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We study the linear- and nonlinear-optical lineshapes of metal nanoparticles �theory� and metallic photonic
crystal slabs �experiment and theory�. For metal nanoparticle ensembles, we show analytically and numerically
that femtosecond second- or third-harmonic-generation �THG� experiments together with linear extinction
measurements generally do not allow to determine the homogeneous linewidth. This is in contrast to claims of
previous work in which we identify a technical mistake. For metallic photonic crystal slabs, we introduce a
simple classical model of two coupled Lorentz oscillators, corresponding to the plasmon and waveguide
modes. This model describes very well the key experimental features of linear optics, particularly the Fano-like
lineshapes. The derived nonlinear-optical THG spectra are shown to depend on the underlying source of the
optical nonlinearity. We present corresponding THG experiments with metallic photonic crystal slabs. In
contrast to previous work, we spectrally resolve the interferometric THG signal, and we additionally obtain a
higher temporal resolution by using 5 fs laser pulses. In the THG spectra, the distinct spectral components
exhibit strongly different behaviors versus time delay. The measured spectra agree well with the model
calculations.
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I. INTRODUCTION

The linear-optical properties of metallic photonic crystal
slabs �MPCSs� have recently attracted considerable attention
because they can be viewed as a simple model system of two
coupled oscillators: �i� a Lorentz oscillator electronic reso-
nance couples to �ii� an electromagnetic resonance. �i� The
electronic resonance comes about from charges which accu-
mulate at the surface of the metal nanostructures when ex-
posed to the electric field of the incident light. These charges
induce a depolarization field that can either counteract or
enhance the external electric field, depending on the permit-
tivity of the metal, hence depending on the frequency of
light. The resulting resonance at the transition point is the
well-known particle plasmon or Mie resonance.1 �ii� The
electromagnetic resonance is the Bragg resonance of the pe-
riodic arrangement with lattice constant a. Importantly, an
appreciable coupling between these two oscillators requires
an additional slab waveguide, e.g., underneath the metal
nanoparticles. Therefore, the physics of metallic photonic
crystal slabs is distinct from that of usual metallic gratings,
which have been discussed extensively many years ago.2 Tai-
loring the waveguide parameters allows one to control the
coupling strength, since the coupling arises from the spatial
overlap of the plasmon- and waveguide-mode fields.

Two-dimensional MPCSs were first discussed in Ref. 3
employing gold nanoparticles on a dielectric waveguide.
Later,4 gold nanowires showed even more pronounced ef-
fects. In the latter structures, the coupling of the incident
light to the particle plasmon resonance can conveniently be
switched on and off via the polarization. If the electric field
vector is oriented perpendicular to the nanowires �TM polar-
ization�, a pronounced depolarization field arises, giving rise
to a strong optical resonance. In contrast, if the electric field

vector is along the wire axis �TE polarization�, the depolar-
ization factor is zero and one rather gets a Drude-type re-
sponse of the metal.

More recently, nonlinear-optical experiments on MPCSs
have been presented.5 These were interpreted along the lines
of similar experiments6 performed on metal nanoparticle en-
sembles on a substrate surface without a slab waveguide.
Thus, our initial motivation was to continue with experi-
ments along these lines and obtain additional information
from nonlinear-optical experiments.

This paper contains both theory and experiments and is
organized as follows. In Sec. II we start by discussing the
nonlinear optics of metal nanoparticle ensembles with inho-
mogeneously broadened plasmon resonances. We derive rig-
orous analytic results for excitation with � pulses and Lorent-
zian inhomogeneous broadening. Furthermore, we present
numerical results for a Gaussian inhomogeneous broadening
and finite-duration optical pulses. For second- �SHG� and
third-harmonic generation �THG�, we find that the interfero-
metric nonlinear response exclusively depends on the total
linear-optical linewidth of the particle plasmon, i.e., one can-
not obtain any information on the relative contributions of
homogeneous and inhomogeneous broadening, respectively.
This finding is in striking disagreement with the claim of
Ref. 6 that interferometric SHG together with linear-optical
measurements can differentiate between homogeneous and
inhomogeneous broadening. Reference 6 has been the basis
of much if not most of the work that followed in this
field.5,7–12 The discrepancy is traced back to a simple techni-
cal mistake in that work,6 where the authors have not prop-
erly differentiated between the contributions of second-
harmonic generation on the one hand and optical rectification
on the other hand. Indeed, optical rectification �OR�, self-
phase-modulation �SPM�, or four-wave mixing �FWM�
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would allow for such a differentiation. Next, in Sec. III, we
discuss the linear-optical properties of two coupled oscilla-
tors �representing the particle plasmon and waveguide reso-
nance�. In contrast to frequent belief, the optical response of
two coupled classical damped Lorentzian oscillators does not
correspond to that of two new effective Lorentzian oscilla-
tors. Generally, one rather gets Fano-like lineshapes in the
linear-optical spectra. In Sec. IV we discuss the nonlinear-
optical signals from two coupled oscillators. We show that
signatures of interferometric THG depend on the source of
nonlinearity. Our theoretical analysis thus yields additional
insights compared to the discussion in Ref. 5. The param-
eters of the presented numerical calculations are chosen to
allow for a direct comparison with our experimental results,
which are presented in Sec. V. Compared with previous
work, our experiments are distinct in two aspects �a� and �b�.
�a� First, we use 5 fs optical pulses, which are within the
range of the anticipated particle plasmon decay times of
0.7–9 fs.13 Previous work used pulses of 13 fs duration and
longer.5,6 �b� As usual in “time-resolved spectroscopy,” indi-
rect information on the temporal behavior is obtained by
exciting the sample with a pair of time-delayed pulses, e.g.,
in pump-probe or transient four-wave mixing experiments. It
is known that additional information can often be obtained
by spectrally resolving the probe beam or the diffracted
beam. In analogy, one anticipates that spectrally resolving
the third-harmonic signal, generated by the sample, versus
the time delay of two exciting pulses, gives additional in-
sight. Indeed, our experiments reveal that different spectral
components of the third-harmonic signal can exhibit substan-
tially different temporal dynamics—information that would
obviously not be available from a spectrally integrated ex-
periment. The comparison of our experimental data with
theory allows us to determine the dominant source of the
underlying optical nonlinearity. Finally, we conclude in Sec.
VI.

II. NONLINEAR OPTICS OF ENSEMBLES OF
LORENTZIAN OSCILLATORS

To probe metal nanoparticles with diameters in the 10–
200 nm range by linear- or nonlinear-optical techniques, one
often averages over several thousands of these particles in
order to obtain an acceptable signal strength. Depending on
the fabrication method �e.g., lithographic patterning,14

Volmer-Weber growth15�, a distribution in particle size and
shape results, leading to a distribution of plasmon-resonance
frequencies.1 Ensemble linear-optical experiments alone can-
not distinguish this inhomogeneous contribution from the ho-
mogeneous linewidth �resulting from an expected plasmon
decay time � of a few femtoseconds�. Therefore, e.g., a com-
bination of linear and nonlinear methods has to be used to
extract both homogeneous and inhomogeneous contribu-
tions. Nevertheless, not all nonlinear methods allow for this
determination.

We begin by discussing analytic results for the limit of �
pulses and Lorentzian inhomogeneous broadening, and con-
tinue with numerical simulations for finite Gaussian inhomo-
geneous broadening and pulses of finite duration.

A. Analytic calculations

Following along the lines of Ref. 6, which addresses
second-harmonic generation, we start by describing the par-
ticle plasmon by an oscillating particle with charge q, mass
m, and displacement x�t�, driven by an electric field E�t� via

ẍ + 2�ẋ + �0
2x + ��x2 + �x3 + ¯ � =

q

m
E�t� . �1�

For the interferometric experiments to be described, E�t� cor-
responds to a pair of copropagating pulses with time delay T.
In linear optics, i.e., for �=�= ¯ =0, this leads to a Lorentz
oscillator resonance at the damped eigenfrequency
�=��0

2−�2 with a half width at half maximum �HWHM�
�=1/T2=1/ �2��, the homogeneous linewidth. T2 is the
dephasing time. To first order in the laser electric field, the
polarization P�1��x�1��t� is given by

x�1��t� � �−1�
−	

t

dt�e−��t−t��sin���t − t���E�t�� . �2�

Upon excitation with resonant pulses, the Fourier transform
of P�1��t� contains frequency components around ±�. To sec-
ond order in the laser electric field, −�(x�1��t�)2 is the driving
term for the second-order displacement x�2��t�. Provided that
this driving term is off resonant with respect to �, we obtain
the second-order polarization P�2��t��x�2��t� with

x�2��t� � �x�1��t��2. �3�

The Fourier transform of this expression contains frequency
components around ±2�, i.e., optical second-harmonic gen-
eration, and components around zero frequency, i.e., optical
rectification. Furthermore, Ref. 6 argued �see also formulas
in Refs. 10 and 16� that the signal S measured by a slow
detector is given by the integral of the nonlinear intensity
over time, i.e.,

SSHG+OR
�2� �T� � �

−	

	

dt�P�2��t��2. �4�

It is crucial to note that this expression comprises both SHG
and OR. This, however, is in contrast to what is actually
measured in a second-order interferometric autocorrelation
�IAC� setup, where one selectively detects the SHG by
means of a photomultiplier tube behind optical filters, which
suppress contributions other than SHG.17

For reasons of simplicity and to allow for analytic results,
we first discuss excitation with a pair of � pulses, i.e.,

E�t� = Ẽ0���t� + ��t − T�� . �5�

It is clear from the symmetry that the nonlinear signals only
depend on �T�. Thus, we only consider T
0 in what follows.
For a single homogeneously broadened oscillator we obtain

P�1��t� � �−1���t�e−�tsin��t�

+ ��t − T�e−��t−T�sin���t − T��	 . �6�

This leads to the second-order polarization
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P�2��t� � �−2
„��t�e−2�t�1 − cos�2�t��

+ ��t − T�e−2��t−T��1 − cos�2��t − T��	

+ 2��t − T�e−��2t−T��cos��T� − cos���2t − T��	… .

�7�

Let us now consider an inhomogeneously broadened en-
semble of oscillators with fixed damping � and a Lorentzian
distribution of eigenfrequencies � with distribution function

���� =
/�

�� − �̄�2 + 2
, �8�

which is centered around frequency �̄. The HWHM of this
inhomogeneous distribution is . To work out the convolu-

tion, we approximate the prefactor 1 /�2 in Eq. �7� by 1/�̄2.

This approximation is justified in the limit ��̄, which is
usually well satisfied for lithographically fabricated particles.
These two steps together lead to

Pinhom
�2� �t� � �

−	

	

d� ����P�2��t�

� + ��t�e−2�t + ��t − T�e−2��t−T�

+ 2��t − T�e−��2t−T�−Tcos��̄T�

− ��t�e−2��+�tcos�2�̄t�

− ��t − T�e−2��+��t−T�cos�2�̄�t − T��

− 2��t − T�e−��+��2t−T�cos��̄�2t − T�� . �9�

The first three summands correspond to OR, the last three
summands to SHG. Note that the latter solely depends on the
total width �+. In linear optics, the width of the inhomo-
geneous ensemble results from the convolution of a Lorent-
zian with homogeneous width � with a Lorentzian of inho-
mogeneous width . This leads to a total width of the
resonance in linear optics of �+. Thus, both the linear re-
sponse and the correctly calculated SHG depend in the very
same manner on the homogeneous and inhomogeneous line-
width, and a distinction is strictly not possible.

In contrast, the contribution from OR does not simply
depend on �+, potentially allowing for a distinction be-
tween homogeneous and inhomogeneous linewidths. By er-
roneously including OR in the calculated interferometric
“SHG signal,” one can seemingly separate the homogeneous
and inhomogeneous contributions to the linewidth.

We have performed an analogous calculation for the third-
order nonlinear-optical response. For third-harmonic genera-
tion and T
0, we find that the ensemble THG polarization is

PTHG,inhom
�3� �t� � − ��t�e−3��+�tcos�3�̄t�

− ��t − T�e−3��+��t−T�cos�3�̄�t − T��

− 3��t − T�e−��+��3t−T�cos��̄�3t − T��

− 3��t − T�e−��+��3t−2T�cos��̄�3t − 2T�� .

�10�

The THG again only depends on �+, and no information
on the homogeneous linewidth � can be obtained. However,
self-phase-modulation would provide such information. In a
noncopropagating geometry, the latter would give rise to a
diffracted four-wave-mixing signal. Corresponding calcula-
tions have been presented in Ref. 19.

Broadly speaking, nonlinear-optical signals of the type
�+� �SHG� or �+�+� �THG�, etc., do not allow one to
distinguish between homogeneous and inhomogeneous con-
tributions to the linewidth, whereas signals of the type
�−� �OR� or �+�−� �SPM or FWM�, etc., do allow for
such distinction. The “−” sign in OR, SPM, FWM, etc., ef-
fectively reverses the time axis in analogy to phase conjuga-
tion. For example in FWM, the “−” sign leads to the well-
known photon-echo response.19 At this point, a decay of the
ensemble polarization due to inhomogeneous broadening
�just interference� can be reversed, whereas damping due to
homogeneous broadening �a dissipative process� cannot be
reversed.

B. Numerical calculations

The presented analytical calculations for � pulses are ap-
propriate if the �complex� laser electric field spectrum exhib-
its negligible variation on the scale of the homogeneous line-
width �. For longer pulses, we have performed numerical
simulations. As described above, the correct way to calculate
the SHG contribution is to spectrally filter the second-order
response of the oscillator ensemble. To obtain the final IAC
signal as a function of the time delay T, the square modulus
of this filtered second-order polarization has to be integrated
with respect to frequency. To allow for a direct comparison
with the results of Ref. 6, we also use sech2-shaped 15 fs
pulses with a center wavelength of 780 nm, resonantly excit-
ing the ensemble. The latter has a Gaussian distribution of
resonances and is discretized in steps of 1 nm.

Figure 1 shows the resulting full width at half maximum
�FWHM� of the interferometric autocorrelation as a function
of the plasmon decay time �. The full symbols correspond to
the correct calculation, whereas the open symbols errone-
ously comprise the OR contribution and qualitatively repro-
duce the results of Ref. 6 �see their Fig. 2�. For each of the
curves in our Fig. 1, the total linewidth of the linear-optical
spectrum is fixed. The squares, diamonds, and triangles cor-
respond to a fixed extinction linewidth �FWHM� of ��=70,
80, and 125 nm, respectively �see parameters of Fig. 2 of
Ref. 6�. The dashed curve corresponds to a single �homoge-
neously broadened� oscillator for reference. The correct re-
sults and those including the OR contribution differ
strongly—as in our analytical calculations. In particular, the
slopes of the correct curves in our Fig. 1 are very nearly zero
�within typical experimental error bars of 1 fs�, while the
incorrect simulations have a small positive slope. Thus, using
the correct curves one cannot infer the plasmon decay time
from measured interferometric autocorrelations, whereas the
incorrect curves erroneously suggest this possibility.6 We
conclude that, under inhomogeneous conditions, the homo-
geneous linewidth cannot be determined by analyzing line-
widths from linear optics and SHG �or THG� measurements.
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Consequently, we will refrain from making any quantitative
statements about plasmon decay times from now on.

We note in passing that the IAC acquires artificial
“wings”6 if the OR contribution is erroneously included. In-
deed, such wings are visible in Fig. 1a of Ref. 6. They dis-
appear in the correct calculation �not shown�.

III. LINEAR OPTICS OF TWO COUPLED LORENTZIAN
OSCILLATORS

In this section, we discuss the linear-optical properties of
two coupled Lorentz oscillators. As already mentioned in the
introduction, this system can serve as a simple model for
metallic photonic crystal slabs. The results of this section can

be compared with the linear-optical experiments �Sec. V�
and, furthermore, are the basis for our discussion of the
nonlinear-optical properties in Sec. IV.

Generalizing Eq. �1� to two coupled, oscillating particles
of equal mass m leads to

ẍpl + 2�plẋpl + �pl
2 xpl + �NL�pl − �c

2xwg =
qpl

m
E�t� ,

�11a�

ẍwg + 2�wgẋwg + �wg
2 xwg + �NL�wg − �c

2xpl =
qwg

m
E�t� .

�11b�

Here, xpl�t� and xwg�t� are the displacements representing the
plasmon and waveguide oscillations, respectively. The reso-
nance frequencies, �homogeneous� half widths at half maxi-
mum, and oscillator strengths of the uncoupled system are
denoted by � j ,� j, and qj �j=pl, wg�, respectively. �c

2 repre-
sents the coupling strength between the oscillators. The non-
linear terms �denoted by NL� are discussed in Sec. IV and
ignored here.

In order to make the resulting formulas transparent, we
immediately discuss a few parameters in terms of their ex-
perimentally relevant values. Since the uncoupled waveguide
resonance is extremely sharp20 as compared to the plasmon
width, we set the waveguide damping �wg=0. In the follow-
ing, we derive formulas for an arbitrary waveguide oscillator
strength qwg; however, most aspects can already be under-
stood in the simpler case qwg=0. For typical sample param-
eters, �qwg�� �qpl�, i.e., the area under the extinction curve of
the �uncoupled� waveguide mode is much smaller than that
of the plasmon.

In the frequency domain, Eqs. �11a� and �11b� can easily
be solved analytically. For monochromatic excitation, i.e.,

for E�t�= Ẽ0e−i�t+c.c., this leads to the first-order displace-
ments xj

�1��t�= x̃j
�1����e−i�t+c.c. and the polarizations

P̃j
�1����=Nqjx̃j

�1����. N is the density of the oscillators. Note
that in the case qwg=0, only x̃pl

�1���� contributes to the polar-
ization. The total linear polarization becomes

P̃�1���� =
N

m

qpl
2 �− �2 + �wg

2 � + 2qplqwg�c
2 + qwg

2 �− �2 − 2i��pl + �pl
2 �

�− �2 − 2i��pl + �pl
2 ��− �2 + �wg

2 � − �c
4 Ẽ0. �12�

The linear susceptibility �̃�1����= P̃�1���� / ��0Ẽ0� and the absorption coefficient

���� =
�

c0
Im��̃�1����� = �pl

4�pl
2 �2��2 − �wg

2 − �qwg/qpl��c
2�2

���2 − �pl
2 ���2 − �wg

2 � − �c
4�2 + 4�pl

2 �2��2 − �wg
2 �2 �13�

immediately follow. �0 is the vacuum permittivity, c0 the
vacuum speed of light, and �pl=Nqpl

2 / �2m�0c0�pl� the maxi-
mum absorption coefficient of the uncoupled plasmon oscil-
lation.

FIG. 1. Recalculated data of Fig. 2 of Ref. 6. The dashed line
describes the simulated FWHM of the second-order interferometric
autocorrelation �IAC� from a single resonant Lorentz oscillator �the
particle plasmon� versus plasmon decay time �=T2 /2. The solid
lines represent ensembles of oscillators with eigenfrequencies fol-
lowing a Gaussian distribution, for which the width is determined
by fixing the total extinction linewidth �� �squares, ��=70 nm;
diamonds, ��=80 nm; triangles, ��=125 nm�. The autocorrelation
width is indicated by the full symbols for considering only the
contribution of SHG. Corresponding results for �erroneously� in-
cluding SHG and OR are shown by the open symbols.
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Examples of absorption spectra are shown in Fig. 2�a� for
qwg/qpl=0 and Fig. 2�b� for qwg/qpl= +0.1. One obtains the
anticipated anticrossing behavior. For qwg=0, absorption
maxima appear at the spectral positions

�a,b
2 = ��pl

2 + �wg
2 �/2 ± ���pl

2 − �wg
2 �2/4 + �c

4�1/2. �14�

These positions coincide with the normal mode frequencies
of the coupled, but undamped system. For small �c and for

�pl=�wg, the corresponding Rabi splitting is given by
�c

2 /�pl. Hence, the two oscillators can be considered as

“resonant” if ��pl−�wg���c
2 /�̂ with �̂= ��pl+�wg� /2, and

as “nonresonant” otherwise. In contrast to frequent belief, the
lineshapes in Fig. 2 do not correspond to the sum of two
effective Lorentz oscillators. One rather gets a highly asym-
metric, Fano-like lineshape. Usually, a Fano resonance re-
sults from the coherent interaction of a discrete quantum me-
chanical state with a continuum of states.21,22 In our purely
classical model, a single sharp oscillator coherently interacts
with a strongly broadened second oscillator. The latter re-
places the continuum. One result of the Fano-like interaction
is that one obtains zero absorption between the two absorp-
tion maxima. The position of this zero appears at the root of
the numerator of �13�, i.e., at or near the spectral position of
the �uncoupled� waveguide mode �wg. Intuitively, this mini-
mum is a result of destructive interference, which effectively
suppresses the response of the two absorption “channels,” of
which the polarizations have a phase difference near �. This
phase difference will also be important in nonlinear optics
�see Sec. IV�. When qwg is changed from zero to a nonzero
value, the positions of the absorption extrema shift slightly,
and the two peaks exhibit different heights as an additional
characteristic. A reduced absorption of the more waveguide-
like channel results, e.g., in the case qwg/qpl�0 and
�pl��wg �see top curves in Fig. 2�b��.

We note that, e.g., for qwg=0, the total absorption �13� can
be rewritten as a sum of two “Lorentzians,” but with strongly
frequency-dependent dampings. In the time domain, these
frequency-dependent dampings correspond to a non-
Markovian �and nonexponential� decay. For �a��wg��b,
one solution can be described by oscillator a with constant
resonance frequency �a and frequency-dependent damping

�a���

= 
 �pl�pl

2�����1 + �1 −
�2�����2 − �a

2�2

�pl
2 �pl

2 �2 1/2� , � � �wg,

	 , � 
 �wg,
�

�15�

and an analogous expression for the oscillator b.

IV. NONLINEAR OPTICS OF TWO COUPLED
LORENTZIAN OSCILLATORS

In this section, we discuss the nonlinear-optical properties
of two coupled Lorentz oscillators in terms of third-harmonic
generation. We consider an inversion-symmetric medium,
hence all second-order nonlinear terms in Eqs. �11a� and
�11b� are zero. At first sight, one might only expect third-
order nonlinear terms like �NL�pl�xpl

3 or �NL�wg�xwg
3 in Eqs.

�11a� and �11b�. Mathematically, the most general form is
given by the terms

� j,k�xpl�t��3−k�xwg�t��k �16�

appearing in the differential equation for xj�t�, respectively
�j=pl, wg; k=0, 1, 2, 3�. Here, we are only interested in
THG, which is off resonant. In a perturbational approach the

FIG. 2. Optical absorption spectra according to Eq. �13� �solid
lines�. One observes an anticrossing behavior when varying the
waveguide resonance frequency �wg with respect to the fixed plas-
mon resonance frequency �pl. Note the highly asymmetric, Fano-
like lineshape of the peaks. All curves are displayed on the same
scale. qwg/qpl equals 0 in �a� and +0.1 in �b�. Common parameters
are ��pl=1.6 eV, ��wg as denoted for each curve, �pl=1/ �2��,
�=2.5 fs, and ��c=0.5 eV. The dashed lines represent the pure
plasmonic absorption in the absence of coupling, i.e., for ��c=0.
The gray areas shown for �wg=1.6 eV depict the square modulus
of the waveguide amplitude, �x̃wg

�1��2, each exhibiting a single peak. In
�a�, the square modulus of the plasmon amplitude, �x̃pl

�1��2, is roughly
proportional to the corresponding absorption spectrum. The vertical
line is a guide to the eye.
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THG contributions to the third-order displacements are given
by

xj
�3��t� � �

k=0

3

� j,k�xpl
�1��t��3−k�xwg

�1��t��k. �17�

The eight parameters � j,k can be reduced to four, i.e., �k
=� jqj� j,k with k=0, 1, 2, 3, because the optical polarization
is given by the weighted sum of the displacements. This
immediately leads to the following general form for the THG
contribution to the third-order polarization:

P�3��t� � �
k=0

3

�k�xpl
�1��t��3−k�xwg

�1��t��k. �18�

We note in passing that this form is generally different from
the ansatz P�3��t�� �P�1��t��3 �in analogy to Ref. 5�, which
leads to �k� � 3

k
�qpl

3−kqwg
k .

For the numerical computation of THG spectra, we start
off in the time domain. E�t� is chosen23 to resemble the 5 fs
laser pulses of the experiments �5 fs Gaussian pulses deliver
qualitatively similar results for all conditions discussed be-
low�. Furthermore, we fix �pl=1.67 eV, �wg=1.56 eV, �c
=0.66 eV, �=1.06 fs, and qwg/qpl= +0.085. These param-
eters correspond to sample A in Sec. V, which can be con-
sidered as “resonant” according to the definition given in
Sec. III. Integration of Eqs. �11a� and �11b� yields the first-
order displacements xj

�1��t� and, with �18�, the third-order po-
larization. The square modulus of its filtered Fourier trans-
form delivers the THG intensity spectrum. Spectra are
calculated as a function of the spectrometer photon energy
and the time delay between the two excitation pulses, T.

We first discuss the case �k��k,0 ��k,l is the Kronecker
symbol�. The corresponding data set is shown in Fig. 3�a�. A
cut at T=0 �not shown� reveals four broad but clearly distinct
spectral peaks in the THG spectrum. The appearance of four
peaks can easily be understood in the frequency domain,
since the third-order polarization for this case is proportional
to the twofold convolution of the displacement x̃pl

�1���� with
itself, this displacement containing two peaks �see, e.g., Fig.
2�a��. The relative weights of the four peaks can be estimated
by employing the time domain. Assuming � pulses, qwg=0,
and neglecting damping, the two effective oscillators �see
previous section� have comparable amplitude, and the gen-
eral form of the THG polarization is proportional to

�cos��at� + cos��bt��3

� ¯ + cos�3�at� + 3 cos��2�a + �b�t�

+ 3 cos���a + 2�b�t� + cos�3�bt� . �19�

This contains terms at three times the normal mode frequen-
cies �a and �b as well as spectral mixing products. The
relative amplitudes 1:3:3:1 of the frequency components
3�a, 2�a+�b, �a+2�b, and 3�b lead to the intensity ratios
1:9:9:1. This means that the two central frequency compo-
nents are more prominent, in agreement with the numerical
findings in Fig. 3�a�.

The pronounced dips between the four spectral peaks are
closely related to the Fano-like lineshapes discussed in Sec.

III. In linear optics, the phase relation between the two ef-
fective oscillators �absorption “channels”� leads to destruc-
tive interference, and hence to zero absorption in the dip. The
same destructive interference is also responsible for the deep
dips in the THG spectra.

The behavior of the THG intensity as a function of time
delay T differs among the four spectral peaks. Corresponding
cuts at the spectral peak positions indicated by the white
arrows in Fig. 3�a� are shown in Fig. 3�b�. The curves exhibit
the usual oscillations with the respective fundamental and
harmonic frequencies, enclosed in the �upper� envelope of
interest. The first and fourth curves clearly show a smoothly
decaying envelope for increasing �T�. In contrast, the enve-
lopes of the central two curves �which are associated with the
spectral mixing products� reveal a beating. In spectrally in-
tegrated measurements,5 this distinction is not possible.

So far, we have only discussed the case �k��k,0. Next, we
calculate corresponding THG spectra for different nonlinear-
ity parameters �Fig. 4�. In each part of this figure, all nonlin-
ear parameters are zero except for a single one. The parts �a�,
�b�, and �c� result from a nonzero value of �1 ,�2, and �3,
showing three peaks, two peaks, and one peak, respectively.
In the frequency domain this can again be understood by the
corresponding convolutions. Remember that x̃pl

�1���� contains
two peaks for the values chosen here, whereas x̃wg

�1���� only
contains one peak �refer to gray areas in Fig. 2�.

In general, all parameters �k can have nonzero values
simultaneously. When adding up the nonlinear contributions
to the polarization, interference can result in a THG intensity
with amplified or suppressed spectral peaks and dips, spec-
trally shifted peak positions, or even with new peaks or dips
which are not present at all in Figs. 3�a� and 4. We will not
go into a detailed analysis. We only note that for �0��1
��2=�3=0, the tendency is to suppress the high-energy
peaks compared to the case �0�0 and �1=�2=�3=0.

The key feature of the calculations presented so far is that
the THG spectra depend on the underlying source of the
nonlinearity, i.e., they depend on which of the coefficients �k
is nonzero. In other words, observing four, three, two, or just
one peak in experimental THG spectra allows one to learn
something about the system by comparison with theory. This,
however, is only possible for a certain regime of coupling
between the two oscillators, which we shall refer to as the
regime of “moderate coupling.” Obviously, for very small
coupling strengths, i.e., for small values of �c, the four spec-
tral peaks in the THG spectrum of the case �k=�k,0 �dis-
cussed above� merge into a single peak. In the other limit,
i.e., for large values of �c, also x̃wg

�1���� exhibits several peaks
�unlike the gray areas in Fig. 2�, which can, for example,
lead to several spectral peaks in the THG spectrum for the
case �k=�k,3 as well. By numerical calculations for the

“resonant” case �i.e., �pl=�wg=�̂�, for qwg=0, and assum-
ing � pulses, we can specify the regime of “moderate cou-

pling” by the condition 0.15��c
2 / �2��̂��1.35. Thus, if one

wants to learn something from the comparison of experiment
and theory, the coupling parameter of a sample has to be
tailored correspondingly.
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FIG. 4. As Fig. 3�a�, but for different nonlinearity parameters.
The shown THG contributions result from a nonzero value of �a�
�1, �b� �2, and �c� �3 while keeping the other nonlinearity param-
eters zero. At T=0, the number of spectral peaks is three, two, and
one, respectively. �a�, �b�, and �c� are displayed on individual gray
scales.

FIG. 3. �a� Optical THG intensity derived from the coupled
nonlinear oscillators. The THG intensity is shown on a saturated
gray scale, versus spectrometer photon energy and time delay T
between the two excitation pulses. At T=0, the THG spectrum ex-
hibits four distinct peaks �the high-energy peak is amplified by a
factor of 10 for the sake of clarity�. The four peaks exhibit different
temporal behaviors. Corresponding cuts at the spectral peak posi-
tions indicated by the white arrows in �a� are shown in �b�. For
better comparison, the curves are normalized to the same maximum
and are vertically displaced. Obviously, the first and fourth curves
both have a smoothly decaying �upper� envelope, while only the
second and third curves show an envelope resulting from a beating.
The nonlinearity parameters used are �k��k,0. The other parameters
are quoted in the text. Compare with the corresponding experiment
�Fig. 8 below�.
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V. EXPERIMENTS

The system of interest, a metallic photonic crystal slab, is
schematically shown in Fig. 5�a�. The coupling strength �c

2

between the particle plasmon resonance and the Bragg reso-
nance �waveguide mode� can conveniently be tailored by the
spacer thickness d. It is clear that an increasing spacer thick-
ness leads to decreasing coupling. We experimentally find
that when choosing d=30 nm, the samples are within the
regime of “moderate coupling” defined in the previous sec-

tion, with a normalized coupling strength of �c
2 / �2��̂�

=0.43 for sample A and 0.28 for sample B �see below�.
These two selected samples are presented in the following as
examples for the “resonant” and “nonresonant” cases, re-
spectively �see definition in Sec. III�.

A. Sample fabrication and linear-optical experiments

First, the dielectric layers shown in Fig. 5�a� are deposited
in a high-vacuum chamber at pressures around 10−6 mbar via

electron-beam evaporation. We use hafnium dioxide �HfO2�
as the high-index material �n=1.95� forming the core of the
slab waveguide between the quartz substrate �n=1.46� and
the magnesium fluoride spacer layer �MgF2, n=1.38�. These
dielectrics have been chosen for their transparency in the
total spectral range of interest as well as for minimum THG
generation from the dielectric layers �as we investigated in
independent experiments�. The 5-nm-thick indium tin oxide
layer �ITO, n=1.9� is necessary to avoid charging effects in
the electron-beam writing process. Next, a photoresist layer
is spun onto the sample, exposed by means of electron-beam
lithography, and developed. Finally, a 15-nm-thick gold film
is evaporated and the metal on the remaining photoresist
areas is lifted off. Each of the resulting gold nanowire arrays
covers a total area of �60 �m�2. The electron micrograph in
Fig. 5�b� shows an enlarged view of a typical sample, reveal-
ing the high quality of the resulting structures. Typically, we
fabricate entire sets of arrays on one glass substrate. In such
a set, e.g., the lattice constant a is varied from 500 to 650 nm
in steps of 25 nm, and the nominal wire width from around
120 to around 220 nm in steps of 20 nm. In this fashion, we
fabricate and investigate a total of 42 nanowire arrays on
each substrate.

To connect to theory, the measured extinction spectra
�negative logarithm of the intensity transmittance, referenced
to the substrate without gold structures� for TM polarization
and for normal incidence are compared with Eq. �13� derived
in Sec. III �see Fig. 6�. In these experiments we use a white-
light source focused with a numerical aperture �NA� of about
0.025. Using a yet smaller NA tends to make the extinction
dip even more pronounced. A careful discussion of this as-
pect can be found in Ref. 24. We find a good qualitative
agreement of our simple theoretical model and the experi-
ments. From a least-squares fit of the theory to the experi-
ment �see Fig. 6� we obtain all relevant parameters, leaving
only the nonlinear coefficients �k as free parameters for the
nonlinear-optical experiments to come. The experimental pa-
rameters of sample A �B� are a=550 nm, w=185±5 nm
�a=625 nm, w=195±5 nm�. The fit parameters of sample
A �B� are ��pl=1.67 eV, ��wg=1.56 eV, ��c=0.66 eV,
�=1.06 fs, and qwg/qpl= +0.085 ���pl=1.65 eV, ��wg
=1.39 eV, ��c=0.54 eV, �=0.97 fs, and qwg/qpl= +0.049�,
where �=1/ �2��. The additional fit parameter �pl, together
with the coefficients �k, determines the absolute strength of
the THG signals. Sample A is resonant, i.e., ���pl−�wg�
=0.11 eV�0.27 eV=��c

2 /�̂, while sample B is nonreso-

nant, i.e., ���pl−�wg�=0.26 eV�0.19 eV=��c
2 /�̂ �see dis-

cussion in previous section�.

B. Nonlinear-optical experiments

In our THG experiments, we use 5 fs laser pulses derived
from a laser system closely similar to the one described in
Ref. 25 �81 MHz repetition frequency�. The pulses are sent
into a Michelson interferometer, which is actively stabilized
by means of the “Pancharatnam screw.”26 The linearly polar-
ized pulses emerging from the interferometer are focused
onto the samples �normal incidence and TM polarization� by
a spherical mirror with a focal length of f =100 mm. To es-

FIG. 5. �a� Scheme showing gold nanowires on top of a set of
dielectric layers forming the slab waveguide. HfO2 is used as a
high-index material, while MgF2 serves as a low-index spacer. The
polarization of the normally incident white light or laser pulses is
perpendicular to the wires �TM polarization� for the experiments
shown in Figs. 6, 8, and 9. Samples with different lattice constant a,
wire width w, and spacer thickness d are investigated. �b� Scanning
electron micrograph of the gold nanowires �light gray� on top of the
waveguide �dark gray�.
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timate the intensities in the spot and to determine the effec-
tive NA, we have measured the spot size and the Rayleigh
length by a knife-edge method in the horizontal �vertical�
direction. The determined spot radius of 12.5 �12.3� �m is
significantly smaller than the size of the nanowire arrays and
leads to a pulse intensity around I=3.9�1010 W/cm2 and a
laser fluence of 200 �J /cm2 used in the experiments de-
scribed below �for an average power of 80 mW in front of
the sample�. We will argue later that this fluence is still
within the third-order perturbational limit. The correspond-
ing Rayleigh lengths of 490 �560� �m lead to an effective
NA of 0.025 �0.022�.

In Fig. 7 we depict the characterization of the laser pulses.
The thick curve in �a� shows the usual second-order autocor-
relation obtained from a very thin �–barium-borate SHG
crystal. The thin line is the autocorrelation as calculated from
the measured laser spectrum �see gray area in Fig. 6�b�� un-
der the assumption of a spectrally flat phase. The good agree-
ment indicates that the residual chirp on the 5 fs pulses is of
minor importance. The thick curve in Fig. 7�b� shows the
third-order autocorrelation function measured via THG from
the surface of a thick sapphire plate. The thin curve in �b� is
the corresponding calculated response under the same as-
sumptions as in �a�. Again, the agreement is very good. No-
tably, the envelope of the THG signal has decayed by a fac-
tor of 4 for time delays of just two cycles of light. These
curves in �b� can be considered as the apparatus function and

have to be compared with the measurements to be discussed
in what follows. The achieved ratio of 32:1 between the THG
signal at zero time delay and large time delays, respectively,
indicates good alignment of the interferometer.

In the THG experiments, the emission from the samples
in the forward direction is collected by another spherical mir-
ror �focal length f =100 mm�, spectrally prefiltered by means
of four fused-silica Brewster-angle prisms to suppress the
overwhelming fundamental laser light and spectrally re-
solved using a 0.5-m-focal-length grating spectrometer �with
a grating blazed at 250 nm wavelength� connected to a uv-
sensitive, back-illuminated, liquid-nitrogen-cooled charge-
coupled-device camera.

Figure 8 shows a typical data set of sample A, containing
600 individual spectra obtained in a total of about 8 min
acquisition time. Here, the THG signal is plotted on a linear
gray scale as a function of spectrometer photon energy and
time delay. The exact same representation has already been
employed in the theory section �see Figs. 3 and 4�. Indeed,
the linear-optical parameters of Figs. 3 and 4 correspond to
those of sample A �compare linear spectra in Fig. 6�a��. Ob-
viously, the measured nonlinear-optical spectra are much
closer to those in Fig. 3 than to any of Fig. 4. In particular,
four peaks occur in the spectra at zero time delay. Also, the
dependencies of the different spectral cuts versus time delay
in Fig. 8�b� closely resemble those in Fig. 3�b�. Again, the
envelopes of the first and fourth cuts show hardly any beat-
ing, whereas the envelopes of the second and third cuts re-
veal a pronounced beating behavior �note that the very weak
fourth peak in Fig. 8�a� spectrally overlaps with the wing of

FIG. 6. Extinction of the selected samples �a� A and �b� B. The
thick curves show the extinction measured with a white-light
source, referenced to the substrate without gold structures. The thin
lines are absorption spectra derived from the model of coupled Lor-
entz oscillators, Eq. �13�, obtained by a nonlinear least-squares fit to
the corresponding experimental data. The gray area in �b� depicts
the electric field spectrum �square root of the measured intensity
spectrum� of the laser pulses used for the nonlinear-optical
experiments.

FIG. 7. Characterization of the 5 fs laser pulses. �a� Second-
order interferometric autocorrelation �SHG-IAC� measured directly
�thick line� and calculated �thin line� from the measured pulse spec-
trum under the assumption of a flat spectral phase. �b� Third-order
interferometric autocorrelation �THG-IAC� measured directly �thick
line� and calculated �thin line� in analogy to �a�.
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the third peak, resulting in a small residual beating�. This
comparison allows us to conclude that the nonlinear model
where only �0 is nonzero is the appropriate one. This means

that the nonlinearity predominantly originates from the par-
ticle plasmon—which is not a priori clear. This finding is
consistent with the experimental finding that the nonlinear
signal decreases by a factor of 19 �and the multipeak features
disappear� when going from the TM polarization used so far
to the TE polarization. It is also consistent with the fact that
the THG signals drop by a factor of about 20 when going

FIG. 9. �a� Measured optical THG intensity from sample B.
Near T=0, the THG spectrum clearly exhibits four peaks �the high-
energy peak is amplified by a factor of 10�. Normalized cuts at the
spectral peak positions indicated by the white arrows in �a� are
shown in �b�. Note the much slower, smooth decay of the envelope
of the cut at 4.00 eV as compared to the cut at 5.16 eV, and the
beating, which only occurs in the other two curves.

FIG. 8. �a� Measured THG intensity from sample A. The THG
intensity is shown on a saturated gray scale, versus spectrometer
photon energy and interferometric time delay. Near time delay T
=0, the THG spectrum exhibits four peaks �the weak high-energy
peak is amplified by a factor of 40 to become visible�. The four
peaks exhibit a different temporal behavior. Corresponding cuts at
the spectral peak positions indicated by the white arrows in �a� are
shown in �b�. For better comparison, the curves are normalized to
the same maximum and are vertically displaced. The appearance
and absence of beating is discussed in the text. Compare with the
corresponding theory �Fig. 3�.

KLEIN et al. PHYSICAL REVIEW B 72, 115113 �2005�

115113-10



from the gold nanowire arrays to areas of the glass substrate
where only the dielectric layers are present.

It is important for our interpretation that the experiments
are performed in the third-order perturbation regime—which
is also assumed in the theoretical analysis. Higher-order con-
tributions would obviously modify the ratio of 32:1 between
the THG signal at zero time delay and that at large time
delays. In the experiments, the ratio of 32:1 is reached within
experimental uncertainty: From analyzing the upper �lower�
envelope of spectrally integrated data like those shown in
Fig. 8 but for time delays up to ±60 fs, we derive a ratio of
24:1 �35:1�. The actual ratio—which refers to a comparison
between zero and infinite time delay—must lie between
these two ratios.

In Fig. 9, we show the data set for the “nonresonant”
sample B. As for sample A, four spectral peaks are visible in
the THG spectra. In contrast, however, the peaks in Fig. 9�a�
have rather different spectral widths, as expected from the
fact that the two effective extinction peaks �see Fig. 6�b��
exhibit rather different spectral widths and our discussion of
Sec. IV. The different spectral widths in Fig. 9�a� correspond
to strongly different decay times of the envelopes in Fig.
9�b�. Again, only the envelopes of the first and fourth cuts
show a smooth decay, whereas the envelopes of the second
and third cuts exhibit a pronounced beating.

VI. CONCLUSIONS

We have investigated the linear- and nonlinear-optical
lineshapes of metal nanoparticles and metallic photonic crys-
tal slabs.

For particle ensembles, we have shown analytically and
numerically that the comparison of time-resolved femtosec-
ond second- or third-harmonic-generation experiments and
extinction measurements does not allow one to distinguish

between homogeneous and inhomogeneous contributions to
the linewidth. Optical-rectification or four-wave-mixing ex-
periments would provide such information.

For metallic photonic crystal slabs, we have demonstrated
that the model of two coupled Lorentz oscillators describes
very well the key experimental features of linear optics. In
particular, Fano-like lineshapes appear in the absorption
spectra. With regard to nonlinear optics, we have shown
that—within the regime of “moderate coupling”—the
nonlinear-optical third-harmonic-generation spectra provide
information on the underlying source of the optical nonlin-
earity. Furthermore, the calculated nonlinear spectra reveal a
beating in the spectral mixing products of the two peaks
from linear optics, but not in the third harmonics of the latter
peaks.

Our corresponding experiments on third-harmonic gen-
eration of metallic photonic crystal slabs go beyond previous
work regarding improved temporal resolution and the fact
that we spectrally resolve the interferometric third-harmonic
signal. The spectra reveal a distinct behavior of the various
spectral components versus time delay. Some spectral com-
ponents exhibit a beating, others do not. Furthermore, the
decay times of the envelopes strongly depend on the spectral
component. The measured spectra agree qualitatively very
well with the predictions of the simple theoretical model.
The comparison allows us to identify the particle plasmon
oscillation as the main source of nonlinearity.
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