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A Painless and Direct Way from Integral
to Discrete Fast Wavelet Transforms

Starting from the integral wavelet transform it is shown how the scaling function appears naturally in terms of bandpass
filtering. Our arguments help to motivate the definition of multiscale analyses.
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1. Introduction

The importance of multiscale (multiresolution) analyses for the construction of orthogonal (semi-, biorthogonal) wavelets is
beyond question, see, e.g., the textbooks of Chui [1], Daubechies [2], Louis, Maass, and Rieder [3], and Meyer [5].

In teaching wavelet courses one should therefore carefully introduce the crucial idea of multiscale analyses
(MSA). A good motivation takes the foreknowledge of the audience into account. In this short note we start our course
with the integral (continuous) wavelet transform and suggest an approach in which the scaling function, its relation to
the wavelet, and the fast algorithms are derived from the wavelet in a natural (painless) way without touching MSAs.

At this point the audience will be convinced that scaling functions lie in the heart of constructing (discrete)
wavelets. It will agree on the need for a general framework to study scaling equations. Now we can easily offer the
concept of MSAs as such a framework.

The key to our considerations will be the well-known interpretation of the integral wavelet transform as a band-
pass filter.

2. Point of departure: the integral wavelet transform as phase space representation

Let us start right away with the integral wavelet transform. We refer to the above cited textbooks for its detailed
motivation and its advantages over the Fourier transform w.r.t. signal analysis.

A real-valued square-integrable function w of one real variable is called wavelet if

Cw ::� 2p
�
R

jwjÿ1 jŵ�w�j2 dw <1 : �1�

Here, ŵ denotes the Fourier transform ŵ�w� ::� �2p�ÿ1=2 �
R

w�t� eÿitw dt. Based on the two parameter family wa; b�t�
::� w��tÿ b�=a�= ���

a
p

where a > 0 and b 2 R, we define the integral wavelet transform Lw : L2�R� ! L2�R>0 �R,

da db=a2� by

Lwf�a; b� ::�
�
R

f�t� wa; b�t� dt ; a > 0 ; b 2 R :

The function f can be recovered from Lwf by

f�t� � 2

Cw

�1
0

�
R

Lwf�a; b� wa; b�t� aÿ2 db da �2�

where the double integral has to be taken in the weak sense in general.
We now interpret the wavelet transform as a phase-space (time/frequency-space) representation. To this end we

assume that the wavelet w is normalized by kwkL2�R� � 1 and localized in the time as well as the frequency domains.

More precisely, let w be centered at t0 ::�
�
R

tjw�t�j2 dt with dispersion dt ::�
�
R

�tÿ t0�2 jw�t�j2 dt
� �1=2

. Without loss of
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generality we consider t0 � 0 which can be achieved by translating the wavelet. In the positive frequency domain let ŵ

be localized at the center frequency w0 ::�
�1
0

wjŵ�w�j2 dw with dispersion dw ::�
�1
0

�wÿ w0�2 jŵ�w�j2 dw

 !1=2

. Hence,

wa; b lies concentrated in the phase-space domain Da; b given by

Da; b ::� �bÿ adt; b� adt� � ��w0 ÿ dw�=a; �w0 � dw�=a� : �3�
Consequently, Lwf�a; b� � hf; wa; biL2�R� � hf̂ ; dwa; biL2�R� represents the phase space contents of f at the time/frequency-
point �b; w0=a�. Please observe that the time resolution increases with the frequency. This effect is called the zooming
property of the wavelet transform.

3. Semi-discrete wavelet transform: wavelet series

The step from the integral wavelet transform to wavelet series is straightforward. In view of the reconstruction formula
(2) we are looking for wavelets w and discrete subsets f�aj; bk� j j; k 2 Zg of R>0 �R such that

f�t� � P
j2Z

P
k2Z

dj; kwaj; bk�t� �4�

holds true for suitable coefficients dj; k � dj; k�f�. The function f is expressed as a superposition of wavelets. The magni-
tude of di; k�f� measures the contribution of waj; bk to f or the phase-space contents of f in Daj; bk , respectively. In this semi-
discrete framework the expansion coefficients dj; k�f� play the role of Lwf�aj; bk� but dj; k�f� 6� Lwf�aj; bk� in general.

We do not aim to handle expansions like (4) in full generality. The interested reader should consult the refer-
ences [1, 2, 3, 5] and the literature cited therein.

For our purpose it is sufficient to consider dyadic expansions only, that is, aj ::� 2ÿj and bj; k ::�kaj. The corre-
sponding wavelets

wj; k�t� ::� waj; bj; k�t� � 2j=2 w�2j tÿ k� ; j; k 2 Z ;

are localized in phase-space at the points �k=2j; 2j w0� which lie more densely in time for increasing frequencies. Hence,
small details of f are sampled at a higher resolution in the expansion (4), thereby reproducing the zooming property of
the integral wavelet transform.

We further pose some restrictions on the wavelet. Basically, the set Y � fwj; k j j; k 2 Zg is required to be a
stable basis of L2�R�. That is, the linear span of Y lies dense in L2�R� and the norm equivalenceP

j2Z

P
k2Z

dj; k wj; k

 2

L2�R�
� P

j2Z

P
k2Z

jdj; kj2 �5�

holds true for all square-summable sequences fdj; kg. We use the notation f � g to indicate the existence of two posi-
tive constants c1 and c2 such that c1f � g � c2f . We call a function w with the above properties a discrete wavelet.

Remark: A discrete wavelet is indeed a wavelet in the more general sense of (1).

Analyzing a function f by the semi-discrete wavelet transform consists in computing its expansion coefficients
w.r.t. (4). How can this be done efficiently? The next two sections answer this question.

4. Discrete wavelets and scaling functions

From now on let w be a discrete wavelet. Any f 2 L2�R� can be written as a series (4) which we split according to

f � Plf �
P1
j� l

Qjf ; l 2 Z ; �6�

where

Qjf ::�
P
k2Z

dj; k wj; k and Plf ::�
Plÿ 1

j�ÿ1
Qjf : �7�

Lemma 4.1 provides some relations for later use.

Lemma 4.1: Let w be a discrete wavelet and let Pl and Ql be defined in (7). If f 2 L2�R� then
(i) Pl� 1Plf � Plf and Pl� 1Qlf � Qlf ,
(ii) Pl� 1f � Plf �Qlf .

P r o o f : The assertion (ii) is trivial. To prove (i) one argues as follows. The operators Pl; Ql : L2�R� ! L2�R�
are linear and (uniformly) bounded, see (5). Thus, Pl� 1Plf �

Plÿ 1

j�ÿ1

P
k2Z

dj; k�f� Pl� 1 wj; k. We may write wj; k
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� P
m2Z

P
n2 Z

dm; n�wj; k� wm;n where dm; n�wj; k� � 1 for �j; k� � �m; n� and dm; n�wj; k� � 0 otherwise. Since this represen-

tation of wj; k is unique, see (5), we have that Pl� 1 wj; k � wj; k for j � l.
In Section 2 we associated the frequency band Bj ::� �2j�w0 ÿ dw�; 2j�w0 � dw�� to wj; k, see (3). Therefore, Plf is

essentially a bandlimited version of f with frequencies in �0; 2lÿ 1�w0 � dw��. Translated into the time domain this
means that Plf contains all details of f being larger than 21ÿ l 2p=�w0 � dw�, see, e.g., [3] for the precise derivation. In
other words, Plf is a lowpass filtered or smoothed version of f . Similarly, the frequency contents of Qjf is essentially
restricted to Bj. Hence, Qjf is a bandpass filtered version of f representing all structures of f with sizes roughly
between 2ÿj 2p=�w0 � dw� and 2ÿj 2p=�w0 ÿ dw�.

So, it is meaningful to call j the scale parameter where large j's correspond to small scales. The splitting (6) is
accordingly called a multiscale representation as it decomposes a function into a smooth part and into a sum of finer
details.

Let us reconsider the properties of Pl : it is (almost) a lowpass filter whose frequency band widens with l and
Plf ! f as l!1. In signal analysis filters with the properties of Pl are typically realized by convolutions where
the kernels coincide with the corresponding impulse response, see, e.g., Papoulis [6]. For instance, let h 2 L1�R� be
a real-valued function being (essentially) bandlimited in [ÿW; W�. Further, let h be normalized by

�
R

h�t� dt � 1.
Then,

Hlf�t� ::� 2l
�
R

h�2l�tÿ t�� f�t� dt

is a lowpass filter with band �ÿ2l W; 2l W� and Hlf ! f in L2�R� as l!1.
Applying the trapezoidal rule with abscissae bl; k � k=2l, k 2 Z, to the above integral yields the approximation

Hlf�t� �
P
k2 Z

2ÿl=2 f�k=2l� hl; k�t� : �8�

Therefore, we wish to know whether a real-valued function j 2 L2�R� exists with a normalized mean value,�
R

j�t� dt � 1, such that

Plf �
P
k2 Z

cl; kjl; k for any f 2 L2�R� �9�

where the coefficients cl; k � cl; k�f� are uniquely determined. That is, if Plf � 0 then cl; k�f� � 0 for all k 2 Z.
A stronger ansatz (9) with cl; k�f� � 2ÿl=2f�k=2l� would not leave the necessary degrees of freedom to get from

the approximation (8) to the exact representation (9). However, since Hl � Pl and Hlf ! f as l!1, we expect that

jcl; k�f� ÿ 2ÿl=2 f�k=2l�j ! 0 ; as l!1 ; �10�
for smooth f .

The statements of Lemma 4.1 impose necessary conditions on j and w so that representation (9) may hold true.

Theorem 4.2: Assume that Pl as defined in �7� can be expressed in the form �9�. Then, there exist uniquely
given real sequences h � fhkgk2Z, g � fgkgk2Z, ~h � f~hkgk2Z, and ~g � f~gkgk2Z such that

j�x� �
���
2
p P

k2 Z

hkj�2xÿ k� ; �11�

w�x� �
���
2
p P

k2 Z

gkj�2xÿ k� ; �12�

and ���
2
p

j�2xÿ n� � P
k2 Z

� ~h2kÿnj�xÿ k� � ~g2kÿnw�xÿ k�� ; n 2 Z : �13�

P r o o f : The equalities (11) and (12) are nothing else than a rewriting of the equalities P1j � j and P1w � w,
respectively. Both latter expressions can easily be derived from Lemma 4.1 (i) when taking into account that P0j � j
and Q0w � w.

The verification of (13) is a little bit more involved. Here we apply Lemma 4.1 (ii) yielding
j1; n � P0j1; n �Q0j1; n, n 2 Z, which we rewrite as

j1; n �
P
k2 Z

c0; k�j1; n� j0; k �
P
k2 Z

d0; k�j1; n� w0; k :

Since j1; 2r�x� � j1; 0�xÿ r� and j1; 2r� 1�x� � j1;1�xÿ r�, r 2 Z, we have that

j1; 2r �
P
s2 Z

�c0; sÿ r�j1; 0� j0; s � d0; sÿ r�j1; 0� w0; s� ;

j1; 2r� 1 �
P
s2 Z

�c0; sÿ r�j1;1� j0; s � d0; sÿ r�j1;1� w0; s� :

&

Short Communications 783



Both relations from above imply (13) when setting ~h2m ::� c0;m�j1; 0�, ~h2m� 1 ::� c0;m�j1;1� and ~g2m ::� d0;m�j1; 0�,
~g2m� 1 ::� d0;m�j1;ÿ1� for m 2 Z.

Since j satisfies the scaling or refinement equation (11) it is named scaling function. The scaling equation basi-
cally says that j is a superposition of dilated and translated copies of itself. Relation (12) is most important: the
wavelet is given as a sum of scaling functions. Starting with a scaling function there should be a good chance to find a
corresponding discrete wavelet. So, in a first step one has to study non-trivial solutions of scaling equations.

Teaching a wavelet course we have now reached the perfect moment to introduce the concept of multiscale (or
multiresolution) analysis originating in the work of Mallat and Meyer, see Mallat [4]. Roughly speaking, an MSA
is a family fVlgl2Z of subspaces of X � L2�R� satisfying Vl � Vl� 1, \Vl � f0g, [Vl � X, and f��� 2 Vl if and only if
f�2ÿl �� 2 V0. The latter property is the special feature of MSAs: all spaces Vl are scaled versions of V0.

The MSAs defined by Vl � PlX, Pl as in (9), are a proven tool to study solutions of scaling equations. From here
one can proceed with the detailed construction of orthogonal, semi- and biorthogonal wavelets as demonstrated, e.g., in
the literature cited above.

If one gives an overview lecture to an audience which is merely interested in using (and not in constructing)
wavelets as a tool like the Fourier transform, then one could immediately go from (11), (12), and (13) to the fast
wavelet decomposition and reconstruction algorithms. Though these algorithms can be found in almost any book on
wavelets we present them in the next section for the sake of completeness.

5. Fast discrete wavelet algorithms

In practice we do not deal with analytic but discrete signals. We require, then, that only the sampled values
sn � s�hn�, n 2 Z, of the signal s are available. Here, h is the sampling rate. For convenience let h � 2ÿL where L 2 N

(this is no principal restriction on h). We adapt the present situation to the semi-discrete framework of the former
sections by carrying out a pre-processing step.

We consider the sn's as scaled coefficients of a function f ,

f�t� ::� P
n2 Z

2ÿl=2 snjL; n�t� ; �14�

expanded in terms of the scaling function j. Let us assume that j belongs to the discrete wavelet w in the sense of
representation (9). With other words, Theorem 4.2 may be applied.

In general, f 6� PLs, that is, 2ÿL=2 sn 6� cL; n�s� for some n 2 Z. As already mentioned in the former section we
expect, however, that j2ÿL=2 sn ÿ cL; n�s�j becomes smaller with increasing L whenever j has a normalized mean value,
see (10).

Remark: In case of biorthogonal wavelets, for instance, the error f ÿ PLs can be estimated analytically for
smooth s thereby verifying (10).

The highest frequency resolvable by the discrete samples sn is limited by the sampling rate. In the language of
the lowpass filters Pl this means that PLf � f : the function f contains no details being smaller than 2ÿL 2p=�w0 � dw�.
To obtain the wavelet expansion (4) of f only the coefficients dj; n�f� for j � Lÿ 1 are required. Those can be com-
puted easily from the samples cL; n�f� � 2ÿL=2 sn as we demonstrate below.

We start by reformulating (13) into the slightly more general version jL; n �
P
k

�~h2kÿnjLÿ 1; k � ~g2kÿnwLÿ 1; k�.
Now we plug the latter relation into (14) and change the order of summation to get the discrete wavelet decomposition

dLÿ 1; k�f� �
P
n2 Z

~g2kÿncL; n�f� and cLÿ 1; k�f� �
P
n2 Z

~h2kÿncL; n�f� : �15�

Using both formulae recursively we are able to compute the dj; k�f�'s for all scale parameters j smaller than L. Please
note that the sequences dj � fdj; kgk2 Z and cj � fcj; kgn2 Z are obtained from cj� 1 by discrete convolutions with the
filters ~g and ~h, respectively, followed by a downsampling by 2.

As easy as the decomposition is the reconstruction algorithm. Here, cj� 1 is reconstructed from cj and dj by an
upsampling by 2 followed by discrete convolutions. Specifically, the discrete wavelet reconstruction reads

cj� 1; k �
P
n2 Z

�hkÿ 2ncj; n � gkÿ 2ndj; n� �16�

which can be verified using (11) and (12).
In view of (15) and (16) one prefers discrete wavelets and scaling functions having finite and short filter se-

quences h, g, ~h, and ~g. In this situation the numerical effort for a complete decomposition and reconstruction of a finite
set of samples fsngn2t is proportional to the number of samples, see [1, 2, 3, 5] for details. Then, one speaks of the
fast wavelet transform which is easier to code and even faster than the fast Fourier transform.

&
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A broad variety of discrete wavelets and their corresponding scaling functions are known in the literature
which yield fast algorithms. The user has the freedom, which sometimes causes a lot of pain, to select the right pair
for her/his specific application. An adequate choice requires a thorough knowledge of the properties of the different
wavelets.
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�Uberabtastung und Rekonstruktion
verlorener Werte bandbegrenzter Signale

A bandlimited signal sampled at a sampling rate higher than the Nyquist rate can be reconstructed uniquely from its
samples even when a finite number of samples is being lost. This paper gives a solution to this problem which partially
originates from Marks [1]. The solution described here is available in a parallel and a sequential (iterative) form. The
parallel implementation requires the solution of a single system of linear equations. Some investigation of the numerical
properties of this system is done and a numerical example is given.
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1. Einf�uhrung

In dieser Arbeit soll der Einflu� der �Uberabtastung auf die M�oglichkeit der Rekonstruktion von �aquidistant abgetaste-
ten Funktionen bei Verlust endlich vieler Abtastwerte untersucht werden. Bei Abtastung mit der Nyquist-Rate, wel-
cher bei gegebener Bandgrenze a eine Distanz von p=a entspricht, ist eine Rekonstruktion verlorengegangener Werte
unm�oglich, da die verbleibende Abtastmenge keine Eindeutigkeitsmenge f�ur den zugrundeliegenden Funktionenraum
mehr darstellt (siehe [5]). Ist die Abtastrate h�oher als die Nyquist-Rate, so bleibt die Darstellung der Funktion bei Aus-
lassung endlich vieler Abtastpunkte eindeutig, so da� eine Rekonstruktion m�oglich wird. Daf�ur sollen hier ein Approxi-
mationsverfahren angegeben und dessen Konvergenzeigenschaften untersucht werden. Die Problemstellung geht auf [1]
bzw. [2] zur�uck, wo allerdings die Frage nach der L�osbarkeit der entsprechenden Gleichungssysteme nicht beantwortet
wurde.

2. Problemstellung und L�osung

Es sei f eine beliebige mit der Bandgrenze np, n > 0 reell, bandbegrenzte Funktion mit endlicher Energie, gegeben durch
ihre Abtastwerte auf der Punktmenge k=an, k 2 Z. Hierbei sei a > 1 eine beliebige reelle Zahl. Der lineare Raum dieser
Funktionen sei mit Wnp bezeichnet. Die Norm k �k in Wnp sei die Energienorm, f�ur eine Funktion f gegeben durch

kfk ::� �
R

jf�t�j2 dt
� �1=2

: �1�
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