. The modular function is a continuous homomorphism ∆ : G → (0,∞)
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satisfying
∫

f(gh)λ(dg) = ∆(h−1)

∫

f(g)λ(dg), h ∈ G, (2.2)

for all f as above. This modular function has the property
∫

f(g−1)λ(dg) =

∫

∆(g−1)f(g)λ(dg). (2.3)

The group G is called unimodular, if ∆(g) = 1 for all g ∈ G.
We denote by M the set of all locally finite measures on G, and by M the cylindrical

σ-field on M which is generated by the evaluation functionals η 7→ η(B), B ∈ G. The
support supp η of a measure η ∈ M is the smallest closed set F ⊂ G such that η(G\F ) = 0.
By N ⊂ M (resp. Ns ⊂ M) we denote the measurable set of all (resp. simple) counting
measures on G, i.e. the set of all those η ∈ M with discrete support and η{g} := η({g}) ∈
N0 (resp. η{g} ∈ {0, 1}) for all g ∈ G. We can and will identify Ns with the class of all
locally finite subsets of G, where a set is called locally finite if its intersection with any
compact set is finite.

We will mostly work on a σ-finite measure space (Ω,A, P) (see Remark 2.8). Although
P need not be a probability measure, we are still using a probabilistic language. Moreover,
we would like to point out already at this early stage, that we will consider several
measures on (Ω,A). A random measure on G is a measurable mapping M : Ω → M. A
random measure is a (simple) point process on G if M(ω) ∈ N (resp. M(ω) ∈ Ns) for all
ω ∈ Ω. A random measure M can also be regarded as a kernel from Ω to G. Accordingly
we write M(ω, B) instead of M(ω)(B). If M is a random measure, then the mapping
(ω, g) 7→ 1{g ∈ supp M(ω)} is measurable.

We assume that (Ω,A) is equipped with a measurable flow θg : Ω → Ω, g ∈ G. This is
a family of measurable mappings such that (ω, g) 7→ θgω is measurable, θe is the identity
on Ω and

θg ◦ θh = θgh, g, h ∈ G, (2.4)

where ◦ denotes composition. This implies that θg is a bijection with inverse θ−1
g = θg−1 .

A random measure M on G is called invariant (or flow-adapted) if

M(θgω, gB) = M(ω, B), ω ∈ Ω, g ∈ G, B ∈ G, (2.5)

where gB := {gh : h ∈ B}. This means that

∫

f(h)M(θgω, dh) =

∫

f(gh)M(ω, dh) (2.6)

for all measurable f : G → R+. We will often skip the ω in such relations, i.e. we
write (2.6) as

∫

f(h)M(θg, dh) =
∫

f(gh)M(θe, dh) or
∫

f(h)M(θg, dh) =
∫

f(gh)M(dh).
Recall that θe is the identity on Ω. Still another way of expressing (2.5) is

M ◦ θg = gM, g ∈ G, (2.7)

where for η ∈ M and g ∈ G the measure gη is defined by gη(·) :=
∫

1{gh ∈ ·}η(dh).
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A measure P on (Ω,A) is called stationary if it is invariant under the flow, i.e.

P ◦ θg = P, g ∈ G, (2.8)

where θg is interpreted as a mapping from A to A in the usual way:

θgA := {θgω : ω ∈ A}, A ∈ A, g ∈ G.

Example 2.1. Consider the measurable space (M,M) and define for η ∈ M and g ∈ G
the measure θgη by θgη := gη, i.e. θgη(B) := η(g−1B), B ∈ G. Then {θg : g ∈ G} is a
measurable flow and the identity M on M is an invariant random measure. A stationary
probability measure on (M,M) can be interpreted as the distribution of a stationary
random measure.

Example 2.2. Let (E, E) be a Polish space and assume that Ω is the space of all measures
ω on G × E × G × E such that ω(B × E × G × E) and ω(G × E × B × E) are finite for
compact B ⊂ G. The σ-field A is defined as the cylindrical σ-field on Ω. It is stated in
[27] (and can be proved as in [22]) that (Ω,A) is a Polish space. For g ∈ G and ω ∈ Ω we
let θgω denote the measure satisfying

θgω(B × C × B′ × C ′) = ω(g−1B × C × g−1B′ × C ′)

for all B, B′ ∈ G and C, C ′ ∈ E . The random measures M and N defined by M(ω, ·) :=
ω(· × E × G × E) and N(ω, ·) := ω(G × E × · × E) are invariant. Port and Stone [27]
(see also [8]) call a stationary probability measure on (Ω,A) concentrated on the set of
integer-valued ω ∈ Ω a (translation invariant) marked motion process. The idea is that
the (marked) points of M move to the points of N in one unit of time.

Example 2.3. Assume that G is an additive Abelian group and consider a flow {θ̃g : g ∈
G} as in [20] (see also [26]). In our current setting this amounts to define gh := h+ g and
θg := θ̃−1

g . It is somewhat unfortunate that in the point process literature it is common
to define the shift of a measure η ∈ M by g ∈ G by g−1η and not (as it would be more
natural) by gη. Here we follow the terminology of [17].

Remark 2.4. Our setting accomodates stationary marked point processes (see [5], [22],
Remark 3) as well as stochastic processes (fields) jointly stationary with a random measure
M (see [32]). The use of an abstract flow {θg : g ∈ G} acting directly on the underlying
sample space is making the notation quite efficient. A more general framework is to work
on an abstract measure space and to replace (2.8) by a distributional invariance, see [17].

We now fix a σ-finite stationary measure P on (Ω,A) and an invariant random measure
M on G. Let w : G → R+ be a measurable function having

∫

w(g)λ(dg) = 1. The measure

QM (A) :=

∫∫

1{θ−1
g ω ∈ A}w(g)M(ω, dg)P(dω), A ∈ A, (2.9)

is called the Palm measure of M (with respect to P). A more succinct way of writing
(2.9) is

QM(A) = E

∫

1{θ−1
g ∈ A}w(g)M(dg), A ∈ A, (2.10)

where E denotes integration with respect to P. The following lemma shows that QM is
concentrated on {e ∈ supp M}. An interpretation of the Palm measure will be given in
Remark 2.10.
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Proposition 2.5. We have QM(e /∈ supp M) = 0.

Proof. From the definition (2.10) and (2.7) we have

QM(e /∈ supp M) = E

∫

1{e /∈ supp M ◦ θ−1
g }w(g)M(dg)

= E

∫

1{e /∈ supp g−1M}w(g)M(dg)

= E

∫

1{g /∈ supp M}w(g)M(dg) = 0,

proving the assertion.

Our first result is the refined Campbell theorem connecting P and QM . In the canonical
case of Example 2.1 the result was derived in [34]. In particular, the result will show that
the definition (2.10) is independent of the choice of the function w.

Theorem 2.6. For any measurable f : Ω × G → R+,

E

∫

f(θ−1
g , g)M(dg) = EQM

∫

f(θe, g)λ(dg). (2.11)

Proof. From definition (2.10) and Fubini’s theorem we obtain that

EQM

∫

f(θe, g)λ(dg) = E

∫∫

f(θ−1
h , g)w(h)λ(dg)M(dh),

Using Fubini’s theorem again, as well as (2.3), we get

EQM

∫

f(θe, g)λ(dg) = E

∫∫

f(θ−1
h , g−1)∆(g−1)w(h)λ(dg)M(dh)

= E

∫∫

f(θ−1
h , g−1h)∆(g−1h)w(h)λ(dg)M(dh),

where we have used left-invariance of λ for the second equality. From Fubini’s theorem
we obtain

EQM

∫

f(θe, g)λ(dg) = E

∫∫

f(θ−1
gh , h)∆(h)w(gh)M ◦ θ−1

g (dh)λ(dg)

= E

∫∫

f(θ−1
h ◦ θ−1

g , h)∆(h)w(gh)M ◦ θ−1
g (dh)λ(dg)

= E

∫∫

f(θ−1
h , h)∆(h)w(gh)M(dh)λ(dg),

where we have used the flow property (2.4) and (2.7) for the second and stationarity of P

for the final equation. The result now follows from

∆(h)

∫

w(gh)λ(dg) = ∆(h)∆(h−1)

∫

w(g)λ(dg) = 1.
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Remark 2.7. Establish the setting of Example 2.3. Then (2.11) means that

E

∫

f(θ̃g, g)M(dg) = EQM

∫

f(θ̃e, g)λ(dg). (2.12)

Equation (2.11) or rather its equivalent version

E

∫

1{(θe, g) ∈ ·}M(dg) = EQM

∫

1{(θg, g) ∈ ·}λ(dg),

is known as skew factorization of the Campbell measure of M . A general discussion of
this technique can be found in [17].

Let w′ : G → R+ be another measurable function having
∫

w′(g)λ(dg) = 1 and take
A ∈ A. Then (2.11) implies that

E

∫

1{θ−1
g ∈ A}w′(g)M(dg) = E

∫

1{θ−1
g ∈ A}w′(g)M(dg)

= EQM

∫

1{θe ∈ A}w′(g)λ(dg) = QM (A).

Hence the definition (2.9) is indeed independent of the choice of w.
The intensity γM of M is defined by

γM := QM (Ω) = E

∫

w(g)M(dg). (2.13)

We have γM = EM(B) for any B ∈ G with λ(B) = 1. The refined Campbell theorem
implies the ordinary Campbell theorem

E

∫

f(g)M(dg) = γM

∫

f(g)λ(dg), (2.14)

for all measurable f : G → R+. In case 0 < γM < ∞ we can define the Palm probability
measure of M by Q0

M := γ−1
M QM .

Remark 2.8. Working with a (stationary) σ-finite measure P rather than with probabil-
ity measure doesn’t make the theory more complicated. In fact, some of the fundamental
results can even be more easily stated this way. An example is the one-to-one corre-
spondence between P and the Palm measure PM , see e.g. Theorem 7.1. Otherwise, extra
technical integrability assumptions are required (see Theorem 11.4 in [16]). Another
advantage is that in some applications it is the Palm probability measure that has a prob-
abilistic interpretation. This measure can be well-defined also in case where P is not a
finite measure.

To derive another corollary of the refined Campbell theorem, we take a measurable
function w̃ : M× G → R+ satisfying

∫

w̃(η, g)η(dg) = 1, (2.15)
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whenever η ∈ M is not the null measure. For one example of such a function we refer to
[23]. We then have the inversion formula

E1{M(G) > 0}f = EQM

∫

w̃(M ◦ θg, g)f ◦ θgλ(dg) (2.16)

for all measurable f : Ω → R+. This is a direct consequence of the refined Campbell
theorem (2.11). A first useful consequence of the inversion formula is the following.

Proposition 2.9. The Palm measure QM is σ-finite.

Proof. As P is assumed σ-finite, there is a positive measurable function f on Ω such
that Ef < ∞. The function

∫

w̃(M ◦ θg, g)f(θg)λ(dg) is positive on {M(G) > 0} and has
by (2.16) a finite integral with respect to QM . Since QM(M(G) = 0) = 0 (see Lemma
2.5) we obtain that QM is σ-finite.

The invariant σ-field I ⊂ A is the class of all sets A ∈ A satisfying θgA = A for all
g ∈ G. Let M be an invariant random measure with finite intensity and define

M̂ := E

[

∫

w(g)M(dg)
∣

∣

∣
I
]

, (2.17)

where the conditional expectation is defined as for probability measures. Since M̂ ◦ θg =

M̂ , g ∈ G, the refined Campbell theorem (2.11) implies that E1A

∫

w(g)M(dg) = QM (A)
for all A ∈ I. Therefore definition (2.17) is independent of the choice of w. If P is a
probability measure and G = Rd, then M̂ is called sample intensity of M , see [22] and
[16]. Assuming that P(M̂ = 0) = 0, we define the modified Palm measure Q∗

M (see [22],
[32], [18]) by

Q∗

M (A) = EM̂−1

∫

1{θ−1
g ∈ A}w(g)M(dg). (2.18)

Conditioning shows that

Q∗

M (A) = P(A), A ∈ I. (2.19)

Comparing (2.18) and (2.9) yields

dQ∗

M = M̂−1dQM . (2.20)

The refined Campbell theorem (2.11) takes the form

EM̂−1

∫

f(θ−1
g , g)M(dg) = EQ∗

M

∫

f(θe, g)λ(dg). (2.21)

Remark 2.10. If P is a probability measure and M is a simple point process with a
positive and finite intensity, then the Palm probability measure Q0

M can be interpreted as
a conditional probability measure given that M has a point in e, see [17]. The modified
version describes the underlying stochastic experiment as seen from a randomly chosen
point of M , see [22], [32]. Both measures agree iff M̂ is P-a.e. constant and in particular
if P is ergodic, i.e. P(A) = 0 or P(Ω \ A) = 0 for all A ∈ I.
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3 Stationary marked random measures

Let (S,S) be some measurable space and M ′ a kernel from Ω to G×S. We call M ′ marked
random measure (on G with mark space S) if M := M ′(· × S) is a random measure on G.
Daley and Vere-Jones [5] call M the ground process of M ′.

A marked random measure M ′ is invariant if M ′(· × B) is invariant for all B ∈ S. In
many applications M ′ is of the form

M ′ =

∫

1{(g, δ(g)) ∈ ·}M(dg), (3.22)

where δ : Ω × G → S is mesurable. If g ∈ supp M we think of δ(g) as mark of g. If M is
invariant and δ is invariant in the sense that

δ(ω, g) = δ(θ−1
g ω, e), ω ∈ Ω, g ∈ G, (3.23)

then it is easy to check that M ′ is invariant.
Let M ′ be an invariant marked random measure and P a σ-finite stationary measure

on (Ω,A). The Palm measure of M ′ is the measure QM ′ on Ω × S defined by

QM ′(A) = E

∫

1{(θ−1
g , z) ∈ A}w(g)M ′(d(g, z)), A ∈ A⊗ S. (3.24)

Note that QM ′(· × B) is the Palm measure of M ′(· × B). The refined Campbell theorem
(2.11) takes the form

E

∫

f(θ−1
g , g, z)M ′(d(g, z)) =

∫∫

f(ω, g, z)λ(dg)QM ′(d(ω, z)) (3.25)

for all measurable f : Ω × G × S → R+.
Assume that (Ω,A) is a Borel space. (This is e.g. the case in Example 2.1.) If

QM ′(Ω × ·) is a σ-finite measure, then we may disintegrate QM ′, to get another form
of (3.25). For simplicity we even assume that the intensity γM of M := M ′(· × S) is
finite. Assuming also γM > 0 we can define the mark distribution W of M ′ by W :=
γ−1

M QM ′(Ω × ·). There exists a stochastic kernel (z, A) 7→ Qz
M ′(A) from S to Ω satisfying

QM ′(d(ω, z)) = γMQz
M ′(dω)W(dz).

Therefore (3.25) can be written as

E

∫

f(θ−1
g , g, z)M ′(d(g, z)) = γM

∫∫∫

f(ω, g, z)λ(dg)Qz
M ′(dω)W(dz). (3.26)

Our next lemma provides an elegant way for handling stationary marked random
measures. A kernel κ from Ω × G to S is called invariant if

κ(ω, g, ·) = κ(θ−1
g ω, e, ·), ω ∈ Ω, g ∈ G. (3.27)

Lemma 3.1. Let M ′ be an invariant marked random measure and assume that (S,S) is
a Borel space. Then there this an invariant stochastic kernel κ from Ω×G to S such that

M ′ =

∫∫

1{(g, z) ∈ ·}κ(g, dz)M(dg) P − a.e. (3.28)
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Proof. Define a measure C ′ on Ω × G × S by

C ′(·) := E

∫

1{(θe, g, z) ∈ ·}M ′(d(g, z)).

From stationarity of P and invariance of M ′ we easily obtain that
∫

1{(θhω, hg, z) ∈ ·}C ′(d(ω, g, z)) = C ′, h ∈ G.

Moreover, the measure C := C ′(· × S) is σ-finite. We can now apply Theorem 3.5 in [17]
to obtain an invariant kernel κ satisfying

C ′ =

∫∫

1{(ω, g, z) ∈ ·}κ(ω, g, dz)C(d(ω, g)). (3.29)

(In fact the theorem yields an invariant kernel κ′, satisfying this equation. But in our
specific situation we have κ′(ω, g, S) = 1 for C-a.e. (ω, g), so that κ′ can be modified in
an obvious way to yield the desired κ.) Equation (3.29) implies that

E1AM ′(B) = E1A

∫∫

1{(g, z) ∈ B}κ(g, dz)M(dg), B ∈ G × S,

for all A ∈ A. Therefore M ′(B) =
∫∫

1{(g, z) ∈ B}κ(g, dz)M(dg) holds P-a.e. Since
G × S is countably generated, (3.28) follows.

We now assume that (3.28) holds for an invariant kernel κ. Invariance of κ implies
that the Palm measure of M ′ is given by

QM ′ = EQM

∫

1{(θe, z) ∈ ·}κ(e, dz). (3.30)

The refined Campbell theorem (3.26) reads

E

∫

f(θ−1
g , g, z)M ′(d(g, z)) = EQM

∫∫

f(ω, g, z)κ(e, dz)λ(dg). (3.31)

The mark distribution is given by W = γ−1
M EQM

κ(e, ·). In the special case (3.22) the
refined Campbell theorem (3.31) says that

E

∫

f(θ−1
g , g, z)M ′(d(g, z)) = EQM

∫

f(ω, g, δ(e))λ(dg). (3.32)

The mark distribution is given by W = γ−1
M QM(δ(e) ∈ ·).

4 Invariant transport-kernels

We first adapt the terminology from [20] to our present more general setting. A transport-
kernel (on G) is a Markovian kernel T from Ω × G to G. We think of T (ω, g, B) as
proportion of mass transported from location g to the set B, when ω is given. A weighted
transport-kernel (on G) is a kernel from Ω×G to G such that T (ω, g, ·) is locally finite for
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all (ω, g) ∈ Ω×G. If T is finite then the mass at g is weighted by T (ω, g, G) before being
transported by the normalized T . A weighted transport kernel T is called invariant if

T (θgω, gh, gB) = T (ω, h, B), g, h ∈ G, ω ∈ Ω, B ∈ G. (4.1)

Quite often we use the short-hand notation T (g, ·) := T (θe, g, ·). If M is an invariant
random measure on G and N :=

∫

T (ω, g, ·)M(ω, dg) is locally finite for each ω ∈ Ω, then
N is again an invariant random measure. Our interpretation is, that T transports M to
N in an invariant way.

Example 4.1. Consider a measurable function t : Ω × G × G → R+ and assume that t
is invariant, i.e.

t(θkω, kg, kh) = t(ω, g, h), ω ∈ Ω, g, h, k ∈ G. (4.2)

Let M be an invariant random measure on G and define

T (g, B) :=

∫

B

t(g, h)M(dh).

Then (4.1) holds. Such functions t occur in the mass-transport principle, see [2] and
Remark 4.6 below. The number t(ω, g, h) is then interpreted as the mass sent from g to
h when the configuration ω is given.

Example 4.2. Consider a measurable mapping τ : Ω × G → G. The transport kernel T
defined by T (g, ·) := δτ(g) is invariant if and only τ is covariant in the sense that

τ(θgω, gh) = gτ(ω, h), ω ∈ Ω, g, h ∈ G. (4.3)

In this case we call τ allocation rule. This terminology is taken from [13].

Example 4.3. Consider the setting of Example 2.2 and let P be a σ-finite stationary
measure on (Ω,A) concentrated on the set Ω′ of all integer-valued ω ∈ Ω. Define an
invariant transport-kernel T by

T (ω, g, ·) =
1

M(ω, {g})

∑

h:ω(g,h)>0

ω(g, h)δh, ω ∈ Ω′, g ∈ G, (4.4)

if M(ω, {g}) > 0 and T (ω, g, ·) := δg otherwise, where ω(g, h) := ω({g} × E × {h} × E).
It can be easily checked that T is P-a.e. (M, N)-balancing. A general criterion for the
existence of balancing transport-kernels is given in Section 6.

Let M and N be two invariant random measures on G. A weighted transport-kernel
T on G is called (M, N)-balancing if

∫

T (ω, g, ·)M(ω, dg) = N(ω, ·) (4.5)

holds for all ω ∈ Ω. In case M = N we also say that T is M-preserving. If Q is a
measure on (Ω,A) such that (4.5) holds for Q-a.e. ω ∈ Ω then we say that T is Q-a.e.
(M, N)-balancing.

The next result is a fundamental transport property of Palm measures. It generalizes
Theorem 4.2 in [20].
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Theorem 4.4. Let P be a σ-finite stationary measure on (Ω,A). Consider two invariant
random measures M and N on G and let T and T ∗ be invariant weighted transport-kernels
satisfying

∫∫

1{(g, h) ∈ ·}T (ω, g, dh)M(ω, dg) =

∫∫

1{(g, h) ∈ ·}T ∗(ω, h, dg)N(ω, dh) (4.6)

for P-a.e. ω ∈ Ω. Then we have for any measurable function f : Ω × G → R+ that

EQM

∫

f(θ−1
g , g−1)∆(g−1)T (e, dg) = EQN

∫

f(θe, g)T ∗(e, dg). (4.7)

Proof. Since
∫

w(g−1h)λ(dh) = 1, g ∈ G, we have from Fubini’s theorem that

I := EQN

∫

f(θe, g)T ∗(c, dg) = EQN

∫∫

f(θe, g)w(g−1h)λ(dh)T ∗(c, dg)

= EQN

∫∫

f(θe, g)w(g−1h)T ∗(c, dg)λ(dh).

Next we use the refined Campbell theorem (2.11) and (4.1) (applied to T ∗) to get

I = E

∫∫

f(θ−1
h , g)w(g−1h)T ∗(θ−1

h , e, dg)N(dh)

= E

∫∫

f(θ−1
h , h−1g)w(g−1hh)T ∗(θe, h, dg)N(dh)

= E

∫∫

f(θ−1
h , h−1g)w(g−1hh)T (θe, g, dh)M(dg),

where the last equality is due to assumption (4.6). We now make the above steps in the
reversed direction. Again by (4.1),

I = E

∫∫

f(θ−1
gh , h−1)w(hgh)T (θ−1

g , e, dh)M(dg).

Since θ−1
gh = θ−1

h ◦ θ−1
g we can use the refined Campbell theorem, to obtain

I = EQM

∫∫

f(θ−1
h , h−1)w(hgh)T (θe, e, dh)λ(dg).

The result now follows from
∫

w(hgh)λ(dg) =

∫

w(gh)λ(dg) = ∆(h−1), h ∈ G.

Theorem 4.4 will play a key role in establishing an invariance property of Palm mea-
sures, see Theorem 5.1 below. One interesting special case is the following generalization
of Neveu’s [26] exchange formula from Abelian to locally compact groups. Another special
case is Theorem 9.1 below.
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Corollary 4.5. Let P be a σ-finite stationary measure on (Ω,A) and M, N invariant
random measure on G. Then we have for any measurable function f : Ω × G → R+ that

EQM

∫

f(θ−1
g , g−1)∆(g−1)N(dg) = EQN

∫

f(θe, g)M(dg). (4.8)

Proof. Apply Theorem 4.4 with T (g, ·) := M and T ∗(g, ·) := N .

Remark 4.6. Let B ∈ G have positive and finite Haar measure. Using the definition
(2.10) of Palm measures (applied to w := λ(B)−11B) as well as invariance of M and N ,
we can rewrite the exchange formula (4.8) as

E

∫∫

1{h ∈ B}f(θ−1
g , g−1h)∆(g−1)∆(h)N(dg)M(dh)

= E

∫∫

1{h ∈ B}f(θ−1
h , h−1g)M(dg)N(dh). (4.9)

The function t(ω, g, h) := f(θ−1
g ω, g−1h) is invariant in the sense of (4.2). Equation (4.9)

implies

E

∫∫

1{g ∈ B}t(h, g)∆(g−1)∆(h)N(dh)M(dg) = E

∫∫

1{g ∈ B}t(g, h)N(dg)M(dh)

(4.10)

for all invariant t. In case M = N this gives a version of the mass-transport principle
(see [2]) for stationary random measures on groups. It will be shown in [19] that Neveu’s
exchange formula (4.8) can be generalized to jointly stationary random measures on a
homogeneous space. In fact, the papers [2] and [1] show that the mass-transport principle
can be extended beyond this setting.

Corollary 4.7. Let the assumptions of Theorem 4.4 be satisfied. Assume moreover that
M and N have finite intensities and that P(M̂ = 0) = P(N̂ = 0) = 0. Then we have for
any measurable function f : Ω × G → R+ that

M̂EQ∗

M

[

∫

f(θ−1
g , g−1)∆(g−1)T (c, dg)

∣

∣

∣
I
]

= N̂EQ∗

N

[

∫

f(θe, g)T ∗(e, dg)
∣

∣

∣
I
]

,

P-a.e. for any choice of the conditional expectations.

Proof. Define the random variables X and X ′ by X :=
∫

f(θ−1
g , g−1)∆(g−1)T (e, dg)

and X ′ :=
∫

f(θe, g)T ∗(c, dg) and let A ∈ I. Due to (2.19) we have Q∗

M = Q∗

N on I.
Hence we have to show that

EQ∗

M
1AM̂X = EQ∗

N
1AN̂X ′.

By (2.20) this amounts to EQM
1AX = EQN

1AX ′, i.e. to a consequence of (4.7).
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5 Invariance properties of Palm measures

In this section we fix a stationary σ-finite measure P on (Ω,A). In the special case of
an Abelian group the following fundamental invariance property of Palm measures has
recently been established in [20].

Theorem 5.1. Consider two invariant random measures M and N on G and an invariant
weighted transport-kernel T . Then T is P-a.e. (M, N)-balancing iff

EQM

∫

f(θ−1
g )∆(g−1)T (e, dg) = EQN

f (5.1)

holds for all measurable f : Ω → R+.

Proof. Assume first that T is P-a.e. (M, N)-balancing. Lemma 5.2 below shows that
there exists an invariant transport-kernel T ∗ satisfying (4.6) for P-a.e. ω ∈ Ω. Applying
(4.7) to a function not depending on the second argument, yields (5.1).

Let us now assume that (5.1) holds. Take a measurable function f : Ω×G → R+. By
the refined Campbell theorem and (5.1),

E

∫

f(θ−1
g , g)N(dg) = EQM

∫∫

f(θ−1
h , g)∆(h−1)T (e, dh)λ(dg).

By Fubini’s theorem and (2.2) this equals

EQM

∫∫

f(θ−1
h , gh)∆(h)T (e, dh)λ(dg) = E

∫∫

f(θ−1
h ◦ θ−1

g , gh)T (θ−1
g , e, dh)M(dg),

where the equality is again due to the refined Campbell theorem, this time applied to M .
By (4.1),

E

∫

f(θ−1
g , g)N(dg) = E

∫∫

f(θ−1
h , h)T (g, dh)M(dg).

A straightforward substitution yields

E

∫

f̃(θe, g)N(dg) = E

∫∫

f̃(θe, g)T (h, dg)M(dh),

for all measurable functions f̃ : Ω×G → R+. From this we obtain by a standard procedure
that N(B) =

∫

T (θe, g, B)M(dg) P-a.e. for all B ∈ G. Since G is countably generated,
this concludes the proof of the theorem.

The above proof has used the following lemma:

Lemma 5.2. Assume that T is a P-a.e. (M, N)-balancing invariant weighted transport-
kernel. Then there exists an invariant transport-kernel T ∗ on G such that (4.6) holds for
P-a.e. ω ∈ Ω.
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Proof. Consider the following measure W on Ω × G × G:

W :=

∫∫∫

1{(ω, g, h) ∈ ·}T (ω, g, dh)M(ω, dg)P(dω).

Stationarity of P, (2.5), and (4.1) easily imply that
∫

1{(θgω, kg, kh) ∈ ·}W (d(ω, g, h)) = W, k ∈ G.

Moreover, as T is a P-a.e. (M, N)-balancing, we have

W ′ :=

∫

1{(ω, h) ∈ ·}W (d(ω, g, h)) =

∫∫

1{(ω, h) ∈ ·}N(ω, dh)P(dω). (5.2)

This is a σ-finite measure on Ω × G. As in the proof of Lemma 3.1 we can now apply
Theorem 3.5 in [17] to obtain an invariant transport-kernel T ∗ satisfying

W =

∫∫

1{(ω, g, h) ∈ ·}T ∗(ω, h, dg)W ′(d(ω, h)).

Recalling the definition of W and the second equation in (5.2) we get that
∫∫∫

1{(ω, g, h) ∈ ·}T (ω, g, dh)M(ω, dg)P(dω)

=

∫∫∫

1{(ω, g, h) ∈ ·}T ∗(ω, h, dg)N(ω, dh)P(dω)

and hence the assertion of the lemma.

Example 5.3. Consider the setting of Example 2.2 and let P be a σ-finite stationary
measure on (Ω,A) concentrated on the set Ω′ of all integer-valued ω ∈ Ω. Applying
Theorem 5.1 with T given by (4.4) yields

∫

1

M(ω, {e})

∑

h:ω(e,h)>0

f(θhω)ω(e, h)∆(g−1)QM(dω) = EQN
[f ] (5.3)

for any measurable f : Ω → R+. Specializing to the case of a function f depending only
on N(ω) (and to an Abelian subgroup of Rd) yields Theorem 6.5 in Port and Stone [27].
In the special case G = R (and under further restrictions on the support of P), (5.3) is
Theorem (6.5) in [8].

In fact, the paper [27] is using a specific form of the Palm measure QM . To explain
this, we assume that P(M ′ ∈ ·) is σ-finite, where M ′ is the marked random measure
defined by M ′(ω) := ω(· × G × E). Then there is a Markov kernel K from ME to Ω
satisfying

P =

∫

K(η, ·)P(M ′ ∈ dη).

Here ME denotes the space of all measures η on G×E such that η(·×E) ∈ M. (Similarly
as in Example 2.2 this space can be equipped with a σ-field and a flow.) By Theorem 3.5
in [17] we can assume that K is invariant. Of course, if P is a probability measure, then
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K(M ′, A) is a version of the conditional probability of A ∈ A given M . Using invariance
of K, it is straightforward to check that

QM =

∫

K(η, ·)QM(M ′ ∈ dη). (5.4)

Let M and N be random measures on G. We call an allocation rule τ (see Example
4.2) P-a.e. (M, N)-balancing, if

∫

1{τ(g) ∈ ·}M(dg) = N (5.5)

holds P-a.e., i.e. if the transport T defined by T (g, ·) := δτ(g) is P-a.e. (M, N)-balancing.
For an allocation rule τ it is convenient to introduce the measurable mapping θτ : Ω → Ω
by

θτ (ω) := θτ(ω,e)ω. (5.6)

Similarly we define θ−1
τ : Ω → Ω by θ−1

τ (ω) := θ−1
τ(ω,e)ω.

Corollary 5.4. Consider two invariant random measures M and N and let τ be an
allocation rule. Then τ is P-a.e. (M, N)-balancing iff

EQM
f(θ−1

τ )∆(τ(e)−1) = EQN
f (5.7)

holds for all measurable f : Ω → R+.

In the Abelian case Corollary 5.4 can be found in [20]. If in addition M = N , then
one implication is (essentially) a consequence of Satz 4.3 in [24]. The special case M = λ
was treated in [7].

6 Existence of balancing weighted transport-kernels

We fix a stationary σ-finite measure P on (Ω,A) and consider two invariant random
measures M, N on G. Our aim is to establish a necessary and sufficient condition for the
existence of (M, N)-balancing invariant weighted transport-kernels T satisfying

∫

∆(g−1)T (e, dg) = 1. (6.1)

Theorem 6.1. Assume that M and N have positive and finite intensities. Then there
exists a P-a.e. (M, N)-balancing invariant weighted transport-kernel satisfying (6.1) iff

E[M(B)|I] = E[N(B)|I] P − a.e. (6.2)

for some B ∈ G satisfying 0 < λ(B) < ∞.
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Proof. Let B ∈ G satisfy 0 < λ(B) < ∞. For any A ∈ I we have from the refined
Campbell theorem (2.11) that

λ(B)QM(A) = E[1AM(B)], λ(B)QN(A) = E[1AN(B)]. (6.3)

Assume now that T is a P-a.e. (M, N)-balancing invariant weighted transport-kernel
satisfying (6.1). Then Theorem 5.1 implies for all A ∈ I the equality QM(A) = QN(A).
Thus (6.3) implies E1AM(B) = E1AN(B) and hence (6.2).

Let us now assume that (6.2) holds for some B ∈ G satisfying 0 < λ(B) < ∞. Since
EM(·) and EN(·) are multiples of λ, M and N have the same intensities. We assume
without loss of generality that these intensities are equal to 1. From (6.3) and conditioning
we obtain that QM = QN on I. Using the group-coupling result in Thorisson [31] as in
Last and Thorisson [20], we obtain a stochastic kernel T̃ from Ω to G satisfying

QN (A) = EQM

∫

1{θ−1
g ∈ A}T̃ (θe, dg), A ∈ A. (6.4)

Let T ′ be the kernel from Ω to G defined by

T ′(ω, ·) :=

∫

1{g ∈ ·}∆(g)T̃ (ω, dg).

Since ∆ is continuous, T ′(ω, B) is finite for all ω ∈ Ω and all compact B ⊂ G. The
invariant weighted transport-kernel T defined by T (ω, g, B) := T ′(θ−1

g ω, g−1B) satisfies
(6.1) by definition. And because of (6.4) it does also satisfy (5.1). Theorem 5.1 implies
that T is P-a.e. (M, N)-balancing.

7 Mecke’s characterization of Palm measures

Let M be an invariant random measure on G. In contrast to the previous sections we
do not fix a stationary measure on (Ω,A). Instead we consider here a measure Q on
(Ω,A) as a candidate for a Palm measure QM of M w.r.t. some stationary measure P on
(Ω,A). In case G is an Abelian group (and within a canonical framework) the following
fundamental characterization theorem was proved in [23]. In a canonical framework (and
for finite intensities) the present extension has been established in [28], even in the more
general case of a random measure on an homogeneous space.

Theorem 7.1. The measure Q is a Palm measure of M with respect to some σ-finite
stationary measure iff Q is σ-finite, Q(M(G) = 0) = 0, and

EQ

∫

f(θ−1
g , g−1)∆(g−1)M(dg) = EQ

∫

f(θe, g)M(dg) (7.1)

holds for all measurable f : Ω × G → R+.

Proof. If Q is a Palm measure of M , then Q is σ-finite by Proposition 2.9. Equation
Q(M(G) = 0) = 0 holds by Proposition 2.5, while the Mecke equation (7.1) is a special
case of (4.7).
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Let us now conversely assume the stated conditions. Using the function w̃ occuring in
(2.16), we define a measure P on Ω by

P(A) := EQ

∫

1{θg ∈ A}w̃(gM, g)λ(dg), A ∈ A. (7.2)

Take a measurable f : Ω × G → R+. By (2.15),

EQ

∫

f(θg, g)λ(dg) = EQ

∫∫

f(θg, g)w̃(gM, h)gM(dh)λ(dg)

= EQ

∫∫

f(θg, g)w̃(M ◦ θg, gh)λ(dg)M(dh).

Using assumption (7.1), we get

EQ

∫

f(θg, g)λ(dg)

= EQ

∫∫

f(θg ◦ θh−1 , g)w̃(M ◦ θg ◦ θh−1 , gh−1)∆(h−1)λ(dg)M(dh)

= EQ

∫∫

f(θg−1h−1, g−1)w̃(M ◦ θg−1h−1, g−1h−1)∆(h−1)∆(g−1)λ(dg)M(dh)

= EQ

∫∫

f(θg−1 , g−1h)w̃(M ◦ θg−1 , g−1)∆(g−1)λ(dg)M(dh)

= EQ

∫∫

f(θg, gh)w̃(M ◦ θg, g)λ(dg)M(dh),

where we have used properties of the Haar measure λ for the second, third, and fourth
equality. This implies

EQ

∫

f(θg, g)λ(dg) = EQ

∫∫

f(θg, h)w̃(M ◦ θg, g)M ◦ θg(dh)λ(dg),

so that by definition (7.2)

EQ

∫

f(θg, g)λ(dg) = E

∫

f(θe, h)M(dh). (7.3)

Since Q ⊗ λ is σ-finite, there is a measurable function f̃ : Ω × G → (0,∞) having
EQ

∫

f̃(θe, g)λ(dg) < ∞. Defining a positive measurable function f : Ω × G → R+ by

f(ω, h) := f̃(θh−1ω, h), we obtain

EQ

∫

f(θg, g)λ(dg) = EQ

∫

f̃(θe, g)λ(dg) < ∞.

Hence (7.3) implies that the P-a.e. positive measurable function
∫

f(θe, g)M(dg) has a
finite integral with respect to P. Therefore P is σ-finite.
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Next we show that P is stationary. By invariance of λ we have for A ∈ A and h ∈ G

P(A) = EQ

∫

1{θh−1g ∈ A}w̃(M ◦ θh−1g, h
−1g)λ(dg)

= EQ

∫

1{θg ∈ θhA}w̃(M ◦ θh−1 ◦ θg, h
−1g)λ(dg).

Applying (7.3), yields

P(A) = E

∫

1{θe ∈ θhA}w̃(M ◦ θh−1 , h−1g)M(dg) = P(θhA),

since
∫

w̃(M ◦ θh−1 , h−1g)M(dg) = 1 P-a.e.
It remains to show that Q is the Palm measure QM of M with respect to P. By (2.10)

and (7.3),

QM (A) = E

∫

1{θ−1
h ∈ A}w(h)M(dh) = EQ

∫

1{θ−1
g ◦ θg ∈ A}w(g)λ(dg).

Hence QM(A) = Q(A), as desired.

8 Mass-stationarity

We fix an invariant random measure M on G and a σ-finite measure Q on (Ω,A). Our
aim is to establish mass-stationarity as another characterizing property of Palm measures
of M . This is generalizing one of the main results in Last and Thorisson [20] from Abelian
to arbitrary groups satisfying the general assumptions.

Let C ∈ G be relatively compact and define a Markovian transport kernel TC by

TC(g, B) := M(gC)−1M(B ∩ gC), g ∈ G, B ∈ G, (8.1)

if M(gC) > 0, and by letting TC(g, ·) equal some fixed probability measure, otherwise.
In the former case TC(g, ·) is just governing a G-valued stochastic experiment that picks
a point uniformly in the mass of M in gC. Since M is invariant, it is immediate that TC

is invariant too. If 0 < λ(C) < ∞ we also define the uniform distribution λC on C by
λC(B) := λ(B ∩ C)/λ(C). The interior (resp. boundary) of a set C ⊂ G is denoted by
int C (resp. ∂C).

A σ-finite measure Q on (Ω,A) is called mass-stationary for M if Q(M(G) = 0) = 0
and

EQ

∫∫

1{(θ−1
g , hg) ∈ A}TC(h−1, dg)λC(dh) = Q ⊗ λC(A), A ∈ A⊗ G, (8.2)

holds for all relatively compact sets C ∈ G with λ(C) > 0 and λ(∂C) = 0.

Remark 8.1. Assume that Q is a probability measure. Let C be as assumed in (8.2).
Extend the space (Ω,A, Q), so as to carry random elements U, V in G such that θe and
U are independent, U has distribution λC , and the conditional distribution of V given
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(θe, U) is uniform in the mass of M on U−1C. (The mappings θg, g ∈ G, are extended,
so that they still take values in the original space Ω.) Then (8.2) can be written as

(θ−1
V , UV )

d
= (θe, U). (8.3)

Mass-stationarity of Q requires that this holds for all such pairs (U, V ).

Theorem 8.2. There exists a σ-finite stationary measure P on (Ω,A) such that Q = QM

iff Q is mass-stationary for M .

Proof. Assume first that Q = QM is the Palm measure of M with respect to a σ-finite
stationary measure P. Let C be as in (8.2) and D a measurable subset of C. Define a
weighted transport-kernel T by

T (g, B) :=

∫∫

1{k ∈ B, h−1k ∈ D}1{h−1g ∈ C}TC(h, dk)λ(dh).

By invariance of TC and left-invariance of λ,

T (θg, g, gB) =

∫∫

1{k ∈ B, h−1gk ∈ D}1{h−1g ∈ C}TC(g−1h, dk)λ(dh) = T (θe, e, B).

Hence T is invariant. Let g ∈ G. From the properties of the set C and continuity of group
mulitplication we have for λ-a.e. h such that h−1g ∈ C the relationship h−1g ∈ int C. If
h−1g ∈ int C and g ∈ supp M , then g ∈ int hC and M(hC) > 0. Using this and the
definition of TC , we obtain

∫

T (g, B)M(dg) =

∫∫

1{k ∈ B, h−1k ∈ D}λ(dh)M(dk)

=

∫∫

1{k ∈ B, h−1 ∈ D}λ(dh)M(dk) = M(B)λ∗(D),

where λ∗(D) :=
∫

1{h−1 ∈ D}λ(dh). Therefore we obtain from Theorem 5.1 that

EQ

∫

f(θ−1
g )∆(g−1)T (e, dg) = λ∗(D)EQf (8.4)

for all measurable f : Ω → R+. The above left-hand side equals

EQ

∫∫

f(θ−1
g )∆(g−1)1{g ∈ hD, h−1 ∈ C}T (e, dg)λ(dh)

= EQ

∫∫

f(θ−1
g )∆(g−1)1{hg ∈ D, h ∈ C}T (e, dg)λ∗(dh).

Hence we obtain from (8.4) and a monotone class argument

EQ

∫∫

f(θ−1
g , hg)∆(g−1)1{h ∈ C}T (e, dg)λ∗(dh) = EQ

∫

f(θe, h)1{h ∈ C}λ∗(dh)
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for all measurable f : Ω × G → R+. By (2.3) this means

EQ

∫∫

f(θ−1
g , hg)∆(g−1)∆(h−1)1{h ∈ C}T (e, dg)λ(dh)

= EQ

∫

f(θe, h)∆(h−1)1{h ∈ C}λ(dh).

Applying this with f(ω, k) replaced by f(ω, k)∆(k) gives

EQ

∫∫

f(θ−1
g , hg)1{h ∈ C}T (e, dg)λ(dh) = EQ

∫

f(θe, h)1{h ∈ C}λ(dh).

This is equivalent to (8.2).
Now we assume conversely, that Q is mass-stationary. Our strategy is to derive the

Mecke equation (7.1) and to apply Theorem 7.1. Let f : Ω → R+ be measurable, C be
as in (8.2) and D a measurable subset of C. By (8.2)

EQ

∫∫

f(θ−1
g )M(h−1C)−11{hg ∈ D, h ∈ C}M(dg)λ(dh) = λ(D)EQf,

where 1/0 := 0. Therefore,

EQ

∫∫

f(θ−1
g )M(gh−1C)−11{h ∈ D, hg−1 ∈ C}∆(g−1)M(dg)λ(dh) = λ(D)EQf.

Since D can be any measurable subset of C, we get

EQ

∫

f(θ−1
g )M(gh−1C)−11{hg−1 ∈ C}∆(g−1)M(dg) = EQf

for λ-a.e. h ∈ C. In particular we also have for λ-a.e. h ∈ C that

EQ

∫

f(θ−1
g )f̃(M ◦ θ−1

g )M(gh−1C)−11{hg−1 ∈ C}∆(g−1)M(dg) = EQf f̃(M),

for any measurable f̃ : M → R+. Since M is countably generated, we may choose the
corresponding λ-null set independent of f̃ . In particular we may take for any h outside a
λ-null set, f̃(η) := η(h−1C). Then f̃(M ◦ θ−1

g ) = M ◦ θ−1
g (h−1C) = M(gh−1C), so that

EQ

∫

f(θ−1
g )1{hg−1 ∈ C}∆(g−1)M(dg) = EQfM(h−1C)

for λ-a.e. h ∈ C. From here we can proceed as in Last and Thorisson [20], to get the full
Mecke equation (7.1).

9 Stationary partitions

The topic of this section are (extended) stationary partitions as introduced (in case G =
Rd) and studied in [18]. The motivation of [18] was to connect stationary tessellations
of classical stochastic geometry (see e.g. [30], [29]) with recent work in [13] and [11] on
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allocation rules transporting Lebesgue measure to a simple point process. Our terminology
here is closer to stochastic geometry.

Let N be an invariant simple point process on G. As mentioned earlier, we identify
N with its support. A stationary partition (based on N) is a pair (Z, τ) consisting of
a measurable set Z : Ω → G and an allocation rule τ such that τ(g) ∈ N whenever
g ∈ Z. We also assume that {Z = ∅} = {N = ∅}. Measurability of Z just means that
(ω, g) 7→ 1{g ∈ Z(ω)} is measurable, while covariance of Z means that

Z(θgω) = gZ(ω), ω ∈ Ω, g ∈ G. (9.1)

For convenience we also assume that τ(g) = g, g ∈ G, whenever N = ∅. Define

C(ω, g) := {h ∈ Z(ω) : τ(ω, h) = g}, ω ∈ Ω, g ∈ G. (9.2)

Note that C(g) = ∅ whenever g /∈ N 6= ∅. The system {C(g) : g ∈ N} forms a partition
of Z into measurable sets, provided that N 6= ∅. Equations (9.1) and (4.3) imply the
following covariance property:

C(θhω, hg) = hC(ω, g), ω ∈ Ω, g, h ∈ G. (9.3)

Although we do not make any topological or geometrical assumptions, we refer to C(g)
as cell with (generalized) centre g ∈ N . We do not assume that g ∈ C(g) and some of the
cells might be empty.

We now fix a σ-finite stationary measure P on (Ω,A). The following theorem general-
izes Theorem 7.1 in [18] from the case G = Rd to general groups. The former case is also
touched by Lemma 16 in [11].

Theorem 9.1. Let (Z, τ) be a stationary partition. Then we have for any measurable
f, f̃ : Ω → R+,

E1{e ∈ Z}∆(τ ∗(e))f̃ f(θτ∗) = EQN
f

∫

C(e)

f̃(θ−1
g )λ(dg), (9.4)

where τ ∗(g) := τ(g)−1, g ∈ G, and θτ∗ is defined by (5.6).

Proof. Consider the random measure M := λ(Z ∩ ·). By covariance (9.1) of Z and
invariance of λ we have M(θg, gB) =

∫

1{h ∈ gB ∩ gZ}λ(dh) = M(B) for all g ∈ G
and B ∈ S. Hence M is invariant. An equally simple calculation shows that the Palm
measure of M is given by

QM (A) = P(A ∩ {e ∈ Z}), A ∈ A. (9.5)

Define transport-kernels T and T ∗ by T (g, ·) := δτ(g) and T ∗(g, ·) := λ(C(g) ∩ ·). Since
τ(g) ∈ N whenever g ∈ Z, it is straigthforward to check that (4.6) holds, even for all
ω ∈ Ω. By (4.3), T is invariant. Invariance of T ∗ follows from (9.3) and invariance of λ:

T ∗(θg, gh, gB) = λ(C(θg, gh) ∩ gB) = λ(gC(h) ∩ gB) = T ∗(h, B).

Theorem 4.4 implies that (4.7) holds. Applying this formula to the measurable function
(ω, g) 7→ f(ω)f̃(θ−1

g ω) and taking into account (9.5) as well as the definitions of T and
T ∗, yields the assertion (9.4).

The special choice f̃ ≡ 1 in (9.4) yields the following relationship between the measure
E1{e ∈ Z}∆(τ ∗(e))1{θτ∗ ∈ ·} and a volume-weighted version of the Palm measure QN .
In case of G = Rd we refer to Section 4 of [18].
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Proposition 9.2. Let (Z, τ) be a stationary partition. Then we have for any measurable
f : Ω → R+,

E1{e ∈ Z}∆(τ ∗(e))f(θτ∗) = EQN
λ(C(e))f. (9.6)

Remark 9.3. The special case f ≡ 1 of (9.6) gives

EQN
λ(C(e)) = E1{e ∈ Z}∆(τ ∗(e)) (9.7)

If N has a positive and finite intensity γN and G is unimodular, this yields the intuitively
obvious formula

EQ0

N

λ(C(e)) = P(e ∈ Z)γ−1
N . (9.8)

Define
V (g) := {h ∈ G : τ(h) = τ(g)}

as the cell containing g ∈ G.

Corollary 9.4. Let (Z, τ) be a stationary partition. Then we have for any β ≥ 0 that

E1{e ∈ Z}∆(τ ∗(e))λ(V (e))β = EQN
λ(C(e))β+1. (9.9)

Proof. For h ∈ N we get from (9.3) that C(θh−1, e) = h−1C(h). Assuming e ∈ Z, we
can apply this fact to h := τ(e) ∈ N , to obtain

C(θτ∗ , e) = τ ∗(e)V (e). (9.10)

We now apply (9.6) to f := λ(C(e))β. Using (9.10) together with invariance of λ, yields
(9.9).

A stationary partition (Z, τ) is called proper, if

QN(λ(C(e) = 0) = QN (λ(C(e) = ∞) = 0. (9.11)

In the unimodal case the second equation is implied by (9.7). The following two results
can be proved as in Section 5 of [18]. The details are left to the reader.

Proposition 9.5. Let (Z, τ) be a stationary and proper partition. Then we have for any
measurable f : Ω → R+,

E1{e ∈ Z}∆(τ ∗(e))λ(V (e))−1f(θτ∗) = EQN
f. (9.12)

Corollary 9.6. Let (Z, τ) be a stationary and proper partition. Then (9.9) holds for all
β ∈ R. If the intensity γN of N is finite, then we have in particular,

γN = E1{e ∈ Z}∆(τ ∗(e))λ(V (e))−1. (9.13)

From now on we assume that N has a finite intensity and P(N̂ = 0) = 0. Just for
simplicity we also assume that P (and hence also Q∗

N ) is a probability measure. We first
note the following consequence of the proof of Theorem 9.7 and Corollary 4.7:
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Corollary 9.7. Let (Z, τ) be a stationary partition. We have for any measurable f, f̃ :
Ω → R+,

E[1{e ∈ Z}f̃ f(θτ∗)∆(τ ∗(e))|I] = N̂EQ∗

N

[

f

∫

C(e)

f̃(θ−1
g )λ(dg)

∣

∣

∣
I
]

, (9.14)

P-a.e. for any choice of the conditional expectations. In particular,

N̂−1E[1{e ∈ Z}f(θτ∗∆(τ ∗(e))|I] = EQ∗

N
[fλ(C(e))|I]. (9.15)

Let α > 0. Essentially following [11] (dealing with the case G = Rd), we call a
stationary partition (Z, τ) (based on N) α-balanced, if

P(λ(C(g)) = αN̂−1 for all g ∈ N) = 1. (9.16)

The significance of α-balanced stationary partitions is due to the following theorem.
The result extends Theorem 13 in [13] and Theorem 9.1 in [18] (both dealing with α = 1)
from Rd to general groups.

Theorem 9.8. Let α > 0. A stationary partition (Z, τ) is α-balanced iff

Q∗

N = α−1E1{e ∈ Z}∆(τ ∗(e))1{θτ∗ ∈ ·}. (9.17)

Proof. If (Z, τ) is a α-balanced stationary partition, then (9.17) follows from (9.15).
Assume now that (9.17) holds. Since Q∗

N has the invariant density N̂ with respect to
QN , (9.17) implies that

QαN = E1{e ∈ Z}N̂1{θτ∗ ∈ ·}∆(τ ∗(e)), (9.18)

where we have also used that QαN = αQN . Using the invariant weighted transport-kernels
T (g, ·) := N̂1{g ∈ Z}δτ(g), this reads

QαN = E

∫

1{θ−1
g ∈ ·}∆(g−1)T (e, dg).

Since P is the Palm measure of λ, we get from Theorem 5.1 that T is P-a.e. (λ, αN)-
balancing. Therefore we have P-a.e. that

∫

1{g ∈ Z, τ(g) ∈ ·}λ(dg) = αN̂−1N(·).

This is just saying that (Z, τ) is α-balanced.

Remark 9.9. If a α-balanced stationary partition (Z, τ) is given, then (9.17) provides an
explicit method for constructing the modified Palm probability measure Q∗

N by a shift-
coupling with the stationary measure P. In case G is a unimodal group, (9.17) simplifies
to

Q∗

N = α−1E1{e ∈ Z}1{θτ∗ ∈ ·}. (9.19)

Since α = P(e ∈ Z), this means that Q∗

N = P(θτ∗ ∈ ·|e ∈ Z).
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The actual construction of α-balanced partitions is an interesting topic in its own right.
Triggered by [21], the case G = Rd was discussed in [13] and [11]. Among many other
things it was shown there that α-balanced partitions do actually exist for any α ≤ 1. The
occurence of the sample intensity N̂ in (9.16) is explained by the spatial ergodic theorem,
see Proposition 9.1 in [18], at least in case G = Rd. The paper [13] has also results on
discrete groups in case α = 1. It might be conjectured that α-balanced partitions exist
for all α ≤ 1, provided that the Haar measure λ is diffuse.

10 Matchings and point stationarity

We consider an invariant simple point process N on G. A point-allocation for N is an
allocation rule τ having τ(g) ∈ N whenever g ∈ N . (Recall that we identify N with its
support.) We also assume that

τ(g) = g, g /∈ N. (10.1)

A point-allocation for N is called bijective if g 7→ τ(g) is a bijection on N whenever
N(G) > 0. In the Abelian (or Rd) case the following special case of Corollary 5.4 is
discussed in [32], [9], and [10]. Recall the notation introduced at (5.6).

Corollary 10.1. Let P be a σ-finite stationary measure P on (Ω,A) and τ be a point-
allocation for N . Then τ is P-a.e. bijective iff

EQN
f(θ−1

τ )∆(τ(e)−1) = EQN
f (10.2)

holds for all measurable f : Ω → R+.

A N-matching is a point-allocation τ such that τ(τ(g)) = g for all g ∈ N . (We
don’t require that τ(g) 6= g for g ∈ N .) In the canonical case Ω = Ns with N being
the identity on Ω (and with the flow given as in Example 2.1) we just say that τ is a
matching. Our next result is generalizing the point process case of Theorem 1.1 in [10]
(dealing with an Abelian group). We assume that there exist a measurable and injective
function I : Ω → [0, 1]. As any Borel space has this property, this is no serious restriction
of generality.

Theorem 10.2. A measure Q on (Ω,A) is a Palm measure of N with respect to some
σ-finite stationary measure iff Q is σ-finite, Q(e /∈ N) = 0, and

EQf(θ−1
τ )∆(τ(e)−1) = EQf (10.3)

holds for all N-matchings τ and all measurable f : Ω → R+.

Our proof of Theorem 10.2 requires the following generalization of a result in [10],
that is of interest in its own right.

Proposition 10.3. There exist N-matchings τk, k ∈ N, such that for e ∈ N

{e} ∪ {g ∈ N : θg 6= θe} ⊂ {τk(e) : k ∈ N}. (10.4)
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The proof of Proposition 10.3 is based on several lemmas. A subprocess of N is an
invariant simple point process S such that S ⊂ N .

Lemma 10.4. Let S be a subprocess of N and τ a matching. Then τ ′(ω, g) := τ(S(ω), g)
is a N-matching.

Proof. Covariance of τ ′ is a direct consequence of the invariance of N and covariance
of τ . We have to show that τ ′(g) ∈ N and τ ′(τ ′(g)) if g ∈ N . If g /∈ S then (10.1) (for
τ ′) implies τ(g) = g ∈ N and in particular τ ′(τ ′(g)) = g. If g ∈ S, then τ ′(g) = τ(S, g) ∈
S ⊂ N . Moreover, since τ is a matching we have τ ′(τ ′(g)) = τ(S, τ(S, g)) = g.

To check the asserted matching property we take g ∈ N . If g /∈ S then (10.1) (for τ ′)
implies τ(g) = g and in particular τ(τ(g)) = g.

Lemma 10.5. There exists a countable family of subprocesses {Sn : n ∈ N} of N such
that, for any B ∈ G with compact closure, ω ∈ Ω and g, h ∈ N(ω), there exists n ∈ N

with

I(θ−1
k ω) ∈ {I(θ−1

g ω), I(θ−1
h ω)}, k ∈ Sn(ω) ∩ B. (10.5)

Proof. Let {(qn, rn, sn) : n ∈ N} be dense in [0, 1]3. Define the simple point processes
Sn, n ∈ N, by

Sn(ω) := {k ∈ N(ω) : min{|I(θ−1
k ω) − qn|, |I(θ−1

k ω) − rn|} ≤ sn}.

The measurability of Sn follows from the measurability of I. Invariance of Sn follows from
invariance of N and the flow property (2.4).

Fix B ∈ G with compact closure, ω ∈ Ω and g, h ∈ N(ω). From the local finiteness of
N(ω) we deduce that the set

{I(θ−1
k ω) : k ∈ N(ω) ∩ B}

is a finite subset of [0, 1]. Hence, there exists ε > 0 such that

{|I(θ−1
k ω) − I(θ−1

g ω)|, |I(θ−1
k ω) − I(θ−1

h ω)| : k ∈ N(ω) ∩ B} ∩ (0, ε) = ∅.

Moreover, there exists n ∈ N such that 0 < sn < ε/2 and both |I(θ−1
g ω) − qn| < sn and

|I(θ−1
h ω) − rn| < sn hold, finishing the proof of the proposition.

Let η ∈ Ns and take a Borel set B ∈ G. Then call h ∈ η a B-neighbour of g ∈ η if
h ∈ gB. Clearly, h is a B-neighbour of g if and only if g is a B∗-neighbour of h, where
the inverted set B∗ is defined by B∗ := {g−1 : g ∈ B}. We say that h is the unique
B-neighbour of g if gB ∩ η = {h}. A point h can be the unique B-neighbour of g, and g
a non-unique B∗-neighbour of h. We then define an allocation rule πB : Ns × G → G by

πB(η, g) :=

{

h, if g and h are mutual unique B ∪ B∗-neighbours,

g, otherwise.
(10.6)

Lemma 10.6. There exists a countable family of N-matchings (σn) such that

{e} ∪ {g ∈ N(ω) : I(θ−1
g ω) 6= I(ω) and I(θ−1

g ω) 6= I(θgω)} ⊂ {σn(ω, e) : n ∈ N} (10.7)

for all ω ∈ Ω such that e ∈ N(ω).
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Proof. Let {Bm} be a countable base of the topology of G. We consider the matchings
τm := πBm

, m ∈ N, defined in (10.6) and the family of subprocesses {Sn : n ∈ N} from
Lemma 10.5.

Let ω ∈ Ω such that e ∈ N(ω). Let g ∈ N(ω) such that I(θ−1
g ω) 6= I(ω) and

I(θ−1
g ω) 6= I(θgω). There exists an open set U with compact closure in G such that

e, g, g−1, g2 ∈ U . By Proposition 10.5 there exists n ∈ N such that, for all k ∈ Sn(ω)∩U ,
we have I(θ−1

k ω) ∈ {I(ω), I(θ−1
g ω)}. From I(θ−1

g ω) /∈ {I(ω), I(θgω)} and injectivity of I
we obtain θ−1

g ω 6= ω and θ−1
g ω 6= θgω. This gives θg−2ω 6= θg−1ω and θg−2 6= ω. We deduce

that I(θ−1
g2 ω) /∈ {I(ω), I(θ−1

g ω)}, so g2 /∈ Sn(ω). In the same (even simpler) way we get

g−1 /∈ Sn(ω)
Since {Bm} is a base of the topology of G there exists m ∈ N such that Bm ∩N(ω) =

{g}, gB∗

m ∩N(ω) = {e}, B∗

m ∩N(ω) ⊂ {g−1} and gBm ∩N(ω) ⊂ {g2}. We conclude that
τm(Sn(ω), e) = g.

Reenumeration of the countable family of N -matchings (ω, h) 7→ τm(Sn(ω), h) (see
Lemma 10.4) yields a family {σn : n ∈ N} that satisfies (10.7).

Lemma 10.7. There exists a countable family of N-matchings (σn) such that

{g ∈ N(ω) : I(θ−1
g ω) 6= I(ω) and I(θ−1

g ω) = I(θgω)} ⊂ {σn(ω, e) : n ∈ N} (10.8)

for all ω ∈ Ω with e ∈ N(ω).

Proof. For n ∈ N, define a covariant mapping σn : Ω × G → G by

σn(e) :=































g, if N ∩ Bn = {g}, N ∩ B∗

n = {g−1}, N ∩ gB∗

n = {e},

N ∩ gBn = {g2} and I(θg) = I(θ−1
g ) > I,

g, if N ∩ B∗

n = {g}, N ∩ Bn = {g−1}, N ∩ gBn = {e},

N ∩ gB∗

n = {g2} and I(θg) = I(θ−1
g ) < I,

e, otherwise,

(10.9)

and σn(ω, g) := gσn(θ−1
g ω, e). Take ω ∈ Ω with e ∈ N(ω) and g ∈ N(ω) such that

I(θ−1
g ω) = I(θgω). Then g−1, g2 ∈ N(ω). Moreover, there exists n ∈ N such that g is

the unique Bn-neighbour of e in N(ω), g−1 the unique B∗

n-neighbour of e, e the unique
B∗

n-neighbour of g in N(ω) and g2 the unique Bn-neighbour of g. Hence, σn(ω, e) = g and
the inclusion (10.8) holds.

It remains to show that σn is for each n ∈ N a N -matching. It is clearly sufficient to
assume e ∈ N and to prove that σn(g) = e if σn(e) = g 6= e. Let g ∈ N . By definition of
σn and invariance of N we have for h ∈ G that

σn(g) =































gh, if g−1N ∩ Bn = {h}, g−1N ∩ B∗

n = {h−1}, g−1N ∩ hB∗

n = {e},

g−1N ∩ gBn = {h2} and I(θhg) = I(θ−1
hg ) > I(θg),

gh, if g−1N ∩ B∗

n = {h}, g−1N ∩ Bn = {h−1}, g−1N ∩ gBn = {e},

g−1N ∩ gB∗

n = {h2} and I(θhg) = I(θ−1
hg ) < I(θg),

g, otherwise.

Putting h := g−1 and using σn(e) = g (i.e. the conditions on the right-hand side of (10.9))
we see that indeed σn(g) = e.
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Combining Lemma 10.6 with Lemma 10.7 yields Proposition 10.3.

Proof of Theorem 10.2: One implication follows from Corollary 10.1. So we assume
that Q is σ-finite, Q(e /∈ N) = 0, and that (10.2) holds for all τ and f as stated there.
We will check the Mecke equation (7.1).

Without loss of generality we assume that e ∈ N everywhere on Ω. Let τ be a N -
matching. Since τ(e) ∈ N we get from the matching property and covriance (writing
g := τ(e)) that τ(θ−1

g , e) = g−1τ(θe, g) = g−1, i.e.

τ(θ−1
τ , e) = τ(θe, e)

−1. (10.10)

Therefore we obtain for all measurable f : Ω × G → R+ from (10.2) that

EQ1{θτ 6= θe}f(θe, τ(e)) = EQ1{θ−1
τ 6= θe}f(θe, τ(e)−1)∆(τ(e)−1). (10.11)

Applying Proposition 10.3 yields

EQ

∫

1{θg 6= θe}f(θe, g)N(dg) =

∞
∑

k=1

EQfk(θe, τk(e))f(θe, τk(e)), (10.12)

where
fk(g) := 1{θg 6= θe}1{τm(e) 6= g for 1 ≤ m ≤ k − 1}.

We claim that

fk(θ
−1
τk

, τk(e)
−1) = fk(θe, τk(e)). (10.13)

To see this, we take ω ∈ Ω and set g := τk(ω, e). We have to show that

fk(θ
−1
g ω, g−1) = fk(ω, g). (10.14)

For k ≤ 2 and m ≤ k− 1 we have from covariance that τm(θ−1
g ω, e) 6= g−1 is equivalent to

g−1τm(ω, g) 6= g−1, i.e. to τm(ω, g) 6= e. Since τm is matching the latter is also equivalent
to τm(ω, e) 6= g. Hence (10.14) follows. Using this fact, we obtain from (10.12) and (10.11)

EQ

∫

1{θg 6= θe}f(θe, g)N(dg) =
∞

∑

k=1

EQfk(θe, τk(e))f(θ−1
τk

, τk(e)
−1)∆(τk(e)

−1)

= EQ

∫

1{θg 6= θe}f(θ−1
g , g−1)∆(g−1)N(dg).

In order to show (7.1) it remains to verify

EQ

∫

1{θg = θe}f(θe, g)N(dg) = EQ

∫

1{θg = θe}f(θ−1
g , g−1)∆(g−1)N(dg). (10.15)

For any fixed ω ∈ Ω the closed set Hω := {g ∈ G : θgω = ω} is a subgroup of G. Indeed,
if g, h ∈ Hω then θghω = θg ◦ θhω = ω, while g ∈ Hω is equivalent to g−1 ∈ Hω. Since
e ∈ N(ω) we have, moreover, for all g ∈ Hω that g ∈ gN(ω) = N(θgω) = N(ω). Hence
Hω is a subset of N(ω) and in particular unimodular. On the other hand we clearly have
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that h−1gh ∈ Hω for all h ∈ G and g ∈ Hω, so that Hω is a normal subgroup of G.
Therefore we obtain from Proposition II.21 in [25] that ∆(g) = 1 for all g ∈ Hω. Hence
(10.15) is equivalent to

EQ

∫

1{θg = θe}f(θe, g)N(dg) = EQ

∫

1{θg = θe}f(θe, g
−1)N(dg). (10.16)

This follows from {g ∈ N : θg = θe} = {g−1 : θg = θe, g ∈ N}.

One might wonder whether the N -matchings in Theorem 10.2 may be chosen N-
measurable, i.e. measurable with respect to σ(N) ⊗ G. In the canonical case Ω = Ns this
is trivially true. Otherwise, applying Lemma 10.6 to the canonical case and composing
with N , yields the following result without any assumptions on (Ω,A).

Proposition 10.8. There exist N-matchings τk, k ∈ N, such that for e ∈ N

{e} ∪ {g ∈ N : N ◦ θg 6= N} ⊂ {τk(e) : k ∈ N}. (10.17)

It is easy to see (cf. [10]) that the (random) set {g ∈ N : N ◦ θ−1
g = N} cannot be

exhausted by matchings as in Proposition 10.8. In case G = Rd, however, the set can be
exhausted by bijective point-allocations, see [9]. Proposition 10.8 together with a suitable
modification of the arguments of the proof of Theorem 10.2 then leads to the following
Theorem 4.1 in [9]. We skip further details.

Theorem 10.9. Let N be an invariant simple point process on Rd and Q be a measure on
(Ω,A). Then Q is a Palm measure of N with respect to some σ-finite stationary measure
iff Q is σ-finite, Q(0 /∈ N) = 0, and

EQf(θ−1
τ ) = EQf (10.18)

holds for all N-measurable bijective point-allocations τ and all measurable f : Ω → R+.

Property (10.18) has been called point-stationarity of Q (with respect to N), see [32].
We conjecture that Theorem 10.9 holds for general groups G, i.e. that the validity of
(10.3) for all N -measurable bijective point-allocations τ is characterizing Palm measures.

The matchings considered in this section are examples of what the authors of [14] call
a one-color matching scheme. Mutual nearest neighbour matching (see [6], [12], [4]) is
another example of such matchings. The two-color matching schemes studied in [14] are
an interesting example of an allocation rule balancing different jointly stationary (simple)
point processes.
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30


