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Abstract. The filtered backprojection algorithm is probably the most often used reconstruction
algorithm in two-dimensional computerized tomography. For a semidiscrete version in the parallel
scanning geometry we prove optimal L2-convergence rates for density distributions in Sobolev spaces.
Additionally we show L2-convergence without rates when the density distribution is only in L2. The
key to success is a new representation of the filtered backprojection which enables us to apply
techniques from approximation theory. Our analysis provides further a modification of the Shepp–
Logan reconstruction filter with an improved convergence behavior. Numerical experiments in the
fully discrete setting reproduce the theoretical predictions.
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1. Filters in tomography. Tomographic reconstruction means finding a den-
sity distribution f from all its line integrals g = Rf . Here, R denotes the Radon
transform,

Rf(s, ϑ) :=

∫
L(s,ϑ)∩Ω

f(x) dσ(x),

mapping a function to its integrals over the lines L(s, ϑ) = {τ ω⊥(ϑ)+s ω(ϑ) | τ ∈ R},
where s ∈ R, ω(ϑ) = (cos ϑ, sin ϑ)t, and ω⊥(ϑ) = (− sin ϑ, cos ϑ)t for ϑ ∈ ]0, π[.
This parameterization of lines gives rise to the parallel scanning geometry. The Radon
transform R maps L2(Ω) boundedly to L2(Z), where Ω is the unit ball in R2 centered
about the origin and Z is the rectangle Z = ]− 1, 1[× ]0, π[.

Analytically, tomographic reconstruction is represented by the inversion formula

f = (2π)−1 R∗ Λ g,(1.1)

where the backprojection operator R∗ : L2(Z)→ L2(Ω) is the adjoint to R,

R∗Φ(x) :=
∫ π

0

Φ(xt ω(ϑ), ϑ) dϑ.

Formally, Λ is the square root of the one-dimensional Laplacian −∆: Λ = (−∆)1/2.
In (1.1), Λ acts on the variable s of g. For a proof of (1.1) see, e.g., Natterer [14].

Due to the compactness of R the reconstruction of f from noisy Radon data g by
(1.1) is unstable (Λ amplifies high frequencies). A stable algorithm of tomographic
reconstruction is therefore based on

f � eγ = R∗(υγ �s g), eγ = R∗υγ ,(1.2)
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where � denotes convolution and �s denotes convolution with respect to the variable s.
In (1.2), eγ(x) = e(x/γ)/γ2, γ > 0, and e = e1 is amollifier, that is, a smooth function
with normalized mean value. Thus, f � eγ is a smoothed or mollified approximation
to f . The function υ = υ1 is called the reconstruction kernel or reconstruction filter
which is independent of the angle ϑ for radially symmetric mollifiers (which we assume
in what follows). Note that υγ(s) = υ(s/γ)/γ2. By the inversion formula (1.1) we
can compute the reconstruction kernel from a mollifier e:

υ =
1

2π
ΛRe.(1.3)

The convolution υγ �s g realizes a low pass filtered version of Λg/(2π).
A straightforward discretization of (1.2) together with an interpolation step yields

the filtered backprojection algorithm (FBA) which is the most frequently used algo-
rithm in computerized tomography; see, e.g., Natterer [14, Chap. V]. In what follows
let f be a density distribution compactly supported in Ω. If we assume to know the
discrete Radon data gk,j := Rf(sk, ϑj) for sk = k/q, k = −q, . . . , q, and ϑj = j π/p,
j = 0, . . . , p− 1, then the FBA reconstructs fFB by

fFB(x) := R∗
pIh(w �q g)(x).(1.4)

In the FBA, first the discrete convolution

(w �q g)�,j :=
1

q

∑
k∈Z

w�−k gk,j ≈ (
υγ �s g(·, ϑj)

)
(s�)(1.5)

is performed, where {wk} is a weight sequence associated with the chosen kernel υγ .
In the second step, an interpolation operator Ih is applied (with respect to �). Finally,
the discrete backprojection operator

R∗
pΦ(x) :=

π

p

p−1∑
j=0

Φ(xt ω(ϑj), ϑj)(1.6)

is evaluated.
Except for the interpolation process, the discrete convolution (1.5) is the most

delicate step in the FBA: the discrete convolution kernel {wk} has to be chosen
carefully from the continuous kernel υγ . For instance, a common choice is

wk = υγ(sk).(1.7)

Here γ has to be adjusted to the discretization step size h = 1/q. The sensitivity of
the reconstructed image to γ has been noticed probably for the first time by Smith
in [22, p. 20]. Rules for selecting γ have been suggested by Smith and Keinert [23,
Sect. VI], Natterer [14], and Rieder [16]. For local tomography, see Faridani [8] and
Rieder, Dietz, and Schuster [17].

Smith [22, pp. 18–19] propagated a different way to define the wk’s. He intended
the discrete convolution (1.5) to be exact for a large class of functions. Let Ehu be an
approximation to the function u given as the superposition of translated and scaled
versions of a function B; that is,

Ehu(s) =
∑
k∈Z

u(sk)Bh(s− sk), where Bh(s) = B(s/h).(1.8)
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For instance, Eh could be an interpolation operator. Defining

wk :=
1

h

∫
υγ(s) Bh(sk − s) ds =

1

h
υγ � Bh(sk), k ∈ Z,(1.9)

we have that

(w �q u)� = υγ �s Ehu(s�), � ∈ Z.

Moreover, if Eh is interpolating, then

(w �q Ehu)� = υγ �s Ehu(s�), � ∈ Z;

that is, the discrete convolution (1.5) is exact for Ehu. Numerical as well as theoret-
ical considerations (see [16, 22]) showed that the reconstructed images fFB are less
sensitive to changes in γ when working with (1.9) rather than working with (1.7).
Indeed, we will show in the next section that the discrete filter {wk} from (1.9) con-
verges for γ → 0 and that its limit {w∞

k } is again a reconstruction filter belonging to a
compactly supported mollifier. This limit filter has an interesting feature: computing
ΛEhu(s�)/(2π) can now be realized by the discrete convolution

1

2π
ΛEhu(s�) = (w∞ �q u)�.

The latter equation is the starting point in section 3 for a reformulation of the FBA
leading to optimal L2-convergence rates in a semidiscrete setting (Theorem 3.7) where
in (1.4) the discrete backprojection operator R∗

p is replaced by the continuous one R
∗.

We see how the reconstruction filter, the interpolation process (Ih in (1.4)), and the
Sobolev regularity of the density distribution f influence the convergence rate. As
a by-product of our analysis we discover a new reconstruction filter (Example 4.1)
with an improved convergence behavior compared to the widely used Shepp–Logan
filter [21] (sections 4 and 5). Indeed, our modified Shepp–Logan filter yields optimal
convergence for Sobolev orders up to 5/2, whereas the convergence order of the orig-
inal Shepp–Logan filter saturates at 2 (Example 5.1). Numerical experiments in the
fully discrete setting of (1.4) agree completely with our theoretical predictions and
are presented in section 6. Auxiliary but new approximation properties of (quasi-)
interpolation operators, which we need for the analysis, are proved in several appen-
dices.

2. The limit. We will now investigate the convergence in Sobolev spaces of
υγ � B as γ tends to zero. We define the Sobolev spaces Hα(Rd), α ∈ R, to be the
closure of L2(Rd) with respect to the norm

‖f‖2
α :=

∫
Rd

(
1 + ‖ξ‖2

)α |f̂(ξ)|2 dξ,

where f̂(ξ) := (2π)−d/2
∫

Rd f(x) e−ı ξ
tx dx is the Fourier transform of a function f

in L1(Rd) ∩ L2(Rd). The Fourier transform can be extended to L2-functions and
tempered distributions by continuity and duality, respectively. The Λ-operator,

Λ̂f(ξ) := ‖ξ‖ f̂(ξ),

maps Hα(Rd) boundedly to Hα−1(Rd).
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The latter mapping property of Λ together with a smoothing effect of R (see [14,
Chap. II, Thm. 5.1]) and the Sobolev embedding theorem shows that υ from (1.3)
is continuous whenever e is a radially symmetric compactly supported mollifier in
Hα(R2), α > 1. Furthermore, υ ∈ L1(R); see [16, Lem. 3.1]. Thus, υγ � B is well
defined in Ht(R) for B ∈ Ht(R), t ∈ R; see, e.g., Aubin [1, Prop. 9.3.2].

Lemma 2.1. Let e ∈ Hα(R2), α > 1, be a radially symmetric compactly supported
mollifier, and let υ be the corresponding reconstruction kernel (1.3). Then,

lim
γ→0

∥∥∥υγ − 1

2π
Λδ
∥∥∥
−β

= 0 for any β > 3/2,(2.1)

where δ denotes the Dirac generalized function. Moreover, if B ∈ Ht(R), t ∈ R, then

lim
γ→0

∥∥∥υγ � B − 1

2π
ΛB
∥∥∥
t−1

= 0.(2.2)

For values of s such that ΛB is continuous near s we have

lim
γ→0

υγ � B(s) =
1

2π
ΛB(s).

Proof. We prove (2.2) which then implies (2.1) when setting B = δ and recalling
that δ ∈ Ht(R) for t < −1/2. With

I(ξ, γ) = (1 + |ξ|2)t−1
∣∣√ 2π υ̂γ(ξ) B̂(ξ)− |ξ| B̂(ξ)/(2π)∣∣2

we obtain that ∥∥∥υγ � B − 1

2π
ΛB
∥∥∥2

t−1
=

∫
R

I(ξ, γ) dξ.

By the projection slice theorem (see, e.g., Natterer [14, Chap. II, Thm. 1.1]) we find
(e is a radially symmetric function)

υ̂γ(ξ) =
1

2π
|ξ| R̂eγ(ξ) =

1√
2π

|ξ| êγ(ξ, 0) = 1√
2π

|ξ| ê(γ ξ, 0),

which yields

I(ξ, γ) ≤ (1 + |ξ|2)t ∣∣B̂(ξ)∣∣2 ∣∣ê(γ ξ, 0)− 1/(2π)∣∣2.
The stated convergence follows now from ê(0, 0) = 1/(2π), the Riemann–Lebesgue
lemma, and the dominated convergence theorem.

Let us look at an example. For χ being the indicator function of the interval
[−1/2, 1/2] we are able to compute Λχ by

Λχ(s) = − 1
π

∫
R

|s− t|−2 χ(t) dt, |s| > 1/2;(2.3)

see Faridani et al. [9, Form. (2.1)]. Evaluating the integral gives

Λχ(s) =
4

π

1

1− 4 s2
.(2.4)
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The above formula holds for all s ∈ R \ {−1/2, 1/2}. This can be verified using the
relation Λ(1 − χ) = −Λχ and applying formula (2.1) of [9] to 1 − χ, the indicator
function of R \ [−1/2, 1/2]. So we have that

lim
γ→0

υγ � χ(s) =
2

π2

1

1− 4 s2
, |s| �= 1/2.

In weaker Sobolev norms we can even give convergence rates. For formulating
the respective result and later in the paper we use the following convenient notation:
A � B indicates the existence of a generic constant c such that A ≤ cB holds
uniformly with respect to all parameters A and B may depend on.

Corollary 2.2. Let 0 ≤ s ≤ 2. Under the assumptions of Lemma 2.1 we have
that ∥∥∥υγ � B − 1

2π
ΛB
∥∥∥
t−1−s

� γs ‖B‖t.

Proof. As in the proof of Lemma 2.1 we obtain that∥∥∥υγ � B − 1

2π
ΛB
∥∥∥2

t−1−s
≤
∫

R

(1 + |ξ|2)t−s ∣∣B̂(ξ)∣∣2 M(γ ξ, 0) dξ,

where M(z) := |ê(z)− 1/(2π)|2, z ∈ R2. Since e is an even function all its first order
moments vanish. Therefore, all first order derivatives of ê are zero at the origin. Thus
the Taylor expansion of ê about the origin becomes

ê(z) =
1

2π
+

∑
ν∈N

2
0

ν1+ν2=2

Dν ê(τz z)

ν!
zν for a τz ∈ [0, 1],

which yields M(z) � ‖z‖4. Now let s ∈ [0, 2]. Then,∥∥∥υγ � B − 1

2π
ΛB
∥∥∥2

t−1−s
�
∫
|ξ|≤1/γ

∣∣B̂(ξ)∣∣2 (1 + |ξ|2)t−s M(γ ξ, 0) dξ

+

∫
|ξ|>1/γ

∣∣B̂(ξ)∣∣2 (1 + |ξ|2)t−s dξ

� γ4

∫
|ξ|≤1/γ

∣∣B̂(ξ)∣∣2 (1 + |ξ|2)t |ξ|4−2s dξ

+

∫
|ξ|>1/γ

∣∣B̂(ξ)∣∣2 (1 + |ξ|2)t |ξ|−2s dξ.

Both latter terms can be bounded by γ2s ‖B‖2
t .

Remark 2.3. The generalization of Corollary 2.2 to reconstruction kernels υ
belonging to mollifiers with higher order vanishing moments is obvious.

3. The FBA is optimal. We will reformulate the FBA (1.4) for the limit filters
considered in the former section; see (3.2) below. This new representation of the FBA
allows us to introduce a novel error analysis which shows that the FBA is optimal for
tomographic inversion.
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3.1. A new representation of the FBA. We start with the following simple
observation.

Lemma 3.1. Let B be in Ht(R) for a t ∈ R such that ΛB(s) is continuous near
integer values of s. For ψ(s) =

∑
k∈Z

ck Bh(s− h k), where {ck} is a finite sequence
and h is positive, we have

Λψ(h �) = h−1
∑
k∈Z

ck ΛB(�− k), � ∈ Z.

Proof. The statement follows directly from the relations ΛBh(s) = ΛB(s/h)/h
and ΛT a = T aΛ, where T a is the translation operator T au(s) = u(s− a).

Remark 3.2. Relying on Lemma 3.1 we easily derive that

2

π

1

q + 1/2
=

q∑
k=−q

Λχ(k) for any q ∈ N0,

where χ is as in (2.3). To prove the above identity we mention only that
∑q
k=−q χ(· −

k) is the characteristic function of the interval [−q − 1/2, q + 1/2].
Let the operator Eh be given by (1.8) with B as in Lemma 3.1. Define the discrete

reconstruction kernel {w∞
k } by

w∞
k =

1

2π h2
ΛB(k) = υ∞

h (h k),(3.1)

where υ∞
h (s) = υ∞(s/h)/h2 and υ∞(s) := ΛB(s)/(2π). Then, the discrete convolu-

tion (1.5) can be written as the Λ-operator applied exactly to a function approximating
g from discrete values:

(w∞ �q g)�,j =
1

2π

(
ΛEhg(·, ϑj)

)
(h �), � ∈ Z.

Thus, the reconstructed image fFB may be rewritten as

fFB(x) =
1

2π
R∗
pIhΛEhg(x);(3.2)

see (1.4). Please observe that the three operators Eh, Λ, and Ih act on the first
variable of the data g = Rf .

Example 3.3. Let B = χ be the characteristic function of [−1/2, 1/2]. Then, the
reconstruction kernel w∞ used for evaluating (3.2) is

w∞
k =

2

π2 h2

1

1− 4 k2
,

which follows from (2.4) and (3.1). Here, w∞ is the discrete Shepp–Logan reconstruc-
tion filter [21].

Remark 3.4. Let the discrete reconstruction kernel {wk} be given by (1.9). Due
to Lemma 2.1 we obtain limγ→0 wk = w∞

k , implying that

lim
γ→0

(w �q g)�,j =
1

2π

(
ΛEhg(·, ϑj)

)
(h �), � ∈ Z.

We next ask the question, Which mollifier e∞ belongs to the reconstruction kernel
υ∞ (3.1)? By (1.3) and the projection slice theorem we find that

ê∞(ξ) = B̂(‖ξ‖)/
√
2π, ξ ∈ R2,(3.3)
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1

3

1

1

Fig. 1. Radial part of limit mollifier e∞ (3.4) where B is the linear (left) and the quadratic
(right) B-spline, respectively.

which yields (J0 denoting the Bessel function of the first kind of order 0)

e∞(x) =
1√
2π

∫ ∞

0

r B̂(r) J0(‖x‖ r) dr.(3.4)

In view of (3.3) the mollifier e∞ is in L2(R2) if limr→∞ r |B̂(r)| = 0. Further, a
compact support of B implies a compact support of e∞. More precisely, let B be even
with suppB ⊂ [−R,R]; then supp e∞ ⊂ {x ∈ R2 | ‖x‖ ≤ R}. The latter statement is
a consequence from the Paley–Wiener theorems; see, e.g., Rudin [19, Chap. 7].

Example 3.5. Let B = χ be the characteristic function of the interval [−1/2, 1/2].
By formula 6.671.7 from [11] we find that

e∞(x) =

{
2
π

1√
1−4 ‖x‖2

: ‖x‖ < 1/2,

0 : otherwise,

which is the mollifier belonging to υ∞(s) = 1
2πΛχ(s) =

2
π2 (1− 4 s2)−1; see (2.4). The

graphs of the radial parts of e∞ with respect to the linear and quadratic B-splines are
plotted in Figure 1.

3.2. A novel error estimate. The new representation (3.2) of the FBA gives us
the freedom to provide a novel error analysis based on principles from approximation
theory. Indeed, we will be able to prove L2-convergence of the FBA with optimal
rates.

In contrast, the error estimates based on Fourier analysis (see Natterer [14,
Chap. V] and Faridani and Ritman [10]) are of qualitative nature in terms of es-
sentially band-limited functions. Since the main tool used is the Poisson summation
formula the considered density distributions are required to be continuous functions at
least (f̂ ∈ L1). Convergence has been shown before: Popov [15] established pointwise
convergence restricted to a small class of functions (piecewise C∞ with jumps across
smooth curves). The approach of Rieder and Schuster [18] leads to L2-convergence
for f ∈ Hα0 (Ω), α > 1/2, however, with suboptimal rates.

In our analysis below we will not take into account the error introduced by dis-
cretizing the backprojection R∗; that is, our model of the FBA reconstructs f̃FB by

f̃FB(x) :=
1

2π
R∗IhΛEhRf(x);(3.5)

compare (3.2).
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Before bounding the reconstruction error of f̃FB we generalize both operators Eh
and Ih. For u ∈ Hα(R), α ∈ R, we define

Ehu(s) := h−1
∑
k∈Z

〈
u, εh(· − sk)

〉
Bh(s− sk),(3.6)

where εh(s) = ε(s/h) with ε ∈ H−α(R) being even and ε̂(0) = 1/
√
2π. Further, 〈·, ·〉

denotes the duality pairing in Hα(R) × H−α(R). For u ∈ Hα(R), α > 1/2, we may
choose ε = δ (Dirac distribution). Thus, h−1〈u, εh(· − sk)〉 = u(sk), and the general
form (3.6) of Eh coincides with its former definition (1.8). We extended the domain
of definition of Eh to cover (generalized) functions in Hα(R) with α ≤ 1/2.

The redefinition of Eh was necessary because we apply Eh to Rf(·, ϑ) (see (3.5)),
and we have only that Rf(·, ϑ) ∈ H

1/2
0 (−1, 1) for f ∈ L2(Ω) and almost all ϑ. More-

over, our new model allows for finite width of the rays and detector inhomogeneities
in the observed semidiscrete Radon data; see Natterer [14, Chap. V.5.1]. Indeed, for
ε being a nonnegative function compactly supported in [−1/2, 1/2] with a normalized
mean value we obtain

h−1
〈
Rf(·, ϑ), εh(· − sk)

〉
= h−1

∫ sk+h/2

sk−h/2
Rf(s, ϑ) εh(s− sk) ds.(3.7)

Hence, ε can be seen as the sensitivity profile of the X-ray detectors.
In a very similar way we define Ih by

Ihu(s) := h−1
∑
k∈Z

〈
u, ηh(· − sk)

〉
Ah(s− sk),(3.8)

where η and A are like ε and B from (3.6), respectively.
Our modifications of Eh and Ih have no effect on the efficient computation of

IhΛEhRf(·, ϑ)/(2π) by discrete convolution. A straightforward calculation reveals
that

1

2π

(
IhΛEhRf(·, ϑ))(s) = ∑

�∈Z

(
w �q g

ε(·, ϑ))
�
Ah(s− s�),

where gε(s, ϑ) =
(
Rf(·, ϑ) �s εh

)
(s)/h (see (3.7)), and the discrete reconstruction

kernel w is given by

wr = υ(r)/h2, r ∈ Z,

with υ(s) :=
1

π

∫ ∞

0

σ B̂(σ) η̂(σ) cos(s σ) dσ.
(3.9)

The above integral exists as a duality pairing whenever B ∈ Ht(R) and η ∈ H1−t(R).
Example 3.6. We will give the Shepp–Logan reconstruction filter a new interpreta-

tion. To this end, let B(s) = sinc(π s) be the interpolating function used to define Eh.

In Ih let η be the characteristic function of the interval [−1/2, 1/2]. We obtain B̂ =
χ[−π,π]/

√
2π (χD characteristic function of interval D) and η̂(σ) = sinc(σ/2)/

√
2π.

Hence,

υ(s) =
2

π2

2 s sin(π s)− 1
4 s2 − 1 and wk = υ(k)/h2 =

2

π2 h2

1

1− 4 k2
;
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see Example 3.3 and compare formula (1.22) on page 111 in [14].
In estimating the reconstruction error below we will need that the inversion for-

mula (1.1) holds true for functions in L2(Ω); that is,

f = (2π)−1 R∗ ΛRf for any f ∈ L2(Ω).(3.10)

As far as we know, the most general version of (1.1) is due to Smith, Solomon, and
Wagner [24, p. 1257] requiring a compactly supported f ∈ Hα(R2) with α ≥ 1/2. To
verify (3.10) we recall the following mapping property of the Radon transform:

R : Hα0 (Ω)→ H(α+1/2,0) is bounded for any α ≥ 0,(3.11)

which is due to Louis and Natterer [13, Thm. 3.1]; see also [14, Thm. II.5.1]. Above,
Hα0 (Ω) is the closure of C∞

0 (Ω), the space of infinitely differentiable functions com-
pactly supported in Ω, with respect to the norm ‖ · ‖α. Further, H(β,0) is the tensor
product space Hβ(R)⊗̂L2(0, π).

Now the validity of (3.10) can be seen from the following three facts: 1. The
operator R∗ ΛR : L2(Ω) → L2(Ω) is bounded since all three mappings R : L2(Ω) →
H(1/2,0), Λ : H(1/2,0) → H(−1/2,0), and R∗ : H(−1/2,0) → L2(Ω) are bounded.1

2. Formula (3.10) applies to all f ∈ C∞
0 (Ω); see, e.g., Natterer [14, Thm. II.2.1].

3. The space C∞
0 (Ω) is dense in L2(Ω).

After these preparations we concentrate on the reconstruction error for f in
Hα0 (Ω), α ≥ 0. Relying on (3.10) we begin with∥∥f̃FB − f

∥∥
L2(Ω)

=
1

2π

∥∥R∗IhΛEhRf −R∗ΛRf
∥∥
L2(Ω)

≤ ∥∥(R∗Ih −R∗)ΛEhRf
∥∥
L2(Ω)

+
∥∥R∗Λ

(
EhRf −Rf

)∥∥
L2(Ω)

and proceed by estimating both norms on the right-hand side.
We saw above that R∗Λ maps H(1/2,0) boundedly to L2(Ω). Hence,∥∥R∗Λ

(
EhRf −Rf

)∥∥
L2(Ω)

�
∥∥EhRf −Rf

∥∥
H(1/2,0) .

Now we need an approximation property of Eh. Therefore, we assume there are
nonnegative constants τmax and βmin ≤ βmax such that∥∥Ehu− u

∥∥
τ

� hβ−τ ‖u‖β as h → 0(3.12a)

for βmin ≤ β ≤ βmax, 0 ≤ τ ≤ β, τ ≤ τmax, u ∈ Hβ0 (−1, 1).(3.12b)

For instance, if Eh represents piecewise linear interpolation
2, then (3.12) holds with

βmax = 2, βmin > 1/2, and τmax < 3/2. For piecewise linear interpolation the
approximation property (3.12) is a classical result when τ ∈ {0, 1} and β = 2; see,
e.g., Strang and Fix [25, Thm. 1.3]. Also band-limited interpolation3 yields (3.12)
with βmin > 1/2 and any βmax = τmax < ∞. In Appendices A and B we prove (3.12)
for more general interpolation-like operators Eh where βmin = 0.

1The continuity of R∗ : H(−1/2,0) → L2(Ω) follows from (3.11) by duality.
2ε is the Dirac distribution and B is the linear B-spline.
3ε is the Dirac distribution and B(x) = sinc(πx).
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Estimates of terms from above by powers of h (like (3.12)) are in what follows
always understood asymptotically in the sense of h → 0.

Assume (3.12) to hold with βmax ≥ 1/2 and τmax ≥ 1/2. If max{0, βmin − 1/2} ≤
α ≤ βmax − 1/2, then

∥∥R∗Λ
(
EhRf −Rf

)∥∥
L2(Ω)

� hα ‖Rf‖H(1/2+α,0)

(3.11)

� hα ‖f‖α.

Now we turn to ‖(R∗Ih −R∗)ΛEhRf‖L2(Ω) which we estimate according to∥∥R∗(Ih − I
)
ΛEhRf

∥∥
L2(Ω)

≤ ‖R∗‖H(−1/2,0)→L2(Ω) ‖Ih − I‖Hα−1/2(R)→H−1/2(R)

× ‖Λ‖Hα+1/2(R)→Hα−1/2(R) ‖EhRf‖H(1/2+α,0) ,

where I : Hα−1/2(R) ↪→ H−1/2(R) is the canonical inclusion. Observe that (3.12)

implies the boundedness of Eh : H
1/2+α
0 (−1, 1) → H1/2+α(R) uniformly in h for

0 ≤ α ≤ min{βmax, τmax} − 1/2. Thus,

‖EhRf‖H(1/2+α,0) � ‖Rf‖H(1/2+α,0)

(3.11)

� ‖f‖α.

For the operator Ih we require that

‖Ih − I‖Hα−1/2(R)→H−1/2(R) � hα as h → 0 for 0 ≤ α ≤ αI.(3.13)

which yields that ∥∥(R∗Ih −R∗)ΛEhRf
∥∥
L2(Ω)

� hα ‖f‖α.

Thus, we have proven the following theorem.
Theorem 3.7. Assume (3.12) to hold with βmax ≥ 1/2 and τmax ≥ 1/2. Further,

let there exist an αI > 0 such that (3.13) holds true.
If max{0, βmin − 1/2} ≤ α ≤ min

{
αI, βmax − 1/2, τmax − 1/2} and f ∈ Hα0 (Ω),

then ∥∥∥f − 1

2π
R∗IhΛEhRf

∥∥∥
L2(Ω)

� hα ‖f‖α as h → 0.(3.14)

The best possible L2-convergence rate for the reconstruction of f ∈ Hα0 (Ω) from
Radon data sampled at distance h is hα as h → 0; see Natterer [14, Chap. IV,
Thm. 2.2]. So we just proved that the FBA with an “averaged” limit kernel (3.9)
is an optimal reconstruction algorithm (at least for semidiscrete data). The range
of Sobolev orders yielding optimal convergence depends on the chosen filter and the
used interpolation procedure.

Theorem 3.7 looks similar to Theorem V.1.2 of Natterer [14]. The main difference
is that our theorem takes the discretization of the convolution into account. On
the other hand, the main result of Popov [15, Thm. 3, p. 35] investigates pointwise
convergence utilizing an approach based on asymptotic expansions. It does consider
the fully discrete algorithm but is applicable to a smaller class of functions (piecewise
C∞ with jumps across smooth curves), is stated without a detailed proof, and is not
always easily applied to concrete examples.
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Example 3.8. Here we provide a simple example for (3.13) which results in
a convergence proof of the FBA with the Shepp–Logan filter and nearest-neighbor
interpolation.

To this end let both η and A be first order B-splines; that is, η = A = χ[−1/2,1/2[.
In this situation (3.13) applies with αI = 3/2 as we will demonstrate now. By Theo-
rem A.2,

‖Ihu− u‖τ � hβ−τ ‖u‖β(3.15)

for 0 ≤ τ ≤ β ≤ 1 and τ < 1/2. To estimate ‖Ihu − u‖−1/2 we use a duality
argument and the symmetry Ih = I

∗
h, where I

∗
h is the L2-adjoint of Ih. We find that,

for 0 ≤ α ≤ 1/2,

‖Ihu− u‖−1/2 = sup
v∈H1/2(R)

〈Ihu− u, v〉
‖v‖1/2

= sup
v∈H1/2(R)

〈u, Ihv − v〉
‖v‖1/2

≤ ‖u‖α−1/2 sup
v∈H1/2(R)

‖Ihv − v‖1/2−α
‖v‖1/2

(3.15)

� hα ‖u‖α−1/2.

(3.16)

For 1/2 < α ≤ 3/2 we estimate similarly, relying on I2h = Ih,

‖Ihu− u‖−1/2 = sup
v∈H1/2(R)

〈(Ih − I)2u, v〉
‖v‖1/2

= sup
v∈H1/2(R)

〈Ihu− u, Ihv − v〉
‖v‖1/2

≤ ‖Ihu− u‖L2(R) sup
v∈H1/2(R)

‖Ihv − v‖L2(R)

‖v‖1/2
(3.17)

(3.15)

� hα−1/2 ‖u‖α−1/2 h1/2.

Hence, (3.13) holds for αI = 3/2.
Recalling Example 3.6 we observe that the FBA with the Shepp–Logan filter

and nearest-neighbor interpolation is represented by B(s) = sinc(π s) and η = A =
χ[−1/2,1/2[ in our framework (3.5). Therefore, our results from Appendix B give that∥∥f̃FB − f

∥∥
L2(Ω)

� hmin{3/2, α} ‖f‖α for f ∈ Hα0 (Ω), α > 0,

as long as ε is either an even, compactly supported, and normalized L2-function
(Theorem B.2) or the Dirac distribution (Theorem B.4).

In the next section we will generalize the above example, covering especially
piecewise linear interpolation in Ih.

So far we have not shown L2-convergence of the FBA when the density distribu-
tion f is only in L2(Ω). However, we possess all the tools to do this.

Corollary 3.9. Assume (3.12) to hold with βmin ≤ 1/2, βmax > 1/2, and
τmax > 1/2. Further, let there exist an αI > 0 such that (3.13) holds true. Then,

lim
h→0

∥∥∥f − 1

2π
R∗IhΛEhRf

∥∥∥
L2(Ω)

= 0 for any f ∈ L2(Ω).(3.18)

Proof. We will use that R∗IhΛEhR : L2(Ω) → L2(Ω) is uniformly bounded in
h > 0. This follows by setting α = 0 in (3.14) which is allowed since βmin ≤ 1/2.
Thus, ‖R∗IhΛEhR‖L2(Ω)→L2(Ω) � 1.
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Fix an α with 0 < α ≤ min{αI, βmax − 1/2, τmax − 1/2}. By assumption the
upper bound on α is positive. Since Hα0 (Ω) is dense in L2(Ω) there exists a family
{fλ}λ>0 ⊂ Hα0 (Ω) which converges to f in L2(Ω) as λ → 0. Without loss of generality

we may assume that f is not an element of Hβ0 (Ω) for any β > 0 (otherwise we apply
Theorem 3.7 to obtain (3.18)). Therefore, the function ρ(λ) := ‖fλ‖α explodes:
ρ(λ)→ ∞ as λ → 0. Now we choose a family {λh}h>0 satisfying

lim
h→0

λh = 0 as well as lim
h→0

hα ρ(λh) = 0.

We proceed with∥∥∥f − 1

2π
R∗IhΛEhRf

∥∥∥
L2(Ω)

≤ ‖f − fλh‖L2(Ω)

+
∥∥∥fλh − 1

2π
R∗IhΛEhRfλh

∥∥∥
L2(Ω)

+ ‖R∗IhΛEhR(fλh − f)‖L2(Ω)

� ‖f − fλh‖L2(Ω) + hα ρ(λh),

where we applied Theorem 3.7 in the last step. Finally, the limit h → 0 implies
(3.18).

Example 3.10. We reconsider Example 3.8 in light of Corollary 3.9. The conver-
gence (3.18) holds true when using the Shepp–Logan filter with nearest-neighbor inter-
polation for Ih and band-limited quasi interpolation for Eh; that is,
η = A = χ[−1/2,1/2[, B(s) = sinc(π s), and ε is an even, compactly supported, and
normalized L2-function (Theorem B.2). Please note that band-limited interpolation
for Eh (ε is the Dirac distribution), which requires βmin > 1/2, is not covered by
Corollary 3.9.

4. Verifying (3.13) for interpolation-like operators Ih based on orthog-
onalized B-splines. We consider a special choice for Ih (3.8): let η̃ and A be the
B-splines of order M ≥ 1 and N ≥ 1, respectively. Define η by

η̂(σ) :=
̂̃η(σ)
a(σ)

=
1√
2π

sincM (σ/2)

a(σ)
,(4.1)

where

a(σ) =
∑
�∈Z

a� e
−ı �σ with a� =

∫
R

η̃(s) A(�− s) ds.(4.2)

Note that a is a positive even real trigonometric polynomial with a(0) = 1; see
Appendix C.1. Further, η and A are dual functions; that is,〈

η(· − k), A(·)〉 = δk,0;(4.3)

see Appendix C.2. Especially,

(I − Ih) (I − Ĩh) = I − Ih,(4.4)

where Ĩhu(s) := h−1
∑
k∈Z

〈u, η̃h(· − sk)〉Ah(s− sk).
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As in (3.16) we obtain

‖Ihu− u‖−1/2 ≤ ‖u‖α−1/2 sup
v∈H1/2(R)

‖I∗hv − v‖1/2−α
‖v‖1/2

, 0 ≤ α ≤ 1/2.

Accordingly, we have to investigate the approximation power of the L2-adjoint oper-
ator I∗hu(s) = h−1

∑
k∈Z

〈u,Ah(· − sk)〉 ηh(s− sk) which is done in Appendix C.3. By
(C.3),

‖Ihu− u‖−1/2 � hα ‖u‖α−1/2, 0 ≤ α ≤ 1/2.

The range α > 1/2 we approach as in (3.18) with the help of (4.4):

‖Ihu− u‖−1/2 � h1/2 ‖̃Ihu− u‖L2(R).

Applying Theorem A.2 to the above right-hand side implies (3.13) with

αI =

{
3/2 : N = 1,

5/2 : N ≥ 2.

The reconstruction filter belonging to Ih considered in this section is

υ(s) =
1

π
√
2π

∫ ∞

0

σ
sincM (σ/2)

a(σ)
B̂(σ) cos(s σ) dσ.

To find an explicit representation of a poses no problem since a� = B(�), where B is
the B-spline of order M + N . So, a� ∈ Q can be found by the B-spline recursion or
explicit representations of B-splines. Nevertheless, υ cannot be evaluated explicitly
in general. However, the needed values of υ at integers can be computed numerically
to any desired accuracy.

Example 4.1. Let M = 1, N = 2, and B(s) = sinc(π s). Then, a(σ) = 3
4 +

1
4 cos(σ) and

υ(s) =
4

π2

∫ π
0

sin(σ/2) cos(s σ)

3 + cos(σ)
dσ.

Using this filter in the FBA together with piecewise linear interpolation in Ih yields∥∥f̃FB − f
∥∥
L2(Ω)

� hmin{5/2, α} ‖f‖α for f ∈ Hα0 (Ω), α > 0,

since band-limited interpolation (B.4) is considered for Eh (βmax = τmax > 3).
Remark 4.2. The biorthogonalization procedure (4.1) is the same procedure used

in the construction of orthogonal spline wavelets; see Lemarié [12]. The connec-
tion between wavelets and reconstruction filters can even be extended to increase αI.
Choosing A to be a B-spline of order N and η to be a suitable compactly supported
dual scaling function (see Cohen, Daubechies, and Feauveau [4]) yields an operator
Ih with an αI increasing with N . The needed approximation properties of Ih and I

"
h

are reported, for instance, by Dahmen [5, Prop. 5.1].
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5. Verifying (3.13) for interpolation-like operators Ih based on B-splines.
Our analysis presented so far does not cover operators Ih where η and A are B-splines
of order M and N , respectively. We will now investigate this situation.

Let Eh and Ih be defined as earlier with respect to ε, B, η, and A. Moreover,
let a be given as in (4.2); however, η̃ is replaced by η. Further, define the operator

Ah : L2(R) → L2(R), h > 0, by Âhu(σ) := a(hσ) û(σ). Note that Â−1
h u(σ) =

û(σ)/a(hσ). Now the key observation is that

f̃FB =
1

2π
R∗IhΛEhRf =

1

2π
R∗IhA−1

h ΛAhEhRf.

Consequently, we have to study the approximation powers of the products AhEh and
IhA

−1
h . The latter product is exactly the operator Ih studied in the former section.

Hence,

‖IhA−1
h − I‖Hα−1/2(R)→H−1/2(R) � hα, 0 ≤ α ≤ αI =

{
3/2 : N = 1,

5/2 : N ≥ 2.

The product AhEh requires a little bit more attention. We begin with

‖AhEhu− u‖τ � ‖Ehu− u‖τ + ‖Ahu− u‖τ .
In view of (3.12) and (C.2) we obtain

‖AhEhu− u‖τ � hβ−τ‖u‖β , u ∈ Hβ0 (−1, 1),
for βmin ≤ β ≤ min{βmax, 2 + τ}, 0 ≤ τ ≤ β, τ ≤ τmax. The parameters βmin, βmax,
and τmax correspond to Eh.

Theorem 3.7 holds accordingly, however, with the following restrictions on α:

max{0, βmin − 1/2} < α ≤ min
{
αI, 2, βmax − 1/2, τmax − 1/2};

that is, the maximal convergence order cannot exceed 2 which is a tribute to the
operator Ah in front of Eh.

Example 5.1. Using the Shepp–Logan filter (η = χ[−1/2,1/2[, B(s) = sinc(π s)) in
the FBA together with piecewise linear interpolation in Ih (A is the linear B-spline)
yields ∥∥f̃FB − f

∥∥
L2(Ω)

� hmin{2, α} ‖f‖α for f ∈ Hα0 (Ω), α > 0,

when ε is either an even, compactly supported, and normalized L2-function (Theo-
rem B.2) or the Dirac distribution (Theorem B.4).

6. Numerical illustrations. We provide numerical experiments to illustrate
the convergence results proved in the former sections. Especially, we will see that the
convergence rates saturate indeed at the given bounds.

To this end we need an f ∈ L2(Ω) with a prescribed Sobolev order and with
an analytically computable Radon transform. We favor the following construction.
Let pn be defined by pn(x) = (1 − ‖x‖2)n, ‖x‖ ≤ 1, and pn(x) = 0, otherwise. We
have that pn ∈ Hα0 (Ω) for any α < n + 1/2. The function f for the first numerical
experiment is then given by

f(x) :=

3∑
k=1

dk p3

(
Uk(x− bk)

) ∈ Hα0 (Ω) for any α < 7/2,(6.1)
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Fig. 2. The function f from (6.1) (left) and its cross section f(·, 0) (right).

where d1 = 1, d2 = −1.5, d3 = 1.5, and b1 = (0.22, 0)
t, b2 = (−0.22, 0)t, b3 = (0, 0.2)t.

Further, Uk = U(ϕk, δk, γk), k = 1, 2, 3, with

U(ϕ, δ, γ) :=

(
cos(ϕ)/δ sin(ϕ)/δ

− sin(ϕ)/γ cos(ϕ)/γ

)
(6.2)

and

δ1 = 0.51, γ1 = 0.31, ϕ1 = 72π/180,

δ2 = 0.51, γ2 = 0.36, ϕ2 = 108π/180,

δ3 = 0.5, γ3 = 0.8, ϕ3 = π/2.

See Figure 2 for a graphical representation of f . We reconstructed f on the grid
Xq := Ω ∩ {(i/q, j/q) | − q ≤ i, j ≤ q} by

fFB,q(x) :=
1

2π
R∗

3qI1/qΛE1/qRf(x), x ∈ Xq,

where R∗
p is defined in (1.6). We have chosen the number of directions (3q) close to

its optimal value; see, e.g., Natterer [14, p. 84].
Now we define the relative �2-reconstruction error e by

e(q) :=
( ∑
x∈Xq

(
fFB,q(x)− f(x)

)2/ ∑
x∈Xq

f(x)2
)1/2

.(6.3)

In Figure 3 we plotted e as the function of q ∈ {25, 50, 75, 100, 125, 150, 175, 200} on
a double logarithmic scale with respect to three different settings in the FBA:

• The Shepp–Logan filter with nearest-neighbor interpolation (Example 3.8).
Here, the expected and observed convergence rate is e(q) ∼ q−3/2; see the
dot-dashed line marked with ✷.

• The Shepp–Logan filter with piecewise linear interpolation (Example 5.1).
Here, the expected and observed convergence rate is e(q) ∼ q−2; see the
dashed line marked with �.

• The modified Shepp–Logan filter with piecewise linear interpolation (Exam-
ple 4.1). Here, the expected and observed convergence rate is e(q) ∼ q−5/2;
see the solid line marked with ◦. We also plotted an auxiliary curve decaying
exactly like q−5/2 (solid line in light gray).
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Fig. 3. The relative 
2-errors e (6.3) for reconstructing f (6.1) by the FBA using the Shepp–
Logan filter with nearest-neighbor interpolation (dot-dashed with ✷), the Shepp–Logan filter with
piecewise linear interpolation (dashed with �), and the modified Shepp–Logan filter with piecewise
linear interpolation (solid with ◦). The auxiliary solid line indicates exact decay q−5/2.

In light of the computational experiments we may conclude that our bounds for the
maximal convergence orders cannot be improved (at least for the settings underlying
the experiments).

Next, we present the relative �2-errors in reconstructing the Shepp–Logan head
phantom; see Figure 4. The Shepp–Logan head phantom fSL simulates the geometry
and the density relations in a human skull. It consists of superimposed indicator
functions of ellipses. Hence, fSL ∈ Hα0 (Ω) for any α < 1/2.4 We therefore expect and
observe e(q) ∼ q−1/2 for all three settings from above.

Both experiments agree completely with our theoretical results, although a dis-
cretization of the backprojection operator was not investigated. With our last exper-
iment we justify this simplification once more by considering a setting which might
cause trouble in a convergence analysis including the discrete backprojection operator.

The function to be reconstructed consists of indicator functions of two rectangles
R1 and R2:

f(x) := χR1(x) + 0.5χR2(x)(6.4)

with

R1 := [−2/5, 2/5]× [−3/5, 3/5]

and (U as in (6.2))

R2 :=
{
x ∈ R2

∣∣U(π/3, 0.7, 0.4)(x− b) ∈ [−1, 1]2}, b = (−0.1,−0.1)t;

see Figure 5 (left). Note that f is in Hα0 (Ω) for any α < 1/2. So what is the
difference to the Shepp–Logan head phantom? While the fact that Rf as a function

4In general, picture densities in medical imaging can be considered elements in Hα
0 (Ω) with

α < 1/2 but close to 1/2; see Natterer [14, pp. 92ff.].
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Fig. 4. Top: head phantom due to Shepp–Logan [21]. Bottom: the relative 
2-errors e (6.3)
for reconstructing the Shepp–Logan phantom by the FBA using the Shepp–Logan filter with nearest-
neighbor interpolation (dot-dashed with ✷), the Shepp–Logan filter with piecewise linear interpolation
(dashed with �), and the modified Shepp–Logan filter with piecewise linear interpolation (solid with◦). The auxiliary solid line indicates exact decay q−1/2.

of two variables lies in Hβ0 (−1, 1)⊗̂L2(0, π) implies that the functions of one variable

Rf(·, ϑ) lie in Hβ0 (−1, 1) for almost all ϑ, there may be a null set of exceptional angles
ϑ, where Rf(·, ϑ) has less Sobolev regularity. For f given in (6.4) we have that Rf

is in Hβ0 (−1, 1)⊗̂L2(0, π) for any β < 1, but there exist four angles ϑ, where Rf(·, ϑ)
is less smooth. Indeed,

Rf(·, ϑ) ∈ Hα0 (−1, 1), α < 1/2, for ϑ ∈ {0, π/3, π/2, 5π/6};

see Figure 5 (right). The bound on α is maximal (there are no such pathological
angles for the Shepp–Logan head phantom; however, one expects such angles in real
measurements from medical imaging).

In Figure 6 we plotted the relative reconstruction error (6.3) for the same q-values
as before. Please note that the discrete Radon data for all q contain integrals over
lines which run along the boundary of R1. Further, all used reconstruction grids
Xq have sufficiently many points on the boundary of R1; indeed, the cardinality of
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Fig. 5. The function f from (6.4) (left) and its projection Rf(·, 0) (right). The jumps of
Rf(·, 0) in ±2/5 are clearly visible.
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Fig. 6. The relative 
2-errors e (6.3) for reconstructing f (6.4) by the FBA using the Shepp–
Logan filter with nearest-neighbor interpolation (dot-dashed with ✷), the Shepp–Logan filter with
piecewise linear interpolation (dashed with �), and the modified Shepp–Logan filter with piecewise
linear interpolation (solid with ◦). The auxiliary solid line indicates exact decay q−1/2.

Xq ∩ ∂R1 increases like O(q).
We observe that even “pathological” projections do not deteriorate the conver-

gence rate obtained by using the continuous backprojection operator for the analysis.

Appendix A. Proof of (3.12) for interpolation-like operators Eh based
on B-splines. We consider Eh as defined in (3.6) where B is the cardinal B-spline
of order N ≥ 1; that is, B is the N -fold convolution of χ[−1/2,1/2] with itself. The

functional ε ∈ H−βmin

0 (R), βmin ≥ 0, is supposed to be even, compactly supported
in ✷ = [−a, a], a > 0, and normalized by 〈1, ε〉 = 1 where 〈·, ·〉 denotes the duality
pairing in Hβmin(✷)×H−βmin

0 (✷).
The techniques we use below are standard in approximation theory, yet we are

not aware of any reference suitable for our setting; however, see Aubin [1, sect. 8.6].
First, we show that Eh reproduces affine linear functions if N ≥ 2.
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Lemma A.1. If N ≥ 2, then Ehp = p for any p ∈ Π1. For N = 1 Eh reproduces
only constants.

Proof. Note that the action of Eh on p is well defined since ε has compact
support. Constants are preserved by 〈1, ε(· − k)〉 = 1 and

∑
k∈Z

B(s − k) = 1; see,
e.g., Schoenberg [20, p. 16]. Let p(s) = s; then 〈p(·), ε(· − k)〉 = k due to the evenness
of ε. By s =

∑
k∈Z

k B(s − k), N ≥ 2 (see, e.g., Schoenberg [20, p. 16]), we are
done.

Theorem A.2. Let βmin ≤ β ≤ min{2, N}, τ < N − 1/2, and 0 ≤ τ ≤ β. Then,

‖Ehu− u‖τ � hβ−τ ‖u‖β as h → 0.

Proof. We restrict the proof to N ≥ 2, and we show first a local version of the
approximation property. Therefore, let ✷h,k := h (✷+2a k) for k ∈ Z. We will rely on
the Bramble–Hilbert-like estimate (A.1): there is an affine linear function P = P (u)
such that

‖u− P‖Hτ (✷h,k) � hβ−τ ‖u‖Hβ(✷h,k), 0 ≤ τ ≤ β ≤ 2.(A.1)

For τ = 0, (A.1) reduces to the original estimate by Bramble and Hilbert [2]. For pos-
itive real τ , see Dupont and Scott [7, Thm. 6.1] or Brenner and Scott [3, Lem. 4.3.8].
By Lemma A.1 and (A.1) we have

‖Ehu− u‖Hτ (✷h,k) � ‖Eh(u− p)‖Hτ (✷h,k) + hβ−τ ‖u‖Hβ(✷h,k).

Let Jh,k := {r ∈ Z | suppBh(· − sr) ∩ ✷h,k �= ∅}. The cardinality of Jh,k neither
depends on h nor on k. We proceed with

‖Eh(u− p)‖Hτ (✷h,k) �
∑
r∈Jh,k

h−1
∣∣〈u− P, εh(· − sr)

〉∣∣ ‖Bh(· − sr)‖Hτ (R)

� h−τ ∑
r∈Jh,k

h−1/2
∣∣〈u− P, εh(· − sr)

〉∣∣.
From the proof of Lemma 5.2 by Dahmen, Prössdorf, and Schneider [6] we know that∣∣〈u− P, h−1/2 εh(· − sr)

〉∣∣2 � ‖u− P‖2
L2(✷h,r) + h2 βmin ‖u− P‖2

Hβmin (✷h,r),

which, by (A.1), gives

‖Ehu− u‖Hτ (✷h,k) � hβ−τ
∑
r∈Jh,k

‖u‖Hβ(✷h,r) � hβ−τ
( ∑
r∈Jh,k

‖u‖2
Hβ(✷h,r)

)1/2
� hβ−τ ‖u‖Hβ(✷̃h,k),

where ✷̃h,k :=
⋃
r∈Jh,k

✷h,r. Thus,

‖Ehu− u‖Hτ (✷h,k) � hβ−τ ‖u‖Hβ(✷̃h,k).

Squaring both sides of the latter local approximation property and summing over
k ∈ Z yield finally the stated global approximation property.

Summary. The above theorem covers especially the cases ε = δ (Dirac dis-
tribution), where βmin > 1/2, and ε ∈ L2(✷) being even with

∫
✷
ε(s) ds = 1, where

βmin = 0. Hence, for both latter cases (3.12) holds with βmax = 2 and τmax < N−1/2.



888 ANDREAS RIEDER AND ADEL FARIDANI

Appendix B. Proof of (3.12) for interpolation-like operators Eh based
on the sinc-function. We consider Eh as defined in (3.6) where B is the sinus
cardinalis; that is, B(x) := sinc(π x), where sinc(x) = sin(x)/x, x �= 0, and sinc(0) =
1. Further, ε ∈ L1(R) ∩ L2(R) is an even function with compact support and a
normalized mean value,

∫
ε(x) dx = 1. Here, 〈·, ·〉 denotes the L2(R)-inner product.

First we bound Eh uniformly in h.
Lemma B.1. (a) The operators Eh : L2(R) → L2(R), h > 0, are uniformly

bounded in h.
(b) Let w be in L2(R) with supp ŵ ⊂ [−π/h, π/h]. Then, we have the inverse

estimate ‖w‖α ≤ 2α/2 πα h−α ‖w‖L2(R) for 0 < h ≤ π and any α ≥ 0.
Proof. (a) Set ✷h,k = h (supp ε+ k). The L2(R)-orthogonality of {Bh(· − sk)}k∈Z

gives

‖Ehu‖2
L2(R) = h−1

∑
k∈Z

|〈u, εh(· − sk)〉|2 ≤
∑
k∈Z

‖u‖2
L2(✷h,k)‖ε‖2

L2(R) � ‖u‖2
L2(R).

(b) The inverse estimate results from a straightforward estimate of ‖w‖2
α taking

into account the compact support of ŵ.
After the above preparatory results we are able to prove the claimed convergence

estimate.
Theorem B.2. Let 0 ≤ τ ≤ β, β − τ ≤ 2. Under the assumptions from above

we have that

‖Ehu− u‖τ � hβ−τ ‖u‖β as h → 0.

Proof. Define an auxiliary operator Ph : L
2(R)→ L2(R) by

P̂hw(ξ) := χ✷h
(ξ) ŵ(ξ). 5(B.1)

It is an easy exercise to obtain

‖Phu− u‖τ � hβ−τ ‖u‖β for 0 ≤ τ ≤ β < ∞(B.2)

whenever the right-hand side is finite.
In a first step we consider ‖EhPhu− Phu‖τ . We have

ÊhPhu(ξ) =
1√
2π

χ✷h
(ξ)
∑
k∈Z

〈Phu, εh(· − sk)〉 e−ı hkξ

and

h1/2 〈Phu, εh(· − sk)〉 = h1/2

∫
✷h

P̂hu(ξ) ε̂h(ξ) e
ı hkξ dξ

=
( h

2π

)1/2
∫

✷h

̂Phu � εh(ξ) e
ı hkξ dξ,

which is the kth Fourier coefficient of ̂Phu � εh. Hence,

ÊhPhu(ξ) = h−1 χ✷h
(ξ) ̂Phu � εh(ξ).

5Actually, Ph is the orthogonal projector onto the closed subspace of band-limited functions with
band-width π/h.
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Therefore,

‖EhPhu− Phu‖2
τ =

∫
✷h

(1 + ξ2)τ
∣∣h−1 ̂Phu � εh(ξ)− P̂hu(ξ)

∣∣2 dξ
�
∫

✷h

(1 + ξ2)τ
∣∣û(ξ)∣∣2 M(hξ) dξ,

whereM(z) = |ε̂(z)−1/√2π|2, z ∈ R. As in the proof of Corollary 2.2 one shows that
M(z) � z4 using a Taylor expansion of ε̂ about the origin. Now let 0 ≤ β − τ ≤ 2.
Then,

‖EhPhu− Phu‖2
τ � h4

∫
✷h

(1 + ξ2)β
∣∣û(ξ)∣∣2 ξ4−2(β−τ) dξ(B.3a)

� h2(β−τ) ‖u‖2
β .(B.3b)

In the final step we use both statements from Lemma B.1 as well as (B.2) and (B.3):

‖Ehu− u‖τ ≤ ‖Ehu− EhPhu‖τ + ‖EhPhu− Phu‖τ
+ ‖Phu− u‖τ

� h−τ ‖u− Phu‖L2(R) + hβ−τ ‖u‖β .
Applying (B.2) again we conclude with the proof of Theorem B.2.

Remark B.3. The upper bound 2 on β − τ in Theorem B.2 may be relaxed by
imposing higher order vanishing moments on ε.

Now we investigate band-limited interpolation; that is, Eh is defined by

Ehu(s) =
∑
k∈Z

u(sk) sinc
(π
h
(s− sk)

)
.(B.4)

Theorem B.4. Let βmax ∈ N. Then, for 1/2 < β < ∞, 0 ≤ τ ≤ β with
β − τ ≤ βmax, we have that

‖Ehu− u‖τ � hβ−τ ‖u‖β as h → 0

whenever u ∈ Hβ(R) is compactly supported. The constant in the above estimate may
depend on βmax.

Proof. Band-limited interpolation is well defined under the assumptions on u.

We introduce an auxiliary operator E
(m)
h . To this end let ε ∈ L2(R) be compactly

supported with normalized mean value (
∫
ε(x) dx = 1) and vanishing moments up to

order βmax (
∫
xk ε(x) dx = 1, k = 1, . . . , βmax). Thus, ε̂(0) = 1/

√
2π and ε̂(ν)(0) = 0,

ν = 1, . . . , βmax. Define ε(m)(s) := mε(ms), m ∈ N, and

E
(m)
h u(s) := h−1

∑
k∈Z

〈
u, ε

(m)
h (· − sk)

〉
sinc

(π
h
(s− sk)

)
.

Observe that E
(m)
h : L2(R)→ L2(R) is uniformly bounded in h and m; see the proof

of Lemma B.1. Hence, we may apply Theorem B.2 to obtain

‖E(m)
h u− u‖τ � hβ−τ ‖u‖β ,(B.5)
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where the constant is bounded inm, as a careful inspection of the proof of Theorem B.2
shows. Moreover, the upper bound on β − τ in (B.5) is βmax since all derivatives of ε̂
up to order βmax vanish about 0; see Remark B.3. By (B.5),

‖Ehu− u‖τ � ‖Ehu− E
(m)
h u‖τ + hβ−τ ‖u‖β .(B.6)

Further,

‖Ehu− E
(m)
h u‖τ ≤ ‖sinch/π‖τ

∑
k∈Jm,h(u)

∣∣u(sk)− 〈u, h−1ε
(m)
h (· − sk)

〉∣∣
with Jm,h(u) = {k ∈ Z | sk ∈ suppu} ∪ {k ∈ Z | supp u∩ h(m−1 supp ε+ k)}. The set
Jm,h(u) is finite and its cardinality is bounded in m. So we have that limm→∞ ‖Ehu−
E

(m)
h u‖τ = 0, and the stated estimate is readily seen from (B.6).
Summary. The band-limited interpolation-like operators considered in Theo-

rem B.2 satisfy (3.12) with βmin = 0, βmax = 2 + τ , and any τmax < ∞. For the
band-limited interpolation (B.4) we have (3.12) with βmin > 1/2 and any positive
τmax and any fixed βmax > 1/2.

Appendix C. Complement to section 4. This appendix is devoted to the
proof of various auxiliary results from section 4. Throughout this appendix let η̃ and
A be B-splines of order M ≥ 1 and N ≥ 1, respectively. Further, let η be defined by
(4.1).

C.1. The trigonometric polynomial a. Recall that

a(σ) =
∑
�∈Z

a� e
−ı �σ with a� =

∫
R

η̃(s) A(�− s) ds.

Since η̃ and A are even, so are {a�}�∈Z and a. By
∑
�∈Z

A(·− �) = 1 and
∫
η̃(s)ds = 1

(see, e.g., Schoenberg [20, p. 16 and p. 2]), we have that a(0) = 1. In the remainder of
this appendix we verify that a has no zeros. Then we have established all properties
of a claimed and needed in section 4.

Straightforward calculations reveal that the a�’s are the Fourier coefficients of the

2π-periodic function 2π
∑
k∈Z

̂̃η(σ + 2π k) Â(σ + 2π k). Hence,

a(σ) = 2π
∑
k∈Z

̂̃η(σ + 2π k) Â(σ + 2π k) =
∑
k∈Z

sincM+N (σ/2 + π k).(C.1)

IfM+N is even, a clearly has no zeros because there is no σ such that sincM+N (σ/2+
π k) = 0 for all k ∈ Z. It remains to investigate the odd case M +N = 2L+1, L ∈ N.
We factorize a according to

a(σ) = sin2L(σ/2) Σ2L+1(σ) with Σ2L+1(σ) :=
∑
k∈Z

(−1)k
(σ/2 + π k)2L+1

.

As multiples of 2π are not zeros of a it suffices to show that Σ2L+1 has no zeros in
]0, 2π[. Separating even from odd indices we find

Σ2L+1(σ) = 2−(2L+1)
(
S2L+1(σ/4)− S2L+1(σ/4 + π/2)

)
,

where Sl(σ) :=
∑
k∈Z

(σ + π k)−l, l ≥ 2. Observe that S2l(σ) > 0, l ∈ N. Now,

d

dσ
S2L+1(σ) = −(2L+ 1) S2L+2(σ) < 0, σ ∈ ]0, 2π[.

Therefore S2L+1 is strongly decreasing in ]0, 2π[ which gives Σ2L+1 > 0 in ]0, 2π[.
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C.2. Biorthogonality (4.3). By (4.1) and (C.1) we obtain

〈
η(· − k), A(·)〉 = ∫

R

η̂(σ) Â(σ) eı kσ dσ

=

∫ 2π

0

∑
n∈Z

η̂(σ + 2π n) Â(σ + 2π n) eı kσ dσ

=

∫ 2π

0

1

a(σ)

∑
n∈Z

̂̃η(σ + 2π n) Â(σ + 2π n) eı kσ dσ =

∫ 2π

0

eı kσ

2π
dσ,

which is (4.3).

C.3. Approximation power of I∗
h. We are not able to apply Theorem A.2

directly to I∗h as η from (4.1) does not have compact support in general. Nevertheless,

we will show that the approximation power of Ĩ∗h carries over to I
∗
h (for the notation

see section 4). Since

Î∗hu(σ) =
̂̃
I∗hu(σ)/a(hσ)

we have that

‖u− I∗hu‖2
τ �

∫
R

(1 + σ2)τ
∣∣a(hσ) û(σ)− ̂̃I∗hu(σ)∣∣2 dσ.

Thus,

‖u− I∗hu‖τ � ‖Ahu− Ĩ∗hAhu‖τ + ‖̃I∗hAhu− Ĩ∗hu‖τ ,

where Âhu(σ) = a(hσ) û(σ). Theorem A.2 provides

‖Ahu− Ĩ∗hAhu‖τ � hβ−τ ‖Ahu‖β � hβ−τ ‖u‖β

for 0 ≤ β ≤ min{2,M}, τ < M − 1/2, and 0 ≤ τ ≤ β. Further, also by Theorem A.2,

‖̃I∗hAhu− Ĩ∗hu‖τ � ‖Ahu− u‖τ

whenever 0 ≤ τ < M−1/2, forM ≤ 2, and 0 ≤ τ ≤ 2, otherwise. A Taylor expansion
of a about 0 proves that |a(σ)−1| � σ2. Now we may copy the proof of Corollary 2.2
to obtain

‖Ahu− u‖τ � hmin{2,β−τ} ‖u‖β , 0 ≤ τ ≤ β.(C.2)

Collecting the pieces we find

‖u− I∗hu‖τ � hβ−τ ‖u‖β as h → 0(C.3)

for 0 ≤ β ≤ min{2,M}, τ < min{2,M − 1/2}, and 0 ≤ τ ≤ β.
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