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Zusammenfassung (German Summary)

Drahtlose Sensornetze (DSN) stellen eine vielversprechende Technologie dar, deren Möglich-
keiten und Grenzen sich in vielen Bereichen gerade erst andeuten.

Sie bestehen aus einer Vielzahl kleiner Sensorknoten, vollwertiger, wenngleich leistungs-
armer Kleinstrechner, die drahtlos miteinander kommunizieren und ihre Umwelt mit Hilfe
zumeist einfacher Sensorik beobachten, mitunter sogar durch Aktorik beeinflussen können.
Die Entwicklung solcher Sensorknoten ist die Konsequenz immer kleiner und leistungsfä-
higer werdender Komponenten: Hochintegrierte Mikrocontroller, Speicher und Funkchips,
Sensoren für Druck, Licht, Wärme, Chemikalien usw. lassen sich je nach Leistungsfähigkeit
heute schon im Bereich weniger Kubikzentimeter, zum Teil noch deutlich darunter real-
isieren. In ihrer Kombination eröffnen diese Technologien neue Einsatzgebiete.

In der Vision, die die Entwicklung vorantreibt, sieht man bereits Tausende von Sensor-
knoten zu Stückpreisen weniger Euro, die zur Beobachtung eines Phänomens ausgebracht
werden. Die Knoten vernetzen sich selbstorganisiert, verabreden die dazu nötige Arbeitstei-
lungen untereinander und kompensieren bei Bedarf Knotenbewegungen und -ausfälle. Sie
beobachten ohne weitere Steuerung ihre Umgebung, erkunden sie vielleicht sogar, klassi-
fizieren Veränderungen kollektiv und unterscheiden kritische Ereignisse zuverlässig durch
gegenseitigen Abgleich der Messungen, um sie an den Rand des Netzes zu melden.

Die Einsatzgebiete sind vielfältig: Schon heute werden Sensornetze in der Überwachung
von Wildtierbeständen und der Aufzeichnung von Klimabedingungen zum Beispiel in der
Agrarwirtschaft genutzt. Sie werden zur Überwachung von Gletschern und Vulkanen einge-
setzt, in der Hoffnung, in Zukunft frühzeitig vor Gefahren warnen zu können. Sensor-
netze überprüfen die Lagerung von Chemikalien und sollen die Stabilität von Bauwerken
überwachen. Am Körper angebrachte und funkvernetzte Sensoren sollen Patienten ermög-
lichen, sich frei zu bewegen.

Erste Einsätze haben jedoch auch gezeigt, wie weit wir von der beschriebenen Vision noch
entfernt sind. Dafür sind vor allem die beiden folgenden Eigenschaften solcher Netze ver-
antwortlich:

– In aller Regel sind Sensorknoten batteriebetrieben; hier ist die Entwicklung längst
nicht so schnell vorangeschritten wie in anderen Bereichen. Das zur Verfügung ste-
hende Energiebudget ist daher oft der die (autarke) Lebenszeit eines Sensornetzes
begrenzende Faktor.

– Die Kommunikation im drahtlosen Medium unterscheidet Sensornetze deutlich von
anderen verteilten Systemen und die große Anzahl an Knoten auch von anderen
Ad-hoc-Netzen. Kommunikation hängt in diesen Netzen stark von der räumlichen
Verteilung ab; Knoten können nur mit nahen Knoten Informationen austauschen,
gleichzeitig stören sich Übertragungen mit geringem Abstand gegenseitig. Kommu-
nikation, vor allem über größere Strecken, kostet viel Energie und bleibt unzuverläs-
sig.

Aus diesen Eigenschaften ergeben sich neuartige Probleme, aber auch neuartige Ansätze.
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Die Geometrie solcher Netze lässt sich, sofern Knoten ihre Position kennen, nutzen, um zum
Beispiel Übertragungen so zu planen, dass sie sich gegenseitig nicht stören. Auf der anderen
Seite lässt sich aus der Beobachtung, welche Knoten mit welchen Knoten kommunizieren
können, viel Information über die Knotenpositionen ableiten.

Diese Arbeit behandelt diese beiden Aspekte aus algorithmischer Sicht: Sie stellt mathema-
tische Modelle vor, die die Eigenschaften drahtloser Kommunikation und eingeschränkter
Sensorknoten abbilden, betrachtet die Komplexität der entstehenden Probleme und zeigt,
welche Lösungen sich auch in großen Netzen realisieren lassen. Kern dieser Lösungen ist
die Beschränkung auf lokale Kommunikationsmuster.

Lokalisierung großer Netze

Viele Algorithmen für Sensornetze setzen die Kenntnis der Knotenpositionen voraus. Sie ist
auch die Voraussetzung für die Analyse gemessener Daten oder das Melden von Ereignissen.

Trotzdem ist nicht selbstverständlich, dass Knoten ihre eigene Position ermitteln können.
Nicht immer stehen GPS oder ähnlich mächtige Hilfen zur Lokalisierung zur Verfügung.
Auf der anderen Seite enthält die Struktur des Netzes wegen des starken Zusammenhangs
zwischen Kommunikation und Geometrie bereits viel Information über die relative Lage der
Knoten. Diese Arbeit stellt einige Ergebnisse zur Lokalisierung großer Netze gänzlich ohne
sogenannte Ankerknoten mit bekannten Knotenpositionen vor. Die wesentlichen Ergebnisse
sind:

– Beweis der NP-Schwere der Lokalisierung bei bekannten paarweisen Entfernungen
und relativen Richtungen bei beliebig kleiner Störung der Eingabe

– Entwurf eines exakten Verfahrens zur richtungsbasierten Lokalisierung, das durch
verteilte Berechnung einer Zerlegung des Netzes in starre Teilstrukturen (Laman-
Partitionierung) die Kommunikation und den Berechnungsaufwand zur Identifikation
und Einbettung von maximalen Teilgraphen mit eindeutiger Lokalisierung minimiert.

– Entwurf und Analyse eines hierarchischen Lokalisierungsverfahrens auf Basis der Mul-
tidimensionalen Skalierung (MDS). Dieses Verfahren vereinbart die Stärken von MDS,
das sich als extrem robustes Lokalisierungsverfahren für kleine Netze bewährt hat, mit
Techniken zur hierarchischen Ausdünnung großer Netze. Das resultierende Verfahren
erlaubt so, eine äußerst präzise Lokalisierung auch großer Netze verteilt zu berechnen,
ohne dass einzelne Knoten dabei die Struktur des gesamten Netzes kennen müssen.

Koordination von Abfragebäumen

Das vorherrschende Kommunikationsmuster in Sensornetzen besteht nach wie vor aus dem
Einsammeln von Daten entlang eines Anfragebaumes zu einer Senke hin. Gerade bei so
berechenbarer, aber energieaufwendiger Kommunikation lohnt sich das zeitliche Abstim-
men der Übertragungen, um Energieverluste durch Kollisionen, unnützes Mithören des
Funkkanals oder durch das Überlaufen von Puffern zu verhindern. Auf der anderen Seite
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darf der Mehraufwand zur Abstimmung der Benutzung des Funkmediums natürlich selbst
nicht ins Gewicht fallen, wenn insgesamt Energie eingespart werden soll. Wir betrachten da-
her die erreichbare Qualität von Protokollen zur zeitlichen Koordination von Übertragungen
in diesem Szenario, die einem sehr strengen Modell genügen: Jeder Knoten darf mit jedem
Nachbarknoten im Baum nur ein – in der Größe beschränktes – Paket austauschen. Damit
kennt insbesondere keiner der Knoten die Gesamtstruktur des Anfragebaumes. Das Ergeb-
nis einer solchen Absprache soll in jedem Fall eine Nutzung des Funkmediums sein, die den
Transport der Daten mit minimalem Energie- und geringem Zeitaufwand ermöglicht und
von keinem Knoten verlangt, mehr als eine konstante Anzahl Pakete zu puffern.

Analysiert werden verschiedene (kombinatorische) Interferenzmodelle, die Hauptergebnis-
se sind:

– Vereinbarkeit der Einschränkungen und der Verabredung zeitoptimaler Nutzung des
Kanals ohne Interferenz

– Analyse verschiedener Protokolle zur Verabredung zeitapproximativer Nutzung des
Kanals bei totaler Interferenz (keine parallelen Übertragungen) und zeitoptimaler
Nutzung bei geringfügig erhöhtem Mehraufwand, sowie die Unmöglichkeit der Ve-
rabredung zeitoptimaler Nutzung unter Einschränkungen

– Protokolle zur Verabredung zeitapproximativer Nutzung des Kanals mit konstantem
Approximationsfaktor bei lokaler Interferenz

– Entwurf und Analyse eines generischen Protokolls, das die vorgestellten Protokolle
so robust gegen Übertragungsfehler macht, dass ein vollständiges Einsammeln der
Daten garantiert werden kann, ohne die Dauer des Einsammelns um mehr als einen
konstanten Faktor zu verlangsamen

Koordination allgemeiner Verbindungen

Bei der Koordination von Übertragungen in allgemeineren Szenarien bauen algorithmische
Lösungen bisher auf geometrischen und graphenbasierten Interferenzmodellen auf. Diese
modellieren Interferenz als binäre Relation sich gegenseitig ausschließender Übertragungen.
Sie ermöglichen es somit, Probleme in Sensornetzen auf bekannte Probleme der Graphen-
theorie zu reduzieren. Diese Ansätze blieben aber eine Antwort auf die Frage schuldig, unter
welchen Umständen und Verlusten sich die so gewonnenen Lösungen in realistischere Inter-
ferenzmodelle übertragen lassen. In Modellen, wie sie in der Simulation von Sensornetzen
üblich sind, wird der Signalausbreitung und -überlagerung viel stärker Rechnung getragen
und der Empfang einer Übertragung ist genau dann möglich, wenn das Nutzsignal sich
deutlich genug von störenden Signalen unterscheidet. Diese Arbeit liefert die Nachweise,
dass die Lösungen bestimmter graphenbasierter Interferenzmodelle in komplexeren Mod-
ellen zum einen immer noch korrekt sind, zum anderen selbst gierige Lösungen in solchen
graphenbasierten Modellen auch nur um kleine, konstante Faktoren schlechter als optimale
Lösungen in realistischen Interferenzmodellen sind.
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Chapter 1

Introduction

Wireless sensor networks (WSN) have attracted an enormous attention among researchers
from diverse scientific communities. In a unique way, wireless sensor networks offer a
completely new technology, opening the door for new kinds of applications and services,
but at the same time demand for new ideas and paradigms.

It is, however, not the development of single components that inspire the enthusiasm.
Sensor network technology is nothing more than the result of the expected development
in the integration of sensors, microcontrollers and radio transceivers. In its combination,
or, better, in the prospect to ship devices that combine these components in large numbers
at low costs and small form factors, this development breaks a barrier. It was this outlook
that gave the impulse to envision networks of thousands of tiny devices—so-called motes—
that, once deployed in an area of interest, would work as a single, omnipresent sensor,
and, moreover, as a tool that could analyze complex phenomena, providing the owner with
essential data and alerts. In this vision, nodes are dropped from a plane in unsafe or inac-
cessible territories, attached to animals, buildings, or dispersed as “Smart Dust” [KKP99].
The nodes themselves would then initiate their organization, choosing nodes and routes for
communication and duty cycles, adapting to the environment, exploring it, and ultimately
monitor it. As a network, nodes would answer complex queries for conditions and matters,
and would watch for events, combining information from different types of spatially close
sensors to distinguish between real events and sensor failures. Among the scenarios that
illustrate this vision best, we have the oft-quoted forest fire, that can be discovered earlier
by sensors equipped with temperature sensors and smoke detectors, but also smart storage
containers that cooperatively monitor storage conditions, e. g., with regard to regulations
concerning chemicals that must not be stocked in dangerous combinations.

It has not only been for the new applications that sensor networks became such an en-
thralling field of research. It was also the challenge to solve the puzzling problems that such
a novel platform confronted many disciplines with, far beyond the design of the hardware.

11



12 Introduction

Sensor networks differ from all the parallel or distributed networks and models of compu-
tation. They are assumed to grow larger, sometimes are mobile and consist of nodes of very
restricted capacities. Among these restrictions, we have the following:

Limited energy budget: A typical mote runs on batteries, whose development did not
advance as far as the integration of the other components. But even if the plans to let
future motes “harvest” their energy using solar cells, from temperature differences or other
processes, energy will remain a very scarce resource. For the vision of a sensor network that
runs autonomously for months or years, operating 24/7, it is hence vital to save energy in
every aspect, minimizing communication, computation and duty times.

Limited memory and computational power: Today’s motes are fully operational systems
consisting of a microprocessor and often both, volatile and non-volatile memory. Their
capacities, however, are far from what we have nowadays even in other embedded systems.
Size, price, and, most importantly, the need for low-energy components put hard constraints
on the components.

These restrictions are but one reason why sensor networks are so novel to designers of
algorithms and protocols. They mix with aspects that cannot only be seen as limitations,
but also as potentials of sensor networks:

Geometry: Much more than any other distributed system, wireless sensor networks are
geometric networks. Nodes have positions in either the plane or three-dimensional space.
The data they are processing is closely related to this position and also the interconnection
between the nodes highly depends on the nodes’ embedding: Nodes can only communicate
with other nodes directly that are spatially close.

Redundancy: The high number of low-cost motes, deployed in a possibly hostile environ-
ment, is an essential part of the vision of sensor networks. It entails a low reliability of
single nodes, of which some can be substandard, and others can be destroyed or blocked.
Similarly, communication between nodes can be unreliable. Nodes can lose connection due
to objects moving in the way or other changes in the environment.

A wonderful example of how geometry and redundancy can be exploited to compensate
limited memory and changing network topology are geographic hashing techniques that
assign data not to single nodes, but to geographic positions, such that nodes close to this
position are responsible for the data. This technique has been algorithmically analyzed in
the context of location services, where nodes regularly send their current position to a set of
rendezvous points, which other nodes can then query [ADM04, FW06]. There is a variety
of such examples of so-called “geometry-aware” algorithms for sensor networks.

Another development that shows how severe the differences to known platforms really
are, is the regress to application-specific cross-layer optimization. Unlike for other networks,
an abstraction of network protocol stacks like the established OSI model does not seem to
be suitable anymore. Competitive solutions for sensor networks seemingly need to address
problems across the traditional layers. This is, to a considerable part, due to the fact that
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concurrent communication is subject to much more restrictions and that optimizing the net-
work’s structure and timing often negatively affects the behavior of distributed algorithms
running in this network. The downside of this trend towards cross-layer optimization and
tailored protocol stacks clearly is that we are almost completely missing an agreed compu-
tational model to design algorithms for. Still, it is unclear, whether we can hope for such a
model, or whether we will still see a variety of tailored protocol stacks for different purposes.

Some of the visions above have been disenchanted in the light of these conditions. To-
day’s sensor networks are still far from these visions and do not only suffer from teething
problems; some issues remained hard from both, the practical and theoretical point of view,
and some prerequisites for many applications such as synchronization, positioning and reli-
able multi-hop routing are not understood well. On the other hand, first networks have been
deployed and provide valuable service, among them systems to monitor critical conditions
and raise alarm on hazardous events and such that protocol environmental parameters in
agriculture or research of ecosystems. Typically, present systems have in common that they
build on simple network traffic patterns, such as flooding and routing trees, do not involve
complex in-network processing beyond data aggregation and often did not grow too large.

Our contribution

In this work, we will focus on two problems that are fundamental for higher-level algo-
rithms, but have not yet been answered satisfactory, namely positioning and scheduling.
Both problems are among the first to arise in newly deployed networks, and we are in-
terested in appropriate models, complexity and, most of all, algorithms that solve these
inherently global problems using low and local communication, making them applicable
also to the large networks envisioned for the future.

In positioning, the question is how nodes that are tiny and have to observe spatial phe-
nomena and communicate in a geometric network obtain information about their positions.
This question is often answered by an external infrastructure such as GPS or other anchor-
age, but there have always been efforts to design algorithms for autonomous positioning,
that fits much better into the picture of self-organization and does not rely on infrastruc-
ture that is not available in all environments. GPS, for example, has become cheap enough
for integration, but does not provide accurate positions and does not work well indoors,
in densely wooded forests etc. This class of anchor-free positioning problems has always
been about the contrast between computationally hard problems and the development of
heuristics that exploit the geometric information in networks that are dense enough. We
will contribute to both these facets by a complexity result and the design of algorithms for
positioning problems.

Scheduling is the problem to coordinate transmissions in sensor networks. Such a coor-
dination can save time and energy in many ways: First, nodes that know when to communi-
cate do not have to listen to the radio during idle times, second, scheduled communication
prevents collisions of transmissions that make retransmissions necessary, which in turn cost
time and energy. We contribute to the problem in two ways: First, we approach the question
how to distributedly set up schedules for a given transport demand typical to many sensor
network applications with minimum communication. In addition, we target the modelling



14 Introduction

aspects of interference in sensor networks, following the questions how to make the com-
plex effects of interference algorithmically tractable, without the oversimplifications that
has been the basis for so much research in the past.

Organization of this work

In the following chapter, we will provide some background on sensor networks, including a
short overview on the hardware and protocols that currently mark the state-of-the art. We
also give a short synopsis of the mathematical concepts we will employ in the later chapters.
Last, this chapter contains some standard models currently used to make sensor networks
approachable for algorithmic design and reasoning. Neither of these three parts will be
comprehensive, but hopefully provides a sufficient basis for the later chapters.

In Chapter 3, we will present first results on positioning problems dealing with the prob-
lem to recover node positions solely from local information, with a strong focus on the com-
plexity and correspondence to mathematical structures. The main results are a fast and
partly distributed direction-based positioning algorithm and a hardness proof for the most
optimistic input we could hope for in reality.

In Chapter 4, we will approach the positioning problem in a more pragmatical way. Here,
we propose a multi-level technique to hierarchically combine local solutions in a purely
distributed fashion. This framework, teamed with the most promising positioning method
for small networks, multidimensional scaling, outperforms existing positioning algorithms
while providing admissible worst-case message and time complexities and robustness to
irregular radio patterns.

In Chapter 5, we turn our attention to a scheduling problem that is very special to sensor
networks: It deals with the problem to set up schedules for bulk data transport in query
trees with a minimum of communication overhead to gain both, time and energy efficiency.
This chapter provides ready-to-use protocols for applications gathering data at a central
repository using slotted communication for different interference models, also accounting
for unreliable communication.

Chapter 6 covers modelling aspects of scheduling problems in a broader sense. It com-
pares widely used interference models extending the taxonomy of interference models by
the class of local interference models, proving that locality is the feature that—asymptotically—
causes the gap in the quality of common graph-based interference models and the more
realistic, yet complex SINR model.

The work is concluded with Chapter 7.

Part of this work has been published in [KGW07, KW07, KW08, KMW08, KVW08]. The
work presented in Chapters 5 and 6 is joint work with Steffen Mecke and Markus Völker,
respectively.



Chapter 2

Basics

This chapter deals with fundamental concepts and the technological background that is
assumed in the later chapters. First, this includes current sensor network technology, con-
sidering hardware, wireless communication and areas of application. Second, we give an
overview on mathematical concepts and notation, and third, we will motivate and describe
some standard models used in algorithmic research for wireless sensor networks.

2.1 Technology and Protocols

Sensor networks have been developed for some ten years, counting from the SmartDust
project [KKP99]. There is no final answer for many parameters that describe wireless sensor
networks ultimately, neither in the number of nodes nor in their power, the communication
standards or in the way, sensor nodes are programmed or the applications they run. It is
reasonable to assume that we will see progress in all of these fields in the coming decade.
Nevertheless, we will have a short look at current technology to get a feeling of how sensor
networks developed until now.

2.1.1 Current Hardware

There is a variety of existing sensor node platforms, developed in both, academia and com-
mercial enterprises. They typically integrate the following hardware:

Sensors: The foremost task of sensor networks is to monitor conditions with some kind
of sensor hardware. Typical sensors that are integrated in many sensor node platforms
include temperature, light, pressure and humidity. Some also have acceleration sensors on
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board, and almost all platforms can be extended by arbitrary sensor hardware that is not
too energy-consuming. Nevertheless, nodes do not necessarily need to be equipped with
sensors. To track objects having nodes attached, for example, it is sufficient to “sense” the
moving nodes’ communication. And also in other applications, nodes without sensors can
still serve as relays and provide cheap network infrastructure for a small set of actively
sensing nodes.

Processor and memory: Sensor motes are fully operational computation devices, and there
is a variety of microcontrollers that is integrated into sensor nodes, ranging from minimal
CPUs limited to clock speeds of some MHz to very powerful CPUs with clock speeds of some
hundred MHz. Most processors in use support different modes of operation, including low-
energy idle and sleep modes. The need for low-power states also led to the integration of an
additional wake-up processor, e. g., in the current SunSPOT [Smi07]. As with processors,
also memory equipage differs from platform to platform. In general, memory ranges from
no more than 3kB to 512kB of volatile memory. Again, limitations are mainly due to the
energy drain that comes with larger memory. Some platforms also have additional flash
memory for long-time storage of data, typically of larger sizes of up to 32MB.

Communication: Obviously, wireless communication is essential to WSN, and by defini-
tion, motes are equipped with a radio subsystem to communicate with each other. The
most widespread protocol stacks base on the IEEE 802.15.4 standard for low-rate wireless
personal area networks, such as ZigBee or WirelessHART [GCB03, SHM+08]. They mostly
operate in the 2.4GHz frequency band. Some networks with high communication demand
and less restrictive power budgets also use Wi-Fi standards from the IEEE 802.11 family,
operating in the same frequency band. In the future, we are likely to see more customized
protocol stacks for wireless sensor networks, answering the demands of sensor networks
better.

Energy supply: The idea of autonomous and wireless sensor node does imply an energy
supply to be attached to each sensor node, sufficient to power the mote for a reasonable
lifetime, or, preferably, as long as the node is running. Currently, the only energy source
that can provide enough power for sensor nodes with an acceptable form factor are batteries
or other kinds of energy reservoirs such as micro fuel cells. They typically account for the
better part of sensor nodes’ weight and volume and still do not suffice to power a node for
long-time service. There have been many efforts to find alternative power sources and to
use energy efficiently. But even with the most recent platforms and energy management,
all of today’s motes need to be collected and recharged (or have their batteries changed)
periodically.

Wireless sensor networks do not necessarily have to be composed of a singly type of
motes. Rather, many predicted scenarios assume inhomogeneous networks that mix differ-
ent kinds of motes with different strengths. A sample of very recent sensor mote platforms
is depicted in Figure 2.1. This selection is not representative for the hardware currently in
use, but for the trends in hardware development: Unlike any other platform, Sun’s SunSPOT
builds on a Java virtual machine directly running on a 180 MHz 32 bit ARM920T proces-
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www.snm.ethz.ch/Projects/SunSPOT

(a) SunSPOT

www.xbow.com/Products

(b) Imote2

www.jlhlabs.com/jhill_cs/spec/

(c) Spec mote (prototype)

Figure 2.1: Sensor node platforms

sor (Figure 2.1(a)). The Crossbow Imote2 currently is one of the most powerful platforms
with an Intel XScale processor running with up to 416 MHz, and up to 32MB flash (Fig-
ure 2.1(b)) [NHS+08]. The Spec mote is an example of the efforts towards high integra-
tion. While both other platforms consist of standard components, not really optimizing the
form factor, chips like the Spec mote integrate almost all necessary functions on a single chip
(Figure 2.1(c)). Note that the SunSPOT is the only platform that is depicted with batteries,
which usually account for the better part of a sensor node’s volume. A much longer list of
wireless sensor platforms and their features can be found at the sensor network museum1.

2.1.2 Wireless Communication

Sensor motes are not the first to use wireless channels for communication, but the ex-
pected high number of nodes, the limited energy and the combination of missing infrastruc-
ture, spatial spread and low radio ranges make communication in wireless sensor networks
unique. Generally, in wireless communication, if a node transmits a message, the signal
somehow decays with the distance from the sender very irregularly, influenced by obstacles,
reflections and many other factors. Another node receives the signal and can decode it,
roughly spoken, if it hears the signal clear enough, i. e., if the signal is sufficiently strong
and if there is not too much noise from other sources, such as third nodes transmitting. This
imposes consequences that are unknown to wired networks, such as the fact that a node
can reach different sets of nodes depending on the transmission power, but at the same time
disturbs transmissions between more distant pairs of nodes. For a more general overview
on the principles of wireless communication see [Rap96].

The latter effect also marks a new quality compared to other wireless networks, which
primarily try to avoid multiple nodes sending at the same time rather than putting effort in
the spacial separation of concurrent transmissions. In wireless sensor networks, the large
number of nodes alone makes concurrent transmissions in many situations necessary.

1http://www.snm.ethz.ch

www.snm.ethz.ch/Projects/SunSPOT
www.xbow.com/Products
www.jlhlabs.com/jhill_cs/spec/
http://www.snm.ethz.ch
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Wireless communication is a dominant factor in energy consumption. Not only are
transmissions expensive in terms of the energy spent, but on most platforms, receiving and
decoding messages also consumes energy in the same order of magnitude. Moreover, even
listening to the wireless channel, waiting for a transmission, is not much cheaper, and hence,
the most energy can be saved by switching the radio off completely for as much time as
possible.

All communication protocols specify the rules for medium access control (MAC), i. e., rules
that aim at a coordination of transmissions, first to avoid too many collisions and second to
achieve a good channel utilization. There is a whole zoo of MAC protocols for wireless net-
works (see [DEA06] for a survey), but the most important decision is between contention-
based protocols and schedule-based protocols. There also are many protocols of a hybrid
type, but in their pure form, these two types can be characterized as follows [LH05]:

Contention-based: Contention-based protocols allow to share a channel between many
communicating entities without pre-coordination. In sensor networks, contention-based
protocols usually implement some kind of CSMA/CA-based approach. CSMA, carrier sense
multiple access, stands for the idea of “listening before talking”, i. e., to wait for an idle
channel prior to a transmission start. CA, collision avoidance, are techniques that replace the
collision detection (CD) in wired networks, since listening to the channel cannot necessarily
detect other senders interfering at the receiver. Nevertheless, CSMA-based protocols are
very flexible, but can never completely avoid collisions.

Schedule-based: In schedule-based protocols, the access to the wireless channel, i. e., the
allowance to transmit, is regulated by a schedule, either managed by a central instance or
subject to negotiation between the nodes. This adds protocol overhead and needs some sort
of synchronization, and is hence rarely used in current sensor networks. On the other hand,
scheduled communication is much more energy-efficient and has successfully been used in
low-energy networks [RKM+06]. We will sometimes refer to schedule-based protocols as
time division multiple access (TDMA) protocols. This refers to the usual technique to use
synchronization and slotted time for scheduling messages. Nevertheless, schedule-based
protocols can also schedule the usage of different wireless channels.

Another big difference to other wireless networks is the importance of multi-hop com-
munication. Networks grow far beyond the ranges of single nodes and messages need to be
relayed by many nodes to travel through the network.

2.1.3 Applications

Monitoring goods and structures: As mentioned in the introduction, wireless motes have
been used to monitor the storage of goods [KDD04], e. g., supervising that chemicals are not
stored in critical combinations. In logistics, WSN can also be used to aid the management
of transport processes [EBMP+05].

Sensor nodes can be used to monitor the structural integrity of buildings and bridges, ships
and airplanes, e. g., detecting anomalies in the response to excitations such as vibrations
from passing vehicles or wireless actuators [CFP+06, CDB+04]. Sensor networks deployed
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at volcanoes and in glaciers are used to monitor and analyze the processes in order to
develop early warning systems [WASW06, MPR+05]. Similarly, sensor networks can help
to detect landslides [TAMW06].

People Surveillance: From the very beginning, sensor networks were associated with surveil-
lance tasks. Typical examples are sensor networks for intrusion detection and tracking
of moving targets [HVY+06]. Sensor networks have also been proposed for localizing
snipers [SMAL+04]. Tracking applications can also be used in civil scenarios, e. g., to track
patients in hospitals, monitoring critical parameters [SCL+05].

Monitoring flora, fauna and environment: Many academic projects uses sensor networks
to monitor animals, e. g., for gathering data about the movements of wild zebras in the Ze-
braNet project in Kenya, bird habitats on Great Duck Island, and bats in Australia [Mar06,
MPS+02, SMP+04, PEC06]. They have also been proposed for the study of animal and
human social behavior, e. g., for the interaction of children in a “smart kindergarten” as
in [CMY+02], other groups of humans [LGA+06] or cattle [SBH07]. Similarly, sensor
networks have been deployed to monitor conditions and water use efficiency in agricul-
ture [Bag05, MMG+08], to record meteorologic and hydrologic conditions in national parks,
in forests, or in coral reefs [LCD03, BRY+04, BOP07]. In urban areas, sensor networks are
used to collect data on noise pollution [SOV08].

2.2 Mathematical Foundations

This section introduces mathematical notations and concepts used in the later chapters. We
assume the reader to be familiar with basic mathematical concepts. Hence, this section
is not intended to comprehensively cover all mathematical aspects, but to avoid confusion
about notations and to recapitulate and reference important results.

We will use Z, N, N0, R, R+, R− in the usual sense to denote the set of integers, positive
integers, non-negative integers, real numbers, positive real numbers, or negative real num-
bers. For any point x ∈ Rd , ‖x‖ denotes the Euclidean norm, and the Euclidean distance
between two points x , y ∈ Rd is denoted by d(x , y) := ‖x− y‖. We will sometimes shortcut
it by dx y . For x ∈ Rd and r ∈ R+, we will use Br (x) := {y ∈ Rd | d �x , y

� ≤ r} to denote a
ball of radius r around x . To avoid confusion, we denote the zero in Rd by 0. The kernel of
a matrix A∈ Rm×n is ker A := {x ∈ Rn : Ax = 0}

For any set S and x ∈ S, we sometimes shortcut S− x := S \ {x}.
2.2.1 Graphs and Networks

We also follow the usual definitions of (directed) graphs G = (V, E) consisting of a set of
vertices or nodes V and unordered (ordered) pairs of vertices E, called edges (arcs). Where
convenient, we will also denote an arc in a directed graph as {u, v}, discarding orientation,
or denote a connected pair in an undirected graph as (u, v), assigning an arbitrary orien-
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tation. Whenever a graph is used to model connectivity in a sensor network, we will also
refer to the edges as connections. A (directed) path of length l in a graph (V, E) is a sequence
v1, . . . , vl of nodes such that {vi−1, vi} ∈ E ((vi−1, vi) ∈ E) for 1 < i ≤ l. The graph distance
between two nodes is the length of the shortest undirected path between them, denoted
by dG (u, v). The diameter of a graph G = (V, E) is defined as diamG := maxu,v∈V dG (u, v).
The k-hop neighborhood N k

G (v) denote the set of nodes u with dG (u, v) ≤ k. We write
NG (v) := N1

G (v) − v and omit the index if it is clear from the context. A set of nodes
V ′ ⊂ V is called independent, if for any two nodes u, v ∈ V ′, {u, v} 6∈ E. It is called dominat-
ing, if for every v ∈ V at least one node within v’s one-hop neighborhood is in V ′, i. e., if
V ′ ∩ N1

G (v) 6= ;. A node’s degree is denoted by δG (u) := |NG (v) |, the maximum degree of
a graph G = (V, E) by ∆G :=maxv∈V δG (v). For a graph G = (V, E), edge- and node-induced
subgraphs are defined as G[V ′] := (V ′, E[V ′]) for V ′ ⊆ V and G[E′] := (V[E], E′) for E′ ⊆ E
with E[V ′] := {{u, v} ∈ E : u, v ∈ V ′} and V[E′] :=

⋃

{u,v}∈E′{u, v}.
For some d > 0, an embedding of a set of nodes V is a function p : V → Rd , assigning

to every node a position. In R2, an orientation in the plane is a function o : V → [0,2π).
When the embedding is clear from the context, e. g., if V is a set of sensor nodes and p the
nodes’ positions, we will sometimes identify a node with its position and, for example, write
d(v, u) instead of d(p(v),p(u)).

A rooted tree is a directed graph T = (V, E) with a root r ∈ V such that |E| = |V | − 1
and every node has a directed path to r. We then denote by hT (v) := dT (v, r) the height of
a node v, by hT := maxv∈V hT (v) the height of T and call the set of nodes with hT (·) = h′
the nodes at level h′. Wit respect to a rooted tree T , a node v’s descendants, or DT (v) are
the nodes that have a directed path to v in T (including v), and v’s ancestors AT (v) are the
nodes that v has a directed path to. A node v’s children are CT (v) := {u ∈ V : (u, v) ∈ E},
its parent pT (v) the single node u with v ∈ CT (u). For any rooted tree, we assume that
any node v’s children are ordered as CT (v) = {c1, . . . , c|CT (v)|}. With respect to this order of
children, we use the terms pre- and postorder of a rooted tree’s nodes as usual. For a more
elaborate introduction to graph theory, see [Jun08].

We assume the reader to be familiar with network flow problems. A survey ca be found
in [AMO93]. In this work, we only consider a very special case of a flow problem for
bipartite networks (V1, V2, E,κ, b) where E ⊂ V1× V2 and we are given capacities κ : E→ N0
and demands b : V1 ∪ V2→ N0. A flow then is a function f : E→ N0 such that

∀(u, v) ∈ E : 0≤ f (u, v)≤ κ(u, v)
∀u ∈ V1 :

∑

(u,v)∈E f (u, v)≤ b(u)
∀v ∈ V2 :

∑

(u,v)∈E f (u, v)≤ b(v)
(2.1)

A maximum flow then is a flow maximizing | f | :=∑e∈E f (e). The problem of maximizing
a flow in such a network can easily be reduced to the standard max-flow problem. With
respect to some flow f , we denote the residual demand as

b f (v) :=

(

b(v)−∑(v,u)∈E f (v, u) if v ∈ V1

b(v)−∑(u,v)∈E f (u, v) if v ∈ V2
(2.2)
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2.2.2 Algorithms & Complexity

In the field of algorithms and complexity, we follow the definitions of [GJ79]. We will refer
to a decision problem Π as a set of possible instances I ∈ Π classified as having answers “yes”
or “no”. We will assume that instances are encoded using some finite alphabet implicit to
Π, and refer to the number of symbols necessary to encode an instance I as I ’s size, 〈I〉. An
algorithm A solves Π if it finds the correct answer for every I ∈ Π.

In optimization problems, every instance I has feasible values F(I)⊂ R, and an algorithm
A solves Π if it returns OPT(I) := maxx∈F(I) x , if in F(I) a maximum exists, “infeasible” if
F(I) is empty, or “unbounded” if F(I) is either unbounded or limsup(F(I)) 6∈ F(I). Every
optimization problem can be translated into a decision problem extending instances to con-
tain a parameter pI . An Instance (I , pI) then is a “yes” instance if and only if the answer to
the optimization problem for I was some x ≥ pI .

For the asymptotic analysis of the runtime of algorithms, we use the common Landau
notation O,Ω,Θ to denote sets of functions with some upper or lower bounded asymptotic
behavior: For f , g : N→ R, f ∈ O(g) if and only if there exist c ∈ R and n0 ∈ N such that
f (n) ≤ cg(n) for all n ≥ n0, and f ∈ Ω(g) if and only if there exist c ∈ R+ and n0 ∈ N
such that f (n) ≥ cg(n) for all n ≥ n0. For g : N → R, Θ(g) = O(g) ∩ Ω(g). We say a
function f is polynomially bounded, if for some k ∈ N, f (n) ∈ O(nk) and we say that f grows
exponentially, if f (n) ∈ Ω(kn) for some k > 1.

Landau notation allows us not to be too strict in defining the model of computation
algorithms run on, but unless stated otherwise, we assume some kind of RAM. To abstract
even further, we say a decision problem is in class P, if for some polynomially bounded f
there exists an algorithm A such that a deterministic Turing machine running A solves Π
using at most f (〈I〉) steps. It is in class NP, if the same holds for a indeterministic Turing
machine. A problem Π is said to reducible to a problem Π′ in polynomial time, if there
is a polynomial-time algorithm to compute for every instance I ∈ Π an instance I ′ ∈ Π′
with the same answer. It is still unknown whether the obvious inclusion P ⊆ NP is strict
or not. As formalization of the believed higher complexity allowed in NP, a problem Π is
said to be NP-hard if every problem in NP is reducible to Π in polynomial time. Not saying
that P 6= NP, this notion of NP-hardness covers all problems that are as hard as any other
problem in NP. Under the assumption that P 6= NP, proving a problem Π to be NP-hard by a
polynomial-time reduction of any known NP-hard problem Π′ to Π is equivalent to proving
that no polynomial-time algorithm exists solving Π. On the other hand, proving a problem
Π ∈ P to be NP-hard would prove P= NP.

Such a proof by reduction obviously presupposes at least one problem to be proven to
be NP-hard by some other technique. The earliest example for such a proof is the proof
that Sat, the problem to answer whether a boolean formula using only AND, OR, NOT,
variables and parentheses has a variable assignment, such that the whole expression is true.
Nowadays, there is a huge number of known NP-hard problems to reduce from, one of the
most famous being the 3-Sat problem.
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2.2.3 Probability Theory

We will use some terms from probability theory and denote the probability of some event
E with P [E], and the expectation value of some random variable X with E [X ]. We will
denote the uniform distribution on [a, b] by U(a, b) and the normal distribution with mean
µ and varianceσ2 by N(µ,σ2). Aside from these standard notations, we will refer to Markov
chains as sequences of random variables X1, X2, . . . with the Markov property that

P
�

X i+1 = x | X1 = x1, . . . , Xn = xn
�

= P
�

X i+1 = x | X i = x i
�

. (2.3)

Markov chains are used to model stochastic processes where the distribution of possible
states at time t only depends on the preceding state (and not on the whole history). The
Markov chains we are considering have a finite state space S and fulfill the requirements to
have a stationary distribution, i. e., probabilities π : S→ [0, 1] with

π(s) =
∑

s′∈S

�

π(s′) · P�X i+1 = s | X i = s′�� . (2.4)

We will not prove these properties explicitly.
Another result we are going to use is that for n independent random binary variables

X1, . . . Xn, each having P
�

X i = 1
�

= pi for some pi , the random variable X =
∑n

i=1 X i can
be bounded using Chernoff’s inequality ([HR90]) for any δ by

P [X ≤ (1+δ)E [X ]]< exp
�−E [X ]δ2/2

�

. (2.5)

In the special case that P
�

X i = 1
�

= p for a fixed p, i. e., when X is binomially distributed,
we have E [X ] = np and for any k < np, we can set δ = (np− k)/np, yielding

P [X ≤ k] = exp

�

−(np− k)2

2np

�

. (2.6)

2.2.4 Linear Programming

A linear program (LP) is an optimization problem optimizing a linear function in Rn under
a set of linear constraints, i. e., linear equalities and inequalities. Every LP can canonically
be written as

max cT x
s.t. Ax ≤ b

(2.7)

for some c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. As usual, we will refer to the x i as the decision
variables and to the convex polyhedron given by {x ∈ Rn : Ax ≤ b} as the feasible region.
It was a long-standing open question, whether LPs are solvable in polynomial time. This
question has been answered affirmatively with Khachiyan’s ellipsoid method, which has a
worst-case polynomial running time and has since been improved by interior point methods,
such as the interior point projective method by Karmarkar. For more details see [Sch86].
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2.2.5 Multidimensional Scaling

Classical multidimensional scaling (MDS) [Tor52] is a technique to find a good low-dimensio-
nal embedding given a matrix of metric dissimilarities or distances between a set of items.
More formally, for some n ∈ N and given distances δi j for 1 ≤ i, j ≤ n, MDS aims at finding
positions x1, . . . , xn ∈ Rd for some d � n, such that d(x i , x j) ≈ δi j , more precisely, such
that

∑

i, j≤n(d(x i , x j)−δi j)2 is minimized. MDS utilizes that from

δ2
i j = d(x i , x j)

2 = (x i − x j)
T (x i − x j) = x T

i x i − 2x T
i x j + x T

j x j , (2.8)

it can be shown that for X = [x1, . . . , xn]T ∈ Rn×k and X X T = (bi j),

bi j =−1

2

 

δ2
i j −

1

n

n
∑

r=1

δ2
r j −

1

n

n
∑

s=1

δ2
is +

1

n2

n
∑

r=1

n
∑

s=1

δ2
rs

!

. (2.9)

In other words, X X T is obtained from the matrix of squared distances by double-centering,
such that each column and each row sums to zero. More importantly, X X T is a normal
matrix and can be diagonalized using a basis of eigenvectors as X X T = V DV T . Now, we
could yield n-dimensional positions x1, . . . , xn by setting

X = V D1/2 , (2.10)

which can be approximated in Rd using only the d largest eigenvalues and the correspond-
ing columns from V . For our purposes, we only need the two or three largest eigenvectors
of X X T , which can be computed by power iteration: A random vector x ∈ Rn is repeatedly
multiplied with X X T and normalized, converging towards the eigenvector xλ1

to the largest
eigenvalue λ1. To compute the eigenvector to the second largest eigenvalue, λ2, x is also
orthogonalized to xλ1

in every iteration. Given the matrix of dissimilarities, construction of
X X T takes Θ(n2) and power iteration takes additional O(n2) per iteration step. For a more
detailed description and variants of MDS see [CC01], for background on matrix computa-
tions, see [GvL96]. For all experiments, we used an implementation of classical MDS by
Brandes and Pich [BP06].

2.2.6 Rigidity Theory

Rigidity theory provides us with a number of results on structures that do not allow for
continuous deformation. The most prominent example is a characterization of graphs that,
embedded in general position in the plane, cannot be continuously deformed without chang-
ing edge lengths. This property of so-called “bar-joint-frameworks” is also known as generic
rigidity or, short, rigidity of a graph and the characterization as Laman’s counting property:

Theorem 2.1 (Laman’s counting property [Lam70]) A graph G = (V, E) is generically rig-
id if and only if it contains a set of edges E′ ⊆ E with |E′| = 2|V | − 3 such that for all subsets
E′′ ⊂ E′

|E′′| ≤ 2|V[E′′]| − 3 . (2.11)
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(a) A (parallely) non-
rigid graph

(b) continuous de-
formation preserving
edge lengths

(c) continuous de-
formation preserving
edge directions

(d) A (parallely) rigid
graph

Figure 2.2: Rigidity and parallel rigidity in the plane

It is a long-standing open problem to find a tight characterization for R3 or higher dimen-
sions [Hen92]. A much less known result considers the property of an embedded graph
not to allow for continuously changing positions while maintaining edge directions. This
property also is called parallel rigidity. The characterization of parallely rigid graphs coin-
cides with the characterization of rigid graphs in R2, but can be generalized for arbitrary
dimensions:

Theorem 2.2 (Laman’s theorem for parallel embeddings [Whi88]) A graph G = (V, E)
is generically parallel rigid in Rd , d ≥ 2, if and only if it contains a set of edges E′ ⊆ E with
(d − 1)|E′|= d|V | − (d + 1) such that for all subsets E′′ ⊂ E

(d − 1)|E′′| ≤ d|V[E′′]| − (d + 1) . (2.12)

In Figure 2.2, two graphs with the same set of vertices and the same number of edges are
depicted to illustrate the concepts of rigidity and parallel rigidity. Note that Theorems 2.1
and 2.2 also imply that a graph G = (V, E) with a sufficient number of edges (|E| ≥ 2|V |−3)
must either be (parallely) rigid in the plane or have a subgraph S = (VS , ES) ⊂ G with
|ES|> 2|VS| − 3.

Despite these analogies, there is another huge difference between standard rigidity and
parallel rigidity: Given a rigid graph, embedded in the plane, the graph still has many other,
completely different embeddings with the very same edge lengths, but it has only similar
parallel embeddings: Given a graph G = (V, E) and an embedding p : V → Rd , an embedding
p′ : V → Rd is called parallel, if every edge {u, v} ∈ E is embedded parallel or anti-parallel,
i. e., if

�

p(u)− p(v)
�⊥ · �p′(u)− p′(v)�⊥ = 0 , (2.13)

and similar, if p′ = cp+ x for some c ∈ R and x ∈ Rd . For a more in-depth treatise of the
different notions of rigidity, see [Whi97].

Notably, (parallely) rigid graphs in the plane can also be described as graphs with a
maximum (2,3)-sparse edge set [Lor79]: Given a set of nodes V , a set of edges E is (k, l)-
sparse, if for every V ′ ⊆ V , V spans at most k|V | − l edges E[V ′]. (k, l)-sparse edge sets
form a matroid, the simplest being the standard graphic matroid. We will hence call a set of
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edges independent if it is (k, l)-sparse and k and l are clear from the context, usually k = 2
and l = 3.

Maximum independent edge sets in (k, l)-sparse graphs can be identified in time O(n2)
using the algorithm of Lee and Streinu [LS07]. This algorithm not only returns a maximum
independent set of edges E′ for some graph G = (V, E) and parameters k ∈ N, l ≤ 2k,
but also returns maximal components V1, . . . , Vc , such that |E′(Vi)| = k|Vi| − l, i. e., compo-
nents that span a maximum number of independent edges, generalizing and improving the
original pebble game algorithm of Jacobs and Hendrickson [JH97].

2.3 Models

Theoretical research in wireless sensor networks is still driven by the continuous search for
appropriate models, most of them considering the communication of spatially distributed
nodes. Many of them aim at a formal description of the circumstances under which nodes
can exchange information. These efforts face a huge number of complex aspects that are
imposed by wireless communication, as well as a major uncertainty of realistic assumptions
of future applications and scenarios. Among these aspects, we have signal propagation and
interference, synchronization, medium access, energy consumption and transmission fail-
ures. To these aspects, mobility and node failures can add. Yet, there is no all-embracing
model of computation in sight that offers both, a convenient and credible abstraction of
sensor networks that takes all of the above issues into account. Unfortunately, it is ques-
tionable whether a satisfactory such model exists. More likely, the trend to different models
for different applications is going to persist, yielding more general abstractions for universal
sensor networks and fine-grained models for specific assumptions on node deployment and
network traffic patterns. The variety and diversity of models that mushroomed in the algo-
rithmic community have its counterpart in practice, where long-standing paradigms such as
the OSI Layer model are forgone in favor of cross-layer optimization and protocols tailored
to particular purposes.

Nevertheless, there are some standard models that proved helpful in the past, and which
we will sketch in the following.

2.3.1 Distributed Computing

Among existing models of computation, models of distributed computing (DC) are the most
reasonable first approximation of computation in wireless sensor networks. While the con-
cepts of DC do not model a spatially shared communication channel, they are able to cover
the properties of a WSN to consist of a large number of independently working computation
units, each running the same program, and connected by some arbitrary symmetric neigh-
borhood relation. Nodes can have additional input, and the also the result of an distributed
algorithm A is usually an individual result for every node. In the synchronous model of dis-
tributed computing, nodes are globally synchronized and perform communication rounds,



26 Basics

in each of which every node can first perform polynomial-time sequential computation ac-
cessing only locally available data, and second send a message to each of its neighbors.

The complexity of a distributed algorithm A can be measured in the number of commu-
nication rounds, which is called A’s time complexity. It can also be measured in the number
of messages sent during the execution of A, which we call A’s message complexity. The
complexity of problems depends on the additional restrictions in different models. In the
context of sensor networks, the three most relevant models of distributed computing are the
following [Pel00, ZG04]:

LOCAL: The LOCAL model is the most powerful model for distributed computing. Here,
message sizes are unbounded, i. e., at the end of each communication round, each node
can send an arbitrary amount of data to each of its neighbors. This model is of utmost
importance for the question what nodes can decide by local knowledge: In every algorithm
A with time complexity k, the result at some node v is independent from the input and
from neighborhood relations of nodes that have a distance of more than k hops. Moreover,
the problems that can be solved using k rounds of communication also are exactly the
problems that can be solved without any communication if every node learns the input and
neighborhoods of all nodes within k hops distance. This follows from the observation that,
given A and the input and neighborhood relation in its k-hop neighborhood, every node
can emulate A with exactly the same outcome as by running A. An algorithm with time
complexity k in the LOCAL model is also said to be k-local.

CONGEST: While providing a good foundation for impossibility results, the unbounded
communication per time makes the LOCAL model unrealistic even for wired communication
between the entities. In the CONGEST model, message sizes are hence restricted to O(log n),
n being the number of nodes.

LOCALIZED: In a k-LOCALIZED algorithm, each node is allowed to pass messages to its
neighbors in at most k rounds. While this allows for worst-case runtime of Θ(n), it in some
way reflects the need for algorithms with a low communication overhead per node better
than the restriction to a linear message complexity.

Adapting these models to wireless sensor networks, we will also assume a more restricted
node model where nodes have limited memory. Unless stated otherwise, we assume a mem-
ory that allows storing node IDs of size Θ(log n) of at least a constant-hop neighborhood,
i. e., we assume that nodes have memory Ω(∆O(1) log n) as in [Krö08].

2.3.2 Radio Model, Connectivity and Interference

Spatial connectivity and interference of concurrent transmissions, being the most outstand-
ing attributes of wireless networks, have been subject of countless modelling approaches.
These phenomena, arising from the fact that nodes communicate via radio transmissions
are the major difference to standard models from distributed computing and both, boon
and bane. On the one hand, spacial connectivity models constrain the structure of net-
works and allow for tailored algorithms to operate on such networks. On the other hand,
interference is a new problem restricting the communication between nodes.
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Figure 2.3: Communication ranges for UDG and QUDG models.

Since in reality, connectivity and interference are composed of many hard-to-capture
phenomena such as multipath fading, algorithmic research developed numerous simplifica-
tions. The common assumption behind almost all theoretical models is that every node v’s
signal decays with distance d (v, ·) as d (v, ·)−α for some so-called path-loss exponent α, em-
pirically 2< α < 6. Assuming further that nodes are restricted to the same maximum trans-
mission power and identical, perfect omnidirectional antennae, the first and simplest model
for connectivity assumes that there is some radius r such that each node v can communicate
exactly with the nodes within Br (v). Normalizing this radius to 1, this is equivalent to the
assumption that the network is embedded as a unit disk graph [CCJ90]:

Definition 2.3 (Unit Disk Graph) A graph G = (V, E) is a unit disk graph (UDG), if there is
an embedding p : V → R2, such that

{u, v} ∈ E⇔ d
�

p(u),p(v)
�≤ 1 (2.14)

for all u, v ∈ V . Then, p embeds G as a UDG.

Obviously, this is an oversimplification. Even under laboratory conditions, communica-
tion ranges do not form perfect disks. As a compromise between the powerful unit disk
graph model and the irregular communication ranges that are observed even in the ab-
sence of obstacles, the unit disk graph model is generalized to the assumption that sensor
networks are embedded as quasi unit disk graphs as introduced in [BFN01] (Figure 2.3):

Definition 2.4 (Quasi Unit Disk Graph) A graph G = (V, E) is a d-quasi unit disk graph
(d-QUDG) for some 0< d ≤ 1, if there is an embedding p : V → R2, such that

{u, v} ∈ E ⇒ d
�

p(u),p(v)
�≤ 1

{u, v} 6∈ E ⇒ d
�

p(u),p(v)
�

> d
(2.15)

for all u, v ∈ V . Then, p embeds G as d-QUDG.
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Obviously, a 1-QUDG is a UDG. It is important to note that, given a set of nodes V with
positions in the plane, the corresponding UDG is well-defined, while the d-QUDG model
does not make any assumption on the connectivity of nodes within distance between d and
1. In a straightforward manner, both models can be generalized to higher dimensions. The
resulting models are coined unit ball graph (UBG) or d-quasi unit ball graph (d-QUBG).
The strength of these class of models is, that they allow to exploit structural properties for
the design of algorithms. To name but one, in these models, each node can only have a
constant number of independent neighbors, e. g., in a UDG, no node can have more than 5
independent neighbors.

As an even further relaxation, this observation led to the class of bounded independence
graphs (BIG) of graphs where every node v’s k-hop neighborhood N k

G (v) contains at most
O(kr) independent nodes for some fixed r.

Connectivity models such as the UDG or d-QUDG models gave rise to a number of impor-
tant results combined with the above models of distributed computing, e. g., for clustering
and coloring [KMNW05]. They model the effects of spatial communication quite well, but
they do not take the limits of the wireless medium into account, that concurrent transmis-
sions can interfere with each other and make reception impossible. We call models that
focus on these limits interference models. We will give a more rigorous definition later, but
sketch some of the most prominent examples of interference models to point out the differ-
ences to connectivity models and the spread of interference models.

Not surprisingly, the first interference models that have been studied algorithmically
closely relate to the disk graph models: In the distance interference model, nodes can com-
municate if and only if they are within Euclidean distance 1 and if there is no concurrent
sender in Euclidean distance less than some constant R≥ 1 of the receiver. In a slight varia-
tion, the protocol model also tries to take into account that signals decay with the distance.
Here, nodes u, v can communicate if and only if they have distance at most 1 and if there
is no concurrent sender with distance less than R · d (u, v) to the receiver. There are many
variants that evolved from similar considerations, some of them accounting for acknowledg-
ments, some of them purely combinatorial, like the hop interference model, which we will
have a closer look at in Chapter 5.

As mentioned before, capturing a transmission from a communication engineer’s point
of view depends mainly on the so-called signal-to-interference-plus-noise ratio (SINR) (cf.
Section 2.1.2). In its most general form, the SINR model assumes a gain matrix G = (gi j) ∈
Rn×n
+ , n being the number of nodes in the network, as well as individual background noise

levels ηv and reception thresholds βv for each node v. A transmission from some sender s
can then successfully be decoded by a node v if and only if

ps gsv

ηv +
∑

u∈V−s pu guv
≥ βv , (2.16)

pu denoting transmission powers for nodes u ∈ V .
Under the assumptions that the signal decays with the distance d as d−α, and that

further all nodes are completely identical and do not receive different levels of background
noise—which is implicit to all of the above models—, this yields the geometric SINR model:
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Definition 2.5 In the geometric SINR model, a node v receives a transmission from a sender
s if and only if

psd (s, v)−α

η+
∑

u∈V−s pud (u, v)−α
≥ β , (2.17)

pu denoting transmission powers for nodes u ∈ V , i. e., pu = 0 for nodes that are not transmit-
ting.

We will see a more rigorous taxonomy of interference models in Chapter 6. For an overview
of sensor network models, see, for example, [SW06].





Chapter 3

Positioning

This chapter deals with positioning problems from a theoretic point of view. Positioning here
always refers to the problem of recovering node positions without any previously known
positions of single “anchor” nodes1. We here focus on algorithmic results, i. e., complexity
status and runtime of solutions for well-defined problems.

3.1 Introduction and Problem Statement

Many protocols and applications take the availability of position information to nodes as
granted. Position-awareness is a prerequisite for almost all surveillance or monitoring tasks:
If a sensor network raises an alarm, it should be able to provide the information, where the
critical event has been observed. If it protocols conditions in ecosystems or answers queries
for the situation in a monitored area, it should be able to also consider the geographic
context the sensed data relates to.

But even more importantly, many protocols for large-scale sensor networks exploit ge-
ometric properties of networks where each node knows its position. The probably most
prominent example is geographic routing which assume that a packet can be addressed
with a target node’s geographic position rather than a meaningless ID. Protocols like GPSR
and all its successors then route packets greedily as long as possible, each node passing a
packet to the neighbor which is closest to the packet’s destination, overcoming local min-
ima with geometric techniques [KK00]. Position-awareness is also an essential ingredient of

1In the literature, the terms “positioning” and “localization” are sometimes used synonymously, but also to
distinct between the (independent) localization of single nodes and the task to find positions for the whole
network simultaneously.

31
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many clustering techniques and geographic hashing techniques. The latter constitutes the
idea to see a spatially distributed sensor network as a continuous data storage that can be
addressed with coordinates. Information is stored at geographic positions and maintained
by the nodes close to this position.

There have been many different answers to the questions how to yield position-aware-
ness in sensor networks, including GPS-equipped nodes, central infrastructure [PCB00] or
manual programming of a fraction of the nodes to let them know their positions. To us, the
most challenging problem remains to let nodes find out their positions by themselves with-
out any external infrastructure. The input to this class of anchor-free positioning problems
are observations of the single nodes. This can be the neighborhood relation only, which
together with assumptions of a connectivity model carries a lot of information, but it can
also be any kind of measurements, such as the direction in which a node senses a neighbor
or the distance. Depending on the kind of input, positioning algorithms are typically divided
into connectivity-based, direction-based or range-based algorithms. It is important to note
that connectivity information comes “for free”, whereas availability of distance and direction
information is platform-dependent. It is often argued that among these two, distance infor-
mation is cheaper, since it can be derived from the received signal strength indicator (RSSI),
but it has also become evident that this indicator at best provides poor estimations. There
are several so-called ranging technologies such as ultrasound available for more accurate dis-
tance estimations [PCB00], but also direction-based localization has been studied [WSC07].
It can be supported using antenna arrays for direction-of-arrival estimation or beam-forming
techniques [God97], which have successful implementations, although, to our knowledge,
not in the context of wireless sensor networks.

3.1.1 Related Work

In the past, many variants of anchor-free positioning have been looked at. To determine the
complexity status, usually the decision problem whether there is a realization that complies
with the given input is considered, and, most times proven to be NP-hard. It is important
to note that this realization problem is different to the problem to decide whether there is a
unique embedding realizing the given input.

Table 3.1: Complexity results of finding a valid embedding for a network

Realization problem Complexity
UDG connectivity NP-hard [BK98]
UDG approximation, QUDG approximation NP-hard [KMW04]
UDG and 1-hop distances NP-hard [AGY04]
UDG and 1-hop directions NP-hard [BGJ05]
1-hop distances and directions (relative or absolute) trivial
1-hop directions (relative or absolute) in P(folklore, [BGJ05])
1-hop distances NP-hard [Sax79]
Distances and global directions, arbitrarily small errors NP-hard [BGMS06]
Distances and local directions, arbitrarily small errors NP-hard (Section 3.3)
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Table 3.1 summarizes the complexity results for realization problems. Breu and Kirk-
patrick showed that it is hard to decide whether a graph is a unit disk graph [BK98]. Re-
cently, Kuhn et al. showed that it is also hard to approximate embeddings that witness a UDG
or QUDG property [KMW04]. More precisely, the authors showed that it is hard to find an
embedding as a

p
2/3-QUDG for a given UDG, and a similar result for the embedding of

d-QUDGs as d ′-QUDGs for d ′ ≤ d. Aspnes et al. showed that it remains NP-hard to answer
whether a graph can be embedded as UDG, if additionally edge lengths are given [AGY04],
and Bruck et al. proved the same for edge directions [BGJ05]. Given edge lengths and di-
rections, the realization problem is trivial, it remains easy if only directions are constrained
(and no connectivity model is involved), but for given edge lengths, the realization problem
in general graphs is hard (Saxe [Sax79]). The problem to find an embedding that realizes
given directions and distances with a minimum error has been shown to be NP-hard for the
case that global directions are given [BGMS06]. We will show in Section 3.3 that it is also
hard for local directions.

The problem to decide whether a graph’s embedding is uniquely defined by some con-
straints has been addressed for general graphs in [Hen92], considering sufficient conditions
for unique embeddings and for sensor networks in [EGW+04, AEG+06], presenting proba-
bilistic results for random sensor networks.

3.2 Direction-based Positioning

Unlike most range- or connectivity-based positioning problems, direction-based position-
ing is not a hard problem unless combined with other constraints. In direction-based
positioning, the task is to recover the true node positions p : V → R2 and orientations
o : V → [0,2π) solely from relative edge directions for all directed edges (u, v) ∈ E as

ωp,o(u, v) := R−o(u) · p(v)− p(u)
|p(v)− p(u)| , (3.1)

Rθ being the rotation matrix for rotation angle θ . However, as long as we do not consider
noisy input, we can without loss of generality assume that o ≡ 0: With a single broadcast
message flooded through the network, all nodes can agree on the same global reference
direction and translate relative edge directions accordingly.

Embeddings that yield the same edge directions are parallel in the same sense as in
parallel rigidity with the only difference that edges may not be embedded anti-parallel, and
with o ≡ 0, an embedding can only be determined up to translation and scaling by edge
directions.

Bruck et al. proved that it is NP-hard to decide whether a graph can be realized as UDG
with given edge directions. On the other hand, finding a valid embedding for general graphs
reduces to a linear program with edge lengths ` : E → R+ as variables: An embedding
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realizes given directions ω(w, w′), if for all cycles C the following holds
∑

{w,w′}∈C

`(w, w′) ·ω(w, w′) = 0 , (3.2)

and all edge lengths are strictly positive. Obviously, it is sufficient to consider cycles of any
cycle base only, such as the cycles induced by non-tree edges for an arbitrary spanning tree
T , yielding a linear program with m variables and 2(m−n+1) linear constraints, not count-
ing the non-negativity constraints. This shows how misleading hardness proofs for realiza-
tion problems can be: Direction-based graph realization being hard under UDG constraints
does not make direction-based graph realization harder. If a graph’s (or a subgraph’s) em-
bedding is uniquely determined by the given edge directions—up to the inevitable degrees
of freedom, translation and scaling—, it is also easy to answer whether this embedding
is a UDG for some scaling. From the hardness proof we only learn that additional UDG
constraints do in general not help when directional constraints are not sufficient to recover
node positions.

We hence focus on the identification and positioning of maximal subgraphs that are
uniquely determined by the given directions. As stated in Section 2.2.6, maximum rigid
components can be identified in time O(n2) using the so-called pebble game. But running
the pebble game requires to gather connectivity information of the whole network centrally,
and we have some very intuitive techniques to find partial solutions within the network. In
the following, we will first describe a protocol to distributedly partition a network into (not
necessarily maximum) rigid subgraphs, called bodies in the following sense:

Definition 3.1 (Laman partitions) Let G = (V, E) be a simple undirected graph and B be a
set of pairwise edge-disjoint, generically rigid subgraphs or bodies. We call B a Laman partition
of G(B) := (V (B), E(B)) as follows:

V (B) :=
⋃

(V,E)∈B
V and E(B) :=

⋃

(V,E)∈B
E , (3.3)

We call B rigid if G(B) is rigid and it is maximal if there is no B′ ( B which is rigid.

Note that a subset B′ ⊂ B of a Laman partition is also a Laman partition.
Second, we describe how to efficiently answer the question which of these bodies to-

gether form rigid components for using a slight improvement on the pebble game algo-
rithm. This step still needs to gather information centrally, but only information of nodes
that are part of more than one rigid body. Third, we show briefly how a focus on uniquely
determined subgraphs can speed up positioning compared to an LP formulation.

3.2.1 Distributed Preprocessing

A very lightweight protocol for distributed identification of rigid subgraphs and positioning
of nodes based on directions is successive triangulation starting at any edge and growing a
set of localized nodes: Starting at an edge {u, v}, the two nodes u and v assign themselves



3.2 Direction-based Positioning 35

Protocol 3.1: DistributedLamanPartitioning(r)

set-up
every edge e picks some te

in round 1≤ t ≤ r
all edges e = {u, v} do in parallel

if t = te and pe = ; then pe← e, Pu← Pu ∪ {e}, Pv ← Pv ∪ {e}
all nodes u do in parallel

Ju← {eb : ]{v ∈ NG (u) | eb ∈ Pv} ≥ 2} \ Pu

all edges e = {u, v} do in parallel
Je← (Pu ∩ Jv)∪ (Pv ∩ Ju)
if pe = ; and Je 6= then je← edge eb with minimum ID in Je.

all nodes u do in parallel
Pu← Pu ∪ �{eb : ]{e 3 u | je = eb} ≥ 2}�

all edges e = {u, v} do in parallel
if pe = ; and je ∈ Pu ∩ Pv then pe← je
if pe = ; and Pu ∩ Pv 6= ; then pe← edge eb with minimum ID in Pu ∩ Pv

positions (0, 0) and (0, 1), respectively, and whenever a node has two neighbors with posi-
tions relative to that edge, it can also assign itself a position. The identified rigid subgraph
then consists of all nodes with positions and edges between these nodes.

This idea can easily be extended to parallel identification of non-overlapping subgraphs
running in r ∈ N rounds, as depicted in Protocol 3.1. For the description of this synchronous
protocol, we will assume that edges also are entities that can store data and communicate
with their incident nodes. We assume that for every edge, one of its incident nodes performs
the necessary computations and communication. Within the range [0, r], every edge e picks
a random starting slot te. Then, every round, the following five steps are performed, each
involving at most the exchange of information between a node and its neighbors. During
execution, edges are marked with exactly one edge as representative for the body it belongs
to, pe. A node u belongs to any body that at least one incident edge belongs to, in the
protocol denoted by Pu. First, in round t, any edge e with t = te starts its own body if it has
not become part of a rigid subgraph until then, i. e., it assigns its incident nodes positions
(0,0) and (0, 1), respectively. Second, if a node has two or more neighbors with positions
referencing the same edge eb, it marks itself as eligible to join eb ’s body. Any edge that
has one endpoint belonging to some eb ’s subgraph and one endpoint marked as eligible to
join the same body marks itself as a candidate to join eb ’s subgraph for this round, breaking
multiple choices of eb in favor of the one with the lowest ID. If a node now has two or more
incident edges marked as candidates to join some eb ’s subgraph, in the last two steps, it joins
them. Also, in the last step, all incident edges which were candidates to join eb ’s body join
it. Finally, every edge that does not belong to a body can join a body if it has two endpoints
belonging to a common body. Again, ties are broken in favor of the lower ID.

This protocol ensures that after r rounds, the network is partitioned into a Laman par-
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(a) distributed triangulation (b) exploiting overlapping edges (c) maximal rigid partition

Figure 3.1: Laman partitions of a network

tition induced by the edges’ membership to rigid subgraphs: Obviously, every edge is part
of a body, as it starts its own if necessary. We also ensure that a body is only extended if
some node finds two edges which join the body together with it, maintaining the rigidity of
bodies.

The quality of this partition, i. e., the number of bodies or the number of body-node-
incidences, depends on the number of rounds r, the network’s density and the way edges
pick starting slots te. In Figure 3.1(a), such a partition is depicted for a random quasi
unit disk graph of 2556 nodes and 6837 edges for r = 250 and cumulative probability
density F(t) = (t/r)4. It does not much improve for higher r. It consists of 1358 node-
body incidences between 426 bodies and 638 nodes that are part of more than one rigid
subgraph, which is less than ten percent incidences to be gathered at the central instance
for further processing. Notably, most of the remaining bodies consist of single edges.

One can think of more sophisticated ways to partition the network distributedly. E. g., it
is possible to allow that edges join multiple subgraphs and then merge these two subgraphs,
which obviously together form a larger rigid subgraph. It may also be possible to identify
any pair of subgraphs that overlap in at least two nodes, even if these are not adjacent,
and merge these subgraphs. It is questionable whether these operations are worth the
communication necessary to perform merging operations distributedly. They also do not
improve the resulting partition much compared to the simple distributed triangulation: In
Figure 3.1(b), a partition of the same graph is depicted that results from triangulation and
merging subgraphs that cover a common edge. It ends in this example with 891 node-
body incidences between 423 bodies and 285 nodes in which bodies overlap. Again, most
remaining bodies consist of single edges.
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Figure 3.2: Number of nodes that belong to different rigid subgraphs after distributed triangulation in
random QUDG with 4000 nodes.

Figure 3.1(c) depicts a partition into maximum rigid subgraphs to compare the above
results to. Here, the largest component covers almost the whole network; overall, in this
partition only 48 rigid components remain. In Figure 3.2, the reduction of nodes that are
part of more than one body after distributed triangulation is depicted. These are the only
nodes whose information is needed to compute which and how the identified rigid bodies
can be merged to gain maximum rigid components. Depending on the density of the net-
work and the number of rounds, this number can be decreased to less than 10%. Note that
we also do not need to gather information about all incidences to edges, but only about all
incidences to rigid bodies.

3.2.2 Maximum Rigid Components

While distributed preprocessing can identify some rigid substructures, the identification of
maximum rigid component requires central processing. This is a simple consequence of
the fact that even in the plane, it is easy to have settings where an arbitrary number of
subgraphs form a rigid and maximal Laman partition. A small such non-trivial situation is
depicted in Figure 3.3(a), where we have 13 bodies—some of them single edges—, of which
8 form a rigid structure (cf. Figure 3.3(c)). We thus turn our attention to the problem of
how to identify maximum rigid sets within a Laman partition B given only the node-body
incidences between redundantly covered nodes and bodies as follows:

Definition 3.2 (Redundancy) Let B be a Laman partition. The redundancy of a node v ∈
V (B) is defined as

rdB (v) := |{(V, E) ∈ B : v ∈ V (B)}| − 1 . (3.4)
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Figure 3.3: Rigid partition with non-trivial rigid subset

This notion is extended to Laman partitions by

rd (B) :=
∑

v∈V (B)
rdB (v) . (3.5)

We denote the redundantly covered nodes as R (B) :=
�

v ∈ V (B) | rdB (v)> 0
	

and the node-
body incidences as IB := {(v, S) ∈ R (B)×B | v ∈ VS}.

In Figure 3.3(a), only redundant nodes are depicted. Only the nodes v and w have
rdB (·) = 2, all other nodes have rdB (·) = 1. Given this input, one can without loss of
generality assume that V (B) = R (B) and that every body S = (VS , ES) contains exactly a
minimal rigid set of |ES| = 2|VS| − 3 edges. A quite straightforward way to identify max-
imum rigid sets within a Laman partition B from IB is to replace each body with such a
set of virtual edges between the redundant nodes (cf. Figure 3.3(b)). Applying the pebble
game to this graph for any Laman partition B reveals, which bodies together form a rigid
structure in time O(n2

B) for nB := |R (B) |. In the following, we will show how to reduce this
to O(mB log mB log∆G + k2

B) for mB := |IB| and kB = |B| using an approach that directly
operates on the set of bodies.

We therefore define a notion of a surplus of edges within a graph as follows:

Definition 3.3 Given a graph G = (V, E), the surplus of edges with respect to Laman’s Theo-
rem is denoted by sp (G) := |E| − 2|V |+ 3. We also write sp (B) for some Laman partition to
shortcut sp (G(B)).

Note that a graph G = (V, E) has at most |E| − sp (G) independent edges.
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The approaches from [LS07, JH97] have in common that they manage a growing inde-
pendent set of edges. Due to the matroidal character of the problem, an edge can greedily be
chosen to join this set if there is no dependency to present edges. Rigid areas of the network
can be identified en passant. When talking about rigid bodies, we lose some of this ease,
since a subgraph can have both, edges that are independent to the edges of formerly chosen
bodies as well as dependent ones. But the greedy approach still works: If we go through
the bodies of a Laman partition and merge bodies as soon as there are bodies that form a
larger rigid structure, we end up with a partition into maximum rigid components. With
the following results, we can save the time for successively introducing edges for each body,
starting with the observation that a Laman partition with sufficiently overlapping bodies
must have enough edges to fulfill Laman’s theorem:

Lemma 3.4 Let B be a rigid partition. Then

sp (B) = 2 · rd (B)− 3 (|B| − 1) . (3.6)

Proof. As the graphs in a rigid partition have disjoint edge sets, the edges of G(B) sum up as

|E(B)|= ∑

(V,E)∈B
|E|= ∑

(V,E)∈B
(2 · |V | − 3) , (3.7)

where each node v ∈ V (B) is covered rdB (v) + 1 times. Thus, we have

|V (B)|= ∑

(V,E)∈B
|V | − rd (B) , (3.8)

and hence

sp (B) = |E(B)| − 2 · |V (B)|+ 3

=
∑

(V,E)∈B
(2 · |V | − 3)− 2 · ∑

(V,E)∈B
|V | − 2rd (B) + 3

= 2rd (B)− 3 (|B| − 1) .

(3.9)

�

From Laman’s theorem follows that a Laman partition B with sp (B) ≥ 0 at least contains a
rigid subset. Adapting the iterative scheme, we will use the following theorem to maintain
a maximal rigid partition, merging bodies whenever a rigid subset is completed:

Lemma 3.5 Let B be a rigid partition and S? ∈ B such that B−S? is maximal. Then B′ ⊂ B is
rigid if and only if for all non-empty B′′ ⊆ B′ that contain S?, the inequality sp(B′) ≥ sp(B′′)
holds.

Proof. First assume that B′ is rigid. If there was any subset B′′ of B′ with sp(B′) < sp(B′′),
one could not choose |E(B′)|−sp(B′) edges from E(B′)without choosing more than |E(B′′)|−
sp(B′′) edges from E(B′′). Therefore, any 2|V (B)| − 3 edges from G(B) cannot be indepen-
dent.
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E1 E2 E3 E4 E5 E6 E7

3 3 3 3 3 3 3 3 3 3 3 3 0

2 2 2 4 2 2 2 2 2 2 2 2 2 2 4 2

Figure 3.4: Intersection network for the Laman partition from Figure 3.3, bodies at the top, redundant
nodes at the bottom. All edges have capacity 2, bodies and nodes are annotated with their demand.

If on the other hand for all B′′ ⊂ B′ with S? ∈ B′′ the inequality sp(B′) ≥ sp(B′′) holds,
then we know that sp(B′) ≥ 0, as it holds for all bodies, i. e., sp(S) = 0 for all S ∈ B.
Suppose that B is not rigid. According to Laman’s theorem, there must be a rigid subgraph
G′ = (V ′, E′)( G(B′) with |E′|> 2|V (E′)| − 3. This graph G′ spans over at least two graphs
in B which also form a rigid graph with at least one dependent edge. All those non-trivial
rigid subsets B′′ include S?; thus their union B∪ forms the unique maximal rigid subgraph
G(B∪). But then, we are able to choose |E(B′)|−sp(B′) edges from E(B′) even if we restrict
ourselves to take only a set of independent edges from E(B∪) where we only have to leave
out sp(B∪) ≤ sp(B′) edges. These 2|V (B′)| − 3 edges are either independent, so that B′
must be rigid, or there still is a subgraph with G′ = (V ′, E′)( G(B′) with |E′|> 2|V (E′)|−3
which is not covered by B∪. Both cases are inconsistent with either the assumptions or the
definition of B∪. �

We present an efficient algorithm to detect subsets with this property by a reduction to
a maximum-flow problem.

Definition 3.6 Let B be a Laman partition and S? ∈ B such that B − S? is maximal. The
bipartite intersection network N (B, S?) = (R (B) ,B,IB,κ, b) is given by

κ≡ 2

b(v) = 2 · rdB (v)
b(S) =

(

3 : S 6= S?

0 : S = S?

(3.10)

The intersection network of the Laman partition from Figure 3.3 is depicted in Fig-
ure 3.4. Note that B− S? does not contain any rigid subsets, i. e., is maximal. In Figure 3.5,
a maximum flow for this network is depicted and the maximum rigid subset is highlighted.
A closer look reveals that this (and any other) maximum flow f satisfies the demand of
all bodies in the rigid subset, whereas for every subgraph S that cannot be merged with
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E1 E2 E3 E4 E5 E6 E7

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 3.5: Maximum flow in the intersection network from Figure 3.4. Solid black lines denote a flow
of 2, dashed lines a flow of 1. A maximum closed and saturated set of bodies is highlighted.

other bodies to form a new rigid subgraph, there is a maximum flow f that does leave some
demand b f (S). We will formalize this observation with the following lemmas. To ease no-
tation, we will in the following extend any flow f to arbitrary pairs (v, S) ∈ R (B)× B by
setting f (v, S) := 0 for (v, S) 6∈ IB.

Definition 3.7 Let B be a Laman partition, S? ∈ B such that B − S? is a maximal Laman
partition. Let f be any flow in N (B, S?). The support of B′, Vf (B′) is defined as the set of
nodes in R (B) having a non-zero flow to B′, i. e.,

Vf
�B′� :=

(

v ∈ R (B) |∑
S∈B′

f (v, S)> 0

)

, (3.11)

the remaining nodes by V6 f
�B′� as

V6 f
�B′� :=

(

v ∈ R (B) |∑
S∈B′

f (v, S) = 0

)

. (3.12)

A set B′ ⊂ B is called saturated if
∑

v∈R(B) f (v, S) = b(S) for all S ∈ B′ and closed if for every
v and every pair S, S′ 3 v

S ∈ B′ ∧ S′ 6∈ B′⇒ f (v, S) = 0∨ f (v, S′) = 2 . (3.13)

The (minimal) closure of any B′ ⊂ B is denoted by [B′]. Analogously, the closure of a set of
nodes V ′ ⊂ V (B) is defined as [V ′] := [{S ∈ B | ∃(v, S) ∈ IB : f (v, S)< 2}].
From the above definitions, it is clear that the union of closed sets is also closed, and the
union of saturated sets is also saturated. We are interested in closed and saturated sets,
which are saturated by any maximum flow f . They are is inclusion-maximal if and only
if they contain all closed and saturated sets, and hence also have maximum cardinality. In
Figure 3.5, such a maximum set B′ is marked. It is easy to identify by removing first all
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bodies that are not saturated, and then iteratively all bodies which violate Equation 3.13. If
there is no nontrivial closed and saturated set of bodies, this process would end with {S?}.
In the example, a smaller closed and saturated set is B′− E7.

The following two lemmas ensure that for a maximum flow first, any saturated and
closed set is rigid, and second, as long as a non-trivial rigid set is contained, there has to be
a non-trivial saturated and closed set.

Lemma 3.8 Let N (B, S?) be a rigidity network and f any valid flow. For any set B′ ⊂ B the
following properties hold:

1. The flow to subgraphs B′ is
∑

v∈R(B),S∈B′
f (v, S)≥ 2rdB′

�

Vf
�B′�

�− b f

�

Vf
�B′�

�

. (3.14)

This equation is tight if and only if B′ is closed under f .

2. The flow to subgraphs B′ is

∑

v∈R(B),S∈B′
f (v, S)≤

(

3|B′| if S? 6∈ B′
3(|B′| − 1) if S? ∈ B′ (3.15)

This equation is tight if and only if B′ is saturated under f .

3. The graph S? is contained in any closed and saturated set B′.

4. For any B′ 3 S?, we have

sp
�B′�≤ b f

�

Vf
�B′�

�

+ 2rdB′
�

V6 f
�B′�

�

. (3.16)

This equation is tight if B′ is closed and saturated and strict otherwise.

5. Any closed and saturated set B′ is rigid.

Proof. We prove these properties one at a time:

1. First, the flow for arcs (v, S) for v ∈ Vf
�B′� and S 6∈ B′ is f (v, S)≤ 2, and this equation

is tight if and only if B′ is closed. Hence,

∑

v∈R(B),S∈B′
f (v, S)≥ ∑

v∈Vf (B′),S∈B
f (v, S)− 2

�

�

�

¦

(v, S) ∈ IB : v ∈ Vf (B′), S 6∈ B′©
�

�

�

︸ ︷︷ ︸

=rdB(Vf (B′))−rdB′(Vf (B′))

= 2rdB
�

Vf
�B′�

�− b f (Vf
�B′�)− 2rdB

�

Vf
�B′�

�

+ 2rdB′
�

Vf
�B′�

�

= 2rdB′
�

Vf
�B′�

�− b f

�

Vf
�B′�

�

,
(3.17)

and again, this equation is tight if and only if B′ is closed under f .
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2. Follows directly from the definition of b.

3. Let B′ be a closed and saturated set. Hence, applying Equation 3.15 as
∑

v∈R(B),S∈B′
f (v, S)≥ 3(|B′| − 1) , (3.18)

we have from Lemma 3.4

sp
�B′� = 2rd

�B′�− 3(|B′| − 1)
= 2rdB′

�

Vf
�B′�

�

+ 2rdB′
�

V6 f
�B′�

�− 3(|B′| − 1)
3.14
=

∑

v∈R(B),S∈B′ f (v, S) + b f

�

Vf
�B′�

�

+ 2rdB′
�

V6 f
�B′�

�− 3(|B′| − 1)
3.15≥ b f

�

Vf
�B′�

�

+ 2rdB′
�

V6 f
�B′�

�

.
(3.19)

Hence, sp(B′)≥ 0 and B′ at least contains a rigid subset, which then must contain S?.

4. If S? ∈ B′ Equation 3.19 becomes

sp
�B′�= 2rd

�B′�− 3(|B′| − 1)

= 2rdB′
�

Vf
�B′�

�

+ 2rdB′
�

V6 f
�B′�

�− 3(|B′| − 1)
3.14≤ ∑

(v,S):S∈B′
f (v, S) + b f

�

Vf
�B′�

�

+ 2rdB′
�

V6 f
�B′�

�− 3(|B′| − 1)

3.15≤ b f

�

Vf
�B′�

�

+ 2rdB′
�

V6 f
�B′�

�

.

(3.20)

Since both, Equation 3.14 and 3.15 are tight for a closed and saturated B′, this also
holds for Equation 3.20.

5. Let B′ ⊂ B be closed and saturated under f . With Lemma 3.5, it is sufficient to show
that for all B′′ ⊂ B′ with S? ∈ B′′ the inequality sp(B′) ≥ sp(B′′) holds. We get this
from

sp
�B′�= b f

�

Vf
�B′�

�

+ 2rdB′
�

V6 f
�B′�

�

= b f (Vf
�B′′�) + b f (Vf

�B′�∩ V6 f
�B′′�) + 2rdB′

�

V6 f
�B′�

�

≥ b f (Vf
�B′′�) + 2rdB′′

�

Vf
�B′�∩ V6 f

�B′′�
�

+ 2rdB′′
�

V6 f
�B′�

�

= b f

�

Vf
�B′′�

�

+ 2rdB′′
�

V6 f
�B′′�

�

≥ sp
�B′′� ,

(3.21)

using rdB′ (v)≥ rdB′′ (v) for all v and b f (v))≥ 2rdB′′ (v) for v ∈ V6 f (B).
�

Lemma 3.9 Let B be a Laman partition, S? such that B − S? is maximal. If B′ ⊂ B is an
inclusion-maximal rigid subset, then for any maximum flow in N (B, S?), B′ is saturated and
closed.
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Algorithm 3.2: MergeRigidComponents(IB)
BI ← ;
while B 6= ; do

choose S? from B
B← B− S?

A while ∃S ∈ BI : |V (S?)∩ V (S)|> 1 do
BI ← BI − S
S?← G({S, S?})

B f ← maximum flow in B(BI ∪ {S?}, S?)
B′← inclusion-maximal closed and saturated set with respect to f
if |B′|> 1 then S?← G(B′)
BI ← BI \B′
BI ← BI ∪ {S?}

return B

Proof. Let B′ be an inclusion-maximal non-trivial rigid subset of B. As all rigid subsets
overlap in S?, B′ is well-defined as the union of all rigid subsets of B. Suppose, B′ was not
closed and saturated with respect to a maximum flow f . Since it is rigid, we have

b f

�

Vf
�B′�

�

+ 2rdB′
�

V6 f
�B′�

�

> sp
�B′�≥ 0 . (3.22)

Hence, there is a node v ∈ V (B′) with b f (v) > 0. Let Vx denote all these nodes and B′′ :=
[Vx]. As f is maximal, the closure B′′ is saturated, closed, non-trivial and, by Lemma 3.8,
we also know that B′′ ⊂ B′. We now have by the choice of B′′

b f (V (B)) = b f (Vf
�B′′�) + 2rdB′′

�

V6 f
�B′′�

� 3.16
= sp

�B′′� , (3.23)

but

sp
�B′′�

Lem. 3.5≤ sp
�B′� 3.16

< b f (Vf
�B′�) + 2rdB′

�

V6 f
�B′�

�≤ b f (V (B)) , (3.24)

which yields a contradiction. �

Together, these two lemmas are the foundation for our algorithm that finds maximum
rigid components starting with an arbitrary Laman partition B. It is depicted in Algo-
rithm 3.2: One by one, subgraphs are added to some set BI , and every time a new subgraph
is added, it is repeatedly tested whether the new subgraph can be merged with any of the
previously added subgraphs. Then, a maximum flow in the incidence network is used to
identify larger sets of subgraphs that can be merged.

Theorem 3.10 Algorithm 3.2 returns the unique Laman partition into maximum rigid sub-
graphs. It can be implemented to run in O(mB log mB log∆+ k2

B).
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Proof. First, the algorithm maintains the invariant that BI is independent: Before adding a
graph S? is added to BI , we find a maximum rigid subset of BI ∪ {S?}, remove the involved
graphs from BI and add the graph formed by them to BI . For this to hold (and thus for
the correctness of the algorithm), we do not need the steps marked with ’A’, which will play
their role in the runtime analysis.

Second, Algorithm 3.2 can be implemented to run in O(mB log mB log∆+ k2
B) as follows:

Without loss of generality, we assume that node-body incidences in IB are pairs of integers
in [1, nB]× [1, kB] for nB := |R (B) | < mB. If the nodes in R (B) and B have any total order,
conversion can be done in O(mB log mB). Now, each subgraph S is annotated with b, initially
0, and two lists of arcs, one for active arcs with respect to the current BI ∪S?, i. e., arcs from
nodes that currently have b(v) > 0 and one for arcs from other nodes. Initially, all arcs to
some subgraph are put in the list of inactive arcs. Each v ∈ R (B) is also annotated with b(v),
initially 0, and an ordered list of arcs to bodies in BI ∪ S?, initially also empty. This set-up
can be done in linear time. Now, when some S? is chosen, we first update this network. All
arcs to S? are put in the list of arcs of the respective node v ∈ R (B). It is moved to S?’s list
of active arcs only if v’s list was not empty. In this case, also b(v) is increased by 2. If v’s list
contains a single arc (v, S), then this arc is moved from the list of inactive arcs to the list of
active arcs at S. These steps take amortized O(mB log∆) steps. Now, we can detect whether
there is some S ∈ BI with |V (S?) ∩ V (S)| > 1 in time O(k) enumerating and marking the
neighbors of all nodes v with (v, S?) in S?’s list of active arcs. Each of these arcs is part of
at least one subgraph S 6= S?, and it is impossible to mark more than k subgraphs without
marking one twice. In this case, this subgraph is merged with S? as described below. The
test for a rigid subset of size 2 in B′ ∪{S?} can at most be performed k−1 times succeeding
(reducing the number of subgraphs) and at most k times fail (once for every S?), incurring
a total cost of O(k2).

To merge two subgraphs, S? and S′, we process the arcs of the subgraph with less arcs
in its lists, without loss of generality S′. This way, each arc can at most be processed log mB
times. We put these arcs into the other subgraph’s respective list, changing the tuple de-
scribing the arc accordingly. Each arc (v, S′) also has to be deleted and reinserted to v’s
(ordered) list as (v, S?). Together, these operations take amortized time O(mB log mB log∆).
They also allow us to identify arcs that occur twice. Such arcs are discarded.

For further analysis, we observe that we only have O(k) active arcs in our network in
part ’B’: Less than 3/2|BI | − 3/2 of them can have more than two arcs to graphs in BI , as
every such node v has rdBI (v)> 0 and BI is independent, and no k arcs to S? can be active
without any S ∈ BI sharing two or more nodes with S?.

After flow maximization, which we analyze last, we can identify a maximum closed and
saturated set of bodies by removing all non-saturated bodies in the network and repeatedly
shrink this set to a closed set. This can be done in O (k) time. Then, we successively merge
bodies within that set with S?. Naively implemented, this could lead to a complexity of
Θ(k2) per solved maximum flow problem, but we can re-use flows as follows: Whenever we
merged S? with some other subgraph S, we reset the flow for arcs to S to zero. This can at
most affect 3 arcs, which can be identified in constant time if we keep track of the nodes
that have positive flow to bodies S ∈ BI . All other flows remain unchanged. Merging larger
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Figure 3.6: Size of the largest body a node belongs to, averaged over all nodes.

sets of bodies with S? can be done iteratively. This way, the flow to all graphs in BI does
not decrease (S is removed when merged with S?) and as every subgraph can take at most
a flow of 3, we can have at most 3kB successful increasing steps and kB failing steps, each
with a time-complexity in O(kB). �

In Figure 3.6, the average body size of the maximum Laman partition is compared to the
Laman partitions produced by distributed triangulation for different numbers of rounds. The
body size depicted is the average size of the largest body a node belongs to, averaged over
all nodes to evaluate the knowledge of an average node about its position in the network. It
shows the quality of both, distributed triangulation and central identification of maximum
components: Distributedly, nodes can gain reasonable cluster sizes as soon as possible, but
central processing significantly adds to this information. The noticeable increase of average
body size for the maximum partition for degrees 6 to 7 marks the critical density for the
giant component phenomenon, which also exists for rigid components. Beyond this density,
in infinite random geometric graphs, there exists a so-called giant component covering an
infinite number of nodes. This effect has also been observed in [EGW+04].

3.2.3 Positioning

The detection of maximum rigid components is not only of interest for knowing for which
part of the network the LP provides us with dependable positions, but it also makes the
whole LP-based approach obsolete. A closer look at the LP formulation reveals that valid
edge lengths can also be described as ` ∈ ker A∩ R2

+ for some matrix A. For (parallely)
rigid graphs that can be embedded with the given edge directions, we know that ker A is
one-dimensional and hence, either x or −x contains only positive edge lengths for any
x ∈ ker A \ {0}. Hence, whenever we identify a set of k′ rigid subgraphs, we only have to
solve a homogeneous linear equation system with k′ variables and Θ(k′) equations. In the
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worst-case, we have to merge all subgraphs at the same time, yielding a runtime of Θ(k3
B).

This is an upper bound since

t
∑

i=0

k3
i ≤
 

t
∑

i=0

(ki − 1) + 1

!3

, (3.25)

where the left hand side is an upper bound for the complexity if we can solve t subproblems
with k1, . . . , kt ≥ 2 bodies, each decreasing the number of remaining bodies by (ki − 1),
whereas the right hand side corresponds to the complexity of solving the whole linear equa-
tion system—up to constant factors. Although in worst-case, computation of positions takes
timeΘ(k3

B), this decreases toΘ(k) for solvingΘ(k) problems involving a constantly bounded
number of components to be merged. Not surprisingly, in our experiments only the latter
case occurred, usually for very small bounds, making the additional costs for layout calcu-
lation negligible.

3.3 Hardness of Noisy Measurements

Many realization problems have been proven to be NP-hard, even disregarding potential
errors in the input, which are simply unavoidable with real sensor nodes. Sadly, in the
face of erroneous measurements, even the simplest realization problem with distances and
directions as input becomes NP-hard in the presence of arbitrarily small errors. This has
been proven for the case that directions are measured globally by Basu et al. [BGMS06].
We here add the proof for local measurements:

Problem 3.11 (Error-Realization) Given a graph G = (V, E), edge lengths d : E → R+,
relative edge directionsω : E→ [0,2π)2 and small ε,δ > 0, is there an embedding p : V → R2

and an orientation o : V → [0, 2π), such that for all u, v with {u, v} ∈ E

dp(u, v)

d(u, v)
∈ [1− ε, 1+ ε] and ωp,o(u, v)−ω(u, v) ∈ [−δ,δ] mod 2π ?

In the following, we prove that it is NP-hard to find an embedding and an orientation of the
nodes such that measured distances and angles do not differ from the ones induced by these
two by more than given, arbitrarily small factors and angles, respectively.

Theorem 3.12 Error-Realization is NP-hard even for fixed, arbitrarily small error bounds
ε,δ.

Proof. We prove this theorem by a reduction from 3-Sat. Given an instance of 3-Sat, we draw
the corresponding instance canonically as shown in Figure 3.7 with the building blocks, i. e.,
variables, wires, crossings connectors and clauses. From this drawing, we derive an input
to the Error-Realization as follows.
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x1 x1 x2 x2 x3 x3

C1

C2

C3

(a) An instance of 3-Sat as schematic drawing (b) An instance of 3-Sat built from basic building
blocks

Figure 3.7: Drawings of the 3-Sat instance (x1∨ x2∨ x3)∧ (x1∨ x2∨ x3)∧ (x1∨ x2∨ x3) as graph (a)
and in a grid-like fashion with building blocks, i. e., variables, horizontal and vertical wires, crossings,
connections and clauses (b)

First, we observe how to design an input to the Error-Realization problem that forces
fixed angles in any valid embedding. Let a graph G have a cycle of nodes we want to be
realized as a polygon with prescribed angles. To this extent, we choose the input directions
ω to point all outward (or all inward) by an angle of δ with respect to an arbitrary embed-
ding and orientation of G that realizes the prescribed angles (see Figure 3.8(a)). Now, every
valid embedding of G that differs from ω by no more than δ for any edge-node incidence,
embeds the cycle as a polygon with the prescribed angles.

Based on this argument, we construct variables by building a rectangle of six nodes, four
nodes, A to D in the corners and one in each long edge’s center, X and Y as in Figure 3.8(a).
We fix input directions for this cycle of six nodes to all point outward by δ and introduce an
additional inner edge Y X . We also assign lengths to each edge, namely a, b, c ∈ R+, such
that

a = c · (1− ε) sin(δ)
2ε

and b = c · (1− ε) cos(δ)
(1+ ε)

. (3.26)
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Figure 3.8: Variable for 3-Sat reduction

With these values, even (1+ε)b being slightly smaller than (1−ε)c, Y X cannot be realized
to be parallel to BA and C D. With the input directions fixed as in Figure 3.8(a), it can
deviate by at most δ in either direction, which, by the choice of b and c is just enough.
In the resulting drawings, the edges with input length a are all maximally stretched or
compressed, leaving no freedom but to choose between one of the two embeddings depicted
in Figure 3.8(b) and 3.8(c). We will call the embedding where AX has an edge length of
(1+ ε)a and BY has length (1− ε) a false assignment, and the other one, where these two
lengths are swapped a true assignment. Wiring, connecting and crossing is comparably easy.
The gadgets are shown in Figures 3.9(a) to 3.9(d). Essentially, they are all rectangles with
fixed angles, which therefore must have the same lengths for opposite sides. Variables and
wires have all input directions pointing outward, while in crossings and connectors, input
directions point inward by δ. These two kinds of gadgets are put together alternately (cf.
Figure 3.7(b)). Note that all rows have heights ≈ a, but the width of columns is ≈ a only
for columns corresponding to literals, whilst it is necessary for the other columns containing
horizontal links to have width ≈ b like variables.

The last gadget is a clause, shown in Figure 3.9(e). If we choose x such that

(1− ε)x = (3(1+ ε) + 2(1− ε)) a⇔ x = a
5+ ε
1− ε , (3.27)

a clause can only be drawn in a way, such that at most two edges on the left have lengths
(1− ε)a, i. e., if at least one connected literal is true, while more are always possible.

On the other hand, it is easy to see how a valid assignment can be transformed into a
valid embedding: Rows that correspond to an occurrence of a literal have the respective
height, the other rows have height (1+ε)a. Columns that correspond to a literal again have
the width induced by the literal’s value, other columns have width (1+ ε)b. �
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Figure 3.9: Gadgets for 3-Sat reduction



Chapter 4

Filtration-based Positioning

This chapter deals with positioning from a more practical point of view. We develop a multi-
level-framework, that, instantiated with a proper technique for the positioning of small net-
works bridges between good, but complex, positioning algorithms for small-scale networks
and the demand for a scalable and distributed algorithm for large networks with irregular
shapes. A particular instantiation, MDS-MAP(F), is evaluated in challenging scenarios and
compared to state-of-the-art competitors.

4.1 Problem Statement and Related Work

Hardness proofs are of undisputed theoretical interest, but they contrast with the multitude
of algorithms that have been developed for positioning so far. We are only aware of a
single polynomial-time approximation algorithm, producing an Ω(log2.5 n

p

log log n)-QUDG
embedding for a given UDG [MOWW04]. Apart from that, there exist a lot of positioning
algorithms that are heuristics, following very different approaches, leading to very different
achievements. Again, we are only considering anchor-free positioning, leaving out a zoo of
results for anchor-based positioning.

First, the positioning problem has been tackled directly using some more complex op-
timization techniques, such as semidefinite programming (SDP) for range-based position-
ing [BY04, DPG01], assuming comparably high quality and number of measurements. For
connectivity-based positioning, MDS proved to perform very well on small-scale networks,
also named MDS-MAP [SRZF03]. There have also been efforts to adapt MDS to estimate
anisotropy in wireless propagation [JZ04]. The usual way to use these techniques in the
context of larger networks is by patching local solutions together, sometimes combined
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with local refinement. This has been evaluated for MDS as MDS-MAP(P) (for “patch”)
and MDS-MAP(P,R) (for “patch and refine”) [SR04] and also in a distributed fashion as
MDS-MAP(D) [SRF06]. However, these techniques fail for larger networks in which the
errors introduced by patching operations sum up. All of the aforementioned techniques are
typically evaluated in networks with less that 250 nodes.

Many approaches for large-scale networks employ a heuristic to find a good initial so-
lution to be improved by local optimization, typically some kind of mass-spring relaxation.
The most important feature of such an initial solution is to be folding-free, i. e., not to have
different parts of the networks folded over each other. Examples are AFL [PBDT03] and
EIGEN [GK04], both working completely distributed. The former initializes the position of
5 cleverly chosen nodes to form the center and the corners of a square and positions the rest
of the nodes according to their distances to these virtual anchors. The latter implements
a distributed variant of spectral embedding based on Eigenvalues of an adjacency-based
matrix. Both approaches are very sensitive to the shape of the network and fail if it is
not deployed in a convex area. This issue has more recently been addressed by Lederer
et al. [LWG08], who successfully employed high-level topology information for the posi-
tioning of convex-shape networks: In a first step, boundary nodes and nodes on the medial
axis are identified, then landmark nodes on the boundary are chosen according to the local
distance between boundary and the medial axis. For those landmark nodes, the Delaunay
complex is computed, which then can be used to embed landmark nodes folding-free, to use
local optimization and to place the remaining nodes between the landmarks.

In the following, we will propose a distributed multi-level framework for the positioning
of nodes, replacing the patching techniques mentioned above. This framework, instantiated
with MDS to position local neighborhoods, is able to position large-scale networks with
higher accuracy than previous approaches, robust to irregular communication ranges, and
can also be applied if the sensors are deployed in a field that does not have a clear boundary
or is three-dimensional.

4.2 Generic Framework

Rather than being overly distributed, the general idea of hierarchical positioning is to ag-
gregate the information from local-range positioning. To this extend, local solutions are
not patched together, but provide estimations for relative positions between a sample of the
nodes, which are then taken as input of a recursive process. This approach is based on the
technique of graph filtration and multi-scale layout, which has quite a tradition in graph
drawing (see, e. g. [GGK04]). Graph filtration here denotes the process to successively
restrict a graph to a fraction of nodes, while adding edges between nodes in increasing
distance.

Definition 4.1 (Graph filtration) Given a graph G = (V, E), a filtration is a sequence G =
G0, G1, . . . , Gh with Gi = (Vi , Ei), such that V = V0 ⊃ V1 ⊃ · · · ⊃ Vh = {v̂}.
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Algorithm 4.1: GenericMultiLevelPositioning(G = (V, E),λ)

forall v ∈ V do
pv ← SolveCentrally(G[N k

G (v)],λ)
if N k

G (v)) = V then return pv

select a subset V ′ ⊂ V such that for every u 6∈ V ′, N1
G (u)∩ V ′ 6= ;

select E′ ⊂ �(u, v) | dG(u, v)≤ k
	

forall {u, v} ∈ E do λ′(u, v)← λpv
(u, v)

p′← GenericMultiLevelPositioning(G′ = (V ′, E′),λ′)
forall u ∈ V do

pick some v ∈ N1
G (u)∩ V ′

p(u)← p′(v)⊕ pv(u)
return p

In graph drawing, this technique is used to simplify the input and the layout is computed
in a top-down fashion: Given a layout for the nodes in Vi , the nodes from Vi−1\Vi are placed
according to some good guess based on the positions of Vi . Then, the layout is improved
by minimizing some stress function, before nodes from Vi−2 \ Vi−1 are re-inserted, and so
on. This approach has been used for sensor network positioning, albeit not for connectivity-
based localization, but for input consisting of both, noisy distances and directions [EEF+06].
For the initial placement, distances within the network are deduced from dead reckoning, a
technique whose quality also decreases with the network size.

In contrast, we perform most of the optimization in a bottom-up manner: We let all
nodes localize some small neighborhood, and select a sample of nodes to be active in the
next level of filtration. In this level, close selected nodes are connected. They derive rel-
ative position information from local solutions. Thereby, with progressing filtration, nodes
position sparser samples of neighborhoods with increasing range.

A more formal description of this approach is given in Algorithm 4.1 in a sequential
manner: Given a connected Graph G = (V, E) together with some kind of information on
relative positions, λ, first, each node’s k-hop neighborhood is positioned using a centralized
algorithm. Here, λ can be any kind of information regarding a connected pair of nodes
that is invariant under isometries of the underlying space, e. g., distance, relative direction
a relative sector, or combinations, subject to discretization or noise. Second, a subset of the
nodes V ′ ⊂ V is chosen. Among pairs that mutually lie within k-hop neighborhood, edges
E′ are chosen from

E′ ⊂
¨

{u, v} ∈
�

V ′
2

�

| u ∈ N k
G (v)

«

,

and information on relative positions λ′ is derived from local solutions. We will examine
conditions on the selection of V ′ and E′ later in this chapter. This scheme is recursively
applied to G′ = (V ′, E′) with the support of λ′. As soon as at some level, all active nodes are
within some node’s k-hop neighborhood, this node’s positioning is returned. Given positions
for nodes on any level, V ′, the rest of the nodes, V \V ′ are positioned combining the known
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Algorithm 4.2: DistributedHierarchicalPositioning(v, NG(v),λNG(v))

`← 0
N0← NG(v), λ0← λNG(v)
active← true
while active do

exchange information with nodes in N k
`

p`,v ← SolveCentrally(G[N k
`
])

if N k
`

covers all nodes then
choose a leader among nodes with this property and set its position to 0

active← NodeFiltration()
exchange information with nodes in N k

`
if active then

select N`+1 among active nodes in N k
`

store routes to N`+1 in N k
`

forall u ∈ N`+1 do derive λ`+1(u) from p`,v and p`,u
`← `+ 1

wait for some u ∈ N` to send a position
send positions to all nodes in

⋃`−1
i=0 Ni

position of the closest node in V ′ and the respective local solution.
This framework leaves certain degrees of freedom open: First, nodes can position their

neighborhoods using any suitable algorithm. This choice can depend on the kind of input λ
available to the nodes as well as on the nodes’ capabilities. Second, we have the choice of
the filtration step, i. e., the choice of V ′ and E′ with respect to the parameter k. The basic
idea is to perform filtration steps in a way that the size of local problems does not increase
with progressing filtration, and that second the recursion depth is logarithmic in the number
of nodes.

4.2.1 Distributed Implementation

Algorithm 4.1 can completely be implemented in a distributed way if the filtration step can
be performed distributedly; an outline is given in Algorithm 4.2. Starting with a setup,
where every node v has position information λNG(v) for its one-hop neighbors NG(v), each
node broadcasts its information to its k-hop neighborhood. Every node now computes posi-
tions for its k-hop neighborhood. If some node’s neighborhood covers all remaining nodes,
these nodes choose a leader and set its position to 0. Otherwise, nodes perform the filtration
step, i. e., use some local protocol to decide which nodes remain active.

Again, we allow the exchange of information in the k-hop neighborhood to let active
nodes know each other. If a node is chosen to be active on the next level, it selects its
neighbors for the next level among active nodes in the current k-hop neighborhood. It also
derives relative position information λ`+1(u) for each neighbor u on the next level from its
local solution as well as a path in the current k-hop neighborhood to get there. Both, the
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(a) Routing information in a one-
hop transmission in G4
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(b) Insertion of waypoints in a transmission in G2

Figure 4.1: Routing in higher levels

selection of next-level neighbors and extraction of λ`+1(·) must be symmetric, i. e., have the
same result for both nodes involved.

This procedure necessarily ends with one node being positioned at 0. To spread position
information, the following is sufficient: As soon as a node knows a position, it sends packets
assigning positions to its neighbors on all levels in which the node was active, based on its
own position and the local solutions.

Note that on each level, each node has to communicate only a constant number of times
with its k-hop neighbors on the respective level. Routing these packets also can exploit the
filtration: To route a message over one hop in level `, it is sufficient to have (k−1)`+1 IDs
enclosed to route the packet in the underlying network: To send a message from some node
s ∈ V` to a node t ∈ N`(s), the path in G` is s−0 t, denoting a hop in level (`− i) by −i . Now,
s replaces the first hop of the path adding the at most k − 1 intermediate nodes, e. g., for
k = 3 some v1 and w1, yielding s−1 v1−1 w1−1 t. Again, the first hop in level `−1 is replaced
by the at most k−1 relay nodes on the next lower level, e. g., s−2 v2−2 w2−2 v1−1 w1−1 t,
and so on.

Repeatedly applying this scheme, we start a message knowing the first k hops in G0,
then the next k− 1 hops in G1, k− 1 hops in G2 and so on. Everytime the packet is passed
to the next node, we can remove the respective “waypoint” from the list contained in the
packet, and whenever a node u ∈ V` \ V`+1 is reached for some `, the next hop in the packet
is on level ` and u can fill in the partial routing information on the lower levels using its
stored routes for its neighborhoods on these levels. The development of such a routing
information is depicted in Figure 4.1. In Figure 4.1(a), the waypoints included in a packet
travelling one hop in G4 from the black node in the upper right to the black node in the
lower right corner: Two hops in G0 (red), one in G1 (orange), two in G2 (green), and two in
G3 (blue). In Figure 4.1(b) it is depicted how relaying nodes in G1 fill in missing waypoints
en route.
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4.3 Filtration Techniques

The choice of the filtration technique is crucial, since consistency and the burden of single
nodes heavily depend on the way nodes are chosen to be active and connected on each
level:

Connectivity and consistency: The most important property that has to be guaranteed un-
der all circumstances by the filtration technique is that the overlay graph G` remains con-
nected on all levels (given the underlying network was connected). If this property was
violated at some point, recursion would stop with more than one node assigning itself a
position and propagating positions down the hierarchy, leading to inconsistent positions.

Size of local problems: The main idea of positioning local neighborhoods is to run com-
plex positioning algorithms on small instances only, such that single nodes are able to per-
form them. Thus, it is important that even though in higher levels nodes become connected
to further and further nodes, k-hop neighborhoods do not become too large.

Height of filtration hierarchy: Some nodes have to solve local problems on all levels, and
also the other nodes may have to relay packets for communication on all levels. Hence, it is
important to bound the height of the filtration hierarchy, i. e., the number of filtration steps.

In the following, we first propose a geometric filtration technique that guarantees connec-
tivity and, given sufficient quality of local solutions, constant bounds on the size of local
problems as well as a logarithmic height of the filtration hierarchy. Additionally, we propose
a combinatorial technique, that can only guarantee a consistent assignment of positions,
but empirically fulfills the above requirements much better than the geometric filtration
technique.

4.3.1 Geometric Filtration

In geometric filtration, the conditions determining which nodes to choose for the next fil-
tration step rely on the local solutions. In the following, we show that geometric filtration
yields consistent positions and derive bounds under the assumption that local solutions are
perfect reconstructions. It is based on the geometric intuition of active nodes dominating an
increasing range.

Definition 4.2 Let G = (V, E) be a graph in Rd . A set of nodes V ′ ⊂ V is r-d?G-independent if
for any two nodes u, v ∈ V ′, d?G (u, v) > r, where d?G (u, v) denotes the shortest path distance
between u and v in G,

d?G (u, v) :=min
n
∑

{a,b}∈P

d (a, b) | P connects u and v
o

(4.1)

It also makes use of the following observations: If nodes are deployed densely enough in
some area A⊂ Rd , shortest pathes in the network are only by a constant factor larger than
shortest path distances in A (cf. Figure 4.2(a)). Also deployment regions can be described
using a measure of independence: Given some radii r1, r2 ∈ R+, how many points can be
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(a) shortest path in a dense graph
(black) compared to shortest path
in deployment area (blue)

(b) region A with sA = 2 (c) A well-formed region with
higher span

Figure 4.2: Ingredients of geometric filtration

chosen that have pairwise distance greater than r1 in A, but are all covered by some ball of
radius r2 in Rd? For A = Rd this obviously can be bounded by c · (r2/r1)d for some small
constant c, and this is also possible for many regions that are not arbitrarily complex. One
example are regions where shortest paths have a length of at most some span sA times the
Euclidean distance of the endpoints. Then this constant is at most sd

A times the constant
for Rd (cf. Figure 4.2(b)). This also applies to convex regions A and sA = 1. But also for
other regions, in which some shortest pathes are much longer than Euclidean distances, this
constant can remain low, as in Figure 4.2(c): Here, for every r1 and r2, we can at most
choose twice the number of points with pairwise distance r1 in any disk of radius r2.

Putting these two observations together, we describe a graph G by its d?G-independence
as follows:

Definition 4.3 Let G = (V, E) be a graph inRd . G has d?G-independence γ if for all 0< r1 < r2,
all x ∈ Rd and all r1-d?G-independent V ′ ⊂ V , the following holds:

�

�V ′ ∩ B
�

x , r2
�

�

�≤ γgd(r1/r2) ,

where gd(x) denotes the cardinality of a maximum set of points with pairwise distance x in the
d-dimensional unit ball.

In geometric filtration as defined in the following, this d?G-independence is, together with a
parameter q̂, which we will set to − log q for the application of q-QUDG, the main parameter
determining the size of local problems:

Definition 4.4 (Geometric Filtration) Given some q̂ ∈ N0, in a geometric filtration, V`+1 is an
inclusion-maximal subset of V` such that for every v ∈ V`+1 either

1. there is some u ∈ N` with d (u, v)> 2`−q̂ or

2. there is no node u ∈ N`−1(v)∩ V`+1 with d (u, v)< 2`−2q̂−3.
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Figure 4.3: Connectivity after filtration step

For convenience, we set Ni := N0 for i < 0. E`+1 then is defined as

E`+1 =
�

{u, v} ∈
�

V`+1

2

�

: u ∈ N3
` (v)≤ 3 and d (u, v)< 2`−q̂+1 or {u, v} ∈ E`

�

. (4.2)

In other words, in geometric filtration, the decision which nodes to choose and how to
connect chosen nodes is done based on three radii, all doubling with every filtration step:
The basic idea is to pick an inclusion-maximal set that has pairwise distance of at least
2`−2q̂−3, which causes increasing spatial separation of active nodes, and connect chosen
nodes that have distance up to 2`−q̂+1, causing connectivity in an increasing range. For the
following, it will become important to admit pairs of nodes with distance less than 2`−2q̂−3

that have not been connected in the preceding filtration graph G`−1. In addition, we have
to make sure to choose all nodes that are incident to edges too long to be a result of the
previous steps to remain active and to keep these connections, because otherwise the graph
could be separated.

Observation 4.5 Let G be any graph, G = G0, G1, . . . , Gh a geometric filtration for some q̂ ∈
N0. If G is connected, then every Gi is connected for 0≤ i ≤ h.

Proof. We prove that G`+1 is connected given that G` is connected: Let s, t ∈ V`+1 and
s = v1 − · · · − vp = t be a path in G`. Without loss of generality, we can assume that no
vi 6∈ V`+1 for 1 < i < p, since otherwise, if there is some such vi ∈ V`+1, it is sufficient to
show that s and vi , and vi and t are connected in G`+1. For the same reason, we can assume
that d

�

vi , vi+1
�

< 2`−q̂ for all 1 ≤ i < p, since otherwise, we have vi , vi+1 ∈ V`+1 and
{vi , vi+1} ∈ E`+1 making it sufficient to prove that s is connected to vi and vi+1 is connected
to t.

Now, for every 1 < i < p, there is some ui ∈ V`+1 such that {vi , ui} ∈ E` and d
�

vi , ui
�

<

2`−2q̂−3. Hence, the pairs {s, u2}, {up−1, t} and {ui , ui+1} for 1 < i < p − 1 have at most
a distance 2`−q̂ + 2 · 2`−2q̂−3 < 2`−q̂+1 and are within mutual 3-hop neighborhood in G`
(cf. Figure 4.3), i. e., are connected in G`+1. �

To prove the spatial separation and connectivity is a little more cumbersome.
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Lemma 4.6 Let G be a graph, embedded as q-QUBG for some q, and G = G0, G1, . . . , Gh a
geometric filtration for some q̂ ∈ N0 with q > 2−q̂. Then

max{u,v}∈E`
d (u, v)≤max(1,2`−q̂) , (4.3)

for any 0 ≤ ` ≤ h any two nodes u, v ∈ V` with d?G (u, v) ≤ 2`−2q̂−2 are connected and for all
0< `≤ h, V` is 2`−2q̂−4-d?G-independent.

Proof. Every edge in some E` either existed in G and has length at most 1 or the edge has
been created on some level `′ ≤ ` and has length at most 2`−q̂.

For the second and third part of the claim, we look more closely at the way nodes
are suppressed from being included into some V`+1 by close nodes due to property 2 of
Definition 4.4: Whenever a node v ∈ V` is not included in V`+1, there is some node u ∈
N`−1 (v) ∩ V`+1 with d(u, v) < 2`−2q̂−3 such that v ∈ V`+1. In this case, we call u the
replacement of v in level `+ 1, denoted by rp`+1(v). We extend this notation by defining
rp`(v) := v if v ∈ V` and rp`+1(v) := rp`+1(rp`(v)) if v 6∈ V`. With this notation, we first
get that for every node v

d(v,rp` (v))≤
∑̀

i=1

d(rpi−1 (u) ,rpi (u))≤
∑̀

i=1

2(i−1)−2q̂−3 ≤ 2`−2q̂−3 . (4.4)

For all ` and all {u, v} ∈ E, we additionally know that rp` (v) ∈ N`(rp` (u)), since for
` with d(u, v) > 2`−q̂, rp`+1 (u) = u and rp`+1 (v) = v, and for ` with d(u, v) ≤ 2`−q̂, it
follows inductively from the fact that rp`+1 (u)− rp` (u)− rp` (v)− rp`+1 (v) is a path in
G` and

d
�

rp`+1 (u) ,rp`+1 (v)
�≤ d

�

rp`+1 (u) , u
�

+ d (u, v) + d
�

v,rp`+1 (v)
�

≤ 2`−2q̂−3+ 2`−q̂ + 2`−2q̂−3

< 2`−q̂+1 .

(4.5)

If now any two nodes u, v ∈ V have distance d?G (u, v) < 2ŝ for some ŝ ≥ 1, let u =
v0 − v1 − · · · − vk = v be a path of minimum Euclidean length between u and v. Since G is
embedded as q-QUBG, this path cannot have more than 2ŝ+q̂+1 hops, because in any path
of minimum euclidean length, two nodes vi , vi+2 have distance at least 2−q̂.

On the other hand, we have d
�

vi , vi+1
�

< 1, and we can show inductively that for ` > q̂
and every s ≤ 2`−q̂−1, we have that
¦{rp`+1

�

vi
�

,rp`
�

vi+s
�}, {rp` �vi

�

,rp`
�

vi+s
�}, {rp` �vi

�

,rp`+1
�

vi+s
�},©⊂ E` . (4.6)

We start with the observation that for any u ∈ V , rpq̂+2(u) ∈ Nq̂(rpq̂(u)), since

d
�

rpq̂ (u) ,rpq̂+2 (u)
�≤ 2(q̂+2)−2q̂−3 = 2−q̂−1 < q/2 . (4.7)

Since rpq̂+2(vi)− rpq̂(vi)− rpq̂(vi+1)− rpq̂+1(vi+1) forms a path in Gq̂, and with

d
�

rpq̂+2
�

vi
�

,rpq̂+1
�

vi+1
�

�≤ 2 , (4.8)
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Figure 4.4: Schematic guaranteed connectivity of replacements in different levels of filtration

rpq̂+2(vi) and rpq̂+1(vi+1) become neighbors in Gq̂+1, as well as rpq̂+1(vi) and rpq̂+2(vi+1)
by symmetric arguments. This is the basis for ` = q̂ + 1 and s = 1. Then, if for ` = q̂ + j
and every s ≤ 2 j−1, Inclusion 4.6 holds, then for s′ ≤ 2 j and s′′ := bs′/2c, rp`+2(vi) ∈
N`+1(rp`+1(vi+s′)) since rp`+2(vi)− rp`+1(vi)− rp`(vi+s′′)− rp`+1(vi+s′) forms a path in
G` and we have similarly as above

d
�

rp`+2
�

vi
�

,rp`+1
�

vi+s′
�

�≤ 2`−2q̂−1+ 2`−q̂ + 2`−2q̂−2 < 2`−q̂+1 . (4.9)

Again, by symmetric arguments, we get rp`+2(vi+s′) ∈ N`+1(rp`+1(vi)) and by similar argu-
ments rp`+1(vi) ∈ N`+1(rp`+1(vi+s′)), proving Equation 4.6 for all ` > q̂. These connections
are schematically depicted in Figure 4.4 for q̂ = 0, i. e., for UDG. Depicted are only the most
relevant edges, black those in G, blue, green and red the edges in G1, G2 and G3.

Hence, rp`(v) ∈ N`(rp`(u)) for ` ≥ ŝ + 2q̂ + 2. This proves that in G`, any two nodes
u, v with d?G (u, v) ≤ 2`−2q̂−2 are connected, and this in turn proves that for any ` ≥ q̂ any
two nodes u, v ∈ V`−2 with d?G (u, v) ≤ 2`−2q̂−4 are neighbors in G`−2, which allows at most
one of them to be in V`. �

Observation 4.7 Let G = (V, E) be a graph with d?-independence γ, embedded in Rd as q-
QUBG. Let γ0 denote the maximum number of nodes per unit ball, i. e., γ0 := maxx∈Rd |{v ∈
V : d (x , v) ≤ 1}|. Let G = G0, . . . , Gh be a geometric filtration of G for some q̂ ∈ N0 with
q̂ = d− log qe. Then,

1. h ∈ O
�

log(diamG/q)
�

2. Neighborhood sizes are bounded by
�

�N3
`
(v)
�

� ∈ O
�

γ0+ γ/qd
�

for all `≥ 0 and v ∈ V`.

3. on each level, every node receives and sends at most O
�

γ2
0+ (γ/q

d)2
�

messages.

Proof. The first statement directly follows from Lemma 4.6: Since edges in G have length at
most one, we have

max
u,v∈V

d?G (u, v)≤ diamG , (4.10)
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and hence, for ` with 2`−2q̂−2 ≥ diamG , i. e., for ` = ld(diamG) + 2q̂ + 2 at the latest, G`
would be a clique.

The second claim follows from the fact that in the graphs G0 to Gq̂, no edge exists or is
introduced with length more than 1, meaning that the 3-hop neighborhood covers an area
of size bounded by a constant. For ` > q̂, any nodes u, v ∈ V` with u ∈ N3

`
(v) have distance

at most d (u, v)≤ 3 ·2`−q̂, and N3
`
(v) is 2`−2q̂−4-d?G-independent, such that |N3

`
(v) | contains

at most γgd(3 · 2q̂+4) nodes.
Similarly, we can show that any node w ∈ V can only relay messages being sent on level

`, i. e., from some v ∈ V` to some u ∈ N3
`
(v), if both, v and u have Euclidean distance less

than 2`−q̂+2 to w: On the route from w to u, the message reaches the first w1 ∈ V1 in at
most 2 hops in G0. Both hops must have lengths less than 2−q̂ by the definition of V1. After
w1, the first node w2 ∈ V2 is at most 2 hops away in G1, having lengths less than 21−q̂ and
so on. Overall, this gives

d (w, u)≤ ∑̀
i=0

2 · 2i−q̂ ≤ 2`−q̂+2 . (4.11)

By symmetric arguments, we get the same bound for d (v, w). However, the number of
nodes from V` that are located within that range is bounded by γ · gd(2q̂+6) ∈ O(γ/qd) for
` > q̂ and by O(γ0) otherwise. Since every pair of nodes in V` exchanges at most a constant
number of messages, the claimed bound holds. �

For geometric filtration as defined above, nodes in G` need to find a maximal indepen-
dent set of nodes, restricted to nodes that do not have a neighbor that is chosen due to a
long edge, and restricted to edges e ∈ E`−1 with length less than 2`−q̂. One way to do this,
distributedly and not increasing the message count, is to exchange IDs and let nodes decide
when either one of its neighbors signals that it joined the set or until all nodes with higher
IDs signal they will not be in the set. In the nomenclature of distributed computing, this
is a localized algorithm, but with a linear worst case runtime. On the other hand, all of
the above bounds do not change if we compute a filtration such that condition 2 of Defini-
tion 4.4 can be violated, but still guaranteeing that in expectation, for every v ∈ V`+1, the
number of neighbors violating the condition, i. e., |{u ∈ N`−1 (v)∩ V`+1 : d (u, v)}| is bound
by some fixed constant c. This can, for example, be achieved using random numbers in a
range with size Θ(γ0 + γ/qd) instead of IDs for the above approach, simply by accepting
some close and connected nodes joining V`+1 in the same round.

4.3.2 Combinatorial Filtration

Geometric filtration guarantees desired properties for relevant scenarios, especially in terms
of the size of positioning problems to solve centrally at each node. However, we pay
with comparably high hidden constants for its bounds on neighborhood sizes and filtra-
tion height, which empirically stay far below these bounds for much simpler, combinatorial
filtration techniques. We will define a purely combinatorial filtration technique, which we
will use for evaluation of filtration-based MDS to be defined in Section 4.4. The definition
slightly differs for different values of k to ensure connectivity:
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Definition 4.8 (Combinatorial filtration, k ≥ 3) In a combinatorial filtration for k = 3,
V`+1 is a dominating set in G`, and for any v ∈ V`+1 we set N`+1 (v) := N k

`
(v)∩ V`+1.

Definition 4.9 (Combinatorial filtration, k = 2) In a combinatorial filtration for k = 2,
V`+1 is a set of nodes such that for every edge {u, v} ∈ E`, there one node w ∈ V`+1 ∩ N1

`
(u)∩

N1
`
(v), and for any v ∈ V`+1 we set N`+1 (v) := N2

` (v)∩ V`+1.

Observation 4.10 (Connectivity of combinatorial filtration) Let G be a connected graph
and G = G0, . . . , Gh be a combinatorial filtration for k ≥ 2. Then, every Gi is connected.

Proof. The proof is basically the same as for Observation 4.5: We again pick any two nodes
s, t ∈ V`+1 and a path s = v0 − v1 − · · · − vp = t in G`, without loss of generality, we
assume again v1, . . . , vp−1 6∈ V`+1. Now, for k = 2, there must be nodes u1, . . . , up ∈ V`, not
necessarily pairwise different, such that ui ∈ N`(vi−1)∩N`(vi) for 1≤ i ≤ p. Hence, in G`+1,
s is connected to u1, every ui to ui+1 for 1 ≤ i < p, and up to t. For k = 3, we have nodes
u1, . . . , up−1 ∈ V`, such that ui ∈ N`(vi) for 1 ≤ i < p. Hence, in G`+1, s is connected to u1,
every ui to ui+1 for 1≤ i < p− 1, and up−1 to t. �

Combinatorial filtration does not rely on the outcome of local positioning. Hence, not all
nodes in some V` have to run the positioning algorithm on their local neighborhood. Only
those nodes that are selected for V`+1 have to position their neighborhoods. Running the
positioning algorithm only on selected nodes reduces the number of invocations of the local
positioning algorithm by one for each node, such that most nodes never have to run it at all.
Again, such a filtration with small Vi can be computed distributedly in a constant number of
rounds.

In Figure 4.5, a exemplary combinatorial filtration is shown for k = 3.

Figure 4.5: An exemplary filtration for k = 3 for a network with 2500 nodes. Shown are graphs G0,
G1, G2, G3.
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4.4 MDS-MAP(F): Filtration-based MDS

Since most hardware platforms provide at most poor distance estimations, we focus on the
case where we can rely on connectivity information only or have at most noisy distance
measurements available.

Multidimensional Scaling (MDS) has proven to produce good localizations in this sce-
nario for small-scale solutions, but for large-scale networks, it not only becomes impractical
due to its runtime and the necessity of determining all-pair shortest path distances as input.
It also completely fails to recover network structures if the deployment area is not convex.

(a) Ground truth (b) MDS result

Figure 4.6: MDS-based positioning of 2800 nodes spanning a network in a non-convex area; input is
connectivity only

In Figure 4.6, a quite typical result of MDS-based positioning is shown. It is plain to see
how the localization of the whole network is distorted since shortest path lengths do not
reflect Euclidean distances very well. Some parts of the network are even folded, such that
local optimization could not correct the positioning either. Figure 4.7 in contrast shows, how
the 3-hop neighborhood of a node is recovered much more accurately. Moreover, since the
MDS result recovers the original positions well enough, local optimization can considerably
lessen the artifacts of MDS. Yet, positions are not perfectly recovered since there are no edge
lengths available.

As mentioned in the introduction, the quality of small-scale MDS positioning has been
utilized and extended to more complex networks within distributed frameworks that either
patch local solutions together, or by dead reckoning along paths to estimate relative direc-
tions of endpoints. MDS also very naturally fits in the framework of distributed filtration-
based positioning. On the first level, i. e., in G0, where we are only given the neighborhood
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(a) Ground truth (b) MDS result (c) Refined MDS result

Figure 4.7: MDS-based positioning of a node’s 3-hop neighborhood

relation and possibly distance estimations, we use MDS to find good positions for local
neighborhoods. This provides us with distance estimations for pairs of nodes in E1, but we
are not restricted to take only distances as input for higher levels and apply MDS again.
Instead, we are in the position that nodes that become neighbors on the next level know
positions for overlapping neighborhoods. This allows to deduct the best-fit transformation
between any two local solutions which overlap in at least d + 1 nodes as λ1. This not
only carries information on distance of pairs in E1, but also allows to do positioning of
neighborhoods on the next level by placing nodes at initial positions: Transformations are
combined along paths of at most 3 hops to place nodes; then this solution is refined using
simple force-directed optimization without any more MDS solving involved. This way, MDS
is only applied for positioning of local neighborhoods on the very first level. Following the
conventions, we will call this instantiation of filtration-based positioning MDS-MAP(F).

Best-fit affine transformation

When two nodes u, v ∈ V` become neighbors in G`+1, they both have positions for overlap-
ping neighborhoods in G`, p`,u : N k

`
(u) → Rd and p`,v : N k

`
(v) → Rd . We assume for all

such embeddings that p`,u(u) = 0.
Now, k-hop neighborhoods of nodes not further than k hops apart overlap at least in

min
�

k+ 1, |V`|	

nodes. Hence, for k ≥ d, and as long as no single node’s k-hop neighborhood covers all
nodes, any pair of nodes u, v to become neighbors in some G`+1 can exchange enough
positions for nodes to find an affine transformation to align the two neighborhoods. In
general, nodes can even exchange a larger set of nodes V uv

`
⊂ N k

`
(v) ∩ N k

`
(u) both nodes

have positions for. It is sufficient if one of the two nodes, say v, sends positions of a small
set of nodes that have no more than k hops to u in G[N3

`
(v)]. With at least d + 1 posi-

tions p`,v(w1), . . . ,p`,v(w j) and p`,u(w1), . . . ,p`,u(w j) known to u, it can compute the unique



4.4 MDS-MAP(F): Filtration-based MDS 65

affine transformation matrix T`(u, v) such that

j
∑

i=1

d
�

p`,v(w j), T`(u, v) · p`,u(w j)
�2

(4.12)

is minimized (see [TCPK01]). In addition, if two neighborhoods overlap in more than d+1
nodes, the transformation can be annotated with the average error of transformation on this
set of nodes as a measure of quality.

Initial Layout

Knowing the nodes within the k-hop neighborhood as well as transformations for all edges
in E`[N3

`
(v)], ` > 0, each active node v can simply assign initial positions to every node

u ∈ N3
`
(v) by multiplying transformation matrices along any path v = v0 − · · · − vp = u in

G` as

p0
`,v(u) :=

p
∏

i=1

T`(vi−1, vi) · 0 . (4.13)

It turned out to be beneficial for sparse networks to initialize positions along a shortest
path tree, using a function of the number of overlaps and the average error as distance
function. This prevents choosing bad paths in terms of transformation quality if good paths
are available. In any case, the computation of shortest paths are restricted to the k-hop
neighborhood that is known to the central node. Hence, it does not require any more
communication and is computationally inexpensive.

Stress minimization

After a node v has computed initial positions for nodes in its k-hop neighborhood, it refines
its local map using a simple force-directed optimization, shifting every node by

pi+1
`,v :=

c

δ (u)
· ∑

w∈N`(u)∩N3
`
(v)

 

�

|pi
`,v(u)− pi

`,v(w)| − d(u, w)
�

· pi
`,v(u)− pi

`,v(w)

|pi
`,v(u)− pi

`,v(w)|
!

,

(4.14)
which usually converges fast given the quality of the initial layout and the small problem
size.

Supporting nodes

The filtration techniques proposed in Section 4.3 aimed at filtrations that maintain connec-
tivity to guarantee consistency. For local optimization, connectivity alone is not enough. If a
graph allows for continuous deformations without altering edge lengths, there is no unique
local or global optimum to converge to. Hence, in each filtration step we construct two
graphs: In addition to G`+1 as before, we also construct a graph G?`+1 with an extended set
of nodes V ?`+1 with V` ⊃ V ?`+1 ⊃ V`+1, E?`+1 defined analogously to E`+1. While nodes in each
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(a) Result of MDS-MAP(F) for k = 2 (b) Result of MDS-MAP(F) for k = 3

Figure 4.8: Exemplary results of MDS-MAP(F) for k = 2, 3

step may only be chosen as before, local solutions (and hence relative positions) can be com-
puted from neighborhoods in G?` . Although even choosing V ?`+1 = V` would not change the
results from Observation 4.7, it is sufficient to ensure that nodes must be chosen unless at
least two neighbors are chosen for k ≥ 3 (Definition 4.8), or unless for every incident edge
{u, v}, at least two nodes from N` (u)∩N` (v) are chosen for k = 2 (Definition 4.9). We omit
a proof, but it is straightforward to see that this ensures that all graphs G1, . . . , Gh are rigid.
In Figure 4.8, two exemplary results of MDS-MAP(F) are depicted for k = 2 (Figure 4.8(a))
and k = 3 (Figure 4.8(b)). Both variants recover the network quite faithfully, performing
almost equally well in this scenario, not surprisingly with slight advantages for k = 3.

4.5 Application and Evaluation

4.5.1 Set-up

There is no agreed set of scenarios or quality indices to evaluate positioning algorithms
with. Quite usually, evaluation covers a number of network topologies, here referring to
the region that nodes are deployed in. For each topology, nodes are placed randomly and
connected according to a connectivity model. For the positions of the nodes, two options
are most wide-spread: Placing nodes uniformly at random in the deployment region or
placing nodes on a grid and shift nodes by some random offset. The former is obviously
the more suggesting option: This is what one would expect under a random deployment.
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(a) uniform (b) GwP, shift ∼ U(0, g) (c) GwP, shift ∼ N(0, g2)

Figure 4.9: 250 nodes deployed uniformly or on a grid with perturbation in a square region, connected
as UDG with an average degree of 8

Furthermore, this is easy to implement and parameter-free. The latter process, also called
grid with perturbation (GwP) model needs further specification of the perturbation process
and entails several implementation issues: How to adjust the grid-size to gain a specific
number of nodes to fall in the interior of the deployment region, how to deal with nodes
that would be shifted out of the region? The reason why the grid with perturbation model
is chosen more often is, that it deploys nodes more evenly. Roughly speaking, uniform
deployment leads to regions with higher density and higher average degrees and to regions
with lower density and lower average degree. In Figure 4.9(a), 250 nodes are deployed
uniformly at random in a square region and connected as a UDG with average degree 8.
If there is something like a critical density for a positioning algorithm, or a coherence of
density and the quality of localization, then usually, the denser regions do not help as much
as the sparser regions harm. Hence, for the same quality of positioning, uniformly deployed
nodes usually need a higher average degree. This not only lets the respective results look
worse, it also somehow clouds the density of the problematic regions. Where applicable, we
evaluate both cases, uniform deployment and deployment for the GwP model. In the GwP
model, we shift nodes in a random direction by a random offset, uniformly distributed in
[0, pg], g being the grid length, p a perturbation parameter. Note that this does not mean
that node positions are uniformly distributed in the disk or ball of radius pg around the grid
points. In the literature, many other implementations can be found, including a normally
distributed shift (which also must not be mistaken for a normal distribution around the
grid point) as in [BGJ05] or a uniform distribution in the grid cells as in [WGM06]. These
differences are—for proper parameters—negligible compared to uniform deployment: In
Figures 4.9(b) and 4.9(c), results of GwP models for uniform and normal shift are compared
for the same average degree of 8. Both do not suffer from large, high-degree clusters and
the giant holes caused by uniform deployment.

Mostly, positioning algorithms are evaluated for the UDG model, i. e., the radio range is
adjusted for a specific degree. To evaluate the robustness, we also generate random QUDGs
for a given point set with a specific expected average degree with the following process with
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two parameters, the relative radio range rrel ∈ (0, 1] and a qrel ∈ (0,1]. For a fixed radio
range r, we assign a random individual radio range r(u) ∼ r · U(rrel, 1) to every node u.
Two nodes u, v now are connected if d (u, v)≤ qrel ·min{r(u), r(v)}. They are not connected
if d (u, v) > ·min{r(u), r(v)}. In any other case, a coin is tossed. This obviously results in a
rrelqrel-QUDG, and for rrel = 1, it would be a straightforward implementation of q-QUDGs,
but it also allows to model systematic errors due to the placement of nodes or different
hardware quality using a smaller rrel. Unless stated otherwise, we draw random q-QUDGs
setting rrel = qrel =

p
q.

4.5.2 Evaluation Criteria

There is a wide range of quality measurements used to evaluate the quality of positioning.
Anchor-based positioning algorithms can be rated by the average distance of the positions
returned from the ground truth, but results from anchor-free approaches can be rotated and
flipped. Therefore, different notions of stress of solutions have been introduced comparing
the ground truth distances di j to the distances in the reconstruction, d̂i j . Examples are the
global energy ratio as defined by Priyantha et al. [PBDT03],

GER :=
2

n(n− 1)

√

√

√

√

∑

1≤i< j≤n

 

di j − d̂i j

di j

!2

, (4.15)

which the authors mistakenly claim to be the root-mean-square normalized error of pairwise
distances, the global stress RMS (GSR), [KW07] correcting this error to

GSR :=

√

√

√

√

2

n(n− 1)

∑

1≤i< j≤n

 

di j − d̂i j

di j

!2

, (4.16)

or the frobenius metric (FROB) [EEF+06] as

FROB :=

√

√

√

√

1

n2

n
∑

i=1

n
∑

j=1

(di j − d̂)2 , (4.17)

which does not normalize errors and is hence sensitive to the size of the deployment area.
These—as well as other, similar measures—produce numbers which are hard to read and
can hide systematic errors, such as different scales. Especially for connectivity-based po-
sitioning, such errors are common, since the average distance between connected nodes
depends on the connectivity model. Hence, unless otherwise stated, we will measure the
quality of a reconstruction by the average distance of the nodes to their ground truth after
a best-fit affine transformation. This comparison closely resembles the impression of visual
inspection as well as the result of a-posteriori anchorage. Results can be scaled either to
the radio range R or in percent of the size of the network, i. e., 1% := max0<i, j≤n di j/100.
Unless stated otherwise, every test is performed at least 250 times unless a confidence of
less than 0.02R was attained earlier for a confidence level of 95%.
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(a) MDS-MAP(F) positions

(b) aligned positions

(c) misplacement vectors

(d) ground truth

Figure 4.10: Quality of MDS-MAP(F) reconstruction

4.5.3 Results

We evaluated MDS-MAP(F) on a variety of topologies we found in the literature (and some
more), as shown in Figure 4.11 [EEF+06, KFPF06, LWG08]. Depicted are exemplary de-
ployments of 4000 nodes on a grid with perturbation. Nodes are connected as 2/3-QUDG
with an expected average degree of 10. The topologies are annotated with the average node
distance between ground truth and reconstruction. In parentheses, results for uniformly de-
ployed nodes with an average degree of 12 are given. Confidence intervals are given for a
confidence level of 95%. In all scenarios, the degree was sufficient to position nodes with
an average error of less than one radio range for nodes placed on a grid with perturbation
or 2% of the maximum Euclidean distance between the two extremal nodes. For uniform
deployment, errors are higher, even in spite of the higher average degree, especially for
harder instances with more “bottlenecks”, but still provide very reasonable positions. Three
exemplary results are depicted in Figure 4.12. In the result for the most challenging sce-
nario, Figure 4.11(i), it becomes apparent that in some areas, neighborhoods on the lowest
level could not be positioned perfectly, but the big picture is recovered very accurately.

We also compare MDS-MAP(F) to the very recent approach of Lederer et al., which cur-
rently is the only algorithm for connectivity-based positioning of networks with a complex
shape we are aware of. Comparison is done for the deployment described in [LWG08,
WGM06], which is slightly less challenging than the deployment in the other tests we per-
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(a) 1.63%= 0.72R± 0.02R
(1.96%= 0.89R± 0.05R)

(b) 0.95%= 0.45R± 0.02R
(1.18%= 0.53R± 0.03R)

(c) 1.22%= 0.55R± 0.04R
(1.55%= 0.67R± 0.03R)

(d) 1.63%= 0.72R± 0.02R
(2.67%= 1.12R± 0.09R)

(e) 1.56%= 0.66R± 0.02R
(2.51%= 1.01R± 0.07R)

(f) 1.11%= 0.46R± 0.04R
(1.53%= 0.61R± 0.05R)

(g) 1.47%= 0.68R± 0.04R
(2.59%= 1.14R± 0.07R)

(h) 1.79%= 0.81R± 0.06R
(2.99%= 1.29R± 0.05R)

(i) 1.54%= 0.74R±0.02R
(3.54%= 1.61R± 0.09R)

(j) 1.17%= 0.49R± 0.01R
(1.62%= 0.65R± 0.05R)

(k) 0.97%= 0.44R± 0.01R
(1.65%= 0.71R± 0.03R)

(l) 0.98%= 0.52R± 0.01R
(1.83%= 0.76R± 0.02R)

Figure 4.11: Topologies for MDS-MAP(F) evaluation. Positioning accuracy for graphs with 4000 nodes,
deployed as GwP (uniformly) as 2/3-QUDG with expected average degree 10 (12).
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(a) result for Fig. 4.11(c) (b) result for Fig. 4.11(d) (c) result for Fig. 4.11(i)

Figure 4.12: Exemplary MDS-MAP(F) results

formed. Hence, it is not surprising that we were able to attain good results even for average
degrees as low as 6.9. We performed tests for the topologies, node counts and average
degrees given in [LWG08]1. We also compare our results with plain MDS. The results are
given in Table 4.1: In all cases, MDS-MAP(F) significantly improves on [LWG08], and, as
expected, returns dramatically better results than plain MDS. Not surprisingly, results for
best-fit alignment are by a factor of roughly 2 better than results using only three random
anchors.

Effect of network and model parameters

To evaluate the effect of the parameters fixed for the above simulations, we also tested vary-
ing the average degree, and the parameters for deployment and connectivity. The results
are depicted in Figures 4.13 to 4.15. As stated above, the most relevant network parameter
was the average degree (cf. Fig. 4.13): A degree of 7− 8 was sufficient for positioning of
nodes deployed on a grid with perturbation; for degrees higher than 10, quality increases

1 In [LWG08], the authors use three random nodes among a set of landmarks, which is a byproduct of their
algorithm, to align their results with the ground truth. To produce comparable results, we also align the our
results using only three random nodes with a minimum distance of 2.5R among all nodes.

Table 4.1: Comparison to [LWG08] and plain MDS. All MDS-MAP(F) and MDS results are confident
within ±0.05R or better.

topology (Fig.) 4.11(d) 4.11(f) 4.11(k) 4.11(e) 4.11(j) 4.11(c)
nodes 2161 2782 2993 2910 1692 2171
avg. degree 10.4 9.5 9.1 9.5 6.9 10.0
Lederer et al. [LWG08]1 1.88R 0.91R 0.95R 1.11R 2.39R 2.16R
MDS-MAP(F)1 0.80R 0.61R 0.60R 0.83R 1.17R 0.63R
MDS-MAP(F) 0.43R 0.33R 0.35R 0.47R 0.62R 0.35R
MDS 4.35R 1.07R 1.12R 5.97R 1.94R 1.87R
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Figure 4.13: Quality of reconstruction for varying average degree in random networks of 4000 nodes,
deployed uniformly or on a grid with perturbation in the region from Figure 4.11(c). Dashed lines mark
confidence intervals.

only minimally with more connectivity. For uniform deployment, a degree of 10− 12 was
necessary to attain reasonable results. Also, the deployment has a considerable impact on
the quality (cf. Fig. 4.14): Only for comparably strong perturbation, uniform deployments
and deployments on a grid became comparable. The connectivity model in contrast influ-
enced the reconstruction remarkably weak: We varied both connectivity parameters qrel and
rrel between 1 and 0.4, i. e., constructed random graphs between UDGs and 0.16-QUDGs (cf.
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Figure 4.14: Quality of reconstruction for uniform and GwP deployment for varying perturbation pa-
rameter p in random networks of 4000 nodes, deployed in the region from Figure 4.11(c) with average
degrees 10 and 12.
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Figure 4.15: Quality of reconstruction for varying QUDG generation parameters in random networks
of 4000 nodes, deployed on a grid with perturbation in the region from Figure 4.11(c) with average
degrees 10.

Figure 4.15). All graphs could be recovered with comparably low error. We also evaluated
networks of sizes with up to 128000 nodes. With increasing network size, not even the ab-
solute misplacement worsened, e. g., even for 128000 nodes, the average absolute error did
not exceed 0.65R for Figure 4.11(c). Consequently, the relative misplacement went down to
almost zero for large networks. The number of levels in the filtration varied between 5–6
for networks with 1000 nodes and 7–8 for 128000 nodes. This is what one would expect,
since for 2D deployment, the diameter only increases by roughly a factor of 10–12.
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Fig 4.11(c), range-based

Figure 4.16: Comparison of range-based and connectivity-based MDS-MAP(F). For a given σ and dis-
tance d (u, v), the input is distributed ∼ d (u, v)N(1,σ2)
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(a) ground truth (b) misplacement vectors (c) reconstruction

Figure 4.17: Positioning of a network without a clear boundary

Benefit of distance measurements

Although not necessary, MDS-MAP(F) can also be fed with distance measurements instead
of connectivity information only. Figure 4.16 compares the results for connectivity-based
MDS-MAP(F) and the range-based variant. For range-based positioning, the input is nor-
mally distributed around the real distance with increasing variance σ. Apparently, distance
estimations do only facilitate positioning if the variance of errors is less than some 20%. For
higher errors, the results became drastically worse.

Non-uniform deployment and 3D positioning

An important feature of MDS-MAP(F) is the independence of boundary recognition. This
provides new opportunities in two cases where boundary recognition is problematic: First,
in the case that there is no clear boundary, e. g., if the node density decreases smoothly
instead of a sharp cut. Kröller et al. showed that boundary recognition is possible even in
this scenario, redlining areas of non-sufficient density [KFPF06]. Nevertheless, currently
no positioning algorithm is implemented that can actually handle these scenarios. MDS-
MAP(F) in contrast also returns positions in this situation, typically with good results for
dense regions and decreasing quality towards sparse regions. An exemplary positioning is
depicted in Figure 4.17. An even larger improvement is the possibility to run MDS-MAP(F)
on three-dimensional networks. Here, boundary recognition is a largely unsolved problem,
and we are not aware of any algorithm that allows for connectivity-based positioning for
scenarios as complex as the ones depicted in Figure 4.18.
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(a) ground truth (b) MDS-MAP(F) result

(c) ground truth (d) MDS-MAP(F) result

Figure 4.18: 3D positioning: 2800 nodes deployed on a grid with perturbation and connected in a torus
(top) and in a threedimensional cross (bottom), both with average degree 10. Results positioned nodes
with average error of less than 1R.





Chapter 5

Coordination of Data-Harvesting Trees

This chapter deals with the problem of setting up energy and time efficient TDMA-schedules
to gather bulk data from the data field along a given tree at a central repository. It is
motivated by the question whether it is possible for nodes with constant-size memory to
agree on valid and time-optimal schedules by only exchanging one single message to each
of its neighbors in the tree. These restrictions reflect very natural demands: The most
sophisticated schedules for optimum channel utilization are not going to help us, if it is
impossible to efficiently gather and spread the information to set it up! It turned out that
this question is much more puzzling than it appears, even if schedules are not allowed to
contain any concurrent transmissions. This model of total interference is the simplest, but at
the same time the most energy-efficient and most cautious interference model.

This chapter contains protocols and analyses for two different interference models, the
aforementioned model of total interference as well as the k-hop interference model as well
as the case that interference can be ignored. It covers algorithms along the tradeoff between
energy- and time-optimality and an approach to make all of the proposed algorithms robust
to transmission failures in a very strong sense.

5.1 Introduction

Most of today’s WSNs are designed to perform a very simple task compared to the vision
of SmartDust. Instead of in-network processing, many applications still rely on central
instances to gather and evaluate relevant data. Hence, the dominating communication
pattern we find in wireless sensor networks is data gathering and/or aggregation along so-
called query trees towards a network sink. What seems to be discouraging at a first glance,

77
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can as well be interpreted as the first area of application where WSNs can provide valuable
service. Easy deployment without the need for infrastructure and a working mechanism
to gather sensed data, sporadically or regularly, in response to queries, or triggered by
the detection of an event, provides a valuable tool for monitoring tasks of all kinds. In
many of these applications, nodes have to collect bulk data at a central repository. One
example are data-archiving applications that periodically sample snapshots at high rates,
storing or analyzing them centrally outside the network. Another class are so-called data-
harvesting scenarios in which nodes store measured data until from time to time a user
requires access to the data stored in a large number of nodes. In low-power networks, these
applications demand highly optimized communication management in order to keep the
network operable for as long as possible. We thus consider sensor networks where sensor
nodes are distributed over a geographic area and measure values in regular time intervals
as in [TW07a]. At certain times, the stored data must be routed through the network
and collected at a central location, the sink. Since the radio communication dominates
the energy consumption, minimizing the communication costs is crucial to maximize the
lifetime of the sensor network.

There is a number of ways to reduce the power consumption due to communication in
this scenario: First by reducing the amount of data to be transmitted, second by improving
the routing topology and third by avoiding all unnecessary power consumption of the radio.
Although these three issues are not fully independent, we believe that it makes sense to
analyze them separately.

Data reduction: Data reduction is an application-specific problem that is largely orthog-
onal to the other two problems. Data can be compressed using clever representations or
sometimes using small-scale in-network processing, but at the end of the day, there is some
amount of data that has to be transmitted to the base station. However, we assume there is
no further way of data-aggregation, i. e., compression of the data from different sources at
intermediate nodes.

Routing topology: From a purely theoretic point of view, the most promising approach to
minimize energy when collecting data in a wireless, multi-hop sensor network seems to be
the choice of the routing topology, i. e., a specification how many packets to transmit over
each link. This can obviously be modelled as a network flow having all the nodes with data
packets as sources and the sink as the single target, which would allow for the optimization
of different objectives. Maintaining complicated routing topologies on the other hand is a
complex task that would take a lot of communication, time and energy and is uncommon
in real-world networks for a good reason. Even optimizing routing trees, which would also
be an interesting task in this scenario, is more of academic nature: Trees typically used for
data aggregation and harvesting tasks are built using very lightweight protocols. Therefore,
we will assume a given routing tree.

Avoidance of unnecessary power consumption: A third factor in energy consumption is
the energy actually spent to route a packet to the sink. It is lower bounded by the path the
packet takes in the network, but the effective cost of routing a packet is mostly much higher
due to collisions, packet drops due to limited buffer sizes and problems that arise from a
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lack of coordination, namely idle listening, i. e., nodes listening to an idle channel, overhear-
ing, i. e., nodes receiving and decoding messages they are not meant to, and overemitting,
i. e., transmission of packets when the receiver is not ready [DEA06]. Hence, orchestrating
transmissions in data gathering is a realistic way to save energy.

We will thus focus on the problem of avoiding all unnecessary power consumption by the
radio for a fixed routing tree provided by some arbitrary protocol.

As argued in Section 2.1.2, schedule-based protocols outperform contention-based pro-
tocols both in terms of energy- and time-consumption. They do not suffer from energy drain
due to idle listening and do not have to waste energy and time for retransmitting packets
lost due to collisions. Moreover, with standard CSMA-protocols, there is no mechanism to
take each node’s limited memory into account. Nodes with two or more children will typi-
cally receive packets faster than they can route them towards the sink. This leads to packet
drops—and again the need for retransmissions, and can only be prevented using some kind
of flow control with additional protocol overhead.

While scheduled media access provides a perfect orchestration of communication when
data is routed towards the sink, the drawback obviously is the increased protocol overhead
for schedule set-up. Hence, we will analyze protocols to set up schedules with a minimum
of set-up communication. This analysis is conducted for different interference models. Ad-
ditionally, a drawback of fixed schedules is, that they do not leave room for spontaneous
retransmissions if packets are lost due to link failures. We will address this issue with the
analysis of a generic approach to make schedules robust to transmission failures at the cost
of reasonable small additional memory and time consumption.

5.1.1 Related Work

There is a plethora of algorithms for finding topologies (or routing information) for the data
gathering problem in sensor networks. There are several goals for optimization, for example
throughput, latency, reliability, security and energy consumption, the last one being the
most important in sensor networks. Almost all of these different approaches construct one
or sometimes several routing trees.

There has been previous work on minimizing the time for data gathering. In [BGK+06] a
problem similar to ours is studied, a 4-approximation algorithm is given and NP-hardness of
the problem shown. A problem with variable release times is studied in [BKMSS06]. Unlike
this previous work, however, we focus on distributed algorithms and take set-up cost into
account. Also, we do not concentrate so much on time optimality but on energy optimality.

One of the very few contention-based MAC protocols that take advantage of the tree
topologies present in data-archiving systems is [LKR04]. The wake-up times of nodes are
staggered on paths towards the sink, which reduces latency. Measures are employed to
reduce interference among packets travelling along the same paths. Additionally, special
“More-to-Send” packets are used to further synchronize wake-up times and thus increase
throughput. However, this protocol is designed for very low data rates. It is not energy-
optimal and there are no special mechanisms to reduce congestion and ensure fairness.
Flexible Power Scheduling (FPS) is described in [HDB04]. In FPS parents are responsible
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for assigning time slots to their children. FPS reduces contention but does not guarantee
collision-free communication. Therefore, an underlying MAC layer is still required. Fairness
among children in different branches is not ensured. MPS (Multi-Flow Power Scheduling)
and HPS (Hybrid Power Scheduling) are enhancements on FPS introduced in [YAGS06].
MPS is closely related to the k-hop interference protocol in Section 5.5, but performance is
only evaluated experimentally and there is no theoretical analysis of the protocols. Also, the
interference model is not described explicitly.

The authors of [TW07b] address the problem of congestion, fairness and robustness
during the transport of high volumes of sampled data. They use the total interference model
(cf. Section 5.4). Their approach is based on a slot distribution scheme. Nodes that have
no more packets to send can pass their slots back to their parent. Every second slot that
a node receives from its children is passed on to its parent. This aims at distributing slots
more fairly: Nodes with high loads get more slots. In [TW07c] a further refinement of slot
distribution strategies are developed. But even with these refinements, the channel usage is
still fairly low and decreases with growing network size. In the same paper, there is another
scheme (similar to ours in Section 5.4) which, however, leads to unlimited buffer size and
the control message overhead is not analyzed.

DOZER ([BvRW07]) is an approach that tries to solve the problems of medium access,
tree construction and scheduling together. The authors employ a local TDMA scheme which
reduces requirements on clock synchronization but does not ensure fairness. Collisions are
reduced by letting schedules of interfering node pairs “drift apart” through randomization.
This approach is designed for scenarios with very low data rates but causes problems when
there are higher volumes of data to deliver. In contrast to these approaches, we focus on a
detailed theoretical analysis of throughput and protocol overhead. Our approaches are also
designed for arbitrarily large networks and high data load.

5.2 Problem Statement

The problem addressed in the remainder of this chapter can be formalized as follows: We
assume that we are running a sensor network consisting of a set of nodes V , one node r
serving as a sink that is connected to some infrastructure. Each of the other nodes has an
individual number π (v) of own data packets to transmit to the sink. Within the network,
a spanning tree T , rooted at the sink r is provided by some standard protocol, i. e., every
node knows its parent and a list of its children. Throughout the following sections, we will
assume that every node (except the sink, for which we assume π (r) = 0) has at least one
data packet. We will shortcut the packet count

π
�

V ′� :=
∑

v∈V ′
π (v) and N := π (V ) (5.1)
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We will also write τ (u) := hT (u)π (u) for the number of transmissions induced by any
node’s packets and shortcut

τ
�

V ′� :=
∑

v∈V ′
τ (v) . (5.2)

Now, we consider data gathering protocols that divide into the following two phases:

Set-up phase: In order to set up a schedule, nodes can exchange packets with their direct
neighbors in the tree, i. e., with their parent and their children. We do not assume a specific
medium access to be used during this stage.

Collecting phase: With the parameters established in the set-up phase, every single data
packet must be routed to the sink using slotted media access only. We assume synchroniza-
tion by any external protocol.

Following the considerations from above, we restrict set-up communication and node
capabilities to the following protocol requirements:

Definition 5.1 (Constant Communication Overhead) A data gathering protocol meets the
requirement of constant communication overhead (CCO) if

1. During the set-up phase, every node sends at most one single packet of size O(log N) bits
to each of its neighbors in the tree T .

2. During the collection phase, no protocol information is exchanged.

3. During the collection phase, no node has to buffer more than a constant number of data
packets from other nodes.

Within the bounds of CCO, we are only considering deterministic protocols that are
energy-optimal, i. e., protocols that are provably collision-free and that do not involve idle
listening. As a secondary criterion, we optimize the collection time, i. e., the time until all
packets arrive at the sink. While energy-optimality depends on the routing tree only, time-
optimality is also a question of the interference model telling whether or not two transmis-
sions can be performed concurrently.

Definition 5.2 (Time optimality) For a given interference model, a protocol is time optimal
if the collection time is minimal among all possible schedules, without any restriction to set-up
communication or computation. This minimum is denoted by |SOPT|. A protocol is f -time-
approximative if the collection time exceeds the minimum by less than a factor of f .

We can narrow the structure of protocols complying with the limits of CCO by the obser-
vation, that every compliant protocol can be seen as first an aggregation towards the sink
and second a flooding of schedule parameters:

Observation 5.3 Every protocol that complies with the requirements of CCO and collects all
data can be set up using one convergecast and one broadcast along the tree T , i. e., the set-up
must always be performed as follows:
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1. Leaf nodes send a packet to their parents. Each inner node waits until it received packets
from all its children before sending a packet to its parent (convergecast).

2. When the sink received packets from all its children, it sends a packet to all children.
Each other node waits until it received a packet from its parent before sending packets to
its children (broadcast).

Proof. It is a necessary condition for all protocols that the sink knows the number of packets
after the set-up phase. This implies that every node has to receive a packet from each of its
children before sending a packet to its parent. But assume that any protocol, there arises
the situation in which a node u decides to transmit to any of its children before it receives a
message from its parent. Obviously, the outcome of this protocol does not change if u delays
this message until it received the message from its parent. �

5.3 Scheduling in Absence of Interference

The first situation we consider data gathering in is the absence of interference between
concurrent transmissions. This most optimistic model not only sets natural lower bounds on
the limits of any other interference model, but could also be used for hybrid MAC access:
Setting up a TDMA-schedule for transmission times can be used for flow control, i. e., to
ensure that no node has to receive more data per time unit then it can transmit. Within
larger time slots than in pure TDMA-schedules, each transmissions can then be performed
using a CSMA-based medium access.

The only lower bounds that hold even in the absence of interference and thus in any
interference model are the following:

Observation 5.4 In any interference model that does not allow a node to be part of more than
one transmission at a time, optimal collection time is

|SOPT|=max
§

N , max
c∈V−r

�

2πT (v)−π (v)	
ª

. (5.3)

Proof. A lower bound of N trivially follows from the fact that the sink needs one time slot for
the reception of each packet. A lower bound of maxc∈V−r

�

2πT (v)−π (v)	 follows from
the fact that every node v except the sink has to receive all packets from its descendants
and transmit them to its parent—except for its own packets which need no reception. We
combine the proof that this bound is tight with the proof of the following proposition. �

Indeed, it is possible to agree on a time-optimal schedule within the bounds of constant
communication overhead. For convenience, we define for a, b, d ∈ N0 and m ∈ N [a, b]dm :=
{i ∈ [a, b] : i = d mod m}, e. g., the set of odd numbers between 3 and 10 can be denoted
as [3,10]12.
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(b) No single node has πT (·)> N/2. The sink’s children form
two groups for transmissions to sink in odd or even time slot,
one child u uses the last even and the first odd slots.

Figure 5.1: Optimal slot assignments in the absence of interference

Proposition 5.5 There is a time-optimal protocol meeting the requirements of CCO in the
absence of interference.

Proof. To agree on a time-optimal schedule, it is sufficient to let every node u learn the
number of packets to receive from each of its children c, πT (c) as well as the number of
packets that originate at each child, π (c), during the convergecast. Now, the sink has to
distinguish the two cases according to Observation 5.4. If one of the sink’s neighbors is a
bottleneck, i. e., if N ≤ 2πT (u)−π (u) for some child u of the sink, the sink can safely assign
every other child a part of the time interval [1, 2(πT (u)−π (u))] to transmit in slots with
even numbers. These children themselves assign parts of this interval to their children, such
that they send in slots with odd numbers and so on. For u, the situation is slightly different.
It assigns its children parts of the above interval, such that they send in slots with even
numbers and may itself send to the sink in slots with odd numbers within that interval and
in all the slots in the interval [2(πT (u)−π (u))+1,2πT (u)−π (u)]. By construction, every
node but u and the sink only receives in odd and transmits in even slots or vice versa, and u
only breaks this pattern for the last π (u) transmissions which do not overlap with any other
transmissions. This situation is depicted in Figure 5.1(a).

If, on the other hand the time to complete is bounded by the number of packets, i. e., if
N > 2πT (u)−π (u) for any child u ∈ CT (r), it is sufficient to assure that in every slot there is
some node transmitting to the sink. Here, we can exploit that in this case, πT (u)< N/2 for
all neighbors of the sink. It is thus possible to pick any of the sink’s children u and arrange
the other children into two groups, Ceven and Codd such that

∑

c∈Ceven/odd
πT (c)≤ N/2.

Now, nodes in Ceven are allowed to send in slots [1, 2
∑

c∈C1
πT (c)]02, nodes in Codd send

in slots [N − 2
∑

c∈C2
πT (c) + 1, N]12 leaving enough slots for u that pairwise have distance
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Ceven Codd

u

Figure 5.2: Slot distribution for the sink’s children

at least 2 as depicted in Figure 5.2. Again, every node can divide the intervals to send in
among its children to send in, swapping odd and even, and leaving some slots at the end
unassigned. Since in both cases every node is assigned at most two intervals to send in
either even, odd, or all slots of these intervals, packets of O(log N) bits are sufficient. The
resulting schedule is depicted in Figure 5.1(b). �

5.4 Scheduling for Total Interference

Going to the other extreme, we turn our attention to the model of total interference, in
which no two nodes are allowed to transmit concurrently.

Definition 5.6 (Total interference) Under total interference, a transmission between a pair
of nodes is successful if and only if there is no concurrent transmission by any node in the whole
network.

Total interference is the most pessimistic interference model, but at the same time a
reasonable choice for energy-efficient scheduling: Only in the absolute absence of concur-
rent transmissions, lower bounds for energy consumption can be met in the strongest sense:
Since apart from background noise there is no interference to compensate for, even the
power level for transmissions can be chosen minimally. Additionally, solutions for this most
restrictive model are always applicable under any other model.

5.4.1 Lower Bounds and Infeasibility

Observation 5.7 Under total interference, optimal time to complete is

|SOPT|=
∑

v∈V

τ (v) . (5.4)

Proof. Follows trivially from the definition of τ (v). �

Apparently, it is much easier to find a time optimal schedule for total interference than
for the absence of interference, disregarding the restrictions of CCO. To name just one way
to set up such a schedule, we can number the packets and hand one packet after another
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down to the sink. Unfortunately, such a schedule cannot be set up within the restrictions of
CCO.

Proposition 5.8 There is no time-optimal protocol meeting the requirements of CCO for total
interference in which each packet is immediately passed to the sink once it has started from its
originating node.

Proof. During the set-up phase, the sink has only received kδT (r) log N bits for some con-
stant k. For every packet arriving at r, the height of the originating node can be determined
by the time since the arrival of the preceding packet. As r is only allowed to be awake when
packets arrive, it must know the times of arrival in advance. This implicates knowing how
many packets to receive from each height. However, even if we regard trees as equivalent
that have the same number of packets at any height, i. e., for

T ∼ T ′ :⇔ ∑

{v:hT (v)=h}
π (v) =

∑

{v:hT ′ (v)=h}
π (v) for all h≥ 0 ,

there is an exponential number of equivalence classes of trees even restricted to those with
a maximum degree of 2, which can be written as sequences of positive integers with sum
N , such that the first number is at most 2 and each number is at most twice its predecessor.
Two trees from different equivalence classes demand for different behavior of r, but r can
distinguish at most

e2k log N = N2k

different situations after set-up, which is polynomial. �

There seems to be plenty of room for other solutions, but the problem remains that in any
protocol, there is an exponential number of possible subtrees which is indistinguishable from
an exponential number of structurally different subtrees. All these subtrees have to behave
identically, being idle, performing an “inner” transmission or performing a transmission by
the subtree’s root to its parent at the same time.

We thus conjecture that there is no way to agree on optimal schedules at all.

Conjecture 5.9 (Infeasability of CCO for total interference) There is no energy- and time-
optimal protocol meeting the requirements of CCO for total interference.

For total interference, we will thus show how good protocols complying with the restrictions
of CCO can perform and how practicable relaxations of the CCO requirements allow for
better performance.

5.4.2 Protocols with Constant Communication Overhead

Within the restrictions of CCO, set-up messages can contain at most a constant number of
counters for numbers up to N . They can be used for different approximations with respect
to the height of the tree:

Proposition 5.10 For any constant d ∈ N, there is a protocol for total interference that meets
the requirements of CCO and has time approximation factor max(1, hT/d).
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Figure 5.3: Start slots and virtual start slots (in parentheses) for d = 2

Proof. We will show that passing a constant number of counters during the convergecast
and broadcast is sufficient to gather all packets from nodes v with hT (v) < d in optimal
time and all other packets in time hT per packet, yielding the claimed approximation. To
this extent, every node u learns how many packets to relay from the d − 1 higher levels
hT (u)+1 to hT (u)+d−1 and how many packets to relay from levels d and higher together.
Denoting u’s descendants in levels i to j as D j

i (u) and shortcutting Di(u) := Di
i(u), after the

convergecast, every node u knows π(DhT (u)+i(u)) for i = 0, . . . , d − 1 and π(D∞hT (u)+d(u)).
With one additional counter it is possible to let the sink learn the height of the tree.

The sink can now determine time slots t1 to td as t1 = 1 and t i = t i−1+(i−1)π(Di−1(r)).
Also, it is obvious how to use the broadcast to let every node u know its height hT (u)
and how many packets in its subtree come from levels hT (u) to d − 1 (if hT (u) ≤ d − 1)
and how many packets come from levels d and higher, i. e., every node u learns during
broadcast π(Di(u)) for i = hT (u), . . . , d − 1 and π(D∞d (u)). The idea now is to start packets
in level 1 ≤ i < d in slots t i + ki, 0 ≤ k < π(Di(r)) and pass them directly to the sink.
To this extend, every node u with hT (u) < d learns times t i(u) when the first packet in
its subtree starts in level i: The sink assigns to each of its children c j ∈ C(r) the slots
t i(c j) := t i+ i ·∑ j′< j π(Di(c j′)), which analogously assign the starting slots to their children.
Knowing these times, every node v knows when to start its own packets, namely in time
slots thT (v) + khT (v), 0 ≤ k < π (v), and when to receive packets to relay started at a level
hT (v)< i < d, namely in slots t i + (i− hT − 1) + ki, 0≤ k < Di(v).

The idea for packets from levels d and above is starting them “virtually” at times td+khT ,
0 ≤ k < D∞d (r) from height hT in the following sense: If a packet originating at some node
u with hT (u) ≥ d has the virtual start time td + khT for some k, the time slots td + khT to
td+khT +hT −hT (u) are unused, and the packet really starts at time td+khT +hT −hT (u).
This way, it is sufficient to number packets from levels d and higher in preorder and let
every node u know the lowest number in its subtree, p(u), which is easy given that every
node u knows π(D∞d (u)). Then, every node knows the virtual starting slots for all these
nodes, namely td + khT to td + khT for p(u)−1≤ k < (p(u)+π(D∞d (u))−1. It can use the



5.4 Scheduling for Total Interference 87

first π (u) for own packets if hT (u)≥ d, and has to relay packets from the the following. �

We will in the following refer to this method to gather packets from nodes with hT (·)< d
in optimal time and other packets in time hT per packet as d-LevelOrderCollect. An example
for d = 2 is depicted in Figure 5.3. Every node is annotated with the slot in which it releases
its single packet, for nodes with height hT (·) ≥ d also the virtual start slot is given. All
packets are handed down to the sink directly. The following corollary will be useful for
k-hop interference to be discussed later in this chapter.

Corollary 5.11 There is a time-optimal protocol for total interference under the restrictions of
CCO for trees with heights bounded by a constant.

It is possible to show an even better approximation for uniform packet counts:

Proposition 5.12 If all nodes have the same number of packets, i. e., π ≡ c, d-LevelOrderCol-
lect has a time approximation factor of max{1,2

p

n/d}.
Proof. Without loss of generality, we assume π ≡ 1. Now fix some d. If for some tree T ,
hT <

p
nd or hT < d, the claim follows from Proposition 5.10. We thus consider only the

case that hT >
p

nd and hT > d.
The worst-case scenario is a path of length hT plus some additional nodes at height d,

i. e., N − h children of the (d − 1)th node on the path. d-LevelOrderCollect here needs time

|Sd-LOC|= (d − 1) · d/2+ (n− d + 1)hT < nhT − (d − 1) · (hT − d/2)< nhT (5.5)

to complete collection. The optimal time is

|SOPT|= hT (hT + 1)/2+ (n− hT )d . (5.6)

Hence, the approximation ratio is

|Sd-LOC|
|SOPT| <

nhT

hT (hT + 1)/2+ (n− hT )d
<

nhT

h2
T/2

. (5.7)

And we get with hT >
p

nd

|Sd-LOC|
|SOPT| ≤

nhT

hT
p

nd/2
= 2
p

n/d . (5.8)

�

For the standard scenario where nodes are deployed sufficiently dense and more or less
uniformly, this very simple protocol is only a constant factor away from being optimal if all
nodes within some range of the sink have to deliver a similar number of packets to the sink:

Proposition 5.13 For query trees with Θ(`) packets in every level (and hence a height in
Θ(
p

n)), d-LevelOrderCollect is O (1)-time-approximative for any d.
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Proof. Let π− : min1≤`≤hT
π
�

D`(r)
�

and π+ : max1≤`≤hT
π
�

D`(r)
�

. Then, |SOPT| is bounded
by

|SOPT| ≥ π−
hT
∑

`=1

`2 ≥ π−h3
T/3 .

d-LevelOrderCollect in turn uses (even for d = 1)

|Sd-LOC| ≤ π+hT

hT
∑

`=1

`≤ π+hT

�

h2
T + hT

�

/2≤ 2π+h3
T ,

i. e., is 6π+/π−-time-approximative. �

Until now, every node’s knowledge of the tree has been restricted to the knowledge of
its parent and children. However, many protocols establishing a routing tree let nodes also
know their distance to the sink, i. e., their height. This can be used to use a constant number
of counters more cleverly:

Proposition 5.14 If every node v knows its height hT (v), for every constant d ∈ N and m >
1 there is a protocol meeting the requirements of CCO that has time-approximation factor
max(m1/d , hT/m).

Proof. We set a := m1/d . With d + 1 counters, it is possible to let each node v know the

numbers π(Dbaic
0 (v)) for i = 1, . . . , d and π (D(v)). Now, using the same idea as in d-

LevelOrderCollect, all packets from the levels dai−1e to baic are accounted for with a virtual
height of baic. This way, a packets from a node u with hT ≤ badc= m accounts for a number
of slots that exceeds the optimum by at most a factor of baic/dai+1e ≤ a = m1/d . Packets
from levels higher than m have, as in d-LevelOrderCollect, virtual height hT , accounting for
at most hT/m times the optimum time. �

In the case that the height of tree is known, this can be used to set m = hT , yielding a
h1/d

T -time-approximation.

5.4.3 Time-Optimality with Increased Packet Size

Relaxing the requirement of not sending any routing information during the collection
phase, there is a way to achieve time-optimality with ld(hT ) additional bits per packet.

Theorem 5.15 There is a protocol that completes collection in optimal time and meets the
requirements 1 and 3 of CCO, but in which every node v sends O(|πT (v) |+ |D(v)| log hT ) bits
of routing information in the collection stage.

Proof. We will show how to set up and run a schedule, in which the nodes start their packets
in pre-order, which then are routed directly to the sink. During set-up, all a node has to learn
is the slot for its first transmission as well as its height, which can obviously be achieved
using a constant number of counters: During the convergecast, every node u learns the
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number of packets in each child c’s subtree as well as the number of transmissions necessary
to bring them to c, i. e., π(D(c)) and τ(D(c))− hT (c) ·π(D(c)). This is trivial if c is a leaf,
where π(D(c)) = π (c) and τ(D(c))− hT (c) ·π(D(c)) = 0. Every inner node v simply sets
π(D(v)) =

∑

c∈C(v)π(D(c)) +π (v) and

τ (D(v))−hT (v)·π (D(v)) =
∑

c∈C(v)






τ (D(c))− hT (c) ·π (D(c)) +

∑

c∈C(v)

π (D(c))






. (5.9)

Then, during the broadcast, every node v learns its height—and hence the τ(D(c)) for all
its children—and its starting slot: The sink assigns itself the imaginary slot 1 and every
node u with a first transmission in slot tu now assigns its first child c1the starting slots
tu+π(u)hT (u), its second child the starting slot tu+π(u)hT (u) +τ(D(c1)) and so on. This
provides enough information to start packets timely, but nodes do not know when to receive
and relay packets. All knowledge we use in the following is, that if a node u has a child,
it has to relay its first packet hT (u) time slots after it released its last own packet. With
this information, we extend data packets during collection phase with the information of
how long nodes relaying this packet have to wait for the next packet to relay—this way
we ensure that at any time, all nodes that have to relay the next packet know its arrival in
advance. This is true when the first packet starts, since it is always a packet from the sink’s
first neighbor to the sink. Whenever a packet starts at some node v having more packets,
the node simply adds the information that the next packet will follow hT (v) slots later. If the
node starting the packet has no more packets to send, but at least one child, it can announce
the next packet to follow in hT (v) + 1 slots. The interesting case is that a leaf sent its last
packet. In this case, the leaf starting the packet cannot announce the next packet. It hence
flags the packet to have an unknown next-packet delay. Every node v receiving a packet
without a next-packet delay for at most the (|C(v)| − 1)th time changes it to hT (v) + 1. In
this case, v is the first node on the packet’s way, for which the packet is not the last one to
relay: The next packet to relay will come from one of v’s children. Using a constant number
of bits to encode an unknown packet delay and a repeated packet delay (i. e., a more-to-
send flag), only the last packet of each node has to carry O(log hT ) bits routing information
on its way. �

5.5 Scheduling for Hop Interference

In this section, we consider a slightly less pessimistic model of interference, which allows
for concurrent transmissions unless they are close in terms of graph distance.

Definition 5.16 (k-hop interference) Under k-hop interference, a transmission between a
pair of nodes (u, v) is successful if and only if there is no concurrent transmission by any node
within v’s k-hop neighborhood N k

G (v).
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This model is a reasonable, yet a cautious approximation of interference in dense networks,
in which Euclidean distance and hop-distance closely correlate. Quite typically, routing trees
for data gathering or aggregation in sensor networks are set up using some kind of request
flooding, i. e., the routes between a node and the sink are shortest paths (in graph distance).
This is not only a very lightweight, robust protocol, but also guarantees that data travels on
short routes, which reduces the risk of packet loss. In such trees, a transmission (u, v) is
always successful if u is the only active sender among all nodes with |hT (v)− hT (u)| ≤ k.
We call this property of a rooted tree k-layer bounded interference:

Definition 5.17 (k-layer bounded interference) A tree has k-layer bounded interference
if a transmission (u, pT (u)) is successful if there is no concurrent transmission by any node v
with |hT (v)− hT (pT (u))| ≤ k.

5.5.1 k-LS

Proposition 5.18 In the k-hop interference model, there is a protocol meeting the require-
ments of CCO for trees with k-layer interference that is time approximative within a factor of
k+ 2/b(k+ 1)/2c ≤ 4.

Proof. The key idea of k-LS is to set up two collection phases that are performed successively,
similar to d-LevelOrderCollect, but in reversed order: In the first phase data from notes with
height hT (·) > k + 2 is “pipelined” towards the sink ending in a state where no node v
having a height of more than k+2 has any packets left. In more detail, the sink’s neighbors
pass packets to the sink every k + 2 slots starting with the first slot and sending one after
another. Whenever a node transmits a packet, it receives a packet in the next slot from one
of its children as long as its children have more packets. Every node v passes π(D∞k+3(v))
packets, i. e., as many packets as there are in its subtree in height k+ 3 and above. In the
second phase, data is collected from the remaining nodes according to Proposition 5.10:
Setting d := k+ 2, it is possible to gather all remaining packets in time τ(Dk+2

1 (r)) (which
was optimal for total interference).

During the convergecast, each node v learns how many packets to relay from nodes with
heights hT (v), . . . , hT (v) + k+ 2 and from more distant levels. Obviously, a message size of
(k + 3)ldN bits is sufficient to achieve this. In the broadcast phase, each node v learns its
height h(v) and a starting slot ts(v) to be described later. Given its height, a node knows
how many packets to relay that do originate in nodes u 6∈ Dk+2

1 (r), i. e., π
�

D∞k+3(r)
�

. The
starting slot now is assigned as follows: The sink assigns itself the (imaginary) starting slot
ts(r) = 0, and along with the height, every node v assigns start slots

ts(ci) := ts(v) + 1+ (k+ 2) · ∑
0< j<i

π
�

D∞k+3(c j)
�

(5.10)

to each of its children ci . In the pipelining phase, each node v now transmits in slots
ts(v) + i(k + 2), i = 0, . . . ,π(D∞k+3(v)). It receives a packet in the following slot the first
∑

c∈C(v)π(D
∞
k+3(c)) times. This process is depicted in Figure 5.4(a) for k = 3 and π ≡ 1.

This part of the collection phase completes after (k+ 2)π(D∞k+3(r)) + 1 slots. Nevertheless,
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Figure 5.4: The two phases of k-LS for k = 3

for the analysis, we can ignore the last slot, in which a last packet is sent from a node with
height k + 3, since this transmission can overlap with the first transmission of the second
part from a neighbor of the sink and the sink. After completion, no node with height more
than k+ 2 has any packets left and each node v in Dk+2

1 (r) has exactly π (v) packets as in
the beginning.

For the second phase of collection, nodes in Dk+2
1 (r) additionally receive the starting

slots according to Proposition 5.10 (with d = k + 2) and the number of packets that are
pipelined in the first phase, π(D∞k+3(r)) during set-up. With a delay of (k + 2)π(D∞k+3(r))
slots, nodes in Dk+2

1 (r) now are collected at the sink in τ(Dk+2
1 (r)) slots. Starting slots for

this phase are depicted in Figure 5.4(b)
Again, since there is no idle listening, this collection scheme is energy optimal. To show

an approximation factor of (k + 2)/b(k + 1)/2c, we observe that for k′ := b(k + 1)/2c, no
two nodes in Dk′

1 (r) can transmit at the same time to their parent in any valid schedule,
because for any u, v ∈ Dk′

1 (r), dG
�

u, pT (v)
� ≤ k. Thus, in an optimal schedule, each packet

originating at a node with height of more than k′ accounts for at least those k′ slots where
it is the only one transmitted by a node with height of k′ or less in any valid schedule.
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Similarly, every packet originating at a node v ∈ Dk′
1 (r) accounts for at least hT (v) slots. We

hence get a lower bound for the completion of an optimal schedule of

|SOPT| ≥
∑

v∈V

π (v) ·min
�

hT (v), b(k+ 1)/2c� . (5.11)

The collection phase of k-LS in turn uses k+ 2 slots for every node with height more than
k+ 2 in the pipelining part and hT (v) slots for every other node. This can be written as

|Sk-LS|=
∑

v∈V

π (v) ·min
�

hT (v), k+ 2
�

, (5.12)

which directly proves the approximation of (k+ 2)/b(k+ 1)/2c ≤ 4. �

Applying very similar arguments as above, we can observe that k-LS completes collection
in optimal time if the first b(k+ 3)/2c levels of t form a single path. Second, if T is a hop-
shortest path tree in the sink’s b(k + 3)/2c-hop neighborhood, k-LS is time approximative
not only compared to an optimal schedule of T , but for among all schedules of all spanning
trees:

Corollary 5.19 The schedule produced by k-LS is optimal for the given tree if Db(k+3)/2c
0 (r)

forms a path in T and time approximative within a factor of k+2
b(k+1)/2c among all schedules of

all spanning trees of G if hT (v) = dG(v, r) for all v with dG(v, r)≤ b(k+ 1)/2c.
Proof. In the case that Db(k+3)/2c

0 (r) forms a path, no two nodes from Dk+2
1 (r) can transmit

at the same time. Hence, an optimal schedule takes time at least

|SOPT| ≥
∑

v∈V

π (v) ·min
�

hT (v), k+ 2
�

= |Sk-LS| . (5.13)

In the case that hT (v) = dG(v, r) for all v with dG(v, r) ≤ b(k + 1)/2c, these nodes are
gathered in optimal time by k-LS. All other nodes account for at most k + 2 slots in k-LS,
but have distance at least b(k + 1)/2c to r in any spanning tree, which directly proves the
approximation. �

5.5.2 ko/ki-hop Interference

k-hop interference can be considered an oversimplification of interference even in dense
networks, and we relied on the assumption that concurrent senders within a receiver’s k-
hop neighborhood jams reception when proving the time approximation. However, the
results can very naturally be generalized to a more realistic model quantifying (combinato-
rial) locality bounds for interference, ko and ki, similarly as QUDG generalize UDG. Here, ko
denotes a hop-distance around any receiver, outside of which it is always harmless to trans-
mit concurrently and ki denotes a hop-distance containing only nodes whose concurrent
transmission positively will make reception impossible. Nodes at a hop-distance between ki
and ko may or may not interfere with reception.
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Definition 5.20 (ko/ki-hop interference) In the ko/ki-hop interference model, a transmis-
sion between a pair of nodes (u, v) is successful if there is no concurrent transmission by any
node within v’s ko-hop neighborhood N ko

G (v). It is not successful if there is a concurrent trans-

mission by any node within v’s ki-hop neighborhood N ki
G (v).

In a straightforward manner, the above results can be generalized to this model, e. g., prov-
ing a time approximation of ko/b(ki+ 1)/2c.

5.6 Making Schedules Robust

An extremely important issue especially for slotted communication is the robustness to
transmission failures. While more or less spontaneous contention-based medium access
allows for retransmissions, schedule-based protocols need to take transmission failures into
account during set-up. Additionally, in order to set up transmission schedules that even-
tually deliver all data packets to the sink, retransmissions cannot be scheduled on a “per
transmission”-base. To ensure that with high probability every single transmission is suc-
cessfull, nodes would have to budget for at least a number of retransmissions that is loga-
rithmic in the number of packets in the network. As we will see, there is a tradeoff between
the number of transmission attempts allowed per transmission and the buffer size of nodes:

We will thus focus on slightly less restricted nodes that are able to buffer a number of
data packets that can be logarithmic in the number N of packets in the whole network.
Under this slightly relaxed node model, we will analyze a generic approach that basically
allows us to make all of the protocols proposed in Sections 5.3, 5.4 and 5.5 robust to trans-
mission failures. This analysis aims at a delivery of all packets with high probability, i. e.,
with probability higher than 1− 1/N .

5.6.1 Preliminaries

We make the following assumptions, which are obviously necessary for the setup of a pro-
tocol with guaranteed delivery.

1. Successful transmissions are acknowledged using some kind of ACK packet.

2. For every link (u, pT (u)) ∈ T , a lower bound α(u) on the reception probability (in-
cluding the feedback) is known.

3. Reception probabilities are independent for every transmission.

For the generic approach, we assume that we are able to agree on a non robust schedule S
with the following invariant:

Invariant 5.21 At any time, the number of packets received by any node must not exceed the
number of packets sent by more than one. The number of packets sent must not exceed the
number of packets received by more than one unless there are no more packets to receive.
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This invariant basically states that from a node’s point of view (ignoring idle slots), the
schedule starts with either the transmission or the reception of a packet, followed by an
alternating sequence of transmissions and receptions, and ends with π (u) transmissions.
This is the case in all of the protocols defined above. With respect to a protocol P, we denote
by δP(u, t) the tangled reception degree of a node v at time t, i. e., the number of nodes that
u receives data packets before and after t. We then denote by δP(u) the maximum value
of δP(u, t) for any t and by ∆P the maximum value of δP(u) for any u. As an example,
the tangled reception degree of d-LevelOrderCollect for d = 1 is ∆P = 1. Here, reception of
packets from different children does not interleave. For the other protocols, all childs can
repeatedly become active in their natural order. In this case, we have the maximum tangled
reception degree of ∆P =∆T − 1.

5.6.2 Generic description

Roughly spoken, robust gathering can be realized using a combination of scheduled retrans-
missions that on average are sufficient not to fall far behind schedule, sufficient buffer sizes,
and some reserved extra time to deplete buffers in the end. More precisely, the protocol we
propose, RobustGathering is defined by two parameters, the aforementioned γ and a buffer
size parameter β , such that each node u is able to buffer β · (δP(u) + 1) packets. Then, the
schedule is set up as before with two slight differences: First, the schedule budgets slightly
more than π (u) packets per node u, namely π (u) + β · (δP(u) + 2). Second, the schedule
allocates some t(u) ≥ dγ/α(u)e successive time slots for every scheduled transmission for
some γ ≥ 2. If, for example, reception probability is higher than 1/2 for every link, i. e.,
α(u) ≥ 1/2 for all u, one very simple way to realize this would be to reserve d2γe time
slots per transmission. Providing solutions that take individual reception probabilities into
account, however, depends on the interference and the respective protocol. We will discuss
this issue after a description of the generic protocol. In the following, we will call the t(u)
time slots reserved per transmission as a transmission round.

With the schedule set up, the buffers and multiple time slots per transmission are used
as follows:

– Buffers are initially empty. When a packet is added to a buffer, it is unmarked or
“fresh”. They will later be marked as “pending”.

– At the begin of each transmission round, the sending node marks one of the unmarked
packets in its buffer as pending. If there is no unmarked packet, it first adds one of its
own packets to the buffer.

– During a transmission round, the sending node can make up to t(u) transmission
attempts, but may only transmit packets marked as pending. It removes successfully
transmitted packets from its buffer. The listening node adds received packets to its
buffer. If a packet is received for a second time (which can happen due to lost ACKs),
the second reception is ignored, but acknowledged.

As stated above, there is a tradeoff between the parameter β describing the buffer size
and the parameter γ describing the allocation of time slots per transmission.
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Figure 5.5: Modeling buffer utilization as Markov process

Theorem 5.22 If βγ≥ 3ldN, with high probability, RGP delivers all packets.

Before we prove this claim, we have to prove the following lemma:

Lemma 5.23 If βγ≥ 3ldN, with high probability, no buffer of any node u ever contains more
than β packets marked as pending and more than βδP(u) unmarked packets.

Proof (Lemma 5.23). First, we observe that in a transmission round, the number of nodes
marked as pending at a sender u can increase by at most one. This happens if all t(u)
transmission attempts fail. It decreases by at least one if two or more transmission attempts
are successful. The probability p+ of the former case is

p+ = (1−α(u))t(u) ≤ (1−α(u))γ/α(u) . (5.14)

The probability of a decreasing number of marked nodes is

p− = 1−p+−t(u)·α(u)·(1−α(u))t(u)−1 ≥ 1−(1−α(u))γ/α(u)−γ·(1−α(u))γ/α(u)−1 , (5.15)

unless there were no pending packets at the begin of the transmission phase. In this case, it
is zero.

Modeling the buffer utilization as a finite Markov chain as depicted in Figure 5.5, we get
a probability of less than (p+/p−)b to be in a state where the buffer contains more than b
pending packets by steady state analysis. The probability to reach such a state in any node
in any transmission phase is thus less than

P [buffer overflow]≤ 1−
�

1− �p+/p−
�b
�N2

. (5.16)

From Equations 5.14 and 5.15, we get the following (see claim A.1 in the appendix)

p+

p− ≤
(1−α(u))γ/α(u)

1− (1−α(u))γ/α(u)− γ · (1−α(u))γ/α(u)−1
≤ e−γ/

p
2 , (5.17)

and for βγ≥ 3ldN ≥ 3
p

2 ln N , we have

P [buffer overflow]≤ 1−
�

1− e−bγ/
p

2
�N2

≤ 1− �1− 1/N3
�N2

< 1/N . (5.18)
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Second, the number of unmarked packets in a node u’s buffer can never exceed βδP(u):
Looking at a node u, we focus on the number of packets in its children’s buffers marked as
pending for transmission and the number of unmarked packets in u’s own buffer. During a
transmission round of any child c to u and the subsequent transmission phase1 from u to
p (u), there is only one situation in which this sum increases, namely if all transmissions
from the child to u fail and if u has no unmarked packet to mark as pending. But with
high probability, the number of pending packets in any node’s buffer stays below b. Hence,
we can show that the sum (of unmarked packets in u’s buffer and all pending packet in
its children’s buffers) never exceeds βδP(t, u) in the following sense: If the sum increases,
there are no unmarked packets in u’s buffer. Additionally, we do only have to consider
children that had transmission phases in the past, since only those nodes can have pending
packets, and that will have transmissions in the future, because from u’s point of view, only
pending packets of those nodes can lead to buffer utilization. This exactly yields the bound
of βδP(t, u) for the sum of packets pending for transmission to u and unmarked packets in
u’s buffer if at time t this sum increases. Hence, a buffer size of βδP(u) for unmarked plus
β for unmarked packets is sufficient with high probability. �

We are now able to prove the main theorem:
Proof (Theorem 5.22). Before the additional β · (δP(u) + 2) transmission phases start,
every node u had enough transmission phases to shift all its own packets to the buffer.
From Lemma 5.23 we know that at any time, the number of unmarked packets with high
probability buffer is below βδP(u). After the first βδP(u) of the additional transmission
phases, u’s buffer hence contains only marked packets, and again by Lemma 5.23 at most β
of them. Now, since all remaining packets are marked as pending, all of the following time
slots can be used for transmission attempts. It remains to show that with high probability,
each node can deplete these less than β packets in the last 2β transmission phases.

We can upper bound the probability that for a single node u, of these 2β · dγ/α(u)e
transmission attempts less that β are successful by Chernoff ’s inequality as (with γ′ :=
dγ/α(u)eα(u)≥ γ≥ 2)

P
�

single node failure
�≤ exp

 

−
�

2βγ′− β�2

4βγ′

!

= exp

 

−β
�

2γ′− 1
�2

4γ′

!

≤ exp
�−β �γ′− 1

��

≤ exp
�−βγ/2�≤ exp (−3ldN/2)

≤ exp (−2 ln N)≤ 1/N2 .

(5.19)

This again bounds the probability that any node has any packets left when the schedule

ends by 1− �1− 1/N2
�|V |

< 1/N . �

1u may be idle for some time, but the next active phase always is a transmission phase
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Retransmissions of failed transmissions are inevitable. To send and relay π (D(u)) pack-
ets, a node needs in expectation π (D(u))/α(u) transmission attempts. The same holds for
our protocol, but nevertheless, energy is wasted in our protocol when a node has no pend-
ing packet to send in a transmission phase. In this case, at least one (dummy) packet has
to be sent in order to stop the parent from listening for the rest of the transmission phase.
However, this can only happen, if there is no packet to mark as pending at the beginning of
the transmission phase. Since with high probability no node has any packet left at the end
of the schedule, every node u can run into this situation at most β · (δP(u) + 2) times.

Time, however, is wasted first due to the additional transmission phases and due to the
length of transmission phases, that reserve by a factor γ more time slots than necessary.
A quite natural choice for the parameters would thus be γ = 2 and β = 2 ln N , yielding
logarithmically sized buffers and roughly double the minimum time to completion. Unfor-
tunately, the parameter β needs to be known in advance to nodes, and in cases, in which β
cannot be set to an upper bound to 2 ln N , it might be necessary to “slow” down the schedule
by adjusting the parameter γ, which the sink can set accordingly after the collection phase.

Adapting this approach to the proposed schedules can incur additional costs. A good
adaption is comparably easy if there is some reasonable lower bound on the reception prob-
ability, i. e., if there is some small constant bounding maxu∈V α(u)/minu∈V α(u). Both values
can easily be aggregated at the sink, which then broadcasts a t ≡ dγ/minu∈V α(u)e to all
nodes. We consider this case to be much more relevant than arbitrarily small reception
probabilities, but at least for total interference, individual transmission phase lengths can
be realized treating nodes as paths of length dγ/αe (or d1/αe if γ is fixed and broadcast by
the sink). In this case, heights in the tree change accordingly.

For the time-optimal protocol from Section 5.4.3, robustness can incur higher costs:
Since packets contain additional routing data, missing packets can sometimes only be com-
pensated for by idle listening when waiting for the next packet.





Chapter 6

Local Link Scheduling

This chapter deals with the more general problems of scheduling links in different interfer-
ence models. More precisely, we consider interference models that are provably correct with
respect to the most realistic geometric model used in algorithmic research, the geometric
SINR model and introduce a new classification of interference models based on geometric
locality. We show that this parameter accounts for the gap between the quality of optimal
schedules in correct graph-based models and those in the geometric SINR model.

6.1 Introduction and Problem Statement

Agreeing on good schedules for a given set of transmissions in wireless networks is not
only a question of good and practical, i. e., local and distributed scheduling algorithms.
The correctness of any scheduling algorithm’s output relies on the underlying interference
model. Choosing an interference model is thus crucial for any kind of scheduling protocol
in sensor networks. Both, interference models and scheduling problems have been studied
thoroughly in the “tradition” of sensor networks. In the simulation and design of sensor net-
works, complex interference models incorporating sophisticated signal fading models and
antenna characteristics, developed over the years, proved helpful. In the algorithmic com-
munity, however, the need of a clear, preferably combinatorial and geometric, interference
model led to a focus on graph-based interference models. These models all have in common
that they are local in the sense that mutual exclusion between transmissions only “connects”
transmissions that are close to each other. The simple combinatorial character of these mod-
els naturally translates scheduling problems to coloring problems in graphs. Moreover, the
geometric properties of these graphs allow for tailored coloring protocols. Despite their

99



100 Local Link Scheduling

simplicity, the downside of these models clearly is that they could neither be proven to be
correct nor good in real sensor networks. They cannot model interference from far away
nodes summing up and jamming communication, nor can they model that if in reality any
pair out of three transmissions can successfully be performed simultaneously, this does not
necessarily mean that all three transmissions can be performed simultaneously.

Algorithmic research considering a class of models that renders signal propagation much
more realistically did to the best of our knowledge not yet lead to local algorithms. Please
recall that in SINR models, successful or sufficiently probable reception is assumed if at a
receiver, the respective sender’s signal strength outperforms the sum of all interfering signals
plus the background noise by a hardware dependent constant. The geometric SINR models
closely cover the main features of sophisticated fading models such as the two-ray-ground
model without losing too much of the simplicity needed for algorithmic results.

In the following, we introduce the concept of locality and correctness of interference
models. We prove fundamental limitations of all models that are local in a very straightfor-
ward sense and correct with respect to the geometric SINR model. We show under which
conditions well known concepts such as graph coloring can be used to approximate schedul-
ing problems and a generalization that improves the quality of easy-to-implement schedul-
ing algorithms. We believe that the introduced models open a door to more realistic, yet
viable solutions not only for scheduling, but for many protocols that rely on local, depend-
able communication.

A scheduling problem in a wireless network is a set Q of communication requests, each
request (s, r) consisting of a sender s and a receiver r, both from some set V of nodes. A
schedule then is a sequence T1, T2, . . . , Tk of sets of transmissions of the form (s, r, p) for
some (s, r) ∈ Q and some power assignment p ∈ R+, such that for every (s, r) ∈ Q, there is
a transmission (s, r, p) in one of the Ti , and every Ti is valid with respect to an interference
model. We refer to the problem of finding a schedule of minimum length as Schedule,
and to the problem of finding a maximum number of transmissions that can be scheduled
to a single slot as OneShotSchedule as in [GOW07]. We will also denote the maximum
link length occurring in a schedule request Q by `(Q) := max(s,r)∈Q dsr . If the scheduling
problem is combined with the problem of assigning transmission powers, usually powers
must be chosen from some power range p = [pmin, pmax]. In the following, we will focus on
the problem of finding schedules for a fixed power p and thus also write (s, r) to denote a
transmission (s, r, p).

6.1.1 Related Work

Interference of concurrent communication has been subject of countless publications. We
have seen a short introduction to this field in Section 2.3: Most of the algorithmic models
model interference as a binary relation on transmissions, among them the unit disk graph
(UDG) with distance or hop interference or the protocol model. In SINR models, success-
ful reception depends on the ratio between the received signal strength on the one side
and the interference from concurrent transmissions plus the background noise on the other
side [Rap96, GK00]. They differ in whether they assume signal strength decay to be a func-
tion of the distance (geometric SINR) or allow an arbitrary gain matrix. In the geometric
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SINR model, Gupta and Kumar analyzed the capacity of ad-hoc networks and proved an
upper bound on the throughput of Θ(1/

p
n) for networks of n nodes [GK00]. Until now,

the effects of the SINR models to algorithm design raise interesting questions [MWW06].
Scheduling of link transmissions has been addressed in many interference models and,

in most cases, proven to be NP-hard. Among others are proofs for scheduling in graph-
based models [HMR+98, KMR00], in the abstract SINR model in [BVY04], and, recently,
in the geometric SINR model for fixed power assignment by Goussevskaia et al. [GOW07].
The joint problem of scheduling and power assignment is still open in the geometric SINR
model [LvRW08]. A variety of graph-based scheduling algorithms has been proposed and
analyzed [HS88, KMPS04, MW05]. It is however argued in various works that graph-based
scheduling is inferior to scheduling designed for the SINR model [BR03, GH01]. Among
the early publications addressing scheduling in geometric SINR models, Moscibroda and
Wattenhofer show that uniform or linear power assignments in worst-case scenarios need
exponentially longer schedules for a strongly connected set of links [MW06] than more so-
phisticated assignments. Moscibroda et al. also propose a scheduling algorithm for arbitrary
power assignment in [MOW07] that outperforms previous heuristics by an exponential fac-
tor. In [GOW07], Goussevskaia et al. propose an approximation algorithm for link schedul-
ing and the problem of finding a maximum number of links that can transmit concurrently in
the geometric SINR model under the fixed power assumption. The latter three works intro-
duced many of the techniques applied in the following under the practically more relevant
assumptions that nodes do not feature arbitrarily high transmission powers and cannot rely
on a global instance to compute a schedule, but are restricted to a local view. Locality has,
to our knowledge, only been looked at in a combinatorial sense [Lin92, NS95, KMW06].

6.2 A Taxonomy of Interference Models

A deterministic interference model M can be interpreted as a property telling for a fixed set
of nodes V whether a set of transmissions T between nodes in V can be carried out simulta-
neously for given transmission powers. More formally, let T :=

¦

(u, v, p) ∈ V2×R+ | u 6= v
©

be the set of all possible transmissions and transmission powers. Then, a model M ⊆ P(T )
contains all sets of transmissions which are valid. We further assume that less concurrent
transmissions cannot cause a transmission to fail, i. e., that for all T ′ ⊆ T ⊆ T ,

T ∈M⇒ T ′ ∈M , (6.1)

which holds for all models which are currently used and most likely for all models which
are meaningful. One should note that the restriction to deterministic models alone already
is a giant step away from reality and the probabilistic models typically employed by com-
munication theorists. But still, even deterministic models are not understood well. Such
models can rely on various kinds of additional input and assumptions of radio propagation,
antenna characteristics and so on. In higher layer protocol design, however, there is a need



102 Local Link Scheduling

to “model away” the complexity of most of these unrulable phenomena. An aspect that has
not received much attention yet is how different approaches to model interference relate to
each other, or, in other words: If I choose a simpler model, are my algorithms or schedules
still correct with respect to a more realistic one or are they just suboptimal? Do optimal
solutions in a simple model approximate optimal solutions in a more complex model? In
the following, we will call an interference model M conservative with respect to another
model M′ if M⊂M′.

6.2.1 Graph-based Interference Models / SINR

Most analytical research on scheduling problems has been done in some kind of graph-based
interference model according to the following definition from [MWW06].

Definition 6.1 (Graph-based model) A graph-based model M can be defined by two di-
rected graphs, one connectivity graph DC = (V, AC) restricting possible transmissions and one
interference graph DI = (AC , AI) connecting conflicting transmissions, such that T ∈M if and
only if T ⊂ AC and T2 ∩ AI = ;.
Usually, a simpler model consisting of two graphs GC = (V, EC) and GI = (V, EI) is used, in
which a set of transmissions is valid, if for every sender, the intended receiver is a neighbor in
GC and no receiver of a distinct transmission is connected in GI . Sometimes, the connectivity
graph and interference graph are defined implicitly, i. e., as the result of a geometric setting.
Graph-based models all have in common that they claim that a set of transmissions whose
transmissions can pairwise be carried out at the same time, collectively may be scheduled
into one single time slot. This is unrealistic in general, and the models fail to formulate the
assumptions under which they guarantee not to produce schedules that do not comply with
more realistic models. On the other hand, in the single-power case, graph-based models
reduce scheduling problems to well-known coloring problems.

As opposed to the oversimplification of graph-based interference models, the models
capturing the findings of signal propagation and reception best are the signal-to-noise-plus-
interference (SINR) models. Their main paradigm is that a transmission is (almost) always
successful, if the sender’s signal strength at the receiver is significantly stronger than the sum
of all interfering signals, including other sender’s signals and (individual) background noise.
Thus, in its most general form, an SINR model is defined by a gain matrix (guv) denoting the
signal fading between nodes u and v, on the background noise ηv at each of the nodes and
the (individual) ratio βv a node v needs for proper reception. Here, a set of transmissions is
valid, i. e. T ⊂M, if and only if for all t = (s, r, ps) ∈ T

ps gsr

ηr +
∑

(u,v,pu)∈T\{t} pu gur
≥ βr . (6.2)

6.2.2 Geometric Interference Models

The first property of interference that has never been described explicitly in the literature is
that of being geometric in the following sense:
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Definition 6.2 (Geometric model) In a geometric model, M is defined for V = R2 such that
M is invariant under all isometries.

Generally speaking, geometric interference models are incapable of modeling individual
characteristics of nodes, but are restricted to those of geometric settings. This does not
mean that a geometric model has to be parameter-free, but for geometric SINR models, this
definition implies a much simpler structure:

Theorem 6.3 Every geometric SINR model can also be defined equivalently such that all ηv
and all βv are independent of the respective position v and all guv can be expressed as guv :=
f (d(u, v)) for a f : R→ R.

Proof. LetM be a geometric SINR model defined by (g ji), (ηi) and (βi). We get an equivalent
model for (g ′ji), (η′i), and (βi), in which all η′i = η′ are equivalent by setting g ′ji = g jiη

′/ηi .
Now, for any d, take two pairs u1, v1 and u2, v2. We know that {(ui , vi , p)} ∈M if and only
if p ≥ η′β ′vi

/gui vi
. Since there is an isometry mapping u1 to u2 and v1 to v2, and since M is

geometric, transmissions (u1, v1, p) are valid, for exactly the same values of p as (u2, v2, p).
Thus, p ≥ η′β ′v1

/g ′u1v1
if and only if p ≥ η′β ′v2

/g ′u2v2
and thus β ′v1

/g ′u1v1
= beta′v2

/g ′u2v2
. I. e.,

all pairs of nodes with distance d have the same ratio of g ′ji and βi and by fixing some β ′
and setting g ′′ji = g ′jiβ ′/βi , we get a representation of the claimed form. �

The class of geometric SINR models (SINRG) is a quite straightforward application of the
above definition. Individual characteristics such as the background noise and the necessary
SINR ratio are replaced by common constants η and β and the gain guv is replaced by a
function of the distance, usually Kd−αuv for a so-called path-loss exponent α and some constant
K . Currently, the SINRG models widely agreed are the best models to reason about in the
algorithmics of sensor networks. Thus, we will focus on local models that are conservative
with respect to this class of models.

6.2.3 Local Interference Models

We introduced the concept of local algorithms in Section 2.3: A distributed algorithm is
said to be k-local, if the outcome for every node only depends on nodes which are inside
a k-hop-neighborhood. Unfortunately, this concept is too restrictive to allow for any local
scheduling algorithms in a geometric SINR model with nodes that do not feature arbitrarily
high transmission powers, but are limited to some maximum power. Even if we define a
node’s neighborhood as the set of nodes the node can communicate with when no other
communication takes place at the same time, in an SINRG model MG , it might be impos-
sible to arrange a schedule at all. If we denote the maximum possible link length of an
interference model M by `(M) := limsup{(u,v,p)}∈M duv , we get `(MG) =

α
p

Kp/(βη), since
for nodes with higher distance even in the absence of concurrent transmissions sending at
maximum power does not result in a received signal strength of βη, which is necessary due
to the background noise alone. In Figure 6.1, such a situation is depicted: Out of the two
sender/receiver pairs in the transmission request, only the pairs themselves have a distance
less than `(MG), and thus, there is no communication possible between the different pairs,
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s1 r1

s2 r2

`(MG)− ε

`(
M

G
) +
ε

Figure 6.1: Links with distance `(MG) + ε may need communication

which, however, have to agree not to transmit at the same time, since both of them cannot
compensate for the interference caused by the other. We will thus in the next section look
at a weaker, geometric definition of locality and its consequences for scheduling problems.

Definition 6.4 (Local model) A ρ-local model is a geometric model M with the additional
constraint that T ∈M if for every t = (s, r, p) ∈ T

T (s,ρ) :=
�

(s′, r ′, p′) ∈ T | d(s, s′)≤ ρ	 ∈M . (6.3)

In other words, an interference model is local, if for a set of transmissions T , it is sufficient
that for every sender in T the transmissions in its ρ-neighborhood comply with the model
to make T valid. Models of this kind not only allow to tell that a set of transmissions
will be successful by only locally looking at the transmissions, but they are also essential
for the design of local algorithms. They can be seen as a rule for every node that can
only observe nearby nodes, either during a setup phase or, more importantly maintaining a
dynamic link transmission schedule. The geometric graph-based models mentioned above
quite naturally have this property, but SINRG models do not, which proved to be one of the
main obstacles when tackling scheduling problems in these models. This holds for existing
centralized approximation algorithms which try to break the interwoven dependencies into
independent subproblems as in [GOW07], and it inherently does so in distributed settings –
how could nodes come up with a provably valid schedule with local communication, when
the validity of a schedule cannot be judged locally?

6.3 Bounds of Local Interference Models

Local interference models on the other hand seem to be incorrect by design: They are blind
for interference that arises from nodes that are far away, and thus cannot factor what these
nodes are doing. From this time on, let MG = (K ,η,β ,α) be a standard SINRG model.
We start with an observation which illustrates the first limitations of local reasoning about
interference implicates. It is a generalization of the considerations above.
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s

r

s1 s2

s3ρ

Figure 6.2: Lower bounding interference in ρ-local models

Observation 6.5 Let ML be a MG-conservative, ρ-local interference model. The following
two inequalities hold:

`(ML)<
ρ

1+ α
p

β
and `(ML)< `(MG) ·

�

1+
3Kp

ηρα

�−1/α

(6.4)

Proof. Let T ∈ ML be any set of transmissions that is accepted by the local model and
t = (s, r) any transmission in T . Let `t := dsr . By the subset acceptance property (6.1) and
the fact that ML is geometric (and thus invariant under isometries of the plane), ML would
accept any set of transmissions T in which all senders have pairwise distances of more than
ρ and all transmissions from T have length `t .

Now, consider a set of transmissions T , as depicted in Figure 6.2, where senders are
placed on a triangular grid with edge length ρ := ρ + ε, i. e., which complies with the
considerations above. First, if we assume that `t ≥ ρ/(1 + α

p

β), the interference of the
sender s2 alone would interfere with the reception of the transmission t to the limit,

lim
ε→0

Kpρ−α(1+ α
p

β)α

Kpρ−α(1− 1/(1+ α
p

β))−α
≤ lim
ε→0

(1+ α
p

β)α

( α
p

β/(1+ α
p

β))−α
= β , (6.5)

and together with the additional interference caused by other senders, reception would
become impossible, contradicting with the choice of t.

Second, as we now know that `t < ρ/2, we get that the interference of the senders s1,
s2 and s3 at the receiver is at least 3Kpρ−α. Thus, since T ∈MG ,

Kp`−αt

3Kpρ−α+η ≥ β⇔ `t ≤
�

βη

Kp
+

3β

ρα

�−1/α

= `(MG) ·
�

1+
3Kp

ηρα

�−1/α

,

which concludes the proof. �
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Figure 6.3: Lower bounds on ρ (α= β = 4.0)

Note that this bound is by no means tight, but it shows how severe the restrictions are that
one can only overcome by globally solving schedule problems: To allow for longer links,
especially of lengths close to `(MG), the radius ρ has to be chosen accordingly. We can de-
rive better bounds by calculating interferences more accurately than above by summing up
interference for more senders on the same triangular grid. Figure 6.3 shows an exemplary
tradeoff between the maximum link length needed, `(ML) and the resulting analytical and
numerical lower bounds on the radius ρ for α = 4, β = 4 (≈ 6dB) and η, p, K normalized
to `(MG) = 1. It shows that in the case that we do not assume that nodes can communicate
with nodes outside their transmission radius, e. g., by the assumption that the node density
is sufficiently high, no link length longer than 40% of the maximum link length can safely
be scheduled in realistic scenarios.

The second observation we can make about local interference models regards the case
that nodes cannot send with arbitrarily low power:

Observation 6.6 Let ML be a MG-conservative ρ-local interference model for a ρ <∞. Even
for requests with `(Q) ≤ `(ML)), optimal solutions to Schedule and OneShotSchedule in
ML can be arbitrarily worse than in MG .

For the sake of brevity, we will only give a sketch of the proof here. We look at a request
of a ring of n transmissions as depicted in Figure 6.4 with sufficiently small transmission
lengths `(g) plus one transmission t? of length `(n) in the middle. It is easy to see that
in MG , it is admissible to schedule all transmissions but t? to the same slot (and t? to a
second). In MG , assigning a slot to t? and to the rest of transmissions is independent. Thus,
at no time more than a constant number of the n outer transmissions can be carried out,
allowing for concurrent transmission of t?.
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ρ
+
ε

`(g)

`(n)

Figure 6.4: Ring of transmissions

6.4 Ω(1)-Sender Models

In every meaningful local model, the acceptance of a (local) set of transmissions must fol-
low this consideration: Given the rules for local acceptance of a set of transmissions – is it
guaranteed that if all nodes obey these local rules, no node possibly has to accept more in-
terference from outside the ρ-neighborhood than allowed, given the amount of interference
arising from local transmissions? A quite straightforward implementation of this concept is
the following: For some function µ : R+ → R+, which serves as an upper bound for inter-
ference from far away nodes, a set of transmissions T is licit if for every transmission (s, r)
a local signal-to-noise-plus-interference condition holds:

Kpd−αsr
∑

(ŝ,r̂)∈T (s,ρ) Kpd−αŝ,r +η+µ(dsr)
≥ β , (6.6)

and if it is guaranteed that a transmission (s, r) cannot receive more interference than µ(dsr)
from senders further away than ρ from s. One way to guarantee the latter is to prohibit that
close senders are transmitting concurrently and thus, to limit the density of active senders:

Definition 6.7 (Ω(1)-sender model) In the Ω(1)-sender modelM= (ρ, c,µ), a set of trans-
missions T is valid if and only if for every (s, r) ∈ T equation (6.6) holds, and any two senders
in T have distance at least c.

Clearly, such a model is ρ-local if c ≤ ρ, but quite obviously not MG-conservative for an
arbitrary µ. However, for certain values of ρ, c, and µ, the resulting model (ρ, c,µ) is
MG-conservative and local:

Lemma 6.8 Let ML = (ρ, c,µ) be an Ω(1)-sender model. ML is conservative with respect to
MG if 1

µ(`)≥
p

12Kpπζ(ρ2/c2+ 2ρ/c)
(ρ− `)α =: µ1(`) (6.7)

Proof. Let (s, r) be some sender/receiver pair with dsr = `. We divide the plane into annuli
Ak with center s and radii kρ and (k + 1)ρ for k ∈ N. The maximum number of senders

1 for the Riemannian ζ-function and ζ := ζ(α− 1), a constant 1< ζ < 2 for α≥ 3
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compared to lower bound

lying within the kth annulus is the maximum number of disks of radius c within an annulus
with radii kρ− c and (k+ 1)ρ+ c. Since senders in Ω(1)-sender models form a Minkowski
arrangement, which cannot exceed a density of 2πp

3
≈ 3.638 [Tot65], we get that the number

of senders in Ak is at most

Nk :=

$

2πp
3
· π
�

�

(k+ 1)ρ+ c
�2− �kρ− c

�2�

πc2

%

≤ k
p

12π
�

ρ2/c2+ 2ρ/c
�

︸ ︷︷ ︸

:=N∗

,

The interference received from any of the senders in Ak can be bounded by

Ik := Kp(kρ− `)−α ≤ k−α Kp
�

ρ− `�−α
︸ ︷︷ ︸

=:I∗
,

and the total interference received from any sender can then be bounded by
∑∞

k=1 Nk Ik ≤
N ∗ I∗

∑∞
k=1 k−α+1 = N ∗ I∗ζ. �

Let (ρ, c) denote a shortcut for the MG-conservative model (ρ, c,µ1). Obviously, the bound
µ1 can very straightforward be replaced by a better numerical bound. Figure 6.5 shows how
these bounds compare to each other and to the lower bound from the last section. Note that
all bounds are correct, and, given the SINR parameters, easy to calculate. We will use the
closed-form result for further analysis and the improved bounds for simulation.

With the approximation above, we still have the choice of first the maximum possible
link length and second, the balance of the locality factor ρ and the exclusion radius c.

Corollary 6.9 Let ` = u · `(MG) for some 0 < u < 1 be a link length and a ≥ 1, the MG-
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conservative Ω(1)-sender model ML = (ρ,ρ/a) with

ρ =






1+

α

Èp
12(a2+ 2a)πβζ

1− uα






· ` (6.8)

has `(ML) = `. It is graph-based for a = 1, yielding (ρ,ρ).

Proof. According to Lemma 6.8, ML is MG-conservative. It hence remains to show that
`(ML) = `. First, by `= u α

p

Kp/βη, we observe that

ρ− `= α

Èp
12(a2+ 2a)πβζ

1− uα
· `= α

Èp
12(a2+ 2a)πKpζ

η(u−α− 1)
(6.9)

and therefore by the definition of u

`(ML) = α

È

Kp

βη+
p

12(a2+ 2a)πKpβζ
�

ρ− `�−α =
α

r

Kp

βηu−α = ` (6.10)

Obviously, it is graph-based for a = 1. �

This corollary in a way justifies the work that has been done on scheduling problems in
graph-based models as it provides a very simple graph-based model that is provably correct
with respect to the geometric SINR models (and, at the same time shows the price for
reducing an SINRG model to a graph-based model). Figure 6.6 shows this tradeoff between
the maximum schedulable link length and the respective ρ for different ratios. As argued
in Section 6.2.3, no local model can allow for “good” solutions in the single-power setting
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in the sense that the scheduling problems can be approximated within a constant factor in
any such model if links can be arbitrarily short. We will show that MG-conservative Ω(1)-
sender models (ρ,ρ) are only by constant and comparably small factors worse than any
local model in two dimensions – first the locality needed to allow for a given maximum link
length and second the quality of optimal solutions to the scheduling problems.

Lemma 6.10 Let ML = (ρ,ρ) be the MG-conservative Ω(1)-sender model according to Corol-
lary 6.9 for some `. Then for any ρ′-local model M′

L which is MG-conservative,

ρ

ρ′ ≤
1

α
p

3β
+ 2
p

3πζ (6.11)

Proof. From (6.4) and with u := `/`(MG), we get that

ρ′ = α
p

3β
�

1

`(ML)α
− 1

`(MG)α

�−1/α

= ` α
p

3β (1− uα)−1/α (6.12)

and, from Corollary 6.9 and u< 1,

ρ =






1+

α

È

6
p

3πβζ

1− uα






· ` < (1− uα)−1/α ·

�

1+
α
Æ

6
p

3πβζ
�

· ` , (6.13)

which directly implicates the claimed approximation. �

This bound only depends on α and β , and is thus constant for a fixed SINRG model. For
a given set of SINRG parameters, this approximation ratio can be improved using the non-
closed-form lower bounds for local models and upper bounds for the c-distant sender model.
E. g., for the exemplary values used throughout this paper, the best bounds guarantee a ratio
of less than 5/4 for arbitrary `.

Lemma 6.11 Let ML = (ρ,ρ) be the MG-conservative Ω(1)-sender model according to Lem-
ma 6.8 and Corollary 6.9. Let Q be a schedule request with `(Q) < `(ML). Optimal solutions
to Scheduling and One-Shot-Schedule inML are only by a constant factor worse than optimal
solutions in any other ρ-local MG-conservative model.

Proof. First we show that any ρ-local model M′
L with `(M′

L) ≥ ` cannot accept any set
of transmissions T such that for any transmission (s, r, p), T (s,ρ) contains more than h :=
4α6
p

3ζ transmissions. To this extent, let T be a set of h transmissions such that T (s,ρ) = T
for some (s, r) ∈ T . We add a transmission (s′, r ′) to T with ds,s′ = 2ρ, pointing towards s
(cf Figure 6.7). Note that if T is valid in M′

L , then T ′ = T ∪{(s′, r ′)} must be valid, too. But
if all transmissions in T ′ are carried out simultaneously, the SINR-level at r ′ is below

Kp`−α
hKp(2ρ)−α+η =

`−α

h4−α `α(1−uα)
6
p

3πβζ
+ η

Kp

=
`−α

`−α(1−uα)
β

+ η

Kp

= β .
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Figure 6.7: Upper bounding number of transmissions in a ρ-radius

Now take any schedule requestQ. Let A be the square with side ρ/
p

2 that contains the most
senders in Q. Let m denote this number. In every ρ-local model at most h of the senders
in A can transmit concurrently, leading to a schedule length of at least dm/he. In ML , in
turn, we can construct a schedule of length 16m by the same construction as in [GOW07]:
We now take a grid of grid-length ρ, 4-color the grid cells, and cyclically choose a color and
pick an unscheduled sender from each cell with that color. In each of the cells, we have at
most 4m transmissions, and the schedule hence at most lenght 16m, which guarantees a
16h-approximative schedule compared to an optimal solution in any ρ-local model. Similar
arguments lead to a 16h-approximation of One-Shot-Schedule: Take an optimal solution T
in any ρ-local model and picture a 4-colored grid with grid-length ρ. Focus only on grid-
squares that contain a sender of T . Each of the squares contains at most 4m transmissions
in T . Now pick the color of the most non-empty squares and pick one transmission of
each square. This set of transmissions contains at least d|T |/16me transmissions that can
all be carried out concurrently in ML . We get a slightly worse approximation for greedy
scheduling, where we will only look at the Scheduling problem: In the very same grid as
above, if one cell does not contain an active sender in a slot, then for two possible reasons:
First, because all senders have been scheduled to earlier slots, and second, because of some
active sender in one of the adjacent cells. Thus, greedy scheduling uses at most 36m slots,
which is 36h-approximative. �

6.4.1 Application

We implemented a very basic scheduling algorithm for Ω(1)-sender models which greedily
assigns slots to senders in a random order: Each sender is assigned to the first allowed slot
according to the respective model. This is not only a very simple centralized approach, but
also a reasonable distributed scheduling algorithm. Given that the node density is sufficient
for nodes to have their ρ-neighborhood some constant number of hops away, nodes can
draw random numbers and decide on their slot after all neighbors with lower numbers did
so only by local communication. This approach is also suited to schedule online requests.
We compare the results to three different global scheduling algorithms. First, we select
nodes in random order and add them to the first slot allowed by the plain SINRG model,
i. e., schedule greedily and global. Second, we compare to the algorithm given from Gous-
sevskaia et al. [GOW07]. Please note that this algorithm is not designed to produce good
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Table 6.1: Comparison of schedules in different interference models for 20000 random links
locality excl. rad. random links

Algorithm [`(MG)] [`(MG)] length max. util. avg. util.

Greedy scheduling in MG ∞ 0 71.91 482.45 278.43
Intelligent scheduling in MG ∞ 0 34.15 2726.00 586.11
Goussevskaia et al. [GOW07] ∞ 0 605.03 206.01 33.06
Greedy scheduling in . . .
. . . (ρ,ρ), min. ρ (graph-based) 2.82 2.82 117.38 224.31 170.45
. . . (ρ,`(MG)), min. ρ 4.59 1.00 58.63 626.59 341.31
. . . (ρ,`(MG)), incr. ρ 6.00 1.00 47.89 629.41 417.86
. . . recv.-local (ρ, r), min. ρ 2.55 1.75 60.88 487.68 328.79
. . . recv.-local (ρ,`(MG)), min. ρ 3.82 1.00 54.84 675.81 364.91
. . . recv.-local (ρ,`(MG)), incr. ρ 6.00 1.00 46.48 646.45 430.50

schedules, but only as a proof of approximability. It is thus not surprising that it returns
comparably poor results. Third, since solving the Schedule problem optimally is hard, and
solving the corresponding mixed-integer linear problem only works for a very small num-
ber of transmissions, we compare to a heuristic, which produced near-optimal results for
small instances of random transmission requests. We fill the slots one after another, at any
time adding the transmission which causes the least drop of the minimum signal-to-noise-
plus-interference ratio for all transmissions earlier added to that slot. We ran all of the
above algorithms on schedule requests with at most 80% of the maximum link length in the
SINRG model. Instances were random sets of 20000 transmissions and random unit disk
graphs with 5000 nodes on a 50x50 square unit area, i. e., some 10000 edges leading to
some 20000 transmissions to schedule links symmetrically. For the Ω(1)-sender models, we
compare three configurations. First, the graph-based (ρ,ρ) model with the minimum ρ we
can prove correctness for, ρ = 2.82`(MG), second a (ρ,`(MG)) model with minimum ρ in
the same sense, which is local, but not graph-based. Third, we increase the locality radius
ρ beyond what is necessary to prove correctness. Additionally, we compare to the three
corresponding variants of the Ω(1)-sender models, where the locality radius ρ is centered
at the receiver, where the interference occurs. We call this receiver-centered locality. Not
that in this case, a minimal choice of locality and exclusion radius means that the exclusion
disk (centered at the sender) must completely be covered by the locality disk centered at
the receiver. This class of models is never graph-based, but allows for better bounds and
schedules. Table 6.1 shows values for random links, averaged over 250 runs, a selection is
also plotted in Figure6.8 together with results from scheduling UDG links. Not surprisingly,
the more far-seeing global algorithm performs best among all compared schemes and the
global algorithm from [GOW07] by far worst. Among the greedy scheduling algorithms,
the global view did not give an advantage in general. Greedy scheduling in the SINRG
model only outperformed the graph-based variant (whose big advantage is its simplicity).
Increasing locality a little more or switching to the receiver-centered locality, the local mod-
els even led to better results since the exclusion radius prevented scheduling of close links
and receiver-centered locality reflects the nature of interference better.
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Figure 6.8: Slot utilization of slots for different scheduling algorithms





Chapter 7

Conclusion

This thesis addressed two problems arising in an early stage of self-organization of wireless
sensor networks: autonomous positioning and medium access control. We approached these
problems with a focus on the impact of the model that is used to describe the behavior of
the wireless channel and on the algorithmic aspects, namely complexity and the design of
scalable algorithms, in which a single node’s burden does not or only reasonably increase
with the network’s size.

For positioning, we showed how direction-based positioning can be interpreted as the
problem of finding a maximal partition of the network into pieces which can be unam-
biguously reconstructed. Dividing this problem into the distributed identification of rigid
subgraphs and the identification of maximal rigid groups of these subgraphs, the data that
needs to be collected to finally solve this problem at a central node can be reduced dras-
tically. For the central part, we propose a tailored algorithm for the identification of rigid
structures in sets of rigid subgraphs that overlap in common nodes, improving on standard
algorithms for this task. Unfortunately, we were also able to prove that positioning based
on local information is hard in the case that nodes know distances and directions of their
neighbors up to arbitrarily small errors. We hence turned our attention to a more heuristic
approach of positioning, asking for a hierarchical version of common schemes that patch
local solutions together. We developed a distributed multi-level scheme for anchor-free po-
sitioning, in which the load in terms of messages sent and local computation increases only
logarithmically with the diameter of the network. It is based on the idea of graph filtration,
which has been used for graph drawing earlier. Together with multidimensional scaling as
the underlying technique for positioning local neighborhoods, this approach allows for ac-
curate and robust positioning of large-scale networks in complex deployment areas even if
only connectivity information is available. This combination, MDS-MAP(F), has been eval-
uated on networks of up to 128000 nodes and outperforms existing approaches in terms of
positioning quality. It also is the first technique that demonstrates positioning of large-scale
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sensor networks in 3D. Yet, we will have to wait for real sensor networks to grow to leave
the field of simulations that are based on connectivity models which try to anticipate the
characteristics of wireless connectivity.

In the area of coordinating medium access, we first addressed the problem how nodes
can agree on a schedule for a query tree in order to gather large amounts of data with a
minimum of set-up communication. Gathering of information currently is the most common
kind of traffic pattern in sensor networks, and scheduling such trees in-network can greatly
reduce the energy wasted in collecting the data. We proposed solutions to set up schedules
for different interference models, ranging from optimal solutions in the absence of inter-
ference and time-approximative solutions for hop-interference to the conjecture that it is
impossible to agree on a time-optimal schedule under the restrictions not to use the channel
concurrently at all. However, we were only able to prove this conjecture in a special case.
Also, we described generically how to make schedules robust to transmission failures with
logarithmic buffer sizes and constant time-approximation or vice versa.

In Chapter 6, we addressed the question for the influence of interference models on the
scheduling problems in a wider scope: We analyzed the relationship between graph-based
interference models widely used to model interference problems and the more realistic geo-
metric SINR model. We introduced the notion of local interference models and showed that
any local model, which only accepts transmissions that are valid with respect to a geometric
SINR model, can be replaced by a graph-based model without losing more than a constant
factor in optimal solutions of scheduling problems.



Appendix A

Proofs

Proof of Equation 5.17

Claim A.1 Let γ≥ 2 and 0< α≤ 1. Then

fγ(α) :=
1− (1−α)γ/α− γ · (1−α)γ/α−1

(1−α)γ/α ≥ exp(γ/
p

2) . (A.1)

Proof. First, we observe that for any fixed γ

fγ(α) = (1−α)−γ/α
︸ ︷︷ ︸

gγ(α)

−1− γ/(1−α)
︸ ︷︷ ︸

hγ(α)

(A.2)

is strictly monotone increasing for 0 < α < 1. This follows from g ′γ(α) > h′γ(α), or, in more
detail, from

�

(1−α)−α�′ > �(1−α)−1
�′
> 1 (A.3)

for 0 < a < 1 and from ( f (x)γ)′ = γ f ′(x)γ−1 ≥ γ f ′(x) = (γ f (x))′ for γ ≥ 2 where
f ′(x) > 0 and differentiable. It is thus sufficient to show that limα→0 fγ(α) ≥ eγ/

p
2 for all

γ≥ 2. We start with the observation that

lim
α→0

gγ(α) = lim
α→0
(1−α)−γ/α = lim

n→∞

�

1+
1

n− 1

�−γn

≥ eγ . (A.4)

We thus get the result for γ= 2 as

lim
α→0

f2(α) = e2− 1− 2> e
p

2 . (A.5)
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and conclude showing that limα→0 fγ(α)− eγ/
p

2 is strictly increasing for γ≥ 2:

�

eγ− 1− γ− eγ/
p

2
� d

dγ
= γeγ/

p
2 ·
�

e
p

2− 1p
2

�

− 1≥ 2e
p

2 ·
�

e
p

2− 1p
2

�

− 1> 0 (A.6)
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