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Abstract Although the filtered backprojection algorithm (FBA) has been the
standard reconstruction algorithm in 2D computerized tomography for more than
30 years, its convergence behavior is not completely settled so far. Relying on conver-
gence results by Rieder and Faridani for the semi-discrete FBA [SIAM J. Numer. Anal.,
41(3), 869–892, 2003], we show optimality of the fully discrete version for recon-
structing sufficiently smooth density distributions. Further, we introduce MFBA, a
modified version of FBA, and prove its optimality under weaker smoothness require-
ments. Remarkably MFBA may have a larger convergence order in the angular than
in the lateral variable, thus allowing optimal convergence in case of angular under-
sampling. Moreover, MFBA can be seen as a limit of the phantom view method intro-
duced to increase angular resolution.

Mathematics Subject Classifications (2000) 65R20

1 Introduction

X-Ray computerized tomography (CT) is a technique for imaging the density
distribution inside an object. Mathematically speaking, CT reduces to reconstruct-
ing a function from its integrals along straight lines, see, e.g., Natterer [11] for details.
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152 A. Rieder, A. Schneck

The mathematical model in 2D is the Radon transform

R f (s, ϑ) :=
∫

L(s,ϑ)

f (x) dσ(x),

mapping a function to its integrals over the lines L(s, ϑ)= {τ ω⊥(ϑ)+ s ω(ϑ) | τ∈R}
where s ∈ R, ω(ϑ) = (cos ϑ, sin ϑ)t , and ω⊥(ϑ) = (− sin ϑ, cos ϑ)t for ϑ ∈
[0, π ]. We assume throughout that the searched-for density distributions are com-
pactly supported in �, the unit disk in R

2 centered about the origin. Thus, the lateral
variable s may be restricted to [−1, 1].

In the parallel scanning geometry we observe the discrete Radon data

D = {R f (kh, jhϑ) : k = −q, . . . , q, j = 0, . . . , p − 1}, p, q ∈ N, (1.1)

where h = 1/q is the lateral sampling rate and hϑ = π/p is the angular sampling rate.
Let fFBA = fFBA(h, hϑ) denote the reconstruction of f by the filtered backprojection
algorithm (FBA) from D. Then, we will show that1

‖ f − fFBA‖L2(�)

�
(

hmin{αmax,α} + hαϑ + hϑhmin{αmax,α−1}) ‖ f ‖Hα
0 (�)

, α ≥ 1. (1.2)

The maximal lateral convergence rate αmax depends on the used filter and the inter-
polation process after filtering. For instance,

αmax =

⎧⎪⎨
⎪⎩

3/2 Shepp-Logan filter with piecewise constant interpolation,

2 Shepp-Logan filter with piecewise linear interpolation,

5/2 mod. Shepp-Logan filter with piecewise linear interpolation.

(1.3)

In principle, it is possible to construct filters and adapted local interpolation schemes
leading to arbitrarily large αmax (see Remark 3.2).

Under the optimal sampling condition p = πq (h = hϑ ), see, e.g., Natterer [11,
Table III.1], our estimate (1.2) yields the convergence rate hα as h → 0 which is
optimal for density distributions in Hα

0 (�), see Natterer [10] or [11, Theorem IV.2.2].
Moreover, we introduce algorithm MFBA, a modification of FBA, and we prove

that

‖ f − fMFBA‖L2(�)

�
(

hmin{αmax,α} + hmin{5/2−ε,α}
ϑ

)
‖ f ‖Hα

0 (�)
, α > 1/2, (1.4)

for any ε > 0 where αmax is as in (1.3). So we can ensure optimality of MFBA for
a larger range of Sobolev orders compared to FBA. Note also that the convergence

1 A � B indicates the existence of a generic constant c such that A ≤ cB uniformly in all parameters A
and B may depend on.
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The fully discrete filtered backprojection algorithm 153

order in hϑ may exceed the order in h. Accordingly optimal convergence in the lateral
variable can be achieved while under-sampling the angular variable (in case αmax <

5/2 and α large enough). Further, we relate MFBA to the streak-alleviating phantom
view method. Phantom views are created by interpolating the Radon data linearly with
respect to the angular variable, see Lewitt et al. [6] and Weiss et al. [17]. Since the
phantom view method converges to MFBA as the number of phantom views increases,
its convergence behavior essentially coincides with (1.4).

The paper is organized as follows. In the next section we introduce the filtered
backprojection algorithm, recall the convergence result of Rieder and Faridani [12],
and give some stability estimates for the Radon transform which we will need later.
Then we present and prove our convergence estimate for the fully discrete FBA in
Sect. 3. Section 4 is devoted to our modified filtered backprojection algorithm: We
motivate its definition, prove convergence, and discuss some aspects of its imple-
mentation. Further, the phantom view method is introduced and its relation to MFBA
is established. Numerical experiments visualize our convergence results in the final
section where also qualitative comparisons of the algorithms are presented.

2 The filtered backprojection algorithm

In this section we introduce the FBA in detail and recall results which we will need
later.

First, we present some notation. Let f̂ (ξ) := (2π)−d/2
∫
Rd f (x) e−ı ξ t x dx denote

the Fourier transform of a function f in L1(Rd)∩ L2(Rd). The Fourier transform can
be extended to L2-functions and tempered distributions by continuity and duality. We
define the Sobolev spaces Hα(Rd), α ∈ R, to be the closure of the Schwartz class
with respect to the norm

‖ f ‖2
α :=

∫

Rd

(1 + |ξ |2)α | f̂ (ξ)|2 dξ.

Starting point for deriving the FBA is the inversion formula

f = 1

4π
R∗(
⊗ I )R f

which holds true for f ∈ L2(�) [12, Sect. 3.2]2. Here, the backprojection operator

R∗g(x) =
2π∫

0

g(xtω(ϑ), ϑ) dϑ (2.1)

2 Later in the paper we will benefit from the 2π -periodicity of R f (s, ·). Therefore, the angular variable
from now on runs in the interval [0, 2π ]. From a practical point of view, however, it suffices to know R f
on [−1, 1] × [0, π ] to recover f .
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154 A. Rieder, A. Schneck

is the adjoint of R ∈ L
(

L2(�), L2(Z)
)

with Z = [−1, 1] × [0, 2π ]. The
-operator
is defined by


̂u(ξ) = |ξ |û(ξ)

and maps Hα(Rd) boundedly to Hα−1(Rd). The binary operation ⊗ denotes the
tensor product of operators and spaces, respectively, see, e.g., Aubin [1]. Therefore,

 in (
⊗ I )R f only affects the lateral variable (I is the identity).

Due to Rieder and Faridani [12] FBA can be written as

fFBA(x) := R∗
hϑ (Ih
Eh ⊗ I )R f (x) (2.2)

where

R∗
hϑ g(x) := hϑ

2p−1∑
j=0

g(xtω(ϑ j ), ϑ j ), ϑ j = jhϑ .

The operators Eh and Ih are generalized interpolation operators: For u ∈ Hα(R)

define

Ehu(s) := h−1
∑
k∈Z

〈u, εh(· − sk)〉 Bh(s − sk) (2.3)

where εh(s) = ε(s/h) and Bh(s) = B(s/h). Here, B ∈ L2(R) is the “interpolation
function” and ε ∈ H−α(R) is assumed to be even with ε̂(0) = 1/

√
2π . Further, 〈·, ·〉

denotes the duality pairing in Hα(R)× H−α(R). For u ∈ Hα(R), α > 1/2, we may
choose ε = δ (Dirac distribution). In this case, h−1〈u, εh(· − sk)〉 = u(sk). Other
choices of ε allow to model finite width of the rays and detector inhomogeneities.
Indeed, for ε being a non-negative function compactly supported in [−1/2, 1/2] with
a normalized mean value we observe the discrete Radon data

{gk, j : k = −q, . . . , q, j = 0, . . . , p − 1}

where

gk, j = h−1 〈R f (·, ϑ j ), εh(· − sk)
〉 = h−1

sk+h/2∫

sk−h/2

R f (s, ϑ j ) εh(s − sk) ds.

Therefore ε can be interpreted as sensitivity profile of the X-ray detectors.
Analogously, we define

Ihu(s) := h−1
∑
k∈Z

〈u, ηh(· − sk)〉 Ah(s − sk), (2.4)
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The fully discrete filtered backprojection algorithm 155

where η and A play the roles of ε and B, respectively. For more details on Eh and Ih

we refer to [12, Sect. 3.2].
Some straightforward calculations reveal that

(Ih
Eh ⊗ I )R f (s, ϑ)=
∑
∈Z

(∑
k∈Z

w−k
〈
R f (·, ϑ), εh(· − sk)

〉)
Ah(s − s) (2.5)

with wr = υ(r)/h2 where

υ(s) := 1

π

∞∫

0

σ B̂(σ ) η̂(σ ) cos(sσ)dσ

is the reconstruction filter. Thus, the evaluation of fFBA(x) can be implemented exactly
as in [11, Chap. V.1.1]. The sum over k in (2.5) represents the filtering step.

We require the following approximation properties of Eh and Ih , respectively:

(i) There are non-negative constants τmax and βmin ≤ βmax such that

‖Ehu − u‖τ � hβ−τ‖u‖β (2.6)

for βmin ≤ β ≤ βmax, 1/2 ≤ τ ≤ τmax, τ ≤ β and any u ∈ Hβ
0 (−1, 1)3.

(ii) There is a constant αI > 0 such that

‖Ih − I‖Hα−1/2(R)→H−1/2(R) � hα (2.7)

for 0 ≤ α ≤ αI.

Both estimates, (2.6) and (2.7), are meant asymptotically as h → 0. All further
estimates involving h or hϑ have to be understood in similar manner.

Rieder and Faridani studied a semi-discrete version of FBA, that is, they did not
consider discretization of the angular variable. Their result [12, Theorem 3.7] is for-
mulated in the following theorem (Natterer [9] gave a convergence result for the other
semi-discrete version of FBA where the angular variable is discretized but not the
lateral).

Theorem 2.1 Under (2.6) and (2.7) with βmax, τmax ≥ 1/2 we have that

∥∥∥∥ f − 1

4π
R∗(Ih
Eh ⊗ I )R f

∥∥∥∥
L2(�)

� hα‖ f ‖α

for max{0, βmin − 1/2} ≤ α ≤ min{αI, βmax − 1/2, τmax − 1/2} and f ∈ Hα
0 (�).

3 Hα
0 (D) is the closure of C∞

0 (D), the space of infinitely differentiable functions compactly supported in

D ⊂ R
d , with respect to the norm ‖ · ‖α .
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156 A. Rieder, A. Schneck

We present concrete examples; for proofs see again [12]. Set

f̃FBA = 1

4π
R∗(Ih
Eh ⊗ I )R f.

Example 2.2 (Shepp-Logan filter with nearest-neighbor interpolation) Let B(·) =
sinc(π ·)4 be the interpolating function in Eh and A = 1[−1/2,1/2]5 the interpolating
function in Ih . Further, let η = 1[−1/2,1/2] in Ih . Then, the discrete filter {wr }r∈Z in
(2.5) is the Shepp-Logan filter [15]:

wr = 2

π2 h2

1

1 − 4 r2 . (2.8)

Further, ∥∥∥ f̃FBA − f
∥∥∥

L2(�)
� hmin{3/2, α} ‖ f ‖α for f ∈ Hα

0 (�), α > 0,

as long as ε in Eh is either an even, compactly supported and normalized L2-function
or the Dirac distribution.

Example 2.3 (Shepp-Logan filter with piecewise linear interpolation) Let Eh and Ih

be as in Example 2.2, except for A which is now the linear B-spline, that is, A =
1[−1/2,1/2] � 1[−1/2,1/2]. Hence, Ih interpolates piecewise linear. The discrete filter
{wr }r∈Z is as in (2.8). Here, we have∥∥∥ f̃FBA − f

∥∥∥
L2(�)

� hmin{2, α} ‖ f ‖α for f ∈ Hα
0 (�), α > 0.

Example 2.4 (modified Shepp-Logan filter with piecewise linear interpolation) Let
Eh and Ih be as in Example 2.3, except for η which is now given by

η̂(σ ) = (2π)−1/2 sinc(σ/2)

3/4 + cos(σ )/4
.

The corresponding discrete filter {wr }r∈Z is called modified Shepp-Logan filter [12].
Here, ∥∥∥ f̃FBA − f

∥∥∥
L2(�)

� hmin{5/2, α} ‖ f ‖α for f ∈ Hα
0 (�), α > 0.

For later use we compile Sobolev space estimates of the Radon transform. Set
H (α,β) := Hα(R)⊗ Hβ

p (0, 2π)6. Due to Natterer and Louis [8] we have

‖R f ‖H (α+1/2,0) � ‖ f ‖α for any f ∈ Hα
0 (�), α ≥ 0.

A similar continuity estimate by Rieder and Schuster [13] yields especially

‖R f ‖H (0,α+1/2) � ‖ f ‖α for any f ∈ Hα
0 (�), α ≥ 0.

4 sinc is the sinus cardinalis: sinc(s) = (sin s)/s.
5 1D denotes the indicator function of D.
6 For the definition of the Sobolev spaces Hβ

p (a, b) of periodic functions with period b−a, see, for instance,
Lions and Magenes [7, Chap. 1.7].
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The fully discrete filtered backprojection algorithm 157

Interpolating both latter mapping properties of R finally results in

‖R f ‖H (β,α+1/2−β) � ‖ f ‖α for any 0 ≤ β ≤ α + 1/2 − β (2.9)

and f ∈ Hα
0 (�).

3 Convergence of the fully discrete FBA

In this section we will prove our asymptotic convergence estimate of FBA which is
stated in the following theorem.

Theorem 3.1 Under (2.6) and (2.7) with βmax, τmax ≥ 3/2 we have that

∥∥∥∥ f − 1

4π
R∗

hϑ (Ih
Eh ⊗ I )R f

∥∥∥∥
L2(�)

�
(

hmin{αmax,α} + hαϑ + hϑhmin{αmax,α−1}) ‖ f ‖α, α ≥ αmin,

where αmin = max{1, βmin − 1/2}, αmax = min{αI, βmax − 1/2, τmax − 1/2}, and
f ∈ Hα

0 (�).

Note that Theorem 3.1 reduces to (1.2) withαmax from (1.3) for our concrete settings
of Examples 2.2, 2.3, and 2.4.

Remark 3.2 In [12, Remark 4.2] Rieder and Faridani sketched a scheme to construct
interpolation operators Ih (2.4) with arbitrarily large αI. Further, these interpola-
tion operators are still local since A is a B-spline. Using band-limited interpolation
for Eh , that is, B(·) = sinc(π ·) and ε is the Dirac distribution in (2.3), we have
βmax = τmax = ∞, see [12, Theorem B.4]. Thus, one can construct efficient filtered
backprojection schemes with an arbitrarily large αmax. Of course, one would fully
benefit from these highly accurate filtered backprojection schemes if the searched-for
density distributions are sufficiently smooth which is not the case in medical imag-
ing but in optical homodyne tomography, see, e.g., Smithey et al. [16]. In optical
homodyne tomography one determines the Wigner function of the state of a quantum
system.

In the remainder of this section we verify Theorem 3.1. In view of Theorem 2.1 we
start with

‖ f − fFBA‖L2(�) ≤
∥∥∥∥ f − 1

4π
R∗(Ih
Eh ⊗ I )R f

∥∥∥∥
L2(�)

+∥∥(R∗ − R∗
hϑ )(Ih
Eh ⊗ I )R f

∥∥
L2(�)

(3.1)
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158 A. Rieder, A. Schneck

and it remains to investigate the second error term which involves the discretization
of the backprojection operator. We once again apply the triangle inequality and obtain

∥∥(R∗ − R∗
hϑ )(Ih
Eh ⊗ I )R f

∥∥
L2(�)

≤ ∥∥(R∗ − R∗
hϑ ) ((Ih
Eh −
)⊗ I )R f

∥∥
L2(�)

+∥∥(R∗ − R∗
hϑ )(
⊗ I )R f

∥∥
L2(�)

. (3.2)

Following we bound each of the norms on the right hand side.
As R∗

hϑ arises from R∗ by applying the composite trapezoidal rule to the integral
in (2.1) we will rely on the following estimate for the quadrature error.

Lemma 3.3 Let u ∈ H2k+1
p (a, b) for one k ∈ N0. Then,

∣∣∣∣∣∣
b∫

a

u(t)dt − h
n−1∑
j=0

u(a + jh)

∣∣∣∣∣∣ � h2k+1

b∫

a

|u(2k+1)(t)|dt

where h = (b − a)/n and n ∈ N.

Proof Since
{

g|[a,b] : g ∈ C2k+1(R), g is (b − a)-periodic
}

is dense in H2k+1
p

(a, b) the assertion follows for k ∈ N readily from the Euler–Maclaurin formula
[5, Corollary 9.27] and the bounded embedding H2k+1

p (a, b) ↪→ C([a, b]). For k = 0
the statement may be proved by a straightforward calculation, see, e.g., Schneck [14].

��

Lemma 3.4 Let f be in Hα
0 (�) for α ≥ 1. Then,

∥∥(R∗ − R∗
hϑ )(
⊗ I )R f

∥∥
L2(�)

� hαϑ ‖ f ‖α.

Proof For the time being assume f ∈ C∞
0 (�). We will use a duality argument by

Natterer [9]. For g ∈ C∞
0 (�) let

u(ϑ) :=
∫

�

g(x)�(xtω(ϑ), ϑ) dx =
1∫

−1

Rg(s, ϑ)�(s, ϑ) ds (3.3)

where�=(
⊗ I )R f . The latter equality follows from the coordinate transformation
x = sω(ϑ) + tω⊥(ϑ) �→ (s, t). By a straightforward calculation we find the useful
relation

|〈(R∗ − R∗
hϑ )�, g〉L2 | =

∣∣∣∣∣∣
2π∫

0

u(ϑ) dϑ − hϑ

2p−1∑
j=0

u( jhϑ)

∣∣∣∣∣∣ .
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The fully discrete filtered backprojection algorithm 159

Further,

∥∥(R∗ − R∗
hϑ )(
⊗ I )R f

∥∥
L2(�)

= sup
g∈C∞

0 (�)

|〈(R∗ − R∗
hϑ
)�, g〉L2 |

‖g‖L2

= sup
g∈C∞

0 (�)

∣∣∣∫ 2π
0 u(ϑ) dϑ − hϑ

∑2p−1
j=0 u( jhϑ)

∣∣∣
‖g‖L2

.

If we are able to bound

2π∫

0

|u(2k+1)(ϑ)|dϑ � ‖ f ‖2k+1 ‖g‖L2 , k ∈ N0, (3.4)

we have proved Lemma 3.4 via Lemma 3.3 as well as density and interpolation argu-
ments.

Since

2π∫

0

|u(m)(ϑ)|dϑ ≤
2π∫

0

1∫

−1

∣∣Dm
ϑ (Rg(s, ϑ)�(s, ϑ))

∣∣ dsdϑ

≤
m∑

j=0

(
m

j

) 2π∫

0

1∫

−1

∣∣∣(I ⊗ Dm− j )Rg(s, ϑ) (
⊗ D j )R f (s, ϑ)
∣∣∣ dsdϑ

≤
m∑

j=0

(
m

j

)
‖(I ⊗ Dm− j )Rg‖H (1/2, j−m) ‖(
⊗ D j )R f ‖H (−1/2,m− j)

�
m∑

j=0

(
m

j

)
‖Rg‖H (1/2,0) ‖R f ‖H (1/2,m)

(2.9)
� 2m ‖g‖L2 ‖ f ‖m

estimate (3.4) as well as Lemma 3.4 hold true. ��
Now we handle the second error term.

Lemma 3.5 Let f be in Hα
0 (�). Under the assumptions of Theorem 3.1 we have

∥∥(R∗ − R∗
hϑ ) ((Ih
Eh −
)⊗ I )R f

∥∥
L2(�)

� hϑhmin{αmax,α−1}‖ f ‖α.

Proof We proceed as in the proof of Lemma 3.4. Again we benefit from duality,
density and interpolation. Let f and g be in C∞

0 (�). Define u as in (3.3), however,
with

� = ((Ih
Eh −
)⊗ I )R f.
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160 A. Rieder, A. Schneck

As in the proof of Lemma 3.4 we find that

2π∫

0

|u′(ϑ)|dϑ ≤ ‖(I ⊗ D)Rg‖H (1/2,−1)‖�‖H (−1/2,1)

+‖Rg‖H (1/2,0)‖(I ⊗ D)�‖H (−1/2,0)

≤ 2 ‖Rg‖H (1/2,0)‖�‖H (−1/2,1)

� ‖g‖L2‖�‖H (−1/2,1) .

Further,

‖�‖H (−1/2,1) ≤ ‖((Ih
Eh −
Eh)⊗ I )R f ‖H (−1/2,1)

+ ‖((
Eh −
)⊗ I )R f ‖H (−1/2,1)

(2.7)
� hmin{αI,α−1}‖(
Eh ⊗ I )R f ‖H (α−3/2,1)

+ ‖((Eh − I )⊗ I )R f ‖H (1/2,1)

(2.6)
� hmin{αI,α−1}‖(Eh ⊗ I )R f ‖H (α−1/2,1)

+ hmin{βmax,α−1/2}−1/2‖R f ‖H (α−1/2,1)

(2.6)
�
(

hmin{αI,τmax−1/2,α−1} + hmin{βmax−1/2,α−1}) ‖R f ‖H (α−1/2,1)

(2.9)
� hmin{αmax,α−1}‖ f ‖α.

Thus,

2π∫

0

|u′(ϑ)|dϑ � hmin{αmax,α−1}‖g‖L2‖ f ‖α.

Finally,

∥∥(R∗ − R∗
hϑ )�

∥∥
L2(�)

= sup
g∈C∞

0 (�)

∣∣∣∫ 2π
0 u(ϑ) dϑ − hϑ

∑2p−1
j=0 u( jhϑ)

∣∣∣
‖g‖L2

� hϑ sup
g∈C∞

0 (�)

∫ 2π
0 |u′(ϑ)|dϑ

‖g‖L2
� hϑhmin{αmax,α−1}‖ f ‖α

ends the proof of Lemma 3.5. ��
Now Theorem 3.1 is established by (3.1), Theorem 2.1, (3.2), Lemmas 3.4 and 3.5.

Remark 3.6 Unfortunately, our convergence analysis of the FBA does not apply to
density distributions appearing in medical imaging. Image densities in medical imag-
ing can be considered elements in Hα

0 (�) with α < 1/2 but close to 1/2, see Natterer
[11, pp. 92ff.]. Theorem 3.1, however, requires α ≥ αmin ≥ 1. The main reason caus-
ing this lower bound on the Sobolev regularity is the error estimate for the composite
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The fully discrete filtered backprojection algorithm 161

trapezoidal rule (Lemma 3.3). At present we do not know a useful estimate requiring
less smoothness of the integrand.

4 MFBA: a modified filtered backprojection algorithm

In the representation (2.2) of the FBA we see that the 
-operator is not discretized.
Rather, it is applied to the continuous function (Eh ⊗ I )R f (·, ϑ j ) which interpolates
or approximates the discrete Radon data with respect to the lateral variable. We suggest
an analogous approach to the angular variable, that is, we interpolate the discrete data
with respect to both variables. Now, the 
-operator and the backprojection operator
can act exactly on the resulting continuous bivariate function. We call the resulting
numerical scheme modified filtered backprojection algorithm (MFBA):

fMFBA(x) : = 1

4π
R∗(Ih ⊗ I )(
⊗ I )(Eh ⊗ Thϑ )R f (x)

= 1

4π
R∗(Ih
Eh ⊗ Thϑ )R f (x) (4.1)

with the periodic linear interpolation

Thϑw(·) =
2p−1∑
j=0

w(ϑ j )Chϑ (· − ϑ j )

where Chϑ is a 2π -periodized linear B-spline. More precisely: Let C be the linear
B-spline. Then, Chϑ (·) =∑k∈Z

C(·/hϑ + 2π k/hϑ).

Remark 4.1 In defining Thϑ we could in principle replace C by higher order (quadratic,
cubic etc.) B-splines. Unfortunately, this would not improve the maximal convergence
order in (4.2) below, which, in turn, would not increase the maximal angular conver-
gence rate αT in Theorem 4.2 below (compare Theorem A.2 in [12]). To benefit from
higher order B-splines one needs to introduce more sophisticated (quasi-)interpolation
schemes for the angular variable.

Before we consider a numerical implementation of MFBA we prove convergence
with optimal rates.

4.1 Convergence of MFBA

The key for proving convergence of MFBA is the approximation property

‖Thϑ − I‖Hα
p (0,2π)→H−ν

p (0,2π) � hα+ν
ϑ , 1/2 + ν < α ≤ 2, (4.2)

for any 0 ≤ ν < 1/2. We will validate (4.2) below in Theorem 4.3.
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Theorem 4.2 Assume (2.6) and (2.7) with βmax, τmax ≥ 1/2 and βmin < 1. Further,
let

Ih : L2(R) → L2(R) be bounded. (4.3)

Then,∥∥∥∥ f − 1

4π
R∗(Ih
Eh ⊗ Thϑ )R f

∥∥∥∥
L2(�)

�
(

hmin{α,αmax} + hmin{α,αT}
ϑ

)
‖ f ‖α

for α > αmin = 1/2 + 2 max{0, βmin − 1/2} where αmax = min{αI, βmax − 1/2,
τmax − 1/2} and any αT < 5/2.

Proof We will need that

Ih : H−1/2+ν(R) → H−1/2+ν(R) is a bounded operator (4.4)

which follows from (2.7) and (4.3) via interpolation.
We start with∥∥∥∥ f − 1

4π
R∗(Ih
Eh ⊗ Thϑ )R f

∥∥∥∥
L2

≤
∥∥∥∥ f − 1

4π
R∗(Ih
Eh ⊗ I )R f

∥∥∥∥
L2

+ ∥∥R∗ (Ih
Eh ⊗ (Thϑ − I )
)

R f
∥∥

L2

� hmin{α,αmax}‖ f ‖α + ∥∥R∗ (Ih
Eh ⊗ (Thϑ − I )
)

R f
∥∥

L2 ,

the last estimate being due to Theorem 2.1. Bounding the remaining error term is
basically straightforward. Under max{0, βmin − 1/2} ≤ ν < 1/2 we find that

∥∥R∗ (Ih
Eh ⊗ (Thϑ − I )
)

R f
∥∥

L2

(2.9)
�
∥∥(Ih
Eh ⊗ (Thϑ − I )

)
R f
∥∥

H (−1/2+ν,−ν)
(4.4)
�
∥∥(
Eh ⊗ (Thϑ − I )

)
R f
∥∥

H (−1/2+ν,−ν)

�
∥∥(Eh ⊗ (Thϑ − I )

)
R f
∥∥

H (1/2+ν,−ν)
(2.6)
�
∥∥(I ⊗ (Thϑ − I )

)
R f
∥∥

H (1/2+ν,−ν)
(4.2)
� hαϑ‖R f ‖H (1/2+ν,α−ν)

(2.9)
� hαϑ‖ f ‖α

where both latter estimates require that 1/2 + 2ν < α ≤ 2 + ν. Now we have the
freedom to choose ν in the admissible range. Choosing ν = αT − 2 yields 1/2 +
2(αT − 2) < α ≤ αT. On the other hand, by ν = max{0, βmin − 1/2} we obtain
1/2 + 2 max{0, βmin − 1/2} < α ≤ 2 + max{0, βmin − 1/2}. Hence,

∥∥R∗ (Ih
Eh ⊗ (Thϑ − I )
)

R f
∥∥

L2 � hαϑ‖ f ‖α

for 1/2 + 2 max{0, βmin − 1/2} < α ≤ αT < 5/2. ��
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As a consequence of the above theorem the error estimate (1.4) holds true since the
corresponding operators Ih satisfy (4.3), see [12] or [14] for more details.

We complete the present section by finally verifying the approximation prop-
erty (4.2). The remainder of this subsection is rather technical.

Theorem 4.3 For any 0 ≤ ν < 1/2 we have that

‖u − Thϑ u‖H−ν
p (0,2π) � hα+ν

ϑ ‖u‖Hα
p (0,2π), 1/2 + ν < α ≤ 2. (4.5)

Proof We first show the estimate for α ∈ [1, 2]. Let ϕ1 ∈ C∞
0 (0, 2π) and ϕ2 ∈

C∞
p (0, 2π) with τπϕ2 = ϕ2(· −π) ∈ C∞

0 (0, 2π) such that ϕ1 +ϕ2 = 1 ∈ C∞
p (0, 2π)

(partition of unity).7 Then,

‖u − Thϑ u‖H−ν
p (0,2π) = ‖(I − Thϑ )(ϕ1u + ϕ2u)‖H−ν

p (0,2π)

≤ ‖(I − Thϑ )(ϕ1u)‖H−ν
p (0,2π)

+ ‖(I − Thϑ )(ϕ2u)‖H−ν
p (0,2π)

� ‖(I − Thϑ )(ϕ1u)‖H−ν
0 (0,2π)

+ ‖((I − Thϑ )(ϕ2u))∗|(π,3π)‖H−ν
0 (π,3π),

wherew∗ denotes the 2π -periodic extension to R ofw ∈ Hβ
p (0, 2π), β ∈ R. Suppose

we are able to show that

‖u − Thϑ u‖H−ν
0 (0,2π) � hα+ν

ϑ ‖u‖Hα
0 (0,2π)

, 1 ≤ α ≤ 2, (4.6)

then

‖u − Thϑ u‖H−ν
p (0,2π) � hα+ν

ϑ

(
‖ϕ1u‖Hα

0 (0,2π)
+ ‖(ϕ2u)∗|(π,3π)‖Hα

0 (π,3π)

)

= hα+ν
ϑ

(
‖ϕ1u‖Hα

0 (0,2π)
+ ‖τπ (ϕ2u)‖Hα

0 (0,2π)

)

� hα+ν
ϑ ‖u‖Hα

p (0,2π), 1 ≤ α ≤ 2.

On the other hand, from [12, Theorem A.2] we know that

‖u − Thϑ u‖L2(0,2π) � hαϑ‖u‖Hα
p (0,2π), 1/2 < α ≤ 2.

Hence, we are able to deduce (4.5) by an interpolation argument.
Accordingly, we only need to validate (4.6) to establish Theorem 4.3. We begin

with the simple triangle inequality

‖v − Thϑ v‖H−ν
0 (0,2π) ≤ ‖v − T̃hϑ v‖H−ν

0 (0,2π) + ‖T̃hϑ v − Thϑ v‖H−ν
0 (0,2π) (4.7)

7 Note that |||w||| = ‖ϕ1w‖Hα0 (0,2π)
+‖τπ (ϕ2w)‖Hα0 (0,2π)

yields a norm on Hα
p (0, 2π) being equivalent

to the standard norm defined via Fourier coefficients, see, e.g., Lions and Magenes [7, Chap. 1.7].
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where T̃hϑ is the following auxiliary approximation operator

T̃hϑw := h−1
ϑ

2p−1∑
j=0

〈w,Chϑ (· − ϑ j )〉 Chϑ (· − ϑ j ), w ∈ L2(0, 2π).

For the left summand in (4.7) we find that

‖v − T̃hϑ v‖H−ν
0 (0,2π) = sup

w∈Hν (R)

|〈v − T̃hϑ v,w〉|
‖w‖ν = sup

w∈Hν (R)

|〈v,w − T̃hϑw〉|
‖w‖ν

≤ ‖v‖L2(0,2π) sup
w∈Hν (R)

‖w − T̃hϑw‖L2(R)

‖w‖ν
� hνϑ‖v‖L2(0,2π) (4.8)

where the last bound is due to [12, Theorem A.2]. We proceed with the right summand
of (4.7):

‖T̃hϑ v − Thϑ v‖H−ν
0 (0,2π) = sup

w∈Hν (R)

|〈T̃hϑ v − Thϑ v,w〉|
‖w‖ν . (4.9)

Since T̃hϑ v − Thϑ v = h−1
ϑ

∑2p−1
j=0 〈v − v(ϑ j ),Chϑ (· − ϑ j )〉Chϑ (· − ϑ j ) we have

|〈T̃hϑ v − Thϑ v,w〉| ≤
2p−1∑
j=0

| 〈v − v(ϑ j ), h−1
ϑ Chϑ (· − ϑ j )〉︸ ︷︷ ︸

=: L j (v)

| |〈Chϑ (· − ϑ j ), w〉|.

We next study the linear functional L j . For v ∈ H1(ϑ j−1, ϑ j+1) we bound

|L j (v)| ≤
ϑ j+1∫

ϑ j−1

|v(ϑ)− v(ϑ j )| h−1
ϑ Chϑ (ϑ − ϑ j ) dϑ ≤ 2‖v‖L∞(ϑ j−1,ϑ j+1).

Further, L j (P) = 0 for any constant P and there is a constant P = P(v) such that
the Bramble–Hilbert like estimate

‖v − P‖L∞(ϑ j−1,ϑ j+1) � h1/2
ϑ ‖v‖H1(ϑ j−1,ϑ j+1)

holds true, see, e.g., Brenner and Scott [2, Proposition 4.3.2]. Combining our findings
we have

|L j (v)| = |L j (v − P)| � ‖v − P‖L∞(ϑ j−1,ϑ j+1) � h1/2
ϑ ‖v‖H1(ϑ j−1,ϑ j+1)

,
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so that, for v ∈ H1
0 (0, 2π),

|〈T̃hϑ v − Thϑ v,w〉|

� h1/2
ϑ

2p−1∑
j=0

‖v‖H1(ϑ j−1,ϑ j+1)
‖Chϑ (· − ϑ j )|[ϑ j−1,ϑ j+1]‖−ν︸ ︷︷ ︸

�h1/2+ν
ϑ (Lemma 4.4 below)

‖w‖Hν (ϑ j−1,ϑ j+1)

� h1+ν
ϑ

⎛
⎝2p−1∑

j=0

‖v‖2
H1(ϑ j−1,ϑ j+1)

⎞
⎠

1/2⎛
⎝2p−1∑

j=0

‖w‖2
Hν (ϑ j−1,ϑ j+1)

⎞
⎠

1/2

� h1+ν
ϑ ‖v‖1‖w‖ν .

The latter estimate together with (4.9) results in

‖T̃hϑ v − Thϑ v‖H−ν
0 (0,2π) � h1+ν

ϑ ‖v‖1, v ∈ H1
0 (0, 2π),

which in combination with (4.7) and (4.8) implies that

‖v − Thϑ v‖H−ν
0 (0,2π) � hνϑ‖v‖L2(0,2π) + h1+ν

ϑ ‖v‖1, v ∈ H1
0 (0, 2π).

For u ∈ Hα
0 (0, 2π), 1 ≤ α ≤ 2, set v := u − Thϑ u ∈ H1

0 (0, 2π). Note that
v − Thϑ v = u − Thϑ u. Finally, (4.6) is established by

‖u − Thϑ u‖H−ν
0 (0,2π) = ‖v − Thϑ v‖H−ν

0 (0,2π) � hνϑ‖v‖L2(0,2π) + h1+ν
ϑ ‖v‖1

= hνϑ‖u − Thϑ u‖L2(0,2π) + h1+ν
ϑ ‖u − Thϑ u‖1

� hα+ν
ϑ ‖u‖α

where in the last step we once more applied Theorem A.2 of [12]. Thus, Theorem 4.3
is completely verified. ��

Lemma 4.4 To any 0 ≤ ν < 1/2 there is a constant c = c(ν) such that

‖Chϑ |[−hϑ ,hϑ ]‖−ν ≤ c(ν) h1/2+ν
ϑ .

Proof We have

‖C2hϑ |[−2hϑ ,2hϑ ]‖2−ν

=
∫

R

(1 + |σ |2)−ν |Ĉ2hϑ (σ )|2 dσ = 4h2
ϑ

∫

R

(1 + |σ |2)−ν |Ĉ(2hϑσ )|2 dσ
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= 4
√

2πh2
ϑ

∫

R

(1 + |σ |2)−ν |sinc2(hϑσ )|2 dσ

= 4
√

2πh2
ϑ

⎛
⎜⎜⎝

h−1
ϑ∫

−h−1
ϑ

(1 + |σ |2)−ν |sinc2(hϑσ )|2︸ ︷︷ ︸
≤1

dσ

+
∫

R\[−h−1
ϑ ,h−1

ϑ ]
(1 + |σ |2)−ν |sinc2(hϑσ )|2︸ ︷︷ ︸

≤(hϑσ)−4

dσ

⎞
⎟⎟⎠

≤ 4
√

2πh2
ϑ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h−1
ϑ∫

−h−1
ϑ

|σ |−2ν dσ

︸ ︷︷ ︸
= 2

1−2ν h2ν−1
ϑ

+ h−4
ϑ

∫

R\[−h−1
ϑ ,h−1

ϑ ]
|σ |−2ν−4 dσ

︸ ︷︷ ︸
= 2

2ν+3 h2ν+3
ϑ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 8
√

2π

(
1

1 − 2ν
+ 1

2ν + 3

)
h1+2ν
ϑ .

Thus, c(ν) = 22−ν
√√

2π
(

1
1−2ν + 1

2ν+3

)
. ��

4.2 Implementation of MFBA

We discuss some aspects concerning the numerical evaluation of fMFBA(x), see (4.1).
Define � := 1

4π (Ih
Eh ⊗ I )R f . Then,

�(s, ϑ) =
∑
k∈Z

gk(ϑ)Ah(s − sk)

where

gk(ϑ) = 1

4π
h−1〈(
Eh ⊗ I )R f (·, ϑ), ηh(· − sk)〉

are the filtered Radon data, compare (2.5). We obtain

fMFBA(x) = 1

4π
R∗(Ih
Eh ⊗ Thϑ )R f (x) =

2π∫

0

(I ⊗ Thϑ )�(x
tω(ϑ), ϑ) dϑ

=
2π∫

0

2p−1∑
j=0

�(xtω(ϑ), ϑ j )Chϑ (ϑ − ϑ j ) dϑ
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=
2π∫

0

2p−1∑
j=0

∑
k∈Z

gk(ϑ j )Ah(x
tω(ϑ)− sk)Chϑ (ϑ − ϑ j ) dϑ

=
∑
k∈Z

2p−1∑
j=0

gk(ϑ j )

2π∫

0

Ah(x
tω(ϑ)− sk)Chϑ (ϑ − ϑ j ) dϑ.

Observe that fMFBA(0) = fFBA(0).
To reduce the notational burden we introduce the abbreviation

I (s, ψ, x) =
2π∫

0

Ah(x
tω(ϑ)− s)Chϑ (ϑ − ψ) dϑ.

Since gk(ϑ j ) = g−k(ϑ j+p) as well as I (sk, ϑ j , x) = I (s−k, ϑ j+p, x) we have that

fMFBA(x) = 2
∑
k∈Z

p−1∑
j=0

gk(ϑ j )I (sk, ϑ j , x).

It remains to compute the integrals I (sk, ϑ j , x). A straightforward calculation gives
that (x �= 0)

I (sk, ϑ j , x) = I (sk, ϑ j − arg(x), |x |ω(0)).8

Thus, we only need to evaluate integrals like

I (sk, ψ, rω(0)) =
ψ+hϑ∫

ψ−hϑ

Ah(r cos(ϑ)− sk)Chϑ (ϑ − ψ) dϑ.

For A = 1[−1/2,1/2] and A = 1[−1/2,1/2] � 1[−1/2,1/2] an explicit computation of the
above integrals can be found in [14]. Please note that most of the integrals are zero
and do not need to be computed. For instance, if A = 1[−1/2,1/2] � 1[−1/2,1/2] then

[min�(ψ, hϑ),max�(ψ, hϑ)] ∩
[ sk−1

r
,

sk+1

r

]
= ∅ �⇒ I (sk, ψ, rω(0)) = 0

where �(ψ, hϑ) = cos([ψ − hϑ , ψ + hϑ ]).
Remark 4.5 In principle, the band matrix M(x) = {I (sk, ϑ j , x)}k, j can be precomput-
ed and stored as its entries only depend on the scanning geometry and the reconstruction
points where M(−x)k, j = M(x)−k, j . Moreover, the bandwidth of M depends only
on the ratio hϑ/h.

8 arg(x) denotes the angle in the polar representation of x ∈ R
2 \ {0}: x = |x |ω(arg(x)).
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Therefore, if h = hϑ and if the sparse matrices M are precomputed, FBA and
MFBA require essentially the same number of arithmetic operations. The ratio of the
complexities of MFBA and FBA increases linearly with hϑ/h.

In our numerical experiments in the following section we however, computed the
non-zero entries of M on-the-fly.

4.3 MFBA is the limit of the phantom view algorithm

Weiss et al. [17] have analyzed an FBA-based algorithm to reduce streak artifacts in
CT reconstructions caused by angular under-sampling (see, e.g., Galigekere et al. [3]
for further work in this direction). They considered so-called “phantom views” by
interpolating the Radon data linearly with respect to the angular variable. We call this
algorithm PhanFBA(R) where R − 1 is the number of interpolated (phantom) views
between measured views. PhanFBA(2) has first been suggested by Lewitt et al. [6,
Sect. 5.3].

Starting out from the discrete Radon data D (1.1) we have that

fPhanFBA(R)(x) = 1

4π
R∗

hϑ/R(Ih
Eh ⊗ I )
︸ ︷︷ ︸

Step 2

(I ⊗ Thϑ )︸ ︷︷ ︸
Step 1

R f (x)

= 1

4π
R∗

h R
(Ih
Eh ⊗ Thϑ )R f (x)

where first the Radon data are linearly interpolated (Step 1) and then (Step 2) standard
FBA is applied with angular discretization step size h R = hϑ/R = π/(Rp), R ∈ N.
Observe that

fFBA(0) = fMFBA(0) = fPhanFBA(R)(0). (4.10)

We expect convergence of fPhanFBA(R) to fMFBA for increasing R. In fact,

‖ fMFBA − fPhanFBA(R)‖L2(�)

� 1

R

(
hϑhmin{αmax,α−1} + hmin{2,α}

ϑ

)
‖ f ‖α, α ≥ 1.

(4.11)

The latter estimate follows directly from our previous results. We start with

‖ fMFBA − fPhanFBA(R)‖L2 ≤ ‖(R∗ − R∗
h R
)(Ih
Eh ⊗ (Thϑ − I ))R f ‖L2

+ ‖(R∗ − R∗
h R
)(Ih
Eh ⊗ I )R f ‖L2 .

For α ≥ 1,

‖(R∗ − R∗
h R
)(Ih
Eh ⊗ I )R f ‖L2 �

(
hαR + h Rhmin{αmax,α−1}) ‖ f ‖α
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by (3.2), Lemma 3.4, and Lemma 3.5. Copying the proof of Lemma 3.5 we find that

‖(R∗ − R∗
h R
)�‖L2 � h R‖�‖H (−1/2,1) with � := (Ih
Eh ⊗ (Thϑ − I ))R f.

Further,

‖�‖H (−1/2,1)

(4.4)
� ‖(
Eh ⊗ (Thϑ − I ))R f ‖H (−1/2,1)

� ‖(Eh ⊗ (Thϑ − I ))R f ‖H (1/2,1)

(2.6)
� ‖(I ⊗ (Thϑ − I ))R f ‖H (1/2,1)

� hmin{1,α−1}
ϑ ‖R f ‖H (1/2,α)

(2.9)
� hmin{1,α−1}

ϑ ‖ f ‖α
where the second to last estimate follows from Theorem A.2 of [12]. Thus, (4.11) is
established. Finally, under the assumptions of Theorem 4.2 a triangle inequality yields

‖ f − fPhanFBA(R)‖L2(�) �
(

hmin{α,αmax} + hmin{α,αT}
ϑ

+ 1

R

(
hϑhmin{αmax,α−1} + hmin{2,α}

ϑ

))
‖ f ‖α, α ≥ 1.

Under a moderately large number R of phantom views, PhanFBA(R) mimics the
asymptotic convergence behavior of MFBA whose convergence order in hϑ may
exceed the order in h (in case αmax < αT and α > αmax).

Finally, we provide a different interpretation of PhanFBA(R) and MFBA by
generalizing an observation by Lewitt et al. [6, Eq. (40)]. Set� := (Ih
Eh ⊗Thϑ )R f
and let Uϕ ∈ R

2×2 be the rotation matrix by angle ϕ. Taking into account that
xtω(ϑ j+ 

R
) = (U 

R hϑ
x)tω(ϑ j )

9 we obtain

fPhanFBA(R)(x)

= hϑ
R

2p−1∑
j=0

R−1∑
=0

�(xtω(ϑ j+/R), ϑ j+/R)

= hϑ
R

2p−1∑
j=0

R−1∑
=0

((
1 − 

R

)
�(xtω(ϑ j+/R), ϑ j )+ 

R
�(xtω(ϑ j+/R), ϑ j+1)

)

= 1

R

(
fFBA(x)+

R−1∑
=1

(
1 − 

R

)(
fFBA(U 

R hϑ
x)+ fFBA(U− 

R hϑ
x)
))

.

Letting R approach infinity yields

fMFBA(x) = 1

hϑ

hϑ∫

−hϑ

fFBA(Uϕx) Bhϑ (ϕ) dϕ (4.12)

where B is the linear B-spline. Thus, MFBA is an angular average of FBA.

9 ϑ
j+ 

R
:=

�
j + 

R

�
hϑ
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5 Numerical illustrations

Numerical experiments illustrating the convergence orders of FBA (Theorem 3.1)
under the optimal sampling condition p = πq can already be found in [12, Sect. 6].
Further experiments are reported in [14]. We therefore concentrate on experiments
highlighting the different convergence behaviors of the algorithms in the lateral and
angular variables. Additionally, we compare FBA, MFBA, and PhanFBA(R) qualita-
tively.

First we demonstrate that the error term of FBA behaving like hαϑ does indeed not

saturate, see (1.2). To this end, we reconstruct a function f ∈ H5/2
0 (�) from discrete

data D, see (1.1), with q = �p5/3� using the Shepp-Logan filter with piecewise con-
stant interpolation (αmax = 3/2). From (1.2) we expect the convergence rate p−5/2

as p → ∞.
As density distribution f we use

f (x) :=
3∑

k=1

dk P (Uk(x − bk)) (5.1)

where P(x) = (1 − |x |2)2.01, |x | ≤ 1, and P(x) = 0, otherwise, and d1 = 1,
d2 = −1.5, d3 = 1.5, and b1 = (0.22, 0)t , b2 = (−0.22, 0)t , b3 = (0, 0.2)t . Further,
Uk = U (ϕk, δk, γk), k = 1, 2, 3, with

U (ϕ, δ, γ ) :=
(

cos(ϕ)/δ sin(ϕ)/δ

− sin(ϕ)/γ cos(ϕ)/γ

)

and

δ1 = 0.51, γ1 = 0.31, ϕ1 = 72π/180,

δ2 = 0.51, γ2 = 0.36, ϕ2 = 108π/180,

δ3 = 0.5, γ3 = 0.8, ϕ3 = π/2.

Note that f ∈ Hα
0 (�) for any α < 2.51. For a graphical representation of f see [12,

Fig. 2]. The Radon transform of f can be computed analytically. From discrete Radon
data we reconstructed

fFBA,q,p(x) = 1

4π
R∗
π/p(I1/q
E1/q ⊗ I )R f (x), x ∈ X,

on the grid X := � ∩ {(i/100, j/100) : −100 ≤ i, j ≤ 100}. Now we define the
relative L2-reconstruction error by

e(q, p) :=
(∑

x∈X

(
fFBA,q,p(x)− f (x)

)2
/∑

x∈X

f (x)2
)1/2

. (5.2)
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Fig. 1 The relative L2-errors

e
�
�p5/3�, p

�
(5.2) for

reconstructing f (5.1) by FBA
using the Shepp-Logan filter
with nearest neighbor
interpolation. The auxiliary solid
line indicates exact decay
p−5/2. Here, the angular
under-sampling (relative to the
lateral sampling) is 1/(3p2/3)

ranging from 0.11 (p = 5) to
0.02 (p = 70)
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ϑ

(e
⎣

p 
3/5
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)p,

Shepp−Logan, constant

~p−5/2

Fig. 2 The relative L2-errors

e
�

q, �3q3/5�
�

(5.2) with f

from (5.1) and fFBA,q,p replaced
by fMFBA,q,p (Shepp-Logan
filter and nearest neighbor
interpolation). The auxiliary
solid line indicates exact decay
q−3/2. Here, the angular
under-sampling (relative to the
lateral sampling) is q−2/5

ranging from 0.28 (q = 25) to
0.08 (q = 600)

25 50 100 200 300 400 600
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−3
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−2

q=1/h

,q(e
⎣

q3 
5/3
⎦)

Shepp−Logan, constant

~q−3/2

In Fig. 1 we plotted e
(�p5/3�, p

)
for p ∈ {5l : l = 1, . . . , 14}. Its decay O(q−5/2)

complies exactly with the prediction by (1.2).
Next we illustrate that the convergence order of MFBA in the angular variable may

exceed the order in the lateral variable. Let f from (5.1) be reconstructed by

fMFBA,q,p(x) = 1

4π
R∗(I1/q
E1/q ⊗ Tπ/p)R f (x), x ∈ X,

with Shepp-Logan filter and nearest neighbor interpolation (αmax = 3/2) where p =
�3q3/5�. In view of (1.4) we expect an error decay rate like q−3/2+ε for any ε > 0
which we indeed observe in Fig. 2.

Now we compare FBA and MFBA. We computed relative L2-errors for the
reconstruction of different test objects (e.g. the functions from (5.1) and Fig. 3) for
increasing q and p = 3q. It turned out that FBA and MFBA are practically identical
in terms of L2-errors, see Fig. 5. This observation remains true when artificial noise
corrupts the data. As the L2-norm is known not to comply well with the human percep-
tion of images we inspected reconstructions visually: Near to edges and vertices we
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Fig. 3 Superposition of
indicator functions of two
rectangles

Fig. 4 Close-ups of
reconstructions of the function
from Fig. 3 (Shepp-Logan filter,
piecewise linear interpolation,
q = 50, p = 150). Top FBA,
bottom MFBA

found the artifacts of MFBA less pronounced than those of FBA. For a typical exam-
ple we reconstruct the function displayed in Fig. 3 being a superposition of indicator
functions of two rectangles (For an analytical description see [12, Sect. 6]).

In Fig. 4 we show close-ups of the reconstructions by FBA and MFBA, respec-
tively. Both reconstructions are based on the Shepp-Logan filter with piecewise linear
interpolation where q = 50 and p = 150. MFBA clearly produces less artefacts
which are, moreover, less severe. Accordingly the regions of constant gray values
appear more homogeneous, however, at the price of blurred edges.
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Fig. 5 Quantitative comparison
of FBA and MFBA with respect
to the BV- and L2-norm under
optimal sampling p = 3q. The
underlying function is from
Fig. 3. Solid line with square
rel. BV-error of MFBA, solid
line with circle rel. L2-error of
MFBA. Dashed line with
filledstar rel. BV-error of FBA,
dashed line with triangle
rel. L2-error of FBA

25 50 75 100 150 200

10
−1

q=1/h

MFBA, BV−norm

FBA, BV−norm

MFBA, L2−norm

FBA, L2−norm

Within the image processing community the norm of bounded variation,

‖ f ‖BV :=
∫

�

| f (x)|dx +
∫

�

|∇ f |,10

is considered a measure for comparing images which is almost as sensitive as the
human eye: Both, errors in edges and noise, result in a large BV-norm.

Figure 5 displays the relative BV- and L2-errors for reconstructing the function of
Fig. 3 from discrete data where q ∈ {25, 50, 75, 100, 125, 150, 175, 200} and p = 3q.
Both algorithms, FBA and MFBA, rely on the Shepp-Logan filter with piecewise lin-
ear interpolation. While FBA and MFBA produce virtually identical L2-errors, the
corresponding BV-errors differ slightly. MFBA outperforms FBA with respect to both
error measures. Interestingly, the BV-errors decay faster than the L2-errors, roughly
like O(q−3/4). So far, we have no analytic explanation for this numerically observed
order of decay.

Finally, we demonstrate the streak-diminishing power of PhanFBA(R) and MFBA.
Figure 6 displays reconstructions of the Shepp-Logan head phantom [15]. The streak
artifacts by FBA due to insufficient angular sampling (q = 500, p = 30) corrupt the
whole reconstruction. MFBA greatly diminishes streaks but causes slightly blurred
edges. For instance, the three small ellipses below the two large black ellipses can-
not be distinguished anymore. Introducing one phantom view (PhanFBA(2)) already
reduces streaks and four phantom views (PhanFBA(5)) yield a reconstruction close to
the one by MFBA. The reconstructions by MFBA and PhanFBA(15) (not presented)
are virtually identical.

Inspecting Fig. 6 we observe that all four reconstructions match in the vicinity of
the origin (middle of the images between the two large black ellipses). This effect was

10 The second integral is a symbolic notation for the total variation of f (∇ f is a bounded Radon vector
measure in general), see, e.g., Giusti [4]. If f ∈ W 1,1(�) then

�
� |∇ f | = �

� |∇ f (x)|dx .
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Fig. 6 Reconstructions of Shepp-Logan head phantom [15] (Shepp-Logan filter, piecewise linear inter-
polation, q = 500, p = 30). Top left FBA, top right MFBA. Bottom left PhanFBA(2), bottom right
PhanFBA(5)

already noticed by Weiss et al. [17, Fig. 5] and can analytically be explained by (4.10)
as well as by (4.12).

Furthermore, some edges are blurred by MFBA and others are not. The angular
average (4.12) provides an explanation: If an edge is tangent to a circle centered
about the origin then MFBA does not blur it. The more transversally it intersects such
a circle the more it gets blurred. Therefore the parts of streaks being tangent to an
origin-centered circle are neither diminished by PhanFBA(R) nor by MFBA.

Acknowledgment We thank both referees for their helpful comments on an earlier version of this article,
especially for directing our attention to the phantom view method.
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