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Abstract
The inexact Newton iteration REGINN for regularizing nonlinear ill-posed
problems consists of two components: the (outer) Newton iteration, stopped by
a discrepancy principle, and the inner iteration, which computes the Newton
update by solving approximately a linearized system. The second author proved
the convergence of REGINN furnished with the conjugate gradients method
as inner iteration (Rieder 2005 SIAM J. Numer. Anal. 43 604–22). Amongst
others the following feature distinguishes REGINN from other Newton-like
regularization schemes: the regularization level for the locally linearized
systems can be adapted dynamically incorporating information on the local
degree of ill-posedness gained during the iteration. Of course, the potential of
this feature can be fully explored only by meaningful numerical experiments in
a realistic setting. Therefore, we apply REGINN to the 2D-electrical impedance
tomography problem with the complete electrode model. This inverse problem
is known to be severely ill-posed. The achieved reconstructions are compared
qualitatively and quantitatively with reconstructions from a one-step method
which is closely related to the NOSER algorithm (Cheney et al 1990 Int. J.
Imag. Syst. Technol. 2 66–75), an often used solver in impedance tomography.
Our detailed numerical comparison reveals REGINN to be a competitive solver
outperforming the one-step method when noise corrupts the data and/or a
moderately large number of electrodes is used.
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1. Introduction

Electrical impedance tomography (EIT) entails the determination of the electric conductivity
distribution of an object by applying electric currents at the boundary through electrodes
and measuring the resulting voltages at the boundary as well. Potential applications are, for
instance, medical imaging and non-destructive testing.

Because of its promising applications and its challenging mathematics EIT attracted a vast
amount of research during the last two decades, both theoretically and practically; all starting
out from the pioneering work of Caldéron [11]. The nonlinearity and the severe ill-posedness
of EIT remain a challenge for reconstruction algorithms nonetheless. Algorithms known to us
can be categorized as

1. noniterative algorithms based on global linearization,
2. iterative solvers tackling the full nonlinear problem and
3. direct methods.

Noniterative algorithms based on global linearization can be built by stopping any iterative
algorithm after the first step, a prominent example is the NOSER algorithm [13]. For
the iterative inverse solvers one usually exploits Fréchet differentiability of the forward
operator and uses a regularized Newton-type method. A somewhat different approach is
propagated in [5] where a nonlinear multigrid method solves a Tikhonov-regularized first-
order optimality condition of an output least-squares formulation. The class of direct methods
splits into two subclasses: (a) factorization methods use special singular testfunctions to
characterize inclusions in a homogeneous background medium [7–10] and (b) direct methods
that implement a constructive existence and uniqueness proof [1, 26, 33, 34]. As far as we
know both direct methods are not able to deal with finite electrode models but need to apply
currents and measure the voltages along the whole boundary of the object (in mathematical
terms: they need to observe the Neumann-to-Dirichlet mapping). Their use for a realistic
setting is therefore limited.

Our work at hand contributes to the second class: we apply the nonlinear regularization
method REGINN (REGularization based on INexact Newton iterations), developed and
analysed by the second author [29, 30, 32], to the 2D-EIT problem with the complete electrode
model. The most delicate part of any Newton-like regularization is the stable computation of
the Newton step from the locally linearized system. As the degree of ill-posedness of the locally
linearized system may change dramatically during the Newton iteration, a careful selection of
the level of regularization of the linear system is indispensable. Surprisingly, this is not the
case for most Newton methods, see, e.g., [4, 24]. Also the nonlinear multigrid method from [5]
works with a priori regularization parameters on the intermediate grids. In contrast, REGINN
selects the level of regularization of the locally linearized system incorporating information
on the local degree of ill-posedness gained during the iteration. To this end, we monitor the
numerical effort for computing the Newton steps. An increase (decrease) of this numerical
effort indicates an increase (decrease) of the local degree of ill-posedness. Accordingly, the
magnitude of the regularization for the following linearized system is adjusted.

To put REGINN in perspective we compare it with a one-step solver being akin to the
NOSER algorithm. In spite of its simplicity the one-step solver delivers reconstructions of
an astonishing quality. In particular, when only a small number of electrodes is used, that is,
the data contain only little information on the conductivity, the one-step solver is hard to beat.
Nevertheless, the REGINN reconstructions contain less noise and appear more focused with
a higher contrast. They are also quantitatively better than the reconstructions by the one-step
solver.
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Figure 1. The experimental set-up of an EIT tomography system with seven electrodes. The body
under investigation contains two inclusions.

We start our paper in the next section by introducing the mathematical model for EIT we
work with. For the discretization of the governing elliptic equation, we rely on finite elements
as we show in section 3. Section 4 is devoted to the Fréchet differentiability of the EIT operator
allowing us to tackle the inverse problem by Newton-like solvers in section 5. Here, we also
report the numerical experiments with the NOSER-like one-step solver (section 5.1). Next we
present REGINN with the conjugate gradients method as inner iteration (section 6) followed
by numerical experiments and a qualitative comparison of both solvers. The quantitative
comparison together with our conclusions is content of the final section. The paper ends
with the appendix where we explain how to compute efficiently the Fréchet derivative of the
discretized EIT operator.

2. The complete electrode model

In this section, we give a brief account on the mathematical model for EIT.
Assume that p electrodes have been fixed around the surface of the object, for instance

around a human chest (see figure 1). Current is applied to some subset of these electrodes
and the resulting voltages at all p electrodes are measured. This procedure, called the EIT
experiment, is repeated several times with different electrodes until a sufficient amount of data
has been gained. The inverse problem of EIT is then to reconstruct the inner structure of the
investigated object using this data set. Clearly, the EIT problem can be solved only if the inner
structure consists of areas with substantially different conductivities. In medical imaging this
prerequisite is often fulfilled, see Cheney, Isaacson and Newell [12, 13].

In the corresponding forward problem one wants to find the electric potential in the interior
of the object and at the electrodes, given some applied current. If we assume that the object
under consideration does not contain any current source in its interior and that the frequency
of the current is small enough then a scaling analysis [12] shows that Maxwell’s equations
describing the electromagnetic fields inside the object reduce to the elliptic equation

∇ · (σ∇u) = 0 in B, (2.1)

where σ denotes the electric conductivity in the object B and u denotes the voltage potential.
We assume in the following that σ is a bounded positive scalar function in the closure B of B.
Moreover, σ is assumed to be Lipschitz continuous in B with possible jump discontinuities in
B. Thus, a trace σ |∂B is meaningfully defined. We denote the class of admissible conductivities
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by

A := {
σ ∈ L∞(B)|σ � σ0 > 0, there are (Bj )

m
j=1 : Bj � B,Bj open,

σ |Bj
∈ W 0,1(Bj ),∪jBj = B

}
.

In the case of real conductivities, several uniqueness results for the inverse problem have been
proved, see for instance [2, 27, 35–37].

A careful modelling of the electrodes turns out to be of highest importance when
comparing the predictions of the resulting mathematical models with experimental data
[14, 15]. The complete electrode model [12, 14], nowadays the standard model for medical
applications, takes into account the following three physical properties of the EIT experiment.

First, the electrodes are a discrete set. Let us denote by E1, . . . , Ep the p electrodes,
each Ej is considered to be an open subset of the boundary ∂B with positive surface measure.
We assume furthermore that the Ej ’s are connected and separated, i.e., dist(Ek, Ej ) > 0 for
k �= j . Let Ij ∈ R be the current applied to Ej and define I = (I1, . . . , Ip)�. Due to the
principle of conservation of charge we require that

∑
Ij = 0. The vector I is called current

pattern or current vector. For convenience, let us denote the space of current patterns of length
p by

R
p
♦ :=

{
I ∈ R

p
∣∣∣∑

j
Ij = 0

}
.

Second, we model the electrode Ej to be a perfect conductor, that is, we assume that the
potential along this electrode is constant: u|Ej

= const. This is the so-called shunting effect.
To ease the notational burden, let

u|Ej
=: Uj for j = 1, . . . , p.

Note that U := (U1, . . . , Up)� is measured in the EIT experiment. To end up with a well-
posed problem we need an additional boundary condition. As we model the electrodes as
perfect conductors, the current sent to these electrodes is applied completely to B. This implies
that the total flux over Ej equals Ij :∫

Ej

Bνu dS = Ij for j = 1, . . . , p, where Bνu := σ∇u · ν

is the conormal derivative and ν denotes the outer unit normal to B.
Third, the complete electrode model includes the effect of contact impedance at the

electrodes: when EIT is used in a medical context, a thin layer with high resistivity forms at
the boundary between the electrodes and the skin due to dermal moisture. We incorporate this
effect by introducing constants zj , j = 1, . . . , p, which denote the positive resistivity of the
contact layer at electrode Ej . According to Ohm’s law the potential u at Ej drops by zjBνu.

Hence, the complete electrode model gives rise to the following (weak) formulation of
the forward problem: given a current vector I = (I1, . . . , Ip) ∈ R

p
♦ , a conductivity σ ∈ A

and positive contact impedances z1, . . . , zp find a potential u ∈ H 1(B) and a set of electrode
voltages U ∈ R

p
♦ that satisfy

∇ · (σ∇u) = 0 in B, (2.2)

u + zjBνu = Uj on Ej , (2.3)∫
Ej

Bνu dS = Ij for j = 1, . . . p, (2.4)

Bνu = 0 on ∂B\∪p

j=1 Ej . (2.5)
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The condition U ∈ R
p
♦ , i.e.,

∑p

j=1 Uj = 0, can be interpreted as a grounding of the potential.
Indeed, without this condition the above problem would not be unique. According to [14], the
accuracy of the model matches the measurement precision of the experiment. Note that we
assume in the following that the contact impedances zj are known and not part of the inverse
problem.

Existence and uniqueness of a solution (u,U) ∈ H 1(B) ⊕ R
p
♦ can been shown using the

Lax–Milgram lemma. Indeed, in [14] it is shown that (u,U) fulfils (2.2)–(2.5) if and only if

b((u,U), (v, V )) = f (v, V ) (2.6)

for all (v, V ) ∈ H 1(B) ⊕ R
p
♦ where the strictly elliptic bilinear form b is defined by

b((u,U), (v, V )) :=
∫

B

σ∇u∇v dx +
p∑

j=1

1

zj

∫
Ej

(u − Uj)(v − Vj ) dS,

and f (v, V ) := ∑p

j=1 IjVj for (v, V ) ∈ H 1(B) ⊕ R
p
♦ .

3. Discretization by FEM

Since the solution (u,U) of the forward problem cannot be computed analytically we use the
finite element method (FEM) to find an approximate solution. Following the usual procedure
of FEM we use a triangulation T = {T1, . . . , T|T |} of the domain B and define the finite-
dimensional subspace Hh of H 1(B) to be the set of continuous functions in H 1(B) that are
piecewise linear on each triangle of T . Suppose that the triangulation T consists of � nodes.
Then we denote by φk the hat function that takes the value 1 at node k and vanishes at all the
other nodes. Any element uh in Hh is represented by

uh =
�∑

k=1

αkφk for αk ∈ R.

For notational reasons we identify uh with its coordinates in the basis {φk} and write uh =
(α1, . . . , α�). Finally, we still denote the voltages at the p electrodes by U = (U1, . . . , Up) ∈
R

p
♦ .

Testing uh and U in (2.6) against v = φi and V = 0 yields
�∑

k=1

αk

∫
B

σ∇φk∇φi dx +
p∑

j=1

1

zj

∫
Ej

(
�∑

k=1

αkφk − Uj

)
φi dS = 0, (3.1)

for i = 1, . . . , �. The discrete system (3.1) gives rise to a matrix–vector equation in the
following way: let A ∈ R

�×� be the admittance matrix with entries

Ai,k =
∫

B

σ∇φk∇φi dx +
p∑

j=1

1

zj

∫
Ej

φkφi dS.

Furthermore, let B ∈ R
�×p be the matrix defined by

Bi,j = − 1

zj

∫
Ej

φi dS.

With these definitions equation (3.1) can be rewritten as Auh + BU = 0. Until now we have
ignored the boundary conditions for uh arising from the complete model. Testing uh and U in
(2.6) now against v = 0 and V i = (δi,k)

p

k=1 we find that

1

zi

∫
Ei

(
Ui −

�∑
k=1

αkφk

)
dS = Ii (3.2)
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or equivalently that

Ui

|Ei |
zi

−
�∑

k=1

αk

zi

∫
Ei

φk dS = Ii, for i = 1, . . . , �.

Introducing the diagonal matrix D ∈ R
p×p,

Di,i = 1

zi

∫
Ei

dS = |Ei |
zi

,

we may write (3.2) as B�uh + DU = I . Finally, we end up with the linear system(
A B

B� D

)(
uh

U

)
=

(
0
I

)
(3.3)

for computing the FEM solution of the forward problem. The above system has to be
augmented to guarantee the grounding condition

∑
j Uj = 0. An easy way to include this

constraint is to solveA B

B� D

0 11

 (
uh

U

)
=

0
I

0

 (3.4)

where 11 ∈ R
1×p is the row vector (1, . . . , 1). This straightforward approach, however,

destroys symmetry and positive definiteness of (3.3). Kaipio et al [21] suggest a more
sophisticated way how to augment system (3.3) respecting its favourable structure.

A priori error estimates for the FEM solution uh are difficult to obtain since the solution u
of the complete model does not belong to H 2(B). This is due to the possible jumps of σ ∈ A
and because the Neumann boundary values Bνu do only belong to Hs(∂B) for s < 1/2. We
do not want to comment further on the convergence of uh but refer to the paper of Molarini
et al [25].

4. Fréchet differentiability of the EIT operator

The inverse problem of impedance tomography under the complete electrode model is to
estimate the conductivity distribution σ from all pairs of current vectors I ∈ R

p
♦ and resulting

voltage vectors U ∈ R
p
♦ . As U depends linearly on I for a fixed conductivity σ there is a

resistivity matrix R ∈ R
p×p such that U = RI . This is again Ohm’s law. Moreover, R is

symmetric for scalar real σ [14] which we assume in the remainder of the paper. Now, we
define for a fixed current vector I and fixed positive contact impedances (zj )

p

j=1

F : A ⊂ L∞(B) → H 1(B) ⊕ R
p
♦ , σ �→ (u,U),

to be the forward operator that maps the conductivity σ to the solution of the forward problem.
Later we solve the inverse problem by Newton-like iterations. A necessary ingredient is the
Fréchet differentiability of F . Recall that Fréchet differentiability of F in σ means that

lim
‖η‖∞→0

‖F(σ + η) − F(σ ) − F ′(σ )η‖H 1(B)⊕R
p

♦

‖η‖∞
= 0.

Theorem 4.1. Let I be a fixed current vector and z1, . . . , zp be fixed positive contact
impedances. The operator F which maps σ ∈ int(A) to the solution (u,U) ∈ H 1(B)⊕ R

p
♦ of

the forward problem with current vector I is Fréchet differentiable. If η ∈ L∞(B) is such that
σ + η ∈ A, then the derivative F ′(σ )η =: (w,W) satisfies the following variational problem:

−bσ ((w,W), (v, V )) =
∫

B

η∇u0∇v dx (4.1)

for all (v, V ) ∈ H 1(B) ⊕ R
p
♦ , where (u0, U 0) := F(σ ).
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Proof. Kaipio et al [21] give a proof in the case of the quotient space H̃ := (
H 1(B)⊕R

p
♦
)/

R.
However, the spaces H̃ and H 1(B) ⊕ R

p
♦ are norm equivalent. Since

‖(u,U)‖2
H̃

= ‖∇u‖2
L2(B) + inf

c∈R

{‖u + c‖2
L2(B) + |U + c|22

}
� ‖∇u‖2

L2(B) + ‖u‖2
L2(B) + |U |22 = ‖(u,U)‖2

H 1(B)⊕R
p

the embedding H 1(B) ⊕ R
p
♦ ↪→ H̃ is continuous and bijective. Hence, the open mapping

theorem yields norm equivalence. �

Theorem 4.1 shows especially that σ �→ U is Fréchet differentiable as second argument
of a differentiable mapping and the derivative is given by formula (4.1). The nice part of
this formula is that the derivative can be computed using the variational formulation of the
forward problem. On the other hand, solving this variational problem means to compute
one directional derivative. Unfortunately, Newton-like methods require to compute lots of
directional derivatives and this is usually the bottleneck of these algorithms.

5. Newton-type methods for the inverse EIT problem

In this section, we consider iterative methods of Newton-type for the inverse EIT problem.
These methods work by local linearization of the nonlinear operator F and by regularization of
the Newton step. The well-known NOSER algorithm of the Rensselaer group is one example,
see Cheney et al [12, 13].

Assume that we apply l current vectors I j ∈ R
p
♦ , j = 1, . . . , l, in the EIT experiment and

measure the corresponding voltage vectors Uj ∈ R
p
♦ . The set {I 1, . . . , I l} is called a current

frame. For notational convenience we define a vector

I := (I 1, . . . , I l) = (
I 1

1 , . . . , I 1
p, . . . , I l

1, . . . , I
l
p

) ∈ R
lp,

such that all I j ’s are stored in one single column vector. Let further U ∈ R
lp be the column

vector that arranges all the voltage vectors Uj in the same way. For simplicity, we write
U = RI for I ∈ R

lp, where R is now a lp × lp matrix such that every I j is mapped on the
corresponding Uj . For the remainder of this work we fix I, having in mind that we use always
the same current frame.

In the next step we transform the continuous setting in a discrete one. Suppose we are
given a triangulation T = {T1, . . . , T|T |} of the domain B. Then we denote by S the space of
step functions spanned by the indicator functions 11Tt

and define Ad = A∩ S, i.e., any s ∈ Ad

takes the form

s(x) =
|T |∑
t=1

st11Tt
(x) for x ∈ B and st > 0.

We always identify s with its coordinate representation: s = (st )t=1,...,|T |. Let us define the
discrete forward operator Fd by

Fd : Ad → R
lp, s �→ U = (RsI

1, . . . , RsI
l) ∈ R

lp, (5.1)

where I = (I 1, . . . , I l) is a fixed current frame in R
lp and Rs is the resistivity matrix associated

with s ∈ Ad. Note that Fd can be seen as a nonlinear vector field from R
|T | → R

lp. Since
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F : Ad → R
p is Fréchet differentiable, F ′

d is a matrix, called the Jacobian of Fd. As a
consequence, if F ′

d(s)ηd = (W 1, . . . ,Wp) ∈ R
lp then Wj ∈ R

p
♦ can be computed by solving

the variational problem (4.1). For the implementation of the Newton-like iterations below
we need to evaluate the matrix–vector product F ′

d(s)η and the matrix F ′
d. How this can be

realized efficiently we explain in the appendix.
The natural norm on S is a weighted Euclidean norm. For s = (st ) ∈ S we set

|s|22,a =
|T |∑
t=1

at |st |2, (5.2)

where a = (at ) is the vector containing the areas of the triangles of the triangulation T .
Observe that |s|2,a = ‖s‖L2(B) for any s ∈ S.

Assume now we are given measured data U ∈ R
lp. In order to find an estimate for

the corresponding conductivity distribution σ we seek σ
 ∈ A that fits our data U, that is,
F(σ 
) = U . Note that U is finite dimensional and hence there may exist lots of such σ 
. In
an iterative method we try to improve our actual guess σj ∈ Ad, j ∈ N, by adding a correction
step hj . We wish to have hj such that σj + hj = σ 
. Since Fd is differentiable we can write

F ′
d(σj )(σ


 − σj ) = U − Fd(σj ) − E(σ
; σj )

with the linearization error E(σ
; σj ). As the linearization error is unknown we try to solve

F ′
d(σj )hj

!= U − Fd(σj ) (5.3)

in the space of step functions S. All Newton-like solvers start in solving the above equation
some way or other. Due to the ill-posedness of the inverse EIT problem [6, 7] we expect
instabilities in solving (5.3). To compensate the instabilities we apply a regularization scheme
to (5.3). The regularization of ill-posed problems is addressed by, e.g., Engl et al [16] or
Rieder [31]. Probably the most often used approach is Tikhonov regularization where

hj = (
F ′�

d (σj )F ′
d(σj ) + θj diag(a)

)−1F ′�
d (σj )(U − Fd(σj )) for θj > 0. (5.4)

Note that the perturbation term is chosen to respect the norm | · |2,a . The step hj serves as
Newton update for our guess σj by

σj+1 = σj + hj . (5.5)

The iterative scheme (5.4) and (5.5) is called the Levenberg–Marquardt method, see Lionheart
and Polydorides [28] and Hanke [17]. A similar method is due to Bakushinskii [4],

hj = (
F ′�

d (σj )F ′
d(σj ) + θj diag(a)

)−1(F ′�
d (σj )(U − Fd(σj )) + θj diag(a)(σ0 − σj )

)
, (5.6)

where the right most term, which prevents the iterates σj to diverge too far from the initial
guess σ0, brings in additional stability. The method described in equation (5.6), together with
(5.5), is known as the iteratively regularized Gauß–Newton method, see, e.g., Bakushinskii
and Kokurin [3] and Kaltenbacher [23, 24]. All presented regularization schemes for (5.3) are
linear so far.

We have not yet mentioned how to stop the iterative schemes (5.4) or (5.6). The reason is
that inverse solvers of Newton-type applied to EIT usually stop after one step, at least in the
two-dimensional case. Therefore, the EIT problem is not locally but globally linearized about
the initial guess σ0. For the applications reported in [12, 13, 21], global linearization yields
sufficient accuracy while allowing real-time reconstructions. Our numerical experiments in
the next subsection are based on the following one-step solver:
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Figure 2. Left: mesh for the reconstruction when 16 electrodes are used. Right: adaptively refined
mesh for the computation of the Jacobian F ′.

Initial guess σ0;
Regularization parameter θ ;
σ1 = σ0 +

(
F ′�

d (σ0)F ′
d(σ0) + θ diag(a)

)−1F ′�
d (σ0)(U − Fd(σ0))

return σ1;

The NOSER3 algorithm uses the diagonal of the matrix F ′�
d (σ0)F ′

d(σ0) instead of the diagonal
matrix diag(a) as in (5.4), see [13].

5.1. Numerical experiments with NOSER-like regularization

The experimental protocol for the numerical experiments with the Tikhonov one-step solver
is the following. The data for the reconstruction algorithms are obtained synthetically. In our
data retrieval we try to avoid the most obvious inverse crime and use different meshes for the
forward data computation of Fd and the inverse computations (i.e., the reconstruction of a
conductivity). Moreover, to calculate the Newton step in (5.4) one also needs to compute the
Jacobian F ′

d which is defined by a variational problem and approximated using a FEM, see the
appendix. For the computation of the Jacobian, a third mesh is employed. In figure 2, we show
the reconstruction mesh that is used in the case of 16 electrodes together with the refined mesh
to compute the Jacobian. The forward computations are done on an even more refined grid to
guarantee quality of the data. The meshes for the computation of the forward operator and
the Jacobian are refined towards the electrodes using the adaptive mesh refinement procedure
provided by MATLABs4 partial differential equation toolbox. Of course, the computation of
these meshes is performed independently of and before the inverse computations. Especially,
these meshes are the same for all our examples under the same number of electrodes.

Recall that the data set for the inverse solver is the current frame I ∈ R
lp and the resulting

voltage vector U ∈ R
lp. In our experiments, we set l = p and use current vectors of the

form (0, . . . , 0, 1,−1, 0, . . . , 0) which are the most simple ones and easy to implement. The
question of the choice of current patterns is nontrivial and there exist concepts of optimal
current patterns and distinguishability, see Isaacson [19] or Kaipio et al [22] for details. We
do not care of these questions but remark that, in view of practical experiments, we only
incorporate voltages from electrodes in the forward data set where no current is fed.

Newton schemes always need some initial guess as starting point for the iteration. We
always use the background conductivity σ ≡ 1 as initial guess for the one-step solver (as
well as later for the REGINN algorithm). This is an appropriate choice since it matches

3 Newton One-Step solvER.
4 MATLAB is a trademark of The MathWorks, Inc.
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Figure 3. One-step reconstruction of a non-convex inclusion (32 electrodes, initial parameter
θ = 0.35, no artificial noise).

the background conductivity of our examples. Recall that the complete electrode model,
which is our model of choice, includes a contact impedance effect at the electrodes. In our
computations, the contact impedance is set to 0.25 for all electrodes. We found this numerical
value from [21, figure 4].

Some of the subsequent reconstructions are computed from synthetic data in the presence
of artificial noise. Our input data for the inversion algorithm are the current patterns I 1, . . . , I l

and the corresponding voltage vectors U 1, . . . , U l which we store for algorithmic reasons in
l × l-matrices. Therefore, the noise is measured in the Frobenius norm and the relative error
between computed and perturbed data is given in per cent.

All figures presenting our different results are organized in the same fashion: in the
upper left corner the reader finds the projection of the original conductivity distribution on
a fine grid which is only used for plotting. Because of the projection the boundaries of the
inhomogeneities are frayed out. Next, we plot five reconstructions where the regularization
parameter θ is divided by 3 successively. All reconstructions are computed simulating an
n-electrode system. By this term we mean a regular polygonal domain with 2n corners such
that every second side of the polygon is used as an electrode. We reconstruct scalar real
conductivities and emphasize that the same colours (grey values) in different reconstructions
do usually not refer to the same conductivity, i.e., the colourmaps of the plots are in general
different.

Figure 3 shows the reconstruction of a non-convex inclusion in the form of two overlapping
circles which are placed inside the domain. The reconstruction has been obtained simulating
a 32-electrode system without artificial noise. We used θ = 0.35 as initial regularization
parameter. The best reconstruction seems to be the one in the middle of the bottom row. This
reconstruction shows the correct place but fails to distinguish the two circles. Nevertheless, the
reconstruction seems to respect the convex hull of the non-convex inclusion. The numerical
value of the conductivity of the inclusion is 1.4 and underestimated by 1.2. Moreover,
the discontinuity of the inclusion is strongly smoothed by Tikhonov regularization and the
electrodes close to the inclusion affect the reconstruction when the regularization parameter is
small, see right plot at the bottom. Note that our reconstruction algorithm does not use penalty
terms involving differential operators which might cope with this effect. Also the quasistatic
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Figure 4. One-step reconstruction of an L-shaped inclusion (32 electrodes, initial parameter
θ = 0.35, 0.5% artificial noise).

Figure 5. One-step reconstruction of two opposite inclusions (64 electrodes, initial parameter
θ = 0.48, 1% artificial noise).

imaging technique [20] designed to correct errors in the electrode model does not improve the
reconstructions.

Figure 4 shows reconstructions of an L-shaped inclusion. We simulated again a
32-electrode system with 0.5% artificial noise and started with θ = 0.35. The best
reconstruction seems to be the left most of the bottom row. The location of the inclusion
is found while its size is too large and the non-convexity is only slightly visible. As before,
the numerical value of the conductivity is underestimated and electrodes being next to the
inclusion spoil the reconstruction as the regularization parameter gets smaller.

The reconstructions up to now have been computed simulating a 32-electrode system. The
plots in figure 5 are now computed simulating a 64-electrode system. We added 1% artificial
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noise to the data and chose θ = 0.48 for the first reconstruction. As an additional difficulty
the conductivities of the two inclusions are above and below the background conductivity.
Again the locations of the two inclusions are roughly found but their sizes are overestimated.
Using a small regularization parameter we are able to recover the shape satisfactorily but
instabilities from the electrodes spoil the reconstruction near the boundary. On the other hand,
large parameters smooth the conductivity strongly.

We have performed more numerical experiments than reported here. All our experiments
showed that the Tikhonov one-step solver is able to find some main characteristics of the
inclusions as, for instance, their locations. The approximate shapes can usually be guessed
but complicated shapes are hard to recover, even if lots of electrodes are used. An experienced
user might be able to guess the correct shape by playing with the parameters. The one-step
approach offers only little control over the magnitude of the regularization and instability
problems, especially near to the boundary, occur even if the information in the interior of the
domain has not yet been fully exploited.

6. The REGINN algorithm

A very efficient iterative scheme for regularizing equation (5.3) is the method of conjugate
gradients (cg-method), see, e.g., Engl et al [16, chapter 7] or Rieder [31, chapter 5.3]. It
starts from an initial guess ξ0 ∈ S and computes iteratively a sequence (ξk)k∈N satisfying the
minimization property

ξk = argmin{|(U − Fd(σj )) − F ′
d(σj )ξ |2 | ξ ∈ S and ξ − ξ0 ∈ Uk}, (6.1)

where

Uk = span
{
F ′�

d (σj )r0,
(
F ′�

d (σj )F ′
d(σj )

)
F ′�

d (σj )r0, . . . ,
(
F ′�

d (σj )F ′
d(σj )

)k−1F ′�
d (σj )r0

}
,

is the kth Krylov subspace with respect to the initial residual r0 := U − Fd(σj ) − F ′
d(σj )ξ0.

Therefore, the kth iterate has the representation

ξk = ξ0 + pk−1
[
F ′�

d (σj )F ′
d(σj )

]
F ′�

d (σj )r0 (6.2)

with a suitable polynomial pk−1 of degree k − 1. Note that pk−1 depends on U − Fd(σj )

making the cg-method a nonlinear regularization scheme.
In starting the cg-method with ξ0 = 0 and in setting hj := ξN(j) the Newton iteration

(5.5) becomes

σj+1 = σj + pN(j)

[
F ′�

d (σj )F ′
d(σj )

]
F ′�

d (σj )[U − Fd(σj )] (6.3)

where N(j) is determined as the smallest number at which the relative (linear) residual is
smaller than a given tolerance µj ∈ (0, 1], that is,

|F ′
d(σj )ξN(j) + Fd(σj ) − U |2 < µj |Fd(σj ) − U |2 � |F ′

d(σj )ξk + Fd(σj ) − U |2
for all k = 1, . . . , N(j) − 1. A meaningful strategy to adapt µj ’s dynamically is presented
in (6.4).

Finally, iteration (6.3), called REGINN (REGularization based on INexact Newton
iterations), has to be stopped in time to avoid noise amplification. Here, we rely on a
discrepancy principle: choose R > 0 and accept iterate σn as approximation to the conductivity
s which fulfils

|U − Fd(σn)|2 � R < |U − Fd(σj )|2 for all j = 0, . . . , n − 1.
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For the sake of clarity we give an algorithmic realization of REGINN in pseudo code:

Initial guess σ0;
Regularization parameters {µj}, R;
j = 0;
while |U − Fd(σj)|2 > R

{
i = 0;
repeat

i = i + 1;
ξj,i = pi

(
F ′�

d (σj)F ′
d(σj)

)
F ′�

d (σj)
(
U − Fd(σj)

);
until |F ′

d(σj)ξj,i + Fd(σj) − U|2 < µj|Fd(σj) − U|2
σj+1 = σj + ξj,i;
j = j + 1;

}
return σj.

In the inner repeat-loop the Newton update is calculated using the cg-method and the
outer while-loop implements the Newton iteration stopped by the discrepancy principle.
REGINN was propagated by the second author and analysed in a series of papers [29, 30, 32],
see also Hanke [18]. Termination of the inner and outer loops as well as stability and
convergence results have been obtained for a large class of nonlinear inverse problems. At
present we do not know whether the convergence analysis applies to impedance tomography
as well. For instance, we do not know whether the EIT operator satisfies the tangential cone
condition:

‖F(σ ) − F(η) − F ′(η)(σ − η)‖H 1(B)⊕R
p

♦ � c‖F(σ ) − F(η)‖H 1(B)⊕R
p

♦

locally near to the searched-for conductivity distribution for a constant c < 1. To obtain
convergence rates even stronger assumptions are required so far. Therefore, our present work
is mainly experimental and numerical.

One of the big advantages of REGINN is that the tolerances {µj } ⊂ (0, 1) can be adapted
dynamically incorporating information on the local degree of ill-posedness gained during
the iteration. The following strategy (6.4) from [29, section 6] for choosing the tolerances
complies with the convergence analysis: the smaller the tolerances are the less Newton steps
(passes through the while-loop) are required to terminate REGINN ([29, corollary 4.7]).
On the other hand, the tolerances must not be too small to avoid noise amplification while
solving (5.3) ([29, lemma 3.2 and (3.6)]). In the starting phase of REGINN the repeat-loop
terminates even for small tolerances ([29, (3.6)]). Accordingly, we start with a small tolerance
and increase it during the iteration. An increase of the tolerance is needed if the number of
passes through the repeat-loop of two consecutive Newton steps increases. The tolerances
shall be decreased whenever successive numbers of passes through the repeat-loop drop.
Moreover, we apply a safeguarding technique: if the nonlinear defect |U −Fd(σj )|2 is already
close to R, then it is unnecessary to choose a small tolerance µj since then |U − Fd(σj+1)|2
might be considerably smaller than R.

The above considerations are realized in (6.4): initialize µstart ∈ (0, 1), µmax ∈ (µstart, 1),

ζ ∈ (0, 1) and define auxiliary parameters µ̃0 = µ̃1 = µstart. Then,

µj := µmax max{R/|U − Fd(σj )|2, µ̃j }, j = 0, 1, . . . , N(j) − 1, (6.4)



1980 A Lechleiter and A Rieder

Table 1. Parameter adaption of REGINN during the reconstruction process. The corresponding
reconstruction is shown in figure 6. Entries in column j denote the outer iteration counter, N(j) is
the number of inner iterations in the j th step and µj is the chosen tolerance for the j th step. The
relative error is given in per cent.

j N(j) µj Error

0 0 – 34.72
1 2 0.799 29.92
2 4 0.799 27.35
3 3 0.899 27.20
4 6 0.871 25.88
5 2 0.935 25.84
6 6 0.906 25.01
7 1 0.968 25.00
8 6 0.938 24.52
9 1 0.989 24.52

10 2 0.958 24.50
11 1 0.978 24.50
12 5 0.948 24.30
13 1 0.989 24.29
14 5 0.958 24.15
15 1 0.991 24.15

where

µ̃j :=
1 − N(j − 2)

N(j − 1)
(1 − µj−1): N(j − 1) � N(j − 2),

ζµj−1: otherwise,
j � 2.

In our numerical experiments for impedance tomography we worked with the parameter set-up
µstart = 0.8, µmax = 0.99 and ζ = 0.97.

6.1. Numerical experiments with the REGINN algorithm

The experimental protocol for the experiments with the REGINN algorithm is the same as for
the Tikhonov one-step solver in section 5.1. More precisely, we compute the synthetical data
and the Jacobian of the forward operator with the complete model on two different meshes
which are both very fine near the electrodes, whereas the inverse solver works on a coarse
mesh.

In experimenting with REGINN, the residual error |U − Fd(σj )|2 of the iterates σj

does sometimes increase during the outer iteration process. Usually, this happens when the
iteration reaches the saturation point. Possible interpretations are twofold. On one hand, the
regularization parameter R could be too small. On the other hand, the residual error may
not decrease monotonically for the EIT problem since EIT does not belong to the class of
problems where we can prove monotone decrease. Our implementation solves this problem
from the numerical point of view. If the residual error increases, then we have no hope that
the error itself decreases and we stop the iteration.

With the initial tolerance µ0 = 0.8, we found that the tolerances increase round about
monotonically during the reconstruction process and therefore we believe that these values
are adapted to the problem (compare table 1). When we perturb the data with artificial noise
we measure the perturbation of the data in the Frobenius norm as mentioned in section 5.1
and indicate the relative error between computed and perturbed data in per cent. As for the
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Figure 6. REGINN reconstruction of an L-shaped inclusion (32 electrodes, R = 1, µ0 = 0.8, 0.5%
artificial noise).

one-step solver, we always use a constant conductivity (with value 1) as initial guess for the
inverse solver.

The REGINN reconstructions are presented together with the original conductivity and the
evolution of the relative error during the (outer) iteration. In figure 6, we observe that REGINN
is able to find the approximate shape of the L-shaped inclusion from figure 4. We used 32
electrodes in this example and added 0.5% artificial noise. The size of the reconstructed
inclusion is moderately larger than the original. Only little noise comes from the electrodes
and the convex corners of the inclusion are quite well determined compared to figure 4.

The stability of the REGINN reconstructions is controlled by the adaptively chosen
tolerances µj . Table 1 shows this adaption process for the example of figure 6. The tolerance
selection scheme (6.4) works as predicted: For instance, from step 3 to step 4 the number of
inner iterations increases from 3 to 6 and REGINN accordingly chooses µ5 larger than µ4.
On the other hand, the number of inner iterations drops from 6 to 2 from step 4 to step 5 and
REGINN selects a µ6 smaller than µ5. During the complete iteration process the tolerances
increase from 0.799 to 0.991.

The conductivity distribution in figure 7 is the same as in figure 5 as are the number
of electrodes (p = 64) and the noise level (1%). REGINN locates the inclusions correctly
and also shows that their conductivities are above and below the reference conductivity. The
REGINN reconstructions are more concentrated and less smoothed than the NOSER-like
reconstructions in figure 5.

The searched-for conductivity of figure 8 is smooth and attains values above and below the
background medium. The reconstruction is computed with simulated data of a 64-electrode
system with 1% artificial noise and parameters R = 2.5, µ0 = 0.8. The location of the two
inhomogeneities is found, their size is slightly overestimated.

In figure 9, we investigate the reconstruction of a jump conductivity distribution being not
an inclusion in a homogeneous background medium, that is, we have a discontinuity also on
the boundary of the domain. We corrupted the 64 electrodes data by 2% artificial noise and
chose R = 3.6 and µ0 = 0.8. REGINN finds the boundary between the two constant parts
of the conductivity accurately. The two values of the conductivity are well approximated in
both parts of the domain, however, in the upper half of the domain the electrodes are clearly
visible.

Figure 10 presents the reconstruction of two close circular discs that are placed close to the
boundary of the domain. We worked with 64 electrodes, 5% artificial noise and chose µ0 = 0.8
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Figure 7. REGINN reconstruction of two circles with different conductivities (64 electrodes,
R = 2.5, µ0 = 0.8, 1% artificial noise).

Figure 8. REGINN reconstruction of two smooth inclusions (64 electrodes, R = 2.5, µ0 =
0.8, 1% artificial noise).

Figure 9. REGINN reconstruction of piecewise constant conductivity (64 electrodes, R =
3.6, µ0 = 0.8, 2% artificial noise).

and R = 8. The two inclusions are located but the numerical value of the conductivity is
strongly underestimated. REGINN fails to reconstruct the two separated discs but indicates
at least slightly the non-convexity of the inclusion. Noise appears near to the boundary of the
domain but this is to be expected under a noise level of 5%.
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Figure 10. REGINN reconstruction of two close circles (64 electrodes, µ0 = 0.8, R = 8, 5%
artificial noise).

Table 2. Relative errors in per cent for different conductivity distributions (32 electrodes, 0.5%
artificial noise, R = 1.5). Computing time t of the algorithms is given in seconds, � means the
number of outer iterations that REGINN performed.

REGINN Tikhonov

Figure µ0 = 0.8 t � θ = 0.04 t θ = 0.13 t

3 10.3 8.2 2 11.0 3.2 9.8 3.3
4 24.1 45.4 15 27.5 3.2 25.9 3.3
5 20.0 8.4 2 20.4 3.3 19.8 3.2
9 23.9 27.8 9 29.3 3.5 32.4 3.4

10 21.6 36.2 12 21.6 3.2 20.7 3.6
8 12.0 66.7 23 14.5 3.2 12.5 3.2

REGINN applied to the inverse EIT problem takes full advantage of the dynamic adaption
of the level of regularization to the local degree of ill-posedness. Therefore, REGINN
outperforms the Tikhonov one-step method in general with respect to image quality since
less noise ease the interpretation of the reconstructions, especially near to the boundary. The
images are more focused and have a higher contrast.

7. Quantitative comparison

In the last section we compared the classical Tikhonov one-step solver with REGINN in a
qualitative way and found that REGINN produces reconstructions of at least the same quality
as Tikhonov one-step reconstruction while avoiding some of its drawbacks. Now we will
substantiate this observation with a quantitative study. We consider the relative error of both
reconstruction methods with respect to the original resistivity distribution in the discrete L2(B)

norm (5.2). Note that our results presented in this section are stable under small changes in
the parameters µ0, R and θ of the algorithms.

Table 2 compares the inverse solvers for a 32-electrode system and 0.5% artificial noise.
We see that REGINN produces smaller or comparable errors than Tikhonov regularization,
but does never perform significantly worse. This observation agrees with our experience and
with our examples presented in sections 5 and 6. Our computations have been carried out
under Matlab 7 (R2006a) on an AMD Athlon 3800+ processor. The measured computing time
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Table 3. Relative errors in per cent for different resistivity distributions (64 electrodes, 1% artificial
noise, R = 2.5).

Tikhonov
REGINN

Figure µ0 = 0.8 θ = 0.053 θ = 0.017

3 9.59 10.95 9.95
4 22.6 27.5 26.1
5 20.2 21.6 20.8
9 22.8 31.1 33.8

10 18.6 21.8 21.1
8 8.91 14.3 12.7

Table 4. Relative errors in per cent for different resistivity distributions (64 electrodes, 5% artificial
noise, R = 8).

Tikhonov
REGINN

Figure µ0 = 0.8 θ = 0.078 θ = 0.025

3 9.74 11.9 11.6
4 25.2 28.4 27.0
5 20.0 22.1 21.7
9 22.3 30.5 32.9

10 19.8 22.4 21.9
8 10.2 15.3 14.4

excludes data preprocessing or plotting. The computing time of the Jacobian is included in the
case of the one-step solver, although the Jacobian could be assembled in advance. REGINN’s
computing time is seen to be roughly the computing time of the one-step solver times the
number of outer iterations. This observation remains true when increasing the number of
electrodes. Therefore, we omit CPU times in tables 3 and 4. For the present experiment (32
electrodes and a low noise level), the higher quality of REGINN’s reconstructions, as discussed
in section 6, is paid for by a higher computing time. Nevertheless, REGINN is worth its price
as the one-step solver is clearly outperformed under a larger number of electrodes and/or
stronger noise.

Table 3 contains results for a 64-electrode system with 1% artificial noise. REGINN now
outperforms the Tikhonov one-step solver as the differences between the two algorithms are
more pronounced than for the 32-electrode system. This indicates, as we think, that REGINN
extracts more information from perturbed data, compare, e.g., the performance of REGINN
when reconstructing the conductivity of figure 9.

Finally, we confirm our observations once again: table 4 compares the two algorithms for
a 64-electrode system under 5% relative noise.

Let us summarize our experimental findings for the inverse EIT problem: compared to the
simple Tikhonov one-step solver REGINN is able to extract more structural information from
noisy data. Additionally, it profits more strongly from increasing the number of electrodes.
All these advantages of REGINN originate, as we think, from the adaptive choice of the
tolerances (6.4) allowing a fine-tuned regularization of the locally linearized problems (5.3).

Of course, the Tikhonov one-step solver has its advantages: only one linear problem has
to be solved (if the regularization parameter θ is determined a priori!) making it a relatively
fast algorithm. It is therefore hard to beat if the measured data contain little information on
the searched-for conductivity as in the case of few electrodes.
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Nevertheless, our experiments reveal REGINN to be a competitive solver for the inverse
EIT problem. Its proven potential deserves further exploration under real-life conditions.

Appendix. Computing the Jacobian

In this appendix, we explain how to compute the Jacobian F ′
d(s) efficiently as we learned from

[28]. Let us denote by ∇tFd(s) the gradient of Fd(s) with respect to the tth component of
s ∈ Ad. Then F ′

d has the form

F ′
d(s) =


∇1Fd(s)

�

∇2Fd(s)
�

...

∇|T |Fd(s)
�

 ∈ R
|T |×lp. (A.1)

Recall that theorem 4.1 shows how to compute the partial derivatives appearing in (A.1). If
we denote

∇tFd(s) =: Wt = (
W 1

t , . . . ,W l
t

) ∈ R
lp,

then we can compute the vector Wm
t ∈ R

p
♦ as part of the solution

(
wm

t ,Wm
t

) ∈ H 1(B) ⊕ R
p
♦

of the variational problem

bs

((
wm

t ,Wm
t

)
, (v, V )

) = −
∫

B

11Tt
∇um∇v dx (A.2)

for all (v, V ) ∈ H 1(B) ⊕ R
p
♦ , where um ∈ H 1(B) is the solution of the forward problem with

respect to the current pattern Im and the contact impedance vector z, see theorem 4.1.
The reader might feel that this way of computing the Jacobian is highly expensive.

One computes indeed not only the needed vectors W1, . . . ,W|T |+p but also all the potentials
wm ∈ H 1(B) which are not needed a priori. In fact, using this method, one has to compute
l · |T | forward problems.

Fortunately, we are able to simplify substantially the computation of the Jacobian by the
following trick: we introduce the auxiliary ‘current frame’ J = (J 1, . . . , J p), with J k being
the Kronecker symbol

J k := (δj,k)
p

j=1 for k = 1, . . . , p,

and let (vk, V k) ∈ H 1 ⊕ R
p
♦ be the (grounded) solution of the variational problem

bs((v
k, V k), (y, Y )) = 〈Jm, Y 〉 = Ym for all (y, Y ) ∈ H 1(B) ⊕ R

p
♦

for k = 1, . . . , p. Even if J k are no current patterns in the usual sense
(∑

j J k
j �= 0

)
, this

problem is well-posed, because the linear form on the right-hand side is bounded and the
bilinear form on the left is an elliptic form on H 1 ⊕ R

p
♦ [14]. Then we compute

∇tF (s) = (
W 1

t , . . . ,W l
t

) = (〈
Wm

t , J k
〉p
k=1

)l

m=1

= (
bs

(
(vk, V k),

(
wm

t ,Wm
t

)))
l,m

(A.2)=
(∫

B

11Tt
∇um

t ∇vk dx

)
l,m

=
(∫

Tt

∇um
t ∇vk dx

)
l,m

. (A.3)

Hence, all we have to do to obtain the Jacobian is to compute the p forward problems for
(vk, V k), the l forward problems for (um,Um) and to assemble the obtained solution in the
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way indicated by (A.3). This requires the solution of p + l forward problems. As p � |T |
in general, the reduction of the numerical effort is tremendous. Moreover, the computation
of the forward solutions always uses the same bilinear form and this fact provides additional
speedup for the implementation.

An experienced reader might object to computing the Jacobian at all: REGINN, as an
iterative solver, only requires the action of the Jacobian and its adjoint on a vector. Both
matrix–vector products can indeed be realized by solving variational problems, see (4.1) for
F ′

d(σ )η. However, observe the appearance of F(σ ) on the right-hand side of (4.1). To set
up the right-hand side for computing F ′

d(σ )η, one accordingly needs to evaluate the forward
operator Fd which means solving an additional elliptic problem. Moreover, (4.1) addresses
the case of one single current vector only. Our setting deals with current frames of size l. So
we need to solve 2l elliptic problems all in all to evaluate F ′

d(σ )η (neglecting the structural
work for setting up the right-hand side). Since we work with p = l in our implementations,
the evaluation of F ′

d(σ )η requires to solve 2p forward problems. The same numerical effort
is needed to obtain F ′

d(σ )�ζ via variational problems. Computing the Jacobian explicitly is
therefore the cheaper way.
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[2] Astala K and Päivärinta L 2006 Calderón’s inverse conductivity problem in the plane Ann. Math. 163 265–99
[3] Bakushinskii A B and Kokurin M Y 2004 Iterative Methods for Approximate Solution of Inverse Problems

(Mathematics and its Applications vol 577) (Dordrecht: Springer)
[4] Bakushinskii A B 1992 The problem of the convergence of the iteratively regularized Gauss–Newton method

Comput. Maths. Math. Phys. 32 1353–9
[5] Borcea L 2001 A nonlinear multigrid for imaging electrical conductivity and permittivity at low frequency

Inverse Problems 17 329–59
[6] Borcea L 2002 Electrical impedance tomography Inverse Problems 18 R99–136
[7] Brühl M 1999 Gebietserkennung in der elektrischen Impedanztomographie PhD Thesis Universität Karlsruhe
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[10] Brühl M, Hanke M and Pidcock M 2001 Crack detection using electrostatic measurements Math. Model. Numer.
Anal. 35 595–605
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