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Summary. The approximate inverse is a powerful tool for solving first kind
operator equations in a stable way. Its abstract convergence and stability the-
ory developed in our articles [SIAM J. Numer. Anal., 37, 1909-1929,2000] and
[Math. Comp., 72, 1399-1415, 2003] is applied to the reconstruction problem
of 3D-vector field tomography resulting in a reconstruction algorithm of fil-
tered backprojection type. For an analytically computed reconstruction filter
(reconstruction kernel) convergence with rates as well as the regularization
property are established.

Mathematics Subject Classification (1991): 65J10, 65R10

1 Introduction

The approximate inverse is a numerical scheme to solve first kind operator
equations in a stable way. In our papers [15,16] we developed a conver-
gence and regularization theory for the approximate inverse in a general
setting. We further applied our abstract results to the reconstruction prob-
lem in 2D-tomography where we obtained convergence rates for the filtered
backprojection algorithm.

In the present paper we demonstrate the power of the approximate inverse
for reconstructing 3D-vector fields from projection data, that is, we apply the
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approximate inverse to the reconstruction problem in 3D-Doppler tomogra-
phy.

We organized the paper as follows. In the next section we recall briefly our
definition of the (fully discrete) approximate inverse and give an account on
our findings in the former articles [15,16]. Then, we put life into the abstract
concepts within the framework of vector field tomography. Especially, we
compute analytically reconstruction kernels for the 3D-Doppler transform.
As a result we gain convergence with rates for a filtered backprojection type
reconstruction algorithm in 3D-Doppler tomography.

The approximate inverse was originally introduced by Louis and Maaß [7]
as a continuous regularization technique. For further information in that direc-
tion see, e.g., [3,5,6,8] by Louis and collaborators.

2 Approximate inverse

Suppose that we want to solve the operator equation

Af = g(2.1)

where A : X → Y is a continuous linear operator between the real or com-
plex infinite dimensional Hilbert spaces X and Y . From a practical point of
view the complete right hand side is not at our disposal: we can only observe
finitely many moments �ng ∈ K

n1 of g. Here, �n : Y → K
n is the linear

observation operator which models the measuring or recording device. Let
us assume – for the time being – that �n : Y → K

n is bounded.
Instead of (2.1) we therefore have to consider the semi-discrete problem:

find an fn ∈ X such that

Anfn = gn(2.2)

where An = �nA and gn = �ng for a g ∈ Y . The above problem is under-
determined and we only can search for its minimum-norm solution f †

n in
N(An)⊥, the orthogonal complement of the null space of An.2 In princi-
pal we can obtain f †

n by solving the normal equation of (2.2). However, if
the range of A is non-closed in Y , that is, the generalized inverse of A is
unbounded, instabilities are likely to appear in computing f †

n directly from
the normal equation, especially under erroneous data gn.

We stabilize the reconstruction by trying to compute moments of f †
n :

〈f †
n , ei〉X, i = 1, . . . , d, with suitable mollifiers ei ∈ X. In caseX = L2(�),

1 The field K denotes either R or C depending whether X and Y are real or complex
spaces.

2 The minimum-norm solution f †
n of (2.2) exist for any gn ∈ K

n as the range of An is
finite dimensional and hence closed.
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� a domain in R
m, one can think of the ei’s as smooth approximations to

δ-distributions located at points xi ∈ �. To the mollifiers {ei} we associate
some set {bi} ⊂ X and approximate f †

n by

Edf
†
n :=

d∑

i=1

〈f †
n , ei〉X bi.(2.3)

Of course, we like to have Edf †
n converge to f †

n as d → ∞. Accordingly,
we require that Ed : X → X satisfies the mollifier property

lim
d→∞

‖Edw − w‖X = 0 for any w ∈ X(2.4)

which establishes the interplay of {ei} and {bi}.
The computations of the moments is achieved by approximating ei in the

range of A∗
n. To any ei we associate a reconstruction kernel υni ∈ K

n by
minimizing the defect ‖A∗

nυ
n
i − ei‖X, that is, υni solves the normal equation

AnA
∗
nυ

n
i = Anei.(2.5)

The above equation for υni is independent of the data gn, therefore, the kernels
can be computed in advance without affection of noise from measurement
errors. We call (ei, υni ) a mollifier/reconstruction kernel pair for An because
the following lemma holds true.

Lemma 2.1 Assume that A ∈ L(X, Y ) and An ∈ L(X,Kn). Further, let
either g be in R(A), the range ofA, or υni , a solution of (2.5), be in N(A∗

n)
⊥.

Then,

〈f †
n , ei〉X = 〈gn, υni 〉Kn .

Proof. The reconstruction kernel satisfies A∗
nυ

n
i = PN(An)⊥ei .

3 Hence,

〈f †
n , ei〉X = 〈f †

n , PN(An)⊥ei〉X = 〈Anf †
n , υ

n
i 〉Kn = 〈PR(An)gn, υ

n
i 〉Kn .

In case g ∈ R(A) we have gn = �ng = �nAu for an u ∈ X, so that
PR(An)gn = gn. If υni ∈ N(A∗

n)
⊥ = R(An) then PR(An)υ

n
i = υni . In both

instances we obtain 〈PR(An)gn, υ
n
i 〉Kn = 〈gn, υni 〉Kn . 
�

Finally we define the approximate inverse Ãn,d : K
n → X of An by

Ãn,dw :=
d∑

i=1

〈w, υni 〉Kn bi .(2.6)

3 Let M be a closed subspace of the Hilbert space Z. By PM ∈ L(Z) we denote the
orthogonal projector onto M .
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Please note that the computation of Ãn,dw reduces to an evaluation of d inner
products of length n. By Lemma 2.1 and (2.4),

Ãn,dgn = Edf
†
n

d→∞−−−−→ f †
n = PN(An)⊥f

which justifies the notation approximate inverse (the equality on the right
hand side holds true if gn = Anf ).

For several reasons we wish to avoid solving the normal equation (2.5):
AnA

∗
n may be a high dimensional, densely populated, and ill-conditioned

matrix; increasing n calls for complete new computation of the kernels; in-
variances ofA andA∗, which are used by Louis [5] to improve the efficiency
of the continuous approximate inverse (more details below in Lemma 2.3),
are in general not transmitted to An or A∗

n, respectively. Furthermore, it may
even happen, for instance, if A is the Radon or Doppler transform, that An :
D(An) ⊂ X → K

n is unbounded and A∗
n does not exist. Then, the recon-

struction kernels are not meaningfully defined by (2.5).
To overcome the problems with the above described approach we go back

to the continuous situation. First, we define precisely the observation oper-
ator covering the situation where An becomes unbounded. To this end A is
assumed to have the following mapping property

A : X1 → Y1 is continuous(2.7)

where X1 and Y1 are Banach spaces such that the embeddings X1 ↪→ X as
well as Y1 ↪→ Y are continuous, injective, and dense. One can consider X1

and Y1 subspaces ofX and Y , respectively, which contain “smooth” elements.
For instance, if X and Y are L2-spaces, X1 and Y1 could be Sobolev spaces.

Now we define the observation operator �n : Y1 → K
n. Given n func-

tionals {ψn,k}1≤k≤n in Y ′
1, the dual to Y1, let

(�nv)k := 〈ψn,k, v〉Y ′
1×Y1, k = 1, . . . , n,(2.8)

where 〈·, ·〉Y ′
1×Y1 is the duality pairing on Y ′

1 × Y1.
The semi-discrete operatorAn := �nA : D(An) ⊂ X → K

n with domain
of definition D(An) = X1 might be bounded or unbounded. The former is
the case ifX = X1 (topologically). HereA∗

n exists, hence, the reconstruction
kernels are well defined by (2.5). Typical examples are integral operators
with smooth (integral) kernels.

Since R(A∗) is dense in N(A)⊥ we find, to any εi > 0, an υi ∈ Y1 ( Y1 is
dense in Y ) such that

‖PN(A)⊥ei − A∗υi‖X ≤ εi, i = 1, . . . , d.(2.9)

In [15, Sect. 3.2] we demonstrated how to obtainυi numerically from ei know-
ing a singular value decomposition of A. For A being the Radon transform,
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pairs (ei, υi) are explicitely known satisfying (2.9) with εi = 0, see, e.g., [12,
14]. Later in this paper (Sect. 4) we analytically compute pairs (ei, υi) for
the 3D-Doppler transform where also εi = 0.

With the υi’s we define approximate reconstruction kernels by

υni := Gn�nυi, i = 1, . . . , d.(2.10)

The n×n-matrixGn is the Gramian relative to a family {ϕk}1≤k≤n in Y which
is closely connected to �n by the operator 
n : Y1 → Y ,


nv :=
n∑

k=1

(�nv)k ϕk =
n∑

k=1

〈ψn,k, v〉Y ′
1×Y1 ϕk.(2.11)

The operator
n is required to satisfy the approximation property (2.12): let
there be a sequence {ρn} ⊂ [0, 1] converging monotonically to zero such that

‖v −
nv‖Y � ρn ‖v‖Y1 for all v ∈ Y1 as n → ∞.(2.12)

Our notation A � B indicates the existence of a generic constant c > 0 such
that A ≤ c B. The constant c will not depend on the arguments of A and B.
This means that the constant involved in (2.12) does not depend on n and v.

Furthermore, 
n is assumed to be uniformly bounded in n,

‖
n‖Y1→Y � 1 as n → ∞,(2.13)

Now we have all ingredients to formulate the convergence result. For the
stability result see [16, Sect. 4.2].

Theorem 2.2 Let A, Ed , �n, and 
n be as specified in this section. Addi-
tionally, let the families {bi}1≤i≤d ⊂ X and {ϕk}1≤k≤n ⊂ Y be Riesz systems.4

Let the triplets {(ei, υi, bi)}1≤i≤d ⊂ X × Y1 × X satisfy (2.4) and (2.9). If
f ∈ X1 then

‖Ãn,dAnf − PN(A)⊥f ‖X � ‖(I − Ed)PN(A)⊥f ‖X

+
( 1

d

d∑

i=1

(
ρ2
n ‖υi‖2

Y1
+ ε2

i

))1/2
‖f ‖X1 .

Provided d−1 ∑d
i=1 ε

2
i → 0 as d → ∞ and ρ2

n d
−1 ∑d

i=1 ‖υi‖2
Y1

→ 0 as
n, d → ∞, we have convergence:

lim
n→∞
d→∞

‖Ãn,dAnf − PN(A)⊥f ‖X = 0.

4 A family {zj }1≤j≤m of a Hilbert space Z is called Riesz system iff

m−1 ‖w‖2
Km

�
∥∥∥

m∑

j=1

wj zj

∥∥∥
2

Z
� m−1 ‖w‖2

Km
for all w ∈ K

m.
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Proof. In [16] we proved a less general version of Theorem 2.2: we restricted
ourselves to injective operators, that is, PN(A)⊥ = I . However, the proof of
Theorem 4.1 from [16] carries over to the present situation because

|〈PN(A)⊥f, ei〉X − 〈f,A∗υi〉X| = |〈f, PN(A)⊥ei − A∗υi〉X| ≤ εi ‖f ‖X
which is all we need. 
�

Louis [5] observed that invariances of A and A∗ can be used to generate
a new mollifier/reconstruction kernel pair from another one. In Lemma 2.3
below we present such a technique well suited for our version of the approx-
imate inverse. Moreover, we only require an invariance of A∗. In this respect
Lemma 2.3 is an abstract modification of Theorem 3.1 from [11]. As a prac-
tical consequence we only need to find one single pair (e, υ) ∈ X × Y

fulfilling (2.9), see Sect. 3.2.

Lemma 2.3 Let A ∈ L(X, Y ), T ∈ L(X), and S ∈ L(Y ) satisfying TA∗ =
A∗S. Further, let S have a dense range and let T be a multiple of an isometry:
there is a τ > 0 such that ‖T u‖X = τ ‖u‖X for all u ∈ X.

If ‖PN(A)⊥e − A∗υ‖X ≤ ε for a pair (e, υ) ∈ X × Y then also

‖PN(A)⊥T e − A∗Sυ‖X ≤ τ ε.

Proof. We claim that PN(A)⊥T = T PN(A)⊥ . Having verified our claim we are
done since

‖PN(A)⊥T e − A∗Sυ‖X = ‖T (PN(A)⊥e − A∗υ)‖X ≤ τ ε.

Now we will establish the inclusions TN(A)⊥ ⊂ N(A)⊥ and TN(A) ⊂
N(A).

To any w ∈ N(A)⊥ = R(A∗) there exist a sequence {zi} in Y with
w = limi→∞A∗zi . By the invariance we have A∗Szi = TA∗zi which gives
limi→∞A∗Szi = Tw. Hence, Tw ∈ R(A∗) = N(A)⊥ and the first inclusion
is shown.

To prove the second inclusion we note that τ 2A = S∗AT which follows
from TA∗ = A∗S when considering T ∗T = τ 2 IX (the latter relation holds
true since T/τ is an isometry, see, e.g., Weidmann [19, Theorem 4.34]). By
assumption S∗ possesses a trivial null space, thus, we have TN(A) ⊂ N(A).

Finally, for any u ∈ X,

PN(A)⊥T u = PN(A)⊥ T PN(A)⊥u︸ ︷︷ ︸
∈N(A)⊥

+PN(A)⊥ T PN(A)u︸ ︷︷ ︸
∈N(A)

= T PN(A)⊥u

and our claim from the beginning is true. 
�
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3 Convergence of filtered backprojection type algorithm for 3D vector
tomography

Vector tomography entails the reconstruction of a vector field from line
integrals over certain components of the field. There exists a wide area of
applications for vector tomography ranging from medical imaging (cancer
diagnosis from blood flow), structural mechanics, oceanography, photoelas-
ticity to plasma physics, see Sparr and Stråhlén [18] for an overview.

In the present section we apply our abstract convergence results from the
former sections to the reconstruction problem in 3D vector tomography.

3.1 Doppler transform: definition and smoothing property

The mathematical model for vector tomography is the Doppler transform.
Here we present a convenient parameterization of this mapping and recall
some of its properties which we will need later. The material is taken from [10]
and [11].

We start with providing some notation. First we introduce the unit vectors
w1 = (0, 0, 1)t ,w2 = (1, 0, 0)t , andw3 = (0, 1, 0)t permuting the canonical
unit vectors. With each of these vectors we associate embeddings Pj : R

2 →
w⊥
j , j = 1, 2, 3, by P1(x1, x2) = (x1, x2, 0)t , P2(x1, x2) = (0, x1, x2)

t , and
P3(x1, x2) = (x1, 0, x2)

t .
In the sequel we will only consider lines being parallel to one of the three

planes w⊥
j , j = 1, 2, 3. A line Lj parallel to w⊥

j is determined uniquely by
three parameters: a direction (angle) ω(ϑ) = (cosϑ, sin ϑ)t , the distance
s ∈ R to the wj -axis, and the distance a ∈ R to the origin. Hence,

Lj = Lj(ϑ, s, a) = {
x ∈ R

3
∣∣ 〈x,Pjω(ϑ)〉 = s, 〈x,wj 〉 = a

}
.

Let � be the open unit ball in R
3 centered about the origin. The 3D Doppler

transform

D = (D1,D2,D3)
t : L2(�)3 → L2(Q)3, Q := [0, 2π ] × [−1, 1]2,

is defined by

Djf (ϑ, s, a) =
∫

Lj (ϑ,s,a)∩�

〈
wj × Pjω(ϑ), f (x)

〉
dσ(x), j = 1, 2, 3.

Observe that D2 and D3 are not obtained from D1 by a mere cyclic shift of
{1, 2, 3}: While P1 and P2 can be obtained from each other by a cyclic shift,
P3 is not a cyclic shift, neither form P1 nor from P2. Thus, Dj integrates
two different components of the vector field f over lines located in different
planes. Our definition of the Dj ’s corresponds exactly to the measurement
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geometry suggested by Juhlin [4], see also Norton [13]. Since we intend to
invert approximately a semi-discrete version of D, see Section 3.2 below, we
cannot confine to D1 only but have to use a setting involving all components
of D.

The Doppler transform satisfies a smoothing property which we formu-
late in Theorem 3.1 below. To this end we need further notation. We define
anisotropic Sobolev spaces X α,β

j , α, β ≥ 0, to be the closure of C∞
0 (�), the

space of C∞-functions compactly supported in �, with respect to the norm

‖v‖X α,β
j

:=
( ∫

R3
(1 + ξ 2

1 + ξ 2
2 )
α (1 + ξ 2

3 )
β
∣∣̂v

(
Pj (ξ1, ξ2)+ ξ3wj

)∣∣2
dξ

)1/2

,

j = 1, 2, 3. Above, v̂ denotes the Fourier transform of v. Please observe that
Pj (ξ1, ξ2) + ξ3wj is only a permutation of the entries of ξ = (ξ1, ξ2, ξ3)

t .
For example,

‖v‖X α,β
3

=
( ∫

R3
(1 + ξ 2

1 + ξ 2
3 )
α (1 + ξ 2

2 )
β
∣∣̂v(ξ)

∣∣2
dξ

)1/2

.

Further, we introduce Hα(G), the L2-Sobolev space of order α ≥ 0 over
a domain G ⊂ R

n, and its subspace Hα
0 (G) containing all elements of

Hα(G) which vanish at the boundary of G. For a detailed definition see,
e.g., Wloka [20].

Theorem 3.1 The Doppler transform D is a bounded linear mapping from
the Cartesian product space (X α,β

1 ∩X α,β

3 )×(X α,β

1 ∩X α,β

2 )×(X α,β

2 ∩X α,β

3 ) to

the tensor product space
(
Hα+1/2(Z) ⊗̂H

β

0 (−1, 1)
)3

where Z = ]0, 2π [
×] − 1, 1[.

More precisely, we have the continuity estimates

‖Djf ‖
Hα+1/2(Z)⊗̂Hβ

0 (−1,1) � ‖fj‖X α,β
j

+ ‖fj+1‖X α,β
j
, j = 1, 2,(3.1a)

‖D3f ‖
Hα+1/2(Z)⊗̂Hβ

0 (−1,1) � ‖f1‖X α,β
3

+ ‖f3‖X α,β
3
.(3.1b)

Proof. The proof of Theorem 2.10 from [10] actually verifies (3.1). 
�
Basically, the above theorem tells us that Df is smoother in its first two

arguments than f by 1/2 measured in an appropriate Sobolev scale.
Please note that the components of the Doppler transform D : L2(�)3 →

L2(Q)3 will play the role of the operator A : X → Y from our abstract
setting. Hence, (3.1) corresponds to the mapping property (2.7) with X1 and
Y1 being the spaces

Xα,β := (X α,β

1 ∩ X α,β

3 )× (X α,β

1 ∩ X α,β

2 )× (X α,β

2 ∩ X α,β

3 )
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(note that X0,0 = L2(�)3) and

Yα,β := Hα+1/2(Z) ⊗̂H
β

0 (−1, 1),

respectively.

3.2 Approximate inverse for the Doppler transform

In this subsection we provide all ingredients necessary to apply the approxi-
mate inverse to the reconstruction of vector fields from discrete Doppler data.
These ingredients are mollifiers and reconstruction kernels, the observation
operator�n, see (2.8), the interpolation-like operator
n, see (2.11), and the
mollifier operator Ed , see (2.3).

First we introduce observation operators. Let � ∈ {1, 2} (with � we dis-
tinguish two different scenarios) and define

ϑj = j hϑ, hϑ = 2π/p, j = 0, . . . , p�,(3.2a)

si = i hs, hs = 1/q, i = −q, . . . , q�,(3.2b)

ak = k ha, ha = 1/r, k = −r, . . . , r�,(3.2c)

where (p, q, r ∈ N)

p1 = p − 1, q1 = q − 1, r1 = r − 1,

p2 = p, q2 = q, r2 = r.

If α > 1/2 then point evaluations are stable operations onHα+1/2(Z) as well
as Hα

0 (−1, 1). Therefore, we define the bounded operators

�(�)
p,q : Hα+1/2(Z) → R

d� by
(
�(�)
p,qy

)
i,j

:= y(ϑj , si),

d� = (p� + 1)(q + q� + 1), and (β > 1/2)

�(�)
r : Hβ

0 (−1, 1) → R
m� by

(
�(�)
r y

)
k

:= y(ak),

m� = r + r� + 1. The tensor product of both latter point evaluations acts
continuously on Yα,β with range R

n� where n� = d� ·m�:
�(�)
p,q,r := �(�)

p,q ⊗�(�)
r : Yα,β −→ R

d� ⊗ R
m� = R

n�

is bounded for α, β > 1/2.

We have

n1 = 4p q r and n2 = (p + 1) (2q + 1) (2r + 1).
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By �(�)
p,q,rD we understand

(
�(�)
p,q,rD1, �

(�)
p,q,rD2, �

(�)
p,q,rD3

)t
which is well

defined since Dj (X
α) ⊂ Yα,β , see Theorem 3.1. The reconstruction problem

in 3D vector tomography now reads (α, β > 1/2):

given gp,q,r ∈ R
3n� find f ∈ Xα,β such that �(�)

p,q,rDf = gp,q,r .

For applying the approximate inverse to the reconstruction problem we con-
sider �(�)

p,q,rD in the natural L2-topology in which D is bounded. Unfortu-
nately the L2-boundedness of D does not carry over to the semi-discrete
Doppler transform.

Lemma 3.2 The semi-discrete Doppler transform

�(�)
p,q,rD : Xα,β ⊂ L2(�)3 → R

3n�

is unbounded for any α, β > 1/2. Here, Xα,β is considered as the domain of
definition of �(�)

p,q,rD in the L2-topology.
In other words: The semi-discrete Doppler transform �(�)

p,q,rD has no
bounded extension onto L2(�)3.

Proof. The proof of Theorem 5.1 in [15] can be adapted to the present situ-
ation. 
�

We construct the operator
(�)
p,q,r related to�(�)

p,q,r by the help of the tensor

product spline spaces V (�)p,q,r = S
(�)
ϑ ⊗ S(�)s ⊗ S(�)a ⊂ L2(Q). The univariate

spaces S(�)ϑ , S(�)s , and S(�)a are the piecewise constant (� = 1) or linear (� = 2)
spline spaces with respect to the knot sequences {ϑj }, {si}, and {ak}, respec-
tively. We equip V (�)p,q,r with the tensor product B-spline basis

{
B
(�)
p,j ⊗ B

(�)
q,i ⊗ B

(�)
r,k

∣∣ j, i, k as in (3.2)
}
.(3.3)

For instance we have that

B
(1)
p,j = χ[ϑj ,ϑj+1[ and B

(2)
r,k (at ) =

{
1 : t = k

0 : otherwise

where χI is the indicator function of the interval I . The other basis functions
are defined accordingly. The interpolation operator 
(�)

p,q,r : Yα,β → Vp,q,r ,
α, β > 1/2,


(�)
p,q,ry :=

p�∑

j=0

q�∑

i=−q

r�∑

k=−r

(
�(�)
p,q,ry

)
i,j,k

B
(�)
p,j ⊗ B

(�)
q,i ⊗ B

(�)
r,k ,

satisfies the uniform boundedness

‖
(�)
p,q,ry‖L2(Q) � ‖y‖Yα,β(3.4)
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as well as the approximation property

‖
(�)
p,q,ry − y‖L2(Q) � ρ ‖y‖Yα,β(3.5)

where

ρ = ρ(�, α, β, hϑ, hs, ha) := max{hϑ, hs}min{α+1/2,�} + hmin{β,�}
a

For both latter estimates see Appendix A.
We define the mollifier operator Ed : L2(�)3 → L2(�)3 by, j = 1, 2, 3,

(Ed)jf (x) :=
∑

k∈Z3

〈fj , ejd,k〉L2(�) B(d x − k)(3.6)

=
∑

k∈Z3

〈f, ejd,k δj 〉L2(�)3 B(d x − k)

where B is the tensor product linear B-spline: B = b ⊗ b ⊗ b with b being
the convolution of the indicator function of [−1/2, 1/2] with itself and δj is
the j -th canonical unit vector in R

3. The mollifiers used in defining Ed are
scaled and translated versions of the mollifiers ej = e

j

0,0:

e
j

d,k(x) = T d,k
j ej := d3 ej (d x − k).(3.7)

We work with ej ’s being tensor products of bivariate and univariate mollifiers.
With (ν ∈ N)

p(s, t) = pν(s, t) := ν + 1

π

{
(1 − s2 − t2)ν : s2 + t2 ≤ 1

0 : otherwise
(3.8)

and

q(s) = qν(s) := (2ν + 1)!!

2ν+1 ν!

{
(1 − s2)ν : |s| ≤ 1

0 : otherwise5(3.9)

we define mollifiers adapted to the tensor product structure of the Doppler
transform by

e1(x) := p
(
x1, x2

)
q
(
x3

)
,(3.10a)

e2(x) := p
(
x2, x3

)
q
(
x1

)
,(3.10b)

e3(x) := p
(
x1, x3

)
q
(
x2

)
.(3.10c)

Please note that the mollifiers are normalized,
∫
ej (x) dx = 1, and they are

compactly supported but not in�. Their supports are cylinders slightly larger
than �. With the simple rescaling ej (·) := 23/2ej (

√
2 ·) (or a rescaling of p

and q) we could achieve ej ∈ X λ,λ
j for any λ < ν + 1/2. However, for the

reader’s convenience we prefer a lean notation and therefore dispense with

5 (2ν + 1)!! = 3 · 5 · · · (2ν + 1)
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a rescaling. Nevertheless, we will consider the ej ’s as elements of X λ,λ
j for

any λ < ν + 1/2. This minor inaccuracy does not hurt as the mollifiers get
scaled anyway, see (3.7).

In Appendix B we prove the mollifier property

lim
d→∞

‖Edf − f ‖L2(�)3 = 0 for all f ∈ L2(�)3(3.11)

as well as the estimate

‖(Ed)jf − fj‖L2(�) �
(
d− min{2,α} + d− min{2,β}) ‖fj‖X α,β

j
.(3.12)

The kernels υj belonging to the mollifier fields ej δj and Dj , j = 1, 2, 3 will
be explicitely calculated in Section 4. They satisfy the normal equation

DjD∗
jυ

j = Dj (e
j δj )(3.13)

which is equivalent to D∗
jυ

j = PN(Dj )⊥(e
j δj ), see (2.9). Finally we have

to introduce the reconstruction kernel υjd,k belonging to the mollifier field

e
j

d,k δj . With the explicit formula for D∗
j given in [11, Formula (2.3)] we

easily derive the invariance property

D∗
j Sd,kj = T d,k

j D∗
j

where the translation-dilation operator Sd,kj is defined by

Sd,kj g(ϑ, s, a) := d3 g
(
ϑ, d s − 〈P∗

j k, ω(ϑ)〉, d a − 〈k,wj 〉
)
.

Define υjd,k := Sd,kj υj . In applying Lemma 2.3 withA = Dj , S = Sd,kj , T =
T d,k
j , X = L2

�(R
3) := {f ∈ L2(R3) | suppf ⊂ �}, Y = L2([0, 2π ] × R

2),
we obtain

D∗
jυ

j

d,k = PN(Dj )⊥(e
j

d,k δj ) for d ≥ 1 and k ∈ Z
3 with ‖k‖ ≤ d − 1.6

After these preparations we are able to define the approximate inverse D̃(�)
j,n�,d

:
R
n� → L2(�) of �(�)

p,q,rDj , see (2.6) and (2.10):

D̃(�)
j,n�,d

w(x) :=
∑

k∈Z
3

‖k‖≤d−1

〈
w, G(�)

p,q,r�
(�)
p,q,rS

d,k
j υj

〉
R
n�
B(d x − k), x ∈ �,

whereG(�)
p,q,r ∈ R

n�×n� is the Gramian matrix with respect to the spline basis
(3.3) (G(1)

p,q,r is a multiple of the identity matrix). Please note that the inner

6 The restrictions on d and k guarantee that T d,k
j ∈ L

(
L2
�(R

3)
)

which is needed for
applying Lemma 2.3.
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products can be evaluated by an algorithm of filtered backprojection type,
see [11, Chap. 5] for details and numerical experiments.

Relying on our approximate inverses of the�(�)
p,q,rDj ’s we find an approx-

imate inverse D̃(�)
n�,d

: R
3n� → L2(�)3 for �(�)

p,q,rD by

(D̃(�)
n�,d
w)j (x) = D̃(�)

j,n�,d
wj (x) where w = (w1, w2, w3)

t and wj ∈ R
n� .

In the remainder of this section we will formulate Theorem 2.2 for D̃(�)
j,n�,d

and

for D̃(�)
n�,d

, see Theorem 3.5 and Corollary 3.6 below. Since Dj is not injective

we are only able to prove convergence of D̃(�)
j,n�,d

�(�)
p,q,rDjf to (PN(Dj )⊥f )j .

7

We will need a Sobolev norm estimate for υjd,k which we will establish

by a continuity result of Sd,kj .

Lemma 3.3 Let Z =]0, 2π [× ] − 1, 1[, Zd,kj = {(
ϑ, d s − 〈P∗

j k, ω(ϑ)〉
) ∣∣

(ϑ, s) ∈ Z}
, and I d,kj = {

d a − 〈k,wj 〉
∣∣ a ∈ ] − 1, 1[

}
. If ‖k‖ ≤ d then

∥∥Sd,kj g
∥∥
Hκ(Z)⊗̂Hλ(−1,1) � d κ+λ+2 ‖g‖

Hκ(Z
d,k
j )⊗̂Hλ(I

d,k
j )

(3.14)

whenever the right hand side is defined for κ, λ ≥ 0.

Proof. We rewrite Sd,kj as a tensor product: Sd,kj = T
d,k
j ⊗ S

d,k
j where

T
d,k
j w(ϑ, s) := d2w

(
ϑ, d s − 〈P∗

j k, ω(ϑ)〉
)

and

S
d,k
j u(a) := d u

(
d a − 〈k,wj 〉

)
.

Now, Lemma 5.3 from [16] applies to T d,kj yielding

∥∥T d,kj w
∥∥
Hκ(Z)

� dκ+3/2 ‖w‖
Hκ(Z

d,k
j )
.

Further,
∥∥Sd,kj u

∥∥
Hλ(−1,1) � dλ+1/2 ‖w‖

Hλ(I
d,k
j )

(3.15)

can be validated along the lines of the proof of Lemma 5.3 from [16]. 
�
Corollary 3.4 Let the mollifiers ej , j = 1, 2, 3, be defined as in (3.10). If
ν > max{α + 1/2, β − 1/2} and d ≥ 1 then

‖υjd,k‖Yα,β � dα+β+5/2

for j = 1, 2, 3. The bound is uniform in k with ‖k‖ ≤ d − 1.

7 The null space of the Doppler transform is explicitely characterized, see [11, For-
mula (3.15)].
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Proof. The computation of the reconstruction kernels is outlined in Section 4
below. We will see that every kernel υj corresponding to a mollifier ej from
(3.10) has a decomposition like υj (ϑ, s, a) = υ

j

1 (ϑ, s, a) + υ
j

2 (ϑ, a) with
υ
j

1 ∈ Hα+1/2((0, 2π)× R)⊗̂Hβ(R) and υj2 ∈ Hα+1/2(0, 2π)⊗̂Hβ(R), see
Lemma 4.1 below. By (3.4), (3.14), and (3.15) we have

‖υjd,k‖Yα,β ≤ ‖Sd,kj υ
j

1 ‖Yα,β + ‖Sd,kj υ
j

2 ‖Yα,β

� dα+β+5/2 ‖υj1 ‖Hα+1/2((0,2π)×R)⊗̂Hβ(R)

+ dβ+5/2 ‖υj2 ‖Hα+1/2(0,2π)⊗̂Hβ(R)

� dα+β+5/2

which finishes the proof of Corollary 3.4. 
�

Theorem 3.5 Letα, β > 1/2 and letf be inXα,β with supp f � �. The mol-
lifiers ej , j = 1, 2, 3, are defined in (3.10) with ν > max{α+ 1/2, β− 1/2}.
Let d̃ = d̃(f ) be the smallest positive integer such that supp f is contained
in B1−1/d̃ (0), the ball about the origin with radius 1 − 1/d̃.

If d ≥ d̃ then, for j = 1, 2, 3,

‖D̃(�)
j,n�,d

�(�)
p,q,rDjf − (PN(Dj )⊥f )j‖L2(�)

� d− min{2,α} + d− min{2,β} + ρ dα+β+5/2.
(3.16)

Proof. For d ≥ d̃ and ‖k‖ ≥ d the inner products 〈f, ejd,k δj 〉L2(�)3 vanish.
Thus,

(Ed)jf (x) =
∑

k∈Z
3

‖k‖≤d−1

〈f, ejd,k δj 〉L2(�)3 B(d x − k).

Therefore, applying Theorem 2.2 together with Corollary 3.4 we obtain

‖D̃(�)
j,n�,d

�(�)
p,q,rDjf − (PN(Dj )⊥f )j‖L2(�)

� ρ dα+β+5/2 ‖f ‖Xα,β + ∥∥(
(I − Ed)PN(Dj )⊥f

)
j

∥∥
L2(�)

.

Since f ∈ Xα,β we have either PN(Dj )⊥f ∈ Xα,β or PN(Dj )f ∈ Xα,β (if
both components of f would be less smooth, f would be less smooth). If the
former is the case, (3.16) follows immediately from (3.12). In case the latter
holds true we proceed with

∥∥(
(I − Ed)PN(Dj )⊥f

)
j

∥∥
L2(�)

= ∥∥(
(I − Ed)(I − PN(Dj )⊥)f

)
j

∥∥
L2(�)

and the triangle inequality together with (3.12) implies (3.16). 
�
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Following we investigate which relations between the data, determined by
the parameters q, p, and r , and the number of reconstruction points, deter-
mined by the scaling factor d, yield convergence and convergence rates.
To formulate the convergence result for D̃(�)

n�,d
we introduce the projection

P : L2(�)3 → L2(�)3,

(Pf )j = (PN(Dj )f )j , j = 1, 2, 3.

Corollary 3.6 Adopt the assumptions of Theorem 3.5. Let {qk}k∈N, {pk}k∈N,
{rk}k∈N be sequences in N and let {dk}k∈N be a positive sequence. If all four
sequences diverge to infinity and satisfy

lim
k→∞

d
α+β+5/2
k /min{qk, pk}min{α+1/2,�} = lim

k→∞
d
α+β+5/2
k /r

min{β,�}
k = 0

then, for j = 1, 2, 3,

lim
k→∞

‖D̃(�)
j,n�,dk

�(�)
pk,qk,rk

Djf − (PN(Dj )⊥f )j‖L2(�) = 0

as wells as

lim
k→∞

‖D̃(�)
n�,dk

�(�)
pk,qk,rk

Df − Pf ‖L2(�)3 = 0.

Further, relate q, p, r , and d by p � q, r � qmin{α+1/2,�}/min{β,�}, and
d � qλ 8 where

λ = λ(α, β) = min{α + 1/2, �}
α + β + 5/2 + min{2, α, β} .(3.17)

Then, for j = 1, 2, 3,

‖D̃(�)
j,n�,d

�(�)
p,q,rDjf − (PN(Dj )⊥f )j‖L2(�) � q−λ min{2,α,β}

as well as

‖D̃(�)
n�,d
�(�)
p,q,rDf − Pf ‖L2(�)3 � q−λ min{2,α,β}

as q → ∞.

Proof. First we prove the convergence statements for D̃(�)
j,n�,d

. The plain con-
vergence follows directly from (3.16) and the assumptions on the sequences
{qk}k∈N, {pk}k∈N, {rk}k∈N, and {dk}k∈N.

Now we validate the convergence rate. By assumption we have that ρ �
q− min{α+1/2,�} yielding

‖D̃(�)
j,n�,d

�(�)
p,q,rDjf − (PN(Dj )⊥f )j‖L2(�)

� q−λ min{2,α} + q−λ min{2,β} + q− min{α+1/2,�}+λ (α+β+5/2).

8 By A � B we abbreviate the two-sided inequality A � B � A.
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Since − min{α+ 1/2, �} + λ (α+ β + 5/2) = −λ min{2, α, β} the conver-
gence rate is established.

The corresponding results for D̃(�)
n�,d

are readily obtained by the first
parts of the proof using that the norm on L2(�)3 is given by ‖f ‖2

L2(�)3
=

∑3
j=1 ‖fj‖2

L2(�)
. 
�

We end this section by a discussion of the regularization power of D̃(�)
j,n�,d

.
Corollary 3.7 below is based on the abstract result from [16, Section 4.2].
By �(�),δ

p,q,r : Yα,β → R
n� we denote a perturbed (noisy) realization of the

observation operator with a relative noise level δ > 0:

∣∣(�(�),δ
p,q,ry

)
i,j,k

− (
�(�)
p,q,ry

)
i,j,k

∣∣ ≤ δ ‖y‖Yα,β .(3.18)

Corollary 3.7 Adopt the assumptions of Theorem 3.5. Suppose that p � q,
r � qmin{α+1/2,�}/min{β,�}, and d � qλ with λ from (3.17). Further, assume
(3.18) holds true. If q � δ−1/min{α+1/2,�} then, for j = 1, 2, 3,

‖D̃(�)
j,n�,d

�(�),δ
p,q,rDjf − (PN(Dj )⊥f )j‖L2(�) � δ

min{2,α,β}
α+β+5/2+min{2,α,β}

as well as

‖D̃(�)
n�,d
�(�),δ
p,q,rDf − Pf ‖L2(�)3 � δ

min{2,α,β}
α+β+5/2+min{2,α,β}

as δ → 0.

Proof. We follow a standard procedure from regularization theory and split
the reconstruction error in the approximation error and the data error:

‖D̃(�)
j,n�,d

�(�),δ
p,q,rDjf − (PN(Dj )⊥f )j‖L2(�)

≤ ‖D̃(�)
j,n�
�(�)
p,q,rDjf − (PN(Dj )⊥f )j‖L2(�)

+‖D̃(�)
j,n�,d

(�(�),δ
p,q,r −�(�)

p,q,r )Djf ‖L2(�).

According to the proof of Theorem 4.3 from [16] the data error is bounded
by a multiple of δ dα+β+5/2 = δ qλ (α+β+5/2). The approximation error has
already be bounded in Corollary 3.6 by a multiple of q−λ min{2,α,β}, that is,

‖D̃(�)
j,n�,d

�(�),δ
p,q,rDjf − (PN(Dj )⊥f )j‖L2(�) � q−λ min{2,α,β} + δ qλ (α+β+5/2).

Balancing the terms on the right verifies Corollary 3.7. 
�



The approximate inverse in action III: 3D-Doppler tomography 369

4 Computing the reconstruction kernel

We analytically solve the normal equation (3.13) for ej defined in (3.10).
Schuster [10, Corollary 3.4] discovered that the solution υj of (3.13) can be
determined by

(R∗ ⊗ I ) ∂sυ
j = wj · ∇ × (ej δj )(4.1)

where R∗ is the adjoint operator of the 2D-Radon transform R : L2(�2) →
L2(Z) given by (�2 is the unit disk in R

2)

Rf (ϑ, s) :=
∫

L(ϑ,s)∩�2

f (x) dσ(x)

mapping a function to its integrals over the lines L(ϑ, s) = {τ ω⊥(ϑ) +
s ω(ϑ) | τ ∈ R} where s ∈ R, ω(ϑ) = (cosϑ, sin ϑ)t , and ω⊥(ϑ) =
(− sin ϑ, cosϑ)t for ϑ ∈ ]0, 2π [.

Since the three reconstruction kernels υj , j = 1, 2, 3 are easily related
we restrict our attention to the case j = 1 in which (4.1) reduces to

(R∗ ⊗ I ) ∂sυ
1 = −∂x2 e

1.(4.2)

We extend the ideas from [14] for calculating reconstruction kernels for the
2D-Radon transform to the Doppler transform. Starting point is the well
known inversion formula

f = (4π)−1 R∗�Rf(4.3)

for f ∈ L2(�2), see, e.g., Natterer [12]. Here,� denotes the Riesz potential:
�̂u(σ ) = |σ | û(σ ) and acts only on the second variable of Rf . By (4.3) we
can solve (4.2) for ∂sυ1. Indeed,

∂sυ
1 = −(4π)−1 (�R ⊗ I ) ∂x2 e

1 = −(4π)−1 (�R∂x2p)⊗ q.

For evaluating�R∂x2pwe rely on the projection slice theorem [12, Chap. II.1,
Th. 1.1]:

R̂f (ϑ, σ ) =
√

2π f̂
(
σ ω(ϑ)

)
.9

By the inverse 1D-Fourier transform and the radial symmetry of p we find
that

9 On the left we have a 1D-Fourier transform and on the right we have a 2D-Fourier
transform.
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�R∂x2p(ϑ, s) =
∫

R

|σ | ∂̂x2p
(
σ ω(ϑ)

)
eı sσ dσ

= ı sin ϑ
∫

R

|σ | σ p̂
(
σ ω(0)

)
eı sσ dσ

= −2 sin ϑ
∫ ∞

0
σ 2 p̂(σ, 0) sin(s σ ) dσ.(4.4)

Thus,

∂sυ
1(ϑ, s, a) = 1

2π
sin ϑ q(a)

∫ ∞

0
σ 2 p̂(σ, 0) sin(s σ ) dσ.

From [14, Example 3.2] we know that

p̂(σ, 0) = (ν + 1)!

2π

(
2

σ

)ν+1

Jν+1(σ )(4.5)

where Jn is the Bessel function of the first kind of order n. Finally, we obtain

∂sυ
1(ϑ, s, a)

= 1

π2
(ν + 1)! 2ν−1 sin ϑ q(a)

∫ ∞

0
σ 1−ν Jν+1(σ ) sin(s σ ) dσ

= 1

π2
sin ϑ q(a)

{
2 ν (ν + 1) s F(2, 1 − ν; 3

2 ; s2) : |s| < 1
− 1

2 s
−3 F(2, 3

2 ; ν + 2; s−2) : |s| ≥ 1

(4.6)

where we used Formula (6.699.1) from [2] for evaluating the integral. Here,
F = 2F1 denotes the hypergeometric series. Hence, the searched-for recon-
struction kernel υ1 has a representation

υ1(ϑ, s, a) = I(ϑ, s, a)+ h(ϑ, a).(4.7)

where

I(ϑ, s, a) :=
∫ s

−1
∂sυ

1(ϑ, t, a) dt(4.8)

and h is an integration constant which does not depend on s. We are now
heading for explicit expressions for I and h.

We first look at h. The proof of Theorem 3.9 in [10] gives that

M := {
sin kϑ, cos kϑ

∣∣ k ∈ N ∪ {0}, k �= 1
} ⊥ R(Dj ).(4.9)

Since υ1 is the unique solution of the normal equation (3.13) in R(D1), the
orthogonality (4.9) implies

∫ 2π

0
υ1(ϑ, s, a) sin(k ϑ) dϑ =

∫ 2π

0
υ1(ϑ, s, a) cos(k ϑ) dϑ = 0

for k ∈ N ∪ {0}, k �= 1. Moreover, in view of (4.6),
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∫ 2π

0
I(ϑ, s, a) sin(k ϑ) dϑ =

∫ 2π

0
I(ϑ, s, a) cos(k ϑ) dϑ = 0

for k ∈ N ∪ {0}, k �= 1. Both latter displayed formulas together with (4.7)
lead to

∫ 2π

0
h(ϑ, a) sin(k ϑ) dϑ =

∫ 2π

0
h(ϑ, a) cos(k ϑ) dϑ = 0

for k ∈ N ∪ {0}, k �= 1. Further, we claim that
∫ 2π

0
h(ϑ, a) cosϑ dϑ = 0.(4.10)

Once we have computed the Fourier coefficient
∫ 2π

0 h(ϕ, a) sin ϕ dϕ the
function h obviously reads

h(ϑ, a) = 1

π

∫ 2π

0
h(ϕ, a) sin ϕ dϕ sin(ϑ)

becauseM∪{cosϑ , sin ϑ} forms a complete orthogonal system inL2(0, 2π).
To verify (4.10) we rely on the normal equation (3.13) setting j = 1,

ϑ = 0, and s = 0:

D1D∗
1h(0, 0, a) = D1(e

1 δ1)(0, 0, a)− D1D∗
1I(0, 0, a).(4.11)

It is easily checked that D1(e
1 δ1)(0, 0, a) = 0. Therefore, (4.11) reduces to

2
∫ 2π

0
h(ϑ, a) cosϑ dϑ = −

∫ 2π

0

∫ 1

−1
I(ϑ, t sin ϑ, a) cosϑ dt dϑ.(4.12)

Observing that I(−ϑ,−t sin ϑ, a) = −I(ϑ, t sin ϑ, a) the latter integral van-
ishes. Thus, (4.10) is established.

To calculate the Fourier coefficient of h with respect to sin(ϑ) we set
j = 1, ϑ = π/2 and s = 0 in (3.13). A little bit of analysis shows that

D1(e
1 δ1)(π/2, 0, a) = −q(a)

∫ 1

−1
(1 − t2)ν dt = − 2ν+1 !ν

(2ν + 1)!!
q(a)

and

D1D∗
1I(π/2, 0, a) =

∫ 2π

0

∫ 1

−1
I(ϑ, t cosϑ, a) sin ϑ dt dϑ.

Further,

D1D∗
1h(π/2, 0, a) = 2

∫ 2π

0
h(ϑ, a) sin ϑ dϑ
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and we finally found the following representation of the integration con-
stant h:

h(ϑ, a) = − 1

2π
sin ϑ

(
2ν+1 ν!

(2ν + 1)!!
q(a)

+
∫ 2π

0

∫ 1

−1
I(ϑ, t cosϑ, a) dt sin ϑ dϑ

)
.

(4.13)

To calculate the integrals in (4.13) we first determine I explicitly. We distin-
guish the three cases |s| < 1, s ≥ 1, and s ≤ −1.

In case of |s| < 1 we have

I(ϑ, s, a) =
∫ s

−1
∂sυ

1(ϑ, t, a) dt

= 2

π2
ν (ν + 1) sin ϑ q(a)

∫ s

−1
t F(2, 1 − ν; 3

2
; t2) dt.

(4.14)

Using the series representation

F(α, β; δ; z) =
∞∑

k=0

(α)k (β)k

(δ)k k!
zk

with the Pochhammer symbols (α)k = α · (α+ 1) · . . . · (α+ k− 1) if k > 0
and (α)k = 1, otherwise, we get from (4.14)

I(ϑ, s, a) = 1

π2
ν (ν + 1) sin ϑ q(a)

×
(
s2 F(1, 1 − ν; 3

2
; s2)− F(1, 1 − ν; 3

2
; 1)

)
for |s| < 1.

Note that in this case I is a polynomial in s since 1 − ν ≤ 0. A similar
calculation for s ≥ 1 leads to

I(ϑ, s, a) = − 1

4π2
sin ϑ q(a)

×
(

F(1,
3

2
; ν + 2; 1)− s−2 F(1,

3

2
; ν + 2; s−2)

)
.

(4.15)

In case of s ≤ −1 the symmetry
∫ s

−1
∂sυ

1(ϑ, t, a) dt =
∫ −s

1
∂sυ

1(ϑ, t, a) dt

yields the same representation for I as in (4.15). With F(1, 1 − ν; 3
2 ; 1) =

1/(2ν − 1) and F(1, 3
2 ; ν + 2; 1) = (2ν + 2)/(2ν − 1) the integral I is

explicitely represented by
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I(ϑ, s, a) = 1

π2
sin ϑ q(a)

×
{
ν (ν + 1)

(
s2 F(1, 1 − ν; 3

2 ; s2)− 1/(2ν − 1)
)

: |s| < 1
1
4

(
s−2 F(1, 3

2 ; ν + 2; s−2)− (2ν + 2)/(2ν − 1)
)

: |s| ≥ 1
.(4.16)

Since
∫ z

0
t2 F(1, 1 − ν; 3

2
; t2) dt =

ν−1∑

k=0

(1 − ν)k

(3/2)k

∫ z

0
t2k+2 dt

=
ν−1∑

k=0

(1 − ν)k

(3/2)k (2k + 3)
z2k+3

we derive from (4.16)
∫ 1

−1
I(ϑ, t cosϑ, a) dt = 2

π2
ν (ν + 1) sin ϑ q(a)

( ν−1∑

k=0

(1 − ν)k

(3/2)k (2k + 3)

×(cosϑ)2k+2 − (2ν − 1)−1
)
.

With an integration by parts and Formula (3.631.17) from [2] we get
∫ 2π

0
sin2 ϑ (cosϑ)2k+2 dϑ = π

(2k + 3) 22k+3

(
2k + 4

k + 2

)

which finally gives
∫ 2π

0

∫ 1

−1
I(ϑ, t cosϑ, a) dt sin ϑ dϑ

= 2

π
ν (ν + 1) q(a)

( ν−1∑

k=0

(1 − ν)k
(2k+4
k+2

)

(3/2)k (2k + 3)2 22k+3
− 1

2ν − 1

)
.

(4.17)

By (4.7), (4.13), (4.16), and (4.17) we find the following representation of
the solution υ1 of (3.13) in R(D1):

υ1(ϑ, s, a) = 1

π2
sin ϑ q(a)

×
{
ν (ν + 1)

(
s2 F(1, 1 − ν; 3

2 ; s2)− 1
2ν−1

) − cν : |s| < 1
1
4

(
s−2 F(1, 3

2 ; ν + 2; s−2)− 2ν+2
2ν−1

) − cν : |s| ≥ 1
(4.18)

where

cν = ν (ν + 1)

( ν−1∑

k=0

(1 − ν)k
(2k+4
k+2

)

(3/2)k (2k + 3)2 22k+3
− 1

2ν − 1

)
+ π

2ν ν!

(2ν + 1)!!
.

Analogously we obtain υ2 = υ1. The third kernel υ3 emerges from υ1 by
replacing sin ϑ by cosϑ . See Figures 1 and 2 for graphical displays of υ1.

In our convergence analysis of the approximate inverse for the Doppler
transform in Sect. 3.2 we used the following kernel splitting.
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ν=4

ν=2 

 ν=3

Fig. 1. 1D-Cross sections of the reconstruction kernel (4.18): υ1(π/2, ·, 0) for ν = 2
(solid line), ν = 3 (dashed line), and ν = 4 (dashed-dotted line)

−2 −1 0 1 2

−0.2

0

s 

ϑ 

0 

π/2

π 

Fig. 2. 2D-Cross section of the reconstruction kernel (4.18): υ1(·, ·, 0) for ν = 4

Lemma 4.1 Let υj be the reconstruction kernel belonging to ej as in (3.10).
Then, υj can be split according to

υj (ϑ, s, a) = υ
j

1 (ϑ, s, a)+ υ
j

2 (ϑ, a)

where

υ1 ∈ Hr((0, 2π)× R)⊗̂Ht
0(−1, 1), r < ν, t < ν + 1/2,

and
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υ2 ∈ Hr(0, 2π)⊗̂Ht
0(−1, 1), r ≥ 0, t < ν + 1/2.

Proof. Without loss of generality we restrict ourselves to j = 1. The stated
splitting follows from rearranging (4.7). To see this we write

I(ϑ, s, a) = κ sin ϑ q(a) W(s)

where κ is a constant and

W(s) :=
∫ s

−1
w(t) dt with w(t) =

∫ ∞

0
σ 1−ν Jν+1(σ ) sin(t σ ) dσ,

see (4.8) and (4.6). Further, by (4.4) and (4.5),

w(s) sin ϑ = ρ �R∂x2p(ϑ, s)

for a suitable constant ρ. Both, R : Hr
0 (�2) → L2(0, 2π)⊗̂Hr+1/2(R) and

� : Hr(R) → Hr−1(R) are bounded operators for any r ≥ 0, see Louis and
Natterer [9, Theorem 3.1]. Since p is in Hβ

0 (�2) for any β < ν + 1/2 we
have that

w ∈ Hr(R) for any r < ν − 1.

Moreover,

W̃ (·) := W(·)+ 1

4

2ν + 2

2ν − 1
is in L2(R)

as inspecting (4.16) shows. Now, ∂sW̃ = w ∈ Hr(R), r < ν − 1, together
with W̃ ∈ L2(R) yields W̃ ∈ Hr(R) for any r < ν. Setting

υ1
1 = κ sin ϑ q(a) W̃ (s) and υ1

2 = h(ϑ, a)− κ

4

2ν + 2

2ν − 1
sin ϑ q(a)

and recalling that h(ϑ, a) = c sin ϑ q(a) with a constant c we finally found
the kernel splitting with the stated smoothness properties. 
�

A Appendix: proof of uniform boundedness (3.4) and approximation
property (3.5)

Observe that 
(�)
p,q,r = 
(�)

p,q ⊗ 
(�)
r where 
(�)

p,q : Hκ+1(Z) → S
(�)
ϑ ⊗ S(�)s

and 
(�)
r : Hκ+1/2(−1, 1) → S(�)a with κ > 0 are defined by


(�)
p,qy :=

p�∑

j=0

q�∑

i=−q

(
�(�)
p,qy

)
j,i
B
(�)
p,j⊗B(�)q,i and 
(�)

r y :=
r�∑

k=−r

(
�(�)
r y

)
k
B
(�)
r,k ,

see Sect. 3.2 for the notation. For α > 1 and β > 1/2 we have

‖
(�)
q,p‖Hα(Z)→L2(Z) � 1 and ‖
(�)

r ‖Hβ(−1,1)→L2(−1,1) � 1(A.1)

as well as
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‖I −
(�)
q,p‖Hα(Z)→L2(Z) � max{hϑ, hs}min{α,�}(A.2a)

and

‖I −
(�)
r ‖Hβ(−1,1)→L2(−1,1) � hmin{β,�}

a(A.2b)

whenever the right hand sides are finite. The constants involved do not depend
on p, q, and r . All four estimates in (A.1) and (A.2) are standard results from
spline approximation theory, see, e.g., Schumaker [17, Chap. 12].

The norm of a tensor product operator is dominated by the product of the
norms of its factors, see, e.g., Aubin [1, Prop. 12.4.1]. Hence,

‖
(�)
p,q,r‖Yα,β→L2(Q) ≤ ‖
(�)

p,q‖Hα+1/2(Z)→L2(Z) ‖
(�)
r ‖Hβ(−1,1)→L2(−1,1)

and the boundedness (3.4) follows immediately from (A.1). The approxima-
tion property (3.5) is implied by

‖
(�)
p,q,r − I‖Yα,β→L2(Q)

= ‖
(�)
p,q,r − I ⊗ I‖Yα,β→L2(Q)

≤ ‖
(�)
p,q ⊗ (
(�)

r − I )‖Yα,β→L2(Q) + ‖(
(�)
p,q − I )⊗ I‖Yα,β→L2(Q)

� ‖I −
(�)
r ‖Hβ(−1,1)→L2(−1,1) + ‖I −
(�)

q,p‖Hα+1/2(Z)→L2(Z)

when applying (A.2).

B Appendix: mollifier property – proof of (3.11) and (3.12)

Here we will also exploit the tensor product structure of (Ed)j . Therefore, we
introduce the auxiliary operators E(i)d : L2(Ri ) → L2(Ri ), i = 1, 2, d > 0,
by

E
(2)
d u :=

∑

k∈Z2

〈u,pd,k〉L2(R2) b ⊗ b(d · −k)

and

E
(1)
d w :=

∑

l∈Z

〈w,qd,l〉L2(R) b(d · −l)

where b is the univariate linear B-spline supported in [−1, 1]. Further,

pd,k(s, t) = d2 p(d s − k) and qd,l(s) = d q(d s − l).

The functions p and q are those from (3.8) and (3.9), respectively. In [16,
Appendix B] we proved the convergence estimates

‖E(i)d − I‖Hα(Ri )→L2(Ri ) � d− min{2,α}, α ≥ 0, i = 1, 2.(B.1)



The approximate inverse in action III: 3D-Doppler tomography 377

Note that

(Ed)jf = E
(2)
d ⊗ E

(1)
d (fj ◦ Qj ), j = 1, 2, 3,(B.2)

with the permutations Qj (x1, x2, x3) := Pj (x1, x2) + x3wj . Arguing as in
the end of Appendix A we find by (B.1) that

‖E(2)d ⊗ E
(1)
d − I‖Hα(R2)⊗̂Hβ(R)→L2(R3)

� ‖E(2)d − I‖Hα(R2)→L2(R2) + ‖E(1)d − I‖Hβ(R)→L2(R)

� d− min{2,α} + d− min{2,β}.

(B.3)

Let f be in C∞
0 (�)

3. Then, for j = 1, 2, 3,

‖(Ed)jf − fj‖L2(�) ≤ ‖(Ed)jf − fj‖L2(R3)

= ‖(Ed)jf ◦ Qj − fj ◦ Qj‖L2(R3)

= ‖(Ed)jf − fj ◦ Qj‖L2(R3)

(B.2)= ‖E(2)d ⊗ E
(1)
d (fj ◦ Qj )− fj ◦ Qj‖L2(R3)

(B.3)

�
(
d− min{2,α} + d− min{2,β}) ‖fj ◦ Qj‖Hα(R2)⊗̂Hβ(R)︸ ︷︷ ︸

= ‖fj‖X α,β
j

which is (3.12) since C∞
0 (�) is dense in X α,β

j . Finally, (3.12) yields (3.11)
by a density argument.
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