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Abstract

Algorithm engineering exhibited an impressive surge of interest during the last years,
spearheaded by one of the showpieces of algorithm engineering: computation of shortest
paths. In principle, Dijkstra’s classical algorithm can solve this problem. However, for
continental-sized transportation networks, Dijkstra’s algorithm would take up to 10 sec-
onds for finding a suitable connection, which is way too slow for practical applications.
Hence, many speed-up techniques have been developed during the last years with the
fastest ones yielding query times of few microseconds on road networks.

However, most developed techniques require the network to be static or only allow
a small number of updates. In practice, however, travel duration often depends on the
departure time. It turns out that efficient models for routing in almost all transportation
systems, e.g., timetable information for railways or scheduling for airplanes, are based
on time-dependent networks. Moreover, road networks are not static either: there is a
growing body of data on travel times of important road segments stemming from road-
side sensors, GPS systems inside cars, traffic simulations, etc. Using this data, we can
assign speed profiles to roads. This yields a time-dependent road network.

Switching from a static to a time-dependent scenario is more challenging than one
might expect: The input size increases drastically as travel times on congested motorways
change during the day. On the technical side, most static techniques rely on bidirectional
search, i.e., a second search is started from the target. This concept is complicated in time-
dependent scenarios since the arrival time would have to be known in advance for such an
approach. Moreover, possible problem statements for shortest paths become even more
complex in such networks. A user could ask at what time she should depart in order to
spend as little time traveling as possible. As a result, none of the existing high-performance
techniques can be adapted to this realistic scenario easily.

Furthermore, the fastest route in transportation networks is often not the “best” one.
For example, users traveling by train may be willing to accept longer travel times if the
number of required transfers is lower or the cost of a journey with longer duration is
cheaper. We end up in a multi-criteria scenario in which none of the high-performance
approaches developed in the last years can be applied easily.

In this work, we introduce the first efficient, provably correct, algorithms for route
planning in these augmented scenarios. Therefore, we follow the concept of algorithm
engineering by designing, analyzing, implementing, and evaluating speed-up techniques
for Dijkstra’s algorithm. For an augmentation, we additionally pursue a very systematic
approach. First we identify basic concepts for accelerating shortest path queries and
analyze their drawbacks. By adding a hierarchical component, i.e., contraction, we are
able to remedy those drawbacks and derive speed-up techniques with similar performance
in time-independent networks as existing approaches. However, due to their foundation
on basic concepts, their augmentations are easier than for existing approaches.
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On top of the techniques for augmented scenarios, we accelerate the fastest techniques
for time-independent route planning as well. We achieve this by adding goal-direction.
The main challenge here is to keep the preprocessing effort limited. The key idea is that it
is sufficient to apply goal-direction only on a small subgraph representing the upper part
of the hierarchy.

Finally, we evaluate the robustness of speed-up techniques with respect to the input. It
turns out that some techniques are more robust than others. The most robust techniques
are introduced in this thesis.
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Chapter 1

Introduction

Finding the quickest connection in transportation networks is a problem familiar to any-
body who ever travelled. While in former times, route planning was done with maps at
the kitchen’s table, nowadays computer based route planning is established: Finding the
best train connection is done via the internet while route planning in road networks is
often done with mobile devices.

An efficient approach to tackle this problem derives from graph theory. We model
the transportation network as a graph and apply travel times as a metric on the edges.
Computing the shortest path in such a graph then yields the provably quickest route in the
corresponding transportation network. In principle, Dijkstra’s classical algorithm [Dij59]
can solve this problem. However, for continental-sized transportation networks (consisting
of up to 45 million road segments), Dijkstra’s algorithm would take up to 10 seconds for
finding a suitable connection, which is way too slow for practical applications. Roughly
speaking, Dijkstra computes the distance to all possible locations in the network being
closer than the target we are interested in. Clearly, it does not make sense to compute
all these distances if we are only interested in the path between two points. Hence, many
speed-up techniques have been developed within the last years. Such techniques split the
work into two parts. During an offline phase, called preprocessing, we compute additional
data that accelerates queries during the online phase. By exploiting several properties
of a transportation network, the fastest techniques can obtain the quickest path in road
networks within microseconds for the price of few hours of preprocessing. See Fig. 1.1 for
an example of the search space of a speed-up technique compared to Dijkstra’s algorithm.

However, all recently developed techniques require the network to be static which is an
unrealistic assumption: road networks for example are predictably congested during rush
hours. This realistic scenario is dealt with by time-dependent networks, i.e., the travel
duration depends on the departure time. It turns out that efficient models for routing in
almost all transportation systems, e.g., timetable information for railways or scheduling
for airplanes, are based on time-dependent networks. Unfortunately, switching from a
static to a time-dependent scenario is more challenging than one might expect: The input
size increases drastically as travel times on congested motorways change during the day.
Moreover, shortest paths heavily depend on the time of departure, e.g., during rush hours
it might pay off to avoid highways. On the technical side, most static techniques rely
on bidirectional search, i.e., a second search is started from the target. However, this
concept is prohibited in time-dependent scenarios as the arrival time would have to be
known in advance for such a procedure. As a result, none of the existing high-performance
techniques can be adapted to this realistic scenario easily. This is one of the main reasons
why commercial systems rely on approximative algorithms.

Another open problem for route planning is that the quickest route is often not the
best one. A user might be willing to accept slightly longer travel times if the cost of
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the journey is less. A common approach to cope with such a situation is to find Pareto-
optimal (concerning other metrics than travel times) routes. Such routes have the property
that each route is better than any other route with respect to at least one metric under
consideration, e.g., travel costs or number of train changes.

In this work, we present efficient route planning algorithms for the augmented sce-
narios stated above. We hereby follow the concept of algorithm engineering : We design,
analyze, implement, and experimentally evaluate augmented route planning algorithms.
The evaluation is done on real-world transportation networks (roads and railways) and
networks deriving from other fields of computer science.

Figure 1.1: Search space of different algorithms for the same sample query in a road network.
The upper figure depicts the search space of Dijkstra, the lower for a speed-up technique. Black
edges are touched by algorithms, grey ones stay untouched. The shortest path is drawn thicker in
light blue. We observe that the speed-up technique touches considerably fewer edges than Dijkstra.



1.1. PROBLEM DEFINITION 3

1.1 Problem Definition

Given a directed graph G = (V,E) with n := |V | nodes and m := |E| edges. In this work,
we deal with the following three problems.

• time-independent point-to-point shortest paths (TIPPSP):
Compute the shortest path between a given source s and a given target t with respect
to a length function len : E → R

+.

• time-dependent point-to-point shortest paths (TDPPSP):
Compute the shortest path between a given source s and given target t with respect
to a time-dependent length function len : E×R+ → R

+ for a given departure time τ .

• point-to-point Pareto paths (PPPP):
Compute all Pareto paths between a given source s and given target t with respect
to a k-dimensional length function len : E → R

k
+.

Note that one crucial difference between the three problems is that the length function
len assigned to the edges of the graph differs.

1.2 Related Work

We split related work into three logical parts: Time-independent, time-dependent, and
multi-criteria route planning.

1.2.1 Time-Independent Route Planning

As already mentioned above, most recent research focused on this scenario. Hence, a
bunch of speed-up techniques have been developed during the last years. Academic re-
search on speed-up techniques for transportation networks started in 1999 on railway net-
works [SWW99] leading to several follow-up studies. However, a turning point was 2005
since at this point huge road networks were made available to the research community, im-
mediately leading to a kind of “horse race” for the fastest technique on these inputs. The
climax of the development was surely the DIMACS Challenge of shortest paths [DGJ06].
In the following, we shortly explain each technique separately, a chronological summary
of the horse race can be found in [DSSW09a].

Two different approaches have been established during the last years: hierarchical
techniques try to identify an important subgraph and carry out most of the time-consuming
work on this subgraph, while goal-directed techniques work on the complete graph and try
to “guide” the search to the target.

Basics

Dijkstra’s Algorithm [Dij59] – the classical algorithm for route planning – maintains an
array of tentative distances D[u] for each node u ∈ V . The algorithm visits (or settles)
the nodes of the network in non-descending order of their distance to the source node.
As soon as the target t is settled, the search can be stopped since all nodes settled after
t have a greater distance to s. The size of the search space, i.e., the number of settled
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nodes, is O(n) and n/2 (nodes) on the average. In this work, we assess the quality of
route planning algorithms by looking at their speed-up compared to Dijkstra’s algorithm,
i.e., by which factor they can compute shortest paths faster.

Priority Queues. A naive implementation of Dijkstra’s algorithm has a running time
of O(n2) since finding the next node to settle takes O(n) (linear search of candidates).
However, the algorithm can be implemented using O(n) priority queue operations. In
the comparison based model this leads to O(n log n) execution time. In other models of
computation (e.g. [Tho03]) and on the average [Mey01], better bounds exist. However, in
practice the impact of priority queues on performance for large transportation networks is
rather limited since cache faults for accessing the graph are usually the main bottleneck.
In addition, our experiments indicate that the impact of priority queue implementations
diminishes with advanced speed-up techniques that dramatically reduce the queue sizes.

Bidirectional Dijkstra [Dan62, GH05]. The most straightforward speed-up technique is
bidirectional search. An additional (reverse) search is started from the target node and
the query stops as soon as both searches meet. Note that most sophisticated methods are
bidirectional approaches.

Geometric Goal Directed Search (A∗). The intuition behind goal directed search is that
shortest paths ‘should’ lead in the general direction of the target. A∗ search [HNR68]
achieves this by modifying the weight of edge (u, v) to len(u, v)− π(u) + π(v) where π(v)
is a lower bound on d(v, t). Note that this manipulation shortens edges that lead towards
the target. Since the added and subtracted vertex potentials π(v) cancel out along any
path, this modification of edge weights preserves shortest paths. Moreover, as long as
all edge weights remain nonnegative, Dijkstra’s algorithm can still be used. The classical
way to use A∗ for route planning in transportation networks estimates d(v, t) based on
the Euclidean distance between v and t and the average speed of the fastest connection
anywhere in the network. Since this is a very conservative estimation, the speed-up for
finding quickest routes is rather small. In [GH05], even a slow-down of more than a factor
of two is reported since the search space is not significantly reduced but a considerable
overhead is added.

Exploiting Hierarchy

Small Separators. Transportation networks are almost planar, i.e., most edges intersect
only at nodes. Hence, techniques developed for planar graphs will often also work for
transportation networks. Using O(n log2 n) space and preprocessing time, query time
O(
√
n log n) can be achieved [FR06, Kle05] for directed planar graphs without negative

cycles. Queries accurate within a factor (1+ε) can be answered in near constant time using
O((n log n)/ε) space and preprocessing time [Tho01]. Most of these theoretical approaches
look difficult to use in practice since they are complicated and need superlinear space. The
approach from [Tho01] has recently been implemented and experimentally evaluated on a
road network with one million nodes [MZ07].

Multi-Level Techniques. The first published practical approach for fast route planning
[SWW99, SWW00] uses a set of nodes V1 whose removal partitions the graph G = G0

into small components. Now consider the overlay graph G1 = (V1, E1) where edges in
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E1 are shortcuts corresponding to shortest paths in G that do not contain nodes from V1

in their interior. Routing can now be restricted to G1 and the components containing s
and t respectively. This process can be iterated yielding a multi-level method [SWZ02,
HSW06, HSW08, Hol08]. A limitation of this approach is that the graphs at higher levels
become much more dense than the input graphs thus limiting the benefits gained from
the hierarchy. Also, computing small separators and shortcuts can become quite costly
for large graphs.

Reach-Based Routing. Let R(v) := maxs,t∈V Rst(v) denote the reach of node v where
Rst(v) := min(d(s, v), d(v, t)). Gutman [Gut04] observed that a shortest-path search can
be stopped at nodes with a reach too small to get to source or target from there. Vari-
ants of reach-based routing work with the reach of edges or characterize reach in terms
of geometric distance rather than shortest-path distance. The first implementation had
disappointing speed-ups (e.g., compared to [SWW99]) and preprocessing times that would
be prohibitive for large networks.

Highway Hierarchies (HH) [SS05, SS06] group nodes and edges in a hierarchy of levels
by alternating between two procedures. First, the network is contracted by removing
low-degree nodes and then “important” edges—the highway edges—are identified. By
rerunning those two steps, a natural hierarchy of the network is obtained. The contraction
phase builds the core of a level and adds shortcuts to the graph. The identification of
highway edges is done by local Dijkstra executions. The most advanced variant stops
building the hierarchy at a certain point and computes a distance table containing all
distances between the core-nodes of the highest level. The advantages of HH are very low
preprocessing and query times on road networks with travel times.

Advanced Reach-Based Routing. It turns out that the preprocessing techniques developed
for HHs can be adapted to preprocessing reach information [GKW06]. This makes reach
computation faster and more accurate. More importantly, shortcuts make queries more
effective by reducing the number of nodes traversed and by reducing the reach-values of the
nodes bypassed by shortcuts. Reach-based routing is slower than HHs both with respect to
preprocessing time and query time. However, the latter can be improved by a combination
with goal-directed search to a point where both methods have similar performance.

Highway-Node Routing (HNR) [SS07] computes for a given sequence of node sets V =:
V0 ⊇ V1 ⊇ . . . ⊇ VL a hierarchy of overlay graphs [SWW99, SWZ02, HSW06, HSW08]:
the level-` overlay graph consists of the node set V` and an edge set E` that ensures the
property that all distances between nodes in V` are equal to the corresponding distances
in the underlying graph G`−1. A bidirectional query algorithm takes advantage of the
multi-level overlay graph by never moving downwards in the hierarchy—by that means,
the search space size is greatly reduced. A node classification provided by the Highway
Hierarchies approach was used to define the highway-node sets leading to a multi-level
overlay graph with about ten levels. Hence, the performance of Highway-Node Routing is
very similar to pure Highway Hierarchies but the advantage of the former is its capability
to efficiently update the preprocessing and low memory consumption.

Contraction Hierarchies (CH) are a special case of Highway-Node Routing where we
have n levels – one level for each node [GSSD08]. Such a fine hierarchy can improve
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query performance by a considerable factor. During preprocessing, the input graph G
is transferred to a search graph G′ by storing only edges directing from unimportant to
important nodes. As a remarkable result, G′ is smaller than G yielding a negative overhead
per node. Finally, by this transformation the query is simply a plain bidirectional Dijkstra
search operating on G′.

Distance Tables. Once a hierarchical routing technique (e.g., HH, HNR, CH) has shrunk
the size of the remaining network G′ to Θ(

√
n), one can afford to precompute and store

a complete distance table for the remaining nodes [SS06]. Using this table, one can stop
a query when it has reached G′. To compute the shortest-path distance, it then suffices
to lookup all shortest-path distances between nodes entering G′ in forward and backward
search respectively. Since the number of entrance nodes is not very large, one can achieve
a speed-up close to two compared to the underlying hierarchical technique.

Transit-Node Routing precomputes not only a distance table for important (transit)
nodes but also all relevant connections between the remaining nodes and the transit
nodes. Independently, three approaches proved successful for selecting transit nodes: sep-
arators [Mül06, DHM+09], border nodes of a partition [BFM+07, BFSS07, BFM09], and
nodes categorized as important by other speed-up techniques [BFM+07, BFSS07, SS09].
It turns out that for route planning in road networks, the latter approach is the most
promising one. Since only about 7–10 such access connections are needed per node one
can ‘almost’ reduce routing in large road networks to about 100 table lookups. Interest-
ingly, the difficult queries are now the local ones where the shortest path does not touch
any transit node. This problem can be solved by introducing several layers of transit
nodes. Between lower layer transit nodes, only those routes need to be stored that do not
touch the higher layers.

Advanced Goal-Directed Search

Edge Labels. The idea behind edge labels is to precompute information for an edge e that
specifies a set of nodes M(e) with the property that M(e) is a superset of all nodes that
lie on a shortest path starting with e. In an s–t query, an edge e need not be relaxed if t 6∈
M(e). In [SWW99], M(e) is specified by an angular range. More effective is information
that can distinguish between long range and short range edges. In [WW03, Wil05] many
geometric containers are evaluated. Very good performance is observed for axis parallel
rectangles. A disadvantage of geometric containers is that they require a complete all-pairs
shortest-path computation. Faster precomputation is possible by partitioning the graph
into k regions that have similar size and only a small number of boundary nodes. Now
M(e) is represented as a k-vector of arc flags [Lau04, KMS05, MSS+05, MSS+06, Sch06]
where flag i indicates whether there is a shortest path containing e that leads to a node in
region i. Arc flags can be computed using a single-source shortest-path computation from
all boundary nodes of the regions. A further improvement gets by with only one (though
comparatively expensive) search for each region [HKMS09]. Our work is largely based on
the concept of arc flags, hence a more detailed introduction to this approach is given in
Section 3.3.

Landmark A∗ (ALT). Using the triangle inequality, quite strong bounds on shortest-
path distances can be obtained by precomputing distances to a set of landmark nodes
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(≈ 16) that are well distributed over the far ends of the network [GH05, GW05]. Using
reasonable space and much less preprocessing time than for edge labels, these lower bounds
yield considerable speed-up for route planning. Since landmarks are extremely helpful in
augmented scenarios, ALT is described in more detail in Section 3.2.

Precomputed Cluster Distances (PCD). In [MSM06], a different way to use precomputed
distances for goal-directed search is given. The network is partitioned into clusters and
then a shortest connection between any pair of clusters U and V , i.e., minu∈U,v∈V d(u, v),
is precomputed. PCDs cannot be used together with A∗ search since reduced edge weights
can become negative. However, PCDs yield upper and lower bounds for distances that
can be used to prune search. This gives speed-up comparable to landmark-A∗ using less
space.

Combinations. Many speed-up techniques can be combined. In [SWW99, SWW00], a
combination of a special kind of geometric container [WWZ05], the separator-based multi-
level method, and A∗ search yields a speed-up of 62 for a railway transportation problem.
In [HSW04, HSWW06], combinations of A∗ search, bidirectional search, the separator-
based multi-level method, and geometric containers are studied: Depending on the graph
type, different combinations turn out to be best. For real-world graphs, a combination of
bidirectional search and geometric containers leads to the best running times. For public
transportation however, a combination of Arc-Flags and ALT harmonizes well [DPW08].

REAL. In [GKW06], the advanced version of REach has successfully been combined with
landmark-based A∗ search (the ALt algorithm), obtaining the REAL algorithm. In the
most recent version [GKW07], a variant is introduced where landmark distances are stored
only with the more important nodes, i.e., nodes with high reach values. By this means,
the memory consumption can be reduced significantly.

HH∗ [DSSW09b] combines Highway Hierarchies (HH) with landmark-based A∗ search.
Similar to [GKW07], the landmarks are not chosen from the original graph, but for some
level k of the highway hierarchy, which reduces the preprocessing time and memory con-
sumption. As a result, the query works in two phases: in an initial phase, a non-goal-
directed highway query is performed until all entrance points to level k have been discov-
ered; for the remaining search, the landmark distances are available so that the combined
algorithm can be used.

1.2.2 Time-Dependent Route Planning

Basics. In [CH66], Dijkstra’s algorithm is extended to the time-dependent case based
on the assumption that all edges of the network fulfill the FIFO property. The FIFO
property is also called the non-overtaking property, because it states that if A leaves the
node u of an edge (u, v) before B, B cannot arrive at node v before A. Computation of
shortest paths in FIFO networks is polynomially solvable [KS93]. In non-FIFO networks,
complexity depends on the restriction whether waiting at nodes is allowed. If waiting
is allowed, the problems stays polynomially solvable, if it is not allowed, the problem is
NP-hard [OR90].
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Speed-up Techniques. Compared to the time-independent scenario, much less work has
been done on speed-up techniques for time-dependent route planning. Goal-directed search
based on A∗ with Euclidean potentials has been adapted to time-dependent road net-
works in [Fli04], while its adaption to time-dependent railway networks can be found
in [PSWZ04b, Sch05, PSWZ07, DMS08].

Basic algorithmic ideas how to augment a hierarchical technique, i.e., Contraction Hi-
erarchies, can be found [BGS08]. However, it took quite some time until first experimental
results were available [BDSV09]. It seems as if the performance of time-dependent Con-
traction Hierarchies is comparable to the techniques presented in this work but for the
price of a very high amount of preprocessed data. The main reason for this is the fact
that shortcuts are much more expensive in terms of space consumption in time-dependent
scenarios (cf. Chapter 5 for details).

1.2.3 Pareto Route Planning

Basics. The straightforward approach to find all Pareto optimal paths is the generaliza-
tion [Han79, Mar84, Möh99] of Dijkstra’s algorithm: Each node v ∈ V gets a number
of multi-dimensional labels assigned, representing all Pareto paths to v. For the bicri-
teria case, [Han79] was the first presenting such generalization, while [The95] describes
multi-criteria algorithms in detail. By this generalization, Dijkstra loses the label-setting
property, i.e., now a node may be visited more than once. It turns out that a crucial
problem for multi-criteria routing is the number of labels assigned to the nodes. The more
labels are created, the more nodes are reinserted in the priority queue yielding consid-
erably slow-downs compared to the single-criteria setup. In the worst case, the number
of labels can be exponential in |V | yielding impractical running times [Han79]. Hence,
[Han79, War87] present an FPAS for the bicriteria shortest path problem.

Speed-up Techniques. Most of the work on speed-up techniques for multi-criteria scenarios
was done on networks deriving from timetable information. Here, [MW01] observed that in
such networks, the number of labels is often limited such that the brute force approach for
finding all Pareto paths is often feasible. Experimental studies finding all Pareto paths in
timetable graphs can be found in [PSWZ04a, PSWZ04b, Sch05, PSWZ07, MS07, GMS07,
DMS08]. However, to the best of our knowledge, all previous work only uses basic speed-
up techniques for accelerating the multi-criteria query. In most cases a special version of
A∗ is adapted to this scenario. Unfortunately, the resulting speed-ups only reach up to a
factor of 5 which is much less than for the (single-criteria) speed-up techniques developed
during the last years.

1.3 Main Contributions

In this work, we present provably correct speed-up techniques for efficient routing in time-
dependent and multi-criteria scenarios. We therefore follow a very systematic approach.
First, we identify basic ingredients in Chapter 3 and discuss known drawbacks of those
approaches. More precisely, we recapture the concept of landmarks, Arc-Flags, and con-
traction. By combining these ingredients in Chapter 4 we obtain speed-up techniques
which can compete with known approaches confirmed by an extensive experimental study.
Besides that, we further accelerate known hierarchical techniques by adding goal-direction
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via Arc-Flags. We obtain the fastest route planning algorithms for time-independent sce-
narios. However, the main contribution of this work is the augmentation of techniques to
time-dependent scenarios. The advantages of our combinations over existing techniques is
that due to their clear foundation on basic ingredients, adaption to augmented scenarios
seems more promising than for other approaches. We support this theory in Chapter 5
where we first augment the ingredients and then obtain the first efficient techniques for
route planning in time-dependent networks, again confirmed by an extensive experimental
study. On top of that, we follow the same approach in order to augment techniques to
multi-criteria scenarios. We present the first efficient speed-up technique for Pareto route
planning, again supported by an experimental study.

Summarizing, this thesis provides four important contributions: two speed-up tech-
niques working in augmented scenarios, the fastest known techniques for time-independent
routing, and an experimental study on the robustness of speed-up techniques. In the fol-
lowing, we describe each contribution in more detail.

SHARC. In this thesis, we introduce SHARC-Routing, a fast and robust approach for
unidirectional routing in large networks. The central idea of SHARC (Shortcuts + Arc-
Flags) is to integrate the concept of contraction into Arc-Flags. In general, SHARC-
Routing iteratively constructs a contraction-based hierarchy during preprocessing and
automatically sets arc-flags for edges removed during contraction. More precisely, arc-
flags are set in such a way that a unidirectional query considers these removed compo-
nent-edges only at the beginning and the end of a query. As a result, we are able to
route very efficiently in scenarios where other techniques fail due to their bidirectional
nature. Furthermore, SHARC allows to perform very fast queries—without updating the
preprocessing—in scenarios where metrics are changed frequently, e.g., different speed
profiles for fast and slow cars. We also introduce an interesting variant of SHARC by re-
moving all shortcuts from the graph after preprocessing. This variant may be very helpful
in scenarios with very limited memory, e.g., portable navigation systems. In case a user
needs even faster query times, our approach can also be used as a bidirectional algorithm
boosting performance even more.

Augmenting SHARC. Although preprocessing is based on basic concepts, SHARC yields a
low preprocessing effort combined with a unidirectional query algorithm being very similar
to plain Dijkstra. In order to augment SHARC, we first extend the basic ingredients such
that correctness can be guaranteed in time-dependent scenarios. It turns out that we
can leave the general concept of SHARC untouched. An experimental evaluation with
real world time-dependent transportation networks confirms the excellent performance of
time-dependent SHARC: The speed-up over Dijkstra for road networks is between 60 and
> 5000, depending on the degree of perturbation of the network and preprocessing effort.
The corresponding value for railway networks is 26.5.

In Chapter 6 we show that this approach even works for a multi-criteria scenario. By
augmenting the ingredients of SHARC to multi-criteria variants we again can assemble an
augmented variant of SHARC yielding excellent query times in such a scenario. The speed-
up over the generalized Dijkstra’s algorithm is the same as in a single-criteria scenario,
i.e., up to a factor of 15 000. However, it turns out that in road networks, multi-criteria
searches yield too high a number of possible routes to the target. Hence, we introduce
several reasonable constraints how to prune unattractive paths both during preprocessing
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and queries. Here, the key observation is that we define a main metric (we use travel
times) and only allow other paths if they do not yield too long a delay. Moreover, we also
introduce a constraint called pricing. Paths with longer travel times are only accepted if
they yield significant improvements in other metrics. With these additional constrains we
are able to compute reasonable Pareto paths in continental-sized road networks.

CALT. The main disadvantage of SHARC is that updating the preprocessing in case
of delays is complicated. Hence, we follow a second approach for routing in augmented
scenarios, based on landmarks and contraction. First, we analyze the performance of land-
marks in dynamic time-independent scenarios. It turns out that ALT works very well in
dynamic scenarios but query performance is not competitive to known approaches. Besides
that, pure ALT yields a high memory consumption prohibited in real-world applications.
Hence, we introduce CALT remedying both drawback without violating the advantages of
pure ALT. The key observation is that we extract an important subgraph, called the core,
of the input graph and use only the core as input for the preprocessing-routine of ALT.
As a result, we derive a two-phase query algorithm, similar to partial landmark REAL or
HH∗. During phase 1 we use plain Dijkstra to reach the core, while during phase 2, we use
ALT in order to accelerate the search within the core. We obtain a very robust technique
that unfolds its full potential in a dynamic time-dependent scenario.

Augmenting CALT. Adaption of landmarks and contraction to time-dependent scenar-
ios is straightforward. However, CALT is only competitive if applied in a bidirectional
manner. As already mentioned, a backward search is problematic since the arrival time is
not known in advance. So, the main challenge of adaption is augmenting bidirectionally
search. In Chapter 5, we present a general approach for searching bidirectionally in time-
dependent networks. The key idea is to perform a time-independent backward search that
bounds the set of nodes a time-dependent forward search has to visit. Experiments confirm
that this approach yields very good results in time-dependent road networks. Next, we
exploit the fact that landmarks work well in dynamic scenarios: We show how to update
the preprocessing in case the cost functions change. As a result, we can efficiently compute
quickest routes in fully dynamic time-dependent road networks.

Combinations. The third main contribution of this thesis is presenting the fastest
known speed-up techniques for time-independent networks as well. By combining Arc-
Flags with the fastest known hierarchical technique, i.e., Contraction Hierarchies and
Transit-Node Routing, those concepts can further be accelerated while keeping preprocess-
ing effort within reasonable time and space. The key idea is to use a purely hierarchical
method until a specific point during the query. As soon as we have reached an ‘important’
subgraph, i.e., a high level within the hierarchy, we turn on arc-flags. Our most success-
ful combination assembling from Contraction Hierarchies (CH) and Arc-Flags moderately
increases preprocessing effort over pure CH but query performance is almost as good as
Transit-Node Routing in road networks: On average, we settle only 45 nodes for com-
puting the distance between two random nodes in a continental-sized road network. The
advantage of this combination over Transit-Node Routing is its very low space consump-
tion. However, we are also able to improve the performance of Transit-Node Routing by
adding goal-direction via Arc-Flags to this approach. As a result, the number of required
table lookups can be reduced by a factor of 13, resulting in average query times of less
than 2µs—more than three million times faster than Dijkstra’s algorithm.
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Study on Robustness. Up to now, due to the availability of huge road networks, much
of recent research focused only on such networks [DSSW09a]. However, fast algorithms
are needed for other applications as well. One might expect that all speed-up techniques
can simply be used in any other application, yet several problems arise: several assump-
tions which hold for road networks may not hold for other networks, e.g., in timetable
information bidirectional search is prohibited as the arrival time is unknown in advance.
Performance is the other big issue. The fastest methods heavily exploit properties of road
networks in order to gain their huge speed-ups. In Section 4.6, we evaluate the most
prominent speed-up techniques developed in this thesis and during the last years on dif-
ferent types of input classes. It turns out that some techniques are more robust to the
input than others.

1.4 Overview

This work is organized as follows:

Chapter 2 settles basic definitions and fundamentals of this thesis. In addition, models
for route planning in road and train networks are recaptured from literature.

Chapter 3 introduces the basic ingredients our work is based on. More precisely, we
discuss the concepts of landmarks, arc-flags, and contraction.

Chapter 4. Before working on time-dependent scenarios, we need to settle the question
which technique to use for augmentation. This chapter introduces several interesting
candidates for this task. We show that an approach based solely on landmarks is
presumably the easiest one but for the price of bad query performance. We try to
remedy this drawback by adding a contraction step yielding a very potential speed-up
technique, called CALT. Still, this approach is based on bidirectional search mak-
ing adaption to augmented scenarios complicated. Hence, we introduce SHARC,
the fastest known techniques for unidirectional routing. Due to its unidirectional
nature and its clear basis on known ingredients, this approach is the first choice for
augmentation. Besides this, we show—allowing bidirectional search—how to further
accelerate the fastest known hierarchical techniques. An experimental study on road
networks reveals that these new combinations outperform any other speed-up tech-
nique. However, unidirectional SHARC can compete even with those techniques. An
extensive experimental evaluation on different inputs reveals that some techniques
highly depend on the type of input while others are very robust to the input.

Chapter 5 is probably the most innovative part of this thesis: augmenting speed-up
techniques from Chapter 4 to time-dependent networks such that correctness can still
be guaranteed. Therefore, we first augment the ingredients from Chapter 3 to time-
dependent networks. Then, we follow two approaches to perform time-dependent
queries. On the one hand, we augment the fastest unidirectional technique from
Chapter 4, i.e., SHARC. On the other hand, we show how to solve the problem of
bidirectional search. The backward search is executed on a time-independent graph
and is only used to bound the nodes a time-dependent forward search has to visit. We
also show how to efficiently route in time-dependent networks where cost functions
change. An extensive experimental study reveals interesting facts on time-dependent
routing general.
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Chapter 6. Using a similar approach as for augmenting time-independent speed-up tech-
niques to time-dependent ones, we present a multi-criteria variant of SHARC. Again,
we first augment basic ingredients from Chapter 3 to multi-criteria variants such that
correctness can still be guaranteed. An experimental evaluation confirms that multi-
criteria SHARC provides similar speed-ups like as in a single-criteria setup.

Chapter 7 concludes our work with a discussion on the insights gained in this thesis and
challenging open problems.



Chapter 2

Fundamentals

In this chapter we settle the very fundamentals of our work. This includes graphs, paths,
partitions and approaches for modeling transportation networks as graphs.

2.1 Graphs

An (undirected) graph G = (V,E) consists of a finite set V of nodes and a finite set E of
edges. An edge is an unordered pair {u, v} of nodes u, v ∈ V . If the edges are ordered pairs
(u, v), we call the graph directed. In this case, the node u is called the tail of the edge, v
the head. Throughout the whole work we restrict ourselves to directed graphs which are
weighted by a length function len. The number of nodes |V | is denoted by n, the number
of edges by m. We say a graph is sparse if m ∈ O(n). Given a set of edges H, tails(H) /
heads(H) denotes the set of all tails / heads in H. With degin(v) / degout(v) we denote
the number of edges whose head / tail is v. The reverse graph

←−
G = (V,

←−
E ) is the graph

obtained from G by substituting each (u, v) ∈ E by (v, u). The 2-core of an undirected
graph is the maximal node induced subgraph of minimum node degree 2. The 2-core of
a directed graph is the 2-core of the corresponding simple, unweighted, undirected graph.
A tree on a graph for which exactly the root lies in the 2-core is called an attached tree.
All nodes not being part of the 2-core are called 1-shell nodes.

Edge Functions. The main difference between time-independent, time-dependent, and
Pareto route planning is the length function assigned to the edges. In the time-independent
scenario, we use a positive length function len : E → R

+.

Time-Dependency. In this setup we use functions instead of constants for specifying edge
weights. Throughout the whole work, we restrict ourselves to a function space F consisting
of positive periodic functions f : Π → R

+,Π = [0, p], p ∈ N such that f(0) = f(p) and
f(x) + x ≤ f(y) + y for any x, y ∈ Π, x ≤ y. Note that these functions respect the FIFO
property. In the following, we call Π the period of the input. We restrict ourselves to
directed graphs G = (V,E) with time-dependent length functions len : E → F. We use
len : E × [0, p] → R

+ to evaluate an edge for a specific departure time. Note that our
networks fullfill the FIFO-property if we interpret the length of an edge as travel times
due to our choice of F. The composition of two functions f, g ∈ F is defined by f ⊕ g :=
f + (g ◦ (f + id)). Moreover, we need to merge functions, which we define by min(f, g).
The upper bound of f is noted by f = maxx∈Π f(x), the lower by f = minx∈Π f(x). An
underapproximation ↓f of a function f is a function such that ↓f(x) ≤ f(x) holds for all
x ∈ Π. An overapproximation ↑f is defined analogously. Bounds and approximations of
our time-dependent edge function len is given by analogous notations. Obviously, one can
obtain a time-independent graph G from a time-dependent graph G by substituting the
time-dependent length function by len. We call G the lower bound graph of G.



14 CHAPTER 2. FUNDAMENTALS

Pareto Scenario. Here, we assign more than one weight to each edge. In this work, we
restrict ourselves to vectors in Rk

+. For a k, let L = (w1, . . . , wk) and L′ = (w′1, . . . , w
′
k)

be two labels. We use the following notation and operations in Rk
+: L dominates another

label L′ if wi < w′i holds for one 1 ≤ i ≤ k and wi ≤ w′i holds for each 1 ≤ j ≤ k. The
sum of L and L′ is defined by L⊕ L′ = (w1 +w′1, . . . , wk +w′k). We call L = min1≤i≤k wi
the component element of L, the maximum component L is defined analogously.

2.2 Paths

A path P in G is a sequence of nodes (u1, . . . , uk) such that (ui, ui+1) ∈ E for all 1 ≤ i < k.
In time-independent scenarios, the length of a path is given by

∑k−1
i=1 len(ui, ui+1). A path

between two nodes s and t with minimum length is called a shortest s–t path. By d(s, t)
we denote the length of such a path.

Time-Dependency. In time-dependent scenarios, the length γτ (P ) of a path P departing
from u1 at time τ is recursively given by

γτ
(
(u1, u2)

)
= len

(
(u1, u2), τ

)
γτ
(
(u1, . . . , uj)

)
= γτ

(
(u1, . . . , uj−1)

)
+ len

(
(uj−1, uj), γτ

(
(u1, . . . , uj−1)

))
In other words, the length of the path depends on a departure time τ from u1. In a
time-dependent scenario, we are interested in two types of distances. On the one hand,
we want to compute the shortest path between two nodes for a given departure time. On
the other hand, we are also interested in retrieving the distance between two nodes for
all possible departure times ∈ Π. By d(s, t, τ) we denote the length of the shortest path
s, t ∈ V if departing from s at time τ . The distance-label, i.e., the distance between s and
t for all possible departure times ∈ Π, is given by d∗(s, t). Note that the distance-label is
a function ∈ F. In this work, we call a query for determining d(s, t, τ) an s-t time-query,
while a query for computing d∗(s, t) is denoted by s-t profile-query.

Pareto-Paths. In a multi-criteria scenario, the length (s, t) of an s–t path P = (e1, . . . , er)
is given by len(e1)⊕. . .⊕len(er). In contrast to a single-criteria scenario, many paths exist
between two nodes that do not dominate each other. In this work, we are interested in
the Pareto-set D(s, t) = {d1(s, t) . . . dx(s, t)} consisting of all non-dominated path-lengths
di(s, t) between s and t. We call |D(s, t)| the size of a Pareto-set. Note that by storing a
predecessor for each di, we can compute all Pareto-paths as well.

2.3 Partitions

A partition of V is a family C = {C0, C1, . . . , Ck} of sets Ci ⊆ V such that each node
v ∈ V is contained in exactly one set Ci. An element of a partition is called a cell. We
denote by c(u) the cell u is assigned to. A multilevel partition of V is a family of partitions
{C0, C1, . . . , Cl} such that for each i < l and each Cin ∈ Ci a cell Ci+1

m ∈ Ci+1 exists with
Cin ⊆ Ci+1

m . In that case the cell Ci+1
m is called the supercell of Cin. The supercell of a

level-l cell is V . We denote cj(u) the level-j cell u is assigned to. The boundary nodes
BC of a cell C are all nodes u ∈ C for which at least one node v ∈ V \ C exists such that
(v, u) ∈ E or (u, v) ∈ E.
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2.4 Models

One focus of this thesis is routing in transportation networks. In this section, we briefly
present how to efficiently model road and train networks as graphs. For more details, we
refer the interested reader to [Mül05, Vol08] and [Sch05, MSWZ07].

2.4.1 Road Networks

In road networks, we have roads and junctions. We intoduce a node for each junction
being connected by a directed edge if there is a direct connection between them. The edge
weight is set to the average travel time from one junction to another including waiting at
traffic lights. Note that since roads may be one-way streets, some edges in this model are
directed. However, most streets are two-way and thus, most of the graph is undirected.

Traffic Jams. In case of a traffic jam, we may increase the travel time on the edge mod-
eling the perturbed edge. Note that for this kind of updates, travel times may increase
and decrease afterwards but will not drop below the transit times of an ‘empty’ road.

Time-Dependency. In road networks, many traffic jams are predictable. We know that
during rush hours, highways are crowded while at night they are empty. In order to cope
with this scenario correctly, we assign travel time functions to each edge. In this work, we
use piecewise linear functions for modeling time-dependency in road networks. Each edge
gets assigned a number of sample points that depict the travel time on this road at the
specific time. Evaluating a function at time τ is then done by linear interpolation between
the points left and right to τ .

In the following, we need to link two piecewise linear functions f, g to f ⊕ g, mo-
deling the duration for traversing g directly after f . This is done as follows. Let I(f) =
{(tf1 , wf1 ), . . . , (tfl , w

f
l )} with tfi ∈ Π, wfi ∈ R+, 1 ≤ i ≤ l be the interpolation points of f

and I(g) = {(tg1, wg1), . . . , (tgk, w
g
k)} those of g. Then the interpolation points {(tf1 , wf1 +

g(tf1 + wf1 )
)
, . . . ,

(
tfl , w

f
l + g(tfl + wfl )

)} are obviously included in I(f ⊕ g). However,
we also have to add some more interpolation points, namely those from arriving at the
timestamps tgj of g. More precisely, let t−1

1 , . . . , t−1
k be chosen such that f(t−1

j ) + t−1
j = tgj

holds for all 1 ≤ j ≤ k. Then, we also have to add {(t−1
1 mod Π, f(t−1

1 ) + wg1), . . . , (t−1
k

u

v

w

7:00 - 12 min
8:00 - 16 min
. . .

7:00 - 11 min
8:00 - 16 min
8:30 - 16 min
. . .

7:00 - 24 min
7:45 - 31 min
8:00 - 32 min
. . .

Figure 2.1: Time-dependent composition in road
networks. A function depicting the travel time from u
to w via v yields an additional interpolation point at
7:45 because otherwise the interpolated travel time at
7:45 would be 30 minutes instead of 31.

departure time

travel time

Figure 2.2: Time-dependent merging
of two piecewise linear functions f and
g in road networks. f is drawn solid, g
dotted, the merged function is drawn
thicker. Note that P (min(f, g)) >
P (f) + P (g) holds.
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mod Π, f(t−1
k )+wgk)} to I(f ⊕g). See Figure 2.1 for an example. Let P (f) be the number

of interpolation points of f . Note that the composed function f ⊕ g may have up to
P (f) + P (g) number of interpolation points in the worst case.

We also have to merge two piecewise linear functions f, g to min(f, g). Like for linking,
this may increase the breakpoints. More precisely, we have to check for all timestamps
tfi of f whether wfi < g(tfi ) holds. If it holds, we need to keep the interpolation point
(tfi , w

f
i ), otherwise we do not need it. Analogously, we proceed for all timestamps tgj of g.

However, additional interpolation points have to be added for all intersection points of f
and g. Figure 2.2 gives an example.

2.4.2 Timetable Information in Railway Networks

In railway networks, we want to solve the earliest arrival problem, i.e. compute the best
connection for a given departure time. Three models exist that model this problem such
that a shortest path computation solves this problem. Note that in this work, we restrict
ourselves to periodic timetables.

Condensed Model [SWZ02]. The easiest model is the condensed model. Here, a node
is introduced for each station and an edge is inserted iff a direct connection between two
stations exists. The edge weight is set to be the minimum travel time over all possible
connections between these two stations. The advantage of this model is that the resulting
graphs are quite small and we are able to use existing time-independent speed-up tech-
niques without modification. Unfortunately, several drawbacks exist. First of all, this
model does not incorporate the actual departure time from a given station. Even worse,
travel times highly depend on the time of the day and the time needed for changing trains
is also not covered by this approach. As a result, the calculated travel time between two
arbitrary stations in such a graph is only a lower bound of the real travel time. Hence, we
do not use this model in this thesis.

Time-Dependent Model [BJ04]. This model tries to remedy the disadvantages of the
condensed model. The main idea is to use time-dependent edges. Hence, each station is
also modeled by a single node and an edge is again inserted iff a direct connection between
two stations exist. See Fig. 2.3(a) for a small example. But unlike for the condensed model,
several weights are assigned to each edge. For each train, we add an interpolation point
to the corresponding edge. The timestamp σ of the interpolation point is the departure
time, the weight w the travel time. When we want to evaluate a time-dependent edge at
a specific time τ , we identify the interpolation point P with minimum σ − τ ≥ 0. Then
the resulting traveltime is w+σ− τ , i.e., the waiting time for the next connection plus its
travel duration.

The advantage of this model is its still small size and the obtained travel time is feasible.
Furthermore, delays can easily be incorporated: the corresponding weight—representing
the delayed connection—of an edge can simply be increased. Note that the time-dependent
model can be interpreted as an extension of the condensed model.

Realistic Transfer Times [PSWZ04b]. A problem of the approach described above is that
transfer times cannot be incorporated properly. To do so, a time-dependent train-route
model has to be applied. For each train route, a node is introduced at each station the
trains of this route stop. These nodes are connected by time-dependent edges modeling
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A B D

C

(a) Simple time-dependent model.

A B D

C

(b) Realistic time-dependent model.

Figure 2.3: Time-dependent railway graphs. For both models, we have four stations and two train
routes. The first runs from A to B to C and back to A, while the second runs A→B→C→D→A.
In the simple model, switching from one train to another can be done in 0 minutes, while transfer
times are incorporated correctly in the realistic model.

the trains running on this route. For each station, a supernode is introduced which
is connected to all route nodes of this station modeling the transfer from one train to
another. It turns out that this model increases the graph size by approximately a factor
of 5. See Fig. 2.3(b) for an example. In this work, we use the train-route model. We
guarantee the FIFO property of such graphs by introducing multi-edges.

Interestingly, the composition of two timetable edge-functions f, g is less expensive than
in road networks. More precisely, P (f ⊕ g) ≤ min{P (f), P (g)} holds as the number of
relevant departure times is dominated by the edge with less connections. More precisely,
we determine for all interpolation points (tfi , w

f
i ) the so called connection interpolation

point of g, which is the point (tgj , w
g
j ) ∈ I(g) with tgj − tfi − wfi ≥ 0 minimal. In other

words, this is the first connection of g we can catch when taking the connection departing
at timestamp tfi . Then, we add the interpolation point (tfi , (t

g
j − tfi + wgj )) to I(f ⊕ g).

Since f and g are FIFO functions this ensures correctness. However, it may happen that
two interpolation points ∈ I(f) yield the same connection point of g. In such a situation
we only need to keep the point with maximal timestamp since an earlier departure does
not pay off. See Figure 2.4 for an example.

The merging of two public transportation functions is straightforward. For each time-
stamp tfi of f we check whether wfi < g(tfi ) holds. If it holds, we add (tfi , w

f
i ) to

I(min(f, g)). We do the same for all timestamp of g. Note that in the worst case, min(f, g)
may have up to P (f) + P (g) interpolation points. See Figure 2.5 for an example. Note
that the merging of timetable functions is also cheaper than the merging of functions used
for road networks.

u

v

w

7:00 - 55 min
8:00 - 55 min
9:00 - 55 min

09:00 - 60 min
12:00 - 60 min
16:00 - 60 min

8:00 - 120 min
9:00 - 240 min

Figure 2.4: Time-dependent composition in public
transportation networks. A function depicting the
travel time from u to w via v yields less interpolation
points than both functions constructed from.

departure time

travel time

Figure 2.5: Time-dependent merging
of two public transportation functions
f and g, f is drawn solid, g dotted, the
merged function is drawn thicker.
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Time-Expanded Model [SWW99]. This model derives from the simple time-
dependent model by “rolling out” time-dependency: A node is introduced for each arrival
and departure event of train being connected among each other by time-independent edges.
Each event at a station has a timestamp. The nodes at a station are ordered by times-
tamp. Two sequent events with timestamps ti and tj are connected by time-independent
edges with a weight tj− ti. Finally, the last node with timestamp tk is connected with the
first one t0. The weight is set to (t0 − tk) + Π with Π being the period of the timetable.
Figure 2.6(a) gives a small example.

Realistic Transfer Times [PSWZ04a]. Note that transfer times are again not covered
correctly. For this reason, the model described above is called the simple time-expanded
model. By introducing arrival, transfer, and departure nodes this can be remedied. Each
arrival event is connected with the first transfer event that is reachable if transfer times
are maintained. Unlike in the time-dependent model, switching to this realistic model
increases the graph size only by a factor of ≈ 2.

(a) Simple time-expanded model. (b) Realistic time-expanded model.

Figure 2.6: Time-expanded railway graphs.

Discussion. For a long time, it seemed as if the time-expanded model cannot com-
pete with the time-dependent model with respect to query performance: The increase in
graph size yielded a greater search space. Recently, we were able to remedy this draw-
back by remodeling unimportant stations and pruning unnecessary connection during the
query [DPW08]. Still, memory consumption of the time-dependent model is smaller.

At a glance, using speed-up techniques developed for static (time-independent) road
networks on time-expanded graphs for timetable information seems promising. Since road
networks seem to have similar properties as railway networks—both incorporate some
kind of natural hierarchy and both are sparse—one might expect that speed-up techniques
yield the same performance as on road networks. Unfortunately, our experimental study in
Section 4.6 reveals that speed-up techniques perform significantely worse on time-expanded
graphs than on road networks. Hence, the time-dependent model seems more promising.



Chapter 3

Basic Concepts

In this chapter, we revisit some of the techniques already mentioned in Chapter 1. More
precisely, we explain Dijkstra’s algorithm, Landmark-based routing, Arc-Flags, and the
concept of contraction in more detail since those concepts are the most important foun-
dations of the techniques introduced in Chapter 4. Note that the concepts described here
only work in time-independent networks. Their augmentation to time-independent and
multi-criteria scenarios can be found in Chapters 5 and 6.

3.1 Dijkstra

The classical algorithm for computing the shortest path from a given source to all other
nodes in a directed graph with non-negative edge weights is due to Dijkstra [Dij59]. The
algorithm maintains, for each node u, a label distance[u] with the tentative distance from
s to t. A priority queue Q contains all nodes that depict the current search horizon
around s. At each step, the algorithm removes (or settles) the node u from Q with
minimum distance to s. Then, all outgoing edges (u, v) of u are relaxed, i.e., we check
whether d(s, u) + len(u, v) < distance[v] holds. If it holds, a shorter path to v via u has
been found. Hence, v is either inserted to the priority queue or its priority is decreased.
The algorithm terminates if all nodes are settled. Algorithm 1 gives the algorithm in
pseudo-code. The asymptotic running time of Dijkstra’s algorithm depends on the choice
of the priority queue. For general graphs, Fibonacci heaps [CLRS01] yield a worst-case
time complexity of O(m+ n log n), while using binary heaps [CLRS01] results in a worst-
case time complexity of O(m log n). Since transportation networks are normally sparse, a

Algorithm 1: Dijkstra(G = (V,E),s)

Q.add(source, 0); // priority queue1

distance[]; // array for distances of nodes from source s2

while !Q.empty() do3

u← Q.deleteMin(); // settling node u4

for all outgoing edges e from u do5

v ← e.head; // relaxing e6

if distance[u] + e.weight() < distance[v] then7

distance[v]← distance[u] + e.weight()8

key ← distance[v]; // key depends on distance to s9

Enqueue(v, key); // insert or decreaseKey10
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binary heap yields the same asymptotic time complexity in such networks. The advantage
of binary over Fibonacci heaps is that the former are easier to implement and yield a lower
computational overhead. Moreover, the search horizon of speed-up techniques is normally
very low, so the impact of priority queues on the running times fades. In this work, we
therefore use a binary heap as priority queue.

Point-to-Point Queries. If we are only interested in computing a shortest path from s to
a given target t, we may stop the search as soon as t is settled by Dijkstra’s algorithm.
The priority of all nodes settled after t have a greater distance to s and since the graph
contains only positive edge weights, the distance label of t cannot be improved further.

Shortest Path Tree. Running Dijkstra from a given source can be interpreted as growing
a tree. If we store the predecessor of each node, we can easily identify the shortest path
tree edges.

Dijkstra Rank. One may notice that Dijkstra settles the nodes of a graph in non-
descending order of the distance to s. We call the position of a node u within this ordering
the Dijkstra rank of u with respect to s.

3.2 A∗ Search Using Landmarks (ALT)

Next, we explain the known technique of A∗ search [HNR68] in combination with land-
marks, called ALT [GH05, GW05]. The search space of Dijkstra’s algorithm can be
visualized as a circle around the source. The idea of goal-directed or A∗ search is to push
the search towards the target. By adding a potential π : V → R to the priority of each
node, the order in which nodes are removed from the priority queue is altered. A ‘good’
potential lowers the priority of nodes that lie on a shortest path to the target. It is easy to
see that A∗ is equivalent to Dijkstra’s algorithm on a graph with reduced costs, formally
lenπ(u, v) = len(u, v)−π(u)+π(v). Since Dijkstra’s algorithm works only on nonnegative
edge costs, not all potentials are allowed. We call a potential π feasible if lenπ(u, v) ≥ 0
for all (u, v) ∈ E. The distance from each node v of G to the target t is the distance from
v to t in the graph with reduced edge costs minus the potential of t plus the potential
of v. So, if the potential π(t) of the target t is zero, π(v) provides a lower bound for the
distance from v to the target t.

3.2.1 Preprocessing

There exist several techniques [SV86, WW05] to obtain feasible potentials using the lay-
out of a graph. The ALT algorithm however, uses a small number of nodes—so called
landmarks—and the triangle inequality to compute feasible potentials. Given a set L ⊆ V
of landmarks and distances d(l, v), d(v, l) for all nodes v ∈ V and landmarks l ∈ L, the
following triangle inequalities hold:

d(l1, u) + d(u, v) ≥ d(l1, v) and d(u, v) + d(v, l2) ≥ d(u, l2)

Therefore, d(u, v) := maxl∈L max{d(u, l)−d(v, l), d(l, v)−d(l, u)} provides a feasible lower
bound for the distance d(u, v). See Figure 3.1 for an illustration. The quality of the lower
bounds highly depends on the quality of the selected landmarks.
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l1 l2

u v

Figure 3.1: Triangle inequalities for landmarks. The landmarks are l1 and l2.

Landmark Selection. A crucial point in the success of a high speed-up when using ALT
is the quality of landmarks. Since finding good landmarks is difficult, several heuristics
[GH05, GW05] exist. We focus on the best known techniques: avoid and maxCover.

Avoid [GH05]. This heuristic tries to identify regions of the graph that are not well
covered by the current landmark set S. Therefore, a shortest-path tree Tr is grown from a
random node r. The weight of each node v is the difference between d(v, r) and the lower
bound d(v, r) obtained by the given landmarks. The size of a node v is defined by the sum
of its weight and the size of its children in Tr. If the subtree of Tr rooted at v contains
a landmark, the size of v is set to zero. Starting from the node with maximum size, Tr
is traversed following the child with highest size. The leaf obtained by this traversal is
added to S. In this strategy, the first root is picked uniformly at random. The following
roots are picked with a probability proportional to the square of the distance to its nearest
landmark.

MaxCover [GW05]. The main disadvantage of avoid is the starting phase of the heuristic.
The first root is picked at random and the following landmarks are highly dependent on
the starting landmark. MaxCover improves on this by first choosing a candidate set of
landmarks (using avoid) that is about four times larger than needed. The landmarks
actually used are selected from the candidates using several attempts with a local search
routine. Each attempt starts with a random initial selection.

3.2.2 Query

The unidirectional ALT-query is a modified Dijkstra operating on the input graph, its
pseudo-code is given in Algorithm 2. We observe that the only difference to plain Dijkstra
is in Line 9, the key within the priority is not determined only by the distance to s but
also by a lower bound of the distance to the target, given by the landmarks.

Bidirectional ALT. It turns out that undirectional ALT only provides mild speed-ups
over Dijkstra’s algorithm (cf. Section 4.5). The full potential of ALT is unleashed if
applied bidirectional. At first glance, combining ALT and bidirectional search seems
easy. Simply use a feasible potential πf for the forward and a feasible potential πb for
the backward search. However, such an approach does not work due to the fact that
the searches might work on different reduced costs, so that the shortest path might not
have been found when both searches meet. This can only be guaranteed if πf and πb
are consistent, meaning lenπf (u, v) in G is equal to lenπb(v, u) in the reverse graph. In
this work, we use the variant of an average potential function [IHI+94] defined as pf (v) =
(πf (v)−πb(v))/2 for the forward and pb(v) = (πb(v)−πf (v))/2 = −pf (v) for the backward
search. By adding πb(t)/2 to the forward and πf (s)/2 to the backward search, pf and pb
provide lower bounds to the target and source, respectively. Note that these potentials
are feasible and consistent but provide worse lower bounds than the original ones.
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Algorithm 2: ALT(G = (V,E), s, t)

Q.add(source, 0); // priority queue1

distance[]; // array for distances of nodes from source s2

while !Q.empty() or Q.minElement() 6= t do3

u← Q.deleteMin(); // settling node u4

for all outgoing edges e from u do5

v ← e.head; // relaxing e6

if distance[u] + e.weight() < distance[v] then7

distance[v]← distance[u] + e.weight()8

// key depends on distance to s + lower bound to t
key ← distance[v] + d(v,t)9

Enqueue(v, key)10

return distance[t]11

Optimizations. The bidirectional ALT implementation due to [GW05] uses several tuning
techniques such as active landmarks, pruning and an enhanced stopping criterion. The
search is stopped if the sum of minimum keys in the forward and the backward queue
exceed µ + pf (s), where µ represents the tentative shortest path length and is therefore
an upper bound for the shortest path length from s to t. For each s-t query only two
landmarks—one ‘before’ the source and one ‘behind’ the target—are initially used. At
certain checkpoints a routine checks whether an additional landmark is added to the active
set, with a maximal amount of six landmarks. Pruning means that before relaxing an arc
(u, v) during the forward search we also check whether d(s, u)+w(u, v)+πf (v) < µ holds.
This technique may be applied to the backward search easily. Note that for pruning, the
potential function need not be consistent.

Improved Efficiency. One downside of ALT seemed to be its low efficiency. In [GKW06],
a reduction of factor 44 in search space only leads to a reduction in query times of factor
21. By storing landmark data more efficiently, this gap can be reduced. First, we sort the
landmarks by ID in ascending order. The distances from and to a landmark are stored as
one 64-bit integer for each node and landmark: The upper 32 bits refer to the ‘to’ distance
and the lower to the ‘from’ distance. Thus, we initialize a 64-bit vector of size |S| · |V |.
Both distances of node number i ∈ [0, |V | − 1] and landmark number j ∈ [0, |S| − 1] are
stored at position |S| · i + j. As a consequence, when computing the potential for given
node n, we only have one access to the main memory in most times.

3.2.3 Discusssion

The advantages of ALT are its easy adaption to dynamic scenarios (cf. Section 4.1),
its robustness to the input (cf. Section 4.6) and its rather easy preprocessing algorithm.
However, plain ALT cannot compete with hierarchical techniques in road networks, and
even worse, ALT yields a high memory consumption: 16 landmarks already require an
additional space of 128 Bytes per node. In Chapter 4, we will show how to remedy both
disadvantages without losing the advantages.
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3.3 Arc-Flags

The classic Arc-Flag approach, introduced in [Lau04, KMS05], first computes a partition
C of the graph and then attaches a label to each edge e. A label contains, for each cell
C ∈ C, a flag AFC(e) which is true if a shortest path to at least one node in C starts
with e. A modified Dijkstra—from now on called Arc-Flags Dijkstra—then only considers
those edges for which the flag of the target node’s cell is true. See Fig. 3.2 for an example.
The big advantage of this approach is its easy query algorithm. Furthermore, we observed
that for long-range queries in road networks, an Arc-Flags Dijkstra often is optimal in the
sense that it only visits those edges that are on the shortest path. However, preprocessing
is very extensive, either regarding preprocessing time or memory consumption.

1 1 1

1 1 1 1 1 1

1 1 11 0 0

100

1 101 1 0

Figure 3.2: Example for Arc-Flags. The graph is partitioned into 3 regions.

3.3.1 Preprocessing

Preprocessing of Arc-Flags is divided into two parts. First, the graph is partitioned into
k several cells. The second step then computes k flags for each edge.

Partition. The first approach for obtaining a partition based on a grid partition [Lau04].
It turns out that the performance of an Arc-Flags query heavily depends on the partition
used. In order to achieve good speed-ups, several requirements have to be fulfilled: cells
should be connected, the size of the cells should be balanced, and the number of boundary
nodes has to be low. A systematical experimental study of the impact of partitions on
Arc-Flags has been published in [MSS+06]. According to their work, the best results have
been achieved if a METIS [Kar07] partition is applied.

However, in our experimental study we observed two downsides of METIS: On the one
hand, cells are sometimes disconnected and the number of boundary nodes is quite high.
Thus, we also tested PARTY [MS04] and SCOTCH [Pel07] for partitioning. The former
produces connected cells but for the price of an even higher number of boundary nodes.
SCOTCH has the lowest number of boundary cells, but connectivity of cells cannot be
guaranteed. Due to this low number of boundary nodes, we use SCOTCH and improve
the obtained partitioning by adding smaller pieces of disconnected cells to neighbor cells.

Setting Arc-Flags. The second step of preprocessing is the computation of arc-flags.
Throughout the years, several approaches have been introduced (see e.g. [Lau04, KMS05,
MSS+05, HKMS09, Lau09]). We here concentrate on two approaches which turned out to
be the most efficient. For both approaches, own-cell flags of all edges not crossing borders
have to be set to true. The own-cell flag of an edge (u, v) is the flag for the region of u
and v. If u and v are in different cells, the edge does not have an own-cell flag.
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Boundary Shortest Path Trees. A true arc-flag AFC(e) denotes whether e has to be
considered for a shortest-path query targeting a node within C. This can be computed
as follows: Grow a shortest path tree in

←−
G from all boundary nodes b ∈ BC of all cells

C. Then set AFC(u, v) = true if (u, v) is a tree edge for at least one tree grown from all
boundary nodes b ∈ BC .

Centralized Approach. The drawback of the first approach is that we have to grow |B|
shortest path trees yielding long preprocessing times for large transportation networks.
[HKMS09] introduces a new approach to computing flags. A label-correcting algorithm
(also called centralized tree) is performed for each cell C. The algorithm propergates labels
of size |BC | through the network depicting the distances to all boundary nodes of the cell.
The algorithm terminates if no label can be improved any more. Then, AFC((u, v)) is set
to true if len(u, v) + d(v, b) = d(u, b) holds for at least one b ∈ BC .

3.3.2 Query

A unidirectional Arc-Flags query is a modified Dijkstra operating on the input graph. For
a random s–t query, it first determines the target cell T , and then relaxes only those edges
with set flag for cell T . Note that compared to plain Dijkstra, an Arc-Flags query performs
only one additional check. Algorithm 3 gives the query algorithm in pseudo code.

Algorithm 3: Arc-Flags Dijkstra(G = (V,E), s, t)

Q.add(source, 0); // priority queue1

distance[]; // array for distances of nodes from source s2

T ← region[t]; // target region3

while !Q.empty() or Q.minElement() 6= t do4

u← Q.deleteMin(); // settling node u5

for all outgoing edges e from u do6

if AFT (e) = false then7

continue; // flag not set for region T8

v ← e.head; // relaxing only edges with set flag for T9

if distance[u] + e.weight() < distance[v] then10

distance[v]← distance[u] + e.weight()11

key ← distance[v]; // key depends on distance to s12

Enqueue(v, key)13

return distance[t]14

3.3.3 Bidirectional Arc-Flags

Note that AFC(e) is true for almost all edges e ∈ C due to the own-cell-flag. Due to these
own-cell-flags an Arc-Flags Dijkstra yields no speed-up for queries within the same cell.
Even worse, more and more edges become important when approaching the target cell
(called the coning effect) and finally, all edges are considered as soon as the search enters
the target cell. The coning effect can be weakened by a bidirectional query.
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Switching from uni- to bidirectional Arc-Flags is easy but preprocessing effort is dou-
bled. Additional backward flags need to be computed by growing reversed shortest path
trees (or reversed centralized tree) in G. The bidirectional query algorithm is a modi-
fied bidirectional Dijkstra. The forward search is modified like a unidirectional Arc-Flags
query. During initialization however, region S of source node s is determined as well.
Then, the backward search only considers those incoming edges with a set backward flag
for cell S.

3.3.4 Multi-Level Arc-Flags

While the coning effect can be weakened by a bidirectional approach, the problem of inner-
cell queries persists also for bidirectional search. An approach to remedy this drawback is
introduced in [MSS+06]: A second layer of arc-flags is computed for each cell. Therefore,
each cell is again partitioned into several subcells and arc-flags are computed for each. A
multi-level arc-flags query then first uses the flags on the topmost level and as soon as
the query enters the target’s cell on the topmost level, the low-level arc-flags are used for
pruning.

Preprocessing in a time-independent scenario is done as follows. Arc-flags on the upper
level are computed as described above. For the lower flags, grow a shortest path for all
boundary nodes b on the lower level. Stop the growth as soon as all nodes in the supercell
of C are settled. Then, we set a low-level arc-flag to true if the edge is a tree edge of
at least one shortest path tree. Note that this approach can be extended to a multi-level
approach in a straightforward manner. Also note that multi-level Arc-Flags can be applied
bidirectionally as well.

3.3.5 Discusssion

The advantages of Arc-Flags is the easy concept combined with exceptional query per-
formance: Preprocessing is based on Dijkstra-searches and the query algorithm performs
only one additional check compared to plain Dijkstra. Stunningly, bidirectional Arc-Flags
long-range queries are often optimal—at least in road networks—in that sense that only
shortest path edges are relaxed.

However, the most crucial drawback of Arc-Flags is its time consuming preprocessing
effort. Even the most advanced technique, i.e., the centralized approach, needs more than
17 hours to preprocess a continental-sized road network. Still, due to its superior undi-
rectional query performance, Arc-Flags seemed to a good starting point for our work on
time-independent (Chapter 4), time-dependent (Chapter 5), and multi-criteria (Chapter 6)
shortest path computations.

3.4 Contraction

One reason for the success of hierarchical speed-up techniques like Highway-Hierarchies,
Contraction Hierarchies, and the RE-algorithm is the iterative contraction of the input.
It turns out that—at least in road networks—it is often sufficient to perform extensive
preprocessing only on a small subgraph of the input, called the core. One main contribution
of this work is the incorporation of such an approach to goal-directed methods as described
above.
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In the following we show how we extract a core of a given input graph G. The key
idea is first to perform a node-reduction step that iteratively bypasses nodes until no
node is bypassable any more. Shortcut edges are added to preserve distances between
non-bypassed nodes, called core nodes. Our node-reduction potentially adds unneeded
shortcuts which are identified and removed by our edge-reduction routine. In the following
we explain each routine separately.

3.4.1 Node-Reduction

The number of nodes is reduced by iteratively bypassing nodes until no node is bypassable
any more. To bypass a node x we first remove x, its incoming edges I and its outgoing
edges O from the graph. Then, for each u ∈ tails(I) and for each v ∈ heads(I) \ {u}
we introduce a new edge of the length len(u, x) + len(x, v). If there already is an edge
connecting u and v in the graph, we only keep the one with smaller length. We call the
number of edges of the path that a shortcut represents on the graph at the beginning of
the current iteration step the hop number of the shortcut. To check whether a node is
bypassable we first determine the number #shortcut of new edges that would be inserted
into the graph if x was bypassed, i.e., existing edges connecting nodes in tails(I) with
nodes in heads(O) do not contribute to #shortcut. Then we say a node is bypassable iff
the bypass criterion #shortcut ≤ c · (degin(x) + degout(x)) is fulfilled, where c is a tunable
contraction parameter.

A node being bypassed influences the degree of its neighbors and thus, their bypass-
ability. Therefore, the order in which nodes are bypassed changes the resulting contracted
graph. We use a heap to determine the next bypassable node. The key of a node x within
the heap is h(x) ·#shortcut/(degin(x) + degout(x)) where h(x) is the hop number of the
hop-maximal shortcut that would be added if x was bypassed, smaller keys have higher
priority. To keep the length of shortcuts limited we do not bypass a node if that results
in adding a shortcut with hop number greater than h. We say that the nodes that have
been bypassed belong to the component, while the remaining nodes are called core-nodes.

Corollary 3.1. Node-reduction preserves distances between core nodes.

Proof. Correctness follows directly from our rules of adding shortcuts.

3.4.2 Edge-Reduction

Note that our node-reduction routine potentially adds shortcuts not needed for keeping
the distances in the core correct. See Figure 3.3 for an example. Hence, we perform an
edge-reduction directly after node-reduction, similar to [SWW99]. We grow a shortest-
path tree from each node u of the core. We stop the growth as soon as all neighbors t of
u have been settled. Then we check for all neighbors t whether u is the predecessor of t in
the grown partial shortest path tree. If u is not the predecessor, we can remove (u, t) from
the graph because the shortest path from u to t does not include (u, t). In order to remove
as many edges as possible we favor paths with more hops over those with few hops. In
order to limit the running time of this procedure, we restrict the number of priority-queue
removals to 10 000. Hence, we may leave some unneeded edges in the graph.

Corollary 3.2. Edge-reduction preserves distances between core nodes.

Proof. Correctness follows directly from our rules of removal.



3.4. CONTRACTION 27

1 42

3

5 4

2 2

1 4

3
2 2

9 1 4

3
2 2

Figure 3.3: Example for contraction. The figure on the left depicts the input, edge labels indicate
the weight of the edge. We contract, i.e., remove, node 2 and add an shortcut from node 1 to 4
with weight 9 (middle). However, the shortest path from 1 to 4 is via node 3 with length 4. Hence,
we can safely remove the shortcut (1,4) from the core in order to preserve distances between core
nodes. The resulting graph is shown on the right.

3.4.3 Comparison to Contraction Hierarchies

Contraction was introduced as an ingredient for Highway Hierarchies (HH) and was later
adapted to Reach (RE). In both cases, node-reduction is similar as described above, while
edge-reduction is somehow more complicated in both cases. For HH, highway-edges have
to be identified, while for RE, edge-reduction is based on a rather complicated reach com-
putation. It turned out that the simple edge-reduction routine from above is sufficient
to prune the graph in order to efficiently construct a hierarchy in a road network [SS07].
Starting from this observation, Contraction Hierarchies [GSSD08] has been developed. Ba-
sically, a Contraction Hierarchy is built from an input by performing n node-reduction and
edge-reduction steps, similar to the ones described above. Each node-reduction step con-
tracts exactly one node u, resulting in a very limited edge-reduction routine as unneeded
shortcuts may only be added between neighbors of u. However, CH tends to highly depend
on the input and on chosen parameters. Hence, we refer to the routines described above
if we construct a core.



28 CHAPTER 3. BASIC CONCEPTS



Chapter 4

Time-Independent Route Planning

We start our work on route planning in time-independent networks. First, we show how
landmarks can be used in dynamic scenarios and how the most crucial drawbacks of ALT,
memory consumption and performance, can be remedied without losing the advantages
of ALT. Moreover, keeping augmentation to time-dependency in mind, we develop a fast
unidirectional speed-up technique competing with bidirectional approaches. With such
a technique at hand, adaption to augmented scenarios is easier than for bidirectional
approaches. Furthermore, we enhance the first natural choice for augmentation, i.e., land-
marks, such that the performance gap to other techniques is almost closed. An extensive
study confirms that our new combinations and techniques can compete with known ap-
proaches. Besides that, we further accelerate the fastest hierarchical speed-up techniques,
i.e., Contraction Hierarchies and Transit-Node Routing, by adding goal-direction via arc-
flags. It turns out that it is sufficient to compute arc-flags only for a small subset of
important nodes and edges. These combinations yield excellent query times in road net-
works: Speed-ups are up to 3 million over Dijkstra’s algorithm.

However, fast algorithms are also needed for other applications than route planning
in road networks. One might expect that all speed-up techniques can simply be used
in any other application, yet several problems arise: some inputs do not incorporate a
hidden hierarchy, bidirectional search is forbidden, and in railway networks, delays occur
frequently. In an experimental study on inputs other than road networks, it turns out
that our combinations are very robust to the input.

Overview. This chapter is organized as follows. In Section 4.1 we shortly present how
landmarks work in dynamic scenarios. The key observation is that ALT can be used
in dynamic scenarios without any adaption. This is very helpful for time-dependent sce-
narios. However, it turns out that ALT cannot compete with other time-independent
speed-up techniques. Hence, we introduce contraction to ALT in Section 4.2, resulting in
a powerful and robust speed-up technique, called CALT. While CALT can be adapted
to dynamic scenarios easily, the known problem of bidirectional search persists for this
approach. Thus, we introduce SHARC, which has the big advantage that a unidirectional
variant is as fast as most other bidirectional approaches. Since SHARC is augmented to
time-dependent and multi-criteria scenarios in Chapters 5 and 6, we present this approach
on a very detailed level. In Section 4.4, we show how to accelerate the fastest known
hierarchical approaches, i.e., Contraction Hierarchies and Transit Node Routing, by com-
puting additional arc-flags on a small core. This yields the fastest known techniques for
routing many time-independent scenarios, including road networks. Our experimental
evaluation in Section 4.5 also reveals that SHARC indeed can compete with bidirectional
approaches. Other inputs are evaluated in Section 4.6 leading to the insight that some
techniques are robust to the input than others. We conclude our work on time-independent
route planning with a short summary and possible furture work in Section 4.7.
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4.1 Dynamic ALT

In this section, we discuss how the preprocessing of the ALT algorithm can be updated
efficiently. Furthermore, we discuss a variant where the preprocessing has to be updated
only very few times. However, this approach may lead to a loss in performance.

4.1.1 Updating the Preprocessing

The preprocessing of ALT consists of two steps: the landmark selection and calculating
the distance labels. As the selection of landmarks are heuristics, we settle for static
landmarks, i.e., we do not reposition landmarks if the graph is altered. The update of the
distance labels can be realized by dynamic shortest path trees. For each landmark, we
store two trees: one for the forward edges, one for the backward edges. Whenever an edge
is altered we update the tree structure including the distance labels of the nodes. In the
following we discuss a memory efficient implementation of dynamic shortest path trees.
The construction of a tree can be done by running a complete Dijkstra from the root of
the tree.

Updating Shortest Path Trees. In [NST00] the update of a shortest path tree is discussed.
The approach is based on a modified Dijkstra, trying to identify the regions that have to
be updated after a change in edge weight. Therefore, a tree data structure is used in order
to retrieve all successors and the parent of a node quickly. We briefly explain the routine
for weight changes in a tree T , for details we refer to [NST00, FMSN00]. Moreover, we
reduce deletions and insertions to weight changes.

Increase of an edge weight. In a first step, we check whether the updated edge e is a
tree edge. If not, we are done as an increment of this edge cannot transform it into
a tree edge. If it is a tree edge, we update the distance label of the head v by the
weight change ∆. All descendants of t are updated by ∆ and are added to a nodeset
U . For all edges having a head in U , we have to check whether a shorter path via
that edge exists yielding a lower distance label than after the update. If this is true
for a node u ∈ U , we enqueue it to a priority Queue Q. For all nodes in Q we check
whether an outgoing edge yields a lower distance label for another node. If this is
true, we enqueue this node to Q. The routine stops if Q is empty.

Decrease of an edge weight. If an edge e is decreased by ∆, we check whether the de-
crease yields a lower distance label for the head v of e. If this is true, all descendants
of t are decreased by ∆ and added to U , including t itself. Similar to increments, we
have to check all outgoing edges of U , whether the decreased label of a node u ∈ U
yields a shorter path to a neighbor node v of u. If this is true, we enqueue v to a
priority Queue Q. The elements of Q are processed the same way they are processed
for edge weight increments.

The insertion or deletion of an edge can be handled by weight changes. Deleting an
edge may be interpreted as increasing the weight to infinity, while inserting an edge may
be regarded as setting the weight from infinity to the desired value. Deleting a node can
be handled by deleting all incoming and outgoing edges, while inserting a node n can be
handled by edge insertions and deletions. Setting the label is straightforward then.
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Data Structure. Analyzing our update routines from above, we realize that we need two
operations implemented efficiently: Accessing all successors of a node u and retrieving
its parent p. As transportation networks are normally sparse we do not need to store
any additional information to implement these operations. The successors of u can be
determined by checking for each head v of all outgoing edges e whether d(u)+len(e) = d(v)
holds. If it holds, v can be interpreted as successor of u. Analogously, we are able to
determine the parent of a node u: Iterate all tails v of the incoming edges e of u. If
d(v) + len(e) = d(u) holds, v is the parent of i. This implementation allows to iterate all
successors of u and accessing the parent of u in O(degin(u) + degout(u)). Note that we
may obtain a different tree structure than rerunning a complete Dijkstra, but as we are
only interested in distance labels, this approach is sufficient for the correctness of ALT.

The advantage of this approach is memory consumption. Keeping all distance labels
for 16 landmarks on the road network of Western Europe in memory already requires
about 2.2 GB of RAM (32 trees with 18 million nodes, 32 bit per node). Every additional
pointer would need an additional amount of 2.2 GB. Thus, more advanced tree structures
(1, 2, or 4 pointers) lead to an overhead that does not seem worth the effort.

4.1.2 Two Variants of the Dynamic ALT Algorithm

Eager Dynamic ALT. In the previous section we explained how to update the prepro-
cessed data of ALT. Thus, we could use the update routine whenever the graph is altered.
In the following, we call this variant of the dynamic ALT the eager dynamic version.

Lazy Dynamic ALT. However, analyzing our dynamic scenarios from Section 2.4 and
the ALT algorithm from Section 3.2 we observe two important facts. On the one hand,
ALT-queries only lose correctness if the potential of an edge results in a negative edge
cost in the reduced graph. This can only happen if the cost of the edge drops below the
value during preprocessing. On the other hand, for the most common update type in road
networks—traffic jams—edge weights may increase and decrease but do not drop below
the initial value of empty roads. Thus, a potential computed on the graph without any
traffic stays feasible for those kinds of updates even when not updating the distances from

Figure 4.1: Search space of dynamic ALT for a fixed s-t query before and after jamming a
motorway edge (marked in bold red). For the query with jammed motorway, the search space
develops exactly like the normal query. At the point the normal query would stop, the perturbed
query continues because the stopping criterion is not fulfilled yet.
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and to all landmarks. Due to this observation, we may do the preprocessing for empty
roads and use the obtained potentials even though an edge is perturbed. In [GH05], this
idea was stated to be semi-dynamic, allowing only increases in edge weights. Nevertheless,
as our update routine does not need any additional information, we are able to handle all
kinds of updates. Our lazy dynamic variant of ALT leaves the preprocessing untouched
unless the cost of an edge drops below its initial value.

This approach may lead to an increase in search space. If an edge e on the shortest
path is increased without updating the preprocessing, the weight of e is also increased
in G′, the graph with reduced costs. Thus, the length of the shortest path increases in
G′. So, the search stops later because more nodes are inserted in the priority queue. See
Figure 4.1 for an example. However, as long as the edges are not on the shortest path of a
requested query the search space does not increase. More precisely, the search space may
even decrease because nodes ‘behind’ the updated edge are inserted later into the priority
queue.

4.2 Core-Based Routing

As already discussed in Section 3.2.3, ALT suffers from two major drawbacks. Space
consumption is rather high and—even more important—ALT cannot compete with hier-
archical approaches—concerning query performance—in transportation networks. In this
section, we show how to remedy both drawbacks without violating the advantages of pure
ALT, i.e., easy adaption to dynamic scenarios and robustness to the input. The key idea
is to perform an initial contraction step prior to ALT preprocessing. Landmarks are then
chosen from the core and landmark distances are also only stored for core nodes. This
yields a 2-phase query. During the first phase, a plain bidirectional Dijkstra is performed
until the core is reached. Within the core, bidirectional ALT is applied. We call the result-
ing speed-up techniques Core-ALT (CALT). In the following we explain this approach
in more detail. Therefore, we first introduce the generic concept of core-based routing
(without ALT) and then focus on the combination with ALT.

4.2.1 Generic Approach

Preprocessing. At first, the input graph G = (V,E) is contracted to a graph GC =
(VC , EC), called the core. The key idea of core-based routing is not to use G as input for
preprocessing but to use GC instead. As a result, preprocessing of most techniques can
be accelerated as the input can be shrunk. However, sophisticated methods like Highway
Hierarchies, REAL, or SHARC already use contraction during preprocessing. Hence, this
advantage especially holds for goal-directed techniques like ALT or Arc-Flags. After
preprocessing the core, we store the preprocessed data and merge the core and the normal
graph to a full graph GF = (V,EF = E ∪EC). Moreover, we mark the core-nodes with a
flag.

Query. The s-t query is a modified bidirectional Dijkstra, consisting of two phases and
performed on GF . During phase 1, we run a bidirectional Dijkstra rooted at s and t not
relaxing edges belonging to the core. We add each core node, called entrance point, settled
by the forward search to a set S (T for the backward search). The first phase terminates
if one of the following two conditions hold: (1) either both priority queues are empty or
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(2) the distance to the closest entry points of s and t is larger than the length of the
tentative shortest path. If case (2) holds, the whole query terminates. The second phase
is initialized by refilling the queues with the nodes belonging to S and T . As key we
use the distances computed during phase 1. Afterwards, we execute the query-algorithm
of the applied speed-up technique which terminates according to its stopping condition.
Note that when not using any speed-up technique for the second phase, we end up in a
2-level Highway-Node Routing setup (cf. [Sch08]).

Theorem 4.1. Core-Based Routing is correct.

Proof. Let P = (s, u1, . . . , uk, t) be an arbitrary shortest path in G. If no node on P is
part of the core in GF , core-based routing is correct since we find the path during phase 1.
If only one node on P is part of the core, we also find the path during phase 1. Now,
let more than one node on P be part of the core. Let ui be the first and uj be the last
core node on P . During phase one, we obtain the subpaths from s to ui and from uj to
t. Due to the fact that distances within the core are preserved by our contraction routine
(Corollaries 3.1 and 3.2), we know that a path between ui and uj in GC exists with the
same length as the corresponding subpath of P . Hence, there exists a path in GF with
equal length that is found by core-based routing.

4.2.2 CALT

Although we could use any speed-up techniques to instantiate our core-based approach
we focus on a variant based on ALT due to the following reasons. First of all, ALT works
well in dynamic scenarios. As contraction seems easy to augment to dynamic scenarios, it
turns out that CALT (Core-ALT) also works well in dynamic scenarios (cf. Section 5.3).
Second, pure ALT is a very robust technique with respect to the input and finally, ALT
suffers from the critical drawback of high memory consumption—we have to store two
distances per node and landmark—which can be reduced by switching to CALT. On top
of the preprocessing of the generic approach, we compute landmarks on the core and store
the distances to and from the landmarks for all core nodes. The second phase of core-based
routing is replaced by ALT.

Proxy Nodes. Note that the ALT query requires lower bounds to s and t from every node
within the core but both s and t need not be part of the core. In order to perform correct
queries anyway, we adapt the ideas from [GKW07, DSSW09b] to overcome this problem.
Let t′—called the proxy node of t—be the core node with minimum d(t, t′) and let l1 and
l2 be two arbitrary landmarks ∈ L ⊂ VC . Then the following equations hold for all u ∈ V .
See Figure 4.2 for illustration.

d(u, t′) ≤ d(u, t) + d(t, t′)
d(u, l2) ≤ d(u, t′) + d(t′, l2)
d(l1, t′) ≤ d(l1, u) + d(u, t′)

Hence,

d(u, t) := max
l∈L

max{d(u, l)− d(t′, l)− d(t, t′), d(l, t′)− d(l, u)− d(t, t′)} (4.1)
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Figure 4.2: Proxy nodes for CALT.

provides a feasible lower bound for the distance d(u, t). Analogously, we obtain d(s, u) :=
maxl∈L max{d(s′, l)− d(u, l)− d(s′, s), d(l, u)− d(l, s′)− d(s′, s)} as feasible lower bounds
for the distance d(s, u) with s′ ∈ VC being the node with minimum d(s′, s).

We compute these proxy nodes of s and t for a given s–t query during the initialization
phase of the second phase of the query by running Dijkstra-queries. Note that for CALT,
the quality of the lower bounds not only depends on the quality of the selected landmarks
but also on d(t, t′) and d(s′, s).

Improved Locality. We increase—similar to [GKW07]—cache efficiency of GF by reorder-
ing nodes. As most of the query is performed on the core, we store the core nodes followed
by the non-core nodes. As a consequence, the number of cache misses is reduced yield-
ing lower query times. Furthermore, this eases accessing landmark distances since we can
simply use an array with |L|·|VC | 64-bit entries for storing these distances (cf. Section 3.2).

Corollary 4.2. CALT is correct.

Proof. According to Theorem 4.1, plain core-based routing is correct. Moreover, potentials
as obtained from Equation (4.1) are feasible. Hence, applying ALT during phase 2 does
not violate Theorem 4.1.

4.3 SHARC

Due to its easy adaptability to dynamic scenarios, CALT seems to be a good candidate
for augmenting to time-dependent scenarios. However, CALT can only compete with
other time-independent techniques if applied bidirectional. As discussed earlier, this is
problematic. For this reason, we here integrate contraction into Arc-Flags, yielding a
fast and robust approach for unidirectional routing, which we call SHARC. However, our
approach can also be used as a bidirectional algorithm yielding even faster query times.
See Figure 4.3 for an example of a typical search space of uni- and bidirectional SHARC.

4.3.1 Preprocessing

Preprocessing of SHARC occurs in three phases: During the initialization phase, we ex-
tract the 2-core of the graph and perform a multi-level partition of G according to an
input parameter P . The number of levels L is an input parameter as well. Then, an
iterative process starts. At each step i we first contract the graph by bypassing unimpor-
tant nodes and set the arc-flags automatically for each removed edge. On the contracted
graph we compute the arc-flags of level i by growing a partial centralized shortest-path
tree from each cell Cij . At the end of each step we prune the input by detecting those edges
that already have their final arc-flags assigned. In the finalization phase, we assemble the
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Figure 4.3: Search space of a typical uni-(left) and bidirectional(right) SHARC-query. The source
of the query is the upper flag, the target the lower one. Relaxed edges are drawn in black. The
shortest path is drawn thicker. Note that the bidirectional query only relaxes shortest-path edges.

output-graph, refine arc-flags of edges removed during contraction and finally reattach
the 1-shell nodes removed at the beginning. Figure 4.4 shows a scheme of the SHARC-
preprocessing. In the following we explain each phase separately. We hereby restrict
ourselves to arc-flags for the unidirectional variant of SHARC. However, the extension to
computing bidirectional arc-flags is straightforward.

Initialization

1-Shell Nodes. First of all, we extract the 2-core of the graph as we can directly assign
correct arc-flags to attached trees that are fully contained in a cell: Each edge targeting
the core gets all flags assigned true while those directing away from the core only get their
own-cell flag set true. By removing 1-shell nodes before computing the partition we ensure
the “fully contained” property by assigning all nodes in an attached tree to the cell of its
root. After the last step of our preprocessing we simply reattach the nodes and edges of
the 1-shell to the output graph.

Multi-Level Partition. As already mentioned in Section 3.3, the classic Arc-Flag method
heavily depends on the partition used. The same holds for SHARC. In this work, we use a
locally optimized partition obtained from SCOTCH [Pel07]. The number of levels L and
the number of cells per level are tuning-parameters.

Iteration. Next, an iterative process starts. During each iteration step, we contract the
graph, set arc-flags for removed edges and compute multi-level arc-flags.

Cell-Aware Contraction At the beginning of each iteration step we perform a node- and
edge-reduction step according to the routines described in Chapter 3.4. However, in order
to guarantee correctness, we use cell-aware node-reduction, i.e., a node u is never marked
bypassable if any of its neighboring nodes is not in the same cell as u.
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Figure 4.4: Schematic representation of SHARC-preprocessing. Input parameters are the parti-
tion parameters P , the number of levels L, and the contraction parameter c. During initialization,
we remove the 1-shell nodes and partition the graph. Afterwards, an iterative process starts which
contracts the graph, reduces edges, sets arc-flags, and prunes the graph. Moreover, during the last
iteration step, boundary shortcuts are added to the graph. During the finalization, we construct
the output-graph, refine arc-flags, remove unimportant shortcuts, and reattach the 1-shell nodes
to the graph.
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Figure 4.5: Example for assigning arc-flags
during contraction for a partition having four
cells. All nodes are in cell 3. The red nodes
(4 and 5) are removed, the dashed shortcuts
are added by the contraction. Arc-flags (edge
labels) are indicated by a 1 for true and 0 for
false. The edges directing into the component
get only their own-cell flag set true. All edges
in and out of the component get full flags. The
added shortcuts get their own-cell flags fixed to
false.

Component Arc-Flags. Our query algorithm
is executed on the original graph enhanced
by shortcuts added during the contraction
phase. Thus, we have to assign arc-flags to
each edge we remove during the contraction
phase. One option would be to set every flag
to true. However, we can do better. First
of all, we keep all arc-flags that already have
been computed for lower levels. We set the
arc-flags of the current and all higher levels
depending on the tail u of the deleted edge. If
u is a core node, we only set the own-cell flag
to true (and others to false) because this edge
can only be relevant for a query targeting a
node in this cell. If u belongs to the compo-
nent, all arc-flags are set to true as a query
has to leave the component in order to reach
a node outside this cell. Finally, shortcuts
get their own-cell flag fixed to false as relax-
ing shortcuts when the target cell is reached
yields no speed-up. See Figure 4.5 for an example. As a result, an Arc-Flags query only
considers components at the beginning and the end of a query. Moreover, we reduce the
search space.

Core Arc-Flags. After the contraction phase and assigning arc-flags to removed edges, we
compute the arc-flags of the core-edges of the current level i. As described in Section 3.3,
we grow, for each cell C, one centralized shortest path tree on the reverse graph starting
from every boundary node bC ∈ BC of C. We stop growing the tree as soon as all nodes
of C’s supercell have a distance to each b ∈ BC greater than the smallest key in the
priority queue used by the centralized shortest path tree algorithm. For any edge e that
is in the supercell of C and that lies on a shortest path to at least one b ∈ BC , we set
AF i

C(e) = true.

Finalization. After iteration, we assemble the output graph of the preprocessing con-
sisting of the original graph enhanced by all shortcuts that are in the contracted graph at
the end of at least one iteration step. Note that an edge (u, v) may be contained in no
shortest path because a shorter path from u to v already exists. This especially holds for
the shortcuts we added to the graph. As a consequence, such edges have no flag set true
after the last step. Thus, we can remove all edges from the output graph with no flag set
true. Furthermore the multi-level partition and the computed arc-flags are given.

4.3.2 Query

Basically, our query is a multi-level Arc-Flags Dijkstra (cf. Section 3.3). The query is a
modified Dijkstra that operates on the output graph. The modifications are as follows:
When settling a node u, we compute the lowest level i on which u and the target node
t are in the same supercell. When relaxing the edges outgoing from u, we consider only
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those edges having a set arc-flag on level i for the corresponding cell of t. We want to
point out that the SHARC query, compared to plain Dijkstra, only needs to perform two
additional operations: computing the common level of the current node and the target and
the arc-flags evaluation. Thus, our query is very efficient with a much smaller overhead
compared to other hierarchical approaches.

Improved Locality. Like for CALT, we increase cache efficiency of the output graph by
reordering nodes according to the level they have been removed at from the graph. As a
consequence, the number of cache misses is reduced yielding lower query times.

Path-Expansion. During our experimental evaluation, we observed that many nodes have
only one outgoing edge for which the arc-flag of the corresponding target is set to true
for the current query (cf. Figure 4.3). We call this property the no-choice property and
the specific edge with the flag set to true the no-choice edge. With this observation at
hand, we can use the following optimization to speed-up the query. Whenever we insert
a node u into the priority queue fulfilling the no-choice property, we skip this node and
insert the head v of the no-choice edge into the queue. If the no-choice property also holds
for node v, we also skip node v. We skip nodes until we either insert t, the target of the
query, or insert a node for which the no-choice property does not hold. Note that path-
expansion is especially helpful for our stripped variant of SHARC. Here, path-expansion
partly remedies the drawback of lacking shortcuts.

Multi-Metric Query. In [BDW07b], we observed that the shortest path structure of a
graph—as long as edge weights somehow correspond to travel times—hardly changes when
we switch from one metric to another. Thus, one might expect that arc-flags are similar
to each other for these metrics. We exploit this observation for our multi-metric variant
of SHARC. During preprocessing, we compute arc-flags for all metrics and at the end we
store only one arc-flag per edge by setting a flag true as soon as the flag is true for at least
one metric. An important precondition for multi-metric SHARC is that we use the same
partition for each metric. Note that the structure of the core computed by our contraction
routine is independent of the applied metric.

Outputting Shortest Paths Note that SHARC uses shortcuts which have to be unpacked
for determining the shortest path (if not only the distance is queried). However, we can
directly use the methods from [DSSW09b], as our contraction works similar to Highway
Hierarchies: for each added shortcut, we store the IDs of the edges it represents.

4.3.3 Correctness

Before proving the correctness of SHARC, we first have to show that the following
Lemma 4.3 holds. We denote by Gi the graph after iteration step i, i = 1, . . . , L − 1.
By G0 we denote the graph directly before iteration step 1 starts. The level l(u) of a node
u is defined to be the integer i such that u is contained in Gi−1 but not in Gi. We further
define the level of a node contained in GL−1 to be L.

Lemma 4.3. Given arbitrary nodes s and t in G0, for which there is a path from s
to t in G0. At each step i of the SHARC-preprocessing there exists a shortest s-t-path
P = (v1, . . . , vj1 ;u1, . . . , uj2 ;w1, . . . , wj3), j1, j2, j3 ∈ N0, in

⋃i
k=0Gk, such that
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• l(v1), . . . , l(vj1), l(w1), . . . , l(wj3) ≤ i,
• l(u1), . . . , l(uj2) ≥ i+ 1

• ci(uj2) = ci(t)

• for each edge e of P , the arc-flags assigned to e until iteration step i allow the path
P to t.

We use the convention that jk = 0, k ∈ {1, 2, 3} means that the according subpath is void.

In other words, during each step of the preprocessing, the lemma assures that there
exists a path in the output graph such that at the beginning, the levels of nodes monoton-
ically increase and the end, levels monotonically decrease again. Moreover, arc-flags are
set in such a way that the according flag is set to true.

Proof. We prove Lemma 4.3 by induction on the iteration steps. Since pure Arc-Flags is
correct, the claim holds trivially for i = 0. The inductive step works as follows: Assume
the claim holds for step i. Given arbitrary nodes s and t, for which there is a path from s
to t in G0. We denote by P = (v1, . . . , vj1 ;u1, . . . , uj2 ;w1, . . . , wj3) the s-t-path according
to the lemma for step i.

The iteration step i + 1 consists of the contraction phase and the arc-flag computa-
tion. Since the latter does not violate the lemma, it remains to be shown that after each
contraction step, Lemma 4.3 holds.

There exists a maximal path (u`1 , u`2 , . . . , u`d) with 1 ≤ `1,≤ . . . ≤ `d ≤ k for which

• for each f = 1, . . . , d− 1 either `f + 1 = `f+1 or the subpaths (u`f , u`f+1, . . . u`f+1
)

have been replaced by a shortcut,

• the nodes u1, . . . , u`1−1 have been deleted, if `1 6= 1 and

• the nodes u`d+1, . . . , uk have been deleted, if `d 6= k.

By the construction of the contraction routine we know

• (u`1 , u`2 , . . . , u`d) is also a shortest path, see Corollary 3.1.

• u`d is in the same component as uk in all levels greater than i (because of cell aware
contraction)

• the deleted edges in (u1, . . . , u`1−1) either already have their arc-flags for the path
P assigned. Then the arc-flags are correct because of the induction hypothesis.
Otherwise, We know that the nodes u1, . . . , u`1−1 are in the component. Hence, all
arc-flags for all higher levels are assigned true.

• the deleted edges in (u`d+1, . . . , uk) either already have their arc-flags for the path
pτst assigned, then arc-flags are correct because of the induction hypothesis.

• otherwise, by cell-aware contraction we know that u`d+1, . . . , uk are in the same
component as t for all levels at least i. As the own-cell flag is always set to true for
deleted edges the path stays valid.
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According to Corollaries 3.1 and 3.2, distances are preserved during preprocessing.
Hence, for arbitrary i, 0 ≤ i ≤ L−1 a shortest path inGi is also a shortest path in

⋃L−1
k=0 Gk.

So, the path P̂ = (v1, . . . , vj1 , u1, . . . , u`1−1; u`1 , u`2 , . . . , u`d ; u`d+1, . . . , uk, w1, . . . , wj3)
fullfills all claims of the lemma for iteration step i+ 1.

The lemma guarantees that arc-flags are set properly at each iteration step. With this
lemma at hand, we are finally ready to prove the correctness of SHARC.

Theorem 4.4. The distances computed by SHARC are correct.

Proof. Lemma 4.3 holds during all phases of all iteration steps of SHARC-preprocessing.
So, together with the correctness of multi-level Arc-Flags, the preprocessing algorithm is
correct.

4.3.4 Optimizations

Although SHARC as described above already yields a low preprocessing effort combined
with good query performance, we use some optimization techniques to reduce both pre-
processing time and space consumption of the preprocessed data.

Refinement of Arc-Flags. Our contraction routine described above sets all flags to true
for almost all edges removed by our contraction routine. However, we can do better: we
are able to refine arc-flags by propagation of arc-flags from higher to lower levels. Before
explaining our propagation routine we need the notion of level. The level l(u) of a node
u is determined by the iteration step it is removed in from the graph. All nodes removed
during iteration step i belong to level i. Those nodes which are part of the core-graph
after the last iteration step belong to level L. In the following, we explain our propagation
routine for a given node u.

First, we build a partial shortest-path tree T starting at u, not relaxing edges that
target nodes on a level smaller than l(u). We stop the growth as soon as all nodes in the
priority queue are covered. A node v is called covered as soon as a node between u and
v—with respect to T—belongs to a level > l(u). After the termination of the growth we
remove all covered nodes from T resulting in a tree rooted at u and with leaves either in
l(u) or in a level higher than l(u). Those leaves of the built tree belonging to a level higher
than l(u) we call exit nodes ~N(u) of u. With this information we refine the arc-flags of
all edges outgoing from u. First, we set all flags—except the own-cell flags—of all levels
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Figure 4.6: Example for refining the arc-flags of outgoing edges from node 4. The figure in the
left shows the graph from Figure 4.5 after the last iteration step. The figure on the right shows
the result of our refinement routine starting at node 4.
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≥ l(u) for all outgoing edges from u to false. Next, we assign exit nodes to outgoing edges
from u. Starting at an exit node nE we follow the predecessor in T until we finally end
up in a node x whose predecessor is u. The edge (u, x) now inherits the flags from nE .
Every edge outgoing from nE whose head v is not an exit node of u and not in a level
< l(u) propagates all true flags of all levels ≥ l(u) to (u, x). In order to propagate flags
from higher to lower levels we perform our propagation-routine in L− 1 refinement steps,
starting at level L − 1 and in descending order. Figure 4.6 gives an example. Note that
during refinement step i we only refine arc-flags of edges outgoing from nodes belonging
to level i.

Lemma 4.5. Refinement of arc-flags is correct.

Proof. Recall that the own-cell flag does not get altered by the refinement routine. Hence,
we only have to consider flags for other cells. Assume we perform the propagation routine
at a level l to a node u in level l.

A shortest path P from s to a node t in another cell on level ≥ l needs to contain a
level > l node that is in the same cell as u because of the cell-aware contraction. Moreover,
with iterated application of Lemma 4.3 we know that there must be an (arc-flag valid)
shortest s-t-path P for which the sequence of the levels of the nodes first is monotonically
ascending and then monotonically descending. In fact, to cross a border of the current
cell at level l, at least two level > l nodes are on P . We consider the first level > l node
u1 on P . This must be an exit node of u. The node u2 after u1 on P is covered and
therefore no exit node. Furthermore it is of level > l. Hence, the flags of the edge (u1, u2)
are propagated to the first edge on P and thus, Lemma 4.3 holds also after refinement
which proves that the refinement phase is correct.

Shortcut-Removal. Note that the insertion of shortcuts is one of the main reasons why
the output graph is larger than the input. Hence, we try to remove shortcuts as the very
last step of preprocessing. The routine works as follows. For each added shortcut (u, v) we
analyze the shortest paths it represents. If all nodes on these shortest paths have less than
2 outgoing edges, we remove (u, v) from the graph and all edges being part of the shortest
paths additionally inherit the arc-flags from (u, v). An example is given in Figure 4.7.

Stripped SHARC. Note that we could use our shortcut-removal routine to remove all
shortcuts we added during preprocessing. Our output graph then equals the original
input, with additional region information and arc-flags for each edge. As a result, such
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Figure 4.7: Example for removing shortcuts from the output graph. The graph on the left shows
the output graph after refinement of arc-flags (cf. Figure 4.6). The shortcut from 1 to 2 is removed
and the edges representing the shortcut inherit the flags from it.
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a variant of SHARC can be interpreted as a faster preprocessing routine for multi-level
arc-flags. However, we might set more flags to true than necessary.

The advantage of this variant is its easy adaptability to existing (commercial) systems.
The existing core system may stay untouched; we simply add an arc-flag pointer to each
edge, a region information to each node, and store the arc-flag array. Furthermore, the
space consumption is very low, as shortcuts are one of the main reasons of space overhead.
Finally, this variant needs no shortcut-unpacking routine if the complete path description
is required. Summarizing, the variant may be very helpful for PDA-implementations
where space is limited and users need the complete path. However, the disadvantage of
this approach is its worse performance than SHARC with shortcuts (cf. Section 4.5).

Arc-Flag Compression. In order to reduce the space consumption of SHARC, we compress
the arc-flag information. During our studies, we observed that the number of different arc-
flags is much less than the number of edges. Thus, instead of storing arc-flags for each
edge, we use a separate array containing all possible unique arc-flags. In order to access the
flags efficiently, we assign an additional pointer to each edge indexing the correct arc-flags.
This yields a lower space consumption of our preprocessed data.

Boundary-Shortcuts. During our experimental study, we observed that—at least for long-
range queries in road networks—a classic bidirectional Arc-Flags Dijkstra often is optimal
in the sense that it visits only the edges on the shortest path between two nodes. However,
such shortest paths may become quite long in road networks. One advantage of SHARC
over classic Arc-Flags is that the contraction routine reduces the number of hops of shortest
paths in the network yielding smaller search spaces. In order to further reduce this hop
number we enrich the graph by additional shortcuts. In general we could try any shortcuts
if our preprocessing favors paths with less hops over those with more hops, and thus,
added shortcuts are used for long range queries. However, adding shortcuts crossing cell-
borders can increase the number of boundary nodes, and hence, increase preprocessing
time. Unfortunately, determining optimal shortcuts is complicated [BDDW09]. Hence,
we use the following heuristic to determine good shortcuts: we add boundary shortcuts
between some boundary nodes belonging to the same cell C at level L−1. In order to keep
the number of added edges small we compute the betweenness [Bra01] values cB of the
boundary nodes on the remaining core-graph. Each boundary node with a betweenness
value higher than half the maximum gets 3 ·√|BC | additional outgoing edges. The heads
are those boundary nodes with highest cB ·h values, where h is the number of hops of the
added shortcut.

Note that the centralized approach sets arc-flags to true for all possible shortest paths
between two nodes. In order to favor boundary shortcuts, we extend the centralized
approach by introducing a second matrix that stores the number of hops to every boundary
node. With the help of this second matrix we are able to assign true arc-flags only to
hop-minimal shortest paths. However, using a second matrix increases the high memory
consumption of the centralized approach even further. Thus, we use this extension only
during the last iteration step where the core is small.

Pruning. If our edge-reduction routine during contraction does not yield a significant
decrease in number of edges, we perform an additional pruning step. The idea is the
following. Based on the already computed arc-flag information, we can determine edges
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that already have their final flags assigned. Hence, we can safely remove them during
preprocessing. However, we have to make sure that we add these edges to the output
graph during finalization.

We perform our pruning by running two steps. First, we identify prunable cells. A
cell C is called prunable if all neighboring cells are assigned to the same supercell. Then
we remove all edges from a prunable cell that have at most their own-cell bit set. For
those edges no flag can be assigned true in higher levels as then at least one flag for the
surrounding cells must have been set before. A drawback of this approach is that we can
only remove edges from prunable cells.

Lemma 4.6. Pruning is correct.

Proof. We have to show that Lemma 4.3 holds at each iteration step. We consider the
path P̂ obtained from the contraction step. Let (ulr , ulr+1) be an edge of P̂ deleted in the
pruning step, for which ulr is not in the same cell as uld at level i + 1. As there exists a
shortest path to uld not only the own-cell flag of (ulr , ulr+1) is set, which is a contradiction
to the assumption that (ulr , ulr+1) has been deleted in the pruning step.

Let (ulz , ulz+1) be an edge of P deleted in the pruning step. Then, all edges on P after
(ulz , ulz+1) are also deleted in that step. Summarizing, if no edge on P̂ is deleted in the
pruning step, then P̂ fullfills all claims of the lemma for iteration step i+1. Otherwise, the
path (v1, . . . , vj1 , u1, . . . , u`1−1; u`1 , u`2 , . . . ;ulk , . . . , u`d , u`d+1, . . . , uk, w1, . . . , wj3) fullfills
all claims of the Lemma 4.3 for iteration step i+ 1 where ulk , ulk+1 is the first edge on P
that has been deleted in the pruning step.

4.4 Hierarchy-Aware Arc-Flags

Two important goal-directed techniques have been established during the last years: ALT
and Arc-Flags. The advantages of ALT are fast preprocessing and easy adaption to
dynamic scenarios, while the latter is superior with respect to query-performance and
space consumption (cf. Chapter 3). However, preprocessing of Arc-Flags is expensive (cf.
Section 3.3). The central idea of Hierarchy-Aware Arc-Flags is to combine a hierarchical
method with Arc-Flags. By computing arc-flags only for a subgraph containing all nodes
in high levels of the hierarchy, we are able to reduce preprocessing times. In general, we
could use any hierarchical approach but as Contraction Hierarchies (CH) and Transit-Node
Routing are the best hierarchical methods with respect to space consumption and query
performance, we focus on the combination of Arc-Flags with these techniques. However,
we also present a combination of Reach and Arc-Flags.

4.4.1 Contraction Hierarchies + Arc-Flags (CHASE)

As already mentioned in Section 1.2, Contraction Hierarchies basically uses a plain bidi-
rected Dijkstra on a search graph constructed during preprocessing. We are able to
combine Arc-Flags and Contraction Hierarchies in a very natural way and name it the
CHASE-algorithm (Contraction-Hierarchy + Arc-flagS + highway-nodE routing).

Preprocessing. First, we run a complete Contraction Hierarchies preprocessing which
assembles the search graph G′. Next, we extract the subgraph H of G′ containing the |VH |
nodes of highest levels. The size of VH is a tuning parameter. Recall that Contraction
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Hierarchies uses |V | levels with the most important node in level |V | − 1. We partition H
into k cells and compute arc-flags according to Section 3.3 for all edges in H. Summarizing,
the preprocessing consists of constructing the search graph and computing arc-flags for H.

Query. Basically, the query is a two-phase algorithm. The first phase is a bidirected
Dijkstra on G′ with the following modification: When settling a node v belonging to H,
we do not relax any outgoing edge from v. Instead, if v is settled by the forward search, we
add v to a node set S, otherwise to T . Phase 1 ends if the search in both directions stops.
The search stops in one direction, if either the respective priority queue is empty or if the
minimum of the key values in that queue and the distance to the closest entrance point in
that direction is equal or larger than the length of the tentative shortest path. The whole
search can be stopped after the first phase, if either no entrance points have been found in
one direction or if the tentative shortest-path distance is smaller than minimum over all
distances to the entrance points and all key values remaining in the queues. Otherwise we
switch to phase 2 of the query which we initialize by refilling the queues with the nodes
from S and T . As keys we use the distances computed during phase 1. In phase 2, we use
a bidirectional Arc-Flags Dijkstra. We identify the set CS (CT ) of all cells that contain at
least one node u ∈ S (u ∈ T ). The forward search only relaxes edges having a true arc-flag
for any of the cells CT . The backward search proceeds analogously.

Note that we have a trade-off between performance and preprocessing. If we use
bigger subgraphs as input for preprocessing arc-flags, query-performance is better as arc-
flags can be used earlier. However, preprocessing time increases as more arc-flags have to
be computed.

Stall-On-Demand. Pure Contraction Hierarchies benefit from an optimization technique
called stall-on-demand. During the query, a very local breadth-first search stalls nodes
that cannot be part of the shortest path (cf. [Sch08] for details). However, during our
experimental study, it turned out that this optimization technique does not pay off for
CHASE. The search space decreases only slightly which cannot compensate the com-
putational overhead of stall-on-demand. So, the resulting query of CHASE is a plain
bidirectional Dijkstra operating on G′ with arc-flags activated on high levels of the hier-
archy.

Theorem 4.7. CHASE is correct.

Proof. The correctness of CH is known. If the query terminates during phase 1, then the
correctness of the combinations directly follows from the correctness of CH. Otherwise, we
know that a shortest s-t path must contain at least two entrance points ŝ ∈ S and t̂ ∈ T .
As the query relaxes all edges with true arc-flags for at least one cell in CT and CS , it is
certain that the shortest path is found.

Partial CHASE (pCHASE). Contraction Hierarchies yield excellent preprocessing
and query times in road networks. The main reason is that the average degree of nodes
with respect to the search graph G′ stays low. However, for other inputs, the average
degree may grow rapidly yielding bad preprocessing and query times. Our Partial CHASE
algorithm is motivated from such inputs. Instead of computing a complete contraction
hierarchy, we stop the contraction at a certain point. This yields a CH-core H with size
|VH |. We use the subgraph induced by VH as input for arc-flags preprocessing. The idea
is that the lacking hierarchy in the core is compensated by goal-direction.
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4.4.2 Reach + Arc-Flags (ReachFlags)

Similar to CHASE, we can also combine Reach and Arc-Flags, called ReachFlags. We first
run a complete Reach-preprocessing as described in [GKW07] and assemble the output
graph. Next, we extract a subgraph H from the output graph containing all nodes with a
reach value≥ `. Again, we compute arc-flags inH according to Section 3.3. Note we do not
favor one path over another if both paths have the same length. The ReachFlags-query can
easily by adapted from the CHASE-query in straightforward manner. Note that the input
parameter ` adjusts the size of VH . Thus, a similar trade-off in performance/preprocessing
effort like for CHASE is given.

Theorem 4.8. ReachFlags is correct.

Proof. We know that pure reach-based routing is correct. With the same observations
from the proof of Theorem 4.7, the correctness of ReachFlags follows.

Partial ReachFlags (pReachFlags). Analogously to Partial CHASE, we can also
define a partial variant of ReachFlags. Therefore, we slightly alter the reach preprocess-
ing: Reach-computation according to [GKW07] is a process that iteratively contracts and
prunes the input. After each iteration step, all nodes with final reach value assigned
are removed from the graph. Starting from this observation, we are able to preprocess
Partial ReachFlags. We first run ` iteration steps of Reach-preprocessing as described
in [GKW07]. All nodes that do not have their final reach value set, get a reach value of∞
assigned. Next, we assemble the output graph and extract a subgraph H from it contain-
ing all nodes with reach ∞. Again, we compute arc-flags in H according to [HKMS09].
Note that for Partial ReachFlags the input parameter ` adjusts the size of VH .

4.4.3 Transit Node Routing + Arc-Flags

Transit Node Routing is based on the observation that when you start from a source
node s and drive to somewhere ‘far away’, you will leave your current location via one of
only a few ‘important’ traffic junctions, called (forward) access nodes −→a (s). An analogous
argument applies to the target t, i.e., the target is reached from one of only a few backward
access nodes ←−a (t). Moreover, the union of all forward and backward access nodes of
all nodes, called transit-node set T , is rather small. This implies that for each node
the distances to/from its forward/backward access nodes and for each transit-node pair
(u, v) the distance between u and v can be stored. For given source and target nodes s
and t, the length of the shortest path that passes at least one transit node is given by
dT (s, t) = min{d(s, u) + d(u, v) + d(v, t) | u ∈ −→a (s), v ∈ ←−a (t)}. Note that all involved
distances d(s, u), d(u, v), and d(v, t) can be directly looked up in the precomputed data
structures. As a final ingredient, a locality filter L : V × V → {true, false} is needed that
decides whether given nodes s and t are too close to travel via a transit node. L has
to fulfill the property that L(s, t) = false implies d(s, t) = dT (s, t). Then, the following
algorithm can be used to compute the shortest-path length d(s, t):

if L(s, t) = false then compute and return dT (s, t); else use any other routing algorithm.

For a given source-target pair (s, t), let a := max(|−→a (s)|, |←−a (t)|). Note that for a
global query (i.e., L(s, t) = false), we need O(a) time to lookup all access nodes, O(a2) to
perform the table lookups, and O(1) to check the locality filter.
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Reducing the Number of Table Lookups. So, the most time-consuming part of a TNR-
query are the table lookups. Hence, if we want to further improve the average query
times, the first attempt should be to reduce the number of those lookups. This can be
done by excluding certain access nodes at the outset, using an idea very similar to the
arc-flag approach. We consider the minimal overlay graph GT = (T , ET ) of G, i.e., the
graph with node set T and an edge set ET such that |ET | is minimal and for each node
pair (s, t) ∈ T × T , the distance from s to t in G corresponds to the distance from s to
t in GT . We partition this graph GT into k regions and store for each node u ∈ T its
region r(u) ∈ {1, . . . , k}. For each node s and each access node u ∈ −→a (s), we manage a
flag vector f→s,u : {1, . . . , k} → {true, false} such that f→s,u(x) is true iff there is a node v ∈ T
with r(v) = x such that d(s, u) +d(u, v) is equal to min{d(s, u′) +d(u′, v) | u′ ∈ −→a (s)}. In
other words, a flag of an access node u for a particular region x is set to true iff u is useful
to get to some transit node in the region x when starting from the node s. Analogous flag
vectors f←t,u are kept for the backward direction.

Preprocessing. The flag vectors can be precomputed in the following way, again using
ideas similar to those used in the preprocessing of the arc-flag approach: Let B ⊆ T denote
the set of border nodes, i.e., nodes that are adjacent to some node in GT that belongs
to a different region. For each node s ∈ V and each border node b ∈ B, we determine
the access nodes u ∈ −→a (s) that minimize d(s, u) + d(u, b); we set f→s,u(r(b)) to true. In
addition, f→s,u(r(u)) is set to true for each s ∈ V and each access node u ∈ −→a (s) since each
access node obviously minimizes the distance to itself. An analogous preprocessing step
has to be done for the backward direction.
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Figure 4.8: An example of a goal-directed transit-node query. Nodes selected for −→a ′(s) and←−
a ′(t) are shaded. The number of required table lookups is reduced from 12 to 2.
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Query. In a query from s to t, we can take advantage of the precomputed flag vectors.
First, we consider all backward access nodes of t and build the flag vector ft such that
ft(r(u)) = true for each u ∈ ←−a (t). Second, we consider only forward access nodes u
of s with the property that the bitwise AND of f→s,u and ft is not zero; we denote this
set by −→a ′(s); during this step, we also build the vector fs such that fs(r(u)) = true for
each u ∈ −→a ′(s). Third, we use fs to determine the subset ←−a ′(t) ⊆ ←−a (t) analogously
to the second step. Now, it is sufficient to perform only |−→a ′(s)| × |←−a ′(t)| table lookups.
An example is given in Fig. 4.8. Note that determining −→a ′(s) and ←−a ′(t) is in O(a), in
particular operations on the flag vectors can be considered as quite cheap.

Theorem 4.9. TNR+AF is correct.

Proof. We know that pure Transit Node Routing is correct. Hence, we have to show that
min{d(s, u) + d(u, v) + d(v, t) | u ∈ −→a (s), v ∈ ←−a (t)} = min{d(s, u) + d(u, v) + d(v, t) | u ∈−→
a ′(s), v ∈ ←−a ′(t)}. Consider the nodes u ∈ −→a (s) and v ∈ ←−a (t) that minimize the distance
d(s, u) + d(u, v) + d(v, t). In particular, we have d(s, u) + d(u, v) = min{d(s, u′) + d(u′, v) |
u′ ∈ −→a (s)}, which implies that f→s,u(r(v)) = true. Furthermore, we have ft(r(v)) = true

since v ∈ ←−a (t). Hence, the bitwise AND of f→s,u and ft is not zero and, consequently,
u ∈ −→a ′(s). Analogously, we can show that v ∈ ←−a ′(t).
Optimizations. Presumably, it is a good idea to just store the bitwise OR of the forward
and backward flag vectors in order to keep the memory consumption within reasonable
bounds. The preprocessing of the flag vectors can be accelerated by rearranging the
columns of the distance table so that all border nodes are stored consecutively, which
reduces the number of cache misses.

4.5 Experiments on Road Networks

In this section, we present an extensive experimental evaluation of all techniques presented
in this chapter. We here concentrate on road networks with travel times as metric, while
we evaluate other networks in Section 4.6. Our implementation is written in C++ using
solely the STL at some points. As priority queue we use a binary heap. See Appendix A
for details. Our tests were executed on one core of an AMD Opteron 2218 running SUSE
Linux 10.3. The machine is clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of
L2 cache, the DIMACS benchmark [DGJ06] on the full US road network with travel time
metric takes 6 013.6 s. The program was compiled with GCC 4.2.1, using optimization
level 3.

Inputs. As inputs for our test on road networks we use the largest strongly connected
component1 of the road networks of Western Europe, provided by PTV AG for scientific
use, and of the US which is taken from the DIMACS Challenge homepage. The former
graph has approximately 18 million nodes and 42.6 million edges. The corresponding
figures for the USA are 23.9 million and 58.3 million, respectively. In both cases, edge
lengths correspond to travel times. Each edge belongs to one of four main categories
representing motorways, national roads, local streets, and urban streets. The European
network has a fifth category representing rural roads.

1For historical reasons, some quoted results are based on the respective original network that contains
a few additional nodes that are not connected to the largest strongly connected component.
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Setup. In the following we report preprocessing effort and query performance of all speed-
up techniques. For the former, we report the preprocessing time and the resulting addi-
tional space per node, while for the latter we report the average number of settled nodes,
i.e., the number of nodes taken from the priority queues, and resulting query times. All
figures in this paper refer to the scenario that only the lengths of the shortest paths have
to be determined, without outputting a complete description of the paths.

We report two types of queries. For random queries, 10 000 random pairs of source
and target are selected, while for local queries [SS05], 1 000 (s, t) pairs are chosen for
each Dijkstra rank: Starting a query from s, the rank of t is denoted by the number of
settled nodes before t is settled. It is given for 20, 21, . . . , 2log |V |. This setup is applied
to some speed-up techniques in order to gain further insights into their performance on
a particular graph depending on the length of a query. The results are presented in the
form of a box-and-whisker plot [Tea04].

4.5.1 ALT

The Static ALT Algorithm. Before comparing our ALT implementations in a dy-
namic scenario, we report the performance of the bi- and unidirectional ALT algorithm
in a static scenario. We evaluate different numbers of landmarks with respect to prepro-
cessing, search space and query times performing 10 000 uniformly distributed random s-t
queries. Due to memory requirements we used avoid for selecting 32 and 64 landmarks.
For less landmarks, we used the superior maxCover heuristic. Table 4.1 gives an overview.

We see for bidirectional ALT that doubling the number of landmarks reduces search
space and query times by factor 2, which does not hold for the unidirectional variant. This
is due to the fact that goal direction works best on motorways as these roads mostly have
reduced costs of 0 in the reduced graph. In the unidirectional search, one has to leave
the motorway in order to reach the target. This drawback cannot be compensated by
more landmarks. Comparing uni- and bidirectional ALT, one may notice that the time

Table 4.1: Preprocessing, search space, and query times of uni- and bidirectional ALT and
Dijkstra based on 10 000 random s-t queries. The column dist. refers to the time needed to
recompute all distance labels from scratch.

Preprocessing Query Unidir. Query Bidir.
time space dist. # settled time # settled time

graph algorithm [min] [B/n] [min] nodes [ms] nodes [ms]
Dijkstra 0.0 0 0.0 9 114 385 5 591.6 4 764 110 2 713.2
ALT-4 12.1 32 1.4 1 289 070 469.1 355 442 254.1
ALT-8 26.1 64 2.8 1 019 843 391.6 163 776 127.8

Europe ALT-16 85.2 128 5.5 815 639 327.6 74 669 53.6
ALT-24 145.0 192 8.3 742 958 303.7 56 338 44.2
ALT-32 27.1 256 11.1 683 566 301.4 40 945 29.4
ALT-64 68.2 512 22.1 604 968 288.5 25 324 19.6
Dijkstra 0.0 0 0.0 11 847 523 6 780.7 7 345 846 3 751.4
ALT-8 44.5 64 3.4 922 897 329.8 328 140 219.6

USA ALT-16 103.2 128 6.8 762 390 308.6 180 804 129.3
ALT-32 35.8 256 13.6 628 841 291.6 109 727 79.5
ALT-64 92.9 512 27.2 520 710 268.8 68 861 48.9
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spent per node is significantly smaller than for uni-ALT. The reason is the computational
overhead for performing a bidirectional search. A reduction in search space of factor 44
(USA, ALT-16) yields a reduction in query time of factor 29. This is an overhead of factor
1.5 instead of 2.1, suggested by the figures in [GW05], deriving from our more efficient
storage of landmark data (cf. Section 3.2).

Changing the Metric. As we do not consider repositioning landmarks, we only have to
recompute all distance labels by rerunning a forward and backward Dijkstra from each
landmark whenever the metric changes. With this strategy, we are able to change a metric
in 5.5 minutes when using 16 landmarks on the European network.

Updating the Preprocessing. Before testing the lazy variant of dynamic ALT, we
evaluate the time needed for updating all distance labels. Note, that even the lazy variant
has to update the preprocessing sometimes. With the obtained figures we want to measure
the trade-off for which types of perturbations the update of the preprocessing is worth the
effort. Figure 4.9 shows the time needed for updating all 32 trees needed for 16 landmarks if
an edge is increased or decreased by factor 2 (low perturbation) and 10 (high perturbation).
We distinguish the different types of edges.
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Figure 4.9: Required time for updating the 32 shortest path trees needed for 16 landmarks on
the European instance. The figure on the left shows the average runtime of increasing one edge by
factor 2 (grey) and by 10 (white) while the right reports the corresponding values for decrementing
edges. For each category, the figures are based on 10 000 edge updates.

We observe that updating the preprocessing if an important edge is altered is more
expensive than the perturbation of other road types. This is due to the fact that motorway
edges have many descendants within the shortest path trees. Thus, more nodes are affected
by such an update. However, the type of update has nearly no impact on the time spent
for an update: neither how much an edge is increased nor whether an edge is increased
or decreased. For almost all kind of updates we observe high fluctuations in update time.
Very low update times are due to the fact that the routine is done if an increased edge is
not a tree edge or a decreased edge does not yield a lower distance label. Outliers of high
update times are due to the fact that not only the type of the edge has an impact on the
importance for updates: altering a urban street being a tree edge near a landmark may
lead to a dramatic change in the structure of the tree of this landmark.
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Table 4.2: Search space and query times of lazy dynamic ALT algorithm performing 10 000
random s-t queries after 1 000 edges of a specific category have been perturbed by factor 2. The
figures in parentheses refer to increases by factor 10. The percentage of affected queries (the
shortest path contains an updated edge) is given in column number 3.

lazy ALT-16 lazy ALT-32
graph road type aff.[%] # settled nodes increase [%] # settled nodes increase [%]

All roads 7.5 74 700 (77 759) 0.0 (4.1) 41 044 (43 919) 0.2 (7.3)
urban 0.8 74 796 (74 859) 0.2 (0.3) 40 996 (41 120) 0.1 (0.4)

EUR local 1.5 74 659 (74 669) 0.0 (0.0) 40 949 (40 995) 0.0 (0.1)
national 28.1 74 920 (75 777) 0.3 (1.5) 41 251 (42 279) 0.7 (3.3)
motorway 95.3 97 249 (265 472) 30.2 (255.5) 59 550 (224 268) 45.4 (447.7)
All roads 3.3 181 335 (181 768) 0.3 (0.5) 110 161 (110 254) 0.4 (0.5)
urban 0.1 180 900 (180 776) 0.1 (0.0) 109 695 (110 108) 0.0 (0.3)

USA local 2.6 180 962 (181 068) 0.1 (0.1) 109 873 (109 902) 0.1 (0.2)
national 25.5 181 490 (184 375) 0.4 (2.0) 110 553 (112 881) 0.8 (2.9)
motorway 94.3 207 908 (332 009) 15.0 (83.6) 130 466 (247 454) 18.9 (125.5)

Lazy Dynamic ALT. In the following, we evaluate the robustness of the lazy variant
of ALT with respect to network changes. Therefore, we alter different types and number
of edges by factor 2 and factor 10.

Edge Categories. First, we concentrate on different types of edge categories. Table 4.2
gives an overview of the performance for both dynamic ALT variants if 1 000 edges are
perturbed before running random queries. We see that altering low-category edges has
nearly no impact on the performance of lazy ALT. This is independent of the level of
increase. As expected, altering motorway edges yields a loss in performance. We observe
a loss of 30–45% for Europe and 15–19% for the US if the level of increase is moderate
(factor 2). The situation changes for high perturbation. For Europe, queries are 3.5–5.5
times slower than in the static case (cf. Table 4.1), depending on the number of landmarks.
The corresponding figures for the US are 1.8–2.3. Thus, lazy ALT is more robust on the
US network than on the European. The loss in performance originates from the fact
that for most queries, unperturbed motorways on the shortest path have costs of 0 in the
reduced graph. Thus, the search stops later if these motorways are perturbed yielding
a higher search space (cf. Section 4.1.2). Nevertheless, comparing the query times to a
bidirectional Dijkstra, we still gain a speed-up of above 10. Combining the results from
Figure 4.9 with the ones from Table 4.2, we conclude that updating the preprocessing has
no advantage. For motorways, updating the preprocessing is expensive and altering other
types of edges has no impact on the performace of lazy ALT.

Number of Updates. In Table 4.2, we observed that the perturbation of motorways has
the highest impact on the lazy dynamic variant of ALT. Next, we change the number
of perturbed motorways. Table 4.3 reports the performance of lazy dynamic ALT when
different numbers of motorways are increased by factor 2 and factor 10, respectively,
before running random queries on Europe. For perturbations by factor 2, we observe
almost no loss in performance for less than 500 updates, although up to 87% of the
queries are affected by the perturbation. Nevertheless, 2 000 or more perturbed edges lead
to significant decreases in performance, resulting in query times of about 0.5 seconds for
10 000 updates. Note that the European network contains only about 175 000 motorway
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Table 4.3: Search space and query times of the dynamic ALT algorithm performing 10 000
random s-t queries after a variable number of motorway edges have been increased by factor 2.
The figures in parentheses refer to increases by factor 10. The percentage of affected queries (the
shortest path contains an updated edge) is given in column 2.

lazy ALT-16 lazy ALT-32
#edges aff.[%] # settled nodes increase [%] # settled nodes increase [%]

100 39.9 75 691 (91 610) 1.4 (22.7) 41 725 (56 349) 1.9 (37.6)
200 64.7 78 533 (107 084) 5.2 (43.4) 44 220 (69 906) 8.0 (70.7)
500 87.1 86 284 (165 022) 15.6 (121.0) 50 007 (124 712) 22.1 (204.6)

1 000 95.3 97 249 (265 472) 30.2 (255.5) 59 550 (224 268) 45.4 (447.7)
2 000 97.8 154 112 (572 961) 106.4 (667.3) 115 111 (531 801) 181.1 (1 198.8)
5 000 99.1 320 624 (1 286 317) 329.4 (1622.7) 279 758 (1 247 628) 583.3 (2 947.1)

10 000 99.5 595 740 (2 048 455) 697.8 (2643.4) 553 590 (1 991 297) 1252.0 (4 763.3)

edges. As expected, the loss in performance is higher when motorway edges are increased
by factor 10. For this case, up to 500 perturbations can be compensated well. Comparing
slight and high increases we observe that the lazy variant can compensate four times more
updates, e.g., 500 increases by factor 10 yield almost the same loss as 2 000 updates by
factor 2.

The number of landmarks has almost no impact on the performance if more than 5 000
edges are perturbed. This is due to the fact that for almost all motorways the landmarks
do not yield good reduced costs. We conclude that the lazy variant cannot compensate
such a high degree of perturbation.
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Figure 4.10: Comparison of query times of the lazy and eager dynamic variant of ALT using
the Dijkstra rank methodology. The queries were run after 1 000 motorways were increased by a
factor of 2.
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Comparing Lazy and Eager Dynamic ALT. Table 4.2 shows that lazy ALT-32
yields an increase of 40% in search space for random queries on the European network
with 1 000 low perturbed motorway edges. In order to obtain a more detailed insight
for which types of queries these differences originates from, Figure 4.10 reports the query
times of eager and lazy ALT-32 with respect to the Dijkstra rank in this scenario.

Query performance varies so heavily that we use a logarithmic scale. For each rank,
we observe queries performing 20 times worse than the median. This is originated from
the fact that for some queries no landmark provides very good lower bounds resulting
in significantly higher search spaces. Comparing the eager and lazy dynamic version,
we observe that query times differ only by a small factor for Dijkstra ranks below 220.
However, for 224, the eager version is about factor 5 faster than the lazy one. This is due
to the fact that those types of queries contain a lot of motorways and most of the jammed
edges are used. The eager version yields a good potential for these edge while the lazy
does not. We conclude that lazy ALT is more robust for small range queries than for long
distance requests. Note that in a real-world scenario, you probably do not want to use
traffic information that is more than one hour away from your current position. As the
ALT algorithm provides lower bounds to all positions within the network, it is possible
to ignore traffic jams efficiently without any additional information.

4.5.2 Core-ALT

For CALT, we first evaluate the impact of contraction on preprocessing effort and
query performance. Table 4.4 reports the performance of CALT with 64 avoid land-
marks [GW05] with varying contraction rate. Note that for c = 0.0 and h = 0, we end up
in a plain ALT-setup. We observe that contraction has a very positive effect on ALT: Pre-

Table 4.4: Performance of CALT for varying contraction parameters c and h. Column core nodes
depicts the percentage of core nodes in GF , column #add edges reports the number of additional
edges in GF , and the resulting overhead (including landmark distances) is given in bytes per node.
The preprocessing time is given in minutes. For queries, we report the size of the search space in
the number of settled nodes, the number of entry nodes and the resulting average query times in
milliseconds.

Prepro. Query
core |E| time space #settled #entry time

input c h nodes incr. [min] [B/n] nodes nodes [ms]
0.0 0 100.00% 0.00% 68 512.0 25 324 1.0 19.61
0.5 10 35.48% 10.23% 21 187.7 10 925 3.2 8.02
1.0 20 6.32% 14.24% 7 38.4 2 233 8.2 2.16

Europe 2.0 30 3.04% 11.41% 9 21.8 1 382 13.3 1.55
2.5 50 1.88% 9.16% 11 15.4 1 394 18.6 1.34
3.0 75 1.29% 7.80% 12 12.2 1 963 24.2 1.43
5.0 100 0.86% 6.94% 18 9.8 3 126 34.0 1.67
0.0 0 100.00% 0.00% 93 512.0 68 861 1.0 48.87
0.5 10 28.90% 11.40% 20 154.2 21 544 3.4 16.61
1.0 20 8.29% 12.68% 11 48.9 7 662 7.1 6.96

USA 2.0 30 3.21% 10.53% 12 22.5 3 338 12.6 4.11
2.5 50 2.06% 8.00% 13 16.1 2 697 17.1 3.01
3.0 75 1.45% 6.39% 14 12.6 2 863 22.0 2.85
5.0 100 0.86% 4.50% 21 9.3 3 416 30.2 2.35
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processing space and time decrease combined with better query performance. The latter is
accelerated by more than one order of magnitude while the high memory consumption of
ALT can be reduced to a reasonable amount. The number of additional edges in GF first
increases with increasing contraction rates but then decreases again. The reason for this
is that the core shrinks rapidly. The few core nodes finally yield a high average degree but
with respect to the total number of nodes, the impact of core edges fades. For Europe, we
observe that at a certain point, higher contraction values yield worse query performance.
It seems as if a good compromise is c = 2.5 and h = 50. Hence, we use these contraction
values as default from now on.

Number of Landmarks. Next, we focus on the impact of the number of landmarks. More
precisely, we evaluate 8, 16, 32, and 64 landmarks generated on cores obtained from
different contraction rates. The results are given in Tab. 4.5. Note that for we use
maxCover for 8 and 16 landmarks, while avoid was used to select 32 and 64 landmarks.
Also note that a contraction of c = 0.0 and h = 0 again yields a pure ALT setup.

Table 4.5: Performance of CALT for different numbers of landmarks applying low contraction
parameters.

no cont. (c=0.0, h=0) low cont. (c=1.0, h=20)
Prepro. Query Prepro. Query
time space #settled time time space #settled time

|L| [min] [B/n] nodes [ms] [min] [B/n] nodes [ms]
8 26.1 64 163 776 127.8 7.1 10.9 12 529 10.25

16 85.2 128 74 669 53.6 9.4 14.9 5 672 5.77
32 27.1 256 40 945 29.4 6.8 23.0 3 268 2.97
64 68.2 512 25 324 19.6 8.5 36.2 2 233 2.16

med: c=2.5, h=50 high: c=5.0, h=100
Prepro. Query Prepro. Query
time space #settled time time space #settled time

|L| [min] [B/n] nodes [ms] [min] [B/n] nodes [ms]
8 10.1 7.0 4 431 3.98 17.8 5.9 4 106 2.51

16 11.0 8.2 2 456 2.33 18.3 6.5 3 500 2.23
32 10.0 10.6 1 704 1.66 17.7 7.6 3 264 2.01
64 10.5 15.4 1 394 1.34 18.0 9.8 3 126 1.67

We observe that with decreasing size of the core, the impact of number of landmarks
fades: In a pure ALT setting, doubling the number of landmarks roughly yields an increase
of a factor of 2 in query performance. On the contrary, in a high contraction scenario
(c = 5.0, h = 100), the number of landmarks has nearly no influence on query performance.
Using 64 instead of 8 landmarks decreases query times by only ≈ 33%. However, as
memory consumption is still very low for 64 landmarks, we use this number as default for
CALT.

Local Queries In order to gain deeper insights into the impact of contraction on query
performance, Fig. 4.11 reports the query times of CALT for different contraction rates
with respect to the Dijkstra rank. For ALT, we use 16 maxCover landmarks, for CALT
64 landmarks are selected by avoid. We observe that pure ALT is faster than CALT for
ranks up to 28 if low contraction is applied. If the core gets smaller, pure ALT is faster
than CALT for ranks up to 210. This is due to the fact that CALT has a two-phase query
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Figure 4.11: Comparison of ALT with 16, CALT with low contraction (c = 1.0, h = 20), and
medium contraction (c = 2.5, h = 50) using the Dijkstra rank methodology.

yielding a higher overhead. It seems as if increasing the contraction rate has a negative
effect for low-range queries while long-range queries seem to benefit from higher contraction
rates. Still, low-range queries are executed in less than 1 ms for both contraction setups.
Moreover, space consumption decreases with increasing contraction rates (cf. Tab 4.4).
Hence, our choice of c = 2.5, h = 50 as default setting seems reasonable.

4.5.3 SHARC

Default Setting. Unless otherwise stated, we use a unidirectional variant of SHARC. We
use c = 2.5 as contraction parameter and h = 10 as hop-bound. We use our path-expansion
optimization only for our stripped variant of SHARC.

Multi-Level Partition. One main parameter of SHARC preprocessing is the multi-level
partition. Table 4.6 reports the performance of SHARC if different types of SCOTCH-
partitions are applied. We observe that the performance of SHARC highly depends on
the partition of the graph. A classic 1-level setup yields query times of 23.6 ms. By
increasing the number of levels, we achieve query times of down to 0.29 ms. Interestingly,
the preprocessing time is almost the same for all applied partitions: We need roughly 1.5
hours for preprocessing. However, using more than 6 levels does not pay off: query times
stay the same but the overhead increases. In general, it seems as if the best trade-off
between preprocessing effort and query performance is achieved if the average number of
nodes per cell is roughly 80. This value is achieved in a 6-level setup with 4,4,4,4,8,104
cells. Hence, we use this partition for both our continental-sized road networks.
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Table 4.6: Performance of SHARC with different partitions. Column prepro shows the compu-
tation time of the preprocessing in hours and minutes and the eventual additional bytes per node
needed for the preprocessed data. For queries, the search space is given in the number of settled
nodes and the number of relaxed edges, execution times are given in milliseconds.

partition Prepro Query
#cells per level �#nodes time space #settled #rel. time

l0 l1 l2 l3 l4 l5 l6 l7 #total cells per cell [h:m] [B/n] nodes edges [µs]
128 - - - - - - - 128 140 704.5 1:52 6.0 78 429 178 103 23 306

8 120 - - - - - - 960 18 760.6 1:14 9.8 11 362 26 323 3 049
4 4 120 - - - - - 1 920 9 380.3 1:24 10.6 5 982 14 128 1 637
4 8 116 - - - - - 3 712 4 851.9 1:25 10.8 3 459 8 372 983
8 8 112 - - - - - 7 168 2 512.6 1:36 11.5 2 182 5 389 667

16 16 96 - - - - - 24 576 732.8 2:12 13.1 1 217 3 169 428
4 4 4 116 - - - - 7 424 2 425.9 1:20 11.2 2 025 5 219 625
4 4 8 112 - - - - 14 336 1 256.3 1:14 11.6 1 320 3 544 441
4 8 8 108 - - - - 27 648 651.4 1:15 12.4 984 2 755 358
4 8 16 100 - - - - 51 200 351.8 1:17 13.1 819 2 357 319
4 4 4 4 112 - - - 28 672 628.1 1:12 12.0 957 2 827 360
4 4 4 8 108 - - - 55 296 325.7 1:13 13.0 774 2 337 309
4 4 8 8 104 - - - 106 496 169.1 1:18 13.7 700 2 153 294
4 4 4 16 100 - - - 102 400 175.9 1:16 13.7 703 2 162 295
4 4 8 16 96 - - - 196 608 91.6 1:24 15.0 671 2 066 287
4 8 8 16 92 - - - 376 832 47.8 1:30 16.0 663 2 046 288
4 4 4 4 4 108 - - 110 592 162.9 1:15 13.6 695 2 263 299
4 4 4 4 8 104 - - 212 992 84.6 1:21 14.5 654 2 116 290
4 4 4 8 8 100 - - 409 600 44.0 1:28 16.1 645 2 087 290
4 4 4 8 16 92 - - 753 664 23.9 1:31 17.7 646 2 028 289
4 4 8 8 16 88 - - 1 441 792 12.5 1:50 19.8 663 2 085 296
4 4 4 4 4 4 104 - 425 984 42.3 1:27 15.6 649 2 209 299
4 4 4 4 4 8 100 - 819 200 22.0 1:31 17.6 628 2 094 289
4 4 4 4 8 8 96 - 1 572 864 11.5 1:46 19.3 637 2 092 294
4 4 4 4 8 16 88 - 2 883 584 6.2 1:54 20.7 663 2 100 303
4 4 4 8 8 16 84 - 5 505 024 3.3 2:00 21.5 655 2 035 294
4 4 4 4 4 4 4 100 1 638 400 11.0 1:43 19.2 650 2 247 308
4 4 4 4 4 4 8 96 3 145 728 5.7 1:56 20.0 627 2 113 293
4 4 4 4 4 8 8 92 6 029 312 3.0 1:51 21.1 649 2 121 300
4 4 4 4 4 8 16 84 11 010 048 1.6 2:03 21.5 648 2 035 296

Table 4.7: Performance of SHARC with varying contraction parameter.
prepro query

time space #settled #relaxed time
c [h:m] [B/n] nodes edges [µs]

1.0 1:40 15.1 1 572 3 705 578
1.5 1:20 14.8 886 2 464 348
2.0 1:20 14.7 714 2 171 301
2.5 1:21 14.5 654 2 116 290
3.0 1:23 14.6 622 2 109 286
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Contraction Rate. Next, we check whether our choice of contraction parameter is useful.
Table 4.7 shows the performance of SHARC with various contraction rates if our default
6-level partition with 4,4,4,4,8,104 cells is given. We observe a contraction rate other than
2.5 increases preprocessing space. While c = 3.0 increases query performance marginally,
a lower contraction rate also yields worse query times. Hence, our choice of c = 2.5 is
reasonable in this setup.

Reduction of Preprocessing Duration. SHARC exploits two aspects of a network in order
to speed up the query: hierarchical properties by contraction, goal-direction by arc-flags.
Table 4.8 shows the performance of SHARC if we do not compute arc-flags for all parts
of the graph. This can be achieved by either not computing core arc-flags on lower levels
or not refining low-level arc-flags. If we skip core arc-flags computation, we simply set all
flags to true. Hence, we are able to reveal the main reasons for the good performance of
SHARC. We observe that SHARC is already 65 times faster than pure Dijkstra if we do
not compute any arc-flags at all. Note that this speed-up is achieved with a preprocessing
lasting only 16 minutes. By computing arc-flags on different levels we can vary the trade-off
between preprocessing effort and query performance: 34 minutes of preprocessing already
yields query times of 355 µs. Hence, an additional preprocessing of 18 minutes (over a
pure hierarchical setup) accelerates SHARC by an additional factor of 200. Computing
arc-flags for the remaining levels costs another 47 minutes but query performance only
increases by 20%. Summarizing, dropping goal-direction on lower levels of the hierarchy
reduces preprocessing significantly without a dramatic decrease in query performance.

In the following, we call SHARC with arc-flags computation on all levels the generous
variant. Our economical variant sets core arc-flags only on the two topmost levels and
refines flags for all levels except the lowest one.

Table 4.8: Performance of SHARC for varying effort computing arc-flags. Core levels indicates
during which iteration steps, core flags are computed. Refinement levels depict the levels on which
arc-flags are refined.

arc-flags prepro query
core refinement time space #settled #relaxed time

levels levels [h:m] [B/n] nodes edges [µs]
- - 0:16 12.8 204 518 960 653 76 640
5 5 0:24 13.2 23 313 70 225 6 021
5 4-5 0:24 13.2 6 583 23 038 1 843
5 3-5 0:25 13.3 2 394 11 547 856
5 2-5 0:27 13.6 1 350 8 721 611
5 1-5 0:29 13.7 1 127 8 091 553

4-5 4-5 0:30 13.7 6 186 18 170 1 626
4-5 3-5 0:30 13.7 2 042 6 683 648
4-5 2-5 0:31 13.7 993 3 883 405
4-5 1-5 0:34 13.7 784 3 338 355
3-5 3-5 0:35 13.8 1 974 5 962 615
3-5 2-5 0:37 14.2 933 3 161 371
3-5 1-5 0:39 14.2 729 2 629 323
2-5 2-5 0:44 14.3 900 2 862 354
2-5 1-5 0:46 14.3 696 2 335 305
1-5 1-5 0:54 14.5 684 2 236 300
0-5 0-5 1:21 14.5 654 2 116 290
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Table 4.9: Performance of stripped SHARC with varying contraction rate during preprocessing.
SHARC stripped SHARC

Prepro Query Prepro Query
time space #settled time time space #settled time

c [h:m] [B/n] nodes [ms] [h:m] [B/n] nodes [ms]
0.50 7:32 13.8 10 876 3.38 7:48 7.8 14 697 4.76
0.75 4:29 14.3 5 420 1.99 4:43 7.7 62 303 26.03
1.00 1:45 15.1 1 997 0.90 2:03 7.5 1 891 320 1 096.48

Stripped SHARC. In Section 4.3 we discussed that we can remove all shortcuts during
the last step of preprocessing. Table 4.9 reports the performance of stripped SHARC with
different contraction parameters during preprocessing. Note that in contrast to the figures
given in Table 5.6, we do not add boundary shortcuts, as they are removed anyway, at the
end. Moreover, we do not use our locality optimization, but turn on path-expansion. It
turns out that stripped SHARC requires a smaller contraction rate during preprocessing
than normal SHARC. A contraction rate of 1.0 already yields very bad query performance
for the stripped variant. However, applying a contraction rate of 0.5, the gap between
normal and stripped SHARC almost closes. The disadvantage of such a low contraction
rate is preprocessing time: it increases to almost 8 hours. However, as already mentioned,
stripped SHARC should mainly be used in scenarios with limited memory, e.g., PDAs.
Hence, preprocessing would be done once on a server and the preprocessed data would
then be transfered to a PDA.

Random Queries. Table 4.10 reports the results of our different SHARC-variants. More
precisely, we report the results of our economical, generous, and stripped version of
SHARC. In addition, we report the results of bidirectional SHARC which uses bidirec-
tional search in connection with a 2-level partition (16 cells per supercell at level 0, 112
at level 1). We observe excellent query times for SHARC in general. SHARC has a lower
preprocessing time for the US than for Europe but for the price of worse query perfor-
mance. This is due to the fact that the average hop number of shortest paths are bigger
for the US than for Europe. However, the number of boundary nodes is smaller for the US
yielding lower preprocessing effort. The bidirectional variant of SHARC has a more ex-
tensive preprocessing: both time and additional space increase, which is due to computing
and storing forward and backward arc-flags. Comparing query performance, bidirectional

Table 4.10: Performance of different SHARC variants on the European and US road network
with travel times. Prepro shows the computation time of the preprocessing in hours and minutes
and the eventual additional bytes per node needed for the preprocessed data. For queries, the
search space is given in the number of settled nodes, execution times are given in microseconds.
Note that other techniques have been evaluated on slightly different computers.

Europe USA
Prepro Query Prepro Query

time space #settled time.0 time space #settled time.0
[h:m] [B/n] nodes [µs].0 [h:m] [B/n] nodes [µs].0

generous SHARC 1:21 14.5 654 290.0 0:58 18.1 865 376.0
economical SHARC 0:34 13.7 784 355.0 0:38 17.2 1 230 578.0
stripped SHARC 7:48 7.8 14 697 4 762.0 6:41 9.2 38 817 12 719.0
bidirectional SHARC 2:38 21.0 125 65.0 2:34 23.1 254 118.0
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SHARC is clearly superior to the unidirectional variant. This is due to the known disad-
vantages of uni-directional classic Arc-Flags: the coning effect and no arc-flag information
as soon as the search enters the target cell (cf. Section 3.3). The stripped variant is more
than one order of magnitude slower than SHARC with shortcuts, and preprocessing times
are higher. However, the strength of this approach is its easy adaptability to existing
commercial implementations. Still, stripped SHARC is about three orders of magnitude
faster than plain Dijkstra.

Local Queries. Figure 4.12 reports the query times of generous, economical, and bidirec-
tional SHARC with respect to the Dijkstra rank. For an s-t query, the Dijkstra rank of
node v is the number of nodes removed from the priority queue by Dijkstra’s algorithm
before v is removed. Thus, it is a kind of distance measure. As input we again use the
European road network instance. Note that we use a logarithmic scale. Both economical
and generous SHARC get slower with increasing rank but the median stays below 0.4 ms
for the economical variant. The corresponding figure for the generous variant is 0.23 ms.
We observe that the gap between both unidirectional variants is almost the same for all
ranks. Comparing uni- and bidirectional SHARC, we observe that the former is faster
for low-range queries while the latter wins for long-range queries. This is mainly due to
the lower number of levels of the bidirectional setup: query times increase up to ranks
of 213 which is roughly the size of cells at the lowest level. Above this rank query times
decrease and increase again till the size of cells at level 1 is reached. As we use more
levels in a unidirectional setup, this effect deriving from the partition cannot be observed
for the unidirectional variant. Comparing uni- and bidirectional SHARC we observe more
outliers for the latter which is mainly due to less levels. Still, all outliers are below 5.2 ms.

●

●●●●
●

●
●

●●

●
●

●

●

●●
●●
●●●
●
●●●●
●
●
●
●●●●
●
●●●
●
●

●●●●●

●

●●●
●
●
●●
●●●
●●

●
●●●
●
●
●
●●
●●
●●●●●●●

●●

●
●

●●
●●●●●
●●●
●
●

●●●●●●
●
●
●
●
●

●
●
●

●

●●●●
●●●

●

●

●

●

●●●●
●●●●
●●●

●●●●●●●●●●●●
●●●●●
●
●●●●●●

●

●●

●●●
●●
●
●●●●●●
●

●●
●
●
●●●●●●●●●
●●
●●●

●
●

●●
●●●
●●
●
●
●●●
●●
●●●●
●●●●●●
●
●●●●

●●
●●
●
●
●

●

●
●●●●●●
●●●

●●●
●●

●
●●●●●●●

●
●
●●●●

●
●
●

●●●●●●
●
●
●●●●●

●●●●
●●●
●
●
●●●●●
●●●●●●●

●●
●●●●●●●
●
●●

●

●●●●●●
●
●●●
●
●
●
●●

●
●
●●
●
●
●●●

●

●●

●
●
●

●●
●●
●●

●
●
●●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●●

●

●

●
●
●
●●
●●
●

●

●

●●

●

●
●
●
●
●

●

●

●
●
●●

●

●
●
●●●●

●●●●●
●
●
●
●

●

●

●●
●●●●

●

●●
●
●
●

●●

●

●●
●
●●●●●
●

●

●

●●

●

●●

●
●

●

●

●●
●

●

●●●●●
●
●

●

●
●

●●●
●

●

●

●●●
●
●

●
●

●

●●●●

●

●
●

●

●

●●●

●
●

●

●

●

●
●

●
●
●
●
●●
●●●●●
●
●●
●●●
●●●
●
●●
●

●●●

●
●
●

●●

●●

●

●●●●●

●●●●●●
●●
●
●
●
●
●

●
●●●
●
●●●●

●

●●●
●●●●

●

●●
●
●●
●
●

●

●●●●

●
●
●

●●
●
●●
●
●
●

●
●
●

●

●

●
●●●●
●●●
●
●

●

●
●
●

●

● ●●●●●
●
●
● ●●

●
●●●
●●● ●●●●

●
●●
●
●

●●●●
●

●

●●●
●

●●●●●●
●
●●

●●

●
●
●●●
●
●●●
●
●●

●●●●
●
●●●●●●●
●
●●

●●●
●
●

●
●●●●●●
●

●

●●●●●●●

●

●
●
● ●●●●●

●
●●●●

●●●●●●●

●

●
●●●●●●

●
●
●●●●
●
●●
●
●

●●●
●
●●●●●
●●●●●●
●
●
●
●
●
●●● ●●

●●
●
●
●●
●●
●
●●
●

●
●●
●
●
●
●

●
●●●
●
●●
●
●
●
●
●
●●●
●
●●●●●●●
●
●
●●●●●
●
●●●
●●●●

●●
●●●●●●●
●
●●●●●●●●
●●
●

●●
●●
●
●●
●
●

●
●
●
●●●●●

●●
●
●●●●●●
●●●
●●
●
●●

●

●●
●
●●
●
●
●

●
●
●●
●●●
●●
●
●●

●

●●●●
●●●●

●●●
●
●●●●

●
●

●

●●●

●
●
●●
●
●●
●

●
●
●

●
●●●●●●●
●
●

●
●
●●
●
●

●●
●

●●

●
●●
●●●●
●●
●

●
●
●

●●

●

●
●

●

●●
●●●●
●●●
●●●

●

●
●

●

●●●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●●

●●
●●
●

●
●●

●
●●

●

●

●

●●●
●

●

●●

●
●●

●

●

●

●

●●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●●

●
●

●

●

●

●
●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●●●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●●
●

●

●
●

●

●
●
●
●
●

●

●
●
●

●

●

●

●●

●

●

●
●
●

●
●

●

●

●●●
●

●
●

●

●●●
●

●●●●●●
●●
●●●
●
●

●

●
●
●
●

●

●

●

●

●
●●

●

●
●
●
●

●
●
●●●●
●
●

●●●
●
●●
●
●
●●
●●●●
●
●

●●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●●●
●●
●
●

●

●
●
●●●
●
●
●●
●●●

●●
●●●
●
●

●

●

●●

●●●
●
●

●

●

●

●

●●
●

●
●
●
●

●●

●

●

●●
●●
●

●

●
●

●
●
●●●●

●●

●

●

●
●●●

●●
●
●●
●
●

●
●●
●

●

●●

●

●
●●
●

●
●●●

●
●
●●●

●
●
●
●

●●

●

●●

●

●
●●

●

●

●
●

●

●
●●●

●
●
●●
●
●●
●

●

●●●
●
●
●
●
●

●

●
●
●●●

●

●
●
●

●●

●●

●●

●

●
●●

●

●
●●
●

●

●●
●●●
●

●
●
●●●●●●●
●
●
●

●

●●

●●
●
●●

●●
●
●●●
●
●●●
●
●

Dijkstra Rank

Q
ue

ry
 T

im
e 

[m
s]

26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
01

0.
03

0.
1

0.
2

0.
5

1
2

5

generous SHARC
economical SHARC
bidirectional SHARC

Figure 4.12: Comparison of generous, economical, and bidirectional SHARC using the Dijkstra
rank methodology.
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Table 4.11: Performance of SHARC on different metrics using the European road instance. Multi-
metric refers to the variant with one arc-flag and three edge weights (one weight per metric) per
edge, while single refers to running SHARC on the applied metric.

linear fast car slow car
Prepro Query Prepro Query Prepro Query

metric time space #settled time time space #settled time time space #settled time
[h:m] [B/n] nodes [µs] [h:m] [B/n] nodes [µs] [h:m] [B/n] nodes [µs]

single 0:34 13 784 355 0:28 14 804 364 0:35 13 779 349
multi 1:38 16 976 469 1:38 16 964 464 1:38 16 948 455

Multi-Metric Queries. The original dataset of Western Europe contains 13 different road
categories. By applying different speed profiles to the categories we obtain different met-
rics. Table 4.11 gives an overview of the performance of (economical) SHARC when applied
to metrics representing typical average speeds of slow/fast cars. Moreover, we report re-
sults for the linear profile which is most often used in other publications and is obtained
by assigning average speeds of 10, 20, . . . , 130 to the 13 categories. Finally, results are
given for multi-metric SHARC, which stores only one arc-flag for each edge.

As expected, SHARC performs very well on other metrics based on travel times. Strik-
ingly, the loss in performance is only very little when storing only one arc-flag for all three
metrics. However, the overhead increases due to storing more edge weights for shortcuts
and the size of the arc-flags vector increases slightly. Due to the fact that we have to
compute arc-flags for all metrics during preprocessing, the computational effort increases.

4.5.4 Hierarchy-Aware Arc-Flags

CHASE. The combination of Contraction Hierarchies and Arc-Flags allows a very flex-
ible trade-off between preprocessing and query performance. The bigger the subgraph H
used as input for Arc-Flags, the longer preprocessing takes but query performance im-
proves. Table 4.12 reports the performance of CHASE for different sizes of H in per-
centage of the original graph. We partition H with SCOTCH [Pel07] into 128 cells. Two
observations are remarkable: the effect of stall-on-demand (cf. Section 4.4.1) and the size
of the subgraphs. While stall-on-demand pays off for pure CH, CHASE does not win
from turning on this optimization. The number of settled nodes decreases but due to the

Table 4.12: Performance of CHASE for Europe with stall-on-demand turned on and off running
10 000 random queries. The search space is given as #settled nodes during phase 1 and in total.
The number of entry points is given as well.

size of H 0.0% 0.5% 1.0% 2.0% 5.0% 10.0% 20.0%
Prepro. time [min] 25 31 41 62 99 244 536

space [Byte/n] -2.7 0.0 1.9 4.9 12.1 22.2 39.5
Query #settled total 355 86 67 54 43 37 34
(with s-o-d) #settled phase 1 – 60 41 29 18 13 8

#entry points – 21 14 10 7 5 4
time [µs] 180.0 48.5 36.3 29.2 22.8 19.7 17.2

Query #settled total 931 111 78 59 45 39 35
(without s-o-d) #settled phase 1 – 76 47 31 19 13 8

#entry points – 30 18 12 8 6 4
time [µs] 286.3 43.8 30.8 23.1 17.3 14.9 13.0
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overhead query times increase. Another very interesting observation is the influence of
the input size for arc-flags. Applying goal-direction on a very high level of the hierar-
chy speeds up the query significantly. A core size of 0.5% already yields an additional
speed-up of a factor of 4 combined with an additional preprocessing effort of 6 minutes.
Hence, we call this setup our economical variant of CHASE. Interestingly, further signifi-
cant improvements—with respect to query times—are only observable for a core size of up
to 5% of the input graph. Here, we achieve query times ≈ 10 times faster than plain CH.
Still, 99 minutes of preprocessing is reasonable. Hence, we call this setup our generous
variant of CHASE. Increasing the size of H to 10% or even 20% yields a much higher
preprocessing effort (both space and time) but query performance increases only slightly,
compared to 5%. However, our fastest variant settles only 35 nodes on the average having
query times of 13.0µs. Note that for this input, the average shortest path in its contracted
form consists of 22 nodes, so only 13 unnecessary nodes are settled on the average.

Local Queries. Like for CALT, Fig. 4.13 reports the query times of economical and
generous CHASE and plain CH with respect to the Dijkstra rank. We observe that up to
a rank of 214, all three algorithms yield similar query times. This is expected since up to
this rank, most of the queries do not touch the upmost part of the contraction hierarchy
and hence, arc-flags do not contribute to the query. Above this rank, query performance
gets better again. This effect has been observed for pure Arc-Flags as well [HKMS09]:
Long-range queries often relax only the shortest path while for low-range queries, the
advantage of arc-flags fades. Comparing economical and generous CHASE, we observe
that above a rank of 217 the latter is about 2.5 times faster than the former. For very high
ranks, generous CHASE is more than an order of magnitude faster than pure CH.
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Figure 4.13: Comparison of pure CH, economical and generous CHASE using the Dijkstra rank
methodology.
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Partial CHASE. Up to now, we evaluated a setup where a complete CH is constructed.
However, as discussed in Section 4.4.1, we may stop the construction at some point and
compute arc-flags on a flat core. Table 4.13 reports the performance of partial CHASE
if 0.5% and 5% of the graph is not contracted. For comparison, we report the figures of a
partial variant of CH, called pCH. Similar to pCHASE, we stop contraction at some point
and perform CH-queries in such a partial hierarchy. Moreover, we report the performance
of plain CH and economical CHASE.

Table 4.13: Performance of pCHASE and partial CH. The input is Europe. Note that only 1 000
queries were computed for pCH.

non-contracted 0.0% 0.5% 5.0%
algorithm CH eco CHASE pCH pCHASE pCH pCHASE

Prepro. time [min] 25 31 19 21 15 31
space [Byte/n] -2.7 0 -2.8 -1.6 -2.9 3.6

Query #settled total 355 86 97 913 2 544 965 018 12 782
time [µs] 180 44 4 281 831 53 627 4 143

We observe that for road networks, partial variants of CHASE yield worse results
than pure CH: With an uncontracted core of 0.5% preprocessing is a little bit faster but
for the price of a slow-down of a factor of 4.6 in query performance. Higher uncontracted
cores seem even more impractical. The reason for this rather bad performance stems from
Contraction Hierarchies. The partial variant of CH yields a very bad query performance
which cannot be compensated by arc-flags.

ReachFlags. Table 4.14 gives a similar overview to table 4.12 for ReachFlags, showing
the effects of different sizes of the subgraph H. As expected, query times decrease with an
increased subgraph. However, adding goal direction via Arc-Flags yields worse additional
speed-ups than for CH. Computing flags on the topmost 0.5% of the graph accelerates
queries only by a factor of 2. For CH, the corresponding figure is 4. Moreover, since CH is
more than one order of magnitude faster than Reach, CHASE is superior to ReachFlags
with respect to all relevant figures. Note however that our implementation of Reach that
we also use as base for ReachFlags is roughly a factor of 2 slower than the implementation
due to [GKW07]. Thus, a further speed-up of a factor of 2 might be possible.

Table 4.14: Performance of ReachFlags for Europe and the US. The results of our implementation
of Reach correspond to a size of H of 0.0%.

input size of H 0.0% 0.5% 1.0% 2.0% 5.0% 10.0%

Europe

Prepro. time [min] 70 82 105 150 348 710
space [Byte/n] 21.0 22.9 25.1 28.2 37.0 49.3

Query #settled total 7 387 5 454 3 754 2 763 1 101 638
time [ms] 6.24 4.79 3.12 2.22 0.84 0.48

USA

Prepro. time [min] 62 89 136 272 671 1 279
space [Byte/n] 21 20 22 26 35 45

Query #settled total 4 261 2 563 1 719 1 339 693 450
time [ms] 3.90 2.09 1.33 1.01 0.50 0.33
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Partial ReachFlags. Table 4.15 reports the performance of partial ReachFlags. We stop
reach computation after i iterations, set the reach of remaining nodes to infinity and
compute arc-flags for the subgraph induced by these nodes.

Table 4.15: Performance of pReachFlags. The input is Europe. Core nodes indicates how many
nodes have a reach value of infinity.

number of iterations 1 2 3 4 all
Prepro. core-nodes 14.87% 5.32% 1.45% 0.20% 0.00%

time [min] 400 229 107 69 70
space [Byte/n] 36 30 25 22 21

Query #settled total 1 149 1 168 2 797 5 718 7 387
time [ms] 0.62 0.76 2.24 5.34 6.24

We observe that partial ReachFlags provides better results than pure reach: The less
reach values we bound, the better the performance of the algorithm gets. This is due to the
fact that we compute arc-flags for a bigger part of the graph. Comparing pReachFlags and
pCHASE, it is interesting to note that for core sizes of ≈ 5%, pReachFlags outperforms
pCHASE, while for core sizes of ≈ 0.5%, pCHASE outperforms pReachFlags. It seems
as if the loss in performance for cutting a hierarchy based on reach is less than cutting a
contraction hierarchy.

TNR+AF. The fastest variant of Transit-node Routing without using flag vectors is
presented in [GSSD08]; the corresponding figures are quoted in Tab. 4.16. For this variant,
we computed flag vectors according to Section 4.4.3 using k = 48 regions. This takes, in
the case of Europe, about two additional hours and requires 117 additional bytes per node.
Then, the average query time is reduced to as little as 1.9µs, which is an improvement
of almost factor 1.8 (factor 2.9 compared to the first publication in [BFM+07]) and a
speed-up compared to Dijkstra’s algorithm of more than 3 million. The results for the US
are even better.

Table 4.16: Overview of the performance of Transit-Node Routing with and without additional
arc-flags. For pure TNR, we report two figures. The first is due to [BFM+07] and based on
Highway Hierarchies, while numbers for a TNR-implementation based on Contraction Hierarchies
are given in [GSSD08]. Note that these results were conducted on a slightly different machine.

Europe USA
prepro. query prepro. query

time overhead time time overhead time
method [min] [B/node] [µs] [min] [B/node] [µs]
HH-TNR 164 251 5.6 205 244 4.9
CH-TNR 112 204 3.4 90 220 3.0
CH-TNR+AF 229 321 1.9 157 263 1.7

The improved running times result from the reduced number of table accesses: in the
case of Europe, on average only 3.1 entries have to be looked up instead of 40.9 when
no flag vectors are used. Note that the runtime improvement is considerably less than a
factor of 40.9 / 3.1 = 13.2 though. This is due to the fact that the average runtime also
includes looking up the access nodes and dealing with local queries.
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4.5.5 Comparison

Table 4.17 reports the performance of our new combinations in comparison to existing
speed-up techniques.

CALT. By improving the organization of landmark data (cf. Section 3.2), we obtain a
better query performance for ALT than reported in [GW05]. However, we do not compress
landmark information and use a slightly better heuristic for landmark selection. Hence,
we report both results. By adding contraction to ALT, we are able to reduce query times
to 1.3 ms for Europe and to 3.0 ms for the US. This better performance is due to two
facts. On the one hand, we may use more landmarks (we use 64) and on the other hand,
the contraction reduces the number of hops of shortest paths. Moreover, the most crucial
drawback of ALT—memory consumption—can be reduced to a reasonable amount, even
when using 64 landmarks. Still, CALT cannot compete with REAL or pure hierarchical
methods, but the main motivation for CALT is its easy adaptability to dynamic and
time-dependent scenarios (cf. Section 5.3).

SHARC. We observe that unidirectional SHARC can compete with almost all bidirec-
tional approaches. It is only surpassed by Contraction Hierarchies(CH), CHASE, and
Transit Node Routing. However, the latter requires much more space than SHARC, and
the other approaches cannot be used in a unidirectional manner easily. Bidirectional
SHARC is faster than CH, but slower than CHASE. SHARC and CHASE are similar to
each other, both exploit hierarchical properties of the network by contraction and goal-
direction by arc-flags. However, CHASE focuses on hierarchical properties, SHARC on
goal-direction. It seems as if in this setup, CHASE is superior due to its more sophisticated
hierarchical properties.

SHARC settles roughly the same number of nodes as Highway Hierarchies or REAL,
but query times are smaller. This is due to the very low computational overhead of
SHARC. Regarding preprocessing, SHARC uses less space than REAL or Highway Hi-
erarchies. The computation time of the preprocessing is similar to REAL but longer
than for Highway Hierarchies. The bidirectional variant uses more space and has longer
preprocessing times, but the performance of the query is very good. Compared to the clas-
sic Arc-Flags, SHARC significantely reduces preprocessing time and query performance
is better. Still, SHARC is the only high-performance unidirectional speed-up technique
making usage in time-dependent networks easier (cf. Section 5.4).

CHASE. We report the figures for economical and generous CHASE. For Europe, the
economical variant only needs 7 additional minutes of preprocessing over pure CH and
the preprocessed data is still smaller than the input. Recall that a negative overhead
derives from the fact that the search graph is smaller than the input, see Section 1.2. This
economical variant is already roughly 4 times faster than pure CH. However, by increasing
the size of the subgraph H used as input for arc-flags, we are able to almost close the gap to
pure Transit-Node Routing. CHASE is only 5 times slower than TNR (and is even faster
than the grid- and separator-based approach of TNR [BFM+07, DHM+09]). However,
the preprocessed data is much smaller for CHASE, which makes it more practical in
environments with limited memory. Moreover, it seems as if CHASE can be adapted to
time-dependent scenarios easier than TNR [BDSV09].
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Table 4.17: Overview of the performance of various speed-up techniques, grouped by (1.) hierar-
chical methods [Highway Hierarchies (HH), highway-node routing (HNR), Contraction Hierarchies
(CH), Transit-Node Routing (TNR), High-Performance Multi-Level Routing (HPML)], (2.) goal-
directed methods [landmark-based A∗ search (ALT), Arc-Flags (AF)], (3.) previous combinations,
and (4.) the new combinations introduced in this thesis. The additional overhead is given in
bytes per node in comparison to bidirectional Dijkstra. Preprocessing times are given in minutes.
Query performance is evaluated by the average number of settled nodes and the average running
time of 10 000 (1 000 for pCH) random queries. Each column highlights the best result in bold.
In addition, Pareto optimal speed-up techniques are also printed in bold. Note that the Pareto
optima are the same for both road networks.

Europe USA
prepro. query prepro. query

time space #settled time time space #settled time
method source [min] [B/n] nodes [ms] [min] [B/n] nodes [ms]
Reach [GKW07] 83 17.0 4 643 3.4700 44 20.0 2 317 1.8100
Reach 4.4.2 70 21.0 7 387 6.2400 62 21.0 4 261 3.9000
HH [Sch08] 13 48.0 709 0.6100 15 34.0 925 0.6700
HNR [Sch08] 15 2.4 981 0.8500 16 1.6 784 0.4500
CH [GSSD08] 25 -2.7 355 0.1800 27 -2.3 278 0.1300
HPML [DHM+09] ≈1 440 208.0 N/A 0.0188 ≈2 160 260.0 N/A 0.0193
grid TNR [BFM+07] - -.0 - -.0000 1 200 21.0 N/A 0.0630
TNR [BFM+07] 164 251.0 N/A 0.0056 205 244.0 N/A 0.0049
TNR [GSSD08] 112 204.0 N/A 0.0034 90 220.0 N/A 0.0030
ALT-a16 [GKW07] 13 70.0 82 348 160.3000 19 89.0 187 968 400.5000
ALT-m16 4.1 85 128.0 74 669 53.6000 103 128.0 180 804 129.3000
ALT-a64 4.1 68 512.0 25 234 19.6000 93 512.0 68 861 48.9000
AF [HKMS09] 2 156 25.0 1 593 1.1000 1 419 21.0 5 522 3.3000
REAL [GKW07] 141 36.0 679 1.1100 121 45.0 540 1.0500
HH∗ [DSSW09b] 14 72.0 511 0.4900 18 56.0 627 0.5500
SHARC 4.3 81 14.5 654 0.2900 58 18.1.0 865 0.3800
SHARC bidir. 4.3 158 21.0 125 0.0650 158 21.0 350 0.1800
CALT 4.2 11 15.4 1 394 1.3400 13 16.1 2 697 3.0100
pCH-0.5% 4.4.1 19 -2.8 97 913 4.2800 21 -2.3 121 636 50.5700
pCH-5.0% 4.4.1 15 -2.9 965 018 53.6300 15 -2.3 1 209 290 667.8000
eco CHASE 4.4.1 32 0.0 111 0.0440 36 -0.8 127 0.0490
gen CHASE 4.4.1 99 12.0 45 0.0170 228 11.0 49 0.0190
pCHASE-0.5% 4.4.1 21 -1.6 2 544 0.8300 25 -1.5 4 693 1.4000
pCHASE-5.0% 4.4.1 31 3.6 12 782 4.1400 96 4.3 22 436 7.2100
ReachFlags 4.4.2 348 37.0 1 101 0.8400 671 35.0 693 0.5000
pReachFlags 4.4.2 229 30.0 1 168 0.7600 318 25.0 1 636 1.0200
TNR+AF 4.4.3 229 321.0 N/A 0.0019 157 263.0 N/A 0.0017
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ReachFlags. As already mentioned, our reach implementation yields worse results than
the numbers reported in [GKW07]. Hence, we report both results. By adding arc-flags to
reach we obtain query times comparable to REAL. However, preprocessing takes a little
bit longer. Still, it seems as if ReachFlags is inferior to CHASE which is mainly due to
the good performance of Contraction Hierarchies.

Summary. We observe that the best results for each measured performance criterion is
obtained by one of our newly introduced speed-up techniques. In addition, we see that
almost all of our techniques are Pareto optimal. A speed-up technique is called Pareto
optimal if there is no other technique that is better in all measured variables. Thus, each
of them is the optimal choice for a specific task with regards to the analyzed algorithms.
Only our variants of ReachFlags and pCHASE with a larger core size fall short in this
aspect.

4.6 Experimental Study on Robustness

In the last section we focused on the performance of our methods on road networks with
travel times. However, speed-up technique should not be tailored to specific inputs. In
order to evaluate the robustness of existing and new speed-up techniques, we here present
an extensive experimental study on different types of inputs. More precisely, we evaluate
different metrics for road networks, graphs deriving from railway optimization, sensor
networks, and synthetic grid graphs.

Default Settings. Unless otherwise stated, we use the following settings for existing speed-
up techniques. For ALT, we use 16 maxCover landmarks. In our Arc-Flag setup, we use
128 cells obtained from METIS. In addition, we evaluate the hierarchical RE algorithm,
Highway Hierarchies (HH), and Contraction Hierarchies (CH). The performance of all
approaches highly depends on the chosen preprocessing parameters which we here tune
manually. For HH, we use a distance table as soon as the contracted graph has less than
10 000 nodes. CH uses its default aggressive parameters [GSSD08]. Moreover, we evaluate
the combination of RE and ALT, named REAL, without reach-aware landmarks [GKW07].
For our new combinations, we apply the default parameter settings found in Section 4.5.

4.6.1 Metrics in Road Networks

First, we evaluate the impact of a metric change on speed-up techniques. As inputs we
use our road networks from the last section but apply travel distances instead of travel
times. We hereby want to test whether the speed-up techniques rely on the topology of the
network or the speed-up derive from the used metric. Interestingly, plain Dijkstra settles
the same number of nodes for each metric but query times vary heavily when switching
metrics: Dijkstra’s algorithm is two times faster on the distance metric than on travel
times. This derives from the number of decreaseKey operations of the used priority
queue. The results for speed-up techniques can be found in Tab. 4.18.

We observe that all hierarchical methods are slower on travel distances than on travel
times. The reason is that the advantage of taking motorways fades when switching the
metric. Often, a path across fields is shorter than the one via the highway. Hence, the
incorporated hierarchy is less developed for travel distances than for travel times. While
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Table 4.18: Overview of the performance of prominent speed-up techniques and combinations
analogous to Tab. 4.17 but with travel distances as metric.

Europe USA
prepro. query prepro. query

time space #settled time time space #settled time
method [min] [B/n] nodes [ms] [min] [B/n] nodes [ms]
Reach [GKW07] 49 15.0 7 045 5.5300 70 22.0 7 104 5.9700
HH [Sch08] 32 36.0 3 261 3.5300 38 66.0 3 512 3.7300
CH 4.4.1 89 -0.1 1 650 4.1900 57 -1.2 953 1.5000
TNR [Sch08] 162 301.0 N/A 0.0380 217 281.0 N/A 0.0860
ALT-a16 [GKW07] 10 70.0 240 750 430.0000 15 89.0 276 195 530.4000
ALT-m16 4.1 70 128.0 218 420 127.7000 102 128.0 278 055 166.9000
AF [HKMS09] 1 874 33.0 7 139 5.0000 1 311 37.0 12 209 8.8000
REAL [GKW07] 90 37.0 583 1.1600 138 44.0 628 1.4800
HH∗ [DSSW09b] 33 92.0 1 449 1.5100 40 89.0 1 372 1.3700
SHARC 4.3 64 19.0 3 014 1.3400 75 20.0 3 871 1.7800
CALT 4.2.2 14 19.0 2 958 4.2000 15 19.0 4 015 5.6000
eco CHASE 4.4.1 224 7.0 175 0.1560 185 2.5 148 0.1030
gen CHASE 4.4.1 1 022 27.0 67 0.0640 1 132 18.0 63 0.0430
pCHASE-0.5% 4.4.1 40 1.9 5 957 2.6100 43 0.3 8 276 3.1700
pReachFlags 4.4.2 516 31.0 5 224 4.0500 1 897 27.0 6 849 4.6900

a performance loss is expected for hierarchical methods, Tab 4.18 clearly indicates that
goal-directed techniques perform worse on travel distances as well. For Arc-Flags, this
derives from the fact that flags for the paths across fields are set to true for this metric
while they are set to false for travel times.

Combinations of techniques do not perform much worse on travel distances than on
travel times. The REAL algorithm for example settles roughly the same number of nodes
on both metrics and even has a lower preprocessing time. For CHASE, we observe
that the combination yields excellent query times on this metric as well. This is especially
interestingly since both pure Arc-Flags and CH are 5 and 20 times slower on travel distance
whereas the combination of both approaches, yields similar query times. The reason for
this is the following. For pure CH, edge reduction works worse on travel distances yielding
higher degrees for high-level nodes. By applying Arc-Flags on this rather dense core, a lot
of edge relaxations can be avoided. This also explains the highly increased preprocessing
times of CHASE: The core is denser making arc-flags computation more time-consuming.
Hence, partial CHASE is more promising on this input than on travel times as metric.
We observe that preprocessing times are faster than for pure CH combined—at least for
Europe—with better query times.

Concerning preprocessing times, CALT outperforms any other technique (except
ALT) combined with reasonable query times. We conclude that CALT indeed is almost
as robust as pure ALT with respect to metric changes.

4.6.2 Railway Networks

Our second set of experiments is executed on three simple time-expanded graphs (cf.
Section 2.4). The first shows the local traffic of Berlin/Brandenburg, has 2 599 953 nodes
and 3 899 807 edges, the second one represents local traffic of the Ruhrgebiet (2 277 812
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nodes, 3 416 597 edges), and the last graph depicts long distance connections of Europe
(1 192 736 nodes, 1 789 088 edges). Table 4.19 gives an overview of the performance of
speed-up techniques on these instances.

Table 4.19: Performance of speed-up techniques on simple time-expanded railway networks.
Berlin/Brandenburg Ruhrgebiet long distance

Prepro Query Prepro Query Prepro Query
time space #sett. time time space #sett. time time space #sett. time
[min] [B/n] nodes [ms] [min] [B/n] nodes [ms] [min] [B/n] nodes [ms]

Dijkstra 0 0 1299830 406.2 0 0 1134420 389.2 0 0 609352 221.2
BiDijkstra 0 0 496281 151.3 0 0 389577 122.8 0 0 143613 43.8
uni ALT 10 128 383921 133.6 10 128 171760 64.7 5 128 71194 26.0
ALT 10 128 47764 22.9 10 128 59516 30.5 5 128 31367 15.0
uni AF 2240 24 172362 72.2 2323 24 158174 66.4 1008 24 74737 32.4
AF 4479 48 24004 9.2 4646 48 28448 10.7 2016 48 10560 3.5
RE 182 39 27095 25.5 290 45 38397 39.8 63 43 8978 8.3
HH 38 263 5285 56.1 65 202 9528 196.2 12 386 1930 7.3
CH 27 0 416 0.4 43 4 546 0.6 8 3 376 0.3
uni REAL 192 167 20062 22.2 300 173 16649 21.1 68 171 6335 8.8
REAL 192 167 4159 6.6 300 173 7867 13.3 68 171 2479 4.5
CALT 2 45 2830 6.3 3 68 4247 11.3 1 63 1088 5.3
SHARC 602 9 11006 3.8 615 8 12412 4.2 209 15 7519 2.2
CHASE 33 2 125 0.1 48 7 244 0.2 9 5 299 0.2
pCHA-0.5% 22 2 4492 2.1 30 6 8209 4.5 6 4 14482 1.6
pCHA-5.0% 260 7 18698 7.2 169 13 20224 8.0 18 11 8985 3.2

Note that bidirectional approaches cannot be used out-of-the-box for time-expanded
networks. In order to gain insights in the performance of these techniques, we also use
bidirectional speed-up techniques by picking a random event at the target station. Thus,
these bidirectional experiments are intended to give hints whether it is worth focusing
on adapting bidirectional search to such graphs. Only SHARC and unidirectional Arc-
Flags—with a partitioning by station—are applicable. Arc-Flags perform roughly 12-18
times faster than unidirectional Dijkstra. But when switching to bidirectional search we
gain another speed-up of factor 6-10. Thus, it may be worth focusing on the question how
to use bidirectional search in this scenario. However, we observe very long preprocessing
times for Arc-Flags on these networks. The situation changes for CHASE, preprocessing
times are within reasonable times and query performance is the best of all applied speed-
up techniques. RE seems to have problems on the local traffic networks as preprocessing
takes longer than 3 hours and speed-ups are only mild, while this does not hold for long
distance connections. Regarding query times, HH has also problems with both local traffic
networks: on Berlin/Brandenburg, HH is only 3 times faster than bidirectional Dijkstra,
and on the Ruhrgebiet, HH is even slower. Interestingly, this does not derive from a missing
hierarchy within the network: CH preforms very well on all three inputs. However, CH
and CHASE rely on bidirectional which needs further adaption to provide feasible results
for these inputs. Still, it may be expected that an adapted technique might work very well
on these inputs.
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4.6.3 Sensor Networks

At a glance, routing in sensor networks has similar properties as routing in road networks.
Thus, we evaluate so called unit-disc graphs which are widely used for experimental eval-
uations in that field. Such graphs are obtained by arranging nodes on the plane and
connecting nodes with a distance below a given threshold. It is obvious that the density
can be varied by applying different threshold values. In our setup, we use graphs with
about 1 000 000 nodes and an average degree of 5, 7, and 10, respectively. As metric, we
use the distance between nodes according to their embedding. The results can be found in
Tab. 4.20. Uni- and bidirectional Dijkstra settle roughly the same number of nodes inde-
pendent of the average degree but query times again increase with higher density due to
more relaxed edges. Analyzing ALT, the bidirectional variant is twice as fast as the unidi-
rectional algorithm for the instance with degree 5 while for degree 10, both approaches are
equal to each other with respect to query times. The decreasing search space of unidirec-
tional ALT is due to the increasing number of edges. With more edges, the shortest path
is very close to the flight distance between source and target. In such instances, the po-
tentials deriving from landmarks are very good. Again adding contraction to ALT yields
good results. Preprocessing times stay little and CALT outperforms ALT on all inputs.
Arc-Flags yield very good query times but again for the price of high preprocessing times.
Hierarchical methods work very good on average degrees of 5 and 7. For a degree of 10
preprocessing and query times increase drastically. For RE, a reason is that node-labels
are used for pruning the search. With increasing density, many edges are never used by
any shortest path. As these edges cannot be pruned by using node-labels, query times
increase. CHASE outperforms any technique with less space and very small preprocessing
times. However, the gap between CALT and CHASE shrinks the denser the graph gets.
Summarizing, CHASE performs best on these inputs. Only for higher densities, CALT
yields lower preprocessing times but still, CHASE has better query performance.

Table 4.20: Performance of speed-up techniques on unit-disc graphs with different average degree.
average deg. 5 average deg. 7 average deg. 10

Prepro Query Prepro Query Prepro Query
time space #sett. time time space #sett. time time space #sett. time
[min] [B/n] nodes [ms] [min] [B/n] nodes [ms] [min] [B/n] nodes [ms]

Dijkstra 0 0 487818 257.3 0 0 521874 330.1 0 0 502683 399.0
BiDijkstra 0 0 299077 164.4 0 0 340801 225.1 0 0 325803 269.4
uni ALT 8 128 22 476 17.1 8 128 16 634 15.1 10 128 14 561 16.0
ALT 8 128 9 222 8.5 8 128 10 565 11.8 10 128 11 749 15.6
uni Arc-Flags 53 80 8 556 7.9 299 112 16 445 16.8 801 160 21 413 24.2
Arc-Flags 105 160 2 091 1.8 598 224 4 761 4.6 1 602 320 7 019 7.5
RE 4 20 848 0.5 46 42 13 783 14.3 1 153 54 83 826 104.5
HH 2 251 203 0.2 12 549 5 068 8.5 71 690 23 756 49.1
CH 2 -13 236 0.13 21 -11 1 089 1.80 571 -4 2 475 11.5
uni REAL 12 148 307 0.4 54 170 2 072 3.2 1 163 182 8 780 13.6
REAL 12 148 291 0.4 54 170 2 394 4.1 1 163 182 11 449 21.7
CALT 1 7 689 0.5 2 29 670 1.0 9 137 992 2.6
SHARC 1 16 568 0.3 10 42 1 835 1.0 70 96 4 972 3.6
eco CHASE 2 -11 66 0.04 23 -3 424 0.57 578 15 1 457 4.7
gen CHASE 3 -2 43 0.02 52 27 112 0.12 924 85 293 0.53
pCHASE-10% 2 -2 36 473 1.2 12 10 5 677 2.7 69 35 7 529 2.7
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4.6.4 Grid Graphs

Our last testset exploits the influence of graph diameter on the performance. Here, we
vary the diameter of a graph by using multi-dimensional grid graphs with 2, 3, and 4
dimensions. The number of nodes is set to 250 000, and thus, the number of edges is 1, 1.5,
and 2 million, respectively. Edge weights are picked uniformly at random from 1 to 1000.
These results can be found in Tab. 4.21. Like for sensor networks, unidirectional Dijkstra
settles the same number of nodes on all graphs. But due to more relaxed edges query
times increase with an increasing number of dimensions. As the diameter shrinks with
increasing number of dimensions, bidirectional Dijkstra settles less nodes on 4-dimensional
grids than 2-dimensional grids. This analysis also holds for the performance of uni- and
bidirectional ALT. For these inputs, it seems as if adding contraction to ALT does not
really pay off. Query times are similar but preprocessing space increases. The reason
for this is that the core is quite big. Storing distances to 64 landmarks on a big core
requires a lot of space. The reason for the low speed-ups is that the number of entry
points to the core is very high. Our hierarchical representatives RE/HH/CH perform
very good on 2-dimensional grids but significantely lose performance when switching to
higher dimensions. The main reason is that the contraction phase of the algorithms fail.
Summarizing, ALT and CALT have the best trade-off with respect to preprocessing and
query times on higher-dimensional grids. Only Arc-Flags is faster for the price of a much
higher effort in preprocessing. Hierarchical methods can only compete with ALT and
CALT on 2-dimensional grids.

Table 4.21: Performance of speed-up techniques on the grid graphs with different numbers of
dimensions.

2-dimensional 3-dimensional 4-dimensional
Prepro Query Prepro Query Prepro Query

time space #sett. time time space #sett. time time space #sett. time
[min] [B/n] nodes [ms] [min] [B/n] nodes [ms] [min] [B/n] nodes [ms]

Dijkstra 0 0 125 675 36.7 0 0 125 398 78.6 0 0 122 796 137.5
BiDijkstra 0 0 79 962 24.2 0 0 45 269 28.2 0 0 21 763 20.3
uni ALT 1 128 5 452 2.5 2 128 4 223 3.8 3 128 5 031 7.5
ALT 1 128 2 381 1.5 2 128 1 807 2.2 3 128 1 329 2.5
uni AF 45 64 4 476 1.9 415 94 8 996 5.7 1 559 122 25 125 26.8
AF 89 128 1 340 0.6 830 189 1 685 1.0 3 117 244 2 800 2.3
RE 13 31 3 797 2.1 220 102 18 177 27.1 2 243 89 20 587 40.2
HH 2 1682 583 0.6 32 1954 17 243 95.8 680 662 61 715 343.0
CH 1 0 418 0.3 226 15 2 177 6.6 2 229 29 14 501 60.0
uni REAL 14 159 799 0.8 222 230 5 081 10.6 2 246 217 10 740 30.3
REAL 14 159 829 0.9 222 230 3 325 8.5 2 246 217 3 250 11.6
CALT 1 211 458 1.1 2 386 557 1.9 2 487 774 2.2
SHARC 32 60 1 089 0.4 62 97 5 839 1.9 292 13 20 115 11.5
eco CHASE 1 4 274 0.21 226 29 2 836 10.2 2 230 35 30 848 131.0
gen CHASE 2 24 101 0.07 244 113 772 1.3 2 260 106 29 811 124.8
pCHASE-10% 1 15 1 967 0.5 25 57 10 788 7.5 - - - -
pCHASE-20% 2 26 3 063 0.8 31 69 10 052 5.2 482 208 31 384 52.1
pCHASE-50% 4 55 5 964 1.5 50 95 13 402 5.7 441 279 36 473 33.0
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4.7 Concluding Remarks

Review. In this chapter, we showed that landmarks can be used out of the box in dynamic
scenarios. By adding contraction to ALT, we remedied most of the drawbacks of pure
ALT without losing the advantages. We also introduced SHARC-Routing which combines
several ideas from Highway Hierarchies, Arc-Flags, and the REAL-algorithm. More pre-
cisely, our approach can be interpreted as a unidirectional hierarchical approach: SHARC
steps up the hierarchy at the beginning of the query, runs a strongly goal-directed query
on the highest level and automatically steps down the hierarchy as soon as the search is
approaching the target cell. As a result we are able to perform queries as fast as bidirec-
tional approaches but SHARC can be used in scenarios where former techniques fail due
to their bidirectional nature. Hence, it seems a good choice for augmentation.

Moreover, we systematically combined hierarchical techniques with arc-flags. As a
result we are able to present the fastest algorithms for several (time-independent) scenarios
and inputs. For sparse graphs, CHASE yields excellent speed-ups with low preprocessing
effort. The algorithm is only overtaken by Transit-Node Routing in road networks with
travel times, but the gap is almost closed. However, even Transit-Node Routing can
be further accelerated by adding goal-direction. For denser inputs, we present a partial
variant of CHASE which stops the hierarchy construction at a certain point and runs a
pure goal-directed query on the core.

Concerning speed-up techniques in general, we gained further and interesting insights
by our extensive experimental study. Hierarchical approaches seem to have problems
with high-density networks, the chosen metric has a high impact on achieved speed-ups,
edge-labels are somewhat superior to node-labels, and small diameters yield big speed-ups
for bidirectional search. As a consequence, the choice of which technique to use highly
depends on the scenario. However, of all examined speed-up techniques, ALT, CALT,
and partial CHASE provide a reasonable trade-off on preprocessing time and space on
the one hand and achieved speed-up on the other hand. Although these approaches are
slower on hierarchical inputs they are more robust with respect to the input. Still, SHARC
performs very well on most inputs, although it is a unidirectional technique.

Future Work. It seems as if route planning in time-independent networks has arrived at
a final point. We have techniques with low memory requirements and excellent query
times not only for road networks. However, some problems persists. Most importantly,
updating preprocessing of SHARC is an interesting question. While updating the shortcuts
seems possible by adapting ideas from [Sch08], updating arc-flags is non-trivial. The most
challenging task however, i.e., the adaption of techniques to augmented scenarios, is dealt
with in Chapters 5 and 6.

References. This chapter is based on [DW07, BDW07a, BD08, BDS+08] and the corre-
sponding accepted [BDW09, BD09] and submitted [BDS+09] journal versions.



Chapter 5

Time-Dependent Route Planning

A major drawback of most existing speed-up techniques, including the ones from Chap-
ter 4, is that their correctness depends on the fact that the network is static, i.e., the
network does not change between queries. Only the preprocessed data of ALT (cf. Chap-
ter 4.1) and Highway-Node Routing [SS07] can be updated if a road network is perturbed
by a relatively small number of traffic jams. However, none of the techniques developed
during the last years can be adapted to time-dependent networks easily.

In this chapter, we show how some of the speed-up techniques from Chapter 4 can be
augmented for exact time-dependent routing in road and railway networks. However, in
road networks, time-dependent data is based on historical data. As a result, travel times
on roads for specific departure times only approximate the current traffic situations. So, it
makes sense to evaluate speed-up techniques that find paths that are slightly longer than
the shortest, which we do in this chapter as well.

Overview. This chapter is organized as follows. We augment the ingredients of our time-
dependent speed-up techniques in Section 5.1. It turns out that landmark preprocessing
stays correct and contraction can be augmented in a straightforward manner, but for a
price of high memory consumption. Setting arc-flags in time-dependent networks gets
more expensive in terms of preprocessing times. Hence, we introduce several ways to
efficiently approximate arc-flags. Section 5.2 shows how bidirectional ALT can be applied
in time-dependent networks anyway. We therefore perform a backward search that bounds
the set of nodes that need to be explored by the forward search. Similar to Section 4.2, we
enrich this approach by contraction in Section 5.3. Our augmented version of SHARC is
introduced in Section 5.4 where we put the augmented ingredients together to an efficient
time-dependent speed-up technique. All three approaches are extensively evaluated in
Section 5.5 with real-world transportation networks of Germany and Europe. We conclude
our work on time-dependent route planning by a summary and a discussion on future work
in Section 5.6.

5.1 Augmenting Ingredients

Analyzing the speed-up techniques from Chapter 4, we observe that the preprocessing
of most techniques relies on the following ingredients: Local Dijkstra-searches, arc-flags
computation, landmarks, and contraction. In this section we show how to augment all
these ingredients such that correctness is guaranteed in a time-dependent scenario.
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5.1.1 Dijkstra

Computing d(s, t, τ) can be solved by a modified Dijkstra [CH66]: when relaxing an edge
(u, v) we have to evaluate its weight for departure time τ + d(s, u, τ). In our scenario, the
running time for evaluating functions is negligible, hence the additional effort for respecting
the departure time is negligible as well. However, computing d∗(s, t) is more expensive
but can be computed by a label-correcting algorithm [Dea99]. Such an algorithm can be
implemented very similarly to Dijkstra. The source node s is initialized with a constant
label d∗(s, s) ≡ 0, any other node u with a constant label d∗(s, u) ≡ ∞. Then, in each
iteration step, a node u with minimum d∗(s, u) is removed from the priority queue. Then
for all outgoing edges (u, v) a temporary label l(v) = d∗(s, u) ⊕ len(u, v) is created. If
l(v) ≥ d∗(s, v) does not hold, l(v) yields an improvement. Hence, d∗(s, v) is updated to
min{l(v), d∗(s, v)} and v is inserted into the queue. We may stop the routine if we remove a
node u from the queue with d(s, u) ≥ d(s, t). If we want to compute d∗(s, t) for many nodes
t ∈ V , we apply a label-correcting algorithm and stop the routine as soon as our stopping
criterion holds for all t. Note that we may reinsert nodes into the queue that have already
been removed by this procedure. Also note that when applied to a graph with constant
edge-functions, this algorithm equals a normal Dijkstra. An interesting result from [Dea99]
is the fact that the runtime of label-correcting algorithms highly depends on the complexity
of the edge-functions. This is confirmed by our experiments (see Section 5.5).

In the following, we construct profile graphs (PG), i.e., compute d∗(s, u) for a given
source s and all nodes u ∈ V , with our label-correcting algorithm. We call an edge (v, u)
a PG-edge if d∗(s, v)⊕ (v, u) > d∗(s, u) does not hold. In other words, (u, v) is a PG-edge
if it is part of a shortest path from s to v for at least one departure time.

Bidirectional Profile Search. As already mentioned, bidirectional search is prohibited for
time-queries as the arrival time is unknown. However, we can directly apply bidirectional
search for profile-queries since we investigate all arrival times. Compared to a time-
independent bidirectional Dijkstra, we only need to adjust the stopping criterion. Stop
the search if the lower bound of the minimum label in the forward queue added to the
lower bound of the minimum label in the backward queue is larger than the upper bound
of the tentative distance label.

5.1.2 Landmarks

Based on the ideas from 4.1.2, we can adapt a unidirectional variant of the ALT algo-
rithm to the time-dependent scenario: We perform both landmark selection and distance
computation in the lower bound graph G. It is obvious that we obtain a feasible potential.
However, ALT implemented as bidirectional search is much faster than the unidirectional
variant. As already mentioned, performing a bidirectional search in time-dependent net-
work is non-trivial. A possible approach is the topic of Section 5.2.

Note that the time-dependent ALT algorithm also works in a dynamic time-dependent
scenario. Using the same arguments from Section 4.1.2, the algorithm still performs accu-
rate queries as long as edge weights do not drop below their lower bound. If this happens,
the distance labels can be updated using the routine from Section 4.1.1.
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5.1.3 Arc-Flags

In time-independent scenarios, a set arc-flag AFC(e) denotes whether e has to be consid-
ered for a shortest-path query targeting a node within C. In other words, the flag is set if
e is important for (at least one target node) in C. In a time-dependent scenario, we use
the following intuition to set arc-flags: an arc-flag AFC(e) is set to true, if e is important
for C at least once during Π. A straightforward adaption of computing arc-flags in a
time-dependent graph is to construct a profile graph in

←−
G for all boundary nodes b ∈ BC

of all cells C. Then we set AFC(u, v) = true if (u, v) is a PG-edge for at least one PG built
from all boundary nodes b ∈ BC . See Figure 5.1 for an example. In addition, we also set
all own-cell flags to true as well. The time-dependent query is a normal time-dependent
Dijkstra only relaxing edges with set flag for the target’s region.

u v b

Figure 5.1: Computation of time-dependent arc-flags. By construction of a profile graph from
the boundary node b, we end up in two distance labels d∗(u, b) and d∗(v, b). If len(u, v)⊕d∗(v, b) >
d∗(u, b) does not hold, (u, v) is a PG edge (with respect to b) and hence gets the arc-flag for c(b)
assigned true.

Lemma 5.1. Time-dependent Arc-Flags is correct.

Proof. To show correctness of time-dependent Arc-Flags, we have to prove that for each
shortest s–t path pτst = (e0, . . . , ek), τ ∈ Π the following condition holds: AFT (ei) =
true, 0 ≤ i ≤ k with T = c(t). For all edges ei = (ui, vi) with c(ui) = c(vi) = c(t) this
holds because we set own-cell flags to true. Let s and t be arbitrary nodes, and let τ be an
arbitrary departure time. In addition, let ei = (ui, vi) ∈ pτst, c(ui) 6= c(t), c(vi) 6= c(t), and
bT be the last boundary node of region T on pτst. We know that the subpath from s to bT
is a shortest path (for departure time τ). Assume AFT (ei) = false. Since AFT (ei) = false
holds, d∗(ui, bT ) ⊕ (ui, vi) > d∗(vi, bT ) must hold as well. This is a contradiction since ei
is part of the shortest path from s to bT .

Approximation. Computing arc-flags as described above requires to build a complete pro-
file graph on the backward graph from each boundary node yielding too long preprocessing
times for large networks. Recall that the running time of building PGs is dominated by
the complexity of the function. Hence, we may construct two PGs for each boundary
node, the first uses ↑len as length functions, the latter ↓len. As we use approximations
with a constant number of interpolation points, constructing two such PGs is faster than
building one exact one. We end up in two distance labels per node u, one being an overap-
proximation, the other being an underapproximation of the correct label. Then, for each
(u, v) ∈ E, we set AFC(u, v) = true if len(u, v)⊕ ↑d∗(v, bC) >↓d∗(u, bC) does not hold.
See Figure 5.2 for an example.
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u v b

Figure 5.2: Approximation of time-dependent
arc-flags via functions. The original functions
are drawn in gray. By using over- and underap-
proximations of len during construction of the
profile graphs, we end up in approximated dis-
tance labels for u and v. Then, we set the arc-
flag of (u, v) to true if ↓len(u, v)⊕ ↓d∗(v, bC) >↑
d∗(u, bC) does not hold.

u v b

Figure 5.3: Approximation of time-
dependent arc-flags via bounds. The original
functions are drawn in gray. Unlike for ap-
proximation via functions, we use bounds for
approximations. We set the arc-flag of (u, v)
to true if len(u, v) + d∗(v, bC) ≤ d∗(u, bC)
holds.

If networks get so big that even setting approximate labels is prohibited due to running
times, one can even use upper and lower bounds for the labels. This has the advantage
that building two shortest-path trees per boundary node is sufficient for setting correct
arc-flags. The first uses len as length function, the other len. See Figure 5.3 for an
example. Note that by approximating arc-flags (denoted by AF ), the quality of them
may decrease but correctness is untouched. Thus, queries remain correct by may become
slower.

Lemma 5.2. Approximate Arc-Flags is correct.

Proof. We have to show that AF (e) = true⇒ AF (e) = true holds for all edges e = (u, v).
Assume AF (e) = true and AF (e) = false. Let b be the corresponding boundary node.
Since AF (e) = true, we known that lenτ (v, u) + dτ+lenτ (v,u)(u, b) = dτ (v, b) holds for at
least one departure time. Since AF ((u, v)) = false, len(u, v)⊕ ↑ d∗(v, bC) >↓ d∗(u, bC)
must hold as well. Especially, for τ , lenτ (v, u) + dτ+lenτ (v,u)(u, b) > dτ (v, b) holds, a
contradiction.

Heuristic Arc-Flags. Analyzing both approaches for computing arc-flags, exact and ap-
proximate, we observe the following. Exact flags yield excellent query times (cf. Sec-
tion 5.5) but preprocessing is time consuming. On the contrary, approximate flags yield
low preprocessing times but query performance is much worse than for exact flags.

Hence, we propose a third approach for computing flags. Unfortunately, we cannot
guarantee correctness but experiments show that in road networks, errors are very small.
The preprocessing is as follows: We grow k + 2 shortest-path trees from each boundary
node, the first uses len as metric, the second one len. The remaining k trees are time-
queries in

←−
G using a fixed arrival time at the boundary node. We set a flag of an edge for

a region C if the edge is part of at least one shortest path tree grown from the boundary
nodes of C.

As already mentioned, this approach may yield incorrect queries as a shortest path
for a specific departure time may have been missed. However, it is obvious that a path is
found since at least for one departure time, flags are set to true for a shortest path to the
target’s region. We evaluate the error-rate in Section 5.5.
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Multi-Level Arc-Flags. Preprocessing the multi-level extension of Arc-Flags in a time-
dependent scenario is done as follows. Arc-flags on the upper level are computed as
described above. For the lower flags, we construct a PG for all boundary nodes b on the
lower level. We may stop the construction as soon as d∗(u, b) ≥ d∗(v, b) holds for all nodes
v in the supercell of C and all nodes u in the priority queue. Then, we set an arc-flag to
true if the edge is a PG-edge of at least one PG. Note that two-level arc-flags approach
can be extended to a multi-level arc-flags approach in a straightforward way.

Lemma 5.3. Time-Dependent Multi-Level Arc-Flags is correct.

Proof. In the following, we show the correctness of two-level Arc-Flags. The generalization
to a multi-level scenario is straightforward.

Let pτst = (e0, . . . , ek), τ ∈ Π be an arbitrary s–t shortest path with arbitrary departure
time τ . Let ci(u) be the cell of u in level i, where 0 denotes the lower, 1 the upper level.
An edge (u, v) is part of the upper level if c1(u) 6= c1(t) and c1(v) 6= c1(t). According
to Lemma 5.1, we know that all edges being part of the upper level have AF

c1(t) = true.
Let b be the last boundary node of c0(t) on pτst. Since we have built a profile graph from
b during preprocessing until all nodes in c1(t) have their final label assigned, edges being
part of the lower level have proper arc-flags assigned.

5.1.4 Contraction

Our time-dependent contraction routine is very similar to our time-independent one from
Section 3.4. First we reduce the number of nodes by removing unimportant ones and—in
order to preserve distances between non-removed nodes—add time-dependent shortcuts
to the graph. Then, we apply an edge-reduction step that removes unneeded shortcuts.

Node-Reduction. We reduce the number of nodes by iteratively bypassing nodes until
no node is bypassable any more. To bypass a node u we first remove u, its incoming
edges I and its outgoing edges O from the graph. Then, for each v ∈ tails(I) and for
each w ∈ heads(O) \ {v} we introduce a new edge of the length len(v, u) ⊕ len(u,w).
In the following, we will see that allowing multi-edges eases unpacking shortcuts since
each shortcut represents exactly one path. We call the number of edges of the path that a
shortcut represents on the graph before the node-reduction the hop number of the shortcut.

The order in which nodes are bypassed changes the resulting contracted graph. Hence,
we use a heap to determine the next bypassable node. Therefore, we first determine the
number #shortcut of new edges that would be inserted into the graph if u was bypassed,
i.e., existing edges connecting nodes in tails(I) with nodes in heads(O) do not contribute
to #shortcut. Let ζ(u) = #shortcut/(degin(u) + degout(u)) be the expansion [GKW07]
of node u. Furthermore, let h(u) be the hop number of the hop-maximal shortcut, and
let p(u) be the number of interpolation points of the shortcut with most interpolation
points, that would be added if u was bypassed. Then we set the key of a node u within
the heap to h(u) + p(u) + 10 · ζ(u), smaller keys having higher priority. By this ordering
for bypassing nodes we prefer nodes whose removal yield few additional shortcuts with a
small hop number and few interpolation points.

We stop the node-reduction as soon as we would bypass a node u with an expansion
ζ(u) > C, with C called the expansion threshold. Moreover, to keep the costs of shortcuts
limited we do not bypass a node if its removal would either result in a shortcut with more



76 CHAPTER 5. TIME-DEPENDENT ROUTE PLANNING

than I interpolation points or a hop number greater than H. We say that the nodes that
have been bypassed belong to the component, while the remaining nodes are called core
nodes.

Corollary 5.4. Time-dependent node-reduction keeps distances (for all departure times)
between core nodes correct.

Proof. Correctness follows directly from our rules of adding shortcuts.

Edge-Reduction. The second edge-reduction step for time-dependent networks also is sim-
ilar a the static one: We build a PG (instead of a shortest path tree) from each u of the
core. We stop the growth as soon as all neighbors v of u have their final label assigned.
Then we check for all neighbors whether d∗(u, v) < len(u, v) holds. If it holds, we can
remove (u, v) from the graph because for all possible departure times, the path from u
to v does not include (u, v). As already mentioned, running profile queries is very time
consuming. Hence, we limit the running time of this procedure by restricting the number
of priority-queue removals to 20.

Since building even such very limited PGs can get very expensive, we apply a bounded
edge-reduction step directly before. We grow two shortest path trees from u, one uses
len as length function, the other len. Again, we stop the growth as soon as all outgoing
neighbors v of u have been settled. If d∗(u, v) < len(u, v) holds, we can safely remove
(u, v) from the graph.

Corollary 5.5. Time-dependent edge-reduction keeps distances (for all departure times)
between core nodes correct.

Proof. Correctness follows directly from our rules of removal.

Discussion. Time-dependent contraction in road networks is space-consuming. Each
added shortcut increases the total number of interpolation points of the graph (cf. Fig. 2.1).
So, unlike in time-independent scenarios, shortcuts must be carefully chosen and we have
to keep the number of shortcuts as low as possible.

5.2 Bidirectional ALT

As already mentioned, unidirectional ALT can be used out of the box if preprocessing is
done on the lower bound graph G. However, unidirectional ALT yields only mild speed-
ups even in time-independent Scenarios (cf. Tab. 4.1). Since potentials are based on G, it
is expected that query performance is even worse in time-dependent networks.

In this section, we show how bidirectional ALT can be used in time-dependent networks
anyway. The idea is as follows: A backward search is performed in G and is only used
to restrict nodes that need to be visited by the forward search. In the following, we
explain the query algorithm in more detail, provide a proof of correctness, present several
optimizations, and show how this approach can be used to approximate time-dependent
shortest paths.

5.2.1 Query

The query algorithm is based on restricting the scope of a time-dependent A∗ search
from the source using a set of nodes defined by a time-independent A∗ search from the
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destination, i.e., the backward search is a reverse search in G, which corresponds to the
graph G weighted by the lower bounding function len. More precisely, it works in in three
phases:

1. A bidirectional ALT occurs on G, where the forward search is performed on the
graph, and the backward search is run on the graph weighted by the lower bounding
function len. All nodes settled by the backward search are included in a set M .
Phase 1 terminates as soon as the two search scopes meet.

2. Suppose that v ∈ V is the first node in the intersection of the heaps of the forward
and backward search; then the time dependent cost µ = γτ (pv) of the path pv going
from s to t passing through v is an upper bound to d(s, t, τ). In the second phase,

Algorithm 4: TDALT(G = (V,E), s, t, τ)
−→
Q.insert(s, 0);

←−
Q.insert(t, 0); M := ∅; µ := +∞; done := false; phase := 1.1

while ¬ done do2

if (phase = 1) ∨ (phase = 2) then3

↔∈ {→,←}; // phase 1 or 2: alternate forward and backward4

else5

↔:=→; // phase 3: only forward6

u :=
←→
Q .extractMin()7

if (u = t) ∧ (↔=→) then8

done := true9

continue10

if (phase = 1) ∧ (u.dist→ + u.dist← <∞) then11

µ := u.dist→ + u.dist←; // update upper bound12

phase := 2; // switching to phase 213

if (phase = 2) ∧ (↔=←) ∧ (µ < u.key←) then14

phase := 3; // switching to phase 315

continue16

for edges (u, v) ∈ ←→E do17

if ↔=← then18

M.insert(u)19

else if (phase = 3) ∧ (v /∈M) then20

continue; // only explore nodes explored by backward search21

if (v ∈ ←→Q ) then22

if u.dist↔ + len((u, v), u.dist↔) < v.dist↔ then23 ←→
Q .decreaseKey(v, u.dist↔ + len((u, v), u.dist↔) +←→π (v))24

else25 ←→
Q .insert(v, u.dist↔ + len((u, v), u.dist↔) +←→π (v))26

return µ27
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both search scopes are allowed to proceed until the backward search queue only
contains nodes whose associated key exceeds µ. In other words: let β be the key of
the minimum element of the backward search queue; phase 2 terminates as soon as
β > µ. Again, all nodes settled by the backward search are included in M .

3. Only the forward search continues, with the additional constraint that only nodes
in M can be explored. The forward search terminates when t is settled.

The pseudocode for this algorithm is given in Algorithm 4. Note that we use the
symbol ↔ to indicate either the forward search (↔=→) or the backward search (↔=←).
We denote by

−→
E the set of edges for the forward search, i.e.,

−→
E = E, and by

←−
E the set of

edges for the backward search, i.e.,
←−
E = {(u, v)|(v, u) ∈ E}. A typical choice is to alternate

between the forward and the backward search at each iteration of the algorithm during
the first two phases. The typical search space of a TDALT query is given in Figure 5.4.

Profile Queries. Algorithm 4 computes the distance between two points for a specific
departure time. If we want to compute the complete profile between two points, we can
directly apply bidirectional search: The problem of unknown arrival no longer persists as
we start the backward search for all possible arrival times. As a result, Algorithm 4 is not
suitable for computing profiles. Thus, we do not analyze profile queries for ALT.

5.2.2 Correctness

Recall that we denote by d(u, v, τ) the length of the shortest path from u to v with
departure time τ , by d(u, v) the length of the shortest path from u to v in the graph G,
and by πf (u) and πb(u) forward and backward potential of node u. We have the following
theorems.

Theorem 5.6. Algorithm 4 computes the shortest time-dependent path from s to t for a
given departure time τ .

Proof. The forward search of Algorithm 4 is exactly the same as the unidirectional version
of the ALT algorithm during the first 2 phases, and thus it is correct; we have to prove
that the restriction applied during phase 3 does not interfere with the correctness of the
A∗ algorithm.

Let µ be an upper bound on the cost of the shortest path; in particular, this can
be the cost γτ (pv) of the s → t path passing through the first meeting point v of the
forward and backward search. Let β be the smallest key of the backward search priority
queue at the end of phase 2. Suppose that Algorithm 4 is not correct, i.e., it computes
a sub-optimal path. Let p∗ be the shortest path from s to t with departure time τ , and
let u be the first node on p∗ which is not explored by the forward search; by phase 3, this
implies that u /∈M , i.e., u has not been settled by the backward search during the first 2
phases of Algorithm 4. Hence, we have that β ≤ πb(u) + d(u, t); then we have the chain
γτ (p∗) ≤ µ < β ≤ πb(u)+d(u, t) ≤ d(s, u)+d(u, t) ≤ d(s, u, τ)+d(u, t, d(s, u, τ)) = γτ (p∗),
which is a contradiction.

5.2.3 Approximation

Analyzing Algorithm 4 and Theorem 5.6, we obtain a guaranteed approximation of the
path found by switching to phase 3 earlier.
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(a) Snapshot of the search space at the end of phase 1.

(b) Snapshot of the search space at the end of phase 2.

(c) Search space after termination.

Figure 5.4: Progress of an example TDALT query. The input is a road network with congested
motorways. The source of the query is marked by the blue flag (left), the target by the red one
(right). The quickest path is drawn in dark green. Roads touched by TDALT are colored: black
depicts an edge relaxed by the forward search, blue depicts relaxation by the backward search, red
are edges examined for determining an upper bound. Grey edges have not been touched. a) shows
the search space at the end of phase 1, b) at end of phase 2, and c) the resulting search space. We
observe that at the computed path differs from the path found at the end of phase 1. Moreover,
it is clearly observable that only the forward search continues during phase 3.
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Theorem 5.7. Let p∗ be the shortest path from s to t. If the condition to switch to phase
3 is µ < Kβ for a fixed parameter K, then Algorithm 4 computes a path p from s to t
such that γτ (p) ≤ Kγτ (p∗) for a given departure time τ .

Proof. Suppose that γτ (p) > Kγτ (p∗). Let u be the first node on p∗ which is not explored
by the forward search; by phase 3, this implies that u /∈ M , i.e., u has not been settled
by the backward search during the first 2 phases of Algorithm 4. Hence, we have that
β ≤ πb(u) + d(u, t); then we have the chain γτ (p) ≤ µ < Kβ ≤ K(πb(u) + d(u, t)) ≤
K(d(s, u) + d(u, t)) ≤ K(d(s, u, τ) + d(u, t, d(s, u, τ))) = K(γτ (p∗)) < γτ (p), which is a
contradiction.

5.2.4 Optimizations

Performance of the basic version of the algorithm can be improved with the results that
we describe in this section.

Theorem 5.8. Let p be the shortest path from s to t with departure time τ . If all nodes
u on p settled by the backward search are settled with a key smaller or equal to d(s, u, τ) +
d(u, t, d(s, u, τ)), then Algorithm 4 is correct.

Proof. Let Q be the backward search queue, let key(u) be the key for the backward search
of node u, let β = key(v) be the smallest key in the backward search queue, which is
attained at a node v, and let µ be the best upper bound on the cost of the solution
currently known. To prove correctness, using the same arguments as in the proof of
Thm. 5.6 we must make sure that, when the backward search stops at the end of phase 2,
then all nodes on the shortest path from s to t that have not been explored by the forward
search have been added to M . The backward search stops when µ < β.

In an A∗ search, the keys of settled nodes are non-decreasing. So every node u which
at the current iteration has not been settled by the backward search will be settled with
a key key(u) ≥ key(v), which yields d(s, u, τ) + d(u, t, d(s, u, τ) ≥ key(v) = β > µ ∀u ∈ Q.
Thus, every node which has not been settled by the backward search cannot be on the
shortest path from s to t, and Algorithm 4 is correct.

This allows the use of larger lower bounds during the backward search: the backward
A∗ search does not have to compute shortest paths on the graph G, but it should in any
case guarantee that when a node u is settled then its key is an underestimation of the
time-dependent cost of the time-dependent shortest path between s and t passing through
u. The next proposition is of fundamental practical importance.

Proposition 5.9. During phase 2 the backward search does not need to explore nodes that
have already been settled by the forward search.

Proof. Let db(v) be the distance from a node v to node t computed by the backward search
if we do not explore any node already explored by the forward search. We will prove that,
when a node v on the shortest path from s to t with departure time τ is settled by the
backward search, then db(v) ≤ d(v, t, d(s, v, τ)) ∀τ ∈ T . By Thm. 5.8, this is enough to
prove our statement.

Consider a node v settled by the backward search, but not by the forward search; let
q be the shortest path from s to v with departure time τ , let q∗ be the shortest path from
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v to t with departure time τv = γτ (q). Suppose that q∗ does not pass through any node
already settled by the forward search. Then db(v) ≤ γ(q∗) ≤ d(v, t, d(s, v, τ)).

Suppose now that q∗ passes through a node w already settled by the forward search.
Let p be the shortest path from s to w with departure time τ , and let p∗ be the shortest path
from w to t with departure time τw = γτ (p); clearly v cannot be on p, because otherwise
it would have been settled by the forward search. So we have, by the FIFO property and
by optimality of p, that γτ (p) + γτw(p′) ≤ γτ (q) + γτv(q′), which means that v does not
have to be explored and added to the set M by the backward search, because we already
have a better path passing through w. Thus, even if key(v) > d(s, v, τ) + d(v, t, d(s, v, τ))
Algorithm 4 is correct.

By Thm. 5.8, we can take advantage of the fact that the backward search is used only
to bound the set of nodes explored by the forward search. This means that we can tighten
the bounds used by the backward search, even if doing so resulted in an A∗ backward
search that computes suboptimal distances. To derive some valid lower bounds we need
the following lemma and propositions.

Lemma 5.10. Let v be a node, and u its parent node in the shortest path from s to v with
departure time τ . Then d(s, u, τ) + πf (u) ≤ d(s, v, τ) + πf (v).

Proof. Suppose that ` is the active landmark, i.e., the landmark in our landmarks set
that currently gives the best bound; we have that either πf (u) = d(u, `) − d(t, `) or
πf (u) = d(`, t)− d(`, u).

First case: πf (u) = d(u, `)− d(t, `). We have d(s, u, τ) + πf (u) = d(s, u, τ) + d(u, `)−
d(t, `) ≤ d(s, u, τ) + d(u, v) + d(v, `) − d(t, `) ≤ d(s, u, τ) + len(u, v) + d(v, `) − d(t, `) ≤
d(s, v, τ) + πf (v).

Second case: πf (u) = d(`, t)−d(`, u). We have d(s, u, τ) +πf (u) = d(s, u, τ) +d(`, t)−
d(`, u); by triangular distance, d(`, v) ≤ d(`, u) + d(u, v) ≤ d(`, u) + len(u, v), which yields
−d(`, u) ≤ −d(`, v)+len(u, v). So d(s, u, τ)+d(`, t)−d(`, u) ≤ d(s, u, τ)+d(`, t)−d(`, v)+
len(u, v) ≤ d(s, v, τ) + πf (v).

Proposition 5.11. At a given iteration, let v be the last node settled by the forward search.
Then, for each node w which has not been settled by the forward search, d(s, v, τ)+πf (v)−
πf (w) ≤ d(s, w, τ).

Proof. There are two possibilities for w: either it has been explored (but not settled)
by the forward search, or it has not been explored. Let Q be the set of nodes in the
forward search queue. If w has been explored, then w ∈ Q, and clearly d(s, v, τ)+πf (v) ≤
d(s, w, τ) + πf (w) because v has been extracted before w, which proves our statement.
Otherwise, there is a node u ∈ Q on the shortest path from s to w with departure time τ
which has been explored but not settled. We have that d(s, v, τ)+πf (v) ≤ d(s, u, τ)+πf (u)
because v has been extracted while u is still in the queue, and by Lemma 5.10, if we examine
the nodes u = u1, u2, . . . , uk = w on the shortest path from s to w with departure time τ ,
we have that d(s, u1, τ) + πf (u1) ≤ · · · ≤ d(s, uk, τ) + πf (uk), from which our statement
follows.

Let v be as in Prop. 5.11, and w a node which has not been settled by the forward
search. Prop. 5.11 suggests that we can use

π∗b (w) = max{πb(w), d(s, v, τ) + πf (v)− πf (w)} (5.1)
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as a lower bound to d(s, w, τ) during the backward search. However, we have to make sure
that the bound is valid at each iteration of Algorithm 4.

Lemma 5.12. If the key of the forward search used to compute the potential function π∗b
defined by (5.1) is fixed, then we have π∗b (v) ≤ π∗b (u) + len(u, v) for each edge (u, v) ∈ E.

Proof. By definition we have π∗b (v) = max{πb(v), α − πf (v)}, where with α we denoted
the key of a node settled by the forward search, which is fixed by hypothesis. Consider the
case π∗b (v) = πb(v); then, since the landmark potential functions πb and πf are consistent,
we have π∗b (v) = πb(v) ≤ πb(u) + len(u, v) ≤ π∗b (u) + len(u, v). Now consider the case
π∗b = α−πf (v); then we have π∗b (v) = α−πf (v) ≤ α−πf (u)+len(u, v) ≤ π∗b (u)+len(u, v),
which completes the proof.

This is enough to prove correctness of our algorithm with tightened bounds, as stated
in the next theorem.

Theorem 5.13. If we use the potential function π∗b defined by (5.1) as potential function
for the backward search, with a fixed value of the forward search key, then Algorithm 4 is
correct.

Proof. Let db(u) be the distance from a node u to node t computed by the backward
search. We will prove that, when a node u on the shortest path from s to t is settled by
the backward search, db(u) ≤ d(u, t, d(s, u, τ)) ∀τ ∈ T . By Prop. 5.11 and Thm. 5.8, this
is enough to prove our statement.

Let q∗ = (v1 = u, . . . , vn = t) be the shortest path from u to t on G. We proceed by
induction on i : n, . . . , 1 to prove that each node vi is settled with the correct distance
on G, i.e., db(vi) = d(vi, t). It is trivial to see that the nodes vn and vn−1 are settled
with the correct distance on G. For the induction step, suppose vi is settled with the
correct distance db(vi) = d(vi, t). By Lemma 5.12, we have db(vi) + π∗b (vi) ≤ db(vi) +
len(vi−1, vi) + π∗b (vi−1) = d(vi−1, t) + π∗b (vi−1) ≤ db(vi−1) + π∗b (vi−1), hence vi is extracted
from the queue before vi−1. This means that vi−1 will be settled with the correct distance
db(vi−1) = d(vi−1, t), and the induction step is proven.

Thus, u will be settled with distance db(u) = d(u, t) ≤ d(u, t, d(s, u, τ)), which proves
our statement.

By Thm. 5.13, Algorithm 4 is correct when using π∗b only if we assume that the node
v used in (5.1) is fixed at each backward search iteration. Thus, we do the following: we
set up 10 checkpoints during the query; when a checkpoint is reached, the node v used to
compute (5.1) is updated, and the backward search queue is flushed and filled again using
the updated π∗b . This is enough to guarantee correctness. The checkpoints are computed
comparing the initial lower bound ∆ = πf (t) and the current distance from the source
node, both for the forward search: the initial lower bound is divided by 10 and, whenever
the current distance from the source node exceeds k∆/10 with k ∈ {1, . . . , 10}, π∗b is
updated.

5.2.5 Dynamic Scenario

In Section 5.5, we will see that TDALT cannot compete with time-dependent SHARC.
However, a main advantage of TDALT is that it is applicable in dynamic scenarios without
any additional effort. The reason for this is the same as for dynamic ALT (cf. Section 4.1).
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5.3 Core-ALT

Like for time-independent route planning, we can extend our bidirectional time-dependent
ALT from the last section by contraction. It turns out that preprocessing is very similar to
a time-independent scenario, while the query needs further adaption due to the problem
of bidirectional search.

5.3.1 Preprocessing

As mentioned above, preprocessing is similar to the time-independent scenario: First, we
extract a core GC = (VC , EC) with our time-dependent contraction routine from Sec-
tion 5.1. Then, we merge the core with the original graph to obtain GF = GC ∪ G =
(V,E ∪ EC) since VC ⊂ V . Finally, we select landmarks from GC and compute landmark
distances in GC .

5.3.2 Query

The query algorithm consists of two phases, performed on GF :

1. Initialization phase: start a Dijkstra search from both the source and the destination
node on GF , using the time-dependent costs for the forward search and the time-
independent costs len for the backward search, pruning the search (i.e., not relaxing
outgoing edges) at nodes ∈ VC . Add each node settled by the forward search to a
set S, and each node settled by the backward search to a set T . Iterate between the
two searches until: (i) S ∩ T 6= ∅ or (ii) the priority queues are empty.

2. Main phase: (i) If S ∩ T 6= ∅, then start an unidirectional Dijkstra search from the
source on GF until the target is settled. (ii) If the priority queues are empty and we
still have S ∩ T = ∅, then start TDALT on the graph GC , initializing the forward
search queue with all leaves of S and the backward search queue with all leaves of
T , using the distance labels computed during the initialization phase. The forward
search is also allowed to explore any node v ∈ T , throughout the 3 phases of the
algorithm. Stop when t is settled by the forward search.

In other words, the forward search “hops on” the core when it reaches a node u ∈ S∩VC ,
and “hops off” at all nodes v ∈ T ∩ VC . Again, since Dijkstra’s algorithm is equivalent
to A∗ with a zero potential function, we can use Algorithm 4 in case (ii) during the main
phase.

Proxy Nodes. Again, we need to compute lower bounds from any node to source and
target of the query. We use the same methods as introduced for time-independent routing
(cf. Section 4.2).

Unpacking Shortcuts. The path returned by our algorithm contains shortcuts added dur-
ing contraction. If we want to retrieve the original corresponding path in G, we have
to unpack shortcuts. Since we allow multi-edges during contraction (cf. Section 5.1), we
can directly apply our contraction routine introduced for time-independent SHARC (cf.
Section 4.3).
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Profile Queries. Like for time-dependent ALT, the CALT query algorithm computes
the distance between two points for a specific departure time. However, we could directly
apply bidirectional search for profile queries. For the same reasons as ALT, we do not
analyze profile queries for CALT.

5.3.3 Correctness

Theorem 5.14. The core routing algorithm for time-dependent graphs is correct.

Proof. Suppose that, during the initialization phase (i.e., when we build the two sets S and
T ), the two search scopes meet, thus S ∩ T 6= ∅. In this case, we switch to unidirectional
Dijkstra’s algorithm on the original graph (plus added shortcuts), and correctness follows.
Now suppose that the two search scopes do not meet: the two priority queues are empty
and S ∩ T = ∅, thus the shortest path p between s and t with departure time τ passes
through at least one node belonging to the core VC . Let p = (s, . . . , u, . . . , v, . . . , t), where
u and v are, respectively, the first and the last node ∈ VC on the path. If u = v then the
proof is trivial; suppose u 6= v. Since the initialization phase explores all non-core nodes
reachable from s and t, u ∈ S and v ∈ T . By definition of v, p|v→t passes only through
non-core nodes; by the query algorithm, T contains all non-core nodes that can reach t
passing only through non-core nodes. It follows that all nodes of p|v→t are in T . Thus
p|u→t is entirely contained in GC∪G[T ] = (VC∪T,EC∪E[T ]). By correctness of Dijkstra’s
algorithm, the distance labels for nodes in S are exact with respect to the time-dependent
cost function. Initializing the forward search queue with the leaves of S and applying A∗

on GC ∪G[T ] then yields the shortest path p by correctness of A∗.

We immediately observe that for case (ii) of the main phase we can use any algorithm
that guarantees correctness when applied on GC ∪ G(T ). In particular, the distance
labels for nodes in T are correct distance labels for the backward search on the graph
weighted by len, so they fulfill the requirements for TDALT. Note that, in a typical core-
routing setting for the ALT algorithm, landmark distances are computed and stored only
for vertices in VC (cf Section4.2), since the initialization phase on non-core nodes uses
Dijkstra’s algorithm only. This means that the landmark potential function cannot be used
to apply the forward A∗ search on the nodes in T . However, in order to combine TDALT
with a core-routing framework we can use the backward distance labels computed with
Dijkstra’s algorithm during the initialization phase. Those are correct distance labels for
the lower bounding function len, thus they yield valid potentials for the forward search.
We call this algorithm Time-Dependent Core-based ALT (TDCALT).

5.3.4 Updating the Core

Modifications in the cost functions can be easily taken into account under weak assump-
tions if shortcuts have not been added to the graph. However, a two-levels hierarchical
setup is significantly more difficult to deal with, exactly because of shortcuts: since a
shortcut represents the shortest path between its two endpoints for at least one departure
time, if some edge costs change then the shortest path which is represented may also be
subject to changes. Thus, a procedure to restore optimality of the core is needed. We first
analyze the simple case of increasing breakpoint values, and then propose an algorithmic
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framework to deal with general cost changes under some restrictive assumptions which are
acceptable in practice.

Increases in Breakpoint Values. Let (VC , EC) be the core of G. Suppose that the
cost function of one edge e ∈ E is modified; the set of core nodes VC need not change,
as long as EC is updated in order to preserve distances with respect to the uncontracted
graph G = (V,E) with the new cost function. There are two possible cases: either the
new values of the modified breakpoints are smaller then the previous ones, or they are
larger. In the first case, then all edges on the core EC must be recomputed by running
a label-correcting algorithm between the endpoints of each shortcut, as we do not know
which shortcuts the updated edge may contribute to. In the second case, then the cost
function for core edges may change for all those edges e′ ∈ EC such that e′ contains e
in its decomposition for at least one time instant τ . In other words, if e contributed to
a shortcut e′, then the cost of e′ has to be recomputed. As the cost of e has increased,
then e cannot possibly contribute to other edges, thus we can restrict the update only to
the shortcuts that contain the edge. To do so, we store for each e ∈ E the set S(e) of all
shortcuts that e contributes to. Then, if one or more breakpoints of e have their value
changed, we do the following.

Let [τ1, τn−1] be the smallest time interval that contains all modified breakpoints of
edge e. If the breakpoints preceding and following [τ1, τn−1] are, respectively, at times
τ and τn the cost function of e changes only in the interval [τ, τn]. For each shortcut
e′ ∈ S(e), let e′0, . . . , e

′
d, with e′i ∈ E ∀i, be its decomposition in terms of the original

edges, let λj =
∑j−1

i=0 len(e′i) and ρj =
∑j−1

i=0 len(e′i). If e is the edge with index j in the
decomposition of e′, then e′ may be affected by the change in the cost function of e only if
the departure time from the starting point of e′ is in the interval [τ − ρj , τn − λj ]. This is
because e can be reached from the starting node of e′ no sooner than λj , and no later than
ρj . Thus, in order to update the shortcut e′, we need to run a label-correcting algorithm
between its two endpoints only in the time interval [τ − ρj , τn−λj ], as the rest of the cost
function is not affected by the change. In practice, if the length of the time interval [τ, τn]
is larger than a given threshold we run a label-correcting algorithm between the shortcut’s
endpoints over the whole time period, as the gain obtained by running the algorithm over
a smaller time interval does not offset the overhead due to updating only a part of the
profile with respect to computing from scratch.

A Realistic Scenario. The procedure described above is valid only when the value of
breakpoints increases. In a typical realistic scenario, this is often the case: the initial cost
profiles are used to model normal traffic conditions, and cost updates occur only to add
temporary slowdowns due to unexpected traffic jams. When the temporary slowdowns are
no longer valid we would like to restore the initial cost profiles, i.e., lower breakpoints to
their initial values, without recomputing the whole core. If we want to allow fast updates
as long as the new breakpoint values are larger than the ones used for the initial core
construction, without requiring that the values can only increase, then we have to manage
the sets S(e)∀e ∈ E accordingly.

For example, given e ∈ E, suppose that the cost of its breakpoint at time τ ∈ T
increases, and all shortcuts ∈ S(e) are updated. Suppose that, for a shortcut e′ ∈ S(e), e
does not contribute to e′ anymore due to the increased breakpoint value. If e′ is removed
from S(e) and at a later time the value of the breakpoint at τ is restored to the original
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value, then e′ would not be updated because e′ 6∈ S(e), thus e′ would not be optimal.
Our approach to tackle this problem is the following: for each edge e ∈ E, we update

the sets S(e) whenever a breakpoint value changes, with the additional constraint that
elements of S(e) after the initial core construction phase cannot be removed from the set.
Thus, S(e) contains all shortcuts that e contributes to with the current cost function, plus
all shortcuts that e contributed to during the initial core construction. As a consequence
we may update a shortcut e′ ∈ S(e) unnecessarily, if e contributed to e′ during the initial
core construction but ceased contributing after an update step; however, this guarantees
correctness for all changes in the breakpoint values, as long as the new values are not
strictly smaller than the values used during the initial graph contraction. From a practical
point of view, this is a reasonable assumption.

Since the sets S(e)∀e ∈ E are stored in memory, the computational time required
by the core update is largely dominated by the time required to run the label-correcting
algorithm between the endpoints of shortcuts. Thus, we have a trade-off between query
speed and update speed: if we allow the contraction routine to build long shortcuts (in
terms of number of bypassed nodes, i.e., “hops”, as well as traveling time) then we obtain
a faster query algorithm, because we are able to skip more nodes during the shortest path
computations. On the other hand, if we allow only limited-length shortcuts, then the query
search space is larger, but the core update is significantly faster as the label-correcting
algorithm takes less time. In Section 5.5.2 we provide an experimental evaluation for
different scenarios.

5.4 SHARC

In this section, we show how SHARC, introduced in Section 4.3, can be generalized in
such a way that we are able to perform exact shortest-path queries in time-dependent
networks. The key observation is that the concept of SHARC stays untouched. However,
at certain points we use the augmented routines from Section 5.1 instead of their static
counterparts. As a result, we are able to perform exact time-dependent queries in road
and railway networks, see Figures 5.5 for an example.

5.4.1 Preprocessing

Initialization. In a first step, we remove 1-shell nodes from the graph since we can
directly assign correct arc-flags to all edges adjacent to 1-shell nodes: Edges targeting
the 2-core get full flags assigned, those directing away from the 2-core get only the own-
cell flag set to true. Note that this procedure is independent from edge weights. After
extracting the 2-core, we perform a multi-level partitioning of the unweighted graph. The
partition has to fulfill several requirements: cells should be connected, the size of cells
should be balanced, and the number of boundary nodes should be as low as possible.
Like for time-independent SHARC, we obtain such a partition by local optimization of a
partition obtained from SCOTCH [Pel07].

Iteration. After the initialization, an iterative process starts. Each iteration step is
divided into two parts, described in the following: contraction and arc-flag computation.
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Contraction. First, we apply a contraction step according to Section 5.1. However, in
order to guarantee correctness, we have to use cell-aware contraction, i.e., a node n is
never marked as bypassable if any of its neighboring nodes is not in the same cell as n.

Arc-Flags. We have to set arc-flags for all edges of our output-graph, including those
which we remove during contraction. Like for time-independent SHARC, we can set arc-
flags for all removed edges automatically. We set the arc-flags of the current and all higher
levels depending on the tail u of the deleted edge. If u is a core node, we only set the
own-cell flag to true (and others to false) because this edge can only be relevant for a query
targeting a node in this cell. If u belongs to the component, all arc-flags are set to true as
a query has to leave the component in order to reach a node outside this cell.

Setting arc-flags of those edges not removed from the graph is more expensive since we
apply one of the preprocessing techniques for multi-level Arc-Flags from 5.1. Note that
we lose correctness of SHARC if we use heuristic arc-flags as preprocessing strategy.

Finalization. The last phase of our preprocessing-routine assembles the output graph.
It contains the original graph, shortcuts added during preprocessing and arc-flags for all
edges of the output graph. However, some edge may have no arc-flag set to true. As these
edges are never relaxed by our query algorithm, we directly remove such edges from the
output graph.

5.4.2 Query

Time-dependent SHARC allows time- and profile-queries. For computing d(s, t, τ), we use
a modified Dijkstra that operates on the output graph. The modifications are as follows:
When settling a node n, we compute the lowest level i on which n and the target node t
are in the same supercell. Moreover, we consider only those edges outgoing from n having
a set arc-flag on level i for the corresponding cell of t. In other words, we prune edges
that are not important for the current query. We stop the query as soon as we settle t.
See Fig. 5.5 for an example query.

For computing d∗(s, t), we use a modified variant of our label-correcting algorithm (see
Section 5.1) that also operates on the output graph. The modifications are the same as
for time-queries and the stopping criterion is the standard one explained in Section 5.1.

Outputting Shortest Paths. SHARC adds shortcuts to the graph in order to accelerate
queries. If the complete description of the path is needed, the shortcuts have to be un-
packed. As we allow multi-edges during contraction, each shortcut represents exactly one
path in the network, and hence, we can directly apply the unpacking routine from our
time-independent variant of SHARC.

5.4.3 Correctness

Theorem 5.15. Time-dependent SHARC is correct.

Proof. The correctness of time-dependent SHARC can be shown equivalently to time-
independent SHARC. The proof of Lemma 4.3 is based on two facts: Contraction pre-
serves distances and multi-level Arc-Flags is correct. According to Corollaries 5.4 and 5.5,
and Lemma 5.3, our augmented ingredients fulfill these requirements. Hence, our time-
dependent variant of SHARC is correct as well.
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Figure 5.5: Two examples for time-dependent queries with different departure times (but identical
source and target) yielding different quickest paths. The input is a road network with congested
motorways. The source of the query is marked by the blue flag (left), the target by the red one
(right). The quickest paths are drawn in dark green. Roads touched by SHARC are colored: black
depicts an edge with a true arc-flag evaluated on the topmost level, blue depicts the second, yellow
the third, and red the fourth level. Grey edges have not been touched. Note that the edges touched
are almost independent of the departure time. Also note that for a nighttime departure (a), it
pays off to use the highway (lower route) while for a departure during rush hours the quickest path
is the direct way without using highways.
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5.4.4 Optimizations

Although SHARC as described above already yields a low preprocessing effort combined
with good query performance, we use some optimization techniques to reduce preprocess-
ing effort (time and space consumption) and to increase query performance.

Refinement of arc-flags. Recall that refinement of arc-flags tries to improve those
flags set to true during the contraction process. This is achieved by propagating flags
of edges outgoing from high-level nodes to those outgoing from low-level nodes. In a
time-independent scenario, we grow shortest path trees to find these so called exit nodes
of each node. In a time-dependent scenario, we identify the exit nodes by constructing
profile graphs. The propergation itself stays almost untouched: the only difference is that
a node might have more than predecessor, which all have to be examined when identifying
the corresponding outgoing edge. See Section 4.3.4 for details.

As already mentioned, growing PGs is expensive. Hence, we limit the growth of those
trees to n log(n)/|Vl|, where Vl denotes the nodes in level l, priority-queue removals. In
order to preserve correctness, we then may only propagate the flags from the exit nodes
to u if the stopping criterion is fulfilled before this number of removals.

Lemma 5.16. Refinement of Arc-Flags is correct.

Proof. The only difference between time-dependent and time-independent refinement is
that we grow PGs instead of shortest path trees in order to find exit nodes of a node.
Hence, we can directly adapt the proof of Lemma 4.5 in order to prove Correctness of
Lemma 5.16.

Removing Shortcuts. As discussed in Section 2.4, time-dependent shortcuts are very
space consuming. Hence, we try to remove shortcuts as the very last step of preprocessing.
The routine works as follows. For each added shortcut (u, v) we analyze the path puv =
(u, u0, . . . , uk, v) it represents. If all degout(ui) ≤ 3 for 0 ≤ i ≤ k, we remove (u, v) from
the graph and the edge (u, u0) additionally inherit the arc-flags from (u, v).

Improved Locality. Like for time-independent SHARC, we increase cache efficiency of
the output graph by reordering nodes according to the level they have been removed at
from the graph. As a consequence, the number of cache misses is reduced yielding lower
query times.

Landmarks. Approximate arc-flags yield worse results than exact ones. In order to
partly remedy this loss in performance, we can add landmarks to SHARC. We can combine
ALT with SHARC easily. We run a time-dependent ALT preprocessing consisting of
selecting landmarks L ⊆ V and computing d(l, v), d(v, l) for all v ∈ V, l ∈ L. Then, we
apply a normal SHARC-query but use d(s, u, τ)+π(u) (cf. Section 3.2) instead of d(s, u, τ)
as priority key. We call this combination L-SHARC (Landmarks and SHARC).

5.4.5 Comparison to Static SHARC

Comparing our new time-dependent preprocessing routine with the one for static SHARC
due to Chapter 4.3, one may notice that the concept itself stays untouched. We still apply
three phase: initialization, iteration, and finalization. The initialization stays untouched
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as both 1-shell nodes removal and partitioning are performed on the unweighted graph.
However, the iteration process gets more expensive both in terms of memory consumption
and preprocessing times: The higher memory consumption is due to the fact that time-
dependent shortcuts use more space than static ones, while the longer preprocessing times
are due to the more complex algorithms for setting arc-flags.

The finalization is also altered slightly. On the one hand, we again use a label-correcting
algorithm instead of Dijkstra for arc-flag refinement what makes this procedure more time-
consuming. Unlike for static SHARC, we limit the effort for refinement by limiting the
number of heap operations. This yields faster preprocessing times but the quality of arc-
flags is worse than it could be. The high memory consumption of shortcuts is the reason
why we introduce a new routine for removing shortcuts from the output graph. Note that
we could directly use our time-dependent variant for time-independent networks. However,
preprocessing times increase by a factor of 4 when using our time-dependent preprocessing
instead of our static one. This is mainly due to two facts: On the one hand, we use more
complex datastructures for storing distance labels during arc-flags computation. On the
other hand, we use a faster algorithm for setting arc-flags in a static scenario.

The query algorithm stays almost untouched. The only difference between a static
and time-dependent SHARC query is the same as for plain Dijkstra: The key of a node
depends on the departure time. Due to these very minor changes, the slow-down deriving
from using a time-dependent query for a time-independent network is almost negliable.

5.5 Experiments

In this section, we present our experimental evaluation. To this end, we evaluate the
performance of time-dependent ALT, CALT, and SHARC for road and railway networks.
Our implementation is written in C++ using solely the STL. As priority queue we use
a binary heap. Our tests were executed on one core of an AMD Opteron 2218 running
SUSE Linux 10.3. The machine is clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB
of L2 cache. The program was compiled with GCC 4.2.1, using optimization level 3.

Inputs. We apply two types of inputs. Road and railway networks. For the former, we
have access to a real-world time-dependent road network of Germany. It has approxi-
mately 4.7 million nodes and 10.8 million edges. In order to analyze the scalability of
our approaches, we additionally use the available real-world time-independent network of
Western Europe (18 million nodes and 42.6 million edges) and generate synthetic rush
hours. All data has been provided by PTV AG for scientific use.

Our German data contains five different traffic scenarios, collected from historical data:
Monday, midweek (Tuesday till Thursday), Friday, Saturday, and Sunday. As expected,
congesture of roads is higher during the week than on the weekend: ≈ 8% of edges are
time-dependent for Monday, midweek, and Friday. The corresponding figures for Saturday
and Sunday are ≈ 5% and ≈ 3%, respectively. We define the delay of a time-query by
1 − d(s, t, τ)/d(s, t) with d(s, t) depicting the length of the shortest s–t path in G. For
our inputs, the average delay over 100 000 random queries is 2.4% for Monday, 2.7% for
midweek, 2.6% for Friday, 0.7% for Saturday, and 0.4% for Sunday. This confirms our
assumption that traffic is higher during the week than on the weekend.

Our railways timetable data—provided by Hacon for scientific use—of Europe consists



5.5. EXPERIMENTS 91

of 30 516 stations and 1 775 482 elementary connections. The period is 24 hours. The
resulting realistic, i.e., including transfer times, time-dependent network has about 0.5
million nodes and 1.4 million edges, and is fulfilling the FIFO-property.

Modeling Traffic. We do the following in order to model traffic for our European input.
Each edge of this network belongs to one of five main categories representing motorways,
national roads, local streets, urban streets, and rural roads. Synthetic time-dependent edge
costs are generated assigning, at each node, several random values that represent peak hour
(i.e., hour with maximum traffic increase), duration and speed of traffic increase/decrease
for a traffic jam; for each node, two traffic jams are generated, one in the morning and
one in the afternoon. Then, for each arc in a node’s edge star, a speed profile is generated,
using the traffic jam’s characteristics of the corresponding node, and assigning a random
increase factor between 1.5 and 3 to represent that edges’s slowdown during peak hours
with respect to uncongested hours. We do not assign speed profiles to edges that have
both endpoints at nodes with level 0 in a pre-constructed Highway Hierarchy, and as a
result those edges will have the same traveling time value throughout the day; for all other
edges, we use the traffic jam values associated with the endpoint with smallest ID. This
method was developed to ensure spatial coherency between traffic increases, i.e. if a certain
arc is congested at a given time, then it is likely that adjacent arcs will be congested too.
This is a basic principle of traffic analysis [Ker04].

We additionally adjust the degree of perturbation by assigning time-dependent edge-
costs only to specific categories of edges. In our no traffic scenario, all edges are time-
independent, i.e., the graph is static. In a low traffic scenario, all motorways are time-
dependent, other roads are time-independent. The medium traffic scenario additionally
includes congested national roads, and for the high traffic scenario, we perturbe all edges
except local and rural roads.

Setup. In the following, we report preprocessing times and the overhead of the prepro-
cessed data in terms of additional bytes per node. Moreover, we report two types of
queries: time-queries, i.e., queries for a specific departure time, and profile-queries, i.e.,
queries for computing d∗(s, t). For each type we provide the average number of settled
nodes, i.e., the number of nodes taken from the priority queue, and the average query
time. For s-t profile-queries, the nodes s and t are picked uniformly at random. Time-
queries additionally need a departure time τ as well, which we pick uniformly at random
as well. As all methods introduced in this chapter have approximate variants, we record
four different statistics to characterize the solution quality: error rate, average relative
error, maximum relative error, maximum absolute error. By error rate we denote the
percentage of computed suboptimal paths over the total number of queries. By relative
error on a particular query we denote the relative percentage increase of the approximated
solution over the optimum, computed as ω/ω∗−1, where ω is the cost of the approximated
solution and ω∗ is the cost of the optimum computed by Dijkstra’s algorithm. We report
average and maximum values of this quantity over the set of all queries. The maximum
absolute error is given by ω− ω∗. All figures in this chapter are based on 100 000 random
s-t queries and refer to the scenario that only the lengths of the shortest paths have to be
determined, without outputting a complete description of the paths. Like in Section 4.5,
we also evaluate local queries using the Dijkstra rank methodology [SS05].
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5.5.1 ALT

Default Settings. Unless otherwise stated, we use 16 landmarks generated by maxCover
yielding 128 Bytes of preprocessed space. For our European road network, preprocessing
takes 75 minutes. The corresponding figure for Germany is 23 minutes.

Random Queries. Table 5.1 reports the results of our bidirectional ALT variant on time-
dependent networks for different approximation values K using the European road network
as input. Note that we also report the number of nodes settled at the end of each phase
of our algorithm, denoting them with the labels phase 1, phase 2 and phase 3.

As expected, we observe a clear trade-off between the quality of the computed solution
and query performance. If we are willing to accept an approximation factor of K = 2.0,
on the European road network queries are on average 55 times faster than Dijkstra’s
algorithm, but almost 50% of the computed paths will be suboptimal and, although the
average relative error is still small, in the worst case the approximated solution has a cost
which is 30% larger than the optimal value. The reason for this poor solution quality is
that, for such high approximation values, phase 2 is very short. As a consequence, nodes
in the middle of the shortest path are not explored by our approach, and the meeting
point of the two search scopes is far from being the optimal one. However, by decreasing
the value of the approximation constant K we are able to obtain solutions that are very
close to the optimum, and performance is significantly better than for unidirectional ALT
or Dijkstra. In our experiments, it seems as if the best trade-off between quality and
performance is achieved with an approximation value of K = 1.15, which yields average
query times smaller than 215 ms with a maximum recorded relative error of 10.57%. As
in road networks the speed profiles that weight edges cannot be completely accurate,
settling for a slightly suboptimal solution (on average, less than 0.5% over the optimum
for K = 1.15) usually is not a problem. By decreasing K to values < 1.05 it does not pay

Table 5.1: Performance of the time-dependent versions of Dijkstra, unidirectional ALT, and our
bidirectional approach.

Error Query
relative # settled nodes time

method K rate avg max phase 1 phase 2 phase 3 [ms]
Dijkstra - 0.0% 0.000% 0.00% - - 8 877 158 5 757.4
uni ALT - 0.0% 0.000% 0.00% - - 2 143 160 1 520.8
ALT 1.00 0.0% 0.000% 0.00% 132 129 2 556 840 3 009 320 2 842.0

1.05 3.1% 0.012% 3.91% 132 129 1 244 050 1 574 750 1 379.2
1.07 6.6% 0.034% 6.06% 132 129 849 171 1 098 470 915.4
1.10 18.1% 0.106% 7.79% 132 129 473 414 622 466 481.9
1.12 26.1% 0.182% 10.57% 132 129 337 353 444 991 325.0
1.15 35.4% 0.292% 10.57% 132 129 236 108 311 209 214.2
1.20 43.0% 0.485% 19.40% 132 129 171 154 225 557 145.3
1.25 45.4% 0.589% 21.64% 132 129 148 856 196 581 122.3
1.30 46.4% 0.656% 21.64% 132 129 139 089 184 143 111.6
1.35 47.0% 0.704% 21.64% 132 129 134 582 178 410 107.4
1.50 47.1% 0.722% 21.64% 132 129 132 299 175 468 105.4
1.75 47.2% 0.726% 30.49% 132 129 132 131 175 248 105.4
2.00 47.2% 0.726% 30.49% 132 129 132 130 175 247 105.4
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off to use the bidirectional variant any more, as the unidirectional variant of ALT is faster
and is always correct.

An interesting observation is that for K = 2.0 switching from a static to a time-
dependent scenario increases query times only of a factor of ≈ 2: on the European road
network, in a static scenario, ALT-16 has query times of 53.6 ms (see Tab. 4.1), while
our time-dependent variant yields query times of 105 ms. We also note that for our
bidirectional search there is an additional overhead which increases the time spent per node
with respect to unidirectional ALT: on the European road network, using an approximation
factor of K = 1.05 yields similar query times to unidirectional ALT, but the number of
nodes settled by the bidirectional approach is almost 30% smaller. We suppose that this is
due to the following facts: in the bidirectional approach, one has to check at each iteration
if the current node has been settled in the opposite direction, and during phase 2 the upper
bound has to be updated from time to time. The cost of these operations, added to the
phase-switch checks, is probably not negligible.

Unmodified potential. We also report, for comparison, the results obtained on the Eu-
ropean road network using the unmodified ALT potential function πb for the backward
search, instead of the tightened one π∗b defined as in Equation (5.1). These can be found
in Tab. 5.2, which has the same column labels as Tab. 5.1. Comparing query times with
the same value of the approximation constant K, we see that using the potential function
π∗b yields a significant improvement over πb. The difference in performance is larger as K
increases. For K = 1 the difference is very small; for K = 1.05 the algorithm with πb
is 95% slower than the one with π∗b , and the slowdown increases to 236% for K = 1.10
and to 293% for K = 1.15. With the largest approximation factor that we tested in our
experiments, K = 2, the algorithm without the tightened potential function is more than
5 times slower. The same behavior is observed in terms of the number of settled nodes:
while for K = 1 the number is very similar (only a 28% increase when not using π∗b ), the

Table 5.2: Performance of the time-dependent versions of Dijkstra, unidirectional ALT and our
bidirectional approach without the tightened potential function π∗b defined as in (5.1).

Error Query
relative # settled nodes time

method K rate avg max phase 1 phase 2 phase 3 [ms]
Dijkstra - 0.0% 0.000% 0.00% - - 8 877 158 5 757.4
uni ALT - 0.0% 0.000% 0.00% - - 2 143 160 1 520.8
ALT 1.00 0.0% 0.000% 0.00% 719 650 3 763 990 3 862 070 3 291.6

1.05 3.5% 0.023% 4.88% 719 650 2 996 940 3 238 120 2 683.5
1.07 5.5% 0.046% 6.94% 719 650 2 519 750 2 874 500 2 290.7
1.10 12.1% 0.123% 9.45% 719 650 1 810 340 2 201 870 1 619.2
1.12 20.1% 0.237% 10.93% 719 650 1 416 240 1 772 080 1 218.4
1.15 32.1% 0.474% 14.35% 719 650 1 049 750 1 345 930 842.0
1.20 44.4% 0.788% 19.42% 719 650 824 331 1 079 290 618.3
1.25 50.5% 0.994% 24.57% 719 650 755 262 996 631 553.3
1.30 53.3% 1.104% 24.57% 719 650 735 524 972 294 531.5
1.35 54.7% 1.166% 24.57% 719 650 727 843 962 950 526.5
1.50 56.1% 1.248% 28.16% 719 650 720 359 953 704 524.7
1.75 56.3% 1.261% 39.34% 719 650 719 661 952 947 519.0
2.00 56.4% 1.262% 39.41% 719 650 719 650 952 933 518.2
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ratio rapidly grows until it reaches a 444% increase for K = 2. Thus, a great deal of the
significant improvement that we are able to obtain over Dijkstra’s algorithm and unidirec-
tional ALT with our bidirectional variant is due to the use of tightened bounds. If we use
the standard ALT potential function πb for the backward search then we do not manage
to obtain a speed-up of more than a factor 3 with respect to unidirectional ALT, but this
comes at the price of correctness. Summarizing, in our bidirectional approach one of the
great advantages is that we are able to derive better lower bounds for the time-dependent
search with respect to the original ALT bounds, and the new potential function accounts
for a large computational improvement.

Local Queries. For random queries on the European road network, our bidirectional ALT
algorithm with K = 1.15 is roughly 6.5 times faster than unidirectional ALT on average.
In order to gain insight whether this speed-up derives from small- or large-range queries,
Fig. 5.6 reports the query times with respect to the Dijkstra rank. These values were
gathered on the European road network instance. Note that we use a logarithmic scale
due to the fluctuating query times of bidirectional ALT. Comparing both ALT version,
we observe that switching from uni- to bidirectional queries pays off especially for long-
distance queries. This is not surprising, because for small distances the overhead for
bidirectional routing is not counterbalanced by a significant decrease in the number of
explored nodes: unidirectional ALT is faster for local queries. For ranks of 224, the
median of the bidirectional variant is almost 2 orders of magnitude lower than for the
unidirectional variant. Another interesting observation is the fact that some outliers of
bidirectional ALT are almost as slow as the unidirectional variant. Comparing different
approximation values, we observe that query times differ by roughly the same factor for
all ranks less than 223.
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Figure 5.6: Comparison of uni- and bidirectional ALT using the Dijkstra rank methodology.
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Number of Landmarks. In static scenarios, query times of bidirectional ALT can be sig-
nificantly reduced by increasing the number of landmarks to 32 or even 64 (see Tab. 4.1).
In order to check whether this also holds for our time-dependent variant, we recorded our
algorithm’s performance using different numbers of landmarks. Table 5.3 reports those
results on the European road network. We evaluate 8 maxcover landmarks (yielding a
preprocessing effort of 33 minutes and an overhead of 64 bytes per node), 16 maxcover
landmarks (75 minutes, 128 bytes per node) and 32 avoid landmarks (29 minutes, 256
bytes per node). Note that we do not report error rates here, as it turned out that
the number of landmarks has almost no impact on the quality of the computed paths.
Surprisingly, the number of landmarks has a very small, at least for small K, influence on

Table 5.3: Performance of uni- and bidirectional ALT with different number of landmarks in a
time-dependent scenario.

8 landmarks 16 landmarks 32 landmarks
K # settled time [ms] # settled time [ms] # settled time [ms]

uni-ALT - 2 280 420 1 446.4 2 143 160 1 520.8 2 056 190 1 623.3
ALT 1.00 3 147 440 2 745.5 3 009 320 2 842.0 2 931 080 2 953.3

1.05 1 714 210 1 373.8 1 574 750 1 379.2 1 516 710 1 409.5
1.10 768 368 540.2 622 466 481.9 561253 464.2
1.15 461 259 293.5 311 209 214.2 250 248 184.4
1.20 375 900 230.6 225 557 145.3 164 419 111.1
1.50 326 076 195.8 175 468 105.3 113 040 68.1
2.00 325 801 195.8 175 247 105.4 112 826 68.0

the performance of time-dependent ALT. Even worse, increasing the number of landmarks
even yields larger average query times for unidirectional ALT and for bidirectional ALT
with low K-values. This is due the fact that the search space decreases only slightly, but
the additional overhead for accessing landmarks increases when there are more landmarks
to take into account. However, when increasing K, a larger number of landmarks yields
faster query times: with K = 2.0 and 32 landmarks we are able to perform time-dependent
queries 84 times faster than plain Dijkstra, but the solution quality in this case is as poor
as in the 16 landmarks case. Summarizing, for K > 1.10 increasing the number of land-
marks has a positive effect on computational times, although switching from 16 to 32
landmarks does not yield the same benefits as from 8 to 16, and thus in our experiments
is not worth the extra memory. On the other hand, for K ≤ 1.10 and for unidirectional
ALT increasing the number of landmarks has a negative effect on computational times,
and thus is never a good choice in our experiments.

Traffic Days. Next, we focus on the impact of perturbation on TDALT. Therefore,
Tab. 5.4 reports the performance of uni- and bidirectional time-dependent ALT for differ-
ent traffic days on our German road network. Dijkstra settles 2.2 million nodes in ≈ 1.5
seconds in this setup, independent of the traffic day.

We observe that the degree of perturbation has only a mild impact on unidirectional
ALT and exact bidirectional ALT. In a low traffic scenario, unidirectional ALT queries
are up 16 times faster than plain Dijkstra, while this values drops to 10 if more edges are
perturbed. Switching from exact to approximate queries does not pay off in low traffic
scenarios: The gain in performance is only around 20% which seems rather low compared
to the loss in quality of paths. However, this value increases to a factor of up to 3 in high
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Table 5.4: Performance of TDALT on our German road network instance. Scenario depicts the
degree of perturbation.

Error Query
relative abs. #settled #relaxed time

scenario algorithm K rate av. max max [s] nodes edges [ms]

Monday

uni-ALT – 0.0% 0.000% 0.00% 0 193 087 230 665 140.38
TDALT 1.00 0.0% 0.000% 0.00% 0 106 743 127 190 88.53

1.15 12.5% 0.094% 13.02% 1 811 51 137 60 838 37.23
1.50 12.5% 0.096% 24.27% 1 811 51 119 60 816 37.12

midweek

uni-ALT – 0.0% 0.000% 0.00% 0 200 236 239 112 147.20
TDALT 1.00 0.0% 0.000% 0.00% 0 116 476 138 696 98.27

1.15 12.4% 0.094% 14.32% 1 892 50 764 60 398 36.91
1.50 12.5% 0.097% 27.59% 1 892 50 742 60 371 36.86

Friday

uni-ALT – 0.0% 0.000% 0.00% 0 196 551 235 083 143.52
TDALT 1.00 0.0% 0.000% 0.00% 0 116 857 139 175 98.28

1.15 12.0% 0.096% 14.03% 1 490 50 891 60 550 36.92
1.50 12.1% 0.098% 30.77% 1 490 50 874 60 531 36.82

Saturday

uni-ALT – 0.0% 0.000% 0.00% 0 148 331 177 568 100.07
TDALT 1.00 0.0% 0.000% 0.00% 0 63 717 76 001 47.41

1.15 10.5% 0.088% 13.97% 2 613 50 042 59 607 36.00
1.50 10.6% 0.089% 26.17% 2 613 50 036 59 600 35.63

Sunday

uni-ALT – 0.0% 0.000% 0.00% 0 142 631 170 670 92.79
TDALT 1.00 0.0% 0.000% 0.00% 0 58 956 70 333 42.96

1.15 10.4% 0.088% 14.28% 1 753 50 349 59 994 36.04
1.50 10.5% 0.089% 32.08% 1 753 50 345 59 988 35.74

traffic scenarios. Still, comparing Tabs. 5.1 and 5.4, the gain in performance for dropping
correctness is much lower for Germany than for Europe. We assume that this derives
from the size of the graph. With increasing graph size, lower bounds get worse as the gap
between lower bound distance and time-dependent distance increases. This would also
explain why speed-ups for unidirectional ALT are higher for Germany than for Europe.

Timetable Information. Our last tests for TDALT are executed on our timetable data.
Table 5.5 depicts the performance of TDALT using this input. We observe lower speed-ups
for timetable information than for road networks in general. Unidirectional ALT is about
66% faster than plain Dijkstra. Even worse, switching from uni- to bidirectional ALT
does not pay off since we have to use K > 2.5 in order to obtain faster queries than for
unidirectional ALT. However, such high approximation values yield unacceptable results:
The obtained path is twice as long as the shortest. The bad performance in general derives
from the fact that lower bounds are poor for railway networks as waiting times can be
quite long at certain stations. The bad performance of bidirectional ALT derives from the
fact that the second phase is long. Hence, we have to explore a great part of the graph
after the first path has been found. That is why the speed-up over a unidirectional variant
is—compared to road networks—rather low. We conclude that TDALT works well for
road networks but fails on graphs deriving from timetable information for the railways.
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Table 5.5: Performance of the time-dependent versions of Dijkstra, unidirectional ALT, and our
bidirectional approach in a railways setting.

Error Query
relative absolute #settled nodes time

method K rate avg max max [min] phase 1 phase 2 phase 3 [ms]
Dijkstra – 0.0% 0.000% 0.00% 0 – – 260 095 125.22
uni-ALT – 0.0% 0.000% 0.00% 0 – – 127 103 75.28
TDALT 1.0 0.0% 0.000% 0.00% 0 5 710 239 172 262 415 219.60

1.5 3.2% 0.271% 29.11% 600 5 710 172 934 199 070 167.34
2.0 12.6% 1.856% 70.55% 1885 5 710 123 274 143 389 120.96
2.5 24.8% 5.677% 104.07% 3604 5 710 84 441 98 681 84.85
3.0 37.7% 13.891% 151.46% 5177 5 710 55 452 69 275 60.67
4.0 60.7% 33.808% 224.96% 7866 5 710 26 347 34 375 30.78
5.0 72.7% 53.783% 314.58% 7866 5 710 13 516 18 296 16.65
6.0 79.5% 69.967% 375.92% 7866 5 710 8 751 12 141 11.16
7.0 82.5% 79.137% 482.27% 7866 5 710 7 014 9 817 8.96
8.0 84.4% 84.528% 482.27% 7866 5 710 6 220 8 770 8.07
9.0 85.3% 86.424% 557.60% 7866 5 710 5 880 8 308 7.69

10.0 85.5% 88.106% 711.75% 7866 5 710 5 820 8 227 7.62
20.0 86.6% 90.770% 938.97% 7866 5 710 5 711 8 083 7.48

5.5.2 CALT

Default Settings. Unless otherwise stated, we use 32 avoid landmarks selected from the
extracted core. For CALT we do not evaluate timetable networks as Tab. 5.5 indicates
that a bidirectional approach based on landmarks does not perform very well on timetable
graphs.

Contraction Rates. Table 5.6 shows the performance of TDCALT for different contrac-
tion parameters. Note that contraction parameters of c = 0.0 and h = 0 yield a pure
TDALT setup. In this setup, we fix the approximation value K to 1.15, which was found
to be a good compromise between speed and quality of computed paths.

Table 5.6: Performance of TDCALT for different contraction rates. Column c denotes the
maximum expansion of a bypassed node, column h the hop-limit of added shortcuts. The third
column records how many nodes have not been bypassed applying the corresponding contraction
parameters.

Core Preprocessing Exact Query Approx. Query (K = 1.15)
par. core time space increase in #sett. time error relative error #sett. time
c h nodes [m] [B/n] edges points nodes [ms] -rate avg. max nodes [ms]

0.0 0 100.0% 28 256 0.0% 0.0% 2931080 2939.3 40.1% 0.303% 10.95% 250248 188.2
0.5 10 35.6% 15 99 9.8% 21.1% 1165840 1224.8 38.7% 0.302% 11.14% 99622 78.2
1.0 20 6.9% 18 41 12.6% 69.6% 233788 320.5 34.7% 0.288% 10.52% 19719 21.7
2.0 30 3.2% 30 45 9.9% 114.1% 108306 180.0 34.9% 0.287% 10.52% 9974 13.2
2.5 40 2.5% 39 50 9.1% 138.0% 84119 149.7 34.1% 0.275% 8.74% 8093 11.4
3.0 50 2.0% 50 56 8.7% 161.2% 70348 133.2 32.8% 0.267% 9.58% 7090 10.3
3.5 60 1.8% 60 61 8.5% 181.1% 60636 122.3 33.8% 0.280% 8.69% 6227 9.2
4.0 70 1.5% 88 74 8.5% 223.1% 52908 115.2 32.8% 0.265% 8.69% 5896 8.8
5.0 100 1.2% 134 89 8.6% 273.5% 45020 110.6 32.6% 0.266% 8.69% 5812 8.4



98 CHAPTER 5. TIME-DEPENDENT ROUTE PLANNING

As expected, increasing the contraction parameters has a positive effect on query per-
formance. The space overhead first decreases from 256 bytes per node to 41 (c = 1.0,
h = 20), and then increases again. The reason for this is that the core shrinks very
quickly, hence we store landmark distances only for 6.6% of the nodes. However, the num-
ber of interpolation points for shortcuts increases by up to a factor ≈ 4 with respect to
the original graph. Storing these additional points is expensive and explains the increase
in space consumption.

It is also interesting to note that the maximum error rate decreases when we allow
more and longer shortcuts to be built. We believe that this is due to the fact that long
shortcuts decrease the number of settled nodes and have large costs, so at each iteration
of TDCALT the key of the backward search priority queue β increases by a large amount.
As the algorithm switches from phase 2 to phase 3 when µ/β < K, and β increases by
large steps, phase 3 starts with a smaller maximum approximation value for the current
query µ/β. This is especially true for short distance queries, where the value of µ is small.

Query speed. Table 5.7 reports the results of TDCALT for different approximation val-
ues K using the European road network as input. In this experiment we used contraction
parameters c = 3.0 and h = 50, i.e., we allow long shortcuts to be built so to favor query
speed. For comparison, we also report the results on the same road network for the time-
dependent versions of Dijkstra, unidirectional ALT, and TDALT. Note that we use 32
avoid landmarks.

Table 5.7 shows that TDCALT yields a significant improvement over TDALT with
respect to preprocessing space, size of the search space and query times. The latter two
figures are improved by one order of magnitude; also, average and maximum error rate

Table 5.7: Performance of time-dependent Dijkstra, unidirectional ALT, TDALT and TDCALT
with different approximation values K.

Preproc. Error Query
time space relative #settled #relaxed time

technique K [min] [B/n] rate av. max nodes edges [ms]
Dijkstra - 0 0 0.0% 0.000% 0.00% 8 877 158 21 010 600 5 757.4
uni ALT - 28 256 0.0% 0.000% 0.00% 2 056 190 2,519,840 1 623.3
ALT 1.00 28 256 0.0% 0.000% 0.00% 2 931 080 3 674 870 2 953.3

1.15 28 256 40.1% 0.303% 10.95% 250 248 301 355 184.4
1.50 28 256 52.8% 0.734% 21.64% 113 040 136 887 68.1

CALT 1.00 60 61 0.0% 0.000% 0.00% 60 961 356 527 121.4
1.05 60 61 2.7% 0.010% 3.94% 32 405 184 342 62.5
1.07 60 61 6.5% 0.030% 4.29% 22 633 126 881 42.1
1.10 60 61 16.6% 0.093% 7.88% 12 777 69 552 21.9
1.12 60 61 24.5% 0.158% 7.88% 9 132 48 580 14.9
1.15 60 61 33.0% 0.259% 8.69% 6 365 32 719 9.2
1.20 60 61 39.8% 0.435% 12.37% 4 707 23 351 6.4
1.25 60 61 42.0% 0.549% 15.52% 4 160 20 319 5.4
1.30 60 61 43.0% 0.611% 16.97% 3 943 19 140 5.0
1.35 60 61 43.4% 0.649% 18.78% 3 843 18 599 4.9
1.50 60 61 43.7% 0.679% 20.73% 3 786 18 297 4.8
1.75 60 61 43.7% 0.682% 27.61% 3 781 18 275 4.8
2.00 60 61 43.7% 0.682% 27.61% 3 781 18 274 4.8
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are smaller when using the same value of the approximation constant K. So, for high K
values, TDCALT is more than three orders of magnitude faster than plain Dijkstra. For
exact queries, this values is much lower: TDCALT is faster than unidirectional ALT by
one order of magnitude, and the improvement over Dijkstra’s algorithm is of a factor 30.

Local Queries. For random queries, TDCALT is one order of magnitude faster than
TDALT on average. In order to gain insight whether this speed-up derives from small or
large distance queries, Fig. 5.7 reports the query times with respect to the Dijkstra rank.
These values were gathered on the European road network instance, using contraction
parameters as in Tab. 5.7, i.e., c = 3.5 and h = 60.

Note that we use a logarithmic scale due to the fluctuating query times. Comparing
both algorithms, we observe that the hierarchical approach used in TDCALT pays off
especially for long distance queries. This is expected, since for small distances TDCALT
may result in a simple application of Dijkstra’s algorithm, with no speed-up techniques.
For sufficiently long distances, however, the median of TDCALT is at least one order of
magnitude faster than TDALT. Exact TDCALT is as fast as approximate TDCALT for
ranks less than 214. For higher ranks however, the gap between both variants increases
drastically. This is due to the fact that the lower bound quality is worse for long range
queries as the gap between time-independent and -dependent path length increases with
increasing path length. Comparing exact TDCALT and TDALT, we observe an interesting
behavior. TDALT wins for low- and long-range queries while exact TDCALT outperforms
approximate TDALT for mid-range queries.
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Figure 5.7: Comparison of TDALT and TDCALT using the Dijkstra rank.
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Dynamic Updates. In order to evaluate the performance of the core update procedure
we generated several traffic jams as follows: for each traffic jam, we select a path in the
network covering 4 minutes of uncongested travel time on motorways. Then we randomly
select a breakpoint between 6 AM and 9 PM, and for all edges on the path we multiply
the corresponding breakpoint value by a factor 5. As also observed in Tab. 4.2, updates
on motorway edges are the most difficult to deal with, since those edges are the most
frequently used during the shortest path computations, thus they contribute to a large
number of shortcuts. In Tab. 5.8 we report average and maximum required time over 1000
runs to update the core in case of a single traffic jam, applying different contraction pa-
rameters. We also report the corresponding figures for a batch update of 1000 traffic jams
(computed over 100 runs), in order to reduce the fluctuations and give a clearer indication
of required CPU time when performing multiple updates. Besides, we measured the aver-
age and maximum time required to update the core when modifying a single breakpoint
on a motorway edge selected uniformly at random; we also record the corresponding val-
ues when modifying 1000 single breakpoints on random motorway edges (computed over
100 runs). As there is no spatial locality when updating a single breakpoint over random
edges, this represents a worst-case scenario. Note that in this experiment we limit the
length of shortcuts in terms of uncongested travel time (as reported in the third column).
This is because in the dynamic scenario the length of shortcuts plays the most important
role when determining the required CPU effort for an update operation, and if we allow
the shortcuts length to grow indefinitely we may have unpractical update times. Hence,
we also report preprocessing space in terms of additional bytes per node, and query times
with K = 1.15. We remark that Tab. 5.8 only considers the CPU time required to up-
date the core, and does not take into account the computational effort to modify the cost
functions for edges at level 0 in the hierarchy, i.e. not belonging to the core. However,
this effort is negligible in practice, because the modification of a breakpoint of an edge
outside the core has an influence only on the edge itself. Therefore, the update is carried
out by simply modifying the corresponding breakpoint value, whereas the core update is
considerably more time-consuming.

Table 5.8: CPU time required to update the core in case of traffic jams for different contraction
parameters and limits for the length of shortcuts.

traffic jam single breakpoint
cont. limit space single[ms] batch[ms] single[ms] batch[ms] query
c h [min] [B/n] av. max av. max av. max av. max [ms]

0.0 0 – 256 0.0 0 0 0 0.0 0 0 0 188.2
0.5 10 5 123 0.4 28 372 488 0.1 5 97 166 81.5

10 121 0.7 49 619 799 0.1 12 183 383 85.2
15 119 0.7 49 707 1 083 0.1 11 202 407 74.2
20 119 0.7 49 820 1 200 0.2 59 291 459 73.8

1.0 20 5 82 7.8 229 7 144 8 090 1.8 78 1 853 2 041 34.5
10 72 21.2 778 20 329 22 734 5.8 371 5 957 9 266 27.1
15 68 32.1 2 226 27 327 33 313 7.2 427 7 291 11 522 25.4
20 66 37.0 2 231 30 787 39 470 8.8 1 197 8 476 11 426 22.8

2.0 30 5 88 17.4 290 16 293 17 493 5.7 283 5 019 6 017 33.7
10 82 90.5 3 868 79 092 85 259 27.6 1 894 24 943 27 501 22.8
15 79 171.0 4 604 120 018 142 455 49.4 2 451 46 237 58 936 19.7
20 77 219.7 5 073 187 595 206 569 63.3 5 510 60 940 65 954 16.4
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As expected, the effort to update the core becomes more expensive with increasing
contraction parameters. First, we consider the scenario where we generate 1000 traffic jams
over motorway edges, and modify the cost functions accordingly. For c = 0.5, h = 10 the
updates are very fast, even if we allow long shortcuts (i.e. 20 minutes of uncongested travel
time). The average CPU time for an update of 1000 traffic jams is always smaller than
1 second, therefore we are able to deal with a large number of breakpoint modifications
in a short time. This is confirmed by the very small average time required to update the
core after modifying a random breakpoint on a random motorway edge, which is smaller
than 0.2 milliseconds. As we increase the contraction parameters, dynamic updates take
longer to deal with. A larger number of long shortcuts is created, therefore update times
grow rapidly, requiring several seconds. The average time to update the core after adding
1000 traffic jams with contraction parameters c = 1.0, h = 20 is at least one order of
magnitude larger than the respective values with parameters c = 0.5, h = 10. Very large
updates are feasible in practice only if we limit the length of shortcuts to 5 minutes of
uncongested travel time; for most practical applications, however, updates are not very
frequent, therefore adding 1000 traffic jams in ≈ 30 seconds is reasonably fast. If we
consider contraction parameters c = 2.0, h = 30, then the updates for this scenario may
require several minutes; however, limiting the length of shortcuts helps.

Next, we analyze update times for modifications of a single breakpoint over random
motorway edges. We observe that they confirm the analysis for the previous scenario
(adding 1000 traffic jams). For small contraction parameters (or if we limit shortcuts to
a small length in terms of uncongested traveling time), updating the core after modifying
one breakpoint requires on average less than 10 milliseconds, whereas if we modify 1000
breakpoints we need less than 10 seconds. For c = 0.5, h = 10 we can carry out the
updates in less than 0.5 seconds. If we allow shortcuts to grow, then updates may require
several seconds.

If we compare the time required to update the core after adding 1000 traffic jams with
respect to modifying 1000 breakpoints, we see that our update routine greatly benefits
from spatial locality of the modified edges: the first scenario is only ≈3-4 times slower than
the second, but the number of modified edges is larger, because each traffic jam extends
over several motorway edges. However, this is expected: as each shortcut is updated only
once, modifications on contiguous edges may require no additional effort, if all modified
edges belong to the same shortcut. In real world applications, traffic jams typically occur
on contiguous edges [Ker04], therefore our update routine should behave better in practice
than in worst case scenarios.

Summarizing, we observe a clear trade off between query times and update times
depending on the contraction parameters, so that for those applications which require
frequent updates we can minimize update costs while keeping query times < 100 ms, and
for applications which require very few or no updates we can minimize query times. If
most of the edges have their cost changed we can rerun the core edges computation,
i.e. recomputing all edges on the core from scratch, which only takes a few minutes.

Traffic days. Next, we evaluate the impact of traffic days on TDCALT. Table 5.9 reports
the performance of TDCALT using our German road network with different traffic scenar-
ios as input. We observe a similar behavior as for TDALT. Approximation values > 1.15
do not pay off in terms of query performance and switching from exact to approximate
queries yields less improvement for Germany than for Europe. Moreover, it does not pay
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Table 5.9: Performance of TDCALT on our German road network instance. Scenario depicts the
degree of perturbation.

Preproc. Error Query
time space relative abs. #settled #relaxed time

scenario K [min] [B/n] rate av. max max [s] nodes edges [ms]
1.00 9 50.3 0.0% 0.000% 0.00% 0 2 984 11 316 4.84

Monday 1.15 9 50.3 8.3% 0.051% 11.00% 1 618 1 588 5 303 1.84
1.50 9 50.3 8.3% 0.052% 17.25% 1 618 1 587 5 301 1.84
1.00 9 50.3 0.0% 0.000% 0.00% 0 3 190 12 255 5.36

midweek 1.15 9 50.3 8.2% 0.051% 13.84% 2 408 1 593 5 339 1.87
1.50 9 50.3 8.2% 0.052% 13.84% 2 408 1 592 5 337 1.86
1.00 8 44.9 0.0% 0.000% 0.00% 0 3 097 12 162 5.21

Friday 1.15 8 44.9 7.8% 0.052% 11.29% 2 348 1 579 5 376 1.82
1.50 8 44.9 7.8% 0.054% 21.19% 2 348 1 579 5 374 1.82
1.00 6 27.8 0.0% 0.000% 0.00% 0 1 856 7 188 2.42

Saturday 1.15 6 27.8 4.4% 0.031% 11.50% 1 913 1 539 5 542 1.71
1.50 6 27.8 4.4% 0.031% 24.17% 1 913 1 539 5 541 1.71
1.00 5 19.1 0.0% 0.000% 0.00% 0 1 773 6 712 2.13

Sunday 1.15 5 19.1 4.0% 0.029% 12.72% 1 400 1 551 5 541 1.68
1.50 5 19.1 4.1% 0.029% 17.84% 1 400 1 550 5 540 1.68

off to drop correctness in low traffic scenarios. Still, query performance of TDCALT is
excellent. Exact queries are between 280 and 704 times faster—depending on the traffic
situation—than plain Dijkstra. Similar to TDALT, the traffic scenario has almost no in-
fluence on approximate TDCALT: Less than 10% of the queries are incorrect with paths
being up to 39 minutes longer than the shortest. Such paths can be computed 900 times
faster than by Dijkstra.

5.5.3 SHARC

Default Settings. Unless otherwise stated, we use c = 2.5 as contraction parameter for
the all levels. The hop-bound of our contraction is set to 10, the interpolation-bound to
300. If we use landmarks, we select 8 nodes with avoid. We do not use more landmarks as
for unidirectional ALT, more landmarks do not yield improved query times (cf. Tab. 5.3).

Variants. In the following, we evaluate four variants of time-dependent SHARC. The only
difference between them is the way we compute arc-flags during preprocessing. Refinement
of arc-flags is the same for all variants. Our economical variant sets arc-flags via Dijkstra-
based approximation of labels, the generous version uses approximation with a fixed num-
ber of interpolation points, while the aggressive variant uses exact label-correcting algo-
rithms on the topmost level. Finally, our heuristic variant sets heuristic (and potentially
false negative) flags on all levels. For the latter, we construct 14 shortest path trees per
node, i.e., we set K to 12. To keep preprocessing times limited, we compute arc-flags only
for the topmost three levels and do not refine arc-flags for the lowest two levels. For static
SHARC on road networks, this reduces preprocessing times by a factor of 3, but query
performance decreases only by ≈ 30%.
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Germany. We apply a 5-level partition 4 cells per supercell on levels 0 to 3 and 112 cells
on level 4. For this setup, we analyze the impact of degree of perturbation and the quality
of different arc-flags computations.

Traffic Days. Table 5.10 reports the performance of time-dependent SHARC with and
without landmarks for all profiles we have access to. We use our economical and generous
variant for all traffic days and our aggressive version for Saturday and Sunday. Unfortu-
nately, preprocessing of our aggressive variant is too long for the remaining traffic days.
For comparison, we also report the performance of static SHARC in a “no traffic” scenario.
We also report the speed-up over Dijkstra’s algorithm, which settles ≈ 2.2 million nodes
in 1.5 seconds on average, independent of the applied traffic scenario.

We observe that the degree of perturbation has a high influence on both preprocessing
and query performance of economical SHARC. Preprocessing times increase if perturbation
is higher. This is mainly due to our refinement phase that uses partial label-correcting
algorithms in order to improve the quality of arc-flags. The increase in overhead derives
from the fact that the number of additional interpolation points for shortcuts increases.
Analyzing query performance of SHARC, we observe that in a Sunday scenario, SHARC
provides speed-ups of up to 787 over Dijkstra. However, this values drops to 60 if a high

Table 5.10: Performance of SHARC on German road network instance. Scenario depicts the
degree of perturbation, as described above. We here also report the speed-up over Dijkstra.

Preprocessing Time-Queries
time space edge points #del. speed #rel. speed time speed

scenario algorithm [h:m] [B/n] inc. inc. mins up edges up [ms] up

Monday

eco SHARC 1:16 156.6 25.4% 366.8% 19 136 124 101 176 54 24.55 63
eco L-SHARC 1:18 220.6 25.4% 366.8% 2 681 887 18 071 303 6.10 255
gen SHARC 20:47 155.9 25.2% 362.1% 16 472 144 87 092 63 21.13 74
gen L-SHARC 20:49 219.9 25.2% 362.1% 2 308 1 030 15 555 352 5.25 296

midweek

eco SHARC 1:16 154.9 25.4% 363.8% 19 425 119 104 947 51 25.06 60
eco L-SHARC 1:18 218.9 25.4% 363.8% 2 776 831 19 005 279 6.31 238
gen SHARC 20:45 154.2 25.2% 359.2% 16 954 136 91 596 58 21.87 69
gen L-SHARC 20:47 218.2 25.2% 359.2% 2 423 952 16 587 320 5.51 273

Friday

eco SHARC 1:10 142.0 25.4% 358.0% 17 412 134 92 473 58 22.07 69
eco L-SHARC 1:12 206.0 25.4% 358.0% 2 500 936 16 895 319 5.59 271
gen SHARC 19:31 141.7 25.2% 356.1% 15 308 153 81 298 66 19.40 78
gen L-SHARC 19:33 205.7 25.2% 356.1% 2 198 1 065 14 853 363 4.92 309

Saturday

eco SHARC 0:42 90.3 25.0% 283.6% 5 284 441 19 991 269 5.34 276
eco L-SHARC 0:44 154.3 25.0% 283.6% 940 2 478 4 867 1 103 1.50 978
gen SHARC 6:54 88.9 24.9% 278.1% 4 842 481 18 319 293 4.89 301
gen L-SHARC 6:56 152.9 24.9% 278.1% 861 2 705 4 460 1 204 1.38 1 067
agg SHARC 48:57 84.3 24.5% 264.4% 721 3 229 1 603 3 349 0.58 2 554
agg L-SHARC 48:59 148.3 24.5% 264.4% 295 7 905 1 036 5 182 0.32 4 589

Sunday

eco SHARC 0:30 64.6 24.6% 215.8% 2 142 1 097 6 549 826 1.86 787
eco L-SHARC 0:32 128.6 24.6% 215.8% 576 4 076 2 460 2 200 0.73 2 011
gen SHARC 5:27 62.9 24.5% 211.2% 1 737 1 352 5 311 1 019 1.51 970
gen L-SHARC 5:29 126.9 24.5% 211.2% 467 5 026 1 995 2 712 0.59 2 480
agg SHARC 27:20 60.7 24.1% 202.6% 670 3 504 1 439 3 759 0.50 2 904
agg L-SHARC 27:22 124.7 24.1% 202.6% 283 8 300 978 5 535 0.29 5 045

no traffic static SHARC 0:06 13.5 23.9% 23.9% 591 3 790 1 837 2 810 0.30 4 075
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traffic scenario is applied. The reason for this loss in query performance is the bad quality
of our Dijkstra-based approximation. If perturbation is higher, upper- and lower-bounds
are less tight than in a scenario with only few time-dependent edges. We observe that
adding landmarks yields an additional speed-up of up to 4. This is especially useful in
high traffic scenarios as query performance is now down to 6.31 ms, which seems to be
sufficient for most applications.

Switching to arc-flags approximation via functions during preprocessing (generous
SHARC) hardly pays off. Preprocessing times increase by a factor between 10 (Sunday)
and 20 (midweek) but this tremendous increase only yields an increase in query perfor-
mance by ≈ 20%. We conclude that it is sufficient to settle for arc-flags approximation
via bounds.

The query performance of aggressive SHARC is almost independent of the traffic day:
For both Saturday and Sunday, we observe query times of ≈ 0.55 ms, a speed-up of about
3 000 over Dijkstra’s algorithm. By adding landmarks, we get down to ≈ 0.3 ms and the
speed-up is now ≈ 5 000. Compared to static SHARC, we observe that aggressive time-
dependent SHARC yields almost the same speed-up in terms of settled nodes. However,
the number of relaxed edges is lower in static scenarios and, thus, query performance is
slightly better. However, we pay a high price in terms of preprocessing times for switching
to aggressive SHARC. It seems as the best trade-off between preprocessing effort and
query performance is an economical variant combined with landmarks. Here, speed-ups
over Dijkstra’s algorithm vary between 238 and 2 011, depending on the traffic day.
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Figure 5.8: Comparison of time-dependent economical SHARC applying a Wednesday, Saturday,
and Sunday traffic scenario using the Dijkstra rank methodology.
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Local Queries. In order to gain further insights into the impact of traffic days on query
performance of economical SHARC, Fig. 5.8 reports the query times of SHARC with
respect to the Dijkstra rank. As inputs we use our German road network applying traffic
data for midweek, Saturday, and Sunday. Note that we use a logarithmic scale due to
outliers. We observe that up to a rank of 212, query performance is almost independent
of the traffic day. However, beyond this rank, high traffic queries (midweek) get slower.
The same holds for medium traffic queries (Saturday) beyond ranks of 215. The reason for
this is that for long-range queries the quality of Dijkstra-based arc-flags is bad since upper
and lower bounds get worse with increasing distance. Another interesting observation is
that queries for a given rank vary by up to 2 orders of magnitudes. Still, all queries are
executed in less than 55 ms.

Heuristic SHARC. Table 5.11 reports query performance of SHARC if suboptimal paths
are allowed. We observe excellent query performance and preprocessing effort of approx-
imate SHARC. Without landmarks, queries are up to 3 163 times faster than Dijkstra.
If landmarks are added, this value increases to above 5 400. These values are achieved
by a preprocessing effort of not more than 3.5 hours. More importantly, the impact of
perturbation fades. For high traffic scenarios, queries are below 0.38 ms, for low traffic
scenarios below 0.27 ms. This very good performance comes together with a very good
quality of paths. Less than 0.9% of the queries are suboptimal and, more importantly, the
found path is at most 50.3 seconds longer than the shortest. This is less than 0.61% of the
shortest path length. As time-dependent road networks are based on historical data any-
way, such low errors seem reasonable for real-world applications. One could even think of
the following approach. We compute economical and approximate SHARC, both variants
only differ in arc-flags. As long as the server load is low, we use economical SHARC and
switch to approximate SHARC only during peek hours.

Comparing approximate and aggressive SHARC (cf. Tab. 5.10), we observe that query
performance is almost the same for both variants. However, the former yields much lower
preprocessing times, while the latter guarantees correctness of the found paths.

Table 5.11: Performance of approximate SHARC on German road network instance. Since
approximate SHARC may yield suboptimal paths, we report the error-rate, the maximal relative,
and maximal absolute error.

Prepro Error Time-Queries
time space error max max #del. spd #rel. spd time spd

scenario algorithm [h:m] [B/n] -rate rel. abs.[s] mins up edges up [ms] up

Monday heu SHARC 3:30 138.2 0.46% 0.54% 39.3 810 2 935 1 593 3 439 0.69 2 253
heu L-SHARC 3:32 202.2 0.46% 0.54% 39.3 330 7 213 1 076 5 090 0.38 4 104

midweek heu SHARC 3:26 137.2 0.82% 0.61% 48.3 818 2 820 1 611 3 297 0.69 2 164
heu L-SHARC 3:28 201.2 0.82% 0.61% 48.3 334 6 900 1 092 4 866 0.38 3 915

Friday heu SHARC 3:14 125.2 0.50% 0.50% 50.3 769 3 044 1 522 3 543 0.64 2 358
heu L-SHARC 3:16 189.2 0.50% 0.50% 50.3 322 7 266 1 054 5 118 0.36 4 168

Saturday heu SHARC 2:13 80.4 0.18% 0.23% 16.9 666 3 499 1 336 4 018 0.51 2 887
heu L-SHARC 2:15 144.4 0.18% 0.23% 16.9 278 8 369 927 5 788 0.29 5 097

Sunday heu SHARC 1:48 58.8 0.09% 0.36% 14.9 635 3 699 1 271 4 255 0.46 3 163
heu L-SHARC 1:50 122.8 0.09% 0.36% 14.9 272 8 639 908 5 960 0.27 5 420

no traffic static SHARC 0:06 13.5 0.00% 0.00% 0.0 591 3 790 1 837 2 810 0.30 4 075
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Table 5.12: Performance of SHARC profile queries. #nodes reinserted depicts how many nodes
have been reinserted in the queue after removal. profile/time shows the quotient of the correspond-
ing figure for profile and time queries. Hence, it shows the slow-down when switching from time
to profile queries

Time-Queries Profile-Queries
#delete #relaxed time #delete profile #re- #relaxed time profile

traffic day variant mins edges [ms] mins /time ins. edges [ms] /time

Monday eco 19 136 101 176 24.55 19 768 1.03 402 208 942 51 122 2 082.6
heu 810 1 593 0.69 1 071 1.32 24 3 597 1 008 1 460.9

midweek eco 19 425 104 947 25.06 20 538 1.06 432 222 066 60 147 2 400.3
heu 818 1 611 0.69 1 100 1.35 27 3 731 1 075 1 548.4

Friday eco 17 412 92 473 22.07 19 530 1.12 346 204 545 52 780 2 391.9
heu 769 1 522 0.64 1 049 1.36 21 3 551 832 1 293.2
eco 5 284 19 991 5.34 5 495 1.04 44 41 956 3 330 624.0

Saturday agg 721 1 603 0.58 865 1.20 9 3 269 134 232.5
heu 666 1 336 0.51 798 1.20 8 2 665 98 191.9
eco 2 142 6 549 1.86 2 294 1.07 12 13 563 536 288.1

Sunday agg 670 1 439 0.50 781 1.17 5 2 824 57 113.5
heu 635 1 271 0.46 738 1.16 5 2 449 45 97.9

Profile Queries. Up to now we only reported time query performance. Table 5.12 reports
profile query performance of SHARC. Note that profile figures are based on 1 000 random
queries and that we also report time query performance for comparison.

We observe that the perturbation has an even higher impact on profile-queries. While
profiles can be computed by economical SHARC within 1 second on the weekend, profile
queries take up to 1 minute during high traffic days. Our approximate version, however,
yields acceptable query times. For all traffic scenario, a complete profile can be computed
in ≈ 1 second. Comparing time- and profile-queries, we observe that the search space only
increases at most by 35% when running profile- instead of the time-queries. However, due
to the high number of interpolation points of the labels propagated through the network,
profile-queries are up to 2 400 times slower than time-queries. However, the slow-down
is much less for a low traffic scenario. This is due to the fact that less edges are time-
dependent and thus, labels get less complex in low traffic scenarios than in high traffic
situations. Summarizing, switching from time to profile queries is expensive in terms
of query times but at least for approximate SHARC, computing a complete profile is
practical.

Europe. Table 5.13 reports the results of economical and approximate SHARC for our
European inputs. Unfortunately, it turned out that this input is too big to apply aggressive
SHARC. Note that we again report the performance of static SHARC for comparison.

Like for Germany, we observe that the degree of perturbation has a high influence on
both preprocessing and query performance of SHARC. Again, preprocessing times increase
if more edges are time-dependent. Query performance of economical SHARC on Europe
is similar—with respect to speed-up over Dijkstra’s algorithm—to Germany. Combined
with landmarks, queries times are below 40 ms for all scenarios. These query times can
be achieved by investing up to 7 hours of preprocessing, which still seems reasonable for
most applications.
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Table 5.13: Performance of SHARC on our time-dependent European road network instance.
Scenario depicts the degree of perturbation, as described above.

Prepro Error Time-Queries
time space error max abs #del. spd #rel. speed time spd

scen. algorithm [h:m] [B/n] -rate rel. [s] mins up edges up [ms] up

low

eco SHARC 1:45 21.9 0.00% 0.00% 0 36 063 247 238 467 88 31.55 177
eco L-SHARC 1:50 85.9 0.00% 0.00% 0 9 506 939 74 890 281 11.45 487
heu SHARC 6:31 21.1 35.25% 0.68% 285 2 827 3 156 4 333 4 849 1.26 4 410
heu L-SHARC 6:36 85.1 35.25% 0.68% 285 1 550 5 758 4 081 5 149 0.91 6 097

med

eco SHARC 4:37 42.6 0.00% 0.00% 0 42 776 210 296 845 75 42.75 132
eco L-SH. 4:42 106.6 0.00% 0.00% 0 11 977 749 98 049 226 18.72 301
heu SHARC 10:55 39.1 36.11% 1.28% 431 3 920 2 289 6 238 3 550 1.78 3 154
heu L-SHARC 11:00 103.1 36.11% 1.28% 431 2 308 3 888 6 016 3 681 1.33 4 240

high

eco SHARC 6:44 133.8 0.00% 0.00% 0 66 908 133 480 768 44 82.12 70
eco L-SHARC 6:49 197.8 0.00% 0.00% 0 18 289 485 165 382 127 38.29 150
heu SHARC 22:12 127.2 39.56% 1.60% 541 5 031 1 764 8 411 2 498 2.94 1 958
heu L-SHARC 22:17 191.2 39.56% 1.60% 541 3 873 2 292 8 103 2 592 2.13 2 703

no stat. SHARC 0:35 13.7 0.00% 0.00% 0 779 11 301 3 335 6 299 0.35 15 831

Comparing approximate SHARC on Germany (cf. Tab. 5.11) and Europe, we observe
that speed-ups over Dijkstra’s algorithm are almost identical in both cases. However, the
quality of paths is worse for Europe than for Germany: Up to 40% of the queries are
incorrect and the maximal error increases to 1.6%. A reason for this is that for Europe,
shortcuts get more complex than for Germany. Hence, the shortest path may change more
often during the day than for Germany. Still, with respect to travel times within Europe,
these errors still seem reasonable.

Timetable Information. Table 5.14 shows the performance of time-dependent SHARC
using our timetable input. We report the performance of two variants of SHARC: the
economical version computes Dijkstra-based arc-flags on all levels, while our aggressive
variant computes exact flags during the last iteration step. Note that we do not use
additional techniques in order to improve query performance, e.g., the avoid binary search
technique (cf. [PSWZ07] for details). For comparison, we also report the results for plain
Dijkstra and unidirectional.

Table 5.14: Performance of time-dependent Dijkstra, uni-directional ALT and SHARC using our
timetable data as input. Preprocessing times are given in hours and minutes, the overhead in bytes
per node. Moreover, we report the increase in edge count over the input. #delete mins denotes the
number of nodes removed from the priority queue, query times are given in milliseconds. Speed-up
reports the speed-up over the corresponding value for plain Dijkstra.

Prepro Time-Queries Profile-Queries
time space edge #delete speed time speed #delete speed time speed

technique [h:m] [B/n] inc. mins up [ms] up mins up [ms] up
Dijkstra 0:00 0 0% 260 095 1.0 125.2 1.0 1 919 662 1.0 5 327 1.0
uni-ALT 0:02 128 0% 127 103 2.0 75.3 1.7 1 434 112 1.3 4 384 1.2
eco SHARC 1:30 113 74% 32 575 8.0 17.5 7.2 181 782 10.6 988 5.4
gen SHARC 12:15 120 74% 8 771 29.7 4.7 26.6 55 306 34.7 273 19.5
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We observe a good performance of SHARC in general. Queries for a specific departure
times are up to 29.7 times faster than plain Dijkstra in terms of search space. This lower
search space yields a speed-up of a factor of 26.6. This gap originates from the fact that
SHARC operates on a graph enriched by shortcuts. As shortcuts tend to have many
interpolation points, evaluating them is more expensive than original edges. As expected,
our economical variant is slower than the aggressive version but preprocessing is almost
8 times faster. Recall that the only difference between both version is the way arc-flags
are computed during the last iteration step. Although the number of heap operations
is nearly the same for running one label-correcting algorithm per boundary node as for
growing two Dijkstra-trees, the former has to use functions as labels. As composing and
merging functions is more expensive than adding and comparing integers, preprocessing
times increase significantely.

Comparing time- and profile-queries, we observe that computing d∗(s, t) instead of
d(s, t, τ) yields an increase of about factor 4 − 7 in terms of heap operations. Again, as
composing and merging functions is more expensive than adding and comparing integers,
the loss in terms of running times is much higher. Still, both our SHARC-variants are
capable of computing d∗ for two random stations in less than 1 second.

Comparison to Road Networks. Comparing the figures from Tabs. 5.12 and 5.14, we ob-
serve that speed-ups for time-queries in road networks are higher than in railway networks.
However, switching from time to profile queries is cheaper for timetable information. The
reason for this is that composing functions needed for timetables is cheaper than those
needed for road networks.

5.5.4 Comparison

Finally, we compare all time-dependent algorithms discussed in this chapter among each
other. We hereby split our comparison in two parts. Exact queries and approximation.
Table 5.15 reports query performance of time-dependent Dijkstra, uni-directional ALT,
bidirectional ALT, Core-ALT, and SHARC for our exact setup, while Tab. 5.16 depicts
performance if suboptimal paths are allowed. As input we use our time-dependent road
networks of Europe (high traffic) and Germany (midweek and Sunday).

Exact Setup. Depending on the scenario, SHARC or TDCALT performs best. While
TDCALT is the fastest technique for Germany midweek, SHARC wins for low perturbation
scenarios and Europe. However, SHARC tends to have a higher preprocessing effort,
regarding both space and time. As soon as costs functions change frequentely, TDCALT is
our first choice since it works in dynamic scenarios, while SHARC does not. Summarizing,
depending on the size of the graph and degree of perturbation, our presented speed-up
techniques are 150 to 5 000 times faster than plain Dijkstra. For all evaluated networks,
the query performance is sufficient for most real-world environments.

Approximation. In an approximate scenario, things are clearer. Performance of SHARC
is boosted by more than an order of magnitude if we drop correctness. Although ALT and
Core-ALT also gain from allowing suboptimal paths, both query performance and quality
of paths is (much) worse than for approximate SHARC. We conclude that SHARC is
superior if we allow slightly suboptimal paths. Summarizing, approximate SHARC yields
speed-ups between 2 700 to 5 420 over Dijkstra’s algorithm combined with very low errors.
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Table 5.15: Performance of Dijkstra, uni- and bidirectional ALT, Core-ALT, and SHARC in an
exact setup.

Prepro Queries
time space #delete speed #relaxed speed time speed

input algorithm [h:m] [B/n] mins up edges up [ms] up
Dijkstra 0:00 0 2 305 440 1 5 311 600 1 1 502.88 1
uni-TDALT 0:23 128 200 236 12 239 112 22 148.36 10

Germany TDALT 0:23 128 110 134 21 131 090 41 94.26 16
midweek TDCALT 0:09 50 3 190 723 12 255 433 5.36 280

eco SHARC 1:16 155 19 425 119 104 947 51 25.06 60
eco L-SHARC 1:18 219 2 776 831 19 005 279 6.31 238
Dijkstra 0:00 0 2 348 470 1 5 410 600 1 1 464.41 1
uni-TDALT 0:23 128 142 631 16 170 670 32 92.79 16
TDALT 0:23 128 58 956 40 70 333 77 42.96 34

Germany TDCALT 0:05 19 1 773 1 325 6 712 806 2.13 688
Sunday eco SHARC 0:30 65 2 142 1 097 6 549 826 1.86 787

eco L-SHARC 0:32 129 576 4 076 2 460 2 200 0.73 2 011
agg SHARC 27:20 61 670 3 504 1 439 3 759 0.50 2 904
agg L-SHARC 27:22 125 283 8 300 978 5 535 0.29 5 045
Dijkstra 0:00 0 8 877 158 1 21 006 800 1 5 757.45 1
uni-TDALT 1:15 128 2 143 160 4 2 613 994 8 1 520.83 4

Europe TDALT 1:15 128 3 009 320 3 3 799 112 6 1 379.21 4
high traffic TDCALT 1:00 61 60 961 146 356 527 59 121.47 47

eco SHARC 6:44 134 66 908 133 480 768 44 82.12 70
eco L-SHARC 6:49 198 18 289 485 165 382 127 38.29 150

Table 5.16: Performance of Dijkstra, uni- and bidirectional ALT, Core-ALT, and SHARC in an
approximation setup.

Prepro Error Time-Queries
time space error max max #del. spd #rel. speed time spd

input algorithm [h:m] [B/n] -rate rel. abs[s] mins up edges up [ms] up
TDALT 0:23 128 12.4% 14.32% 1 892 50 764 45 60 398 88 36.92 41

Ger TDCALT 0:09 50 8.2% 13.84% 2 408 1 593 1 447 5 339 995 1.87 804
mid heu SHARC 3:26 137 0.8% 0.61% 48 818 2 820 1 611 3 297 0.69 2 164

heu L-SH. 3:28 201 0.8% 0.61% 48 334 6 900 1 092 4 866 0.38 3 915
TDALT 0:23 128 10.4% 14.28% 1 753 50 349 47 59 994 90 36.04 41

Ger TDCALT 0:05 19 4.0% 12.72% 1 400 1 551 1 514 5 541 976 1.71 856
Sun heu SHARC 1:48 59 0.1% 0.36% 15 635 3 699 1 271 4 255 0.46 3 163

heu L-SH. 1:50 123 0.1% 0.36% 15 272 8 639 908 5 960 0.27 5 420
TDALT 1:15 128 35.4% 10.57% 5 789 311 209 29 382 061 55 214.24 27

Eur TDCALT 1:00 61 33.0% 8.69% 6 643 6 365 1 395 32 719 642 9.22 624
high heu SHARC 22:12 127 39.6% 1.60% 541 5 031 1 764 8 411 2 498 2.94 1 958

heu L-SH. 22:17 191 39.6% 1.60% 541 3 873 2 292 8 103 2 592 2.13 2 703
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5.6 Concluding Remarks

Review. In this chapter, we presented the first efficient speed-up techniques for exact
routing in large time-dependent transportation networks. On the one hand, we generalized
our SHARC-algorithm by augmenting several static routines of the preprocessing to time-
dependent variants. On the other hand, we showed how to route bidirectionally in time-
dependent scenarios. The backward search operates on a time-independent graph and
bounds the forward search. As a result, we are able to run fast queries on continental-
sized transportation networks of both roads and of railways. Moreover, we are able to
compute the distances between two nodes for all possible departure times.

Future Work. Regarding future work, one could think of faster ways of composing, merg-
ing, and approximating piece-wise linear functions as this would directly accelerate pre-
processing and, more importantly, profile-queries significantly. Aggressive SHARC is the
superior technique with respect to query performance. Unfortunately, preprocessing times
are impractical in high perturbation scenarios. Since preprocessing is based on building
profile graphs being independent of each other, massive parallelization might be an option
to preprocess aggressive SHARC in reasonable time for such networks.

Preliminary results in [BDSV09] confirm that CHASE (cf. Section 4.4) can be aug-
mented to time-dependent scenarios as well. However, since Contraction Hierarchies is
solely based on shortcuts, the space consumption of this approach is rather high. A chal-
lenging task for the future is to reduce the space consumption of this approach.

References. This chapter is based on [NDLS08, Del08, DN08] and the corresponding
accepted [Del09] and submitted journal version [NDLS09, DN09].



Chapter 6

Pareto Route Planning

Up to now, we focused on speed-up techniques for Dijkstra’s algorithm in single-criteria
scenarios. The goal was to find the quickest route within a transportation network. How-
ever, the quickest route is often not the best one. A user might be willing to accept slightly
longer travel times if the costs of the journey are smaller. A common approach to cope
with such a situation is to find all Pareto-optimal (concerning other metrics than travel
times) routes.

In this chapter, we present a multi-criteria variant of SHARC. Unlike other speed-
up techniques for Dijkstra’s algorithm, SHARC uses a unidirectional query making it the
first choice for adapting a single-criteria technique to a multi-criteria scenario. It turns out
that multi-criteria SHARC yields speed-ups of a factor of up to 15 000 over a generalized
version of Dijkstra’s algorithm.

Overview. We start our work on multi-criteria routing with the generalization of our ba-
sic ingredients from Chapter 3, located in Section 6.1. Similar to our augmentation to
the time-dependent scenario, it turns out that the adaption of contraction is straight-
forward, while for Arc-Flags, we have to alter the intuition of a set arc-flag slightly. In
Section 6.2 we present the preprocessing and the query algorithm of multi-criteria SHARC.
The last ingredient for SHARC, arc-flags refinement, is generalized by substituting local
single-criteria Dijkstra-searches by multi-criteria ones. The experimental evaluation in Sec-
tion 6.3 confirms the excellent speed-up achieved by our multi-criteria variant of SHARC.
We conclude our work with a summary and possible future work in Section 6.4.

6.1 Augmenting Ingredients

From our augmentation of SHARC to a time-dependent scenario (cf. Chapter 5), we
learned that it is sufficient to augment its ingredients, i.e., local Dijkstra-searches, arc-
flags computation, and contraction. In this section we show how to augment all these
ingredients such that correctness is guaranteed even in a multi-criteria scenario.

6.1.1 Dijkstra

Computing a Pareto set D(s, t) can be done by a straightforward generalization of Dijk-
stra’s algorithm. For managing the different distance-vectors at each node v, we main-
tain a list of labels list(v). The list at the source node s is initialized with a label
d(s, s) = (0, . . . , 0), any other list is empty. We insert d(s, s) to a priority queue. Then,
in each iteration step, we extract the label with the smallest minimum component. Then
for all outgoing edges (u, v) a temporary label d(s, v) = d(s, u) ⊕ len(u, v) is created. If
d(s, v) is not dominated by any of the labels in list(v), we add d(s, v) to list(v), add
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d(s, v) to the priority queue, and remove all labels from list(v) that are dominated by
d(s, v). We may stop the query as soon as list(t) 6= ∅ and all labels in the priority queue
are dominated by all labels in list(t).

Pareto Path Graphs. In the following, we construct Pareto path graphs (PPG) by com-
puting D(s, u) for a given source s and all nodes u ∈ V , with our generalized Dijkstra
algorithm. We call an edge (u, v) a PPG-edge if L ∈ list(u) and L′ ∈ list(v) exist such
that L ⊕ len(u, v) = L′. In other words, (u, v) is a PPG-edge if it is part of at least one
Pareto-optimal path from s to v. Note that by this notion one of two parallel edges can
be a PPG-edge while the other one is not.

6.1.2 Arc-Flags

In a single-criteria scenario, an arc-flag AFC(e) denotes whether e has to be considered
for a shortest-path query targeting a node within C. In other words, the flag is set if e
is important for (at least one target node) in C. In Section 5.1, we adapted Arc-Flags to
a time-dependent scenario by setting a flag to true as soon as it is important for at least
one departure time. The adaption to a multi-criteria scenario is very similar: we set an
arc-flag AFC(e) to true, if e is important for at least one Pareto path targeting a node
in C.

Unlike in the time-dependent scenario—where we needed approximations—we can set-
tle for the straightforward approach for augmenting Arc-Flags. We build a Pareto path
graph in

←−
G for all boundary nodes b ∈ BC of all cells C at level i. We stop the growth as

soon as all labels in the priority queue are dominated by all labels L(v, b) assigned to the
nodes v in the supercell of C. Then we set AFC(u, v) = true if (u, v) is a PPG-edge for
at least one PPG grown from all boundary nodes b ∈ BC . Moreover, we set all own-cell
flags to true.

Lemma 6.1. Pareto Arc-Flags is correct.

Proof. To show correctness of Pareto Arc-Flags, we have to prove that for each Pareto s–t
path pst = (e0, . . . , ek), τ ∈ Π the following condition holds: AFT (ei) = true, 0 ≤ i ≤ k
with T = c(t). For all edges ei = (ui, vi) with c(ui) = c(vi) = c(t) this holds because we
set own-cell flags to true.

Let s and t be arbitrary nodes, and let bT be the last boundary node of region T on
pst. We know that the subpath from s to bT is a Pareto path. Hence, all edges on pst are
PPG-edges of the PPG built from bT during preprocessing. Thus, all edges e on pst have
AFT (e) = true.

Multi-Level Arc-Flags. SHARC is based on multi-level Arc-Flags. Hence, we need
to augment the concept of multi-level Arc-Flags to a multi-criteria scenario. Again, the
augmentation is similar to the one to time-dependent networks. We describe a two-level
setup which can be extended to a multi-level scenario easily.

Preprocessing is done as follows. Arc-flags on the upper level are computed as described
above. For the lower flags, we grow a PPG in

←−
G for all boundary nodes b on the lower

level. We may stop the growth as soon as all labels attached to the in the supercell of C
dominate all labels in the priority queue. Then, we set an arc-flag to true if the edge is a
PPG edge of at least one Pareto path graph.
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Lemma 6.2. Pareto multi-level Arc-Flags is correct.

Proof. The proof is very similar to the proof of Lemma 5.3. Again, we show the correctness
of two-level Arc-Flags as the generalization to a multi-level scenario is straightforward.

Let pst = (e0, . . . , ek) be an arbitrary s–t Pareto path. Let ci(u) be the cell of u in
level i, where 0 denotes the lower, 1 the upper level. An edge (u, v) is part of the upper
level if c1(u) 6= c1(t) and c1(v) 6= c1(t). According to Lemma 6.1, we know that all edges
being part of the upper level have AF

c1(t) = true. Let b be the last boundary node of c0(t)
on pτst. Since we have grown a Pareto path graph from b during preprocessing until all
nodes in c1(t) have their final Pareto labels assigned, edges being part of the lower level
have proper arc-flags assigned.

6.1.3 Contraction

Our augmented Pareto contraction routine is very similar to our static one from Section 3.4.
Again, we first reduce the number of nodes by removing unimportant ones and—in order
to preserve Pareto sets between non-removed nodes—add shortcuts to the graph. Then,
we apply an edge-reduction step that removes unneeded shortcuts.

Node-Reduction. We iteratively bypass nodes until no node is bypassable any more. To
bypass a node u we first remove u, its incoming edges I and its outgoing edges O from
the graph. Then, for each combination of ei ∈ I and eo ∈ O, we introduce a new edge
with label len(ei) ⊕ len(eo). Note that we explicitely allow multi-edges. Also note that
contraction gets more expensive in a multi-criteria scenario due to multi-edges.

Like for time-independent and time-dependent node reduction, we use a heap to deter-
mine the next bypassable node. Let #shortcut of new edges that would be inserted into
the graph if u was bypassed and let ζ(x) =#shortcut/(|I|+ |O|) be the expansion of node
u. Furthermore, let h(u) be the hop number of the hop-maximal shortcut- Then we set
the key of a node u within the heap to h(u) + 10 · ζ(u), smaller keys have higher priority.

To keep the costs of shortcuts limited we do not bypass a node if its removal results
in a hop number greater than h. We say that the nodes that have been bypassed belong
to the component, while the remaining nodes are called core-nodes.

Corollary 6.3. Pareto node-reduction preserves Pareto sets between core nodes.

Proof. Correctness follows directly from our rules of adding shortcuts.

Edge-Reduction. We identify unneeded shortcuts by growing a Pareto path graph from
each node u of the core. We stop the growth as soon as all neighbors v of u have their final
Pareto-set assigned. Then we may remove all edges from u to v whose label is dominated
by at least one of the labels list(v). In order to limit the running time of this procedure,
we restrict the number of priority-queue removals to 1 000.

Corollary 6.4. Pareto edge-reduction preserves Pareto sets between core nodes.

Proof. Correctness follows directly from our rules of removal.
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6.2 Pareto SHARC

With the augmented ingredients, we are ready to augment SHARC. Remarkably, the
augmentation is now very similar to time-dependent SHARC from Section 5.4. Dur-
ing perprocessing, we apply the augmented routines from Section 6.1 instead of their
time-independent counterparts, while the query is again a modified multi-criteria Dijkstra
pruning unimportant edges.

6.2.1 Preprocessing

Initialization. In a first step, we again apply our methods being independent of the
applied metric: We remove 1-shell nodes from the graph since we can directly assign
correct arc-flags to all edges adjacent to 1-shell nodes. Moreover, we perform a multi-level
partitioning of the input.

Iteration. After the initialization, our iterative process starts. Each iteration step is
again divided into two parts: contraction and arc-flag computation.

Contraction. First, we apply a contraction step according to Section 6.1. Like for time-
independent and time-dependent SHARC, we have to use cell-aware contraction, i.e., a
node u is never marked as bypassable if any of its neighboring nodes is not in the same
cell as u.

Arc-Flags. We have to set arc-flags for all edges of our output-graph, including those
which we remove during contraction. Like for static SHARC, we can set arc-flags for
all removed edges automatically. We set the arc-flags of the current and all higher levels
depending on the tail u of the deleted edge. If u is a core node, we only set the own-cell flag
to true (and others to false) because this edge can only be relevant for a query targeting
a node in this cell. If u belongs to the component, all arc-flags are set to true as a query
has to leave the component in order to reach a node outside this cell. Setting arc-flags
of those edges not removed from the graph is more time-consuming since we apply the
preprocessing of multi-level Pareto Arc-Flags from 6.1.

Finalization. The last phase of our preprocessing-routine assembles the output graph.
It contains the original graph, shortcuts added during preprocessing and arc-flags for all
edges of the output graph. However, some edge may have no arc-flag set to true. As these
edges are never relaxed by our query algorithm, we directly remove such edges from the
output graph.

6.2.2 Query

Augmenting the SHARC-query is straightforward. For computing a Pareto-set D(s, t),
we use a modified multi-criteria Dijkstra (Section 6.1) that operates on the output graph.
The modifications are then the same as for the single-criteria variant of SHARC: When
settling a node n, we compute the lowest level i on which n and the target node t are
in the same supercell. Moreover, we consider only those edges outgoing from n having
a set arc-flag on level i for the corresponding cell of t. In other words, we prune edges
that are not important for the current query. The stopping criterion is the same as for a
multi-criteria Dijkstra.
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6.2.3 Correctness

Theorem 6.5. Pareto SHARC is correct.

Proof. Correctness of Pareto SHARC can be shown equivalent to time-independent and
time-dependent SHARC. Again, we need to show that an equivalent variant of Lemma 4.3
also hold in our multi-criteria setting. Analyzing the proof of Lemma 4.3, one may notice
that it is based on two facts: Contraction preserves distances and multi-level Arc-Flags is
correct. According to Corollaries 6.3 and 6.4, and Lemma 6.2, our augmented ingredients
fulfill these requirements. Hence, our multi-criteria variant of SHARC is correct as well.

6.2.4 Optimizations

We also apply our optimizations for time-independent SHARC to our multi-criteria vari-
ant. The most important one is again refinement of arc-flags. However, we also reorder
nodes to improve locality and compress arc-flags.

Refinement of Arc-Flags. Recall that refinement of arc-flags tries to improve those
flags set to true during the contraction process. This is achieved by propagating flags of
edges outgoing from high-level nodes to those outgoing from low-level nodes. In a time-
independent scenario, we grow shortest path trees to find the so called exit nodes of each
node, while in a time-dependent scenario, we use profile graphs to determine these nodes.
Hence, we now grow Pareto path graphs from each node. The propergation itself stays
untouched. See Section 5.4 for details.

Like for profile graphs, growing Pareto path graphs can get expensive. Hence, we limit
the growth to n log(n)/|Vl|, where Vl denotes the nodes in level l, priority-queue removals.
In order to preserve correctness, we then may only propagate the flags from the exit nodes
to u if the stopping criterion is fulfilled before this number of removals.

Lemma 6.6. Refinement of arc-flags is correct.

Proof. The only difference between time-dependent and multi-criteria refinement is that
we grow Pareto path instead of profile graphs in order to find exit nodes of a node.
Hence, we can directly adapt the proof of Lemma 5.16 in order to prove the correctness
of Lemma 6.6.

Improved Locality. In order to improve query performance of multi-criteria SHARC,
we again increase cache efficiency of the output graph by reordering nodes according to
the level they have been removed at from the graph.

6.3 Experiments

In this section, we present our experimental evaluation. To this end, we evaluate the
performance of multi-criteria SHARC using several types of graphs with different types
and numbers of metrics. Our implementation is written in C++ using solely the STL at
some points. As priority queue we use a binary heap. Our tests were executed on one core
of an AMD Opteron 2218 running SUSE Linux 10.3. The machine is clocked at 2.6 GHz,
has 16 GB of RAM and 2 x 1 MB of L2 cache. The program was compiled with GCC 4.2,
using optimization level 3.
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6.3.1 Road Networks

Inputs. We use four real world road networks for our experimental evaluation. The
first one is the largest strongly connected component of the road network of Western
Europe, provided by PTV AG for scientific use. It has approximately 18 million nodes
and 42.6 million edges. However, it turns out this input is too big for finding all Pareto
routes. Hence, we also use three smaller network, namely the road network of Luxemburg
consisting of 30 661 nodes and 71 619 edges, a road network of Karlsruhe and surrounding
(77 740 nodes, 196 327 edges), and the road network of the Netherlands (892 392 nodes,
2 159 589 edges). As metrics we use travel times for fast cars/slow trucks, costs (toll +
fuel consumption), travel distances, and unit lengths. Note that the last metric is a rather
synthetic one. However, it is part of the DIMACS benchmark testsuite [DGJ06].

Default Setting. For Europe, we use a 6-level partition with 4 cells per supercell on levels
0 to 3, 8 cells per supercell on level 4, and 104 cells on level 5. A 3-level partition is
applied when using Luxemburg and Karlsruhe as input, with 4 cells per supercell on levels
0 and 1, and 56 cells on level 2. For the netherlands, we apply a 4-level partition, with
4 cells per supercell on levels 0 and 1, 8 cells on level 2, and 112 cells on level 3. We
use c = 2.5 as contraction parameter for the all levels for both inputs. The hop-bound of
our contraction is set to 10. To keep preprocessing times limited, we use an economical
variant (cf. Section 4.5), i.e., we compute arc-flags only for the topmost level and do not
refine arc-flags for the lowest two levels. For static single-criteria SHARC, this reduces
preprocessing times by a factor of 3 (81 minutes→ 27 minutes), but query performance is
still good enough (0.61 ms instead of 0.28 ms). In the following, we report preprocessing
times and the overhead of the preprocessed data in terms of additional bytes per node.
Moreover, we provide the average number of settled nodes, i.e., the number of nodes taken
from the priority queue, and the average query time. For random s-t queries, the nodes s
and t are picked uniformly at random. All figures in this paper are based on 1 000 random
s-t queries and refer to the scenario that only distance labels of the Pareto paths have to
be determined, without outputting a complete description of the paths.

Full Pareto-Setting. Table 6.1 depicts the performance of multi-criteria SHARC on
our Luxemburg and Karlsruhe instance in a full Pareto bicriteria setting. For comparison,
we also report the performance of single-criteria SHARC on all five metrics. We observe
a good performance of multi-criteria SHARC in general. Preprecessing times are less
than 15 minutes which is sufficient for most applications. Interestingly, the speed-up over
Dijkstra’s algorithm with respect to query times even increases when switching to multi-
criteria SHARC. However, comparing single- and multi-criteria, we observe that query
performance highly depends on the size of the Pareto set at the target node. For similar
metrics (fast car and slow truck), bicriteria queries are only 3 times slower than a single-
criteria queries. This stems from the fact that the average size of the Pareto-set is only 2. If
more labels are created, like for fast car + costs, multi-criteria queries are up to 673 times
slower. Even worse, this slow-down increases even further when we apply our Karlsruhe
network. Here, the queries are up to 3 366 times slower. Summarizing, the number of
labels created, and thus, the loss in query performance over single-criteria queries, is too
high for using a full Pareto-setting for a big input like Western Europe. Hence, we show in
the following how to reduce the number of labels such that “unimportant” Pareto-routes
are pruned as early as possible.
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Table 6.1: Performance of single- and multi-criteria SHARC applying different metrics for our
Luxemburg and Karlsruhe inputs. Prepro shows the computation time of the preprocessing in
hours and minutes and the eventual additional bytes per node needed for the preprocessed data.
For queries, we report the number of labels created at the target node, the number of nodes
removed from the priority queue, execution times in milliseconds, and speed-up over Dijkstra’s
algorithm.

Prepro Query
time space target #delete speed time speed

input metrics [h:m] [B/n] labels mins up [ms] up

Luxemburg

fast car < 0:01 12.4 1.0 138 112 0.03 114
slow truck < 0:01 12.6 1.0 142 109 0.03 111
costs < 0:01 12.0 1.0 151 101 0.03 96
distances < 0:01 14.7 1.0 158 97 0.03 87
unit < 0:01 13.7 1.0 149 106 0.03 96
fast car + slow truck 0:01 14.7 2.0 285 106 0.09 100
fast car + costs 0:04 24.1 29.6 4 149 97 6.49 263
fast car + dist. 0:14 22.3 49.9 8 348 51 20.21 78
fast car + unit 0:06 23.7 25.7 4 923 57 5.13 112
costs + dist. 0:02 20.4 29.6 3 947 78 4.87 119

Karlsruhe

fast car <0:01 12.4 1.0 206 189 0.04 188
slow truck <0:01 12.7 1.0 212 187 0.04 178
costs <0:01 15.4 1.0 244 156 0.05 129
distances <0:01 15.7 1.0 261 146 0.06 119
unit <0:01 14.1 1.0 238 165 0.05 147
fast car + slow truck 0:01 15.3 1.9 797 98 0.26 108
fast car + costs 1:30 26.6 52.7 15 912 118 80.88 184
fast car + dist. 3:58 23.6 99.4 31 279 79 202.15 153
fast car + unit 0:17 26.6 27.0 11 319 91 16.04 200
costs + dist. 1:11 21.9 67.2 19 775 84 67.75 160

Reduction of Labels. As observed in Tab 6.1, the number of labels assigned to a node
increase with growing graph size. In order to efficiently compute Pareto-paths for our Eu-
ropean road network, we need to reduce the number of labels both during preprocessing
and queries. We achieve this by tightening the definition of dominance. Therefore, we
define the travel time metric to be the dominating metric W . Then, our tightened defini-
tion of dominance is as follows: Besides the constraints from Section 2.2, we say a label
L = (W,w1, . . . , wk−1) dominates another label L′ = (W ′, w′1, . . . , w

′
k−1) if W ·(1+ε) > W ′

holds. In other words, we only allow Pareto-paths which are up to ε times longer (with
respect to the dominating metric). Note that by this notion, this has to hold for all
sub-paths as well.

Table 6.2 reports the performance of bicriteria SHARC using the tightened definition
of dominance (with varying ε) during preprocessing and queries. As input, we use three
networks: Karlsruhe, the Netherlands, and Europe. We here focus on the probably most
important combination of metrics, namely fast car travel time and costs). We observe
that our additional constraint works: Preprocessing times decrease and query performance
gets much better. However, as expected, very small ε values yield on a small subset of the
Pareto-set and high ε values yield high preprocessing times. For small and mid-size inputs,
i.e., less than 1 million nodes, setting ε to 0.5 yields a reasonable amount of Pareto paths
combined with good preprocessing times and good query performance. Unfortunately, for
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Table 6.2: Performance of bi-criteria SHARC with varying ε using travel times and costs as
metrics. The inputs are Karlsruhe, the Netherlands, and Europe.

Karlsruhe The Netherlands
Prepro Query Prepro Query
time space target #delete time time space target #delete time

ε [h:m] [B/n] labels mins [ms] [h:m] [B/n] labels mins [ms]
0.000 < 0:01 14.3 1.0 265 0.09 0:01 15.2 1.0 452 0.21
0.001 < 0:01 14.3 1.1 271 0.09 0:01 15.3 1.1 461 0.21
0.002 < 0:01 14.3 1.1 302 0.10 0:01 15.2 1.2 489 0.22
0.005 < 0:01 14.5 1.3 307 0.11 0:01 15.3 1.4 517 0.24
0.010 < 0:01 14.6 1.5 322 0.11 0:01 15.4 1.7 590 0.27
0.020 < 0:01 14.8 1.9 387 0.13 0:01 15.6 2.2 672 0.32
0.050 < 0:01 15.7 2.5 495 0.18 0:02 16.5 3.3 1 009 0.51
0.100 < 0:01 16.6 4.2 804 0.33 0:04 17.3 4.8 1 405 0.82
0.200 0:01 17.9 6.4 1,989 1.86 0:09 18.5 7.2 2 225 1.67
0.500 0:02 20.7 14.0 3 193 3.61 0:39 20.6 12.8 4 227 4.85
1.000 0:13 23.1 24.0 9 072 14.86 3:44 22.5 20.0 12 481 26.85
∞ 1:30 26.6 52.7 15 912 80.88 >24:00 – – – –

Europe
Prepro Query
time space target #delete time

ε [h:m] [B/n] labels mins [ms]
0.000 0:53 18.4 1.0 3 299 2.64
0.001 1:00 18.5 1.1 3 644 4.12
0.002 1:03 18.5 1.2 4 340 7.12
0.005 1:18 18.6 1.4 5 012 11.34
0.010 1:58 18.9 2.4 9 861 19.20
0.020 4:10 19.3 5.0 24 540 48.05
0.050 14:12 20.1 23.4 137 092 412.74
0.100 >24:00 – – – –

our European input, only ε ≤ 0.02 yields practical preprocessing and query times.

Table 6.3: Performance of bi-criteria
SHARC with varying γ. ε is fixed to 0.5.

Prepro Query
time space target #delete time

γ [h:m] [B/n] labels mins [ms]
1.100 0:58 19.1 1.2 2 538 1.81
1.050 1:07 19.6 1.3 3 089 2.21
1.010 1:40 20.4 1.7 4 268 3.16
1.005 2:04 20.6 1.9 5 766 4.11
1.001 3:30 20.8 2.7 7 785 6.11
1.000 7:12 21.3 5.3 19 234 35.42
0.999 15:43 22.5 15.2 87 144 297.20
0.995 >24:00 – – – –

Further Reduction. As observable in Tab. 6.2,
our approach for reducing the number of la-
bels is only practical for very small ε if we
use Europe as input. As we are interested in
paths with bigger ε values as well, we add an-
other constraint, called pricing, in order to de-
fine dominance. Besides the constraints from
Section 2.2 and from above, we say a label
L = (W,w1, . . . , wk−1) dominates another la-
bel L′ = (W ′, w′1, . . . , w

′
k−1) if

∑
iw
′
i/
∑

iwi <
W/W ′ ·γ holds. In other words, we only accept
labels with longer travel times if this results in
a decrease in the other metrics under consideration.

With this further tightened definition of label dominance, we are finally ready to run
multi-criteria queries on our European instance. Table 6.3 shows the performance of multi-
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criteria SHARC with varying γ in a bicriteria scenario (travel times + costs) for Europe.
Note that we fix ε = 0.5. It turns out that our additional constraints work. With γ = 1.0,
we create 5.3 labels in 35.42 ms on average at the target node, being sufficient for practical
applications. Preprocessing times are still within reasonable times, i.e., less than 8 hours.
If we want to generate more labels, we could set γ = 0.999. However, query times drop
to almost 300 ms and preprocessing increases drastically. Summarizing, bicriteria queries
for travel times and travel costs are possible if we use γ = 1.0 and ε = 1.5.

Similar Metrics. Our last experiment for road networks deals with the following sce-
nario. We are interested in the quickest route for different types of vehicles. Hence, we
perform multi-criteria queries on metrics all based on travel times. More precisely, we use
typical average speeds of fast cars, slow cars, fast trucks, and slow trucks. Due to the very
limited size of the resulting Pareto-sets, we afford not to use our tightened definition of
dominance for this experiment. Tab. 6.4 shows the performance of multi-criteria SHARC
in such a single-, bi- and tri-, and quad-criteria scenario. We observe that a full Pareto-

Table 6.4: Performance of multi-criteria SHARC applying different travel time metrics. The
inputs are the Netherlands and Europe.

Prepro Query
time space target #del. speed time speed

input metrics [h:m] [B/n] labels mins up [ms] up

The Netherlands

fast car(fc) 0:01 13.7 1.0 364 1 215 0.11 1 490
slow car(sc) 0:01 13.8 1.0 359 1 263 0.10 1 472
fast truck(ft) 0:01 13.9 1.0 365 1 189 0.10 1 332
slow truck(st) 0:01 13.9 1.0 363 1 214 0.10 1 306
fc+st 0:05 16.2 2.2 850 1 223 0.33 2 532
fc+ft 0:05 16.2 2.0 768 1 233 0.29 2 371
fc+sc 0:05 15.5 1.2 520 1 163 0.19 1 896
sc+st 0:05 16.2 1.9 742 1 182 0.29 2 009
sc+ft 0:05 16.2 1.7 679 1 155 0.26 1 850
ft+st 0:05 15.7 1.3 551 1 147 0.21 1 692
fc+sc+st 0:06 19.0 2.3 867 1 244 0.37 2 580
fc+sc+ft 0:06 18.9 2.0 764 1 231 0.32 2 385
sc+ft+st 0:06 19.0 1.9 740 1 190 0.30 2 134
fc+sc+ft+st 0:07 21.8 2.5 942 1 152 0.43 2 362

Europe

fast car(fc) 0:25 13.7 1.0 1,457 6 177 0.69 7 536
slow car(sc) 0:24 13.8 1.0 1,367 6 584 0.67 7 761
fast truck(ft) 0:23 13.9 1.0 1,486 6 057 0.71 7 324
slow truck(st) 0:25 13.9 1.0 1,423 6 325 0.68 7 647
fc+st 2:24 18.3 3.8 6 819 6 196 4.35 12 009
fc+ft 1:30 18.3 3.2 5 466 6 162 3.91 11 349
fc+sc 1:08 17.1 2.0 4 265 6 012 2.26 10 234
sc+st 1:53 18.1 3.3 5 301 5 741 4.02 10 874
sc+ft 1:49 16.2 3.2 5 412 5 488 3.65 10 663
ft+st 1:28 17.4 3.0 5 157 5 669 3.73 12 818
fc+sc+st 2:41 20.3 4.5 8 713 6 513 5.70 12 741
fc+sc+ft 2:47 21.5 3.9 7 133 5 989 4.87 12 144
sc+ft+st 2:59 22.0 4.2 7 962 6 348 5.12 13 412
fc+sc+ft+st 4:41 24.5 6.2 12 766 6 415 7.85 15 281
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setting is feasible if metrics are similar to each other, mainly because the number labels
is very limited. Remarkably, the speed-up of multi-criteria SHARC over multi-criteria
Dijkstra is even higher than in a single-criteria scenario. The slow-down in preprocessing
times and query performance is quite high but still, especially the latter is fast enough for
practical applications. Quadro-criteria queries need less than 8 ms for our European road
networks, being sufficient for most applications. A generalized Dijkstra needs about 120
seconds on average for finding a Pareto-set in this quad-criteria scenario. This speed-up
of more than 15 000 is achieved by a preprocessing taking less than 5 hours.

6.3.2 Synthetic Inputs

In order to show the good performance of multi-criteria SHARC in other networks than
road graphs, we also run some tests on a synthetic input. More precisely, we evaluate
unit disk graphs which are widely used for experimental evaluations in the field of sensor
networks. Such graphs are obtained by arranging nodes uniformly at random on the plane
and connecting nodes with a distance below a given threshold. In our setup, we use graphs
with about 1 000 000 nodes and an average degree 5. We apply two metrics: the distance
between nodes according to their embedding and unit lengths. The results can be found
in Tab. 6.5.

Table 6.5: Performance of single- and bi-criteria SHARC applying different metrics for our syn-
thetic input.

Prepro Query
time space target #delete speed time speed

metrics [h:m] [B/n] labels mins up [ms] up
unit 0:01 16.8 1.0 324 1 495 0.13 1 590
distances 0:01 12.7 1.0 313 1 598 0.13 1 667
unit+dist . 0:20 20.2 24.2 9 158 1 276 9.23 3 837

Like for road networks, SHARC performs well on these inputs. The preprocessing of
the bicriteria is about 20 times slower than for singlecriteria SHARC, but still less than 30
minutes. Again, speed-ups over a bicriteria Dijkstra is even higher than in a single-criteria
scenario.

6.4 Concluding Remarks

Review. In this chapter, we presented an efficient speed-up technique for computing multi-
criteria paths in large-scale road networks. By augmenting single-criteria routines to
multi-criteria versions, we were able to present a multi-criteria variant of SHARC. Several
experiments confirm that speed-ups over a multi-criteria Dijkstra are at least the same
as in a single-criteria scenario, in many cases the speed-up with respect to query times
is even higher. However, if metrics differ strongly, the number of possible Pareto-routes
increases drastically making preprocessing and query times impractical for large instances.
By tightening the definition of dominance, we are able to prune unimportant Pareto-routes
both during preprocessing and queries. As a result, SHARC provides a feasible subset of
Pareto-routes in a continental-sized road network. Moreover, tests on synthetic data show
the robustness of multi-criteria SHARC.
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Future Work. Regarding future work, one can think of other ways for pruning the Pareto-
set. Maybe other constraints yield better subsets of the Pareto-set computable in reason-
able time as well. An open challenging problem is the adaption of multi-criteria SHARC
to a fully realistic timetable information system like the ones presented in [MS07, DMS08].
Due to the experimental results presented here, we are optimistic that this should work
pretty well.

References. This chapter is based on [DW09].
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Chapter 7

Conclusion

In this work, we introduced the first efficient speed-up techniques for routing in augmented,
i.e., time-dependent and multi-criteria, scenarios. Therefore, we followed the paradigm of
algorithm engineering by designing, analyzing, implementing, and evaluating speed-up
techniques for Dijkstra’s algorithm.

For augmentation, we pursued a systematic approach. We identified basic ingredients
and analyzed drawbacks of those. In a study on time-independent route planning we
showed that by incorporating contraction, i.e., a hierarchical component, into goal-directed
speed-up techniques, the known drawbacks of the latter diminish. In fact, we obtain speed-
up techniques which can compete with the fastest known techniques. However, due to our
paradigm of basic ingredients, their augmentations are easier than for other techniques. As
a result, we were able to present augmented variants of SHARC and CALT. The former
technique relies on unidirectional search, while CALT performs bidirectional search. The
problem of unknown arrival times is solved by running a time-independent search from the
target bounding the nodes the time-dependent forward search has to visit. With these new
techniques, we are able to compute time-dependent shortest paths up to 5 000 times faster
than plain Dijkstra. Moreover, CALT can even handle the scenario where cost functions
change due to unexpected traffic jams.

We not only introduced the first efficient speed-up techniques for routing in augmented
scenarios. In addition, we further accelerated the fastest known techniques for route
planning in road networks. We achieved this additional speed-up by adding goal-direction
via Arc-Flags to the fastest hierarchical techniques. The additional preprocessing effort
remains limited since it turns out that it is sufficient to use goal-direction only on a small
subgraph constituting the upper part the hierarchy.

Besides that, we presented an experimental study on the robustness of speed-up tech-
niques. By evaluating networks other than road networks, we gained further insights into
the performance of speed-up techniques in general. It turned out that some techniques
are more robust than others. Two of those robust techniques are introduced in this thesis:
CALT, a combination ALT and contraction, and CHASE, a combination of Contraction
Hierarchies and Arc-Flags.

Future Work. An interesting question deriving from our study on robustness is whether
we can somehow predict the performance of a speed-up technique on a network. A good
starting point would be to develop indices that evaluate the network in terms of how well
our basic ingredients from Chapter 3 can exploit certain characteristics of the network.
Although we already did some work on such indices [BDW07b], it seems as if this prelim-
inary study is more a starting than an end point for network analysis with respect to the
performance of speed-up techniques.
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One outcome of route planning in road networks is that adding shortcuts to the graph
was the key idea in order to preprocess such huge networks fast. However, we observed
that shortcuts are much more space-consuming in time-dependent networks. In fact, the
adaption of Contraction Hierarchies [BDSV09] suffers from this fact: The space consump-
tion increases tremendously when switching to time-dependent scenarios. On the long
run, we need to develop a technique that does not rely on shortcuts at all. An interesting
starting point would be a stripped variant of time-dependent SHARC. Moreover, query
performance of time-dependent SHARC is excellent but growing profile graphs during
preprocessing is time-consuming. However, the constructions of these graphs are almost
independent from one another. Hence, it would be interesting whether massive parallelism
might help here. Finally, developing routines for updating arc-flags, in case cost functions
change, is a challenging task as well.

This work introduced a multi-criteria variant of SHARC. However, this work can more
be seen as a starting point on multi-criteria routing. Is there a chance of finding better and
more Pareto routes? How do we find good alternative routes in single-criteria scenarios and
how much do such routes differ from Pareto routes? Moreover, what about multi-criteria
search in time-dependent scenarios? Finally, the adaption of multi-criteria SHARC to a
real-world timetable information system as presented in [DMS08] is a challenging task as
well.

Up to now and including this thesis, research focused on fast route planning in road
networks or public transportation. However, on the long run, we are interested in planning
routes in a multi-modal scenario: We start by car to reach the nearest train station, ride
the train to the airport, fly to an airport near our destination and finally take a taxi.
In other words, we need to incorporate public transportation in road networks. We are
optimistic that the time-dependent methods from Chapter 5 are helpful for this task.
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Willhalm. Partitioning Graphs to Speedup Dijkstra’s Algorithm. ACM Jour-
nal of Experimental Algorithmics, 11:2.8, 2006.
(Cited on pages 6, 23, and 25.)

[MSWZ07] Matthias Müller–Hannemann, Frank Schulz, Dorothea Wagner, and Christos
Zaroliagis. Timetable Information: Models and Algorithms. In Algorithmic
Methods for Railway Optimization, volume 4359 of Lecture Notes in Computer
Science, pages 67–90. Springer, 2007.
(Cited on page 15.)

[Mül05] Kirill Müller. Berechnung kürzester Pfade unter Beachtung von Abbiegever-
boten, 2005. Student Research Project.
(Cited on page 15.)

[Mül06] Kirill Müller. Design and Implementation of an Efficient Hierarchical Speed-
up Technique for Computation of Exact Shortest Paths in Graphs. Master’s
thesis, Universität Karlsruhe (TH), Fakultät für Informatik, June 2006.
(Cited on page 6.)



BIBLIOGRAPHY 133

[MW01] Matthias Müller–Hannemann and Karsten Weihe. Pareto Shortest Paths is
Often Feasible in Practice. In Proceedings of the 5th International Workshop
on Algorithm Engineering (WAE’01), volume 2141 of Lecture Notes in Com-
puter Science, pages 185–197. Springer, 2001.
(Cited on page 8.)

[MZ07] Laurent Flindt Muller and Martin Zachariasen. Fast and Compact Oracles for
Approximate Distances in Planar Graphs. In Proceedings of the 14th Annual
European Symposium on Algorithms (ESA’07), volume 4698 of Lecture Notes
in Computer Science, pages 657–668. Springer, 2007.
(Cited on page 4.)

[NDLS08] Giacomo Nannicini, Daniel Delling, Leo Liberti, and Dominik Schultes. Bidi-
rectional A* Search for Time-Dependent Fast Paths. In Catherine C. Mc-
Geoch, editor, Proceedings of the 7th Workshop on Experimental Algorithms
(WEA’08), volume 5038 of Lecture Notes in Computer Science, pages 334–
346. Springer, June 2008.
(Cited on page 110.)

[NDLS09] Giacomo Nannicini, Daniel Delling, Leo Liberti, and Dominik Schultes. Bidi-
rectional A* Search on Time-Dependent Road Networks. Journal version of
WEA’08, 2009.
(Cited on page 110.)
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Appendix A

Implementation Details

When we started our work on route planning, we had to make a fundamental implementa-
tion choice. Do we want to use external libraries like LEDA [MN99] or BOOST [SLL02]?
It turned out that those libraries either yield a tremendous overhead in space consumption
or tend to be slower than tailored implementations [DGJ06]. Moreover, for efficient route
planning algorithms, only basic datastructures are needed. More precisely, we need fast
graph datastructures, a tailored datastructure for maintaining a multi-level partition, and
an efficient priority queue. For the latter, Dominik Schultes provided us with his imple-
mentation of a binary heap [Sch08]. In the following, we describe our graph and multi-level
partition datastructures in more detail. Our implementation is completely written in C++
using solely the STL at some points. Since virtual functions yield performance penalties,
we use templates for providing a similar functionality as virtuality but without the known
drawback.

A.1 Graphs

The most fundamental datastructure of our work is a graph. Since we assign different
length functions for our different scenarios, we need tailored graphs for each scenario.
While during query times, the graph is static in the sense that only edge weights may be
updated but the topology stays untouched, the concept of contraction adds and removes
nodes and edges from the graph. Hence, we also need a dynamic datastructure. Finally,
we need to invest additional effort if we want to route efficiently in a bidirectional manner.

A.1.1 Static Graph

First, we focus on static graphs, i.e., the topology does not change after the graph has
been constructed. In general, our graph datastructure is based on an adjacency array rep-
resentation [CLRS01]. However, depending on the scenario and approach, small changes
have to be incorporated.

Time-Independent Graphs. Our most prominent technique, SHARC, is a unidirec-
tional technique. This allows a very simple datastructure. We use two arrays of structs,
one representing nodes, the other edges. Enumeration is started at zero. The edge entries
are ordered by their source nodes; thus, all outgoing edges of a node are stored in succes-
sion. Each node stores the index to its first outgoing edge, providing an easy access to
them. A dummy node is also saved at the end of the node-array to provide a pointer to
the first invalid element of the edge-array. Edges store their weight and their targetNode.
Figure A.1 gives a small example.
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Figure A.1: Adjacency representation. The figure on right shows the representation of the graph
from the left as adjacency representation.

Since different speed-up techniques use different additional data, the entries of the
arrays are implemented by template structs. The basic data structures for this purpose
are basicNode and basicEdge. If further information is needed at a node or at an edge, it
can directly be added by extending the respective template. However, adding too much
data to the structs has a negative impact on the performance. Smaller entries can be
stored and retrieved faster. They also profit more from caching effects since more entries
fit into the CPU cache.

Bidirectional Techniques. The above described representation has the disadvantage that
no easy access to the incoming edges of a node exists. Since iterations over all incoming
edges occur frequently when performing a bidirectional Dijkstra search, this shortcoming
has to be remedied. Therefore, each edge is stored twice: Once at its tail and at its head.
Additional Boolean flags indicate whether an edge is incoming or outgoing with respect to
its target node. A small form of edge compression is used for undirected edges that would
otherwise have to be stored four times (twice at both nodes, as incoming and as outgoing
edge): Both directional flags are set, and the edge is only stored once at each node. This
is extremely useful in road networks as here, most edges are undirected (cf. Section 2.4).
Figure A.2 gives an example.
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Figure A.2: Adjacency representation of the graph from Figure A.1. Incoming edges can now be
efficiently accessed to as well.

Time-Dependent Graphs. The main difference to time-independent graphs is that
more data is stored at edges. More precisely, a number of interpolation points is stored to
each edge depicting the travel time at different departure times. Since the number of such
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points is not the same for each edge we introduce a third layer storing all interpolation
points of the graph. Each edge stores an additional pointer to the first interpolation point
in the third layer. For each edge, the interpolation points are sorted by their time value.
Note that we have to introduce a dummy edge for iteration over the points of the last
edges. Figure A.3 gives an example. For accessing the correct interpolation points for a
specific departure time τ , we access the point p = τ/Π · |P (e)| + firstPoint(e) where
|P (e)| denotes the number of points assigned to edge e. In most cases, this access point is
close to the one we seek. By linear search we finally retrieve the correct points.
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Figure A.3: Adjacency representation of a time-dependent graph. The right hand figure shows
the representation of the graph including three time-dependent edges. The resulting datastructure
is shown by the left hand figure.

Bidirectional Search. Some techniques introduced in this thesis rely on bidirectional
search in time-dependent graphs. A straightforward adaption of the ideas used in time-
independent scenarios would yield too high a space overhead, especially in completely
directed graphs. Hence, we store incoming edges as time-independent edges separately in
an array. Figure A.4 gives an example.

Multi-Criteria Graphs. Unlike for time-dependent graphs, modifications to our time-
independent graph datastruture are only little. Since the number of weights assigned to
one edge is fixed, we do not need a third layer like for time-dependent graphs. Instead,
we simply store all edge weights directly in the corresponding edge array.

A.1.2 Dynamic Graph

During query times, the only updates we allow are based on edge weights which we can
handle with the above introduced data structures: In the time-independent case, we can
simply update the corresponding edge weight, while for the time-dependent case we need
to update the breakpoint. Hence, it sufficient to settle for adjacency arrays during query
times. During preprocessing however, we need to remove nodes and edges during con-
traction. Moreover, we add shortcuts to preserve correctness. Removing nodes and edges
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Figure A.4: Adjacency representation of a time-dependent graph including incoming edges. The
graph represented is the one from Fig. A.3.

is easy. We introduce a Boolean for marking nodes and edges as valid. If we remove
an node or edge, we simply mark the corresponding entry as invalid. Adding shortcuts
however, cannot be handled easily in an adjacency array. Hence, we use a temporary
dynamic datastructure based on adjacency lists [CLRS01]. Each node maintains a list of
temporary edges. At the end of a contraction step, we rebuild the graph from still valid
nodes and edges from the original graph and from the temporary edges.

A.2 Multi-Level Partition

During a SHARC query, we need to access the cell number of a node on a certain level
very efficiently. In fact, this operation is executed whenever we settle a node. So, access
should be as fast as possible. We store the cell numbers of all levels in own integer. The
cell number on the lowest level is stored in the lowest bits, the number on the highest
level in the highest bits. An example if given in Fig. A.5. Then, the cell number can be
accessed by one bitshift and an additional AND operation.

1 1 1 01 1 10 0 0 1 1 0 0 0 0

level

cell number

01234

0126105

Figure A.5: Example for storing a multi-level partition with 4 cells on the lower 3 levels, 8 cells
on the fourth level, and 108 cells on the topmost level.
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Appendix D

Deutsche Zusammenfassung

Optimale Routen in Verkehrsnetzen zu bestimmen ist ein alltägliches Problem. Wurden
früher Reiserouten mit Hilfe von Karten am Küchentisch geplant, ist heute die comput-
ergestützte Routenplanung in weiten Teilen der Bevölkerung etabliert: Die beste Eisen-
bahnverbindung ermittelt man im Internet, für Routenplanung in Straßennetzen benutzt
man häufig mobile Navigationsgeräte.

Ein Ansatz, um die besten Verbindungen in solchen Netzen computergestützt zu finden,
stammt aus der Graphentheorie. Man modelliert das Netzwerk als Graphen und berech-
net darin einen kürzesten Weg, eine mögliche Route. Legt man Reisezeiten als Metrik
zu Grunde, ist die so berechnete Route die beweisbar schnellste Verbindung. Dijkstra’s
Algorithmus aus dem Jahre 1959 löst dieses Problem zwar beweisbar optimal, allerdings
sind Verkehrsnetze so groß (das Straßennetzwerk von West- und Mittel-Europa besteht aus
ca. 45 Millionen Abschnitten), dass der klassische Ansatz von Dijsktra zu lange für eine
Anfrage braucht. Aus diesem Grund ist die Entwicklung von Beschleunigungstechniken
für Dijkstra’s Algorithmus Gegenstand aktueller Forschung. Dabei handelt es sich um
zweistufige Verfahren, die in einem Vorverarbeitungsschritt das Netzwerk mit Zusatzin-
formationen anreichern, um anschließend die Berechnung von kürzesten Wegen zu beschle-
unigen.

In den letzten Jahren konzentrierte man sich auf die Entwicklung von Beschleunigung-
stechniken in statischen Straßennetzwerken. Mittlerweile können in solchen Netzwerken
kürzeste Wege innerhalb von Mikrosekunden berechnet werden. Allerdings berücksichtigen
alle bisherigen Arbeiten einen wichtigen Aspekt nicht. Die optimale Route hängt häufig
von dem Abfahrtszeitpunkt ab. Beispielsweise lohnt es sich, Autobahnen während
Stoßzeiten zu meiden. Solch ein Szenario kann mittels einem zeitabhängigem Netzwerk
modelliert werden, die Reisezeit einer Verbindung hängt nun von der Abfahrtszeit ab.
Es stellt sich heraus, dass die Integration des Zeitaspektes in Beschleunigungstechniken
nicht kanonisch dem statischen Fall folgt. Problematisch ist beispielsweise die deutlich
angestiegene Eingabegröße. Schwerwiegender ist allerdings die Tatsache, dass die bisher
schnellsten Techniken auf bidirektionaler Suche basieren. Hierbei wird eine zweite Suche
vom Ziel gestartet. Dieser Ansatz stellt sich in zeitabhängigen Szenarien allerdings als
schwierig dar, da die Ankunftszeit vorab unbekannt ist. Außerdem werden Anfragen auch
komplexer: Beispielsweise könnte ein Benutzer den Abfahrtszeitpunkt anfragen, der seine
Reisezeit minimiert.

Ein weiterer nicht betrachteter Aspekt bei der Routenplanung ist, dass nicht immer
die schnellste Route auch die attraktivste ist. Man ist durchaus bereit eine etwas längere
Reisezeit in Kauf zu nehmen, wenn die Kosten der Reise deutlich geringer sind oder wenn
die Reiseroute landschaftlich besonders reizvoll ist. Anstatt nur die Reisezeit zu minimieren
bezieht man auch andere Metriken wie beispielsweise Kosten in die Bewertung von Routen
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mit ein. Solch besseren Routen können mittels multikriterieller Optimierung berechnet
werden. Man berechnet nun die Pareto-optimalen Wege zwischen zwei Punkten. Diese
kennzeichnen sich dadurch, dass jeder Weg bezüglich mindestens einer Metrik besser als
die anderen ist. Wie im zeitabhängigen Fall ist die Adaption der unikriteriellen Verfahren
an dieses Szenario nicht trivial.

Ergebnisse

Die vorliegende Arbeit “Engineering and Augmenting Route Planning Algorithms” stellt
neue, beweisbar korrekte Verfahren vor, die es ermöglichen oben genannte Problemstel-
lungen effizient zu lösen. Dabei verfolge ich den Ansatz des Algorithm Engineering : Nicht
nur der Entwurf und die theoretische Analyse ist von wesentlicher Bedeutung bei der
Entwicklung von Algorithmen, sondern auch deren Implementierung und experimentelle
Evaluation. Dieser Prozess kann als Kreislauf aufgefasst werden, bei dem die Experimente
neue Impulse für den Entwurf eines Algorithmus liefern können. Demzufolge evaluiere ich
alle in dieser Arbeit entwickelten Techniken ausgiebig experimentell mit Real-Welt Daten.
Dabei liegt der Hauptaugenmerk auf Straßen- und Eisenbahnnetzen. Um die Robustheit
der vorgestellten Verfahren gegenüber der Eingabe zu demonstrieren, werden zusätzlich
auch Daten aus anderen Bereichen der Informatik als Eingabe genutzt. Die Ergebnisse
der Arbeit sind im Detail:

Zeitunabhängiges Szenario. Zuerst untersuche ich bekannte Techniken auf ihre
mögliche Adaption an die neuen Herausforderungen des Zeitaspektes. Dabei liegt ein
Hauptaugenmerk darauf, inwieweit Techniken mit Änderungen im Netzwerk zurecht kom-
men. Ferner konzentriere ich mich auf die Entwicklung eines schnellen unidirektionalen
Verfahrens, das genauso effizient wie bidirektionale Ansätze ist und dabei den Vorteil hat,
dass die Adaption an komplexere Szenarien deutlich einfacher ist. Außerdem kombiniere
ich bekannte Techniken miteinander, so dass die Arbeit die schnellsten Techniken zur
Berechnung kürzester Wege in statischen zeitunabhängigen Netzwerken vorstellt.

Zeitabhängiges Szenario. Der innovativste Teil meiner Arbeit ist die Entwicklung von
Beschleunigungstechniken für das zeitabhängige Szenario. Hierbei ergänze ich Techniken
aus dem vorherigen Teil um den Zeitaspekt. Dabei sind die berechneten Routen weiterhin
beweisbar optimal. Ich verfolge zwei Ansätze: Zum einen erweitere ich den schnellsten
unidirektionalen Ansatz aus dem vorherigen Abschnitt. Zum anderen untersuche ich,
inwieweit man eine Rückwärtssuche vom Ziel starten kann, um die Vorwärtssuche sinnvoll
einzuschränken.

Multikriterielles Szenario. Durch Erweiterung des schnellsten unidirektionalen Ver-
fahrens aus dem zeitunabhängigen Abschnitt können ebenfalls Pareto-optimale Routen
effizient berechnet werden. Allerdings muss die Anzahl sinnvoller Wege, zu mindestens
in Straßengraphen, beschränkt werden. Beispielsweise betrachte ich bezüglich Reisezeit
deutlich längere Routen nur dann als sinnvoll, wenn die Reisekosten signifikant geringer
sind.
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