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Abstract Inferring scene geometry from a sequence of
camera images is one of the central problems in computer
vision. While the overwhelming majority of related research
focuses on diffuse surface models, there are cases when this
is not a viable assumption: in many industrial applications,
one has to deal with metal or coated surfaces exhibiting a
strong specular behavior. We propose a novel and general-
ized constrained gradient descent method to determine the
shape of a purely specular object from the reflection of a
calibrated scene and additional data required to find a unique
solution. This data is exemplarily provided by optical flow
measurements obtained by small scale motion of the spec-
ular object, with camera and scene remaining stationary.
We present a non-approximative general forward model to
predict the optical flow of specular surfaces, covering rigid
body motion as well as elastic deformation, and allowing
for a characterization of problematic points. We demonstrate
the applicability of our method by numerical experiments on
synthetic and real data.
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1 Introduction and Previous Work

We consider the problem of reconstructing a free-form mir-
ror surface by observing the reflected image of a calibrated
scene. In a highly controllable industrial environment, one
observes via the mirror surface a LC display, whose pix-
els identify themselves in the camera picture by a time-
coded sequence of intensity values (see Fig. 1). The estab-
lished correspondence serves in finding the surface that has
lead to the recorded image series. This method is known as
Shape from Specular Reflection or—in the field of optical
metrology—as deflectometry, see Kammel (2004), Bonfort
(2006) for a comprehensive introduction. It is widely used
because it allows detection of small irregularities of the sur-
face under inspection. Real-world applications include high
resolution scanning of optical lenses and industrial qual-
ity control of coated components. However, as with clas-
sical camera-based scene reconstruction, a single measure-
ment generally does not suffice to fully determine the sur-
face structure.

Current literature contains some suggestions on how to
overcome the ambiguity. Solem et al. investigate the prob-
lem in a variational setting, cf. Solem et al. (2004). Assum-
ing a set of surface points is known, they propose an itera-
tive algorithm to minimize an energy functional consisting
of surface normal and point constraints. Kickingereder and
Donner (2004) and Bonfort and Sturm (2006) use stereo vi-
sion to uniquely recover the surface. In Balzer et al. (2006),
the Lambertian behavior of a certain class of objects is em-
ployed. The latter approach is closely connected to a re-
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Fig. 1 Compact, robot-based sensor head for recording of light map
and optical flow data

search area known as Shape from Shading (Horn 1970;
Prados et al. 2007). Other methods are based on regulariza-
tion by approximation or locality: on the basis of reflected
differential geometric entities such as points and curves,
Savarese et al. (2005) estimate the Monge form of open
neighborhoods around a set of surface points from a single
image. Neglecting higher-order surface properties amounts
to reducing the problem to a finite-dimensional parame-
ter estimation task, whose outcome will most likely be a
unique solution under practical circumstances. Rozenfeld et
al. (2007) present a significant enhancement towards indus-
trial application. They notice that for a fixed point tangential
directions of feature curves and their images are linked via a
1D homography, containing all desired information on local
surface shape (up to a certain order). The approximative na-
ture of the work by Halstead et al. (1996) becomes directly
obvious, as the correspondences between scene and image
points are only roughly estimated. Other than that, the au-
thors rely on decoupling computation of surface slope and
position. This may lead to significant systematic errors, as
the problem is severely non-linear, especially in view of the
discussion at the end of Sect. 2.1. In particular, a smoothness
assumption can not resolve the ambiguity. Consequently, the
algorithm presented appears to be limited to their applica-
tion in videokeratography.' In summary, all of the local ap-

Measurement of the human cornea by deflectometric techniques.

proaches are justified by good reconstruction results. How-
ever, enforcing uniqueness by means of approximation, ac-
curacy must be compromised to a certain degree. In particu-
lar, it has not been checked analytically under which circum-
stances the approximation error remains within the specified
bounds.

In an early predecessor of our work, Oren and Nayar
(1995) investigate an abstract setting where only the cam-
era is moving. They do not rely on the classical monocular
stereo approach but use a differential multiview method to
derive a family of possible surface curves. To our knowl-
edge, the first authors incorporating optical flow measure-
ments were Roth and Black (2006). Their model requires a
large distance between the mirror and the reflected scene,
leaving room for a more realistic small-scale generalization.
This will be one of our main contributions.

This paper is outlined as follows: in the following section,
we will state the problem, provide some necessary back-
ground in level set theory, and finally show how to formu-
late the reconstruction problem as a constrained optimiza-
tion problem. In Sect. 3, we will then derive the govern-
ing equations of specular optical flow. We will see that a
flow vector field fails to be well-defined under certain cir-
cumstances. Our model provides for the characterization of
such special points. In Sect. 4, we propose a gradient de-
scent method to solve the general optimization problem of
reconstructing the shape of an unknown specular surface in
combination with optical flow measurements. Our numeri-
cal procedure is sketched and experimental results are pre-
sented to underline the practicability of our method.

2 Problem Statement and Mathematical Framework
2.1 Notation and Basic Problem

We frequently use the Euclidean scalar product (-, -) which
induces the norm | - || on R3. Vectors are distinguished by
bold letters x = (x1 x> x3) |, matrices by capitalization M.
For example, I is the identity matrix and J, the Jacobian of
a continuously differentiable vector field v. Normalization
to unit length is denoted by an additional hat: x = 7 (x),
where 7 : R3\{0} — $2, x > 7(x) := ”';—H, is the projection
to the unit sphere S2. The tangent map of 77 can be described

by the Jacobian of its continuation on R3: J, (x) = ”;—“Px,

where P, =1— %" denotes the orthogonal projection onto
#1 in matrix form.

Figure 2 illustrates the basic setup. We assume a single-
viewpoint camera with optical center located in the origin
o of the coordinate system. For simplicity, we will gener-
ally use a standard pinhole camera model with focal length
f =1. The pinhole camera is modelled by the function

I1: Q — Q, projecting each point x in a subset Q C R3

@ Springer



228

Int J Comput Vis (2008) 80: 226241

mirror surface

camera image

s

scene

Fig. 2 Basic setup. The scene L is reflected in the specular surface S
and observed by the camera in the origin

of the field of view? onto some u in the image plane x3 = 1,
ie.u=Il(x)= ;7

Intersecting the ray emanating from the origin through
an image point u € Q7 with S, we get the reflection point
s(u) on S. We generally require that the surface map s be
well-defined on all of 27, i.e. the surface occupies the whole
image. If S were diffuse, the physical image intensity in u
would be completely determined by the texture in s(u). But
since S is specular, the ray is reflected and advances until it
hits the scene surface L in I(u). We denote the reflected ray
by r. We also assume that there are no multiple reflections
and the light map 1 : Q; — L is defined on all of ;. We
require S to be sufficiently smooth and €2 to be a bounded
domain with piecewise smooth boundary 9<2. Now, we can
formulate the basic problem in an abstract way:

Problem formulation 1 Given the light map I(u), find a
corresponding surface map s (u).

The law of reflection connects measurement and surface:
supposing the surface ran through an arbitrary point x in
the domain €2, having looked up () for the projection u =
[1(x) of x onto the image plane, the normal would be

()= — 7 @1
mXx)=———1-, .
lx +r|

where r = x — [. Observe that the normals are forced down-
ward here, i.e. (i1, x) < 0. The vector field 72 :  — S2 re-
stricts the normals of S: if forall s € §
n(s) =m(s) 2.2)
the surface is said to satisfy the normal condition. This leads
to an equivalent formulation:

2The field of view is the set of all points x € R3, x3 > 0, which can be
connected to the origin by a straight line intersecting the domain of the
image signal ;.
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Fig. 3 Specular optical flow. The reflection point s varies as the spec-
ular surface moves relative to camera and diffuse scene

Problem formulation 2 Given the normal field m, find a
surface map s satisfying the normal condition (2.2).

Despite its elegance, this way of viewing the problem
has not been widely considered. Notable exceptions are the
works of Bonfort and Sturm (2006) as well as Hicks and
Perline (2004), who also provide a generalized formulation
using so-called m-distributions.

As the vector field formulation suggests, the problem in
its current form does not necessarily admit a unique solu-
tion: in Kickingereder and Donner (2004) for example, an
adept parametrization transforms (2.2) into a first-order PDE
system exhibiting an infinite number of solutions if no ini-
tial value is given. The authors state nothing particular about
the structure of the solution space, though. The model due to
Werling et al. (2007) consists of a system of two quasilinear
partial differential equations of first order, whose character-
istics are orthogonal to each other in every point of Q. In
fact, it can be shown that—under certain assumptions on the
normal field m—the manifold of solutions to the reconstruc-
tion problem is a smooth one-parameter family or “regular
curve”, parameterizable by the intersection of S with a ray
through the origin. It is evidential that in the case where a
single surface point is known, a unique solution can be ob-
tained.

2.2 Diffuse Versus Specular Optical Flow

The objective of this paper is to overcome the ambiguity ad-
dressed in the last section by measuring how slight displace-
ment of the sought-after surface modulates the light map (or
equivalently its inverse). Thus, let us first review the notion
of optical flow, which lives in the image plane independent
of the reflection behavior of the dynamic object. Consider a
scene surface containing a fixed point x which is observed at
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image coordinates u(t) for t € T with T = [#g, 1] denoting
a time interval. The optical flow for u = u(fp) is then defined
as the temporal derivative #(fp). Its prominent advantage is
that it can be estimated solely from the image sequence if
the scene provides distinctive texture and the temporal reso-
lution is sufficiently high (Barron et al. 1994). Being a local
property, the optical flow effectively adds information to a
single image, which allows us to pointwise infer scene in-
formation much more easily than with genuine stereo (Horn
1986; Zissermann and Giblin 1989).

Consider a fixed camera observing a dynamic scene, and
let w(x) denote the velocity vector for each scene point x at
time f¢. Note that this includes uniform Euclidean motion,
where
w(x) =x(fp) = Vx + v, (2.3)
and @ = Q(f9) is a skew-symmetric matrix s.t. x(¢) =
R(H)x + y(1), R(t) = e®® € SO(3) and v = y(tp). How-
ever, this velocity field formulation allows far more complex
and possibly non-rigid motion, e.g. waves on a water sur-
face. For a point s on a diffuse surface S, the optical flow is
given by Horn (1986)

d .
I(s(1)) = Jn(s)s

il_

T dt

L (10 —u 2.4)
=Jn@®wE)=— 0 1 —uz | w(s).

$\o 0o o

In the simple case of purely translational motion, i.e. £ =0,
we have w(s) = v and can easily deduce s3—and thus s—
from known u, v, and # (see Hartley and Zisserman 2003
for a survey).

If S is specular, the process is far more involved since
u is now the projection of the reflection point s of a fixed
scene point /. Generally, s will move on the surface in time:
not the same surface point is “seen” although the observed
scene point does not change (see Fig. 3). This compensating
motion superposed by the enforced object trajectory makes
up the reflection point trajectory s(z).

Specularities have been widely regarded as a source of
error in diffuse surface reconstruction, with many authors
proposing methods to detect and discard the respective flow
vectors. Roth and Black (2006) recently suggested to take
advantage of this extra information while resolving the am-
biguities arising in the Shape from Specularities problem.
Their model is a direct adoption of what has been described
by Chen and Arvo (2000), who perform a thorough differen-
tial analysis for the problem of recovering reflection points
motion when only the camera is dislocated. Since in their
setting, the light map has not been made available by encod-
ing display element locations, they require a large distance

between s and [, leaving the reflected ray r in (2.1) approx-
imately constant.

For our metrology setup, this simplification is too re-
strictive. Firstly, although measurement sensitivity with re-
spect to slope grows quadratically in object distance, we are
forced to position the mirror object in proximity of the opti-
cal sensor because sampling density on the surface will de-
crease concurrently. The assumption r ~ const. remains no
longer valid. With perfect knowledge of the light map, how-
ever, computation of the reflected ray for every surface point
is possible, adding further complexity to the modelling task
tackled in Sect. 3. A second difference lies in the fact that
we consider the case where everything but the mirror surface
remains stationary, i.e. camera and diffuse target are rigidly
mounted on a compact sensor head which moves relative
to the unknown specular object, see Fig. 1. Finally, as the
model described in Roth and Black (2006) relies on the trun-
cated Taylor series of the path function, the computation of
reflection point trajectories (specifically its tangent vectors)
must be approximative in most cases. Since we will directly
adopt a differential viewpoint, our model may—under cer-
tain circumstances—admit a closed-form analytical solution
in search for the tangents to the reflection point trajectories.

2.3 Level Sets and Differential Geometry

The surfaces under concern are assumed to be regular for
the rest of the paper, i.e. they can be described by a set
S C R3 and an atlas of Ck-diffeomorphisms hg, k> 1, s.t.
for every point s € S, there exists a neighborhood U C R3
of s with g mapping U N S to an open set U C R? (do
Carmo 1976). Some inherent drawbacks of this represen-
tation, namely the possible need for reparametrization and
the strong dependence on the dimension of the underly-
ing space, can be circumvented by using an implicit—or
level set—representation made popular by Osher and Fed-
kiw (2002) and Sethian (2005). Here, we express S as the
zero set of a function ¢ € C2(V,R) s.t. SNV = ¢~ ({0}).
The level set function ¢ defines a regular surface if Vo # 0
on ¢~ ({0}), which we assume throughout.

While a regular surface locally allows for such a repre-
sentation (for any local graph representation f : U C R* —
Q, set p(x,y,z) = f(x,y) — z), in general, no global level
set function ¢ € C%(R2, R) exists. The continuity assump-
tions on ¢ enforce orientability, which is why only regular
surfaces of the form S = dW are allowed with some open
WCR3, st.og<0in W and ¢ > 0 in Q\W. We will as-
sume S to satisfy the above requirements.

The following inner geometric quantities are frequently
required:

Vo
IVell’

=———P;V¢P;,

Vel

n=
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where 7 is the normal in the direction of ¢ > 0 and K is the
symmetric matrix defining the second fundamental form and
satisfying Kit = 0. By V2p =] vy, we denote the Hessian

of ¢. For the mean curvature «, we get k = —TrK (see Jin
2003).
The surface gradient Dg f (s) of a function f: S — Ris

defined as the unique vector y € TS with dd—T{ fx(@)}Hr=0
= (y, d%x(r)h:o) for all curves x € S with x(0) = s.
Where there is access to the gradient V f of a continuation
of f on a neighborhood of s, we have Dg f (s) =P;V f(s).

Moving surfaces are naturally written as
S(t) =~ [{0}. 11,

where ¢ € CZ(Q x T, R), and each ¢[-, f] itself is a level set
function. We will use brackets to distinguish these level set
evolutions from ordinary level set functions ¢. For such an
evolution, let Vo := 9, ¢ and ¢ := 9, ¢.

Consider a differentiable curve s : T — 2 lying on the
moving surface, i.e. ¢[s(¢),t] = 0. Derivation w.r.t. ¢ re-
sults in

@ls(®),t] = —Vols(t),t]s()
=—(E@),nls@), D)IVels), 11|l

This means that the way the surface evolves depends only
on the normal velocity field

vi=(§, ) 2.5)

of the parametrization (Solem and Overgaard 2005a). By
substituting v, we get the level set equation

¢ =—v||Vel. (2.6)

As an important example, consider the special level set func-
tion

p(x) =ex,(x) :=c(xo) — (x|l + llx = I|D 2.7

with 5,7 € R3 and ¢ = c(x¢) := ||xol| + |lxo — I||. The zero
set Ej x, of ej x, consists of all points x for which the sum
of the distances from o to I via x is the same as via x. In the
two-dimensional case, it coincides with an ellipse with focal
points o and [. Its three-dimensional counterpart is called
prolate spheroid Ej ., being generated by rotating such an
ellipse around its major axis through o and [.
For x € Ej x,, the normal computes as

Vey x,(x) R4x-1

n x) = =—
L) = g, @l

X +x =1

Comparing this to (2.1) confirms the fact that such a spher-
oid will reflect all rays emerging from the origin into its
second focal point I and vice versa. The law of reflection
then reduces to the fact that the surface normal n(s) for a
point s € S and the normal 7 (s) of the (unique) spheroid
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through s with foci 0 and I coincide. Whenever S is ex-
actly shaped like Ej ¢ in a neighborhood of s (and assuming
there are no occlusions), the scene point / will be visible in a
neighborhood of the image point # = I1(s). This means we
cannot generally assume the injectivity of [ : Q; — L, not
even locally: features on L might be “infinitely” magnified
when observed indirectly through the mirror.

2.4 Stating the Problem

We will now see how the extra information provided by the
optical flow can be integrated into the model to help find the
original surface. First, observe that solving (2.2) for S can
be expressed as minimizing the surface functional

1
J(S) :=—/||fz—rh||2da,
2 Js

where do is a surface element. In level set notation, this can
formally be written as

1
J(go)zE/QIIﬁ—ﬁlIIZIIV<p||6(g0(x))dx,

where § is the Dirac delta distribution. Our extra information
shall be contained in a similar functional H. While we will
illustrate the procedure only for the optical flow case, H may
also include any additional measurements, e.g. from range
sensors or analysis of diffuse surface parts. Here, we will
use
1 .
H(S) = —/ llie — i, ||do, (2.8)
2Js

where # is the expected optical flow for the surface hypoth-
esis S and u,,(s) is the observed flow field at image coor-
dinates I1(s), interpolated from measurements. In practice,
problems may arise if optical flow data are only partially
available, a case we will ignore for the scope of this paper.

Traditionally (cf. Solem et al. 2004; Kickingereder and
Donner 2004), one would blend both functionals into a third
one, e.g. E(S) =aJ(S) + (1 —a)H(S), and then mini-
mize E. We will adopt a different viewpoint inspired by
Solem and Overgaard (2005b): let R be the set of regular
surfaces (or even level set surfaces if necessary), and denote
by R, C R the subset of all surfaces satisfying the normal
condition, i.e. S € Ry < J(S) = 0. We may now solve the
constrained minimization problem

S = argmin H (S).
SER,;,

This alternative concept provides some benefits: Rj; has
fewer degrees of freedom than R as mentioned at the end
of Sect. 2.1. Furthermore, the surface minimizing the sum
functional E(S) above will most likely not satisfy the nor-
mal constraint. So it is perfectly reasonable to restrict the



Int J Comput Vis (2008) 80: 226241

231

search for a unique solution to R, especially when ex-
pecting the deflectometric measurement to be highly reliable
in contrast to the regularizing extra information. Assuming
S € Rj;, for the construction of H proves useful in the spec-
ular optical flow case, where the law of reflection must hold
in order to correctly calculate the flow vectors. Before we
determine how to realize the minimization process, we will
derive an expression for the expected optical flow .

The question remains if constraining the problem in
the proposed way generally removes the existing ambigu-
ities. Frankly, it is easy to construct—fair to say rather
academic—counterexamples: for instance, it can be shown
that for a surface under deflectometric inspection which is
rotationally symmetric with respect to the principal ray, all
elements of the solution manifold will be rotationally sym-
metric as well. Meanwhile, rotational motion around the
symmetry axis does not affect the light map so that predicted
and measured (trivial) flow match for all solution candidates.
However, this example also suggests that well-posedness is
a matter of the applied object motion. Although we have no
theoretical proof for the regularizing effect of specular op-
tical flow data, the method offers an additional process pa-
rameter that may be selected such that the constrained func-
tional possesses only a single global minimum, see also the
results presented in Sect. 5.

3 Optical Flow on Specular Surfaces
3.1 Calculating Optical Flow

We now solve the forward problem, i.e. computing the op-
tical flow # for given S and velocity vector field w describ-
ing the motion of each point in space, in particular those
lying on the reflecting surface so that, as already mentioned
in Sect. 2.2, the surface moves relative to a fixed camera and
calibrated scene L.

What we are ultimately looking for is the velocity vector
i of the image of a scene point I in ;. In the diffuse case,
the scene points correspond to texture features pinned to the
surface. By tracing the curves they follow under surface mo-
tion, we get a (three-dimensional) velocity vector field w on
S and by projection the desired flow field as given by (2.4).
In contrast, for a specular surface and fixed scene feature
point, one has to track the reflection point, via which the
feature gets reflected into the optical center of the camera.
Its behavior seems intricate: the reflection point may “shift”
on the surface or vanish even for non-trivial displacements
(see counterexample at the end of the last section).

In the rest of this section, we will explain how to com-
pute the velocity vector of a reflection point, which is con-
strained physically in two ways: firstly, the reflection point
must stay on the surface at all times. Secondly, the law of
reflection must always be satisfied with respect to the opti-
cal center and the fixed scene feature. Let s denote the trace

of the reflection point curve; each of the constraints dictates
the normals at the points s(¢). Moving on to infinitesimal
time steps, this connection can be exploited to pin down the
temporal derivative of s and thus the desired velocity vector.

The following lemma describes the effect of a given sur-
face motion on changes in the normal along s(¢). Note that
only the normal component v of w is needed. This makes
sense: if the surface were diffuse, the tangential velocity
component would amount to a texture shift within the sur-
face rather than a deformation or displacement. For specular
surfaces, these kinds of movements are undetectable, as they
do not affect the surface shape; remember the case of rota-
tion around a symmetry axis.

Lemma 1 Let ¢ be a sufficiently differentiable level set evo-
Iution and s : T — R3 a differentiable curve on S(t) =
¢ {0}, 11, i.e. p[s(t), 1] = 0. Then,

d . .
E{n[s(t), t]} = —Dgsv + J;P;s,

where Dgv is the surface gradient of the normal velocity
(2.5).

Proof From the implicit representation, we get a natural ex-
tension of 72 and v onto a small neighborhood of a point
s(tp). Thus by the chain rule, we may write for the total
derivative

d
E{fl[S(t), 1} =Jals(®), 118 (@) + ;als (1), t].

Decomposing § orthogonally into § = P;§ + (§,a)a =
P, + vn, we get (in short-hand notation)

d
—{als(t),t]} = J;Pps + Y (vid) + d;ia.

o 3.1

By 9;in = J; 9, Vo, changing the order of differentiation, and
substituting ¢ = —v|| V| from the level set equation (2.6),
it follows that

i =0, {n (Vo)) =T Vo =JV{—v||[Vol}.

By the product rule, V{v||Vg|} = vV|Ve| + ||[Ve|Vv.
With V||x| = x, it follows that

J=V{vlIVel} ! P <V2 e +1IV IIV)
v[|Voll} = —P; | vVo—— o|Vv ).
i Vel ™" Vel

Now, we use WP;, V2p =J;, and thus
on=—J,(vit) — PV,
which yields the assertion in view of (3.1). O

Now we have all ingredients at hand for the proof of the
central result of this section. It states that the reflection point
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velocity vector § must always solve a certain linear equa-
tion system, depending on (local) properties of surface, light
map, and the scalar field of normal velocities.

Theorem 2 Let ¢ be a level set evolution and s a curve as
in Lemma 1 which is additionally a reflection point curve:
all points on s satisfy the law of reflection (2.2) with respect
to the origin and a fixed | € R3. Then, § solves the linear
system

(" +M —K)§ = A+ J;) (i) + Dsv.

Here, M = —]J; = 1

—mPf,Vzel,st, with ej s from
Q2.7.

Proof By definition, s satisfies two constraints:

1. s(¢t) € S(¢) for all t € T and, by the law of reflection,
2. n[s@), tf]=m(s(1)).

As shown in Sect. 2.3, the first of the above properties
immediately implies
(§,n) =v. (3.2)

Now by Lemma 1,

d .

E{n(s(t), N}=—Dgsv+J,Pss.

But the second constraint forces n(s(t), t) = m(s(t)), thus
—Ji$ = Dsv — J, P;s.

As J.Pss = —KP;s = —Ks, we have

(=J;z — K)$§ = Dgv.

Again, decomposing § = Pps+an | § = P;é +vi, it follows
that

(=JaPi — K)s = J; (vir) + Dsv.
For M defined as above, we have —J;P; =M, and thus
M — K)s = J; (vit) + Dgv. (3.3)

Equations (3.2) and (3.3) form a linear system in §. More-
over, since InM — K) C TS and J; (vi), Dsv € T S, we
may multiply (3.2) by 72 and add both equations, thereby
transforming the system into the aggregate form
(" +M—K)§ = A+ Jz;) (i) + Dgv. O (3.4)
Assuming the matrix on the left side of (3.4) is invertible,

Theorem 2 allows us to compute, for each point s on the sur-
face and the corresponding fixed scene point /, the velocity
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vector § of the reflection point on the surface. Projecting this
into the image plane finally gives the optical flow vector

1 1 0 —u
u=—10 1 —up |s(s,v).
$B\o 0 o0

Note that while this can be derived in the same way as (2.4),
here § not only depends on s but also on the local surface
geometry. A striking consequence of the theorem is that the
optical flow is only influenced by surface properties up to
second order. This is in close analogy to a result of Savarese
et al. (2005) for a related problem.

Observe that the optical flow computation only makes
sense if one can presume that the law of reflection holds.
This is one of the reasons why our constrained minimization
approach is superior: we only need to evaluate flow vectors
for surfaces S € Ry, which by construction of R, satisfy
the law of reflection in every point.

Also note that our model allows arbitrary surface mo-
tion, as it depends only on the scalar normal velocity field.
In practice, we may want to restrict ourselves to rigid body
motion:

Corollary 3 Under the conditions of Theorem 2, let S move
relative to the camera according to an external velocity field
w as in Sect. 2.2. Then s satisfies

(" +M—K)G —w) = J;w + PpJ 7.

Proof Consider an arbitrary point x in the field of view sub-
ject to the external motion. Since w is only a function of x,
we may attribute to x the unique path x(¢) a particle in x
follows over time as the solution of the autonomous differ-
ential equation X = w(x). In particular, even if x(¢) € S(¢),
x(tp) :=s, is the trace of a surface point, this path does not
depend on the surface geometry. Without knowledge of S,
we can conclude that x (75) = w(s).

On the other hand, since the whole surface moves ac-
cording to w(x), such a particle is bound to stay on the
surface over time, i.e. x(¢) € S(¢) so that the reasoning at
the bottom of (2.5) applies, and the normal velocity must be
v = (x(19), n). Using the result of the last paragraph, we get

v={(w,n)=n w.

We substitute this into the result of Theorem 2 and apply the
product rule to decompose Dsv =P; Vu:
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(" + M —K)$
={+J;)(vA) + Dsv

=A+J;)hr " w+P, V(i w)

= (AR w4+ Jz) A Hw + P T w+ Py Il a.
To simplify this further, we use K = —J;P; and M =
—J;iP; as well as the symmetricity of these matrices. We
finally get

@R +M—K)§ = (anHw + M+ J;)w

which is the assertion in rearranged form. O

In particular, for an Euclidean rigid body motion we have
w = Qx + v, so J, = L. Also note that by assumption
n=m on S, so any occurrences of iz may be replaced
by the known m. If the matrix (ha" +M — K) is regu-
lar, § is uniquely determined. This is the case if and only
if Rank(M — K) = 2. To see this, observe that by defini-
tion the matrices 27| and (M — K) operate on the orthog-
onal subspaces Span(it) and Span(i2)*, respectively. This
means their ranks add up, and using Rankan ' = 1, we get
Rank(in | + M — K) =3 < Rank(M — K) = 2. If this
regularity condition is satisfied, we will call s a flow regular
point, otherwise flow singular.

For illustration, consider a spheroid Ej, ¢ with [y :=
[(T1(s)) € L as defined by (2.7). Each point on E reflects
lp into the origin, meaning that the light map [ : Q; — L
cannot be inverted locally as it is not injective. When calcu-
lating optical flow, we are essentially tracking the projection
I7'(1) of the diffuse scene feature at Iy. This must fail if [
is not at least locally invertible in Z.

So the natural outcome is that the optical flow vector is
not well-defined in points u = I1(s) for surfaces that resem-
ble the spheroid Ej, ¢ in a neighborhood of s. This is a per-
fectly reasonable constraint since such a surface would lo-
cally exhibit “infinite” magnification. But the rank constraint
is actually weaker: it also forbids reflection points s where
the second order properties of § and Ej ¢ match in a single
tangential direction y € TS. This accounts for the fact that
the image of Ip may split and merge, or even abruptly dis-
appear from the camera image (see for example Fig. 4). We
conclude that flow singular points are not only a byproduct
of our model but have a real physical counterpart.

Figure 5 shows an exemplary optical flow for a stretched
paraboloid rotating around the principal axis of the sensor
as well as the “raw” reflection point velocities s. The result
differs drastically from its counterpart for diffuse surfaces,
which is rotation symmetric and—in this special case—even
independent of the surface shape.

4 Reconstruction of Specular Surfaces

We shall now apply the above results for calculating prop-
erties of real-world specular optical flow to the problem in-
troduced in Sect. 2.4. To recapitulate, our setup consists of
a camera observing a fixed calibrated scene over a mirror
surface subject to known motion. The agreement between
measured light map and a candidate surface is cast into a sur-
face functional J. This functional has no unique minimum,
which is why we propose a second functional H adding in-
formation from specular optical flow measurements. Conse-
quently, we seek a minimum of H within the zero set R;
of J.

The analysis of this problem shall be dissected into three
parts:

1. We study the unconstrained problem of finding an ar-
bitrary surface in R, i.e. one that satisfies the normal
condition. A gradient descent method like outlined in
Sect. 4.1 is employed. While this does not solve the com-
plete problem, it provides a feasible starting point for the
following iterative algorithm.

2. For a large class of functionals such as J, one can gen-
erally state the gradient in explicit form. We will briefly
review the derivation and supplement it with the neces-
sary natural boundary conditions in Sect. 4.2.

3. Tackling the constrained minimization of H in R, it
is instructive to have a closer look at the local structure
of R, i.e. on its tangent spaces. In Sect. 4.3, we will
see how these can practically be computed. They are ap-
plied during the gradient projection method portrayed in
Sect. 4.4, during which the gradient descent for H is cou-
pled with a projection step to assert S € Ry.

Our focus lies on analyzing the common ingredients of
gradient based approaches and showing how the structure
of the—at first glance complicated—constraints can be ex-
ploited. For efficiency reasons, more elaborate algorithms
are definitely desirable and a potential subject of future re-
search. While the gradient projection method is limited, it
does provide first numerical results without obscuring the
problem structure.

Note that the following analysis is not restricted to H
accounting for specular optical flow. In fact, by modifying
H one could as well use data from a second camera, from
a non-diffuse reflection component or even from tracking
diffuse markers on the surface.

4.1 Unconstrained Minimization

We will quickly review how gradient descent works for sur-
face functionals. For an outline of the basic concepts in ab-
stract form, refer to Solem and Overgaard (2005a). A func-
tional analytic survey is given by Burger (2003). The deriva-
tion of gradient flows has also been extensively discussed

@ Springer



234

Int J Comput Vis (2008) 80: 226241

Fig. 4 Occurrence of flow
singular points in concave
specular shapes: you may
observe a sudden elongation of
the designated feature as a result
of minor camera displacement
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Fig.5 (a) Exemplary vector field of reflection point motion § for a paraboloid rotating around the z axis and (b) corresponding optical flow field u

by the active contours community (Aubert et al. 2003;
Jehan-Besson et al. 2006).
Consider the minimization problem § = argming. J(S)

over the set of regular surfaces. In level set notation, J is of
the form

1) = [ 4= @i IVels@ar. 4.
Q

Note that both m and i are normalized so that in fact % l7 —
m|? =1— (i, it). In order to minimize J, we seek a critical
point: find ¢* s.t. dJ (¢*)n := %{J((p* +1tn)} =0 = O for all
test functions n € C*°(2). Formally differentiating J (¢* +
tyr) w.r.t. t shows this is equivalent to
div(a* — m)8(p*) =0, (4.2)
where div is the divergence operator. As will be shown in
the next section, this induces a time-dependent process:

¢ =div(n —m)|| Vol 4.3)
Any steady state solution of this equation satisfies (4.2) and
is thus a stationary point of J. Using the level set equation
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(2.6), one can formulate the result in terms of normal veloc-
ities:

v=—div(n — m). 44
This proves to be a very useful tool for deriving properties
of evolving surfaces. Under the premise that we can find a
corresponding level set evolution ¢, we may use the level set
representation as a tool to simplify calculations. Afterwards,
results are converted back to a representation-independent
form—which must be possible if the surface evolution is
well defined, i.e. depends only on the zero set of the level
set function. In the following sections we will take advan-
tage of this approach.

4.2 Deriving Natural Boundary Conditions

In current vision-related level set literature, it is common
practice (Goldliicke and Magnor 2004; Solem and Over-
gaard 2005a) to postulate that S is closed and fully con-
tained in the computational domain €2, i.e. SN 32 = @. The
surface is then represented by a discretization of the actual
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level set function, and standard Neumann boundary condi-
tions Z—‘g = 0 are applied (o refers to the outside normal of
d%2). Using these homogeneous boundary conditions is jus-
tified, provided that S is at a sufficiently large distance from
Q2.

However, this case requires normal measurements for
every point in Q2—even outside the actual surface—which in
practice are rarely available. In our setup, the camera gener-
ally sees only a small part of the surface, thus forcing S and
dQ2 to intersect. This renders the above approach useless:
the Neumann condition would then force (r1, 0) = 0, which
will generally be violated by the sought-after surface. We
shall therefore extend the proof of the normal speed equa-
tion (4.4), as shown in Solem and Overgaard (2005a), by
formally deriving the natural boundary condition.

Let E be the level set version of a surface error functional
of the form

E(p) = fg ¢ (. ) Ve 5(p)dx

with g : R3 x §2 — R(‘)" integrable over S. Note that this
includes definition (4.1) of the normal functional J if we
set g(x,n) = %Hfz —m(x)|. We denote by g, := Dgsh the
surface Jacobian of 7. The following theorem gives natural
boundary conditions which must hold at every stationary
point of E and thus also at the minimizing surface. This
effectively allows us to limit the search space to surfaces
fulfilling the boundary condition.

Theorem 4 Let the level set surface ¢ be a critical point of
the functional E. Then for sufficiently smooth 0S2 the natural
boundary condition
(ga+gn,0)=0 4.5)

on ¢ {0}, t1N 8K follows. Generally, if ¢ fulfills this con-
dition, we have the following expression for the Gdteaux
derivative dE(¢)n of E w.r.t. n:

dE(p)n=— /Q ndiv(g; +gn)é(p)dx (4.6)
forall n € C®°(RQ).

Proof For a normal variation ¢° := ¢ + 7, we have

d
dE(cp)n=EE(<p8)

e=0

do.
e=0

d n
=f d—{g(x,n)llvwallrS(ws)}
Qae
As shown in Solem and Overgaard (2005a), this leads to

dE(w)n=/Q<Vn,g;, +gﬁ>5(w)dx+angIIV<pII6’(<p)dx-

Applying Gauss’ theorem to the first integral yields
dE(p)n = /a (e -+ i 5)3(0)do

- /Q ndivi(gs + g (g)}dx

+ /Q ngllVells'(p)dx

=/ n(gs +gh, 0)5(p)do
0Q
- fg ndivig; + gh)d(@)dx
—/Qn<g;, + git, V)8 (9)dx

+ fQ ngllVells' (p)dx.

Observe that (g, Vo) = (g, 1) || Vel = 0, since the sur-
face gradient g, by definition lies in the tangent plane of
S. Also (n, V) = | Vo], so the remaining terms in the last
line cancel each other leaving

dE(p)n = /BQ n(gy + gh, 0)s(p)do

—Lndiv(gﬁ + gn)é(p)dx.

Now, let ¢ be a critical point of E. Constraining the
choice of n to functions vanishing outside a compact do-
main, we see that the right side vanishes for all such 7. Since
this applies to all n, it forces div(g; + gi)8(p) = 0. But this
means the left integral must vanish itself for all . Again, this
applies to all n € C*°(£2), resulting in the natural boundary
condition (g, + gfi, 0)8(¢) =0 on IRQ2.

On the other hand, if ¢ satisfies this boundary restriction,
we have

dE(p)n=— fg ndiv(g; +gn)d(e)dx. 0

The term div(gy; + gn) is the so-called shape gradient of
E, so in view of (4.4), our minimization scheme is of steep-
est descent type. For a thorough introduction from this per-
spective, see Delfour and Zolesio (2001), Burger (2003),
Charpiat et al. (2005).

4.3 The Space of Admissible Gradients

At the constrained minimization of the specular optical flow
error functional H from (2.8), we face two difficulties:

1. Following Theorem 2, H contains derivatives of ¢ up
to second order, while the above derivation only permits
first order derivatives.
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2. We must respect the normal condition, i.e. we may not
leave R, during the time advancement step.

Let us consider the first point: while it is possible to de-
rive a gradient descent process similar to (4.3), this requires
computing surface derivatives of up to fourth order. Follow-
ing the common Lagrangian approach, the gradient must
then be projected onto a—yet to be determined—space con-
sisting of all gradients v of surface evolutions through the
current surface that obey the normal condition. As the man-
ifold of solutions to the reconstruction problem is assumed
to be a “regular curve”, its tangent space—which we denote
by Aj;—will clearly be one-dimensional. Thus, the gradient
projection reduces to the computation of a directional deriv-
ative of H, which can be approximated numerically. Sparing
the cumbersome calculation of the complete gradient, both
difficulties addressed above are resolved this way.

Under moderate assumptions, the tangent space .Ag;
matches the solution space of some partial differential equa-
tion:

Proposition 5 Let ¢ : Q@ x T — R be a sufficiently differen-
tiable level set evolution respecting the normal condition at
each point in time, i.e. ii[s,t] =m(s),t € T, s € S(t). Then
forallt € T and s € S(t), the following relationship holds:

Dsv + J (vine) = 0. 4.7)

Here Dgv denotes the surface gradient of v on S.

For a fixed point in time, let /I,;, consist of all v satis-
tying (4.7). Now note that Ay, is closed under scalar mul-
tiplication. The linear structure of (4.7) confirms that A
is a vector space. Clearly, .,Zl,;, must contain A;,. From the
Lipschitz-continuity of m, it can be deduced by means of
general PDE theory that the solution of (4.7) will actually
be unique up to a scalar, i.e. dim /i,;, = 1. The equality
in dimension implies that both spaces coincide whenever
A, # {0}, a case that has been excluded by our regularity
assumption. The projection is exact!

Proof of Proposition 5 For a sufficiently differentiable ¢
and 7o € T, xo € S(tp), we can locally find acurve s : T —
R3 on S with s(tp) = x¢. This can be seen making the ansatz
s(t) = x + n(xo, o)A (), A(tp) = 0, and using an implicit
function argument to find A € C Y(T,,R) ina neighborhood
Te .= (tg — &, 19 + €) of ty.

From Lemma 1, we get Dgv + j—t{fz[s(t), t]} — JaPis
= 0. Using the normal condition 7[s (), t] = m(s(t)), it fol-
lows that

Dsv+J;8 — JiPrs =0.

Decompose s orthogonally, then J;,$ = J;Pis + Jis (hn")s

and

Dsv +J; (A )§ =0.
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Substituting J,;, (A 1)§ = (Jzm) (i | m)v = J; (vin) yields

the assertion. (]
4.4 The Minimization Algorithm

Let us now outline the complete gradient descent procedure
for solving the constrained minimization problem for gen-
eral H.

1. Choose a start value S(fg = 0) for the surface iteration.
2. Advance S in time according to (4.4) until J(S(7)) < &,.
3. While H(S(t)) > ey, repeat:
(a) For S(¢), find a basis vector b of the discrete version
of flm
(b) Numerically, approximate the directional derivative
dH (t)b. The gradient of H projected onto Ay, is
then v = b{d H(S(t))b}.
(c) Advance t — t + §; and S(¢) — S(¢ + §;) according
to the normal speed given by v.

As with all local methods, one has to rely on a sufficiently
accurate initial guess. This guess could be based on an esti-
mate of the camera-surface distance, on the expected shape
in a quality control environment, or on the output of a coarse
but robust method.

Depending on the specific method used, the time dis-
cretization step may cause an increase in the normal error
J during phase 3. In our prototype, we use a simple forward
Euler step with some additional repetitions of step 2 if the
normal error exceeds a certain upper bound. For more im-
plementation details, see Lellmann (2006).

Note that the formulation works for any H, not only for
the optical flow case. Also note that although the derivation
of the proposed method is based on level set calculus, we
are free to use any other surface representation for the im-
plementation. As an example, we shall briefly discuss the
case of an explicit parametrization in two dimensions. Ex-
tending the method to three dimensions is straightforward.
Here we have f : X x T — R for an interval X =[x/, x,]
and Q = X x RT. The surface is then simply the graph of
f, S(t) ={(x, flx,t])T | x € X}. Some important normal
related properties are

. _ 1 f’)
=T ()

1 70 - 1"
J;,=—3< iy ), divi = ———.
(24113 N7 0 [(f)2+1]3

Consider a curve s on S, i.e. s(t) = (x(¢), f[x(?), T, By
v={(s,n), we get

_ 1 i f/>>: ~f
’ \/(f’)2+1<<f/5‘+f)’<—1 VErZ+1
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The normal velocity field v translates into the temporal

derivative of f by f = —vy/f”2 + 1, in direct analogy to
the level set equation ¢ = —v||Vg]||. The normal boundary
condition reads

(i ()= (D)

where i = (1i11, /i12) T . This scalar equation is equivalent to

fl=m/f?+1

Assuming that the normal field m is compatible with the sur-
face model in the sense that through every point x, one can
actually find a surface in this parametrization s.t. m(x) =
n(x), the case mmy = 0 can be excluded. We finally obtain

(4.8)

() = 0.

[ (xp)|
as the natural boundary condition. The same result applies
to the right boundary. Note that, in this special case, this is
equivalent to forcing 7 = m on S N 32, i.e. on the border
the minimizing surface normals coincide exactly with those
of the measured normal field.

5 Experimental Results

To verify the feasibility of the presented minimization
process, we created a MATLAB implementation of the algo-
rithm. For the evaluation of our method, we used the above
explicit parametrization for two-dimensional €2 combined
with a simple finite difference scheme and forward Euler
step method for solving the PDE. At the m-th iteration we
have f™ = (f{",..., fy) and f™ = (f{",..., fi). Using
central differences for f, the discrete equivalent of the
space flm is the kernel of a matrix of the form

a,; a2

a) a2

c R(ZN—Z) xN

aN-1,1 anN-1,2

where each a; ; represents an R? vector. This kernel is found
by decomposing A using SVD and inspecting the singular
values. Looking at the defining (4.7), we expect rows 2k — 1
and 2k to constitute one scalar equation thus limiting the
rank of A to N — 1. In this special two-dimensional case,
one could actually parameterize v by arc length of the sur-
face curve S(¢). This transforms (4.7) into a homogenous
linear ODE for v, so that all solutions are scalar multiples
of an arbitrary non-zero solution vg. Thus, the kernel of A
should be one-dimensional, which was confirmed in all test

cases. This supports the assumption about the simple struc-
ture of R;;. Figure 6(a) shows a visualization of R, for a
sample curved surface. This surface is common to all fol-
lowing illustrations.

In order to obtain good data for the normal field, the dis-
crete simulation values of the light map / are interpolated
using cubic B-splines. For the optical flow data, we use a
piecewise linear interpolation, which simplifies the exclu-
sion of singular points. To estimate the error, we recorded
the values of the error functionals J and H. Figures 6 and 7
show the steps taken as well as the error evolution for the re-
construction of a sample surface. As can be seen, the surface
converges within expectations for the simple discretization.

Notwithstanding these encouraging results, one might
ask if the optical flow is actually a good candidate for se-
lecting a unique solution from R,. To this matter, we eval-
uated the optical flow functional H for a number of solu-
tion candidates in R, see Fig. 8. While there are some—
possibly discretization-caused—local minima, the specular
optical flow error exhibits a distinct global minimum at the
reference surface.

Extending the method to three dimensions is straightfor-
ward. Figure 9 shows the result of a simulation for a curved
three-dimensional surface. The corresponding error evolu-
tion is shown in Fig. 10.

Real data were recorded by the compact sensor head de-
picted in Fig. 1. It consists of an industrial PC unit, a cam-
era, and LC display, the latter two components being thor-
oughly calibrated with respect to each other. Since the flow-
generating object motion is commanded to the robot con-
troller in camera coordinates, a hand-eye calibration was
also required. To demonstrate the regularizing effect of spec-
ular optical flow data, we investigated our method for the
simple example of a planar mirror.

The LCD was imaged over the test surface before and af-
ter a translation of 50 pm in the direction of the principle
ray. Once again, variability of process parameters proved to
be very convenient: for flow estimation, we utilized an im-
plementation of the standard Lucas-Kanade algorithm. This
is a local method so that density of the estimated flow field
may become poor in large homogenous regions. Although
this is most likely uncritical in our application (theoretically,
a single flow vector might suffice for restoring uniqueness),
the effect can be compensated by diligent selection of the
displayed pattern.

The reconstruction of the plane mirror is shown in
Fig. 11(a). Attaching a diffuse checkerboard pattern to it,
a standard extrinsic calibration technique provided for some
ground truth. Figure 11(b) shows the mean curvature of the
result surface, which should ideally be zero in this case. The
moderate discontinuities in the corners of the xy-domain,
where the outer normal to 2 is not well-defined, result
from discretization of the natural boundary conditions and
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4o 3 0 5 10
(a)

Fig. 6 (a) The space R visualized by a set of surfaces satisfying
the normal condition for a curved surface (dashed). Here, Q2; is the
z=1plane, Q = (—10, 10) x R*, and the scene L is the z = 0 plane.
(b) Reconstruction process for a curved surface starting with 0 = 16.
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Curves represent snapshots of f* every 5 steps for a total of 500 iter-
ations. The normal adjustment takes place in the first few iterations at
the rop of the figure. The constrained minimization (black) converges
to the correct solution (dashed)
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Fig. 7 Error progression for (a) normal and (b) specular optical flow error functionals J and H, respectively

the curvature operator. The normal error decreases expo-
nentially towards the threshold ¢,, which is maintained
by intermediate normal adjustments during the projection
phase, see Fig. 12. Mean relative normal and distance er-
ror turned out to be 1.81 % and 6.23%, confirming the
higher sensitivity of deflectometric methods with respect to
slope.

6 Conclusion

Based on the theory of level set evolutions, we contributed
a very general model for describing optical flow fields
which originate from the imaging of a scene over a time-
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variant specular object. We could additionally derive nec-
essary and sufficient conditions for these modelling equa-
tions to be invertible. Particularly, it followed that the model
works for all cases where an actual measurement is possi-
ble.

A novel view of the reconstruction problem was put for-
ward thereupon: light map measurements were treated as a
constraint for the minimization of an additional functional
which—in our case—represented the optical flow error. This
could then be solved by finding the steady-state solution of
a partial differential equation under the normal constraint.
To cope with partial measurements, natural boundary con-
ditions were derived. To solve the PDE, a gradient projec-
tion type algorithm was proposed, which made it necessary
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Fig. 8 The (a) logarithmic and (b) linear specular optical flow error functional evaluated for several surfaces, all obeying the normal constraint,
see also Fig. 6. The minimum uniquely identifies the desired surface

Fig. 9 Steps during the Iteration #0 Iteration #236
reconstruction of a .
two-dimensional curved surface
(dark), starting at f0 =20
(light). At iteration 236, the
normal error has become small
enough to start the constrained
gradient descent. The image

domain ©; liesinthe z =1 N s
plane, Q2 = (—10, 10) x
(=10, 10) x R*, and the scene
L is the z =0 plane
y -10 -10 X y -10 -10 X

Iteration #516 Iteration #588

y -10 -10 X y -10 -10 X

to take a closer look at the space of admissible gradients.  iment helped to justify the choice of an optical flow-based
Finally, the results of a reference implementation were pre-  method for pinpointing the unique solution to the recon-
sented, suggesting good convergence. An additional exper- struction problem.
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Fig. 10 Error evolution for (a) normal and (b) optical flow error functionals J and H. The normal error threshold &, is marked with a gray line
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Fig. 11 (a) Reconstruction result in the case of the planar mirror. (b) Validation by virtue of mean curvature
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Fig. 12 Development of (a) normal and (b) flow error J, respectively H. The threshold ¢, for the beginning of the projection phase is marked in
(a) by a horizontal line
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In the future, adopting a more sophisticated integration
process will certainly improve accuracy as well as conver-
gence speed. Finally, an analytical answer to the question of
well-posedness in the case of the flow-regularized gradient
descent has yet to be found.
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